|
1 /******************************************************************************* |
|
2 |
|
3 Intel PRO/1000 Linux driver |
|
4 Copyright(c) 1999 - 2008 Intel Corporation. |
|
5 |
|
6 This program is free software; you can redistribute it and/or modify it |
|
7 under the terms and conditions of the GNU General Public License, |
|
8 version 2, as published by the Free Software Foundation. |
|
9 |
|
10 This program is distributed in the hope it will be useful, but WITHOUT |
|
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
|
13 more details. |
|
14 |
|
15 You should have received a copy of the GNU General Public License along with |
|
16 this program; if not, write to the Free Software Foundation, Inc., |
|
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 |
|
19 The full GNU General Public License is included in this distribution in |
|
20 the file called "COPYING". |
|
21 |
|
22 Contact Information: |
|
23 Linux NICS <linux.nics@intel.com> |
|
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
|
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
|
26 |
|
27 *******************************************************************************/ |
|
28 |
|
29 /* |
|
30 * 80003ES2LAN Gigabit Ethernet Controller (Copper) |
|
31 * 80003ES2LAN Gigabit Ethernet Controller (Serdes) |
|
32 */ |
|
33 |
|
34 #include <linux/netdevice.h> |
|
35 #include <linux/ethtool.h> |
|
36 #include <linux/delay.h> |
|
37 #include <linux/pci.h> |
|
38 |
|
39 #include "e1000.h" |
|
40 |
|
41 #define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL 0x00 |
|
42 #define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL 0x02 |
|
43 #define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL 0x10 |
|
44 #define E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE 0x1F |
|
45 |
|
46 #define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS 0x0008 |
|
47 #define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS 0x0800 |
|
48 #define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING 0x0010 |
|
49 |
|
50 #define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004 |
|
51 #define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT 0x0000 |
|
52 #define E1000_KMRNCTRLSTA_OPMODE_E_IDLE 0x2000 |
|
53 |
|
54 #define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */ |
|
55 #define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN 0x00010000 |
|
56 |
|
57 #define DEFAULT_TIPG_IPGT_1000_80003ES2LAN 0x8 |
|
58 #define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN 0x9 |
|
59 |
|
60 /* GG82563 PHY Specific Status Register (Page 0, Register 16 */ |
|
61 #define GG82563_PSCR_POLARITY_REVERSAL_DISABLE 0x0002 /* 1=Reversal Disab. */ |
|
62 #define GG82563_PSCR_CROSSOVER_MODE_MASK 0x0060 |
|
63 #define GG82563_PSCR_CROSSOVER_MODE_MDI 0x0000 /* 00=Manual MDI */ |
|
64 #define GG82563_PSCR_CROSSOVER_MODE_MDIX 0x0020 /* 01=Manual MDIX */ |
|
65 #define GG82563_PSCR_CROSSOVER_MODE_AUTO 0x0060 /* 11=Auto crossover */ |
|
66 |
|
67 /* PHY Specific Control Register 2 (Page 0, Register 26) */ |
|
68 #define GG82563_PSCR2_REVERSE_AUTO_NEG 0x2000 |
|
69 /* 1=Reverse Auto-Negotiation */ |
|
70 |
|
71 /* MAC Specific Control Register (Page 2, Register 21) */ |
|
72 /* Tx clock speed for Link Down and 1000BASE-T for the following speeds */ |
|
73 #define GG82563_MSCR_TX_CLK_MASK 0x0007 |
|
74 #define GG82563_MSCR_TX_CLK_10MBPS_2_5 0x0004 |
|
75 #define GG82563_MSCR_TX_CLK_100MBPS_25 0x0005 |
|
76 #define GG82563_MSCR_TX_CLK_1000MBPS_25 0x0007 |
|
77 |
|
78 #define GG82563_MSCR_ASSERT_CRS_ON_TX 0x0010 /* 1=Assert */ |
|
79 |
|
80 /* DSP Distance Register (Page 5, Register 26) */ |
|
81 #define GG82563_DSPD_CABLE_LENGTH 0x0007 /* 0 = <50M |
|
