devices/e1000e/ethtool-2.6.32-ethercat.c
changeset 2131 2cefec773772
equal deleted inserted replaced
2130:625d87822620 2131:2cefec773772
       
     1 /*******************************************************************************
       
     2 
       
     3   Intel PRO/1000 Linux driver
       
     4   Copyright(c) 1999 - 2008 Intel Corporation.
       
     5 
       
     6   This program is free software; you can redistribute it and/or modify it
       
     7   under the terms and conditions of the GNU General Public License,
       
     8   version 2, as published by the Free Software Foundation.
       
     9 
       
    10   This program is distributed in the hope it will be useful, but WITHOUT
       
    11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
       
    13   more details.
       
    14 
       
    15   You should have received a copy of the GNU General Public License along with
       
    16   this program; if not, write to the Free Software Foundation, Inc.,
       
    17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
       
    18 
       
    19   The full GNU General Public License is included in this distribution in
       
    20   the file called "COPYING".
       
    21 
       
    22   Contact Information:
       
    23   Linux NICS <linux.nics@intel.com>
       
    24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
       
    25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
       
    26 
       
    27 *******************************************************************************/
       
    28 
       
    29 /* ethtool support for e1000 */
       
    30 
       
    31 #include <linux/netdevice.h>
       
    32 #include <linux/ethtool.h>
       
    33 #include <linux/pci.h>
       
    34 #include <linux/delay.h>
       
    35 
       
    36 #include "e1000-2.6.32-ethercat.h"
       
    37 
       
    38 struct e1000_stats {
       
    39 	char stat_string[ETH_GSTRING_LEN];
       
    40 	int sizeof_stat;
       
    41 	int stat_offset;
       
    42 };
       
    43 
       
    44 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
       
    45 		      offsetof(struct e1000_adapter, m)
       
    46 static const struct e1000_stats e1000_gstrings_stats[] = {
       
    47 	{ "rx_packets", E1000_STAT(stats.gprc) },
       
    48 	{ "tx_packets", E1000_STAT(stats.gptc) },
       
    49 	{ "rx_bytes", E1000_STAT(stats.gorc) },
       
    50 	{ "tx_bytes", E1000_STAT(stats.gotc) },
       
    51 	{ "rx_broadcast", E1000_STAT(stats.bprc) },
       
    52 	{ "tx_broadcast", E1000_STAT(stats.bptc) },
       
    53 	{ "rx_multicast", E1000_STAT(stats.mprc) },
       
    54 	{ "tx_multicast", E1000_STAT(stats.mptc) },
       
    55 	{ "rx_errors", E1000_STAT(net_stats.rx_errors) },
       
    56 	{ "tx_errors", E1000_STAT(net_stats.tx_errors) },
       
    57 	{ "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
       
    58 	{ "multicast", E1000_STAT(stats.mprc) },
       
    59 	{ "collisions", E1000_STAT(stats.colc) },
       
    60 	{ "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
       
    61 	{ "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
       
    62 	{ "rx_crc_errors", E1000_STAT(stats.crcerrs) },
       
    63 	{ "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
       
    64 	{ "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
       
    65 	{ "rx_missed_errors", E1000_STAT(stats.mpc) },
       
    66 	{ "tx_aborted_errors", E1000_STAT(stats.ecol) },
       
    67 	{ "tx_carrier_errors", E1000_STAT(stats.tncrs) },
       
    68 	{ "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
       
    69 	{ "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
       
    70 	{ "tx_window_errors", E1000_STAT(stats.latecol) },
       
    71 	{ "tx_abort_late_coll", E1000_STAT(stats.latecol) },
       
    72 	{ "tx_deferred_ok", E1000_STAT(stats.dc) },
       
    73 	{ "tx_single_coll_ok", E1000_STAT(stats.scc) },
       
    74 	{ "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
       
    75 	{ "tx_timeout_count", E1000_STAT(tx_timeout_count) },
       
    76 	{ "tx_restart_queue", E1000_STAT(restart_queue) },
       
    77 	{ "rx_long_length_errors", E1000_STAT(stats.roc) },
       
    78 	{ "rx_short_length_errors", E1000_STAT(stats.ruc) },
       
    79 	{ "rx_align_errors", E1000_STAT(stats.algnerrc) },
       
    80 	{ "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
       
    81 	{ "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
       
    82 	{ "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
       
    83 	{ "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
       
    84 	{ "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
       
    85 	{ "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
       
    86 	{ "rx_long_byte_count", E1000_STAT(stats.gorc) },
       
    87 	{ "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
       
    88 	{ "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
       
    89 	{ "rx_header_split", E1000_STAT(rx_hdr_split) },
       
    90 	{ "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
       
    91 	{ "tx_smbus", E1000_STAT(stats.mgptc) },
       
    92 	{ "rx_smbus", E1000_STAT(stats.mgprc) },
       
    93 	{ "dropped_smbus", E1000_STAT(stats.mgpdc) },
       
    94 	{ "rx_dma_failed", E1000_STAT(rx_dma_failed) },
       
    95 	{ "tx_dma_failed", E1000_STAT(tx_dma_failed) },
       
    96 };
       
    97 
       
    98 #define E1000_GLOBAL_STATS_LEN	ARRAY_SIZE(e1000_gstrings_stats)
       
    99 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
       
   100 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
       
   101 	"Register test  (offline)", "Eeprom test    (offline)",
       
   102 	"Interrupt test (offline)", "Loopback test  (offline)",
       
   103 	"Link test   (on/offline)"
       
   104 };
       
   105 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
       
   106 
       
   107 static int e1000_get_settings(struct net_device *netdev,
       
   108 			      struct ethtool_cmd *ecmd)
       
   109 {
       
   110 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   111 	struct e1000_hw *hw = &adapter->hw;
       
   112 	u32 status;
       
   113 
       
   114 	if (hw->phy.media_type == e1000_media_type_copper) {
       
   115 
       
   116 		ecmd->supported = (SUPPORTED_10baseT_Half |
       
   117 				   SUPPORTED_10baseT_Full |
       
   118 				   SUPPORTED_100baseT_Half |
       
   119 				   SUPPORTED_100baseT_Full |
       
   120 				   SUPPORTED_1000baseT_Full |
       
   121 				   SUPPORTED_Autoneg |
       
   122 				   SUPPORTED_TP);
       
   123 		if (hw->phy.type == e1000_phy_ife)
       
   124 			ecmd->supported &= ~SUPPORTED_1000baseT_Full;
       
   125 		ecmd->advertising = ADVERTISED_TP;
       
   126 
       
   127 		if (hw->mac.autoneg == 1) {
       
   128 			ecmd->advertising |= ADVERTISED_Autoneg;
       
   129 			/* the e1000 autoneg seems to match ethtool nicely */
       
   130 			ecmd->advertising |= hw->phy.autoneg_advertised;
       
   131 		}
       
   132 
       
   133 		ecmd->port = PORT_TP;
       
   134 		ecmd->phy_address = hw->phy.addr;
       
   135 		ecmd->transceiver = XCVR_INTERNAL;
       
   136 
       
   137 	} else {
       
   138 		ecmd->supported   = (SUPPORTED_1000baseT_Full |
       
   139 				     SUPPORTED_FIBRE |
       
   140 				     SUPPORTED_Autoneg);
       
   141 
       
   142 		ecmd->advertising = (ADVERTISED_1000baseT_Full |
       
   143 				     ADVERTISED_FIBRE |
       
   144 				     ADVERTISED_Autoneg);
       
   145 
       
   146 		ecmd->port = PORT_FIBRE;
       
   147 		ecmd->transceiver = XCVR_EXTERNAL;
       
   148 	}
       
   149 
       
   150 	status = er32(STATUS);
       
   151 	if (status & E1000_STATUS_LU) {
       
   152 		if (status & E1000_STATUS_SPEED_1000)
       
   153 			ecmd->speed = 1000;
       
   154 		else if (status & E1000_STATUS_SPEED_100)
       
   155 			ecmd->speed = 100;
       
   156 		else
       
   157 			ecmd->speed = 10;
       
   158 
       
   159 		if (status & E1000_STATUS_FD)
       
   160 			ecmd->duplex = DUPLEX_FULL;
       
   161 		else
       
   162 			ecmd->duplex = DUPLEX_HALF;
       
   163 	} else {
       
   164 		ecmd->speed = -1;
       
   165 		ecmd->duplex = -1;
       
   166 	}
       
   167 
       
   168 	ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
       
   169 			 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
       
   170 
       
   171 	/* MDI-X => 2; MDI =>1; Invalid =>0 */
       
   172 	if ((hw->phy.media_type == e1000_media_type_copper) &&
       
   173 	    !hw->mac.get_link_status)
       
   174 		ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
       
   175 		                                      ETH_TP_MDI;
       
   176 	else
       
   177 		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
       
   178 
       
   179 	return 0;
       
   180 }
       
   181 
       
   182 static u32 e1000_get_link(struct net_device *netdev)
       
   183 {
       
   184 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   185 
       
   186 	return e1000_has_link(adapter);
       
   187 }
       
   188 
       
   189 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
       
   190 {
       
   191 	struct e1000_mac_info *mac = &adapter->hw.mac;
       
   192 
       
   193 	mac->autoneg = 0;
       
   194 
       
   195 	/* Fiber NICs only allow 1000 gbps Full duplex */
       
   196 	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
       
   197 		spddplx != (SPEED_1000 + DUPLEX_FULL)) {
       
   198 		e_err("Unsupported Speed/Duplex configuration\n");
       
   199 		return -EINVAL;
       
   200 	}
       
   201 
       
   202 	switch (spddplx) {
       
   203 	case SPEED_10 + DUPLEX_HALF:
       
   204 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
       
   205 		break;
       
   206 	case SPEED_10 + DUPLEX_FULL:
       
   207 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
       
   208 		break;
       
   209 	case SPEED_100 + DUPLEX_HALF:
       
   210 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
       
   211 		break;
       
   212 	case SPEED_100 + DUPLEX_FULL:
       
   213 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
       
   214 		break;
       
   215 	case SPEED_1000 + DUPLEX_FULL:
       
   216 		mac->autoneg = 1;
       
   217 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
       
   218 		break;
       
   219 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
       
   220 	default:
       
   221 		e_err("Unsupported Speed/Duplex configuration\n");
       
   222 		return -EINVAL;
       
   223 	}
       
   224 	return 0;
       
   225 }
       
   226 
       
   227 static int e1000_set_settings(struct net_device *netdev,
       
   228 			      struct ethtool_cmd *ecmd)
       
