1 /******************************************************************************* |
|
2 |
|
3 |
|
4 Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. |
|
5 |
|
6 This program is free software; you can redistribute it and/or modify it |
|
7 under the terms of the GNU General Public License as published by the Free |
|
8 Software Foundation; either version 2 of the License, or (at your option) |
|
9 any later version. |
|
10 |
|
11 This program is distributed in the hope that it will be useful, but WITHOUT |
|
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
|
14 more details. |
|
15 |
|
16 You should have received a copy of the GNU General Public License along with |
|
17 this program; if not, write to the Free Software Foundation, Inc., 59 |
|
18 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
|
19 |
|
20 The full GNU General Public License is included in this distribution in the |
|
21 file called LICENSE. |
|
22 |
|
23 Contact Information: |
|
24 Linux NICS <linux.nics@intel.com> |
|
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
|
26 |
|
27 *******************************************************************************/ |
|
28 |
|
29 /* |
|
30 * e100.c: Intel(R) PRO/100 ethernet driver |
|
31 * |
|
32 * (Re)written 2003 by scott.feldman@intel.com. Based loosely on |
|
33 * original e100 driver, but better described as a munging of |
|
34 * e100, e1000, eepro100, tg3, 8139cp, and other drivers. |
|
35 * |
|
36 * References: |
|
37 * Intel 8255x 10/100 Mbps Ethernet Controller Family, |
|
38 * Open Source Software Developers Manual, |
|
39 * http://sourceforge.net/projects/e1000 |
|
40 * |
|
41 * |
|
42 * Theory of Operation |
|
43 * |
|
44 * I. General |
|
45 * |
|
46 * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet |
|
47 * controller family, which includes the 82557, 82558, 82559, 82550, |
|
48 * 82551, and 82562 devices. 82558 and greater controllers |
|
49 * integrate the Intel 82555 PHY. The controllers are used in |
|
50 * server and client network interface cards, as well as in |
|
51 * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx |
|
52 * configurations. 8255x supports a 32-bit linear addressing |
|
53 * mode and operates at 33Mhz PCI clock rate. |
|
54 * |
|
55 * II. Driver Operation |
|
56 * |
|
57 * Memory-mapped mode is used exclusively to access the device's |
|
58 * shared-memory structure, the Control/Status Registers (CSR). All |
|
59 * setup, configuration, and control of the device, including queuing |
|
60 * of Tx, Rx, and configuration commands is through the CSR. |
|
61 * cmd_lock serializes accesses to the CSR command register. cb_lock |
|
62 * protects the shared Command Block List (CBL). |
|
63 * |
|
64 * 8255x is highly MII-compliant and all access to the PHY go |
|
65 * through the Management Data Interface (MDI). Consequently, the |
|
66 * driver leverages the mii.c library shared with other MII-compliant |
|
67 * devices. |
|
68 * |
|
69 * Big- and Little-Endian byte order as well as 32- and 64-bit |
|
70 * archs are supported. Weak-ordered memory and non-cache-coherent |
|
71 * archs are supported. |
|
72 * |
|
73 * III. Transmit |
|
74 * |
|
75 * A Tx skb is mapped and hangs off of a TCB. TCBs are linked |
|
76 * together in a fixed-size ring (CBL) thus forming the flexible mode |
|
77 * memory structure. A TCB marked with the suspend-bit indicates |
|
78 * the end of the ring. The last TCB processed suspends the |
|
79 * controller, and the controller can be restarted by issue a CU |
|
80 * resume command to continue from the suspend point, or a CU start |
|
81 * command to start at a given position in the ring. |
|
82 * |
|
83 * Non-Tx commands (config, multicast setup, etc) are linked |
|
84 * into the CBL ring along with Tx commands. The common structure |
|
85 * used for both Tx and non-Tx commands is the Command Block (CB). |
|
86 * |
|
87 * cb_to_use is the next CB to use for queuing a command; cb_to_clean |
|
88 * is the next CB to check for completion; cb_to_send is the first |
|
89 * CB to start on in case of a previous failure to resume. CB clean |
|
90 * up happens in interrupt context in response to a CU interrupt. |
|
91 * cbs_avail keeps track of number of free CB resources available. |
|
92 * |
|
93 * Hardware padding of short packets to minimum packet size is |
|
94 * enabled. 82557 pads with 7Eh, while the later controllers pad |
|
95 * with 00h. |
|
96 * |
|
97 * IV. Recieve |
|
98 * |
|
99 * The Receive Frame Area (RFA) comprises a ring of Receive Frame |
|
100 * Descriptors (RFD) + data buffer, thus forming the simplified mode |
|
101 * memory structure. Rx skbs are allocated to contain both the RFD |
|
102 * and the data buffer, but the RFD is pulled off before the skb is |
|
103 * indicated. The data buffer is aligned such that encapsulated |
|
104 * protocol headers are u32-aligned. Since the RFD is part of the |
|
105 * mapped shared memory, and completion status is contained within |
|
106 * the RFD, the RFD must be dma_sync'ed to maintain a consistent |
|
107 * view from software and hardware. |
|
108 * |
|
109 * Under typical operation, the receive unit (RU) is start once, |
|
110 * and the controller happily fills RFDs as frames arrive. If |
|
111 * replacement RFDs cannot be allocated, or the RU goes non-active, |
|
112 * the RU must be restarted. Frame arrival generates an interrupt, |
|
113 * and Rx indication and re-allocation happen in the same context, |
|
114 * therefore no locking is required. A software-generated interrupt |
|
115 * is generated from the watchdog to recover from a failed allocation |
|
116 * senario where all Rx resources have been indicated and none re- |
|
117 * placed. |
|
118 * |
|
119 * V. Miscellaneous |
|
120 * |
|
121 * VLAN offloading of tagging, stripping and filtering is not |
|
122 * supported, but driver will accommodate the extra 4-byte VLAN tag |
|
123 * for processing by upper layers. Tx/Rx Checksum offloading is not |
|
124 * supported. Tx Scatter/Gather is not supported. Jumbo Frames is |
|
125 * not supported (hardware limitation). |
|
126 * |
|
127 * MagicPacket(tm) WoL support is enabled/disabled via ethtool. |
|
128 * |
|
129 * Thanks to JC (jchapman@katalix.com) for helping with |
|
130 * testing/troubleshooting the development driver. |
|
131 * |
|
132 * TODO: |
|
133 * o several entry points race with dev->close |
|
134 * o check for tx-no-resources/stop Q races with tx clean/wake Q |
|
135 * |
|
136 * FIXES: |
|
137 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com> |
|
138 * - Stratus87247: protect MDI control register manipulations |
|
139 */ |
|
140 |
|
141 #include <linux/module.h> |
|
142 #include <linux/moduleparam.h> |
|
143 #include <linux/kernel.h> |
|
144 #include <linux/types.h> |
|
145 #include <linux/slab.h> |
|
146 #include <linux/delay.h> |
|
147 #include <linux/init.h> |
|
148 #include <linux/pci.h> |
|
149 #include <linux/dma-mapping.h> |
|
150 #include <linux/netdevice.h> |
|
151 #include <linux/etherdevice.h> |
|
152 #include <linux/mii.h> |
|
153 #include <linux/if_vlan.h> |
|
154 #include <linux/skbuff.h> |
|
155 #include <linux/ethtool.h> |
|
156 #include <linux/string.h> |
|
157 #include <asm/unaligned.h> |
|
158 |
|
159 |
|
160 #define DRV_NAME "e100" |
|
161 #define DRV_EXT "-NAPI" |
|
162 #define DRV_VERSION "3.5.10-k2"DRV_EXT |
|
163 #define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver" |
|
164 #define DRV_COPYRIGHT "Copyright(c) 1999-2005 Intel Corporation" |
|
165 #define PFX DRV_NAME ": " |
|
166 |
|
167 #define E100_WATCHDOG_PERIOD (2 * HZ) |
|
168 #define E100_NAPI_WEIGHT 16 |
|
169 |
|
170 MODULE_DESCRIPTION(DRV_DESCRIPTION); |
|
171 MODULE_AUTHOR(DRV_COPYRIGHT); |
|
172 MODULE_LICENSE("GPL"); |
|
173 MODULE_VERSION(DRV_VERSION); |
|
174 |
|
175 static int debug = 3; |
|
176 static int eeprom_bad_csum_allow = 0; |
|
177 module_param(debug, int, 0); |
|
178 module_param(eeprom_bad_csum_allow, int, 0); |
|
179 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); |
|
180 MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums"); |
|
181 #define DPRINTK(nlevel, klevel, fmt, args...) \ |
|
182 (void)((NETIF_MSG_##nlevel & nic->msg_enable) && \ |
|
183 printk(KERN_##klevel PFX "%s: %s: " fmt, nic->netdev->name, \ |
|
184 __FUNCTION__ , ## args)) |
|
185 |
|
186 #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\ |
|
187 PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \ |
|
188 PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich } |
|
189 static struct pci_device_id e100_id_table[] = { |
|
190 INTEL_8255X_ETHERNET_DEVICE(0x1029, 0), |
|
191 INTEL_8255X_ETHERNET_DEVICE(0x1030, 0), |
|
192 INTEL_8255X_ETHERNET_DEVICE(0x1031, 3), |
|
193 INTEL_8255X_ETHERNET_DEVICE(0x1032, 3), |
|
194 INTEL_8255X_ETHERNET_DEVICE(0x1033, 3), |
|
195 INTEL_8255X_ETHERNET_DEVICE(0x1034, 3), |
|
196 INTEL_8255X_ETHERNET_DEVICE(0x1038, 3), |
|
197 INTEL_8255X_ETHERNET_DEVICE(0x1039, 4), |
|
198 INTEL_8255X_ETHERNET_DEVICE(0x103A, 4), |
|
199 INTEL_8255X_ETHERNET_DEVICE(0x103B, 4), |
|
200 INTEL_8255X_ETHERNET_DEVICE(0x103C, 4), |
|
201 INTEL_8255X_ETHERNET_DEVICE(0x103D, 4), |
|
202 INTEL_8255X_ETHERNET_DEVICE(0x103E, 4), |
|
203 INTEL_8255X_ETHERNET_DEVICE(0x1050, 5), |
|
204 INTEL_8255X_ETHERNET_DEVICE(0x1051, 5), |
|
205 INTEL_8255X_ETHERNET_DEVICE(0x1052, 5), |
|
206 INTEL_8255X_ETHERNET_DEVICE(0x1053, 5), |
|
207 INTEL_8255X_ETHERNET_DEVICE(0x1054, 5), |
|
208 INTEL_8255X_ETHERNET_DEVICE(0x1055, 5), |
|
209 INTEL_8255X_ETHERNET_DEVICE(0x1056, 5), |
|
210 INTEL_8255X_ETHERNET_DEVICE(0x1057, 5), |
|
211 INTEL_8255X_ETHERNET_DEVICE(0x1059, 0), |
|
212 INTEL_8255X_ETHERNET_DEVICE(0x1064, 6), |
|
213 INTEL_8255X_ETHERNET_DEVICE(0x1065, 6), |
|
214 INTEL_8255X_ETHERNET_DEVICE(0x1066, 6), |
|
215 INTEL_8255X_ETHERNET_DEVICE(0x1067, 6), |
|
216 INTEL_8255X_ETHERNET_DEVICE(0x1068, 6), |
|
217 INTEL_8255X_ETHERNET_DEVICE(0x1069, 6), |
|
218 INTEL_8255X_ETHERNET_DEVICE(0x106A, 6), |
|
219 INTEL_8255X_ETHERNET_DEVICE(0x106B, 6), |
|
220 INTEL_8255X_ETHERNET_DEVICE(0x1091, 7), |
|
221 INTEL_8255X_ETHERNET_DEVICE(0x1092, 7), |
|
222 INTEL_8255X_ETHERNET_DEVICE(0x1093, 7), |
|
223 INTEL_8255X_ETHERNET_DEVICE(0x1094, 7), |
|
224 INTEL_8255X_ETHERNET_DEVICE(0x1095, 7), |
|
225 INTEL_8255X_ETHERNET_DEVICE(0x1209, 0), |
|
226 INTEL_8255X_ETHERNET_DEVICE(0x1229, 0), |
|
227 INTEL_8255X_ETHERNET_DEVICE(0x2449, 2), |
|
228 INTEL_8255X_ETHERNET_DEVICE(0x2459, 2), |
|
229 INTEL_8255X_ETHERNET_DEVICE(0x245D, 2), |
|
230 INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7), |
|
231 { 0, } |
|
232 }; |
|
233 MODULE_DEVICE_TABLE(pci, e100_id_table); |
|
234 |
|
235 enum mac { |
|
236 mac_82557_D100_A = 0, |
|
237 mac_82557_D100_B = 1, |
|
238 mac_82557_D100_C = 2, |
|
239 mac_82558_D101_A4 = 4, |
|
240 mac_82558_D101_B0 = 5, |
|
241 mac_82559_D101M = 8, |
|
242 mac_82559_D101S = 9, |
|
243 mac_82550_D102 = 12, |
|
244 mac_82550_D102_C = 13, |
|
245 mac_82551_E = 14, |
|
246 mac_82551_F = 15, |
|
247 mac_82551_10 = 16, |
|
248 mac_unknown = 0xFF, |
|
249 }; |
|
250 |
|
251 enum phy { |
|
252 phy_100a = 0x000003E0, |
|
253 phy_100c = 0x035002A8, |
|
254 phy_82555_tx = 0x015002A8, |
|
255 phy_nsc_tx = 0x5C002000, |
|
256 phy_82562_et = 0x033002A8, |
|
257 phy_82562_em = 0x032002A8, |
|
258 phy_82562_ek = 0x031002A8, |
|
259 phy_82562_eh = 0x017002A8, |
|
260 phy_unknown = 0xFFFFFFFF, |
|
261 }; |
|
262 |
|
263 /* CSR (Control/Status Registers) */ |
|
264 struct csr { |
|
265 struct { |
|
266 u8 status; |
|
267 u8 stat_ack; |
|
268 u8 cmd_lo; |
|
269 u8 cmd_hi; |
|
270 u32 gen_ptr; |
|
271 } scb; |
|
272 u32 port; |
|
273 u16 flash_ctrl; |
|
274 u8 eeprom_ctrl_lo; |
|
275 u8 eeprom_ctrl_hi; |
|
276 u32 mdi_ctrl; |
|
277 u32 rx_dma_count; |
|
278 }; |
|
279 |
|
280 enum scb_status { |
|
281 rus_ready = 0x10, |
|
282 rus_mask = 0x3C, |
|
283 }; |
|
284 |
|
285 enum ru_state { |
|
286 RU_SUSPENDED = 0, |
|
287 RU_RUNNING = 1, |
|
288 RU_UNINITIALIZED = -1, |
|
289 }; |
|
290 |
|
291 enum scb_stat_ack { |
|
292 stat_ack_not_ours = 0x00, |
|
293 stat_ack_sw_gen = 0x04, |
|
294 stat_ack_rnr = 0x10, |
|
295 stat_ack_cu_idle = 0x20, |
|
296 stat_ack_frame_rx = 0x40, |
|
297 stat_ack_cu_cmd_done = 0x80, |
|
298 stat_ack_not_present = 0xFF, |
|
299 stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx), |
|
300 stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done), |
|
301 }; |
|
302 |
|
303 enum scb_cmd_hi { |
|
304 irq_mask_none = 0x00, |
|
305 irq_mask_all = 0x01, |
|
306 irq_sw_gen = 0x02, |
|
307 }; |
|
308 |
|
309 enum scb_cmd_lo { |
|
310 cuc_nop = 0x00, |
|
311 ruc_start = 0x01, |
|
312 ruc_load_base = 0x06, |
|
313 cuc_start = 0x10, |
|
314 cuc_resume = 0x20, |
|
315 cuc_dump_addr = 0x40, |
|
316 cuc_dump_stats = 0x50, |
|
317 cuc_load_base = 0x60, |
|
318 cuc_dump_reset = 0x70, |
|
319 }; |
|
320 |
|
321 enum cuc_dump { |
|
322 cuc_dump_complete = 0x0000A005, |
|
323 cuc_dump_reset_complete = 0x0000A007, |
|
324 }; |
|
325 |
|
326 enum port { |
|
327 software_reset = 0x0000, |
|
328 selftest = 0x0001, |
|
329 selective_reset = 0x0002, |
|
330 }; |
|
331 |
|
332 enum eeprom_ctrl_lo { |
|
333 eesk = 0x01, |
|
334 eecs = 0x02, |
|
335 eedi = 0x04, |
|
336 eedo = 0x08, |
|
337 }; |
|
338 |