82 1 = 50-80M |
|
83 2 = 80-110M |
|
84 3 = 110-140M |
|
85 4 = >140M */ |
|
86 |
|
87 /* Kumeran Mode Control Register (Page 193, Register 16) */ |
|
88 #define GG82563_KMCR_PASS_FALSE_CARRIER 0x0800 |
|
89 |
|
90 /* Max number of times Kumeran read/write should be validated */ |
|
91 #define GG82563_MAX_KMRN_RETRY 0x5 |
|
92 |
|
93 /* Power Management Control Register (Page 193, Register 20) */ |
|
94 #define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE 0x0001 |
|
95 /* 1=Enable SERDES Electrical Idle */ |
|
96 |
|
97 /* In-Band Control Register (Page 194, Register 18) */ |
|
98 #define GG82563_ICR_DIS_PADDING 0x0010 /* Disable Padding */ |
|
99 |
|
100 /* |
|
101 * A table for the GG82563 cable length where the range is defined |
|
102 * with a lower bound at "index" and the upper bound at |
|
103 * "index + 5". |
|
104 */ |
|
105 static const u16 e1000_gg82563_cable_length_table[] = |
|
106 { 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF }; |
|
107 |
|
108 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw); |
|
109 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask); |
|
110 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask); |
|
111 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw); |
|
112 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw); |
|
113 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw); |
|
114 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex); |
|
115 static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw); |
|
116 static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset, |
|
117 u16 *data); |
|
118 static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset, |
|
119 u16 data); |
|
120 |
|
121 /** |
|
122 * e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs. |
|
123 * @hw: pointer to the HW structure |
|
124 * |
|
125 * This is a function pointer entry point called by the api module. |
|
126 **/ |
|
127 static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw) |
|
128 { |
|
129 struct e1000_phy_info *phy = &hw->phy; |
|
130 s32 ret_val; |
|
131 |
|
132 if (hw->phy.media_type != e1000_media_type_copper) { |
|
133 phy->type = e1000_phy_none; |
|
134 return 0; |
|
135 } |
|
136 |
|
137 phy->addr = 1; |
|
138 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; |
|
139 phy->reset_delay_us = 100; |
|
140 phy->type = e1000_phy_gg82563; |
|
141 |
|
142 /* This can only be done after all function pointers are setup. */ |
|
143 ret_val = e1000e_get_phy_id(hw); |
|
144 |
|
145 /* Verify phy id */ |
|
146 if (phy->id != GG82563_E_PHY_ID) |
|
147 return -E1000_ERR_PHY; |
|
148 |
|
149 return ret_val; |
|
150 } |
|
151 |
|
152 /** |
|
153 * e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs. |
|
154 * @hw: pointer to the HW structure |
|
155 * |
|
156 * This is a function pointer entry point called by the api module. |
|
157 **/ |
|
158 static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw) |
|
159 { |
|
160 struct e1000_nvm_info *nvm = &hw->nvm; |
|
161 u32 eecd = er32(EECD); |
|
162 u16 size; |
|
163 |
|
164 nvm->opcode_bits = 8; |
|
165 nvm->delay_usec = 1; |
|
166 switch (nvm->override) { |
|
167 case e1000_nvm_override_spi_large: |
|
168 nvm->page_size = 32; |
|
169 nvm->address_bits = 16; |
|
170 break; |
|
171 case e1000_nvm_override_spi_small: |
|
172 nvm->page_size = 8; |
|
173 nvm->address_bits = 8; |
|
174 break; |
|
175 default: |
|
176 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; |
|
177 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8; |
|
178 break; |
|
179 } |
|
180 |
|
181 nvm->type = e1000_nvm_eeprom_spi; |
|
182 |
|
183 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> |
|
184 E1000_EECD_SIZE_EX_SHIFT); |