   229 {
       
   230 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   231 	struct e1000_hw *hw = &adapter->hw;
       
   232 
       
   233 	if (adapter->ecdev)
       
   234 		return -EBUSY;
       
   235 
       
   236 	/*
       
   237 	 * When SoL/IDER sessions are active, autoneg/speed/duplex
       
   238 	 * cannot be changed
       
   239 	 */
       
   240 	if (e1000_check_reset_block(hw)) {
       
   241 		e_err("Cannot change link characteristics when SoL/IDER is "
       
   242 		      "active.\n");
       
   243 		return -EINVAL;
       
   244 	}
       
   245 
       
   246 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
       
   247 		msleep(1);
       
   248 
       
   249 	if (ecmd->autoneg == AUTONEG_ENABLE) {
       
   250 		hw->mac.autoneg = 1;
       
   251 		if (hw->phy.media_type == e1000_media_type_fiber)
       
   252 			hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
       
   253 						     ADVERTISED_FIBRE |
       
   254 						     ADVERTISED_Autoneg;
       
   255 		else
       
   256 			hw->phy.autoneg_advertised = ecmd->advertising |
       
   257 						     ADVERTISED_TP |
       
   258 						     ADVERTISED_Autoneg;
       
   259 		ecmd->advertising = hw->phy.autoneg_advertised;
       
   260 		if (adapter->fc_autoneg)
       
   261 			hw->fc.requested_mode = e1000_fc_default;
       
   262 	} else {
       
   263 		if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
       
   264 			clear_bit(__E1000_RESETTING, &adapter->state);
       
   265 			return -EINVAL;
       
   266 		}
       
   267 	}
       
   268 
       
   269 	/* reset the link */
       
   270 
       
   271 	if (netif_running(adapter->netdev)) {
       
   272 		e1000e_down(adapter);
       
   273 		e1000e_up(adapter);
       
   274 	} else {
       
   275 		e1000e_reset(adapter);
       
   276 	}
       
   277 
       
   278 	clear_bit(__E1000_RESETTING, &adapter->state);
       
   279 	return 0;
       
   280 }
       
   281 
       
   282 static void e1000_get_pauseparam(struct net_device *netdev,
       
   283 				 struct ethtool_pauseparam *pause)
       
   284 {
       
   285 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   286 	struct e1000_hw *hw = &adapter->hw;
       
   287 
       
   288 	pause->autoneg =
       
   289 		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
       
   290 
       
   291 	if (hw->fc.current_mode == e1000_fc_rx_pause) {
       
   292 		pause->rx_pause = 1;
       
   293 	} else if (hw->fc.current_mode == e1000_fc_tx_pause) {
       
   294 		pause->tx_pause = 1;
       
   295 	} else if (hw->fc.current_mode == e1000_fc_full) {
       
   296 		pause->rx_pause = 1;
       
   297 		pause->tx_pause = 1;
       
   298 	}
       
   299 }
       
   300 
       
   301 static int e1000_set_pauseparam(struct net_device *netdev,
       
   302 				struct ethtool_pauseparam *pause)
       
   303 {
       
   304 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   305 	struct e1000_hw *hw = &adapter->hw;
       
   306 	int retval = 0;
       
   307 
       
   308 	if (adapter->ecdev)
       
   309 		return -EBUSY;
       
   310 
       
   311 	adapter->fc_autoneg = pause->autoneg;
       
   312 
       
   313 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
       
   314 		msleep(1);
       
   315 
       
   316 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
       
   317 		hw->fc.requested_mode = e1000_fc_default;
       
   318 		if (netif_running(adapter->netdev)) {
       
   319 			e1000e_down(adapter);
       
   320 			e1000e_up(adapter);
       
   321 		} else {
       
   322 			e1000e_reset(adapter);
       
   323 		}
       
   324 	} else {
       
   325 		if (pause->rx_pause && pause->tx_pause)
       
   326 			hw->fc.requested_mode = e1000_fc_full;
       
   327 		else if (pause->rx_pause && !pause->tx_pause)
       
   328 			hw->fc.requested_mode = e1000_fc_rx_pause;
       
   329 		else if (!pause->rx_pause && pause->tx_pause)
       
   330 			hw->fc.requested_mode = e1000_fc_tx_pause;
       
   331 		else if (!pause->rx_pause && !pause->tx_pause)
       
   332 			hw->fc.requested_mode = e1000_fc_none;
       
   333 
       
   334 		hw->fc.current_mode = hw->fc.requested_mode;
       
   335 
       
   336 		if (hw->phy.media_type == e1000_media_type_fiber) {
       
   337 			retval = hw->mac.ops.setup_link(hw);
       
   338 			/* implicit goto out */
       
   339 		} else {
       
   340 			retval = e1000e_force_mac_fc(hw);
       
   341 			if (retval)
       
   342 				goto out;
       
   343 			e1000e_set_fc_watermarks(hw);
       
   344 		}
       
   345 	}
       
   346 
       
   347 out:
       
   348 	clear_bit(__E1000_RESETTING, &adapter->state);
       
   349 	return retval;
       
   350 }
       
   351 
       
   352 static u32 e1000_get_rx_csum(struct net_device *netdev)
       
   353 {
       
   354 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   355 	return (adapter->flags & FLAG_RX_CSUM_ENABLED);
       
   356 }
       
   357 
       
   358 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
       
   359 {
       
   360 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   361 
       
   362 	if (data)
       
   363 		adapter->flags |= FLAG_RX_CSUM_ENABLED;
       
   364 	else
       
   365 		adapter->flags &= ~FLAG_RX_CSUM_ENABLED;
       
   366 
       
   367 	if (netif_running(netdev))
       
   368 		e1000e_reinit_locked(adapter);
       
   369 	else
       
   370 		e1000e_reset(adapter);
       
   371 	return 0;
       
   372 }
       
   373 
       
   374 static u32 e1000_get_tx_csum(struct net_device *netdev)
       
   375 {
       
   376 	return ((netdev->features & NETIF_F_HW_CSUM) != 0);
       
   377 }
       
   378 
       
   379 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
       
   380 {
       
   381 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   382 	if (adapter->ecdev)
       
   383 		return -EBUSY;
       
   384 
       
   385 	if (data)
       
   386 		netdev->features |= NETIF_F_HW_CSUM;
       
   387 	else
       
   388 		netdev->features &= ~NETIF_F_HW_CSUM;
       
   389 
       
   390 	return 0;
       
   391 }
       
   392 
       
   393 static int e1000_set_tso(struct net_device *netdev, u32 data)
       
   394 {
       
   395 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   396 
       
   397 	if (data) {
       
   398 		netdev->features |= NETIF_F_TSO;
       
   399 		netdev->features |= NETIF_F_TSO6;
       
   400 	} else {
       
   401 		netdev->features &= ~NETIF_F_TSO;
       
   402 		netdev->features &= ~NETIF_F_TSO6;
       
   403 	}
       
   404 
       
   405 	e_info("TSO is %s\n", data ? "Enabled" : "Disabled");
       
   406 	adapter->flags |= FLAG_TSO_FORCE;
       
   407 	return 0;
       
   408 }
       
   409 
       
   410 static u32 e1000_get_msglevel(struct net_device *netdev)
       
   411 {
       
   412 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   413 	return adapter->msg_enable;
       
   414 }
       
   415 
       
   416 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
       
   417 {
       
   418 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   419 	adapter->msg_enable = data;
       
   420 }
       
   421 
       
   422 static int e1000_get_regs_len(struct net_device *netdev)
       
   423 {
       
   424 #define E1000_REGS_LEN 32 /* overestimate */
       
   425 	return E1000_REGS_LEN * sizeof(u32);
       
   426 }
       
   427 
       
   428 static void e1000_get_regs(struct net_device *netdev,
       
   429 			   struct ethtool_regs *regs, void *p)
       
   430 {
       
   431 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   432 	struct e1000_hw *hw = &adapter->hw;
       
   433 	u32 *regs_buff = p;
       
   434 	u16 phy_data;
       
   435 	u8 revision_id;
       
   436 
       
   437 	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
       
   438 
       
   439 	pci_read_config_byte(adapter->pdev, PCI_REVISION_ID, &revision_id);
       
   440 
       
   441 	regs->version = (1 << 24) | (revision_id << 16) | adapter->pdev->device;
       
   442 
       
   443 	regs_buff[0]  = er32(CTRL);
       
   444 	regs_buff[1]  = er32(STATUS);
       
   445 
       
   446 	regs_buff[2]  = er32(RCTL);
       
   447 	regs_buff[3]  = er32(RDLEN);
       
   448 	regs_buff[4]  = er32(RDH);
       
   449 	regs_buff[5]  = er32(RDT);
       
   450 	regs_buff[6]  = er32(RDTR);
       
   451 
       
   452 	regs_buff[7]  = er32(TCTL);
       
   453 	regs_buff[8]  = er32(TDLEN);
       
   454 	regs_buff[9]  = er32(TDH);
       
   455 	regs_buff[10] = er32(TDT);
       
   456 	regs_buff[11] = er32(TIDV);
       
   457 
       
   458 	regs_buff[12] = adapter->hw.phy.type;  /* PHY type (IGP=1, M88=0) */
       
   459 
       
   460 	/* ethtool doesn't use anything past this point, so all this
       
   461 	 * code is likely legacy junk for apps that may or may not
       
   462 	 * exist */
       
   463 	if (hw->phy.type == e1000_phy_m88) {
       
   464 		e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
       
   465 		regs_buff[13] = (u32)phy_data; /* cable length */
       
   466 		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
       
   467 		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
       
   468 		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
       
   469 		e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
       
   470 		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
       
   471 		regs_buff[18] = regs_buff[13]; /* cable polarity */
       
   472 		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
       
   473 		regs_buff[20] = regs_buff[17]; /* polarity correction */
       
   474 		/* phy receive errors */
       
   475 		regs_buff[22] = adapter->phy_stats.receive_errors;
       
   476 		regs_buff[23] = regs_buff[13]; /* mdix mode */
       
   477 	}
       
   478 	regs_buff[21] = 0; /* was idle_errors */
       
   479 	e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
       
   480 	regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
       
   481 	regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
       
   482 }
       
   483 
       
   484 static int e1000_get_eeprom_len(struct net_device *netdev)
       
   485 {
       
   486 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   487 	return adapter->hw.nvm.word_size * 2;
       