|
339 enum mdi_ctrl { |
|
340 mdi_write = 0x04000000, |
|
341 mdi_read = 0x08000000, |
|
342 mdi_ready = 0x10000000, |
|
343 }; |
|
344 |
|
345 enum eeprom_op { |
|
346 op_write = 0x05, |
|
347 op_read = 0x06, |
|
348 op_ewds = 0x10, |
|
349 op_ewen = 0x13, |
|
350 }; |
|
351 |
|
352 enum eeprom_offsets { |
|
353 eeprom_cnfg_mdix = 0x03, |
|
354 eeprom_id = 0x0A, |
|
355 eeprom_config_asf = 0x0D, |
|
356 eeprom_smbus_addr = 0x90, |
|
357 }; |
|
358 |
|
359 enum eeprom_cnfg_mdix { |
|
360 eeprom_mdix_enabled = 0x0080, |
|
361 }; |
|
362 |
|
363 enum eeprom_id { |
|
364 eeprom_id_wol = 0x0020, |
|
365 }; |
|
366 |
|
367 enum eeprom_config_asf { |
|
368 eeprom_asf = 0x8000, |
|
369 eeprom_gcl = 0x4000, |
|
370 }; |
|
371 |
|
372 enum cb_status { |
|
373 cb_complete = 0x8000, |
|
374 cb_ok = 0x2000, |
|
375 }; |
|
376 |
|
377 enum cb_command { |
|
378 cb_nop = 0x0000, |
|
379 cb_iaaddr = 0x0001, |
|
380 cb_config = 0x0002, |
|
381 cb_multi = 0x0003, |
|
382 cb_tx = 0x0004, |
|
383 cb_ucode = 0x0005, |
|
384 cb_dump = 0x0006, |
|
385 cb_tx_sf = 0x0008, |
|
386 cb_cid = 0x1f00, |
|
387 cb_i = 0x2000, |
|
388 cb_s = 0x4000, |
|
389 cb_el = 0x8000, |
|
390 }; |
|
391 |
|
392 struct rfd { |
|
393 u16 status; |
|
394 u16 command; |
|
395 u32 link; |
|
396 u32 rbd; |
|
397 u16 actual_size; |
|
398 u16 size; |
|
399 }; |
|
400 |
|
401 struct rx { |
|
402 struct rx *next, *prev; |
|
403 struct sk_buff *skb; |
|
404 dma_addr_t dma_addr; |
|
405 }; |
|
406 |
|
407 #if defined(__BIG_ENDIAN_BITFIELD) |
|
408 #define X(a,b) b,a |
|
409 #else |
|
410 #define X(a,b) a,b |
|
411 #endif |
|
412 struct config { |
|
413 /*0*/ u8 X(byte_count:6, pad0:2); |
|
414 /*1*/ u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1); |
|
415 /*2*/ u8 adaptive_ifs; |
|
416 /*3*/ u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1), |
|
417 term_write_cache_line:1), pad3:4); |
|
418 /*4*/ u8 X(rx_dma_max_count:7, pad4:1); |
|
419 /*5*/ u8 X(tx_dma_max_count:7, dma_max_count_enable:1); |
|
420 /*6*/ u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1), |
|
421 tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1), |
|
422 rx_discard_overruns:1), rx_save_bad_frames:1); |
|
423 /*7*/ u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2), |
|
424 pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1), |
|
425 tx_dynamic_tbd:1); |
|
426 /*8*/ u8 X(X(mii_mode:1, pad8:6), csma_disabled:1); |
|
427 /*9*/ u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1), |
|
428 link_status_wake:1), arp_wake:1), mcmatch_wake:1); |
|
429 /*10*/ u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2), |
|
430 loopback:2); |
|
431 /*11*/ u8 X(linear_priority:3, pad11:5); |
|
432 /*12*/ u8 X(X(linear_priority_mode:1, pad12:3), ifs:4); |
|
433 /*13*/ u8 ip_addr_lo; |
|
434 /*14*/ u8 ip_addr_hi; |
|
435 /*15*/ u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1), |
|
436 wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1), |
|
437 pad15_2:1), crs_or_cdt:1); |
|
438 /*16*/ u8 fc_delay_lo; |
|
439 /*17*/ u8 fc_delay_hi; |
|
440 /*18*/ u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1), |
|
441 rx_long_ok:1), fc_priority_threshold:3), pad18:1); |
|
442 /*19*/ u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1), |
|
443 fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1), |
|
444 full_duplex_force:1), full_duplex_pin:1); |
|
445 /*20*/ u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1); |
|
446 /*21*/ u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4); |
|
447 /*22*/ u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6); |
|
448 u8 pad_d102[9]; |
|
449 }; |
|
450 |
|
451 #define E100_MAX_MULTICAST_ADDRS 64 |
|
452 struct multi { |
|
453 u16 count; |
|
454 u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/]; |
|
455 }; |
|
456 |
|
457 /* Important: keep total struct u32-aligned */ |
|
458 #define UCODE_SIZE 134 |
|
459 struct cb { |
|
460 u16 status; |
|
461 u16 command; |
|
462 u32 link; |
|
463 union { |
|
464 u8 iaaddr[ETH_ALEN]; |
|
465 u32 ucode[UCODE_SIZE]; |
|
466 struct config config; |
|
467 struct multi multi; |
|
468 struct { |
|
469 u32 tbd_array; |
|
470 u16 tcb_byte_count; |
|
471 u8 threshold; |
|
472 u8 tbd_count; |
|
473 struct { |
|
474 u32 buf_addr; |
|
475 u16 size; |
|
476 u16 eol; |
|
477 } tbd; |
|
478 } tcb; |
|
479 u32 dump_buffer_addr; |
|
480 } u; |
|
481 struct cb *next, *prev; |
|
482 dma_addr_t dma_addr; |
|
483 struct sk_buff *skb; |
|
484 }; |
|
485 |
|
486 enum loopback { |
|
487 lb_none = 0, lb_mac = 1, lb_phy = 3, |
|
488 }; |
|
489 |
|
490 struct stats { |
|
491 u32 tx_good_frames, tx_max_collisions, tx_late_collisions, |
|
492 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions, |
|
493 tx_multiple_collisions, tx_total_collisions; |
|
494 u32 rx_good_frames, rx_crc_errors, rx_alignment_errors, |
|
495 rx_resource_errors, rx_overrun_errors, rx_cdt_errors, |
|
496 rx_short_frame_errors; |
|
497 u32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported; |
|
498 u16 xmt_tco_frames, rcv_tco_frames; |
|
499 u32 complete; |
|
500 }; |
|
501 |
|
502 struct mem { |
|
503 struct { |
|
504 u32 signature; |
|
505 u32 result; |
|
506 } selftest; |
|
507 struct stats stats; |
|
508 u8 dump_buf[596]; |
|
509 }; |
|
510 |
|
511 struct param_range { |
|
512 u32 min; |
|
513 u32 max; |
|
514 u32 count; |
|
515 }; |
|
516 |
|
517 struct params { |
|
518 struct param_range rfds; |
|
519 struct param_range cbs; |
|
520 }; |
|
521 |
|
522 struct nic { |
|
523 /* Begin: frequently used values: keep adjacent for cache effect */ |
|
524 u32 msg_enable ____cacheline_aligned; |
|
525 struct net_device *netdev; |
|
526 struct pci_dev *pdev; |
|
527 |
|
528 struct rx *rxs ____cacheline_aligned; |
|
529 struct rx *rx_to_use; |
|
530 struct rx *rx_to_clean; |
|
531 struct rfd blank_rfd; |
|
532 enum ru_state ru_running; |
|
533 |
|
534 spinlock_t cb_lock ____cacheline_aligned; |
|
535 spinlock_t cmd_lock; |
|
536 struct csr __iomem *csr; |
|
537 enum scb_cmd_lo cuc_cmd; |
|
538 unsigned int cbs_avail; |
|
539 struct cb *cbs; |
|
540 struct cb *cb_to_use; |
|
541 struct cb *cb_to_send; |
|
542 struct cb *cb_to_clean; |
|
543 u16 tx_command; |
|
544 /* End: frequently used values: keep adjacent for cache effect */ |
|
545 |
|
546 enum { |
|
547 ich = (1 << 0), |
|
548 promiscuous = (1 << 1), |
|
549 multicast_all = (1 << 2), |
|
550 wol_magic = (1 << 3), |
|
551 ich_10h_workaround = (1 << 4), |
|
552 } flags ____cacheline_aligned; |
|
553 |
|
554 enum mac mac; |
|
555 enum phy phy; |
|
556 struct params params; |
|
557 struct net_device_stats net_stats; |
|
558 struct timer_list watchdog; |
|
559 struct timer_list blink_timer; |
|
560 struct mii_if_info mii; |
|
561 struct work_struct tx_timeout_task; |
|
562 enum loopback loopback; |
|
563 |
|
564 struct mem *mem; |
|
565 dma_addr_t dma_addr; |
|
566 |
|
567 dma_addr_t cbs_dma_addr; |
|
568 u8 adaptive_ifs; |
|
569 u8 tx_threshold; |
|
570 u32 tx_frames; |
|
571 u32 tx_collisions; |
|
572 u32 tx_deferred; |
|
573 u32 tx_single_collisions; |
|
574 u32 tx_multiple_collisions; |
|
575 u32 tx_fc_pause; |
|
576 u32 tx_tco_frames; |
|
577 |
|
578 u32 rx_fc_pause; |
|
579 u32 rx_fc_unsupported; |
|
580 u32 rx_tco_frames; |
|
581 u32 rx_over_length_errors; |
|
582 |
|
583 u8 rev_id; |
|
584 u16 leds; |
|
585 u16 eeprom_wc; |
|
586 u16 eeprom[256]; |
|
587 spinlock_t mdio_lock; |
|
588 }; |
|
589 |
|
590 static inline void e100_write_flush(struct nic *nic) |
|
591 { |
|
592 /* Flush previous PCI writes through intermediate bridges |
|
593 * by doing a benign read */ |
|
594 (void)readb(&nic->csr->scb.status); |
|
595 } |
|
596 |
|
597 static void e100_enable_irq(struct nic *nic) |
|
598 { |
|
599 unsigned long flags; |
|
600 |
|
601 spin_lock_irqsave(&nic->cmd_lock, flags); |
|
602 writeb(irq_mask_none, &nic->csr->scb.cmd_hi); |
|
603 e100_write_flush(nic); |
|
604 spin_unlock_irqrestore(&nic->cmd_lock, flags); |
|
605 } |
|
606 |
|
607 static void e100_disable_irq(struct nic *nic) |
|
608 { |
|
609 unsigned long flags; |
|
610 |
|
611 spin_lock_irqsave(&nic->cmd_lock, flags); |
|
612 writeb(irq_mask_all, &nic->csr->scb.cmd_hi); |
|
613 e100_write_flush(nic); |
|
614 spin_unlock_irqrestore(&nic->cmd_lock, flags); |
|
615 } |
|
616 |
|
617 static void e100_hw_reset(struct nic *nic) |
|
618 { |
|
619 /* Put CU and RU into idle with a selective reset to get |
|
620 * device off of PCI bus */ |
|
621 writel(selective_reset, &nic->csr->port); |
|
622 e100_write_flush(nic); udelay(20); |
|
623 |
|
624 /* Now fully reset device */ |
|
625 writel(software_reset, &nic->csr->port); |
|
626 e100_write_flush(nic); udelay(20); |
|
627 |
|
628 /* Mask off our interrupt line - it's unmasked after reset */ |
|
629 e100_disable_irq(nic); |
|
630 } |
|
631 |
|
632 static int e100_self_test(struct nic *nic) |
|
633 { |
|
634 u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest); |
|
635 |
|
636 /* Passing the self-test is a pretty good indication |
|
637 * that the device can DMA to/from host memory */ |
|
638 |
|
639 nic->mem->selftest.signature = 0; |
|
640 nic->mem->selftest.result = 0xFFFFFFFF; |
|
641 |
|
642 writel(selftest | dma_addr, &nic->csr->port); |
|
643 e100_write_flush(nic); |
|
644 /* Wait 10 msec for self-test to complete */ |
|
645 msleep(10); |
|
646 |
|
647 /* Interrupts are enabled after self-test */ |
|
648 e100_disable_irq(nic); |
|
649 |
|
650 /* Check results of self-test */ |
|
651 if(nic->mem->selftest.result != 0) { |
|
652 DPRINTK(HW, ERR, "Self-test failed: result=0x%08X\n", |
|
653 nic->mem->selftest.result); |
|
654 return -ETIMEDOUT; |
|
655 } |
|
656 if(nic->mem->selftest.signature == 0) { |
|
657 DPRINTK(HW, ERR, "Self-test failed: timed out\n"); |
|
658 return -ETIMEDOUT; |
|
659 } |
|
660 |
|
661 return 0; |
|
662 } |
|
663 |
|
664 static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, u16 data) |
|
665 { |
|
666 u32 cmd_addr_data[3]; |
|
667 u8 ctrl; |
|
668 int i, j; |
|
669 |
|
670 /* Three cmds: write/erase enable, write data, write/erase disable */ |
|
671 cmd_addr_data[0] = op_ewen << (addr_len - 2); |
|
672 cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) | |
|
673 cpu_to_le16(data); |
|
674 cmd_addr_data[2] = op_ewds << (addr_len - 2); |
|
675 |
|
676 /* Bit-bang cmds to write word to eeprom */ |
|
677 for(j = 0; j < 3; j++) { |
|
678 |
|
679 /* Chip select */ |
|
680 writeb(eecs | eesk, &nic->csr->eeprom_ctrl_lo); |
|
681 e100_write_flush(nic); udelay(4); |
|
682 |
|
683 for(i = 31; i >= 0; i--) { |
|
684 ctrl = (cmd_addr_data[j] & (1 << i)) ? |
|
685 eecs | eedi : eecs; |
|
686 writeb(ctrl, &nic->csr->eeprom_ctrl_lo); |
|
687 e100_write_flush(nic); udelay(4); |
|
688 |
|
689 writeb(ctrl | eesk, &nic->csr->eeprom_ctrl_lo); |
|
690 e100_write_flush(nic); udelay(4); |
|
691 } |
|
692 /* Wait 10 msec for cmd to complete */ |
|
693 msleep(10); |
|
694 |
|
695 /* Chip deselect */ |
|
696 writeb(0, &nic->csr->eeprom_ctrl_lo); |
|
697 e100_write_flush(nic); udelay(4); |
|
698 } |
|
699 }; |
|
700 |
|
701 /* General technique stolen from the eepro100 driver - very clever */ |
|
702 static u16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr) |
|
703 { |
|
704 u32 cmd_addr_data; |
|
705 u16 data = 0; |
|
706 u8 ctrl; |
|
707 int i; |
|
708 |
|
709 cmd_addr_data = ((op_read << *addr_len) | addr) << 16; |
|
710 |
|
711 /* Chip select */ |
|
712 writeb(eecs | eesk, &nic->csr->eeprom_ctrl_lo); |
|
713 e100_write_flush(nic); udelay(4); |
|
714 |
|
715 /* Bit-bang to read word from eeprom */ |
|
716 for(i = 31; i >= 0; i--) { |
|
717 ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs; |
|
718 writeb(ctrl, &nic->csr->eeprom_ctrl_lo); |
|
719 e100_write_flush(nic); udelay(4); |
|
720 |
|
721 writeb(ctrl | eesk, &nic->csr->eeprom_ctrl_lo); |
|
722 e100_write_flush(nic); udelay(4); |
|
723 |
|
724 /* Eeprom drives a dummy zero to EEDO after receiving |
|
725 * complete address. Use this to adjust addr_len. */ |
|
726 ctrl = readb(&nic->csr->eeprom_ctrl_lo); |
|
727 if(!(ctrl & eedo) && i > 16) { |
|
728 *addr_len -= (i - 16); |
|
729 i = 17; |
|
730 } |
|
731 |
|
732 data = (data << 1) | (ctrl & eedo ? 1 : 0); |
|
733 } |
|
734 |
|
735 /* Chip deselect */ |
|
736 writeb(0, &nic->csr->eeprom_ctrl_lo); |
|
737 e100_write_flush(nic); udelay(4); |
|
738 |
|
739 return le16_to_cpu(data); |
|
740 }; |
|
741 |
|
742 /* Load entire EEPROM image into driver cache and validate checksum */ |
|
743 static int e100_eeprom_load(struct nic *nic) |
|
744 { |
|
745 u16 addr, addr_len = 8, checksum = 0; |
|
746 |
|
747 /* Try reading with an 8-bit addr len to discover actual addr len */ |
|
748 e100_eeprom_read(nic, &addr_len, 0); |
|
749 nic->eeprom_wc = 1 << addr_len; |
|
750 |
|
751 for(addr = 0; addr < nic->eeprom_wc; addr++) { |
|
752 nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr); |
|
753 if(addr < nic->eeprom_wc - 1) |
|
754 checksum += cpu_to_le16(nic->eeprom[addr]); |
|
755 } |
|
756 |
|
757 /* The checksum, stored in the last word, is calculated such that |
|
758 * the sum of words should be 0xBABA */ |
|
759 checksum = le16_to_cpu(0xBABA - checksum); |
|
760 if(checksum != nic->eeprom[nic->eeprom_wc - 1]) { |
|
761 DPRINTK(PROBE, ERR, "EEPROM corrupted\n"); |
|