|
185 |
|
186 /* |
|
187 * Added to a constant, "size" becomes the left-shift value |
|
188 * for setting word_size. |
|
189 */ |
|
190 size += NVM_WORD_SIZE_BASE_SHIFT; |
|
191 |
|
192 /* EEPROM access above 16k is unsupported */ |
|
193 if (size > 14) |
|
194 size = 14; |
|
195 nvm->word_size = 1 << size; |
|
196 |
|
197 return 0; |
|
198 } |
|
199 |
|
200 /** |
|
201 * e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs. |
|
202 * @hw: pointer to the HW structure |
|
203 * |
|
204 * This is a function pointer entry point called by the api module. |
|
205 **/ |
|
206 static s32 e1000_init_mac_params_80003es2lan(struct e1000_adapter *adapter) |
|
207 { |
|
208 struct e1000_hw *hw = &adapter->hw; |
|
209 struct e1000_mac_info *mac = &hw->mac; |
|
210 struct e1000_mac_operations *func = &mac->ops; |
|
211 |
|
212 /* Set media type */ |
|
213 switch (adapter->pdev->device) { |
|
214 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: |
|
215 hw->phy.media_type = e1000_media_type_internal_serdes; |
|
216 break; |
|
217 default: |
|
218 hw->phy.media_type = e1000_media_type_copper; |
|
219 break; |
|
220 } |
|
221 |
|
222 /* Set mta register count */ |
|
223 mac->mta_reg_count = 128; |
|
224 /* Set rar entry count */ |
|
225 mac->rar_entry_count = E1000_RAR_ENTRIES; |
|
226 /* Set if manageability features are enabled. */ |
|
227 mac->arc_subsystem_valid = (er32(FWSM) & E1000_FWSM_MODE_MASK) ? 1 : 0; |
|
228 |
|
229 /* check for link */ |
|
230 switch (hw->phy.media_type) { |
|
231 case e1000_media_type_copper: |
|
232 func->setup_physical_interface = e1000_setup_copper_link_80003es2lan; |
|
233 func->check_for_link = e1000e_check_for_copper_link; |
|
234 break; |
|
235 case e1000_media_type_fiber: |
|
236 func->setup_physical_interface = e1000e_setup_fiber_serdes_link; |
|
237 func->check_for_link = e1000e_check_for_fiber_link; |
|
238 break; |
|
239 case e1000_media_type_internal_serdes: |
|
240 func->setup_physical_interface = e1000e_setup_fiber_serdes_link; |
|
241 func->check_for_link = e1000e_check_for_serdes_link; |
|
242 break; |
|
243 default: |
|
244 return -E1000_ERR_CONFIG; |
|
245 break; |
|
246 } |
|
247 |
|
248 return 0; |
|
249 } |
|
250 |
|
251 static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter) |
|
252 { |
|
253 struct e1000_hw *hw = &adapter->hw; |
|
254 s32 rc; |
|
255 |
|
256 rc = e1000_init_mac_params_80003es2lan(adapter); |
|
257 if (rc) |
|
258 return rc; |
|
259 |
|
260 rc = e1000_init_nvm_params_80003es2lan(hw); |
|
261 if (rc) |
|
262 return rc; |
|
263 |
|
264 rc = e1000_init_phy_params_80003es2lan(hw); |
|
265 if (rc) |
|
266 return rc; |
|
267 |
|
268 return 0; |
|
269 } |
|
270 |
|
271 /** |
|
272 * e1000_acquire_phy_80003es2lan - Acquire rights to access PHY |
|
273 * @hw: pointer to the HW structure |
|
274 * |
|
275 * A wrapper to acquire access rights to the correct PHY. This is a |
|
276 * function pointer entry point called by the api module. |
|
277 **/ |
|
278 static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw) |
|
279 { |
|
280 u16 mask; |
|
281 |
|
282 mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM; |
|
283 return e1000_acquire_swfw_sync_80003es2lan(hw, mask); |
|
284 } |
|
285 |
|
286 /** |
|
287 * e1000_release_phy_80003es2lan - Release rights to access PHY |
|
288 * @hw: pointer to the HW structure |
|
289 * |
|
290 * A wrapper to release access rights to the correct PHY. This is a |
|
291 * function pointer entry point called by the api module. |
|
292 **/ |
|
293 static void e1000_release_phy_80003es2lan(struct e1000_hw *hw) |
|
294 { |
|
295 u16 mask; |
|
296 |
|
297 mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM; |
|
298 e1000_release_swfw_sync_80003es2lan(hw, mask); |