   488 }
       
   489 
       
   490 static int e1000_get_eeprom(struct net_device *netdev,
       
   491 			    struct ethtool_eeprom *eeprom, u8 *bytes)
       
   492 {
       
   493 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   494 	struct e1000_hw *hw = &adapter->hw;
       
   495 	u16 *eeprom_buff;
       
   496 	int first_word;
       
   497 	int last_word;
       
   498 	int ret_val = 0;
       
   499 	u16 i;
       
   500 
       
   501 	if (eeprom->len == 0)
       
   502 		return -EINVAL;
       
   503 
       
   504 	eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
       
   505 
       
   506 	first_word = eeprom->offset >> 1;
       
   507 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
       
   508 
       
   509 	eeprom_buff = kmalloc(sizeof(u16) *
       
   510 			(last_word - first_word + 1), GFP_KERNEL);
       
   511 	if (!eeprom_buff)
       
   512 		return -ENOMEM;
       
   513 
       
   514 	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
       
   515 		ret_val = e1000_read_nvm(hw, first_word,
       
   516 					 last_word - first_word + 1,
       
   517 					 eeprom_buff);
       
   518 	} else {
       
   519 		for (i = 0; i < last_word - first_word + 1; i++) {
       
   520 			ret_val = e1000_read_nvm(hw, first_word + i, 1,
       
   521 						      &eeprom_buff[i]);
       
   522 			if (ret_val)
       
   523 				break;
       
   524 		}
       
   525 	}
       
   526 
       
   527 	if (ret_val) {
       
   528 		/* a read error occurred, throw away the result */
       
   529 		memset(eeprom_buff, 0xff, sizeof(eeprom_buff));
       
   530 	} else {
       
   531 		/* Device's eeprom is always little-endian, word addressable */
       
   532 		for (i = 0; i < last_word - first_word + 1; i++)
       
   533 			le16_to_cpus(&eeprom_buff[i]);
       
   534 	}
       
   535 
       
   536 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
       
   537 	kfree(eeprom_buff);
       
   538 
       
   539 	return ret_val;
       
   540 }
       
   541 
       
   542 static int e1000_set_eeprom(struct net_device *netdev,
       
   543 			    struct ethtool_eeprom *eeprom, u8 *bytes)
       
   544 {
       
   545 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   546 	struct e1000_hw *hw = &adapter->hw;
       
   547 	u16 *eeprom_buff;
       
   548 	void *ptr;
       
   549 	int max_len;
       
   550 	int first_word;
       
   551 	int last_word;
       
   552 	int ret_val = 0;
       
   553 	u16 i;
       
   554 
       
   555 	if (eeprom->len == 0)
       
   556 		return -EOPNOTSUPP;
       
   557 
       
   558 	if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
       
   559 		return -EFAULT;
       
   560 
       
   561 	if (adapter->flags & FLAG_READ_ONLY_NVM)
       
   562 		return -EINVAL;
       
   563 
       
   564 	max_len = hw->nvm.word_size * 2;
       
   565 
       
   566 	first_word = eeprom->offset >> 1;
       
   567 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
       
   568 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
       
   569 	if (!eeprom_buff)
       
   570 		return -ENOMEM;
       
   571 
       
   572 	ptr = (void *)eeprom_buff;
       
   573 
       
   574 	if (eeprom->offset & 1) {
       
   575 		/* need read/modify/write of first changed EEPROM word */
       
   576 		/* only the second byte of the word is being modified */
       
   577 		ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
       
   578 		ptr++;
       
   579 	}
       
   580 	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
       
   581 		/* need read/modify/write of last changed EEPROM word */
       
   582 		/* only the first byte of the word is being modified */
       
   583 		ret_val = e1000_read_nvm(hw, last_word, 1,
       
   584 				  &eeprom_buff[last_word - first_word]);
       
   585 
       
   586 	if (ret_val)
       
   587 		goto out;
       
   588 
       
   589 	/* Device's eeprom is always little-endian, word addressable */
       
   590 	for (i = 0; i < last_word - first_word + 1; i++)
       
   591 		le16_to_cpus(&eeprom_buff[i]);
       
   592 
       
   593 	memcpy(ptr, bytes, eeprom->len);
       
   594 
       
   595 	for (i = 0; i < last_word - first_word + 1; i++)
       
   596 		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
       
   597 
       
   598 	ret_val = e1000_write_nvm(hw, first_word,
       
   599 				  last_word - first_word + 1, eeprom_buff);
       
   600 
       
   601 	if (ret_val)
       
   602 		goto out;
       
   603 
       
   604 	/*
       
   605 	 * Update the checksum over the first part of the EEPROM if needed
       
   606 	 * and flush shadow RAM for applicable controllers
       
   607 	 */
       
   608 	if ((first_word <= NVM_CHECKSUM_REG) ||
       
   609 	    (hw->mac.type == e1000_82574) || (hw->mac.type == e1000_82573))
       
   610 		ret_val = e1000e_update_nvm_checksum(hw);
       
   611 
       
   612 out:
       
   613 	kfree(eeprom_buff);
       
   614 	return ret_val;
       
   615 }
       
   616 
       
   617 static void e1000_get_drvinfo(struct net_device *netdev,
       
   618 			      struct ethtool_drvinfo *drvinfo)
       
   619 {
       
   620 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   621 	char firmware_version[32];
       
   622 
       
   623 	strncpy(drvinfo->driver,  e1000e_driver_name, 32);
       
   624 	strncpy(drvinfo->version, e1000e_driver_version, 32);
       
   625 
       
   626 	/*
       
   627 	 * EEPROM image version # is reported as firmware version # for
       
   628 	 * PCI-E controllers
       
   629 	 */
       
   630 	sprintf(firmware_version, "%d.%d-%d",
       
   631 		(adapter->eeprom_vers & 0xF000) >> 12,
       
   632 		(adapter->eeprom_vers & 0x0FF0) >> 4,
       
   633 		(adapter->eeprom_vers & 0x000F));
       
   634 
       
   635 	strncpy(drvinfo->fw_version, firmware_version, 32);
       
   636 	strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
       
   637 	drvinfo->regdump_len = e1000_get_regs_len(netdev);
       
   638 	drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
       
   639 }
       
   640 
       
   641 static void e1000_get_ringparam(struct net_device *netdev,
       
   642 				struct ethtool_ringparam *ring)
       
   643 {
       
   644 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   645 	struct e1000_ring *tx_ring = adapter->tx_ring;
       
   646 	struct e1000_ring *rx_ring = adapter->rx_ring;
       
   647 
       
   648 	ring->rx_max_pending = E1000_MAX_RXD;
       
   649 	ring->tx_max_pending = E1000_MAX_TXD;
       
   650 	ring->rx_mini_max_pending = 0;
       
   651 	ring->rx_jumbo_max_pending = 0;
       
   652 	ring->rx_pending = rx_ring->count;
       
   653 	ring->tx_pending = tx_ring->count;
       
   654 	ring->rx_mini_pending = 0;
       
   655 	ring->rx_jumbo_pending = 0;
       
   656 }
       
   657 
       
   658 static int e1000_set_ringparam(struct net_device *netdev,
       
   659 			       struct ethtool_ringparam *ring)
       
   660 {
       
   661 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   662 	struct e1000_ring *tx_ring, *tx_old;
       
   663 	struct e1000_ring *rx_ring, *rx_old;
       
   664 	int err;
       
   665 
       
   666 	if (adapter->ecdev)
       
   667 		return -EBUSY;
       
   668 
       
   669 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
       
   670 		return -EINVAL;
       
   671 
       
   672 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
       
   673 		msleep(1);
       
   674 
       
   675 	if (netif_running(adapter->netdev))
       
   676 		e1000e_down(adapter);
       
   677 
       
   678 	tx_old = adapter->tx_ring;
       
   679 	rx_old = adapter->rx_ring;
       
   680 
       
   681 	err = -ENOMEM;
       
   682 	tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
       
   683 	if (!tx_ring)
       
   684 		goto err_alloc_tx;
       
   685 	/*
       
   686 	 * use a memcpy to save any previously configured
       
   687 	 * items like napi structs from having to be
       
   688 	 * reinitialized
       
   689 	 */
       
   690 	memcpy(tx_ring, tx_old, sizeof(struct e1000_ring));
       
   691 
       
   692 	rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
       
   693 	if (!rx_ring)
       
   694 		goto err_alloc_rx;
       
   695 	memcpy(rx_ring, rx_old, sizeof(struct e1000_ring));
       
   696 
       
   697 	adapter->tx_ring = tx_ring;
       
   698 	adapter->rx_ring = rx_ring;
       
   699 
       
   700 	rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
       
   701 	rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
       
   702 	rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
       
   703 
       
   704 	tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
       
   705 	tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
       
   706 	tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
       
   707 
       
   708 	if (netif_running(adapter->netdev)) {
       
   709 		/* Try to get new resources before deleting old */
       
   710 		err = e1000e_setup_rx_resources(adapter);
       
   711 		if (err)
       
   712 			goto err_setup_rx;
       
   713 		err = e1000e_setup_tx_resources(adapter);
       
   714 		if (err)
       
   715 			goto err_setup_tx;
       
   716 
       
   717 		/*
       
   718 		 * restore the old in order to free it,
       
   719 		 * then add in the new
       
   720 		 */
       
   721 		adapter->rx_ring = rx_old;
       
   722 		adapter->tx_ring = tx_old;
       
   723 		e1000e_free_rx_resources(adapter);
       
   724 		e1000e_free_tx_resources(adapter);
       
   725 		kfree(tx_old);
       
   726 		kfree(rx_old);
       
   727 		adapter->rx_ring = rx_ring;
       
   728 		adapter->tx_ring = tx_ring;
       
   729 		err = e1000e_up(adapter);
       
   730 		if (err)
       
   731 			goto err_setup;
       
   732 	}
       
   733 
       
   734 	clear_bit(__E1000_RESETTING, &adapter->state);
       
   735 	return 0;
       
   736 err_setup_tx:
       
   737 	e1000e_free_rx_resources(adapter);
       
   738 err_setup_rx:
       
   739 	adapter->rx_ring = rx_old;
       
   740 	adapter->tx_ring = tx_old;
       
   741 	kfree(rx_ring);
       
   742 err_alloc_rx:
       
   743 	kfree(tx_ring);
       
   744 err_alloc_tx:
       
   745 	e1000e_up(adapter);
       
   746 err_setup:
       
   747 	clear_bit(__E1000_RESETTING, &adapter->state);
       