762 if (!eeprom_bad_csum_allow) |
|
763 return -EAGAIN; |
|
764 } |
|
765 |
|
766 return 0; |
|
767 } |
|
768 |
|
769 /* Save (portion of) driver EEPROM cache to device and update checksum */ |
|
770 static int e100_eeprom_save(struct nic *nic, u16 start, u16 count) |
|
771 { |
|
772 u16 addr, addr_len = 8, checksum = 0; |
|
773 |
|
774 /* Try reading with an 8-bit addr len to discover actual addr len */ |
|
775 e100_eeprom_read(nic, &addr_len, 0); |
|
776 nic->eeprom_wc = 1 << addr_len; |
|
777 |
|
778 if(start + count >= nic->eeprom_wc) |
|
779 return -EINVAL; |
|
780 |
|
781 for(addr = start; addr < start + count; addr++) |
|
782 e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]); |
|
783 |
|
784 /* The checksum, stored in the last word, is calculated such that |
|
785 * the sum of words should be 0xBABA */ |
|
786 for(addr = 0; addr < nic->eeprom_wc - 1; addr++) |
|
787 checksum += cpu_to_le16(nic->eeprom[addr]); |
|
788 nic->eeprom[nic->eeprom_wc - 1] = le16_to_cpu(0xBABA - checksum); |
|
789 e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1, |
|
790 nic->eeprom[nic->eeprom_wc - 1]); |
|
791 |
|
792 return 0; |
|
793 } |
|
794 |
|
795 #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */ |
|
796 #define E100_WAIT_SCB_FAST 20 /* delay like the old code */ |
|
797 static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr) |
|
798 { |
|
799 unsigned long flags; |
|
800 unsigned int i; |
|
801 int err = 0; |
|
802 |
|
803 spin_lock_irqsave(&nic->cmd_lock, flags); |
|
804 |
|
805 /* Previous command is accepted when SCB clears */ |
|
806 for(i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) { |
|
807 if(likely(!readb(&nic->csr->scb.cmd_lo))) |
|
808 break; |
|
809 cpu_relax(); |
|
810 if(unlikely(i > E100_WAIT_SCB_FAST)) |
|
811 udelay(5); |
|
812 } |
|
813 if(unlikely(i == E100_WAIT_SCB_TIMEOUT)) { |
|
814 err = -EAGAIN; |
|
815 goto err_unlock; |
|
816 } |
|
817 |
|
818 if(unlikely(cmd != cuc_resume)) |
|
819 writel(dma_addr, &nic->csr->scb.gen_ptr); |
|
820 writeb(cmd, &nic->csr->scb.cmd_lo); |
|
821 |
|
822 err_unlock: |
|
823 spin_unlock_irqrestore(&nic->cmd_lock, flags); |
|
824 |
|
825 return err; |
|
826 } |
|
827 |
|
828 static int e100_exec_cb(struct nic *nic, struct sk_buff *skb, |
|
829 void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *)) |
|
830 { |
|
831 struct cb *cb; |
|
832 unsigned long flags; |
|
833 int err = 0; |
|
834 |
|
835 spin_lock_irqsave(&nic->cb_lock, flags); |
|
836 |
|
837 if(unlikely(!nic->cbs_avail)) { |
|
838 err = -ENOMEM; |
|
839 goto err_unlock; |
|
840 } |
|
841 |
|
842 cb = nic->cb_to_use; |
|
843 nic->cb_to_use = cb->next; |
|
844 nic->cbs_avail--; |
|
845 cb->skb = skb; |
|
846 |
|
847 if(unlikely(!nic->cbs_avail)) |
|
848 err = -ENOSPC; |
|
849 |
|
850 cb_prepare(nic, cb, skb); |
|
851 |
|
852 /* Order is important otherwise we'll be in a race with h/w: |
|
853 * set S-bit in current first, then clear S-bit in previous. */ |
|
854 cb->command |= cpu_to_le16(cb_s); |
|
855 wmb(); |
|
856 cb->prev->command &= cpu_to_le16(~cb_s); |
|
857 |
|
858 while(nic->cb_to_send != nic->cb_to_use) { |
|
859 if(unlikely(e100_exec_cmd(nic, nic->cuc_cmd, |
|
860 nic->cb_to_send->dma_addr))) { |
|
861 /* Ok, here's where things get sticky. It's |
|
862 * possible that we can't schedule the command |
|
863 * because the controller is too busy, so |
|
864 * let's just queue the command and try again |
|
865 * when another command is scheduled. */ |
|
866 if(err == -ENOSPC) { |
|
867 //request a reset |
|
868 schedule_work(&nic->tx_timeout_task); |
|
869 } |
|
870 break; |
|
871 } else { |
|
872 nic->cuc_cmd = cuc_resume; |
|
873 nic->cb_to_send = nic->cb_to_send->next; |
|
874 } |
|
875 } |
|
876 |
|
877 err_unlock: |
|
878 spin_unlock_irqrestore(&nic->cb_lock, flags); |
|
879 |
|
880 return err; |
|
881 } |
|
882 |
|
883 static u16 mdio_ctrl(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data) |
|
884 { |
|
885 u32 data_out = 0; |
|
886 unsigned int i; |
|
887 unsigned long flags; |
|
888 |
|
889 |
|
890 /* |
|
891 * Stratus87247: we shouldn't be writing the MDI control |
|
892 * register until the Ready bit shows True. Also, since |
|
893 * manipulation of the MDI control registers is a multi-step |
|
894 * procedure it should be done under lock. |
|
895 */ |
|
896 spin_lock_irqsave(&nic->mdio_lock, flags); |
|
897 for (i = 100; i; --i) { |
|
898 if (readl(&nic->csr->mdi_ctrl) & mdi_ready) |
|
899 break; |
|
900 udelay(20); |
|
901 } |
|
902 if (unlikely(!i)) { |
|
903 printk("e100.mdio_ctrl(%s) won't go Ready\n", |
|
904 nic->netdev->name ); |
|
905 spin_unlock_irqrestore(&nic->mdio_lock, flags); |
|
906 return 0; /* No way to indicate timeout error */ |
|
907 } |
|
908 writel((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl); |
|
909 |
|
910 for (i = 0; i < 100; i++) { |
|
911 udelay(20); |
|
912 if ((data_out = readl(&nic->csr->mdi_ctrl)) & mdi_ready) |
|
913 break; |
|
914 } |
|
915 spin_unlock_irqrestore(&nic->mdio_lock, flags); |
|
916 DPRINTK(HW, DEBUG, |
|
917 "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n", |
|
918 dir == mdi_read ? "READ" : "WRITE", addr, reg, data, data_out); |
|
919 return (u16)data_out; |
|
920 } |
|
921 |
|
922 static int mdio_read(struct net_device *netdev, int addr, int reg) |
|
923 { |
|
924 return mdio_ctrl(netdev_priv(netdev), addr, mdi_read, reg, 0); |
|
925 } |
|
926 |
|
927 static void mdio_write(struct net_device *netdev, int addr, int reg, int data) |
|
928 { |
|
929 mdio_ctrl(netdev_priv(netdev), addr, mdi_write, reg, data); |
|
930 } |
|
931 |
|
932 static void e100_get_defaults(struct nic *nic) |
|
933 { |
|
934 struct param_range rfds = { .min = 16, .max = 256, .count = 256 }; |
|
935 struct param_range cbs = { .min = 64, .max = 256, .count = 128 }; |
|
936 |
|
937 pci_read_config_byte(nic->pdev, PCI_REVISION_ID, &nic->rev_id); |
|
938 /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */ |
|
939 nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->rev_id; |
|
940 if(nic->mac == mac_unknown) |
|
941 nic->mac = mac_82557_D100_A; |
|
942 |
|
943 nic->params.rfds = rfds; |
|
944 nic->params.cbs = cbs; |
|
945 |
|
946 /* Quadwords to DMA into FIFO before starting frame transmit */ |
|
947 nic->tx_threshold = 0xE0; |
|
948 |
|
949 /* no interrupt for every tx completion, delay = 256us if not 557*/ |
|
950 nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf | |
|
951 ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i)); |
|
952 |
|
953 /* Template for a freshly allocated RFD */ |
|
954 nic->blank_rfd.command = cpu_to_le16(cb_el); |
|
955 nic->blank_rfd.rbd = 0xFFFFFFFF; |
|
956 nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN); |
|
957 |
|
958 /* MII setup */ |
|
959 nic->mii.phy_id_mask = 0x1F; |
|
960 nic->mii.reg_num_mask = 0x1F; |
|
961 nic->mii.dev = nic->netdev; |
|
962 nic->mii.mdio_read = mdio_read; |
|
963 nic->mii.mdio_write = mdio_write; |
|
964 } |
|
965 |
|
966 static void e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb) |
|
967 { |
|
968 struct config *config = &cb->u.config; |
|
969 u8 *c = (u8 *)config; |
|
970 |
|
971 cb->command = cpu_to_le16(cb_config); |
|
972 |
|
973 memset(config, 0, sizeof(struct config)); |
|
974 |
|
975 config->byte_count = 0x16; /* bytes in this struct */ |
|
976 config->rx_fifo_limit = 0x8; /* bytes in FIFO before DMA */ |
|
977 config->direct_rx_dma = 0x1; /* reserved */ |
|
978 config->standard_tcb = 0x1; /* 1=standard, 0=extended */ |
|
979 config->standard_stat_counter = 0x1; /* 1=standard, 0=extended */ |
|
980 config->rx_discard_short_frames = 0x1; /* 1=discard, 0=pass */ |
|
981 config->tx_underrun_retry = 0x3; /* # of underrun retries */ |
|
982 config->mii_mode = 0x1; /* 1=MII mode, 0=503 mode */ |
|
983 config->pad10 = 0x6; |
|
984 config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */ |
|
985 config->preamble_length = 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */ |
|
986 config->ifs = 0x6; /* x16 = inter frame spacing */ |
|
987 config->ip_addr_hi = 0xF2; /* ARP IP filter - not used */ |
|
988 config->pad15_1 = 0x1; |
|
989 config->pad15_2 = 0x1; |
|
990 config->crs_or_cdt = 0x0; /* 0=CRS only, 1=CRS or CDT */ |
|
991 config->fc_delay_hi = 0x40; /* time delay for fc frame */ |
|
992 config->tx_padding = 0x1; /* 1=pad short frames */ |
|
993 config->fc_priority_threshold = 0x7; /* 7=priority fc disabled */ |
|
994 config->pad18 = 0x1; |
|
995 config->full_duplex_pin = 0x1; /* 1=examine FDX# pin */ |
|
996 config->pad20_1 = 0x1F; |
|
997 config->fc_priority_location = 0x1; /* 1=byte#31, 0=byte#19 */ |
|
998 config->pad21_1 = 0x5; |
|
999 |
|
1000 config->adaptive_ifs = nic->adaptive_ifs; |
|
1001 config->loopback = nic->loopback; |
|
1002 |
|
1003 if(nic->mii.force_media && nic->mii.full_duplex) |
|
1004 config->full_duplex_force = 0x1; /* 1=force, 0=auto */ |
|
1005 |
|
1006 if(nic->flags & promiscuous || nic->loopback) { |
|
1007 config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */ |
|
1008 config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */ |
|
1009 config->promiscuous_mode = 0x1; /* 1=on, 0=off */ |
|
1010 } |
|
1011 |
|
1012 if(nic->flags & multicast_all) |
|
1013 config->multicast_all = 0x1; /* 1=accept, 0=no */ |
|
1014 |
|
1015 /* disable WoL when up */ |
|
1016 if(netif_running(nic->netdev) || !(nic->flags & wol_magic)) |
|
1017 config->magic_packet_disable = 0x1; /* 1=off, 0=on */ |
|
1018 |
|
1019 if(nic->mac >= mac_82558_D101_A4) { |
|
1020 config->fc_disable = 0x1; /* 1=Tx fc off, 0=Tx fc on */ |
|
1021 config->mwi_enable = 0x1; /* 1=enable, 0=disable */ |
|
1022 config->standard_tcb = 0x0; /* 1=standard, 0=extended */ |
|
1023 config->rx_long_ok = 0x1; /* 1=VLANs ok, 0=standard */ |
|
1024 if(nic->mac >= mac_82559_D101M) |
|
1025 config->tno_intr = 0x1; /* TCO stats enable */ |
|
1026 else |
|
1027 config->standard_stat_counter = 0x0; |
|
1028 } |
|
1029 |
|
1030 DPRINTK(HW, DEBUG, "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", |
|
1031 c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]); |
|
1032 DPRINTK(HW, DEBUG, "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", |
|
1033 c[8], c[9], c[10], c[11], c[12], c[13], c[14], c[15]); |
|
1034 DPRINTK(HW, DEBUG, "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", |
|
1035 c[16], c[17], c[18], c[19], c[20], c[21], c[22], c[23]); |
|
1036 } |
|
1037 |
|
1038 /********************************************************/ |
|
1039 /* Micro code for 8086:1229 Rev 8 */ |
|
1040 /********************************************************/ |
|
1041 |
|
1042 /* Parameter values for the D101M B-step */ |
|
1043 #define D101M_CPUSAVER_TIMER_DWORD 78 |
|
1044 #define D101M_CPUSAVER_BUNDLE_DWORD 65 |
|
1045 #define D101M_CPUSAVER_MIN_SIZE_DWORD 126 |
|
1046 |
|
1047 #define D101M_B_RCVBUNDLE_UCODE \ |
|
1048 {\ |
|
1049 0x00550215, 0xFFFF0437, 0xFFFFFFFF, 0x06A70789, 0xFFFFFFFF, 0x0558FFFF, \ |
|
1050 0x000C0001, 0x00101312, 0x000C0008, 0x00380216, \ |
|
1051 0x0010009C, 0x00204056, 0x002380CC, 0x00380056, \ |
|
1052 0x0010009C, 0x00244C0B, 0x00000800, 0x00124818, \ |
|
1053 0x00380438, 0x00000000, 0x00140000, 0x00380555, \ |
|
1054 0x00308000, 0x00100662, 0x00100561, 0x000E0408, \ |
|
1055 0x00134861, 0x000C0002, 0x00103093, 0x00308000, \ |
|
1056 0x00100624, 0x00100561, 0x000E0408, 0x00100861, \ |
|
1057 0x000C007E, 0x00222C21, 0x000C0002, 0x00103093, \ |
|
1058 0x00380C7A, 0x00080000, 0x00103090, 0x00380C7A, \ |
|
1059 0x00000000, 0x00000000, 0x00000000, 0x00000000, \ |
|
1060 0x0010009C, 0x00244C2D, 0x00010004, 0x00041000, \ |
|
1061 0x003A0437, 0x00044010, 0x0038078A, 0x00000000, \ |
|
1062 0x00100099, 0x00206C7A, 0x0010009C, 0x00244C48, \ |
|
1063 0x00130824, 0x000C0001, 0x00101213, 0x00260C75, \ |
|
1064 0x00041000, 0x00010004, 0x00130826, 0x000C0006, \ |
|
1065 0x002206A8, 0x0013C926, 0x00101313, 0x003806A8, \ |
|
1066 0x00000000, 0x00000000, 0x00000000, 0x00000000, \ |
|
1067 0x00000000, 0x00000000, 0x00000000, 0x00000000, \ |
|
1068 0x00080600, 0x00101B10, 0x00050004, 0x00100826, \ |
|
1069 0x00101210, 0x00380C34, 0x00000000, 0x00000000, \ |
|
1070 0x0021155B, 0x00100099, 0x00206559, 0x0010009C, \ |
|
1071 0x00244559, 0x00130836, 0x000C0000, 0x00220C62, \ |
|
1072 0x000C0001, 0x00101B13, 0x00229C0E, 0x00210C0E, \ |
|
1073 0x00226C0E, 0x00216C0E, 0x0022FC0E, 0x00215C0E, \ |
|
1074 0x00214C0E, 0x00380555, 0x00010004, 0x00041000, \ |
|
1075 0x00278C67, 0x00040800, 0x00018100, 0x003A0437, \ |
|
1076 0x00130826, 0x000C0001, 0x00220559, 0x00101313, \ |
|
1077 0x00380559, 0x00000000, 0x00000000, 0x00000000, \ |
|
1078 0x00000000, 0x00000000, 0x00000000, 0x00000000, \ |
|
1079 0x00000000, 0x00130831, 0x0010090B, 0x00124813, \ |
|
1080 0x000CFF80, 0x002606AB, 0x00041000, 0x00010004, \ |
|
1081 0x003806A8, 0x00000000, 0x00000000, 0x00000000, \ |
|
1082 } |
|
1083 |
|
1084 /********************************************************/ |
|
1085 /* Micro code for 8086:1229 Rev 9 */ |
|
1086 /********************************************************/ |
|
1087 |
|
1088 /* Parameter values for the D101S */ |
|
1089 #define D101S_CPUSAVER_TIMER_DWORD 78 |
|
1090 #define D101S_CPUSAVER_BUNDLE_DWORD 67 |
|
1091 #define D101S_CPUSAVER_MIN_SIZE_DWORD 128 |
|
1092 |
|
1093 #define D101S_RCVBUNDLE_UCODE \ |