|
299 } |
|
300 |
|
301 /** |
|
302 * e1000_acquire_mac_csr_80003es2lan - Acquire rights to access Kumeran register |
|
303 * @hw: pointer to the HW structure |
|
304 * |
|
305 * Acquire the semaphore to access the Kumeran interface. |
|
306 * |
|
307 **/ |
|
308 static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw) |
|
309 { |
|
310 u16 mask; |
|
311 |
|
312 mask = E1000_SWFW_CSR_SM; |
|
313 |
|
314 return e1000_acquire_swfw_sync_80003es2lan(hw, mask); |
|
315 } |
|
316 |
|
317 /** |
|
318 * e1000_release_mac_csr_80003es2lan - Release rights to access Kumeran Register |
|
319 * @hw: pointer to the HW structure |
|
320 * |
|
321 * Release the semaphore used to access the Kumeran interface |
|
322 **/ |
|
323 static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw) |
|
324 { |
|
325 u16 mask; |
|
326 |
|
327 mask = E1000_SWFW_CSR_SM; |
|
328 |
|
329 e1000_release_swfw_sync_80003es2lan(hw, mask); |
|
330 } |
|
331 |
|
332 /** |
|
333 * e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM |
|
334 * @hw: pointer to the HW structure |
|
335 * |
|
336 * Acquire the semaphore to access the EEPROM. This is a function |
|
337 * pointer entry point called by the api module. |
|
338 **/ |
|
339 static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw) |
|
340 { |
|
341 s32 ret_val; |
|
342 |
|
343 ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM); |
|
344 if (ret_val) |
|
345 return ret_val; |
|
346 |
|
347 ret_val = e1000e_acquire_nvm(hw); |
|
348 |
|
349 if (ret_val) |
|
350 e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM); |
|
351 |
|
352 return ret_val; |
|
353 } |
|
354 |
|
355 /** |
|
356 * e1000_release_nvm_80003es2lan - Relinquish rights to access NVM |
|
357 * @hw: pointer to the HW structure |
|
358 * |
|
359 * Release the semaphore used to access the EEPROM. This is a |
|
360 * function pointer entry point called by the api module. |
|
361 **/ |
|
362 static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw) |
|
363 { |
|
364 e1000e_release_nvm(hw); |
|
365 e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM); |
|
366 } |
|
367 |
|
368 /** |
|
369 * e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore |
|
370 * @hw: pointer to the HW structure |
|
371 * @mask: specifies which semaphore to acquire |
|
372 * |
|
373 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask |
|
374 * will also specify which port we're acquiring the lock for. |
|
375 **/ |
|
376 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask) |
|
377 { |
|
378 u32 swfw_sync; |
|
379 u32 swmask = mask; |
|
380 u32 fwmask = mask << 16; |
|
381 s32 i = 0; |
|
382 s32 timeout = 50; |
|
383 |
|
384 while (i < timeout) { |
|
385 if (e1000e_get_hw_semaphore(hw)) |
|
386 return -E1000_ERR_SWFW_SYNC; |
|
387 |
|
388 swfw_sync = er32(SW_FW_SYNC); |
|
389 if (!(swfw_sync & (fwmask | swmask))) |
|
390 break; |
|
391 |
|
392 /* |
|
393 * Firmware currently using resource (fwmask) |
|
394 * or other software thread using resource (swmask) |
|
395 */ |
|
396 e1000e_put_hw_semaphore(hw); |
|
397 mdelay(5); |
|
398 i++; |
|
399 } |
|
400 |
|
401 if (i == timeout) { |
|
402 hw_dbg(hw, |
|
403 "Driver can't access resource, SW_FW_SYNC timeout.\n"); |
|
404 return -E1000_ERR_SWFW_SYNC; |
|
405 } |
|
406 |
|
407 swfw_sync |= swmask; |
|
408 ew32(SW_FW_SYNC, swfw_sync); |
|
409 |
|
410 e1000e_put_hw_semaphore(hw); |
|
411 |
|
412 return 0; |
|
413 } |
|
414 |
|
415 /** |
|
416 * e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore |
|
417 * @hw: pointer to the HW structure |
|
418 * @mask: specifies which semaphore to acquire |
|
419 * |
|
420 * Release the SW/FW semaphore used to access the PHY or NVM. The mask |
|