   748 	return err;
       
   749 }
       
   750 
       
   751 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
       
   752 			     int reg, int offset, u32 mask, u32 write)
       
   753 {
       
   754 	u32 pat, val;
       
   755 	static const u32 test[] =
       
   756 		{0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
       
   757 	for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
       
   758 		E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
       
   759 				      (test[pat] & write));
       
   760 		val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
       
   761 		if (val != (test[pat] & write & mask)) {
       
   762 			e_err("pattern test reg %04X failed: got 0x%08X "
       
   763 			      "expected 0x%08X\n", reg + offset, val,
       
   764 			      (test[pat] & write & mask));
       
   765 			*data = reg;
       
   766 			return 1;
       
   767 		}
       
   768 	}
       
   769 	return 0;
       
   770 }
       
   771 
       
   772 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
       
   773 			      int reg, u32 mask, u32 write)
       
   774 {
       
   775 	u32 val;
       
   776 	__ew32(&adapter->hw, reg, write & mask);
       
   777 	val = __er32(&adapter->hw, reg);
       
   778 	if ((write & mask) != (val & mask)) {
       
   779 		e_err("set/check reg %04X test failed: got 0x%08X "
       
   780 		      "expected 0x%08X\n", reg, (val & mask), (write & mask));
       
   781 		*data = reg;
       
   782 		return 1;
       
   783 	}
       
   784 	return 0;
       
   785 }
       
   786 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
       
   787 	do {                                                                   \
       
   788 		if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
       
   789 			return 1;                                              \
       
   790 	} while (0)
       
   791 #define REG_PATTERN_TEST(reg, mask, write)                                     \
       
   792 	REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
       
   793 
       
   794 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
       
   795 	do {                                                                   \
       
   796 		if (reg_set_and_check(adapter, data, reg, mask, write))        \
       
   797 			return 1;                                              \
       
   798 	} while (0)
       
   799 
       
   800 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
       
   801 {
       
   802 	struct e1000_hw *hw = &adapter->hw;
       
   803 	struct e1000_mac_info *mac = &adapter->hw.mac;
       
   804 	u32 value;
       
   805 	u32 before;
       
   806 	u32 after;
       
   807 	u32 i;
       
   808 	u32 toggle;
       
   809 	u32 mask;
       
   810 
       
   811 	/*
       
   812 	 * The status register is Read Only, so a write should fail.
       
   813 	 * Some bits that get toggled are ignored.
       
   814 	 */
       
   815 	switch (mac->type) {
       
   816 	/* there are several bits on newer hardware that are r/w */
       
   817 	case e1000_82571:
       
   818 	case e1000_82572:
       
   819 	case e1000_80003es2lan:
       
   820 		toggle = 0x7FFFF3FF;
       
   821 		break;
       
   822         default:
       
   823 		toggle = 0x7FFFF033;
       
   824 		break;
       
   825 	}
       
   826 
       
   827 	before = er32(STATUS);
       
   828 	value = (er32(STATUS) & toggle);
       
   829 	ew32(STATUS, toggle);
       
   830 	after = er32(STATUS) & toggle;
       
   831 	if (value != after) {
       
   832 		e_err("failed STATUS register test got: 0x%08X expected: "
       
   833 		      "0x%08X\n", after, value);
       
   834 		*data = 1;
       
   835 		return 1;
       
   836 	}
       
   837 	/* restore previous status */
       
   838 	ew32(STATUS, before);
       
   839 
       
   840 	if (!(adapter->flags & FLAG_IS_ICH)) {
       
   841 		REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
       
   842 		REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
       
   843 		REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
       
   844 		REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
       
   845 	}
       
   846 
       
   847 	REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
       
   848 	REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
       
   849 	REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
       
   850 	REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
       
   851 	REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
       
   852 	REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
       
   853 	REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
       
   854 	REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
       
   855 	REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
       
   856 	REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
       
   857 
       
   858 	REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
       
   859 
       
   860 	before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
       
   861 	REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
       
   862 	REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
       
   863 
       
   864 	REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
       
   865 	REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
       
   866 	if (!(adapter->flags & FLAG_IS_ICH))
       
   867 		REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
       
   868 	REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
       
   869 	REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
       
   870 	mask = 0x8003FFFF;
       
   871 	switch (mac->type) {
       
   872 	case e1000_ich10lan:
       
   873 	case e1000_pchlan:
       
   874 		mask |= (1 << 18);
       
   875 		break;
       
   876 	default:
       
   877 		break;
       
   878 	}
       
   879 	for (i = 0; i < mac->rar_entry_count; i++)
       
   880 		REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
       
   881 		                       mask, 0xFFFFFFFF);
       
   882 
       
   883 	for (i = 0; i < mac->mta_reg_count; i++)
       
   884 		REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
       
   885 
       
   886 	*data = 0;
       
   887 	return 0;
       
   888 }
       
   889 
       
   890 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
       
   891 {
       
   892 	u16 temp;
       
   893 	u16 checksum = 0;
       
   894 	u16 i;
       
   895 
       
   896 	*data = 0;
       
   897 	/* Read and add up the contents of the EEPROM */
       
   898 	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
       
   899 		if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
       
   900 			*data = 1;
       
   901 			return *data;
       
   902 		}
       
   903 		checksum += temp;
       
   904 	}
       
   905 
       
   906 	/* If Checksum is not Correct return error else test passed */
       
   907 	if ((checksum != (u16) NVM_SUM) && !(*data))
       
   908 		*data = 2;
       
   909 
       
   910 	return *data;
       
   911 }
       
   912 
       
   913 static irqreturn_t e1000_test_intr(int irq, void *data)
       
   914 {
       
   915 	struct net_device *netdev = (struct net_device *) data;
       
   916 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   917 	struct e1000_hw *hw = &adapter->hw;
       
   918 
       
   919 	adapter->test_icr |= er32(ICR);
       
   920 
       
   921 	return IRQ_HANDLED;
       
   922 }
       
   923 
       
   924 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
       
   925 {
       
   926 	struct net_device *netdev = adapter->netdev;
       
   927 	struct e1000_hw *hw = &adapter->hw;
       
   928 	u32 mask;
       
   929 	u32 shared_int = 1;
       
   930 	u32 irq = adapter->pdev->irq;
       
   931 	int i;
       
   932 	int ret_val = 0;
       
   933 	int int_mode = E1000E_INT_MODE_LEGACY;
       
   934 
       
   935 	*data = 0;
       
   936 
       
   937 	/* NOTE: we don't test MSI/MSI-X interrupts here, yet */
       
   938 	if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
       
   939 		int_mode = adapter->int_mode;
       
   940 		e1000e_reset_interrupt_capability(adapter);
       
   941 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
       
   942 		e1000e_set_interrupt_capability(adapter);
       
   943 	}
       
   944 	/* Hook up test interrupt handler just for this test */
       
   945 	if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
       
   946 			 netdev)) {
       
   947 		shared_int = 0;
       
   948 	} else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED,
       
   949 		 netdev->name, netdev)) {
       
   950 		*data = 1;
       
   951 		ret_val = -1;
       
   952 		goto out;
       
   953 	}
       
   954 	e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
       
   955 
       
   956 	/* Disable all the interrupts */
       
   957 	ew32(IMC, 0xFFFFFFFF);
       
   958 	msleep(10);
       
   959 
       
   960 	/* Test each interrupt */
       
   961 	for (i = 0; i < 10; i++) {
       
   962 		/* Interrupt to test */
       
   963 		mask = 1 << i;
       
   964 
       
   965 		if (adapter->flags & FLAG_IS_ICH) {
       
   966 			switch (mask) {
       
   967 			case E1000_ICR_RXSEQ:
       
   968 				continue;
       
   969 			case 0x00000100:
       
   970 				if (adapter->hw.mac.type == e1000_ich8lan ||
       
   971 				    adapter->hw.mac.type == e1000_ich9lan)
       
   972 					continue;
       
   973 				break;
       
   974 			default:
       
   975 				break;
       
   976 			}
       
   977 		}
       
   978 
       
   979 		if (!shared_int) {
       
   980 			/*
       
   981 			 * Disable the interrupt to be reported in
       
   982 			 * the cause register and then force the same
       
   983 			 * interrupt and see if one gets posted.  If
       
   984 			 * an interrupt was posted to the bus, the
       
   985 			 * test failed.
       
   986 			 */
       
   987 			adapter->test_icr = 0;
       
   988 			ew32(IMC, mask);
       
   989 			ew32(ICS, mask);
       
   990 			msleep(10);
       
   991 
       
   992 			if (adapter->test_icr & mask) {
       
   993 				*data = 3;
       
   994 				break;
       
   995 			}
       
   996 		}
       
   997 
       
   998 		/*
       
   999 		 * Enable the interrupt to be reported in
       
  1000 		 * the cause register and then force the same
       
  1001 		 * interrupt and see if one gets posted.  If
       
  1002 		 * an interrupt was not posted to the bus, the
       
  1003 		 * test failed.
       
  1004 		 */
       
  1005 		adapter->test_icr = 0;
       
  1006 		ew32(IMS, mask);
       
  1007 		ew32(ICS, mask);
       
  1008 		msleep(10);
       
  1009 
       
  1010 		if (!(adapter->test_icr & mask)) {
       
  1011 			*data = 4;
       
  1012 			break;
       
  1013 		}
       
  1014 
       
  1015 		if (!shared_int) {
       
  1016 			/*
       
  1017 			 * Disable the other interrupts to be reported in
       
  1018 			 * the cause register and then force the other
       
  1019 			 * interrupts and see if any get posted.  If
       
  1020 			 * an interrupt was posted to the bus, the
       
  1021 			 * test failed.
       