|
1094 {\ |
|
1095 0x00550242, 0xFFFF047E, 0xFFFFFFFF, 0x06FF0818, 0xFFFFFFFF, 0x05A6FFFF, \ |
|
1096 0x000C0001, 0x00101312, 0x000C0008, 0x00380243, \ |
|
1097 0x0010009C, 0x00204056, 0x002380D0, 0x00380056, \ |
|
1098 0x0010009C, 0x00244F8B, 0x00000800, 0x00124818, \ |
|
1099 0x0038047F, 0x00000000, 0x00140000, 0x003805A3, \ |
|
1100 0x00308000, 0x00100610, 0x00100561, 0x000E0408, \ |
|
1101 0x00134861, 0x000C0002, 0x00103093, 0x00308000, \ |
|
1102 0x00100624, 0x00100561, 0x000E0408, 0x00100861, \ |
|
1103 0x000C007E, 0x00222FA1, 0x000C0002, 0x00103093, \ |
|
1104 0x00380F90, 0x00080000, 0x00103090, 0x00380F90, \ |
|
1105 0x00000000, 0x00000000, 0x00000000, 0x00000000, \ |
|
1106 0x0010009C, 0x00244FAD, 0x00010004, 0x00041000, \ |
|
1107 0x003A047E, 0x00044010, 0x00380819, 0x00000000, \ |
|
1108 0x00100099, 0x00206FFD, 0x0010009A, 0x0020AFFD, \ |
|
1109 0x0010009C, 0x00244FC8, 0x00130824, 0x000C0001, \ |
|
1110 0x00101213, 0x00260FF7, 0x00041000, 0x00010004, \ |
|
1111 0x00130826, 0x000C0006, 0x00220700, 0x0013C926, \ |
|
1112 0x00101313, 0x00380700, 0x00000000, 0x00000000, \ |
|
1113 0x00000000, 0x00000000, 0x00000000, 0x00000000, \ |
|
1114 0x00080600, 0x00101B10, 0x00050004, 0x00100826, \ |
|
1115 0x00101210, 0x00380FB6, 0x00000000, 0x00000000, \ |
|
1116 0x002115A9, 0x00100099, 0x002065A7, 0x0010009A, \ |
|
1117 0x0020A5A7, 0x0010009C, 0x002445A7, 0x00130836, \ |
|
1118 0x000C0000, 0x00220FE4, 0x000C0001, 0x00101B13, \ |
|
1119 0x00229F8E, 0x00210F8E, 0x00226F8E, 0x00216F8E, \ |
|
1120 0x0022FF8E, 0x00215F8E, 0x00214F8E, 0x003805A3, \ |
|
1121 0x00010004, 0x00041000, 0x00278FE9, 0x00040800, \ |
|
1122 0x00018100, 0x003A047E, 0x00130826, 0x000C0001, \ |
|
1123 0x002205A7, 0x00101313, 0x003805A7, 0x00000000, \ |
|
1124 0x00000000, 0x00000000, 0x00000000, 0x00000000, \ |
|
1125 0x00000000, 0x00000000, 0x00000000, 0x00130831, \ |
|
1126 0x0010090B, 0x00124813, 0x000CFF80, 0x00260703, \ |
|
1127 0x00041000, 0x00010004, 0x00380700 \ |
|
1128 } |
|
1129 |
|
1130 /********************************************************/ |
|
1131 /* Micro code for the 8086:1229 Rev F/10 */ |
|
1132 /********************************************************/ |
|
1133 |
|
1134 /* Parameter values for the D102 E-step */ |
|
1135 #define D102_E_CPUSAVER_TIMER_DWORD 42 |
|
1136 #define D102_E_CPUSAVER_BUNDLE_DWORD 54 |
|
1137 #define D102_E_CPUSAVER_MIN_SIZE_DWORD 46 |
|
1138 |
|
1139 #define D102_E_RCVBUNDLE_UCODE \ |
|
1140 {\ |
|
1141 0x007D028F, 0x0E4204F9, 0x14ED0C85, 0x14FA14E9, 0x0EF70E36, 0x1FFF1FFF, \ |
|
1142 0x00E014B9, 0x00000000, 0x00000000, 0x00000000, \ |
|
1143 0x00E014BD, 0x00000000, 0x00000000, 0x00000000, \ |
|
1144 0x00E014D5, 0x00000000, 0x00000000, 0x00000000, \ |
|
1145 0x00000000, 0x00000000, 0x00000000, 0x00000000, \ |
|
1146 0x00E014C1, 0x00000000, 0x00000000, 0x00000000, \ |
|
1147 0x00000000, 0x00000000, 0x00000000, 0x00000000, \ |
|
1148 0x00000000, 0x00000000, 0x00000000, 0x00000000, \ |
|
1149 0x00000000, 0x00000000, 0x00000000, 0x00000000, \ |
|
1150 0x00E014C8, 0x00000000, 0x00000000, 0x00000000, \ |
|
1151 0x00200600, 0x00E014EE, 0x00000000, 0x00000000, \ |
|
1152 0x0030FF80, 0x00940E46, 0x00038200, 0x00102000, \ |
|
1153 0x00E00E43, 0x00000000, 0x00000000, 0x00000000, \ |
|
1154 0x00300006, 0x00E014FB, 0x00000000, 0x00000000, \ |
|
1155 0x00000000, 0x00000000, 0x00000000, 0x00000000, \ |
|
1156 0x00000000, 0x00000000, 0x00000000, 0x00000000, \ |
|
1157 0x00000000, 0x00000000, 0x00000000, 0x00000000, \ |
|
1158 0x00906E41, 0x00800E3C, 0x00E00E39, 0x00000000, \ |
|
1159 0x00906EFD, 0x00900EFD, 0x00E00EF8, 0x00000000, \ |
|
1160 0x00000000, 0x00000000, 0x00000000, 0x00000000, \ |
|
1161 0x00000000, 0x00000000, 0x00000000, 0x00000000, \ |
|
1162 0x00000000, 0x00000000, 0x00000000, 0x00000000, \ |
|
1163 0x00000000, 0x00000000, 0x00000000, 0x00000000, \ |
|
1164 0x00000000, 0x00000000, 0x00000000, 0x00000000, \ |
|
1165 0x00000000, 0x00000000, 0x00000000, 0x00000000, \ |
|
1166 0x00000000, 0x00000000, 0x00000000, 0x00000000, \ |
|
1167 0x00000000, 0x00000000, 0x00000000, 0x00000000, \ |
|
1168 0x00000000, 0x00000000, 0x00000000, 0x00000000, \ |
|
1169 0x00000000, 0x00000000, 0x00000000, 0x00000000, \ |
|
1170 0x00000000, 0x00000000, 0x00000000, 0x00000000, \ |
|
1171 0x00000000, 0x00000000, 0x00000000, 0x00000000, \ |
|
1172 0x00000000, 0x00000000, 0x00000000, 0x00000000, \ |
|
1173 0x00000000, 0x00000000, 0x00000000, 0x00000000, \ |
|
1174 } |
|
1175 |
|
1176 static void e100_setup_ucode(struct nic *nic, struct cb *cb, struct sk_buff *skb) |
|
1177 { |
|
1178 /* *INDENT-OFF* */ |
|
1179 static struct { |
|
1180 u32 ucode[UCODE_SIZE + 1]; |
|
1181 u8 mac; |
|
1182 u8 timer_dword; |
|
1183 u8 bundle_dword; |
|
1184 u8 min_size_dword; |
|
1185 } ucode_opts[] = { |
|
1186 { D101M_B_RCVBUNDLE_UCODE, |
|
1187 mac_82559_D101M, |
|
1188 D101M_CPUSAVER_TIMER_DWORD, |
|
1189 D101M_CPUSAVER_BUNDLE_DWORD, |
|
1190 D101M_CPUSAVER_MIN_SIZE_DWORD }, |
|
1191 { D101S_RCVBUNDLE_UCODE, |
|
1192 mac_82559_D101S, |
|
1193 D101S_CPUSAVER_TIMER_DWORD, |
|
1194 D101S_CPUSAVER_BUNDLE_DWORD, |
|
1195 D101S_CPUSAVER_MIN_SIZE_DWORD }, |
|
1196 { D102_E_RCVBUNDLE_UCODE, |
|
1197 mac_82551_F, |
|
1198 D102_E_CPUSAVER_TIMER_DWORD, |
|
1199 D102_E_CPUSAVER_BUNDLE_DWORD, |
|
1200 D102_E_CPUSAVER_MIN_SIZE_DWORD }, |
|
1201 { D102_E_RCVBUNDLE_UCODE, |
|
1202 mac_82551_10, |
|
1203 D102_E_CPUSAVER_TIMER_DWORD, |
|
1204 D102_E_CPUSAVER_BUNDLE_DWORD, |
|
1205 D102_E_CPUSAVER_MIN_SIZE_DWORD }, |
|
1206 { {0}, 0, 0, 0, 0} |
|
1207 }, *opts; |
|
1208 /* *INDENT-ON* */ |
|
1209 |
|
1210 /************************************************************************* |
|
1211 * CPUSaver parameters |
|
1212 * |
|
1213 * All CPUSaver parameters are 16-bit literals that are part of a |
|
1214 * "move immediate value" instruction. By changing the value of |
|
1215 * the literal in the instruction before the code is loaded, the |
|
1216 * driver can change the algorithm. |
|
1217 * |
|
1218 * INTDELAY - This loads the dead-man timer with its inital value. |
|
1219 * When this timer expires the interrupt is asserted, and the |
|
1220 * timer is reset each time a new packet is received. (see |
|
1221 * BUNDLEMAX below to set the limit on number of chained packets) |
|
1222 * The current default is 0x600 or 1536. Experiments show that |
|
1223 * the value should probably stay within the 0x200 - 0x1000. |
|
1224 * |
|
1225 * BUNDLEMAX - |
|
1226 * This sets the maximum number of frames that will be bundled. In |
|
1227 * some situations, such as the TCP windowing algorithm, it may be |
|
1228 * better to limit the growth of the bundle size than let it go as |
|
1229 * high as it can, because that could cause too much added latency. |
|
1230 * The default is six, because this is the number of packets in the |
|
1231 * default TCP window size. A value of 1 would make CPUSaver indicate |
|
1232 * an interrupt for every frame received. If you do not want to put |
|
1233 * a limit on the bundle size, set this value to xFFFF. |
|
1234 * |
|
1235 * BUNDLESMALL - |
|
1236 * This contains a bit-mask describing the minimum size frame that |
|
1237 * will be bundled. The default masks the lower 7 bits, which means |
|
1238 * that any frame less than 128 bytes in length will not be bundled, |
|
1239 * but will instead immediately generate an interrupt. This does |
|
1240 * not affect the current bundle in any way. Any frame that is 128 |
|
1241 * bytes or large will be bundled normally. This feature is meant |
|
1242 * to provide immediate indication of ACK frames in a TCP environment. |
|
1243 * Customers were seeing poor performance when a machine with CPUSaver |
|
1244 * enabled was sending but not receiving. The delay introduced when |
|
1245 * the ACKs were received was enough to reduce total throughput, because |
|
1246 * the sender would sit idle until the ACK was finally seen. |
|
1247 * |
|
1248 * The current default is 0xFF80, which masks out the lower 7 bits. |
|
1249 * This means that any frame which is x7F (127) bytes or smaller |
|
1250 * will cause an immediate interrupt. Because this value must be a |
|
1251 * bit mask, there are only a few valid values that can be used. To |
|
1252 * turn this feature off, the driver can write the value xFFFF to the |
|
1253 * lower word of this instruction (in the same way that the other |
|
1254 * parameters are used). Likewise, a value of 0xF800 (2047) would |
|
1255 * cause an interrupt to be generated for every frame, because all |
|
1256 * standard Ethernet frames are <= 2047 bytes in length. |
|
1257 *************************************************************************/ |
|
1258 |
|
1259 /* if you wish to disable the ucode functionality, while maintaining the |
|
1260 * workarounds it provides, set the following defines to: |
|
1261 * BUNDLESMALL 0 |
|
1262 * BUNDLEMAX 1 |
|
1263 * INTDELAY 1 |
|
1264 */ |
|
1265 #define BUNDLESMALL 1 |
|
1266 #define BUNDLEMAX (u16)6 |
|
1267 #define INTDELAY (u16)1536 /* 0x600 */ |
|
1268 |
|
1269 /* do not load u-code for ICH devices */ |
|
1270 if (nic->flags & ich) |
|
1271 goto noloaducode; |
|
1272 |
|
1273 /* Search for ucode match against h/w rev_id */ |
|
1274 for (opts = ucode_opts; opts->mac; opts++) { |
|
1275 int i; |
|
1276 u32 *ucode = opts->ucode; |
|
1277 if (nic->mac != opts->mac) |
|
1278 continue; |
|
1279 |
|
1280 /* Insert user-tunable settings */ |
|
1281 ucode[opts->timer_dword] &= 0xFFFF0000; |
|
1282 ucode[opts->timer_dword] |= INTDELAY; |
|
1283 ucode[opts->bundle_dword] &= 0xFFFF0000; |
|
1284 ucode[opts->bundle_dword] |= BUNDLEMAX; |
|
1285 ucode[opts->min_size_dword] &= 0xFFFF0000; |
|
1286 ucode[opts->min_size_dword] |= (BUNDLESMALL) ? 0xFFFF : 0xFF80; |
|
1287 |
|
1288 for (i = 0; i < UCODE_SIZE; i++) |
|
1289 cb->u.ucode[i] = cpu_to_le32(ucode[i]); |
|
1290 cb->command = cpu_to_le16(cb_ucode | cb_el); |
|
1291 return; |
|
1292 } |
|
1293 |
|
1294 noloaducode: |
|
1295 cb->command = cpu_to_le16(cb_nop | cb_el); |
|
1296 } |
|
1297 |
|
1298 static inline int e100_exec_cb_wait(struct nic *nic, struct sk_buff *skb, |
|
1299 void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *)) |
|
1300 { |
|
1301 int err = 0, counter = 50; |
|
1302 struct cb *cb = nic->cb_to_clean; |
|
1303 |
|
1304 if ((err = e100_exec_cb(nic, NULL, e100_setup_ucode))) |
|
1305 DPRINTK(PROBE,ERR, "ucode cmd failed with error %d\n", err); |
|
1306 |
|
1307 /* must restart cuc */ |
|
1308 nic->cuc_cmd = cuc_start; |
|
1309 |
|
1310 /* wait for completion */ |
|
1311 e100_write_flush(nic); |
|
1312 udelay(10); |
|
1313 |
|
1314 /* wait for possibly (ouch) 500ms */ |
|
1315 while (!(cb->status & cpu_to_le16(cb_complete))) { |
|
1316 msleep(10); |
|
1317 if (!--counter) break; |
|
1318 } |
|
1319 |
|
1320 /* ack any interupts, something could have been set */ |
|
1321 writeb(~0, &nic->csr->scb.stat_ack); |
|
1322 |
|
1323 /* if the command failed, or is not OK, notify and return */ |
|
1324 if (!counter || !(cb->status & cpu_to_le16(cb_ok))) { |
|
1325 DPRINTK(PROBE,ERR, "ucode load failed\n"); |
|
1326 err = -EPERM; |
|
1327 } |
|
1328 |
|
1329 return err; |
|
1330 } |
|
1331 |
|
1332 static void e100_setup_iaaddr(struct nic *nic, struct cb *cb, |
|
1333 struct sk_buff *skb) |
|
1334 { |
|
1335 cb->command = cpu_to_le16(cb_iaaddr); |
|
1336 memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN); |
|
1337 } |
|
1338 |
|
1339 static void e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb) |
|
1340 { |
|
1341 cb->command = cpu_to_le16(cb_dump); |
|
1342 cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr + |
|
1343 offsetof(struct mem, dump_buf)); |
|
1344 } |
|
1345 |
|
1346 #define NCONFIG_AUTO_SWITCH 0x0080 |
|
1347 #define MII_NSC_CONG MII_RESV1 |
|
1348 #define NSC_CONG_ENABLE 0x0100 |
|
1349 #define NSC_CONG_TXREADY 0x0400 |
|
1350 #define ADVERTISE_FC_SUPPORTED 0x0400 |
|
1351 static int e100_phy_init(struct nic *nic) |
|
1352 { |
|
1353 struct net_device *netdev = nic->netdev; |
|
1354 u32 addr; |
|
1355 u16 bmcr, stat, id_lo, id_hi, cong; |
|
1356 |
|
1357 /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */ |
|
1358 for(addr = 0; addr < 32; addr++) { |
|
1359 nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr; |
|
1360 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR); |
|
1361 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR); |
|
1362 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR); |
|
1363 if(!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0)))) |
|
1364 break; |
|
1365 } |
|
1366 DPRINTK(HW, DEBUG, "phy_addr = %d\n", nic->mii.phy_id); |
|
1367 if(addr == 32) |
|
1368 return -EAGAIN; |
|
1369 |
|
1370 /* Selected the phy and isolate the rest */ |
|
1371 for(addr = 0; addr < 32; addr++) { |
|
1372 if(addr != nic->mii.phy_id) { |
|
1373 mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE); |
|
1374 } else { |
|
1375 bmcr = mdio_read(netdev, addr, MII_BMCR); |
|
1376 mdio_write(netdev, addr, MII_BMCR, |
|
1377 bmcr & ~BMCR_ISOLATE); |
|
1378 } |
|
1379 } |
|
1380 |
|
1381 /* Get phy ID */ |
|
1382 id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1); |
|
1383 id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2); |
|
1384 nic->phy = (u32)id_hi << 16 | (u32)id_lo; |