421 * will also specify which port we're releasing the lock for. |
|
422 **/ |
|
423 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask) |
|
424 { |
|
425 u32 swfw_sync; |
|
426 |
|
427 while (e1000e_get_hw_semaphore(hw) != 0); |
|
428 /* Empty */ |
|
429 |
|
430 swfw_sync = er32(SW_FW_SYNC); |
|
431 swfw_sync &= ~mask; |
|
432 ew32(SW_FW_SYNC, swfw_sync); |
|
433 |
|
434 e1000e_put_hw_semaphore(hw); |
|
435 } |
|
436 |
|
437 /** |
|
438 * e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register |
|
439 * @hw: pointer to the HW structure |
|
440 * @offset: offset of the register to read |
|
441 * @data: pointer to the data returned from the operation |
|
442 * |
|
443 * Read the GG82563 PHY register. This is a function pointer entry |
|
444 * point called by the api module. |
|
445 **/ |
|
446 static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, |
|
447 u32 offset, u16 *data) |
|
448 { |
|
449 s32 ret_val; |
|
450 u32 page_select; |
|
451 u16 temp; |
|
452 |
|
453 ret_val = e1000_acquire_phy_80003es2lan(hw); |
|
454 if (ret_val) |
|
455 return ret_val; |
|
456 |
|
457 /* Select Configuration Page */ |
|
458 if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) { |
|
459 page_select = GG82563_PHY_PAGE_SELECT; |
|
460 } else { |
|
461 /* |
|
462 * Use Alternative Page Select register to access |
|
463 * registers 30 and 31 |
|
464 */ |
|
465 page_select = GG82563_PHY_PAGE_SELECT_ALT; |
|
466 } |
|
467 |
|
468 temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT); |
|
469 ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp); |
|
470 if (ret_val) { |
|
471 e1000_release_phy_80003es2lan(hw); |
|
472 return ret_val; |
|
473 } |
|
474 |
|
475 /* |
|
476 * The "ready" bit in the MDIC register may be incorrectly set |
|
477 * before the device has completed the "Page Select" MDI |
|
478 * transaction. So we wait 200us after each MDI command... |
|
479 */ |
|
480 udelay(200); |
|
481 |
|
482 /* ...and verify the command was successful. */ |
|
483 ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp); |
|
484 |
|
485 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) { |
|
486 ret_val = -E1000_ERR_PHY; |
|
487 e1000_release_phy_80003es2lan(hw); |
|
488 return ret_val; |
|
489 } |
|
490 |
|
491 udelay(200); |
|
492 |
|
493 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, |
|
494 data); |
|
495 |
|
496 udelay(200); |
|
497 e1000_release_phy_80003es2lan(hw); |
|
498 |
|
499 return ret_val; |
|
500 } |
|
501 |
|
502 /** |
|
503 * e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register |
|
504 * @hw: pointer to the HW structure |
|
505 * @offset: offset of the register to read |
|
506 * @data: value to write to the register |
|
507 * |
|
508 * Write to the GG82563 PHY register. This is a function pointer entry |
|
509 * point called by the api module. |
|
510 **/ |
|
511 static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, |
|
512 u32 offset, u16 data) |
|
513 { |
|
514 s32 ret_val; |
|
515 u32 page_select; |
|
516 u16 temp; |
|
517 |
|
518 ret_val = e1000_acquire_phy_80003es2lan(hw); |
|
519 if (ret_val) |
|
520 return ret_val; |
|
521 |
|
522 /* Select Configuration Page */ |
|
523 if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) { |
|
524 page_select = GG82563_PHY_PAGE_SELECT; |
|
525 } else { |
|
526 /* |
|
527 * Use Alternative Page Select register to access |
|
528 * registers 30 and 31 |
|
529 */ |
|
530 page_select = GG82563_PHY_PAGE_SELECT_ALT; |
|
531 } |
|
532 |
|
533 temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT); |
|
534 ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp); |
|
535 if (ret_val) { |
|
536 e1000_release_phy_80003es2lan(hw); |
|
537 return ret_val; |
|
538 } |
|