  1022 			 */
       
  1023 			adapter->test_icr = 0;
       
  1024 			ew32(IMC, ~mask & 0x00007FFF);
       
  1025 			ew32(ICS, ~mask & 0x00007FFF);
       
  1026 			msleep(10);
       
  1027 
       
  1028 			if (adapter->test_icr) {
       
  1029 				*data = 5;
       
  1030 				break;
       
  1031 			}
       
  1032 		}
       
  1033 	}
       
  1034 
       
  1035 	/* Disable all the interrupts */
       
  1036 	ew32(IMC, 0xFFFFFFFF);
       
  1037 	msleep(10);
       
  1038 
       
  1039 	/* Unhook test interrupt handler */
       
  1040 	free_irq(irq, netdev);
       
  1041 
       
  1042 out:
       
  1043 	if (int_mode == E1000E_INT_MODE_MSIX) {
       
  1044 		e1000e_reset_interrupt_capability(adapter);
       
  1045 		adapter->int_mode = int_mode;
       
  1046 		e1000e_set_interrupt_capability(adapter);
       
  1047 	}
       
  1048 
       
  1049 	return ret_val;
       
  1050 }
       
  1051 
       
  1052 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
       
  1053 {
       
  1054 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
       
  1055 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
       
  1056 	struct pci_dev *pdev = adapter->pdev;
       
  1057 	int i;
       
  1058 
       
  1059 	if (tx_ring->desc && tx_ring->buffer_info) {
       
  1060 		for (i = 0; i < tx_ring->count; i++) {
       
  1061 			if (tx_ring->buffer_info[i].dma)
       
  1062 				pci_unmap_single(pdev,
       
  1063 					tx_ring->buffer_info[i].dma,
       
  1064 					tx_ring->buffer_info[i].length,
       
  1065 					PCI_DMA_TODEVICE);
       
  1066 			if (tx_ring->buffer_info[i].skb)
       
  1067 				dev_kfree_skb(tx_ring->buffer_info[i].skb);
       
  1068 		}
       
  1069 	}
       
  1070 
       
  1071 	if (rx_ring->desc && rx_ring->buffer_info) {
       
  1072 		for (i = 0; i < rx_ring->count; i++) {
       
  1073 			if (rx_ring->buffer_info[i].dma)
       
  1074 				pci_unmap_single(pdev,
       
  1075 					rx_ring->buffer_info[i].dma,
       
  1076 					2048, PCI_DMA_FROMDEVICE);
       
  1077 			if (rx_ring->buffer_info[i].skb)
       
  1078 				dev_kfree_skb(rx_ring->buffer_info[i].skb);
       
  1079 		}
       
  1080 	}
       
  1081 
       
  1082 	if (tx_ring->desc) {
       
  1083 		dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
       
  1084 				  tx_ring->dma);
       
  1085 		tx_ring->desc = NULL;
       
  1086 	}
       
  1087 	if (rx_ring->desc) {
       
  1088 		dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
       
  1089 				  rx_ring->dma);
       
  1090 		rx_ring->desc = NULL;
       
  1091 	}
       
  1092 
       
  1093 	kfree(tx_ring->buffer_info);
       
  1094 	tx_ring->buffer_info = NULL;
       
  1095 	kfree(rx_ring->buffer_info);
       
  1096 	rx_ring->buffer_info = NULL;
       
  1097 }
       
  1098 
       
  1099 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
       
  1100 {
       
  1101 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
       
  1102 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
       
  1103 	struct pci_dev *pdev = adapter->pdev;
       
  1104 	struct e1000_hw *hw = &adapter->hw;
       
  1105 	u32 rctl;
       
  1106 	int i;
       
  1107 	int ret_val;
       
  1108 
       
  1109 	/* Setup Tx descriptor ring and Tx buffers */
       
  1110 
       
  1111 	if (!tx_ring->count)
       
  1112 		tx_ring->count = E1000_DEFAULT_TXD;
       
  1113 
       
  1114 	tx_ring->buffer_info = kcalloc(tx_ring->count,
       
  1115 				       sizeof(struct e1000_buffer),
       
  1116 				       GFP_KERNEL);
       
  1117 	if (!(tx_ring->buffer_info)) {
       
  1118 		ret_val = 1;
       
  1119 		goto err_nomem;
       
  1120 	}
       
  1121 
       
  1122 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
       
  1123 	tx_ring->size = ALIGN(tx_ring->size, 4096);
       
  1124 	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
       
  1125 					   &tx_ring->dma, GFP_KERNEL);
       
  1126 	if (!tx_ring->desc) {
       
  1127 		ret_val = 2;
       
  1128 		goto err_nomem;
       
  1129 	}
       
  1130 	tx_ring->next_to_use = 0;
       
  1131 	tx_ring->next_to_clean = 0;
       
  1132 
       
  1133 	ew32(TDBAL, ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
       
  1134 	ew32(TDBAH, ((u64) tx_ring->dma >> 32));
       
  1135 	ew32(TDLEN, tx_ring->count * sizeof(struct e1000_tx_desc));
       
  1136 	ew32(TDH, 0);
       
  1137 	ew32(TDT, 0);
       
  1138 	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
       
  1139 	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
       
  1140 	     E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
       
  1141 
       
  1142 	for (i = 0; i < tx_ring->count; i++) {
       
  1143 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
       
  1144 		struct sk_buff *skb;
       
  1145 		unsigned int skb_size = 1024;
       
  1146 
       
  1147 		skb = alloc_skb(skb_size, GFP_KERNEL);
       
  1148 		if (!skb) {
       
  1149 			ret_val = 3;
       
  1150 			goto err_nomem;
       
  1151 		}
       
  1152 		skb_put(skb, skb_size);
       
  1153 		tx_ring->buffer_info[i].skb = skb;
       
  1154 		tx_ring->buffer_info[i].length = skb->len;
       
  1155 		tx_ring->buffer_info[i].dma =
       
  1156 			pci_map_single(pdev, skb->data, skb->len,
       
  1157 				       PCI_DMA_TODEVICE);
       
  1158 		if (pci_dma_mapping_error(pdev, tx_ring->buffer_info[i].dma)) {
       
  1159 			ret_val = 4;
       
  1160 			goto err_nomem;
       
  1161 		}
       
  1162 		tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
       
  1163 		tx_desc->lower.data = cpu_to_le32(skb->len);
       
  1164 		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
       
  1165 						   E1000_TXD_CMD_IFCS |
       
  1166 						   E1000_TXD_CMD_RS);
       
  1167 		tx_desc->upper.data = 0;
       
  1168 	}
       
  1169 
       
  1170 	/* Setup Rx descriptor ring and Rx buffers */
       
  1171 
       
  1172 	if (!rx_ring->count)
       
  1173 		rx_ring->count = E1000_DEFAULT_RXD;
       
  1174 
       
  1175 	rx_ring->buffer_info = kcalloc(rx_ring->count,
       
  1176 				       sizeof(struct e1000_buffer),
       
  1177 				       GFP_KERNEL);
       
  1178 	if (!(rx_ring->buffer_info)) {
       
  1179 		ret_val = 5;
       
  1180 		goto err_nomem;
       
  1181 	}
       
  1182 
       
  1183 	rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
       
  1184 	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
       
  1185 					   &rx_ring->dma, GFP_KERNEL);
       
  1186 	if (!rx_ring->desc) {
       
  1187 		ret_val = 6;
       
  1188 		goto err_nomem;
       
  1189 	}
       
  1190 	rx_ring->next_to_use = 0;
       
  1191 	rx_ring->next_to_clean = 0;
       
  1192 
       
  1193 	rctl = er32(RCTL);
       
  1194 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
       
  1195 	ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
       
  1196 	ew32(RDBAH, ((u64) rx_ring->dma >> 32));
       
  1197 	ew32(RDLEN, rx_ring->size);
       
  1198 	ew32(RDH, 0);
       
  1199 	ew32(RDT, 0);
       
  1200 	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
       
  1201 		E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
       
  1202 		E1000_RCTL_SBP | E1000_RCTL_SECRC |
       
  1203 		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
       
  1204 		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
       
  1205 	ew32(RCTL, rctl);
       
  1206 
       
  1207 	for (i = 0; i < rx_ring->count; i++) {
       
  1208 		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
       
  1209 		struct sk_buff *skb;
       
  1210 
       
  1211 		skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
       
  1212 		if (!skb) {
       
  1213 			ret_val = 7;
       
  1214 			goto err_nomem;
       
  1215 		}
       
  1216 		skb_reserve(skb, NET_IP_ALIGN);
       
  1217 		rx_ring->buffer_info[i].skb = skb;
       
  1218 		rx_ring->buffer_info[i].dma =
       
  1219 			pci_map_single(pdev, skb->data, 2048,
       
  1220 				       PCI_DMA_FROMDEVICE);
       
  1221 		if (pci_dma_mapping_error(pdev, rx_ring->buffer_info[i].dma)) {
       
  1222 			ret_val = 8;
       
  1223 			goto err_nomem;
       
  1224 		}
       
  1225 		rx_desc->buffer_addr =
       
  1226 			cpu_to_le64(rx_ring->buffer_info[i].dma);
       
  1227 		memset(skb->data, 0x00, skb->len);
       
  1228 	}
       
  1229 
       
  1230 	return 0;
       
  1231 
       
  1232 err_nomem:
       
  1233 	e1000_free_desc_rings(adapter);
       
  1234 	return ret_val;
       
  1235 }
       
  1236 
       
  1237 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
       
  1238 {
       
  1239 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
       
  1240 	e1e_wphy(&adapter->hw, 29, 0x001F);
       
  1241 	e1e_wphy(&adapter->hw, 30, 0x8FFC);
       
  1242 	e1e_wphy(&adapter->hw, 29, 0x001A);
       
  1243 	e1e_wphy(&adapter->hw, 30, 0x8FF0);
       
  1244 }
       
  1245 
       
  1246 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
       
  1247 {
       
  1248 	struct e1000_hw *hw = &adapter->hw;
       
  1249 	u32 ctrl_reg = 0;
       
  1250 	u32 stat_reg = 0;
       
  1251 	u16 phy_reg = 0;
       
  1252 
       
  1253 	hw->mac.autoneg = 0;
       
  1254 
       
  1255 	if (hw->phy.type == e1000_phy_m88) {
       
  1256 		/* Auto-MDI/MDIX Off */
       
  1257 		e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
       
  1258 		/* reset to update Auto-MDI/MDIX */
       
  1259 		e1e_wphy(hw, PHY_CONTROL, 0x9140);
       
  1260 		/* autoneg off */
       
  1261 		e1e_wphy(hw, PHY_CONTROL, 0x8140);
       
  1262 	} else if (hw->phy.type == e1000_phy_gg82563)
       
  1263 		e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
       
  1264 
       
  1265 	ctrl_reg = er32(CTRL);
       
  1266 
       
  1267 	switch (hw->phy.type) {
       
  1268 	case e1000_phy_ife:
       
  1269 		/* force 100, set loopback */
       
  1270 		e1e_wphy(hw, PHY_CONTROL, 0x6100);
       