|
1385 DPRINTK(HW, DEBUG, "phy ID = 0x%08X\n", nic->phy); |
|
1386 |
|
1387 /* Handle National tx phys */ |
|
1388 #define NCS_PHY_MODEL_MASK 0xFFF0FFFF |
|
1389 if((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) { |
|
1390 /* Disable congestion control */ |
|
1391 cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG); |
|
1392 cong |= NSC_CONG_TXREADY; |
|
1393 cong &= ~NSC_CONG_ENABLE; |
|
1394 mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong); |
|
1395 } |
|
1396 |
|
1397 if((nic->mac >= mac_82550_D102) || ((nic->flags & ich) && |
|
1398 (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000))) { |
|
1399 /* enable/disable MDI/MDI-X auto-switching. |
|
1400 MDI/MDI-X auto-switching is disabled for 82551ER/QM chips */ |
|
1401 if((nic->mac == mac_82551_E) || (nic->mac == mac_82551_F) || |
|
1402 (nic->mac == mac_82551_10) || (nic->mii.force_media) || |
|
1403 !(nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled)) |
|
1404 mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG, 0); |
|
1405 else |
|
1406 mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG, NCONFIG_AUTO_SWITCH); |
|
1407 } |
|
1408 |
|
1409 return 0; |
|
1410 } |
|
1411 |
|
1412 static int e100_hw_init(struct nic *nic) |
|
1413 { |
|
1414 int err; |
|
1415 |
|
1416 e100_hw_reset(nic); |
|
1417 |
|
1418 DPRINTK(HW, ERR, "e100_hw_init\n"); |
|
1419 if(!in_interrupt() && (err = e100_self_test(nic))) |
|
1420 return err; |
|
1421 |
|
1422 if((err = e100_phy_init(nic))) |
|
1423 return err; |
|
1424 if((err = e100_exec_cmd(nic, cuc_load_base, 0))) |
|
1425 return err; |
|
1426 if((err = e100_exec_cmd(nic, ruc_load_base, 0))) |
|
1427 return err; |
|
1428 if ((err = e100_exec_cb_wait(nic, NULL, e100_setup_ucode))) |
|
1429 return err; |
|
1430 if((err = e100_exec_cb(nic, NULL, e100_configure))) |
|
1431 return err; |
|
1432 if((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr))) |
|
1433 return err; |
|
1434 if((err = e100_exec_cmd(nic, cuc_dump_addr, |
|
1435 nic->dma_addr + offsetof(struct mem, stats)))) |
|
1436 return err; |
|
1437 if((err = e100_exec_cmd(nic, cuc_dump_reset, 0))) |
|
1438 return err; |
|
1439 |
|
1440 e100_disable_irq(nic); |
|
1441 |
|
1442 return 0; |
|
1443 } |
|
1444 |
|
1445 static void e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb) |
|
1446 { |
|
1447 struct net_device *netdev = nic->netdev; |
|
1448 struct dev_mc_list *list = netdev->mc_list; |
|
1449 u16 i, count = min(netdev->mc_count, E100_MAX_MULTICAST_ADDRS); |
|
1450 |
|
1451 cb->command = cpu_to_le16(cb_multi); |
|
1452 cb->u.multi.count = cpu_to_le16(count * ETH_ALEN); |
|
1453 for(i = 0; list && i < count; i++, list = list->next) |
|
1454 memcpy(&cb->u.multi.addr[i*ETH_ALEN], &list->dmi_addr, |
|
1455 ETH_ALEN); |
|
1456 } |
|
1457 |
|
1458 static void e100_set_multicast_list(struct net_device *netdev) |
|
1459 { |
|
1460 struct nic *nic = netdev_priv(netdev); |
|
1461 |
|
1462 DPRINTK(HW, DEBUG, "mc_count=%d, flags=0x%04X\n", |
|
1463 netdev->mc_count, netdev->flags); |
|
1464 |
|
1465 if(netdev->flags & IFF_PROMISC) |
|
1466 nic->flags |= promiscuous; |
|
1467 else |
|
1468 nic->flags &= ~promiscuous; |
|
1469 |
|
1470 if(netdev->flags & IFF_ALLMULTI || |
|
1471 netdev->mc_count > E100_MAX_MULTICAST_ADDRS) |
|
1472 nic->flags |= multicast_all; |
|
1473 else |
|
1474 nic->flags &= ~multicast_all; |
|
1475 |
|
1476 e100_exec_cb(nic, NULL, e100_configure); |
|
1477 e100_exec_cb(nic, NULL, e100_multi); |
|
1478 } |
|
1479 |
|
1480 static void e100_update_stats(struct nic *nic) |
|
1481 { |
|
1482 struct net_device_stats *ns = &nic->net_stats; |
|
1483 struct stats *s = &nic->mem->stats; |
|
1484 u32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause : |
|
1485 (nic->mac < mac_82559_D101M) ? (u32 *)&s->xmt_tco_frames : |
|
1486 &s->complete; |
|
1487 |
|
1488 /* Device's stats reporting may take several microseconds to |
|
1489 * complete, so where always waiting for results of the |
|
1490 * previous command. */ |
|
1491 |
|
1492 if(*complete == le32_to_cpu(cuc_dump_reset_complete)) { |
|
1493 *complete = 0; |
|
1494 nic->tx_frames = le32_to_cpu(s->tx_good_frames); |
|
1495 nic->tx_collisions = le32_to_cpu(s->tx_total_collisions); |
|
1496 ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions); |
|
1497 ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions); |
|
1498 ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs); |
|
1499 ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns); |
|
1500 ns->collisions += nic->tx_collisions; |
|
1501 ns->tx_errors += le32_to_cpu(s->tx_max_collisions) + |
|
1502 le32_to_cpu(s->tx_lost_crs); |
|
1503 ns->rx_length_errors += le32_to_cpu(s->rx_short_frame_errors) + |
|
1504 nic->rx_over_length_errors; |
|
1505 ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors); |
|
1506 ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors); |
|
1507 ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors); |
|
1508 ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors); |
|
1509 ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors); |
|
1510 ns->rx_errors += le32_to_cpu(s->rx_crc_errors) + |
|
1511 le32_to_cpu(s->rx_alignment_errors) + |
|
1512 le32_to_cpu(s->rx_short_frame_errors) + |
|
1513 le32_to_cpu(s->rx_cdt_errors); |
|
1514 nic->tx_deferred += le32_to_cpu(s->tx_deferred); |
|
1515 nic->tx_single_collisions += |
|
1516 le32_to_cpu(s->tx_single_collisions); |
|
1517 nic->tx_multiple_collisions += |
|
1518 le32_to_cpu(s->tx_multiple_collisions); |
|
1519 if(nic->mac >= mac_82558_D101_A4) { |
|
1520 nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause); |
|
1521 nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause); |
|
1522 nic->rx_fc_unsupported += |
|
1523 le32_to_cpu(s->fc_rcv_unsupported); |
|
1524 if(nic->mac >= mac_82559_D101M) { |
|
1525 nic->tx_tco_frames += |
|
1526 le16_to_cpu(s->xmt_tco_frames); |
|
1527 nic->rx_tco_frames += |
|
1528 le16_to_cpu(s->rcv_tco_frames); |
|
1529 } |
|
1530 } |
|
1531 } |
|
1532 |
|
1533 |
|
1534 if(e100_exec_cmd(nic, cuc_dump_reset, 0)) |
|
1535 DPRINTK(TX_ERR, DEBUG, "exec cuc_dump_reset failed\n"); |
|
1536 } |
|
1537 |
|
1538 static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex) |
|
1539 { |
|
1540 /* Adjust inter-frame-spacing (IFS) between two transmits if |
|
1541 * we're getting collisions on a half-duplex connection. */ |
|
1542 |
|
1543 if(duplex == DUPLEX_HALF) { |
|
1544 u32 prev = nic->adaptive_ifs; |
|
1545 u32 min_frames = (speed == SPEED_100) ? 1000 : 100; |
|
1546 |
|
1547 if((nic->tx_frames / 32 < nic->tx_collisions) && |
|
1548 (nic->tx_frames > min_frames)) { |
|
1549 if(nic->adaptive_ifs < 60) |
|
1550 nic->adaptive_ifs += 5; |
|
1551 } else if (nic->tx_frames < min_frames) { |
|
1552 if(nic->adaptive_ifs >= 5) |
|
1553 nic->adaptive_ifs -= 5; |
|
1554 } |
|
1555 if(nic->adaptive_ifs != prev) |
|
1556 e100_exec_cb(nic, NULL, e100_configure); |
|
1557 } |
|
1558 } |
|
1559 |
|
1560 static void e100_watchdog(unsigned long data) |
|
1561 { |
|
1562 struct nic *nic = (struct nic *)data; |
|
1563 struct ethtool_cmd cmd; |
|
1564 |
|
1565 DPRINTK(TIMER, DEBUG, "right now = %ld\n", jiffies); |
|
1566 |
|
1567 /* mii library handles link maintenance tasks */ |
|
1568 |
|
1569 mii_ethtool_gset(&nic->mii, &cmd); |
|
1570 |
|
1571 if(mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) { |
|
1572 DPRINTK(LINK, INFO, "link up, %sMbps, %s-duplex\n", |
|
1573 cmd.speed == SPEED_100 ? "100" : "10", |
|
1574 cmd.duplex == DUPLEX_FULL ? "full" : "half"); |
|
1575 } else if(!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) { |
|
1576 DPRINTK(LINK, INFO, "link down\n"); |
|
1577 } |
|
1578 |
|
1579 mii_check_link(&nic->mii); |
|
1580 |
|
1581 /* Software generated interrupt to recover from (rare) Rx |
|
1582 * allocation failure. |
|
1583 * Unfortunately have to use a spinlock to not re-enable interrupts |
|
1584 * accidentally, due to hardware that shares a register between the |
|
1585 * interrupt mask bit and the SW Interrupt generation bit */ |
|
1586 spin_lock_irq(&nic->cmd_lock); |
|
1587 writeb(readb(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi); |
|
1588 e100_write_flush(nic); |
|
1589 spin_unlock_irq(&nic->cmd_lock); |
|
1590 |
|
1591 e100_update_stats(nic); |
|
1592 e100_adjust_adaptive_ifs(nic, cmd.speed, cmd.duplex); |
|
1593 |
|
1594 if(nic->mac <= mac_82557_D100_C) |
|
1595 /* Issue a multicast command to workaround a 557 lock up */ |
|
1596 e100_set_multicast_list(nic->netdev); |
|
1597 |
|
1598 if(nic->flags & ich && cmd.speed==SPEED_10 && cmd.duplex==DUPLEX_HALF) |
|
1599 /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */ |
|
1600 nic->flags |= ich_10h_workaround; |
|
1601 else |
|
1602 nic->flags &= ~ich_10h_workaround; |
|
1603 |
|
1604 mod_timer(&nic->watchdog, jiffies + E100_WATCHDOG_PERIOD); |
|
1605 } |
|
1606 |
|
1607 static void e100_xmit_prepare(struct nic *nic, struct cb *cb, |
|
1608 struct sk_buff *skb) |
|
1609 { |
|
1610 cb->command = nic->tx_command; |
|
1611 /* interrupt every 16 packets regardless of delay */ |
|
1612 if((nic->cbs_avail & ~15) == nic->cbs_avail) |
|
1613 cb->command |= cpu_to_le16(cb_i); |
|
1614 cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd); |
|
1615 cb->u.tcb.tcb_byte_count = 0; |
|
1616 cb->u.tcb.threshold = nic->tx_threshold; |
|
1617 cb->u.tcb.tbd_count = 1; |
|
1618 cb->u.tcb.tbd.buf_addr = cpu_to_le32(pci_map_single(nic->pdev, |
|
1619 skb->data, skb->len, PCI_DMA_TODEVICE)); |
|
1620 /* check for mapping failure? */ |
|
1621 cb->u.tcb.tbd.size = cpu_to_le16(skb->len); |
|
1622 } |
|
1623 |
|
1624 static int e100_xmit_frame(struct sk_buff *skb, struct net_device *netdev) |
|
1625 { |
|
1626 struct nic *nic = netdev_priv(netdev); |
|
1627 int err; |
|
1628 |
|
1629 if(nic->flags & ich_10h_workaround) { |
|
1630 /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang. |
|
1631 Issue a NOP command followed by a 1us delay before |
|
1632 issuing the Tx command. */ |
|
1633 if(e100_exec_cmd(nic, cuc_nop, 0)) |
|
1634 DPRINTK(TX_ERR, DEBUG, "exec cuc_nop failed\n"); |
|
1635 udelay(1); |
|
1636 } |
|
1637 |
|
1638 err = e100_exec_cb(nic, skb, e100_xmit_prepare); |
|
1639 |
|
1640 switch(err) { |
|
1641 case -ENOSPC: |
|
1642 /* We queued the skb, but now we're out of space. */ |
|
1643 DPRINTK(TX_ERR, DEBUG, "No space for CB\n"); |
|
1644 netif_stop_queue(netdev); |
|
1645 break; |
|
1646 case -ENOMEM: |
|
1647 /* This is a hard error - log it. */ |
|
1648 DPRINTK(TX_ERR, DEBUG, "Out of Tx resources, returning skb\n"); |
|
1649 netif_stop_queue(netdev); |
|
1650 return 1; |
|
1651 } |
|
1652 |
|
1653 netdev->trans_start = jiffies; |
|
1654 return 0; |
|
1655 } |
|
1656 |
|
1657 static int e100_tx_clean(struct nic *nic) |
|
1658 { |
|
1659 struct cb *cb; |
|
1660 int tx_cleaned = 0; |
|
1661 |
|
1662 spin_lock(&nic->cb_lock); |
|
1663 |
|
1664 DPRINTK(TX_DONE, DEBUG, "cb->status = 0x%04X\n", |
|
1665 nic->cb_to_clean->status); |
|
1666 |
|
1667 /* Clean CBs marked complete */ |
|
1668 for(cb = nic->cb_to_clean; |
|
1669 cb->status & cpu_to_le16(cb_complete); |
|
1670 cb = nic->cb_to_clean = cb->next) { |
|
1671 if(likely(cb->skb != NULL)) { |
|
1672 nic->net_stats.tx_packets++; |
|
1673 nic->net_stats.tx_bytes += cb->skb->len; |
|
1674 |
|
1675 pci_unmap_single(nic->pdev, |
|
1676 le32_to_cpu(cb->u.tcb.tbd.buf_addr), |
|
1677 le16_to_cpu(cb->u.tcb.tbd.size), |
|
1678 PCI_DMA_TODEVICE); |
|
1679 dev_kfree_skb_any(cb->skb); |
|
1680 cb->skb = NULL; |
|
1681 tx_cleaned = 1; |
|
1682 } |
|
1683 cb->status = 0; |
|
1684 nic->cbs_avail++; |
|
1685 } |
|
1686 |
|
1687 spin_unlock(&nic->cb_lock); |
|
1688 |
|
1689 /* Recover from running out of Tx resources in xmit_frame */ |
|
1690 if(unlikely(tx_cleaned && netif_queue_stopped(nic->netdev))) |
|
1691 netif_wake_queue(nic->netdev); |
|
1692 |
|
1693 return tx_cleaned; |
|
1694 } |
|
1695 |
|
1696 static void e100_clean_cbs(struct nic *nic) |
|
1697 { |
|
1698 if(nic->cbs) { |
|
1699 while(nic->cbs_avail != nic->params.cbs.count) { |
|
1700 struct cb *cb = nic->cb_to_clean; |
|
1701 if(cb->skb) { |
|
1702 pci_unmap_single(nic->pdev, |
|
1703 le32_to_cpu(cb->u.tcb.tbd.buf_addr), |
|
1704 le16_to_cpu(cb->u.tcb.tbd.size), |
|
1705 PCI_DMA_TODEVICE); |
|
1706 dev_kfree_skb(cb->skb); |
|
1707 } |
|
1708 nic->cb_to_clean = nic->cb_to_clean->next; |
|
1709 nic->cbs_avail++; |
|
1710 } |
|
1711 pci_free_consistent(nic->pdev, |
|
1712 sizeof(struct cb) * nic->params.cbs.count, |
|
1713 nic->cbs, nic->cbs_dma_addr); |
|
1714 nic->cbs = NULL; |
|
1715 nic->cbs_avail = 0; |
|
1716 } |
|
1717 nic->cuc_cmd = cuc_start; |
|
1718 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = |
|
1719 nic->cbs; |
|
1720 } |
|
1721 |
|
1722 static int e100_alloc_cbs(struct nic *nic) |
|
1723 { |
|
1724 struct cb *cb; |
|
1725 unsigned int i, count = nic->params.cbs.count; |
|
1726 |
|
1727 nic->cuc_cmd = cuc_start; |
|
1728 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL; |
|
1729 nic->cbs_avail = 0; |
|
1730 |
|
1731 nic->cbs = pci_alloc_consistent(nic->pdev, |
|
1732 sizeof(struct cb) * count, &nic->cbs_dma_addr); |
|
1733 if(!nic->cbs) |
|
1734 return -ENOMEM; |
|
1735 |
|
1736 for(cb = nic->cbs, i = 0; i < count; cb++, i++) { |
|
1737 cb->next = (i + 1 < count) ? cb + 1 : nic->cbs; |
|
1738 cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1; |
|
1739 |
|
1740 cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb); |
|
1741 cb->link = cpu_to_le32(nic->cbs_dma_addr + |
|
1742 ((i+1) % count) * sizeof(struct cb)); |
|
1743 cb->skb = NULL; |
|
1744 } |
|
1745 |
|
1746 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs; |
|
1747 nic->cbs_avail = count; |
|
1748 |
|
1749 return 0; |
|
1750 } |
|
1751 |
|
1752 static inline void e100_start_receiver(struct nic *nic, struct rx *rx) |
|
1753 { |
|
1754 if(!nic->rxs) return; |
|
1755 if(RU_SUSPENDED != nic->ru_running) return; |
|
1756 |
|
1757 /* handle init time starts */ |
|
1758 if(!rx) rx = nic->rxs; |
|
1759 |
|
1760 /* (Re)start RU if suspended or idle and RFA is non-NULL */ |
|
1761 if(rx->skb) { |
|
1762 e100_exec_cmd(nic, ruc_start, rx->dma_addr); |
|
1763 nic->ru_running = RU_RUNNING; |
|
1764 } |
|
1765 } |
|
1766 |
|
1767 #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN) |
|
1768 static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx) |
|
1769 { |
|
1770 if(!(rx->skb = dev_alloc_skb(RFD_BUF_LEN + NET_IP_ALIGN))) |
|
1771 return -ENOMEM; |
|
1772 |
|
1773 /* Align, init, and map the RFD. */ |
|
1774 rx->skb->dev = nic->netdev; |
|
1775 skb_reserve(rx->skb, NET_IP_ALIGN); |
|
1776 memcpy(rx->skb->data, &nic->blank_rfd, sizeof(struct rfd)); |
|
1777 rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data, |
|
1778 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); |
|
1779 |
|
1780 if(pci_dma_mapping_error(rx->dma_addr)) { |
|
1781 dev_kfree_skb_any(rx->skb); |
|
1782 rx->skb = NULL; |
|
1783 rx->dma_addr = 0; |
|
1784 return -ENOMEM; |
|
1785 } |
|
1786 |
|
1787 /* Link the RFD to end of RFA by linking previous RFD to |
|
1788 * this one, and clearing EL bit of previous. */ |
|
1789 if(rx->prev->skb) { |
|
1790 struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data; |
|
1791 put_unaligned(cpu_to_le32(rx->dma_addr), |
|
1792 (u32 *)&prev_rfd->link); |
|
1793 wmb(); |
|
1794 prev_rfd->command &= ~cpu_to_le16(cb_el); |
|
1795 pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr, |
|
1796 sizeof(struct rfd), PCI_DMA_TODEVICE); |
|
1797 } |
|
1798 |
|
1799 return 0; |
|
1800 } |
|
1801 |
|
1802 static int e100_rx_indicate(struct nic *nic, struct rx *rx, |
|
1803 unsigned int *work_done, unsigned int work_to_do) |
|
1804 { |
|
1805 struct sk_buff *skb = rx->skb; |
|
1806 struct rfd *rfd = (struct rfd *)skb->data; |
|
1807 u16 rfd_status, actual_size; |
|
1808 |
|
1809 if(unlikely(work_done && *work_done >= work_to_do)) |
|
1810 return -EAGAIN; |
|
1811 |
|
1812 /* Need to sync before taking a peek at cb_complete bit */ |
|
1813 pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr, |
|
1814 sizeof(struct rfd), PCI_DMA_FROMDEVICE); |
|
1815 rfd_status = le16_to_cpu(rfd->status); |
|
1816 |
|
1817 DPRINTK(RX_STATUS, DEBUG, "status=0x%04X\n", rfd_status); |
|
1818 |
|
1819 /* If data isn't ready, nothing to indicate */ |
|
1820 if(unlikely(!(rfd_status & cb_complete))) |
|
1821 return -ENODATA; |
|
1822 |
|
1823 /* Get actual data size */ |
|
1824 actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF; |
|
1825 if(unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd))) |
|
1826 actual_size = RFD_BUF_LEN - sizeof(struct rfd); |
|
1827 |
|
1828 /* Get data */ |
|
1829 pci_unmap_single(nic->pdev, rx->dma_addr, |
|
1830 RFD_BUF_LEN, PCI_DMA_FROMDEVICE); |
|
1831 |
|
1832 /* this allows for a fast restart without re-enabling interrupts */ |
|
1833 if(le16_to_cpu(rfd->command) & cb_el) |
|
1834 nic->ru_running = RU_SUSPENDED; |
|
1835 |
|
1836 /* Pull off the RFD and put the actual data (minus eth hdr) */ |
|
1837 skb_reserve(skb, sizeof(struct rfd)); |
|
1838 skb_put(skb, actual_size); |
|
1839 skb->protocol = eth_type_trans(skb, nic->netdev); |
|
1840 |
|
1841 if(unlikely(!(rfd_status & cb_ok))) { |
|
1842 /* Don't indicate if hardware indicates errors */ |
|
1843 dev_kfree_skb_any(skb); |
|
1844 } else if(actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN) { |
|
1845 /* Don't indicate oversized frames */ |
|
1846 nic->rx_over_length_errors++; |
|
1847 dev_kfree_skb_any(skb); |
|
1848 } else { |
|
1849 nic->net_stats.rx_packets++; |
|
1850 nic->net_stats.rx_bytes += actual_size; |
|
1851 nic->netdev->last_rx = jiffies; |
|
1852 netif_receive_skb(skb); |
|
1853 if(work_done) |
|
1854 (*work_done)++; |
|
1855 } |
|
1856 |
|
1857 rx->skb = NULL; |
|
1858 |
|
1859 return 0; |
|
1860 } |
|
1861 |
|
1862 static void e100_rx_clean(struct nic *nic, unsigned int *work_done, |
|
1863 unsigned int work_to_do) |
|
1864 { |
|
1865 struct rx *rx; |
|
1866 int restart_required = 0; |
|
1867 struct rx *rx_to_start = NULL; |
|
1868 |
|
1869 /* are we already rnr? then pay attention!!! this ensures that |
|
1870 * the state machine progression never allows a start with a |
|
1871 * partially cleaned list, avoiding a race between hardware |
|
1872 * and rx_to_clean when in NAPI mode */ |
|
1873 if(RU_SUSPENDED == nic->ru_running) |
|
1874 restart_required = 1; |
|
1875 |
|
1876 /* Indicate newly arrived packets */ |
|
1877 for(rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) { |
|
1878 int err = e100_rx_indicate(nic, rx, work_done, work_to_do); |
|
1879 if(-EAGAIN == err) { |
|
1880 /* hit quota so have more work to do, restart once |
|
1881 * cleanup is complete */ |
|
1882 restart_required = 0; |
|
1883 break; |
|
1884 } else if(-ENODATA == err) |
|
1885 break; /* No more to clean */ |
|
1886 } |
|
1887 |
|
1888 /* save our starting point as the place we'll restart the receiver */ |
|
1889 if(restart_required) |
|
1890 rx_to_start = nic->rx_to_clean; |
|
1891 |
|
1892 /* Alloc new skbs to refill list */ |
|
1893 for(rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) { |
|
1894 if(unlikely(e100_rx_alloc_skb(nic, rx))) |
|
1895 break; /* Better luck next time (see watchdog) */ |
|
1896 } |
|
1897 |
|
1898 if(restart_required) { |
|
1899 // ack the rnr? |
|
1900 writeb(stat_ack_rnr, &nic->csr->scb.stat_ack); |
|
1901 e100_start_receiver(nic, rx_to_start); |
|
1902 if(work_done) |
|
1903 (*work_done)++; |
|
1904 } |
|
1905 } |
|
1906 |
|
1907 static void e100_rx_clean_list(struct nic *nic) |
|
1908 { |
|
1909 struct rx *rx; |
|
1910 unsigned int i, count = nic->params.rfds.count; |
|
1911 |
|
1912 nic->ru_running = RU_UNINITIALIZED; |
|
1913 |
|
1914 if(nic->rxs) { |
|
1915 for(rx = nic->rxs, i = 0; i < count; rx++, i++) { |
|
1916 if(rx->skb) { |
|
1917 pci_unmap_single(nic->pdev, rx->dma_addr, |
|
1918 RFD_BUF_LEN, PCI_DMA_FROMDEVICE); |
|
1919 dev_kfree_skb(rx->skb); |
|
1920 } |
|
1921 } |
|
1922 kfree(nic->rxs); |
|
1923 nic->rxs = NULL; |
|
1924 } |
|
1925 |
|
1926 nic->rx_to_use = nic->rx_to_clean = NULL; |
|
1927 } |
|
1928 |
|
1929 static int e100_rx_alloc_list(struct nic *nic) |
|
1930 { |
|
1931 struct rx *rx; |
|
1932 unsigned int i, count = nic->params.rfds.count; |
|
1933 |
|
1934 nic->rx_to_use = nic->rx_to_clean = NULL; |
|
1935 nic->ru_running = RU_UNINITIALIZED; |
|
1936 |
|
1937 if(!(nic->rxs = kmalloc(sizeof(struct rx) * count, GFP_ATOMIC))) |
|
1938 return -ENOMEM; |
|
1939 memset(nic->rxs, 0, sizeof(struct rx) * count); |
|
1940 |
|
1941 for(rx = nic->rxs, i = 0; i < count; rx++, i++) { |
|
1942 rx->next = (i + 1 < count) ? rx + 1 : nic->rxs; |
|
1943 rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1; |
|
1944 if(e100_rx_alloc_skb(nic, rx)) { |
|
1945 e100_rx_clean_list(nic); |
|
1946 return -ENOMEM; |
|
1947 } |
|
1948 } |
|
1949 |
|
1950 nic->rx_to_use = nic->rx_to_clean = nic->rxs; |
|
1951 nic->ru_running = RU_SUSPENDED; |
|
1952 |
|
1953 return 0; |
|
1954 } |
|
1955 |
|
1956 static irqreturn_t e100_intr(int irq, void *dev_id, struct pt_regs *regs) |
|
1957 { |
|
1958 struct net_device *netdev = dev_id; |
|
1959 struct nic *nic = netdev_priv(netdev); |
|
1960 u8 stat_ack = readb(&nic->csr->scb.stat_ack); |
|
1961 |
|
1962 DPRINTK(INTR, DEBUG, "stat_ack = 0x%02X\n", stat_ack); |
|
1963 |
|
1964 if(stat_ack == stat_ack_not_ours || /* Not our interrupt */ |
|
1965 stat_ack == stat_ack_not_present) /* Hardware is ejected */ |
|
1966 return IRQ_NONE; |
|
1967 |
|
1968 /* Ack interrupt(s) */ |
|
1969 writeb(stat_ack, &nic->csr->scb.stat_ack); |
|
1970 |
|
1971 /* We hit Receive No Resource (RNR); restart RU after cleaning */ |
|
1972 if(stat_ack & stat_ack_rnr) |
|
1973 nic->ru_running = RU_SUSPENDED; |
|
1974 |
|
1975 if(likely(netif_rx_schedule_prep(netdev))) { |
|
1976 e100_disable_irq(nic); |
|
1977 __netif_rx_schedule(netdev); |
|
1978 } |
|
1979 |
|
1980 return IRQ_HANDLED; |
|
1981 } |
|
1982 |
|
1983 static int e100_poll(struct net_device *netdev, int *budget) |
|
1984 { |
|
1985 struct nic *nic = netdev_priv(netdev); |
|
1986 unsigned int work_to_do = min(netdev->quota, *budget); |
|
1987 unsigned int work_done = 0; |
|
1988 int tx_cleaned; |
|
1989 |
|
1990 e100_rx_clean(nic, &work_done, work_to_do); |
|
1991 tx_cleaned = e100_tx_clean(nic); |
|
1992 |
|
1993 /* If no Rx and Tx cleanup work was done, exit polling mode. */ |
|
1994 if((!tx_cleaned && (work_done == 0)) || !netif_running(netdev)) { |
|
1995 netif_rx_complete(netdev); |
|
1996 e100_enable_irq(nic); |
|
1997 return 0; |
|
1998 } |
|
1999 |
|
2000 *budget -= work_done; |
|
2001 netdev->quota -= work_done; |
|
2002 |
|
2003 return 1; |
|
2004 } |
|
2005 |
|
2006 #ifdef CONFIG_NET_POLL_CONTROLLER |
|
2007 static void e100_netpoll(struct net_device *netdev) |
|
2008 { |
|
2009 struct nic *nic = netdev_priv(netdev); |
|
2010 |
|
2011 e100_disable_irq(nic); |
|
2012 e100_intr(nic->pdev->irq, netdev, NULL); |
|
2013 e100_tx_clean(nic); |
|
2014 e100_enable_irq(nic); |
|
2015 } |
|
2016 #endif |
|
2017 |
|
2018 static struct net_device_stats *e100_get_stats(struct net_device *netdev) |
|
2019 { |
|
2020 struct nic *nic = netdev_priv(netdev); |
|
2021 return &nic->net_stats; |
|
2022 } |
|
2023 |
|
2024 static int e100_set_mac_address(struct net_device *netdev, void *p) |
|
2025 { |
|
2026 struct nic *nic = netdev_priv(netdev); |
|
2027 struct sockaddr *addr = p; |
|
2028 |
|
2029 if (!is_valid_ether_addr(addr->sa_data)) |
|
2030 return -EADDRNOTAVAIL; |
|
2031 |
|
2032 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); |
|
2033 e100_exec_cb(nic, NULL, e100_setup_iaaddr); |
|
2034 |
|
2035 return 0; |
|
2036 } |
|
2037 |
|
2038 static int e100_change_mtu(struct net_device *netdev, int new_mtu) |
|
2039 { |
|
2040 if(new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN) |
|
2041 return -EINVAL; |
|
2042 netdev->mtu = new_mtu; |
|
2043 return 0; |
|
2044 } |
|
2045 |
|
2046 #ifdef CONFIG_PM |
|
2047 static int e100_asf(struct nic *nic) |
|
2048 { |
|
2049 /* ASF can be enabled from eeprom */ |
|
2050 return((nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) && |
|
2051 (nic->eeprom[eeprom_config_asf] & eeprom_asf) && |
|
2052 !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) && |
|
2053 ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE)); |
|
2054 } |
|
2055 #endif |
|
2056 |
|
2057 static int e100_up(struct nic *nic) |
|
2058 { |
|
2059 int err; |
|
2060 |
|
2061 if((err = e100_rx_alloc_list(nic))) |
|
2062 return err; |
|
2063 if((err = e100_alloc_cbs(nic))) |
|
2064 goto err_rx_clean_list; |
|
2065 if((err = e100_hw_init(nic))) |
|
2066 goto err_clean_cbs; |
|
2067 e100_set_multicast_list(nic->netdev); |
|
2068 e100_start_receiver(nic, NULL); |
|
2069 mod_timer(&nic->watchdog, jiffies); |
|
2070 if((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED, |
|
2071 nic->netdev->name, nic->netdev))) |
|
2072 goto err_no_irq; |
|
2073 netif_wake_queue(nic->netdev); |
|
2074 netif_poll_enable(nic->netdev); |
|
2075 /* enable ints _after_ enabling poll, preventing a race between |
|
2076 * disable ints+schedule */ |
|
2077 e100_enable_irq(nic); |
|
2078 return 0; |
|
2079 |
|
2080 err_no_irq: |
|
2081 del_timer_sync(&nic->watchdog); |
|
2082 err_clean_cbs: |
|
2083 e100_clean_cbs(nic); |
|
2084 err_rx_clean_list: |
|
2085 e100_rx_clean_list(nic); |
|
2086 return err; |
|
2087 } |
|
2088 |
|
2089 static void e100_down(struct nic *nic) |
|
2090 { |
|
2091 /* wait here for poll to complete */ |
|
2092 netif_poll_disable(nic->netdev); |
|
2093 netif_stop_queue(nic->netdev); |
|
2094 e100_hw_reset(nic); |
|
2095 free_irq(nic->pdev->irq, nic->netdev); |
|
2096 del_timer_sync(&nic->watchdog); |
|
2097 netif_carrier_off(nic->netdev); |
|
2098 e100_clean_cbs(nic); |
|
2099 e100_rx_clean_list(nic); |
|
2100 } |
|
2101 |
|
2102 static void e100_tx_timeout(struct net_device *netdev) |
|
2103 { |
|
2104 struct nic *nic = netdev_priv(netdev); |
|
2105 |
|
2106 /* Reset outside of interrupt context, to avoid request_irq |
|
2107 * in interrupt context */ |
|
2108 schedule_work(&nic->tx_timeout_task); |
|
2109 } |
|
2110 |
|
2111 static void e100_tx_timeout_task(struct net_device *netdev) |
|
2112 { |
|
2113 struct nic *nic = netdev_priv(netdev); |
|
2114 |
|
2115 DPRINTK(TX_ERR, DEBUG, "scb.status=0x%02X\n", |
|
2116 readb(&nic->csr->scb.status)); |
|
2117 e100_down(netdev_priv(netdev)); |
|
2118 e100_up(netdev_priv(netdev)); |
|
2119 } |
|
2120 |
|
2121 static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode) |