  1271 
       
  1272 		/* Now set up the MAC to the same speed/duplex as the PHY. */
       
  1273 		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
       
  1274 		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
       
  1275 			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
       
  1276 			     E1000_CTRL_SPD_100 |/* Force Speed to 100 */
       
  1277 			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
       
  1278 		break;
       
  1279 	case e1000_phy_bm:
       
  1280 		/* Set Default MAC Interface speed to 1GB */
       
  1281 		e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
       
  1282 		phy_reg &= ~0x0007;
       
  1283 		phy_reg |= 0x006;
       
  1284 		e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
       
  1285 		/* Assert SW reset for above settings to take effect */
       
  1286 		e1000e_commit_phy(hw);
       
  1287 		mdelay(1);
       
  1288 		/* Force Full Duplex */
       
  1289 		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
       
  1290 		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
       
  1291 		/* Set Link Up (in force link) */
       
  1292 		e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
       
  1293 		e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
       
  1294 		/* Force Link */
       
  1295 		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
       
  1296 		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
       
  1297 		/* Set Early Link Enable */
       
  1298 		e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
       
  1299 		e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
       
  1300 		/* fall through */
       
  1301 	default:
       
  1302 		/* force 1000, set loopback */
       
  1303 		e1e_wphy(hw, PHY_CONTROL, 0x4140);
       
  1304 		mdelay(250);
       
  1305 
       
  1306 		/* Now set up the MAC to the same speed/duplex as the PHY. */
       
  1307 		ctrl_reg = er32(CTRL);
       
  1308 		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
       
  1309 		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
       
  1310 			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
       
  1311 			     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
       
  1312 			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
       
  1313 
       
  1314 		if (adapter->flags & FLAG_IS_ICH)
       
  1315 			ctrl_reg |= E1000_CTRL_SLU;	/* Set Link Up */
       
  1316 	}
       
  1317 
       
  1318 	if (hw->phy.media_type == e1000_media_type_copper &&
       
  1319 	    hw->phy.type == e1000_phy_m88) {
       
  1320 		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
       
  1321 	} else {
       
  1322 		/*
       
  1323 		 * Set the ILOS bit on the fiber Nic if half duplex link is
       
  1324 		 * detected.
       
  1325 		 */
       
  1326 		stat_reg = er32(STATUS);
       
  1327 		if ((stat_reg & E1000_STATUS_FD) == 0)
       
  1328 			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
       
  1329 	}
       
  1330 
       
  1331 	ew32(CTRL, ctrl_reg);
       
  1332 
       
  1333 	/*
       
  1334 	 * Disable the receiver on the PHY so when a cable is plugged in, the
       
  1335 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
       
  1336 	 */
       
  1337 	if (hw->phy.type == e1000_phy_m88)
       
  1338 		e1000_phy_disable_receiver(adapter);
       
  1339 
       
  1340 	udelay(500);
       
  1341 
       
  1342 	return 0;
       
  1343 }
       
  1344 
       
  1345 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
       
  1346 {
       
  1347 	struct e1000_hw *hw = &adapter->hw;
       
  1348 	u32 ctrl = er32(CTRL);
       
  1349 	int link = 0;
       
  1350 
       
  1351 	/* special requirements for 82571/82572 fiber adapters */
       
  1352 
       
  1353 	/*
       
  1354 	 * jump through hoops to make sure link is up because serdes
       
  1355 	 * link is hardwired up
       
  1356 	 */
       
  1357 	ctrl |= E1000_CTRL_SLU;
       
  1358 	ew32(CTRL, ctrl);
       
  1359 
       
  1360 	/* disable autoneg */
       
  1361 	ctrl = er32(TXCW);
       
  1362 	ctrl &= ~(1 << 31);
       
  1363 	ew32(TXCW, ctrl);
       
  1364 
       
  1365 	link = (er32(STATUS) & E1000_STATUS_LU);
       
  1366 
       
  1367 	if (!link) {
       
  1368 		/* set invert loss of signal */
       
  1369 		ctrl = er32(CTRL);
       
  1370 		ctrl |= E1000_CTRL_ILOS;
       
  1371 		ew32(CTRL, ctrl);
       
  1372 	}
       
  1373 
       
  1374 	/*
       
  1375 	 * special write to serdes control register to enable SerDes analog
       
  1376 	 * loopback
       
  1377 	 */
       
  1378 #define E1000_SERDES_LB_ON 0x410
       
  1379 	ew32(SCTL, E1000_SERDES_LB_ON);
       
  1380 	msleep(10);
       
  1381 
       
  1382 	return 0;
       
  1383 }
       
  1384 
       
  1385 /* only call this for fiber/serdes connections to es2lan */
       
  1386 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
       
  1387 {
       
  1388 	struct e1000_hw *hw = &adapter->hw;
       
  1389 	u32 ctrlext = er32(CTRL_EXT);
       
  1390 	u32 ctrl = er32(CTRL);
       
  1391 
       
  1392 	/*
       
  1393 	 * save CTRL_EXT to restore later, reuse an empty variable (unused
       
  1394 	 * on mac_type 80003es2lan)
       
  1395 	 */
       
  1396 	adapter->tx_fifo_head = ctrlext;
       
  1397 
       
  1398 	/* clear the serdes mode bits, putting the device into mac loopback */
       
  1399 	ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
       
  1400 	ew32(CTRL_EXT, ctrlext);
       
  1401 
       
  1402 	/* force speed to 1000/FD, link up */
       
  1403 	ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
       
  1404 	ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
       
  1405 		 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
       
  1406 	ew32(CTRL, ctrl);
       
  1407 
       
  1408 	/* set mac loopback */
       
  1409 	ctrl = er32(RCTL);
       
  1410 	ctrl |= E1000_RCTL_LBM_MAC;
       
  1411 	ew32(RCTL, ctrl);
       
  1412 
       
  1413 	/* set testing mode parameters (no need to reset later) */
       
  1414 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
       
  1415 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
       
  1416 	ew32(KMRNCTRLSTA,
       
  1417 	     (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
       
  1418 
       
  1419 	return 0;
       
  1420 }
       
  1421 
       
  1422 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
       
  1423 {
       
  1424 	struct e1000_hw *hw = &adapter->hw;
       
  1425 	u32 rctl;
       
  1426 
       
  1427 	if (hw->phy.media_type == e1000_media_type_fiber ||
       
  1428 	    hw->phy.media_type == e1000_media_type_internal_serdes) {
       
  1429 		switch (hw->mac.type) {
       
  1430 		case e1000_80003es2lan:
       
  1431 			return e1000_set_es2lan_mac_loopback(adapter);
       
  1432 			break;
       
  1433 		case e1000_82571:
       
  1434 		case e1000_82572:
       
  1435 			return e1000_set_82571_fiber_loopback(adapter);
       
  1436 			break;
       
  1437 		default:
       
  1438 			rctl = er32(RCTL);
       
  1439 			rctl |= E1000_RCTL_LBM_TCVR;
       
  1440 			ew32(RCTL, rctl);
       
  1441 			return 0;
       
  1442 		}
       
  1443 	} else if (hw->phy.media_type == e1000_media_type_copper) {
       
  1444 		return e1000_integrated_phy_loopback(adapter);
       
  1445 	}
       
  1446 
       
  1447 	return 7;
       
  1448 }
       
  1449 
       
  1450 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
       
  1451 {
       
  1452 	struct e1000_hw *hw = &adapter->hw;
       
  1453 	u32 rctl;
       
  1454 	u16 phy_reg;
       
  1455 
       
  1456 	rctl = er32(RCTL);
       
  1457 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
       
  1458 	ew32(RCTL, rctl);
       
  1459 
       
  1460 	switch (hw->mac.type) {
       
  1461 	case e1000_80003es2lan:
       
  1462 		if (hw->phy.media_type == e1000_media_type_fiber ||
       
  1463 		    hw->phy.media_type == e1000_media_type_internal_serdes) {
       
  1464 			/* restore CTRL_EXT, stealing space from tx_fifo_head */
       
  1465 			ew32(CTRL_EXT, adapter->tx_fifo_head);
       
  1466 			adapter->tx_fifo_head = 0;
       
  1467 		}
       
  1468 		/* fall through */
       
  1469 	case e1000_82571:
       
  1470 	case e1000_82572:
       
  1471 		if (hw->phy.media_type == e1000_media_type_fiber ||
       
  1472 		    hw->phy.media_type == e1000_media_type_internal_serdes) {
       
  1473 #define E1000_SERDES_LB_OFF 0x400
       
  1474 			ew32(SCTL, E1000_SERDES_LB_OFF);
       
  1475 			msleep(10);
       
  1476 			break;
       
  1477 		}
       
  1478 		/* Fall Through */
       
  1479 	default:
       
  1480 		hw->mac.autoneg = 1;
       
  1481 		if (hw->phy.type == e1000_phy_gg82563)
       
  1482 			e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
       
  1483 		e1e_rphy(hw, PHY_CONTROL, &phy_reg);
       
  1484 		if (phy_reg & MII_CR_LOOPBACK) {
       
  1485 			phy_reg &= ~MII_CR_LOOPBACK;
       
  1486 			e1e_wphy(hw, PHY_CONTROL, phy_reg);
       
  1487 			e1000e_commit_phy(hw);
       
  1488 		}
       
  1489 		break;
       
  1490 	}
       
  1491 }
       
  1492 
       
  1493 static void e1000_create_lbtest_frame(struct sk_buff *skb,
       
  1494 				      unsigned int frame_size)
       
  1495 {
       
  1496 	memset(skb->data, 0xFF, frame_size);
       
  1497 	frame_size &= ~1;
       
  1498 	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
       
  1499 	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
       
  1500 	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
       
  1501 }
       
  1502 
       
  1503 static int e1000_check_lbtest_frame(struct sk_buff *skb,
       
  1504 				    unsigned int frame_size)
       
  1505 {
       
  1506 	frame_size &= ~1;
       
  1507 	if (*(skb->data + 3) == 0xFF)
       
  1508 		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
       
  1509 		   (*(skb->data + frame_size / 2 + 12) == 0xAF))
       
  1510 			return 0;
       
  1511 	return 13;
       
  1512 }
       
  1513 
       
  1514 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
       
  1515 {
       
  1516 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
       
  1517 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
       
  1518 	struct pci_dev *pdev = adapter->pdev;
       
  1519 	struct e1000_hw *hw = &adapter->hw;
       
  1520 	int i, j, k, l;
       
  1521 	int lc;
       
  1522 	int good_cnt;
       
  1523 	int ret_val = 0;
       
  1524 	unsigned long time;
       