|
2122 { |
|
2123 int err; |
|
2124 struct sk_buff *skb; |
|
2125 |
|
2126 /* Use driver resources to perform internal MAC or PHY |
|
2127 * loopback test. A single packet is prepared and transmitted |
|
2128 * in loopback mode, and the test passes if the received |
|
2129 * packet compares byte-for-byte to the transmitted packet. */ |
|
2130 |
|
2131 if((err = e100_rx_alloc_list(nic))) |
|
2132 return err; |
|
2133 if((err = e100_alloc_cbs(nic))) |
|
2134 goto err_clean_rx; |
|
2135 |
|
2136 /* ICH PHY loopback is broken so do MAC loopback instead */ |
|
2137 if(nic->flags & ich && loopback_mode == lb_phy) |
|
2138 loopback_mode = lb_mac; |
|
2139 |
|
2140 nic->loopback = loopback_mode; |
|
2141 if((err = e100_hw_init(nic))) |
|
2142 goto err_loopback_none; |
|
2143 |
|
2144 if(loopback_mode == lb_phy) |
|
2145 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, |
|
2146 BMCR_LOOPBACK); |
|
2147 |
|
2148 e100_start_receiver(nic, NULL); |
|
2149 |
|
2150 if(!(skb = dev_alloc_skb(ETH_DATA_LEN))) { |
|
2151 err = -ENOMEM; |
|
2152 goto err_loopback_none; |
|
2153 } |
|
2154 skb_put(skb, ETH_DATA_LEN); |
|
2155 memset(skb->data, 0xFF, ETH_DATA_LEN); |
|
2156 e100_xmit_frame(skb, nic->netdev); |
|
2157 |
|
2158 msleep(10); |
|
2159 |
|
2160 pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr, |
|
2161 RFD_BUF_LEN, PCI_DMA_FROMDEVICE); |
|
2162 |
|
2163 if(memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd), |
|
2164 skb->data, ETH_DATA_LEN)) |
|
2165 err = -EAGAIN; |
|
2166 |
|
2167 err_loopback_none: |
|
2168 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0); |
|
2169 nic->loopback = lb_none; |
|
2170 e100_clean_cbs(nic); |
|
2171 e100_hw_reset(nic); |
|
2172 err_clean_rx: |
|
2173 e100_rx_clean_list(nic); |
|
2174 return err; |
|
2175 } |
|
2176 |
|
2177 #define MII_LED_CONTROL 0x1B |
|
2178 static void e100_blink_led(unsigned long data) |
|
2179 { |
|
2180 struct nic *nic = (struct nic *)data; |
|
2181 enum led_state { |
|
2182 led_on = 0x01, |
|
2183 led_off = 0x04, |
|
2184 led_on_559 = 0x05, |
|
2185 led_on_557 = 0x07, |
|
2186 }; |
|
2187 |
|
2188 nic->leds = (nic->leds & led_on) ? led_off : |
|
2189 (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559; |
|
2190 mdio_write(nic->netdev, nic->mii.phy_id, MII_LED_CONTROL, nic->leds); |
|
2191 mod_timer(&nic->blink_timer, jiffies + HZ / 4); |
|
2192 } |
|
2193 |
|
2194 static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd) |
|
2195 { |
|
2196 struct nic *nic = netdev_priv(netdev); |
|
2197 return mii_ethtool_gset(&nic->mii, cmd); |
|
2198 } |
|
2199 |
|
2200 static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd) |
|
2201 { |
|
2202 struct nic *nic = netdev_priv(netdev); |
|
2203 int err; |
|
2204 |
|
2205 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET); |
|
2206 err = mii_ethtool_sset(&nic->mii, cmd); |
|
2207 e100_exec_cb(nic, NULL, e100_configure); |
|
2208 |
|
2209 return err; |
|
2210 } |
|
2211 |
|
2212 static void e100_get_drvinfo(struct net_device *netdev, |
|
2213 struct ethtool_drvinfo *info) |
|
2214 { |
|
2215 struct nic *nic = netdev_priv(netdev); |
|
2216 strcpy(info->driver, DRV_NAME); |
|
2217 strcpy(info->version, DRV_VERSION); |
|
2218 strcpy(info->fw_version, "N/A"); |
|
2219 strcpy(info->bus_info, pci_name(nic->pdev)); |
|
2220 } |
|
2221 |
|
2222 static int e100_get_regs_len(struct net_device *netdev) |
|
2223 { |
|
2224 struct nic *nic = netdev_priv(netdev); |
|
2225 #define E100_PHY_REGS 0x1C |
|
2226 #define E100_REGS_LEN 1 + E100_PHY_REGS + \ |
|
2227 sizeof(nic->mem->dump_buf) / sizeof(u32) |
|
2228 return E100_REGS_LEN * sizeof(u32); |
|
2229 } |
|
2230 |
|
2231 static void e100_get_regs(struct net_device *netdev, |
|
2232 struct ethtool_regs *regs, void *p) |
|
2233 { |
|
2234 struct nic *nic = netdev_priv(netdev); |
|
2235 u32 *buff = p; |
|
2236 int i; |
|
2237 |
|
2238 regs->version = (1 << 24) | nic->rev_id; |
|
2239 buff[0] = readb(&nic->csr->scb.cmd_hi) << 24 | |
|
2240 readb(&nic->csr->scb.cmd_lo) << 16 | |
|
2241 readw(&nic->csr->scb.status); |
|
2242 for(i = E100_PHY_REGS; i >= 0; i--) |
|
2243 buff[1 + E100_PHY_REGS - i] = |
|
2244 mdio_read(netdev, nic->mii.phy_id, i); |
|
2245 memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf)); |
|
2246 e100_exec_cb(nic, NULL, e100_dump); |
|
2247 msleep(10); |
|
2248 memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf, |
|
2249 sizeof(nic->mem->dump_buf)); |
|
2250 } |
|
2251 |
|
2252 static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) |
|
2253 { |
|
2254 struct nic *nic = netdev_priv(netdev); |
|
2255 wol->supported = (nic->mac >= mac_82558_D101_A4) ? WAKE_MAGIC : 0; |
|
2256 wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0; |
|
2257 } |
|
2258 |
|
2259 static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) |
|
2260 { |
|
2261 struct nic *nic = netdev_priv(netdev); |
|
2262 |
|
2263 if(wol->wolopts != WAKE_MAGIC && wol->wolopts != 0) |
|
2264 return -EOPNOTSUPP; |
|
2265 |
|
2266 if(wol->wolopts) |
|
2267 nic->flags |= wol_magic; |
|
2268 else |
|
2269 nic->flags &= ~wol_magic; |
|
2270 |
|
2271 e100_exec_cb(nic, NULL, e100_configure); |
|
2272 |
|
2273 return 0; |
|
2274 } |
|
2275 |
|
2276 static u32 e100_get_msglevel(struct net_device *netdev) |
|
2277 { |
|
2278 struct nic *nic = netdev_priv(netdev); |
|
2279 return nic->msg_enable; |
|
2280 } |
|
2281 |
|
2282 static void e100_set_msglevel(struct net_device *netdev, u32 value) |
|
2283 { |
|
2284 struct nic *nic = netdev_priv(netdev); |
|
2285 nic->msg_enable = value; |
|
2286 } |
|
2287 |
|
2288 static int e100_nway_reset(struct net_device *netdev) |
|
2289 { |
|
2290 struct nic *nic = netdev_priv(netdev); |
|
2291 return mii_nway_restart(&nic->mii); |
|
2292 } |
|
2293 |
|
2294 static u32 e100_get_link(struct net_device *netdev) |
|
2295 { |
|
2296 struct nic *nic = netdev_priv(netdev); |
|
2297 return mii_link_ok(&nic->mii); |
|
2298 } |
|
2299 |
|
2300 static int e100_get_eeprom_len(struct net_device *netdev) |
|
2301 { |
|
2302 struct nic *nic = netdev_priv(netdev); |
|
2303 return nic->eeprom_wc << 1; |
|
2304 } |
|
2305 |
|
2306 #define E100_EEPROM_MAGIC 0x1234 |
|
2307 static int e100_get_eeprom(struct net_device *netdev, |
|
2308 struct ethtool_eeprom *eeprom, u8 *bytes) |
|
2309 { |
|
2310 struct nic *nic = netdev_priv(netdev); |
|
2311 |
|
2312 eeprom->magic = E100_EEPROM_MAGIC; |
|
2313 memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len); |
|
2314 |
|
2315 return 0; |
|
2316 } |
|
2317 |
|
2318 static int e100_set_eeprom(struct net_device *netdev, |
|
2319 struct ethtool_eeprom *eeprom, u8 *bytes) |
|
2320 { |
|
2321 struct nic *nic = netdev_priv(netdev); |
|
2322 |
|
2323 if(eeprom->magic != E100_EEPROM_MAGIC) |
|
2324 return -EINVAL; |
|
2325 |
|
2326 memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len); |
|
2327 |
|
2328 return e100_eeprom_save(nic, eeprom->offset >> 1, |
|
2329 (eeprom->len >> 1) + 1); |
|
2330 } |
|
2331 |
|
2332 static void e100_get_ringparam(struct net_device *netdev, |
|
2333 struct ethtool_ringparam *ring) |
|
2334 { |
|
2335 struct nic *nic = netdev_priv(netdev); |
|
2336 struct param_range *rfds = &nic->params.rfds; |
|
2337 struct param_range *cbs = &nic->params.cbs; |
|
2338 |
|
2339 ring->rx_max_pending = rfds->max; |
|
2340 ring->tx_max_pending = cbs->max; |
|
2341 ring->rx_mini_max_pending = 0; |
|
2342 ring->rx_jumbo_max_pending = 0; |
|
2343 ring->rx_pending = rfds->count; |
|
2344 ring->tx_pending = cbs->count; |
|
2345 ring->rx_mini_pending = 0; |
|
2346 ring->rx_jumbo_pending = 0; |
|
2347 } |
|
2348 |
|
2349 static int e100_set_ringparam(struct net_device *netdev, |
|
2350 struct ethtool_ringparam *ring) |
|
2351 { |
|
2352 struct nic *nic = netdev_priv(netdev); |
|
2353 struct param_range *rfds = &nic->params.rfds; |
|
2354 struct param_range *cbs = &nic->params.cbs; |
|
2355 |
|
2356 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) |
|
2357 return -EINVAL; |
|
2358 |
|
2359 if(netif_running(netdev)) |
|
2360 e100_down(nic); |
|
2361 rfds->count = max(ring->rx_pending, rfds->min); |
|
2362 rfds->count = min(rfds->count, rfds->max); |
|
2363 cbs->count = max(ring->tx_pending, cbs->min); |
|
2364 cbs->count = min(cbs->count, cbs->max); |
|
2365 DPRINTK(DRV, INFO, "Ring Param settings: rx: %d, tx %d\n", |
|
2366 rfds->count, cbs->count); |
|
2367 if(netif_running(netdev)) |
|
2368 e100_up(nic); |
|
2369 |
|
2370 return 0; |
|
2371 } |
|
2372 |
|
2373 static const char e100_gstrings_test[][ETH_GSTRING_LEN] = { |
|
2374 "Link test (on/offline)", |
|
2375 "Eeprom test (on/offline)", |
|
2376 "Self test (offline)", |
|
2377 "Mac loopback (offline)", |
|
2378 "Phy loopback (offline)", |
|
2379 }; |
|
2380 #define E100_TEST_LEN sizeof(e100_gstrings_test) / ETH_GSTRING_LEN |
|
2381 |
|
2382 static int e100_diag_test_count(struct net_device *netdev) |
|
2383 { |
|
2384 return E100_TEST_LEN; |
|
2385 } |
|
2386 |
|
2387 static void e100_diag_test(struct net_device *netdev, |
|
2388 struct ethtool_test *test, u64 *data) |
|
2389 { |
|
2390 struct ethtool_cmd cmd; |
|
2391 struct nic *nic = netdev_priv(netdev); |
|
2392 int i, err; |
|
2393 |
|
2394 memset(data, 0, E100_TEST_LEN * sizeof(u64)); |
|
2395 data[0] = !mii_link_ok(&nic->mii); |
|
2396 data[1] = e100_eeprom_load(nic); |
|
2397 if(test->flags & ETH_TEST_FL_OFFLINE) { |
|
2398 |
|
2399 /* save speed, duplex & autoneg settings */ |
|
2400 err = mii_ethtool_gset(&nic->mii, &cmd); |
|
2401 |
|
2402 if(netif_running(netdev)) |
|
2403 e100_down(nic); |
|
2404 data[2] = e100_self_test(nic); |
|
2405 data[3] = e100_loopback_test(nic, lb_mac); |
|
2406 data[4] = e100_loopback_test(nic, lb_phy); |
|
2407 |
|
2408 /* restore speed, duplex & autoneg settings */ |
|
2409 err = mii_ethtool_sset(&nic->mii, &cmd); |
|
2410 |
|
2411 if(netif_running(netdev)) |
|
2412 e100_up(nic); |
|
2413 } |
|
2414 for(i = 0; i < E100_TEST_LEN; i++) |
|
2415 test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0; |
|
2416 |
|
2417 msleep_interruptible(4 * 1000); |
|
2418 } |
|
2419 |
|
2420 static int e100_phys_id(struct net_device *netdev, u32 data) |
|
2421 { |
|
2422 struct nic *nic = netdev_priv(netdev); |
|
2423 |
|
2424 if(!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ)) |
|
2425 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ); |
|
2426 mod_timer(&nic->blink_timer, jiffies); |
|
2427 msleep_interruptible(data * 1000); |
|
2428 del_timer_sync(&nic->blink_timer); |
|
2429 mdio_write(netdev, nic->mii.phy_id, MII_LED_CONTROL, 0); |
|
2430 |
|
2431 return 0; |
|
2432 } |
|
2433 |
|
2434 static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = { |
|
2435 "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors", |
|
2436 "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions", |
|
2437 "rx_length_errors", "rx_over_errors", "rx_crc_errors", |
|
2438 "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors", |
|
2439 "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors", |
|
2440 "tx_heartbeat_errors", "tx_window_errors", |
|
2441 /* device-specific stats */ |
|
2442 "tx_deferred", "tx_single_collisions", "tx_multi_collisions", |
|
2443 "tx_flow_control_pause", "rx_flow_control_pause", |
|
2444 "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets", |
|
2445 }; |
|
2446 #define E100_NET_STATS_LEN 21 |
|
2447 #define E100_STATS_LEN sizeof(e100_gstrings_stats) / ETH_GSTRING_LEN |
|
2448 |
|
2449 static int e100_get_stats_count(struct net_device *netdev) |
|
2450 { |
|
2451 return E100_STATS_LEN; |
|
2452 } |
|
2453 |
|
2454 static void e100_get_ethtool_stats(struct net_device *netdev, |
|
2455 struct ethtool_stats *stats, u64 *data) |
|
2456 { |
|
2457 struct nic *nic = netdev_priv(netdev); |
|
2458 int i; |
|
2459 |
|
2460 for(i = 0; i < E100_NET_STATS_LEN; i++) |
|
2461 data[i] = ((unsigned long *)&nic->net_stats)[i]; |
|
2462 |
|
2463 data[i++] = nic->tx_deferred; |
|
2464 data[i++] = nic->tx_single_collisions; |
|
2465 data[i++] = nic->tx_multiple_collisions; |
|
2466 data[i++] = nic->tx_fc_pause; |
|
2467 data[i++] = nic->rx_fc_pause; |
|
2468 data[i++] = nic->rx_fc_unsupported; |
|
2469 data[i++] = nic->tx_tco_frames; |
|
2470 data[i++] = nic->rx_tco_frames; |
|
2471 } |
|
2472 |
|
2473 static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data) |
|
2474 { |
|
2475 switch(stringset) { |
|
2476 case ETH_SS_TEST: |
|
2477 memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test)); |
|
2478 break; |
|
2479 case ETH_SS_STATS: |
|
2480 memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats)); |
|
2481 break; |
|
2482 } |
|
2483 } |
|
2484 |
|
2485 static struct ethtool_ops e100_ethtool_ops = { |
|
2486 .get_settings = e100_get_settings, |
|
2487 .set_settings = e100_set_settings, |
|
2488 .get_drvinfo = e100_get_drvinfo, |
|
2489 .get_regs_len = e100_get_regs_len, |
|
2490 .get_regs = e100_get_regs, |
|
2491 .get_wol = e100_get_wol, |
|
2492 .set_wol = e100_set_wol, |
|
2493 .get_msglevel = e100_get_msglevel, |
|
2494 .set_msglevel = e100_set_msglevel, |
|
2495 .nway_reset = e100_nway_reset, |
|
2496 .get_link = e100_get_link, |
|
2497 .get_eeprom_len = e100_get_eeprom_len, |
|
2498 .get_eeprom = e100_get_eeprom, |
|
2499 .set_eeprom = e100_set_eeprom, |
|
2500 .get_ringparam = e100_get_ringparam, |
|
2501 .set_ringparam = e100_set_ringparam, |
|
2502 .self_test_count = e100_diag_test_count, |
|
2503 .self_test = e100_diag_test, |
|
2504 .get_strings = e100_get_strings, |
|
2505 .phys_id = e100_phys_id, |
|
2506 .get_stats_count = e100_get_stats_count, |
|
2507 .get_ethtool_stats = e100_get_ethtool_stats, |
|
2508 .get_perm_addr = ethtool_op_get_perm_addr, |
|
2509 }; |
|
2510 |
|
2511 static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) |
|
2512 { |
|
2513 struct nic *nic = netdev_priv(netdev); |
|
2514 |
|
2515 return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL); |
|
2516 } |
|
2517 |
|
2518 static int e100_alloc(struct nic *nic) |
|
2519 { |
|
2520 nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem), |
|
2521 &nic->dma_addr); |
|
2522 return nic->mem ? 0 : -ENOMEM; |
|
2523 } |
|
2524 |
|
2525 static void e100_free(struct nic *nic) |
|
2526 { |
|
2527 if(nic->mem) { |
|
2528 pci_free_consistent(nic->pdev, sizeof(struct mem), |
|
2529 nic->mem, nic->dma_addr); |
|
2530 nic->mem = NULL; |
|
2531 } |
|
2532 } |
|
2533 |
|
2534 static int e100_open(struct net_device *netdev) |
|
2535 { |
|
2536 struct nic *nic = netdev_priv(netdev); |
|
2537 int err = 0; |
|
2538 |
|
2539 netif_carrier_off(netdev); |
|
2540 if((err = e100_up(nic))) |
|
2541 DPRINTK(IFUP, ERR, "Cannot open interface, aborting.\n"); |
|
2542 return err; |
|
2543 } |
|
2544 |
|
2545 static int e100_close(struct net_device *netdev) |
|
2546 { |
|
2547 e100_down(netdev_priv(netdev)); |
|
2548 return 0; |
|
2549 } |
|
2550 |
|
2551 static int __devinit e100_probe(struct pci_dev *pdev, |
|
2552 const struct pci_device_id *ent) |
|
2553 { |
|
2554 struct net_device *netdev; |
|
2555 struct nic *nic; |
|
2556 int err; |
|
2557 |
|
2558 if(!(netdev = alloc_etherdev(sizeof(struct nic)))) { |
|
2559 if(((1 << debug) - 1) & NETIF_MSG_PROBE) |
|
2560 printk(KERN_ERR PFX "Etherdev alloc failed, abort.\n"); |
|
2561 return -ENOMEM; |
|
2562 } |
|
2563 |
|
2564 netdev->open = e100_open; |
|
2565 netdev->stop = e100_close; |
|
2566 netdev->hard_start_xmit = e100_xmit_frame; |
|
2567 netdev->get_stats = e100_get_stats; |
|
2568 netdev->set_multicast_list = e100_set_multicast_list; |
|
2569 netdev->set_mac_address = e100_set_mac_address; |
|
2570 netdev->change_mtu = e100_change_mtu; |
|
2571 netdev->do_ioctl = e100_do_ioctl; |
|
2572 SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops); |
|
2573 netdev->tx_timeout = e100_tx_timeout; |
|
2574 netdev->watchdog_timeo = E100_WATCHDOG_PERIOD; |
|
2575 netdev->poll = e100_poll; |
|
2576 netdev->weight = E100_NAPI_WEIGHT; |
|
2577 #ifdef CONFIG_NET_POLL_CONTROLLER |
|
2578 netdev->poll_controller = e100_netpoll; |
|
2579 #endif |
|
2580 strcpy(netdev->name, pci_name(pdev)); |
|
2581 |
|
2582 nic = netdev_priv(netdev); |
|
2583 nic->netdev = netdev; |
|
2584 nic->pdev = pdev; |
|
2585 nic->msg_enable = (1 << debug) - 1; |
|
2586 pci_set_drvdata(pdev, netdev); |
|
2587 |
|
2588 if((err = pci_enable_device(pdev))) { |
|
2589 DPRINTK(PROBE, ERR, "Cannot enable PCI device, aborting.\n"); |
|
2590 goto err_out_free_dev; |
|
2591 } |
|
2592 |
|
2593 if(!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { |
|
2594 DPRINTK(PROBE, ERR, "Cannot find proper PCI device " |
|
2595 "base address, aborting.\n"); |
|
2596 err = -ENODEV; |
|
2597 goto err_out_disable_pdev; |
|
2598 } |
|
2599 |
|
2600 if((err = pci_request_regions(pdev, DRV_NAME))) { |
|
2601 DPRINTK(PROBE, ERR, "Cannot obtain PCI resources, aborting.\n"); |
|
2602 goto err_out_disable_pdev; |
|
2603 } |
|
2604 |
|
2605 if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) { |
|
2606 DPRINTK(PROBE, ERR, "No usable DMA configuration, aborting.\n"); |
|
2607 goto err_out_free_res; |
|
2608 } |
|
2609 |
|
2610 SET_MODULE_OWNER(netdev); |
|
2611 SET_NETDEV_DEV(netdev, &pdev->dev); |
|
2612 |
|
2613 nic->csr = ioremap(pci_resource_start(pdev, 0), sizeof(struct csr)); |
|
2614 if(!nic->csr) { |
|
2615 DPRINTK(PROBE, ERR, "Cannot map device registers, aborting.\n"); |
|
2616 err = -ENOMEM; |
|
2617 goto err_out_free_res; |
|
2618 } |
|
2619 |
|
2620 if(ent->driver_data) |
|
2621 nic->flags |= ich; |
|
2622 else |
|
2623 nic->flags &= ~ich; |
|
2624 |
|
2625 e100_get_defaults(nic); |
|
2626 |
|
2627 /* locks must be initialized before calling hw_reset */ |
|
2628 spin_lock_init(&nic->cb_lock); |
|
2629 spin_lock_init(&nic->cmd_lock); |
|
2630 spin_lock_init(&nic->mdio_lock); |
|
2631 |
|
2632 /* Reset the device before pci_set_master() in case device is in some |
|
2633 * funky state and has an interrupt pending - hint: we don't have the |
|
2634 * interrupt handler registered yet. */ |
|
2635 e100_hw_reset(nic); |
|
2636 |
|
2637 pci_set_master(pdev); |
|
2638 |
|
2639 init_timer(&nic->watchdog); |
|
2640 nic->watchdog.function = e100_watchdog; |
|
2641 nic->watchdog.data = (unsigned long)nic; |
|
2642 init_timer(&nic->blink_timer); |
|
2643 nic->blink_timer.function = e100_blink_led; |
|
2644 nic->blink_timer.data = (unsigned long)nic; |
|
2645 |
|
2646 INIT_WORK(&nic->tx_timeout_task, |
|
2647 (void (*)(void *))e100_tx_timeout_task, netdev); |
|
2648 |
|
2649 if((err = e100_alloc(nic))) { |
|
2650 DPRINTK(PROBE, ERR, "Cannot alloc driver memory, aborting.\n"); |
|
2651 goto err_out_iounmap; |
|
2652 } |
|
2653 |
|
2654 if((err = e100_eeprom_load(nic))) |
|
2655 goto err_out_free; |
|
2656 |
|
2657 e100_phy_init(nic); |
|
2658 |
|
2659 memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN); |
|
2660 memcpy(netdev->perm_addr, nic->eeprom, ETH_ALEN); |
|
2661 if(!is_valid_ether_addr(netdev->perm_addr)) { |
|
2662 DPRINTK(PROBE, ERR, "Invalid MAC address from " |
|
2663 "EEPROM, aborting.\n"); |
|
2664 err = -EAGAIN; |
|
2665 goto err_out_free; |
|
2666 } |
|
2667 |
|
2668 /* Wol magic packet can be enabled from eeprom */ |
|
2669 if((nic->mac >= mac_82558_D101_A4) && |
|
2670 (nic->eeprom[eeprom_id] & eeprom_id_wol)) |
|
2671 nic->flags |= wol_magic; |
|
2672 |
|
2673 /* ack any pending wake events, disable PME */ |
|
2674 err = pci_enable_wake(pdev, 0, 0); |
|
2675 if (err) |
|
2676 DPRINTK(PROBE, ERR, "Error clearing wake event\n"); |
|
2677 |
|
2678 strcpy(netdev->name, "eth%d"); |
|
2679 if((err = register_netdev(netdev))) { |
|
2680 DPRINTK(PROBE, ERR, "Cannot register net device, aborting.\n"); |
|
2681 goto err_out_free; |
|
2682 } |
|
2683 |
|
2684 DPRINTK(PROBE, INFO, "addr 0x%llx, irq %d, " |
|
2685 "MAC addr %02X:%02X:%02X:%02X:%02X:%02X\n", |
|
2686 (unsigned long long)pci_resource_start(pdev, 0), pdev->irq, |
|
2687 netdev->dev_addr[0], netdev->dev_addr[1], netdev->dev_addr[2], |
|
2688 netdev->dev_addr[3], netdev->dev_addr[4], netdev->dev_addr[5]); |
|
2689 |
|
2690 return 0; |
|
2691 |
|
2692 err_out_free: |
|
2693 e100_free(nic); |
|
2694 err_out_iounmap: |
|
2695 iounmap(nic->csr); |
|
2696 err_out_free_res: |
|
2697 pci_release_regions(pdev); |
|
2698 err_out_disable_pdev: |
|
2699 pci_disable_device(pdev); |
|
2700 err_out_free_dev: |
|
2701 pci_set_drvdata(pdev, NULL); |
|
2702 free_netdev(netdev); |
|
2703 return err; |
|
2704 } |
|
2705 |
|
2706 static void __devexit e100_remove(struct pci_dev *pdev) |
|
2707 { |
|
2708 struct net_device *netdev = pci_get_drvdata(pdev); |
|
2709 |
|
2710 if(netdev) { |
|
2711 struct nic *nic = netdev_priv(netdev); |
|
2712 unregister_netdev(netdev); |
|
2713 e100_free(nic); |
|
2714 iounmap(nic->csr); |
|
2715 free_netdev(netdev); |
|
2716 pci_release_regions(pdev); |
|
2717 pci_disable_device(pdev); |
|
2718 pci_set_drvdata(pdev, NULL); |
|
2719 } |
|
2720 } |
|
2721 |
|
2722 #ifdef CONFIG_PM |
|
2723 static int e100_suspend(struct pci_dev *pdev, pm_message_t state) |
|
2724 { |
|
2725 struct net_device *netdev = pci_get_drvdata(pdev); |
|
2726 struct nic *nic = netdev_priv(netdev); |
|
2727 int retval; |
|
2728 |
|
2729 if(netif_running(netdev)) |
|
2730 e100_down(nic); |
|
2731 e100_hw_reset(nic); |
|
2732 netif_device_detach(netdev); |
|
2733 |
|
2734 pci_save_state(pdev); |
|
2735 retval = pci_enable_wake(pdev, pci_choose_state(pdev, state), |
|
2736 nic->flags & (wol_magic | e100_asf(nic))); |
|
2737 if (retval) |
|
2738 DPRINTK(PROBE,ERR, "Error enabling wake\n"); |
|
2739 pci_disable_device(pdev); |
|
2740 retval = pci_set_power_state(pdev, pci_choose_state(pdev, state)); |
|
2741 if (retval) |
|
2742 DPRINTK(PROBE,ERR, "Error %d setting power state\n", retval); |
|
2743 |
|
2744 return 0; |
|
2745 } |
|
2746 |
|
2747 static int e100_resume(struct pci_dev *pdev) |
|
2748 { |
|
2749 struct net_device *netdev = pci_get_drvdata(pdev); |
|
2750 struct nic *nic = netdev_priv(netdev); |
|
2751 int retval; |
|
2752 |
|
2753 retval = pci_set_power_state(pdev, PCI_D0); |
|
2754 if (retval) |
|
2755 DPRINTK(PROBE,ERR, "Error waking adapter\n"); |
|
2756 pci_restore_state(pdev); |
|
2757 /* ack any pending wake events, disable PME */ |
|
2758 retval = pci_enable_wake(pdev, 0, 0); |
|
2759 if (retval) |
|
2760 DPRINTK(PROBE,ERR, "Error clearing wake events\n"); |
|
2761 |
|
2762 netif_device_attach(netdev); |
|
2763 if(netif_running(netdev)) |
|
2764 e100_up(nic); |
|
2765 |
|
2766 return 0; |
|
2767 } |
|
2768 #endif |
|
2769 |
|
2770 |
|
2771 static void e100_shutdown(struct pci_dev *pdev) |
|
2772 { |
|
2773 struct net_device *netdev = pci_get_drvdata(pdev); |
|
2774 struct nic *nic = netdev_priv(netdev); |
|
2775 int retval; |
|
2776 |
|
2777 #ifdef CONFIG_PM |
|
2778 retval = pci_enable_wake(pdev, 0, nic->flags & (wol_magic | e100_asf(nic))); |
|
2779 #else |
|
2780 retval = pci_enable_wake(pdev, 0, nic->flags & (wol_magic)); |
|
2781 #endif |
|
2782 if (retval) |
|
2783 DPRINTK(PROBE,ERR, "Error enabling wake\n"); |
|
2784 } |
|
2785 |
|
2786 /* ------------------ PCI Error Recovery infrastructure -------------- */ |
|
2787 /** |
|
2788 * e100_io_error_detected - called when PCI error is detected. |
|
2789 * @pdev: Pointer to PCI device |
|
2790 * @state: The current pci conneection state |
|
2791 */ |
|
2792 static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) |
|
2793 { |
|
2794 struct net_device *netdev = pci_get_drvdata(pdev); |
|
2795 |
|
2796 /* Similar to calling e100_down(), but avoids adpater I/O. */ |
|
2797 netdev->stop(netdev); |
|
2798 |
|
2799 /* Detach; put netif into state similar to hotplug unplug. */ |
|
2800 netif_poll_enable(netdev); |
|
2801 netif_device_detach(netdev); |
|
2802 |
|
2803 /* Request a slot reset. */ |
|
2804 return PCI_ERS_RESULT_NEED_RESET; |
|
2805 } |
|
2806 |
|
2807 /** |
|
2808 * e100_io_slot_reset - called after the pci bus has been reset. |
|
2809 * @pdev: Pointer to PCI device |
|
2810 * |
|
2811 * Restart the card from scratch. |
|
2812 */ |
|
2813 static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev) |
|
2814 { |
|
2815 struct net_device *netdev = pci_get_drvdata(pdev); |
|
2816 struct nic *nic = netdev_priv(netdev); |
|
2817 |
|
2818 if (pci_enable_device(pdev)) { |
|
2819 printk(KERN_ERR "e100: Cannot re-enable PCI device after reset.\n"); |
|
2820 return PCI_ERS_RESULT_DISCONNECT; |
|
2821 } |
|
2822 pci_set_master(pdev); |
|
2823 |
|
2824 /* Only one device per card can do a reset */ |
|
2825 if (0 != PCI_FUNC(pdev->devfn)) |
|
2826 return PCI_ERS_RESULT_RECOVERED; |
|
2827 e100_hw_reset(nic); |
|
2828 e100_phy_init(nic); |
|
2829 |
|
2830 return PCI_ERS_RESULT_RECOVERED; |
|
2831 } |
|
2832 |
|
2833 /** |
|
2834 * e100_io_resume - resume normal operations |
|
2835 * @pdev: Pointer to PCI device |
|
2836 * |
|
2837 * Resume normal operations after an error recovery |
|
2838 * sequence has been completed. |
|
2839 */ |
|
2840 static void e100_io_resume(struct pci_dev *pdev) |
|
2841 { |
|
2842 struct net_device *netdev = pci_get_drvdata(pdev); |
|
2843 struct nic *nic = netdev_priv(netdev); |
|
2844 |
|
2845 /* ack any pending wake events, disable PME */ |
|
2846 pci_enable_wake(pdev, 0, 0); |
|
2847 |
|
2848 netif_device_attach(netdev); |
|
2849 if (netif_running(netdev)) { |
|
2850 e100_open(netdev); |
|
2851 mod_timer(&nic->watchdog, jiffies); |
|
2852 } |
|
2853 } |
|
2854 |
|
2855 static struct pci_error_handlers e100_err_handler = { |
|
2856 .error_detected = e100_io_error_detected, |
|
2857 .slot_reset = e100_io_slot_reset, |
|
2858 .resume = e100_io_resume, |
|
2859 }; |
|
2860 |
|
2861 static struct pci_driver e100_driver = { |
|
2862 .name = DRV_NAME, |
|
2863 .id_table = e100_id_table, |
|
2864 .probe = e100_probe, |
|
2865 .remove = __devexit_p(e100_remove), |
|
2866 #ifdef CONFIG_PM |
|
2867 .suspend = e100_suspend, |
|
2868 .resume = e100_resume, |
|
2869 #endif |
|
2870 .shutdown = e100_shutdown, |
|
2871 .err_handler = &e100_err_handler, |
|
2872 }; |
|
2873 |
|
2874 static int __init e100_init_module(void) |
|
2875 { |
|
2876 if(((1 << debug) - 1) & NETIF_MSG_DRV) { |
|
2877 printk(KERN_INFO PFX "%s, %s\n", DRV_DESCRIPTION, DRV_VERSION); |
|
2878 printk(KERN_INFO PFX "%s\n", DRV_COPYRIGHT); |
|
2879 } |
|
2880 return pci_module_init(&e100_driver); |
|
2881 } |
|
2882 |
|
2883 static void __exit e100_cleanup_module(void) |
|
2884 { |
|
2885 pci_unregister_driver(&e100_driver); |
|
2886 } |
|
2887 |
|
2888 module_init(e100_init_module); |
|
2889 module_exit(e100_cleanup_module); |
|