  1525 
       
  1526 	ew32(RDT, rx_ring->count - 1);
       
  1527 
       
  1528 	/*
       
  1529 	 * Calculate the loop count based on the largest descriptor ring
       
  1530 	 * The idea is to wrap the largest ring a number of times using 64
       
  1531 	 * send/receive pairs during each loop
       
  1532 	 */
       
  1533 
       
  1534 	if (rx_ring->count <= tx_ring->count)
       
  1535 		lc = ((tx_ring->count / 64) * 2) + 1;
       
  1536 	else
       
  1537 		lc = ((rx_ring->count / 64) * 2) + 1;
       
  1538 
       
  1539 	k = 0;
       
  1540 	l = 0;
       
  1541 	for (j = 0; j <= lc; j++) { /* loop count loop */
       
  1542 		for (i = 0; i < 64; i++) { /* send the packets */
       
  1543 			e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
       
  1544 						  1024);
       
  1545 			pci_dma_sync_single_for_device(pdev,
       
  1546 					tx_ring->buffer_info[k].dma,
       
  1547 					tx_ring->buffer_info[k].length,
       
  1548 					PCI_DMA_TODEVICE);
       
  1549 			k++;
       
  1550 			if (k == tx_ring->count)
       
  1551 				k = 0;
       
  1552 		}
       
  1553 		ew32(TDT, k);
       
  1554 		msleep(200);
       
  1555 		time = jiffies; /* set the start time for the receive */
       
  1556 		good_cnt = 0;
       
  1557 		do { /* receive the sent packets */
       
  1558 			pci_dma_sync_single_for_cpu(pdev,
       
  1559 					rx_ring->buffer_info[l].dma, 2048,
       
  1560 					PCI_DMA_FROMDEVICE);
       
  1561 
       
  1562 			ret_val = e1000_check_lbtest_frame(
       
  1563 					rx_ring->buffer_info[l].skb, 1024);
       
  1564 			if (!ret_val)
       
  1565 				good_cnt++;
       
  1566 			l++;
       
  1567 			if (l == rx_ring->count)
       
  1568 				l = 0;
       
  1569 			/*
       
  1570 			 * time + 20 msecs (200 msecs on 2.4) is more than
       
  1571 			 * enough time to complete the receives, if it's
       
  1572 			 * exceeded, break and error off
       
  1573 			 */
       
  1574 		} while ((good_cnt < 64) && !time_after(jiffies, time + 20));
       
  1575 		if (good_cnt != 64) {
       
  1576 			ret_val = 13; /* ret_val is the same as mis-compare */
       
  1577 			break;
       
  1578 		}
       
  1579 		if (jiffies >= (time + 20)) {
       
  1580 			ret_val = 14; /* error code for time out error */
       
  1581 			break;
       
  1582 		}
       
  1583 	} /* end loop count loop */
       
  1584 	return ret_val;
       
  1585 }
       
  1586 
       
  1587 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
       
  1588 {
       
  1589 	/*
       
  1590 	 * PHY loopback cannot be performed if SoL/IDER
       
  1591 	 * sessions are active
       
  1592 	 */
       
  1593 	if (e1000_check_reset_block(&adapter->hw)) {
       
  1594 		e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
       
  1595 		*data = 0;
       
  1596 		goto out;
       
  1597 	}
       
  1598 
       
  1599 	*data = e1000_setup_desc_rings(adapter);
       
  1600 	if (*data)
       
  1601 		goto out;
       
  1602 
       
  1603 	*data = e1000_setup_loopback_test(adapter);
       
  1604 	if (*data)
       
  1605 		goto err_loopback;
       
  1606 
       
  1607 	*data = e1000_run_loopback_test(adapter);
       
  1608 	e1000_loopback_cleanup(adapter);
       
  1609 
       
  1610 err_loopback:
       
  1611 	e1000_free_desc_rings(adapter);
       
  1612 out:
       
  1613 	return *data;
       
  1614 }
       
  1615 
       
  1616 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
       
  1617 {
       
  1618 	struct e1000_hw *hw = &adapter->hw;
       
  1619 
       
  1620 	*data = 0;
       
  1621 	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
       
  1622 		int i = 0;
       
  1623 		hw->mac.serdes_has_link = false;
       
  1624 
       
  1625 		/*
       
  1626 		 * On some blade server designs, link establishment
       
  1627 		 * could take as long as 2-3 minutes
       
  1628 		 */
       
  1629 		do {
       
  1630 			hw->mac.ops.check_for_link(hw);
       
  1631 			if (hw->mac.serdes_has_link)
       
  1632 				return *data;
       
  1633 			msleep(20);
       
  1634 		} while (i++ < 3750);
       
  1635 
       
  1636 		*data = 1;
       
  1637 	} else {
       
  1638 		hw->mac.ops.check_for_link(hw);
       
  1639 		if (hw->mac.autoneg)
       
  1640 			msleep(4000);
       
  1641 
       
  1642 		if (!(er32(STATUS) &
       
  1643 		      E1000_STATUS_LU))
       
  1644 			*data = 1;
       
  1645 	}
       
  1646 	return *data;
       
  1647 }
       
  1648 
       
  1649 static int e1000e_get_sset_count(struct net_device *netdev, int sset)
       
  1650 {
       
  1651 	switch (sset) {
       
  1652 	case ETH_SS_TEST:
       
  1653 		return E1000_TEST_LEN;
       
  1654 	case ETH_SS_STATS:
       
  1655 		return E1000_STATS_LEN;
       
  1656 	default:
       
  1657 		return -EOPNOTSUPP;
       
  1658 	}
       
  1659 }
       
  1660 
       
  1661 static void e1000_diag_test(struct net_device *netdev,
       
  1662 			    struct ethtool_test *eth_test, u64 *data)
       
  1663 {
       
  1664 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1665 	u16 autoneg_advertised;
       
  1666 	u8 forced_speed_duplex;
       
  1667 	u8 autoneg;
       
  1668 	bool if_running = 0;
       
  1669 
       
  1670 	if (adapter->ecdev)
       
  1671 		return;
       
  1672 
       
  1673 	if_running = netif_running(netdev);
       
  1674 
       
  1675 	set_bit(__E1000_TESTING, &adapter->state);
       
  1676 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
       
  1677 		/* Offline tests */
       
  1678 
       
  1679 		/* save speed, duplex, autoneg settings */
       
  1680 		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
       
  1681 		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
       
  1682 		autoneg = adapter->hw.mac.autoneg;
       
  1683 
       
  1684 		e_info("offline testing starting\n");
       
  1685 
       
  1686 		/*
       
  1687 		 * Link test performed before hardware reset so autoneg doesn't
       
  1688 		 * interfere with test result
       
  1689 		 */
       
  1690 		if (e1000_link_test(adapter, &data[4]))
       
  1691 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  1692 
       
  1693 		if (if_running)
       
  1694 			/* indicate we're in test mode */
       
  1695 			dev_close(netdev);
       
  1696 		else
       
  1697 			e1000e_reset(adapter);
       
  1698 
       
  1699 		if (e1000_reg_test(adapter, &data[0]))
       
  1700 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  1701 
       
  1702 		e1000e_reset(adapter);
       
  1703 		if (e1000_eeprom_test(adapter, &data[1]))
       
  1704 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  1705 
       
  1706 		e1000e_reset(adapter);
       
  1707 		if (e1000_intr_test(adapter, &data[2]))
       
  1708 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  1709 
       
  1710 		e1000e_reset(adapter);
       
  1711 		/* make sure the phy is powered up */
       
  1712 		e1000e_power_up_phy(adapter);
       
  1713 		if (e1000_loopback_test(adapter, &data[3]))
       
  1714 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  1715 
       
  1716 		/* restore speed, duplex, autoneg settings */
       
  1717 		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
       
  1718 		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
       
  1719 		adapter->hw.mac.autoneg = autoneg;
       
  1720 
       
  1721 		/* force this routine to wait until autoneg complete/timeout */
       
  1722 		adapter->hw.phy.autoneg_wait_to_complete = 1;
       
  1723 		e1000e_reset(adapter);
       
  1724 		adapter->hw.phy.autoneg_wait_to_complete = 0;
       
  1725 
       
  1726 		clear_bit(__E1000_TESTING, &adapter->state);
       
  1727 		if (if_running)
       
  1728 			dev_open(netdev);
       
  1729 	} else {
       
  1730 		e_info("online testing starting\n");
       
  1731 		/* Online tests */
       
  1732 		if (e1000_link_test(adapter, &data[4]))
       
  1733 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  1734 
       
  1735 		/* Online tests aren't run; pass by default */
       
  1736 		data[0] = 0;
       
  1737 		data[1] = 0;
       
  1738 		data[2] = 0;
       
  1739 		data[3] = 0;
       
  1740 
       
  1741 		clear_bit(__E1000_TESTING, &adapter->state);
       
  1742 	}
       
  1743 	msleep_interruptible(4 * 1000);
       
  1744 }
       
  1745 
       
  1746 static void e1000_get_wol(struct net_device *netdev,
       
  1747 			  struct ethtool_wolinfo *wol)
       
  1748 {
       
  1749 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1750 
       
  1751 	wol->supported = 0;
       
  1752 	wol->wolopts = 0;
       
  1753 
       
  1754 	if (!(adapter->flags & FLAG_HAS_WOL) ||
       
  1755 	    !device_can_wakeup(&adapter->pdev->dev))
       
  1756 		return;
       
  1757 
       
  1758 	wol->supported = WAKE_UCAST | WAKE_MCAST |
       
  1759 	                 WAKE_BCAST | WAKE_MAGIC |
       
  1760 	                 WAKE_PHY | WAKE_ARP;
       
  1761 
       
  1762 	/* apply any specific unsupported masks here */
       
  1763 	if (adapter->flags & FLAG_NO_WAKE_UCAST) {
       
  1764 		wol->supported &= ~WAKE_UCAST;
       
  1765 
       
  1766 		if (adapter->wol & E1000_WUFC_EX)
       
  1767 			e_err("Interface does not support directed (unicast) "
       
  1768 			      "frame wake-up packets\n");
       
  1769 	}
       
  1770 
       
  1771 	if (adapter->wol & E1000_WUFC_EX)
       
  1772 		wol->wolopts |= WAKE_UCAST;
       
  1773 	if (adapter->wol & E1000_WUFC_MC)
       
  1774 		wol->wolopts |= WAKE_MCAST;
       
  1775 	if (adapter->wol & E1000_WUFC_BC)
       
  1776 		wol->wolopts |= WAKE_BCAST;
       
  1777 	if (adapter->wol & E1000_WUFC_MAG)
       
  1778 		wol->wolopts |= WAKE_MAGIC;
       
  1779 	if (adapter->wol & E1000_WUFC_LNKC)
       
  1780 		wol->wolopts |= WAKE_PHY;
       
  1781 	if (adapter->wol & E1000_WUFC_ARP)
       
  1782 		wol->wolopts |= WAKE_ARP;
       
  1783 }
       
  1784 
       
  1785 static int e1000_set_wol(struct net_device *netdev,
       
  1786 			 struct ethtool_wolinfo *wol)
       
  1787 {
       
  1788 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1789 
       
  1790 	if (wol->wolopts & WAKE_MAGICSECURE)
       
  1791 		return -EOPNOTSUPP;
       
  1792 
       
  1793 	if (!(adapter->flags & FLAG_HAS_WOL) ||
       
  1794 	    !device_can_wakeup(&adapter->pdev->dev))
       
  1795 		return wol->wolopts ? -EOPNOTSUPP : 0;
       
  1796 
       
  1797 	/* these settings will always override what we currently have */
       
  1798 	adapter->wol = 0;
       
  1799 
       
  1800 	if (wol->wolopts & WAKE_UCAST)
       
  1801 		adapter->wol |= E1000_WUFC_EX;
       
  1802 	if (wol->wolopts & WAKE_MCAST)
       
  1803 		adapter->wol |= E1000_WUFC_MC;
       
  1804 	if (wol->wolopts & WAKE_BCAST)
       
  1805 		adapter->wol |= E1000_WUFC_BC;
       
  1806 	if (wol->wolopts & WAKE_MAGIC)
       
  1807 		adapter->wol |= E1000_WUFC_MAG;
       
  1808 	if (wol->wolopts & WAKE_PHY)
       
  1809 		adapter->wol |= E1000_WUFC_LNKC;
       
  1810 	if (wol->wolopts & WAKE_ARP)
       
  1811 		adapter->wol |= E1000_WUFC_ARP;
       
  1812 
       
  1813 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
       
  1814 
       
  1815 	return 0;
       
  1816 }
       
  1817 
       
  1818 /* toggle LED 4 times per second = 2 "blinks" per second */
       
  1819 #define E1000_ID_INTERVAL	(HZ/4)
       
  1820 
       
  1821 /* bit defines for adapter->led_status */
       
  1822 #define E1000_LED_ON		0
       
  1823 
       
  1824 static void e1000e_led_blink_task(struct work_struct *work)
       
  1825 {
       
  1826 	struct e1000_adapter *adapter = container_of(work,
       
  1827 	                                struct e1000_adapter, led_blink_task);
       
  1828 
       
  1829 	if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
       
  1830 		adapter->hw.mac.ops.led_off(&adapter->hw);
       
  1831 	else
       
  1832 		adapter->hw.mac.ops.led_on(&adapter->hw);
       
  1833 }
       
  1834 
       
  1835 static void e1000_led_blink_callback(unsigned long data)
       
  1836 {
       
  1837 	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
       
  1838 
       
  1839 	schedule_work(&adapter->led_blink_task);
       
  1840 	mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
       
  1841 }
       
  1842 
       
  1843 static int e1000_phys_id(struct net_device *netdev, u32 data)
       
  1844 {
       
  1845 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1846 	struct e1000_hw *hw = &adapter->hw;
       
  1847 
       
  1848 	if (!data)
       
  1849 		data = INT_MAX;
       
  1850 
       
  1851 	if ((hw->phy.type == e1000_phy_ife) ||
       
  1852 	    (hw->mac.type == e1000_pchlan) ||
       
  1853 	    (hw->mac.type == e1000_82574)) {
       
  1854 		INIT_WORK(&adapter->led_blink_task, e1000e_led_blink_task);
       
  1855 		if (!adapter->blink_timer.function) {
       
  1856 			init_timer(&adapter->blink_timer);
       
  1857 			adapter->blink_timer.function =
       
  1858 				e1000_led_blink_callback;
       
  1859 			adapter->blink_timer.data = (unsigned long) adapter;
       
  1860 		}
       
  1861 		mod_timer(&adapter->blink_timer, jiffies);
       
  1862 		msleep_interruptible(data * 1000);
       
  1863 		del_timer_sync(&adapter->blink_timer);
       
  1864 		if (hw->phy.type == e1000_phy_ife)
       
  1865 			e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
       
  1866 	} else {
       
  1867 		e1000e_blink_led(hw);
       
  1868 		msleep_interruptible(data * 1000);
       
  1869 	}
       
  1870 
       
  1871 	hw->mac.ops.led_off(hw);
       
  1872 	clear_bit(E1000_LED_ON, &adapter->led_status);
       
  1873 	hw->mac.ops.cleanup_led(hw);
       
  1874 
       
  1875 	return 0;
       
  1876 }
       
  1877 
       
  1878 static int e1000_get_coalesce(struct net_device *netdev,
       
  1879 			      struct ethtool_coalesce *ec)
       
  1880 {
       
  1881 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1882 
       
  1883 	if (adapter->itr_setting <= 3)
       
  1884 		ec->rx_coalesce_usecs = adapter->itr_setting;
       
  1885 	else
       
  1886 		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
       
  1887 
       
  1888 	return 0;
       
  1889 }
       
  1890 
       
  1891 static int e1000_set_coalesce(struct net_device *netdev,
       
  1892 			      struct ethtool_coalesce *ec)
       
  1893 {
       
  1894 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1895 	struct e1000_hw *hw = &adapter->hw;
       
  1896 
       
  1897 	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
       
  1898 	    ((ec->rx_coalesce_usecs > 3) &&
       
  1899 	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
       
  1900 	    (ec->rx_coalesce_usecs == 2))
       
  1901 		return -EINVAL;
       
  1902 
       
  1903 	if (ec->rx_coalesce_usecs <= 3) {
       
  1904 		adapter->itr = 20000;
       
  1905 		adapter->itr_setting = ec->rx_coalesce_usecs;
       
  1906 	} else {
       
  1907 		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
       
  1908 		adapter->itr_setting = adapter->itr & ~3;
       
  1909 	}
       
  1910 
       
  1911 	if (adapter->itr_setting != 0)
       
  1912 		ew32(ITR, 1000000000 / (adapter->itr * 256));
       
  1913 	else
       
  1914 		ew32(ITR, 0);
       
  1915 
       
  1916 	return 0;
       
  1917 }
       
  1918 
       
  1919 static int e1000_nway_reset(struct net_device *netdev)
       
  1920 {
       
  1921 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1922 	if (netif_running(netdev))
       
  1923 		e1000e_reinit_locked(adapter);
       
  1924 	return 0;
       
  1925 }
       
  1926 
       
  1927 static void e1000_get_ethtool_stats(struct net_device *netdev,
       
  1928 				    struct ethtool_stats *stats,
       
  1929 				    u64 *data)
       
  1930 {
       
  1931 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1932 	int i;
       
  1933 
       
  1934 	e1000e_update_stats(adapter);
       
  1935 	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
       
  1936 		char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
       
  1937 		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
       
  1938 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
       
  1939 	}
       
  1940 }
       
  1941 
       
  1942 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
       
  1943 			      u8 *data)
       
  1944 {
       
  1945 	u8 *p = data;
       
  1946 	int i;
       
  1947 
       
  1948 	switch (stringset) {
       
  1949 
       
  1950 	case ETH_SS_TEST:
       
  1951 		memcpy(data, *e1000_gstrings_test, sizeof(e1000_gstrings_test));
       
  1952 		break;
       
  1953 	case ETH_SS_STATS:
       
  1954 		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
       
  1955 			memcpy(p, e1000_gstrings_stats[i].stat_string,
       
  1956 			       ETH_GSTRING_LEN);
       
  1957 			p += ETH_GSTRING_LEN;
       
  1958 		}
       
  1959 		break;
       
  1960 	}
       
  1961 }
       
  1962 
       
  1963 static const struct ethtool_ops e1000_ethtool_ops = {
       
  1964 	.get_settings		= e1000_get_settings,
       
  1965 	.set_settings		= e1000_set_settings,
       
  1966 	.get_drvinfo		= e1000_get_drvinfo,
       
  1967 	.get_regs_len		= e1000_get_regs_len,
       
  1968 	.get_regs		= e1000_get_regs,
       
  1969 	.get_wol		= e1000_get_wol,
       
  1970 	.set_wol		= e1000_set_wol,
       
  1971 	.get_msglevel		= e1000_get_msglevel,
       
  1972 	.set_msglevel		= e1000_set_msglevel,
       
  1973 	.nway_reset		= e1000_nway_reset,
       
  1974 	.get_link		= e1000_get_link,
       
  1975 	.get_eeprom_len		= e1000_get_eeprom_len,
       
  1976 	.get_eeprom		= e1000_get_eeprom,
       
  1977 	.set_eeprom		= e1000_set_eeprom,
       
  1978 	.get_ringparam		= e1000_get_ringparam,
       
  1979 	.set_ringparam		= e1000_set_ringparam,
       
  1980 	.get_pauseparam		= e1000_get_pauseparam,
       
  1981 	.set_pauseparam		= e1000_set_pauseparam,
       
  1982 	.get_rx_csum		= e1000_get_rx_csum,
       
  1983 	.set_rx_csum		= e1000_set_rx_csum,
       
  1984 	.get_tx_csum		= e1000_get_tx_csum,
       
  1985 	.set_tx_csum		= e1000_set_tx_csum,
       
  1986 	.get_sg			= ethtool_op_get_sg,
       
  1987 	.set_sg			= ethtool_op_set_sg,
       
  1988 	.get_tso		= ethtool_op_get_tso,
       
  1989 	.set_tso		= e1000_set_tso,
       
  1990 	.self_test		= e1000_diag_test,
       
  1991 	.get_strings		= e1000_get_strings,
       
  1992 	.phys_id		= e1000_phys_id,
       
  1993 	.get_ethtool_stats	= e1000_get_ethtool_stats,
       
  1994 	.get_sset_count		= e1000e_get_sset_count,
       
  1995 	.get_coalesce		= e1000_get_coalesce,
       
  1996 	.set_coalesce		= e1000_set_coalesce,
       
  1997 };
       
  1998 
       
  1999 void e1000e_set_ethtool_ops(struct net_device *netdev)
       
  2000 {
       
  2001 	SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
       
  2002 }