539 |
|
540 |
|
541 /* |
|
542 * The "ready" bit in the MDIC register may be incorrectly set |
|
543 * before the device has completed the "Page Select" MDI |
|
544 * transaction. So we wait 200us after each MDI command... |
|
545 */ |
|
546 udelay(200); |
|
547 |
|
548 /* ...and verify the command was successful. */ |
|
549 ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp); |
|
550 |
|
551 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) { |
|
552 e1000_release_phy_80003es2lan(hw); |
|
553 return -E1000_ERR_PHY; |
|
554 } |
|
555 |
|
556 udelay(200); |
|
557 |
|
558 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, |
|
559 data); |
|
560 |
|
561 udelay(200); |
|
562 e1000_release_phy_80003es2lan(hw); |
|
563 |
|
564 return ret_val; |
|
565 } |
|
566 |
|
567 /** |
|
568 * e1000_write_nvm_80003es2lan - Write to ESB2 NVM |
|
569 * @hw: pointer to the HW structure |
|
570 * @offset: offset of the register to read |
|
571 * @words: number of words to write |
|
572 * @data: buffer of data to write to the NVM |
|
573 * |
|
574 * Write "words" of data to the ESB2 NVM. This is a function |
|
575 * pointer entry point called by the api module. |
|
576 **/ |
|
577 static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset, |
|
578 u16 words, u16 *data) |
|
579 { |
|
580 return e1000e_write_nvm_spi(hw, offset, words, data); |
|
581 } |
|
582 |
|
583 /** |
|
584 * e1000_get_cfg_done_80003es2lan - Wait for configuration to complete |
|
585 * @hw: pointer to the HW structure |
|
586 * |
|
587 * Wait a specific amount of time for manageability processes to complete. |
|
588 * This is a function pointer entry point called by the phy module. |
|
589 **/ |
|
590 static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw) |
|
591 { |
|
592 s32 timeout = PHY_CFG_TIMEOUT; |
|
593 u32 mask = E1000_NVM_CFG_DONE_PORT_0; |
|
594 |
|
595 if (hw->bus.func == 1) |
|
596 mask = E1000_NVM_CFG_DONE_PORT_1; |
|
597 |
|
598 while (timeout) { |
|
599 if (er32(EEMNGCTL) & mask) |
|
600 break; |
|
601 msleep(1); |
|
602 timeout--; |
|
603 } |
|
604 if (!timeout) { |
|
605 hw_dbg(hw, "MNG configuration cycle has not completed.\n"); |
|
606 return -E1000_ERR_RESET; |
|
607 } |
|
608 |
|
609 return 0; |
|
610 } |
|
611 |
|
612 /** |
|
613 * e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex |
|
614 * @hw: pointer to the HW structure |
|
615 * |
|
616 * Force the speed and duplex settings onto the PHY. This is a |
|
617 * function pointer entry point called by the phy module. |
|
618 **/ |
|
619 static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw) |
|
620 { |
|
621 s32 ret_val; |
|
622 u16 phy_data; |
|
623 bool link; |
|
624 |
|
625 /* |
|
626 * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI |
|
627 * forced whenever speed and duplex are forced. |
|
628 */ |
|
629 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
|
630 if (ret_val) |
|
631 return ret_val; |
|
632 |
|
633 phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO; |
|
634 ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data); |
|
635 if (ret_val) |
|
636 return ret_val; |
|
637 |
|
638 hw_dbg(hw, "GG82563 PSCR: %X\n", phy_data); |
|
639 |
|
640 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data); |
|
641 if (ret_val) |
|
642 return ret_val; |
|
643 |
|
644 e1000e_phy_force_speed_duplex_setup(hw, &phy_data); |
|
645 |
|
646 /* Reset the phy to commit changes. */ |
|
647 phy_data |= MII_CR_RESET; |
|
648 |
|
649 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data); |
|
650 if (ret_val) |
|
651 return ret_val; |
|
652 |
|
653 udelay(1); |
|
654 |
|
655 if (hw->phy.autoneg_wait_to_complete) { |
|
656 hw_dbg(hw, "Waiting for forced speed/duplex link " |
|
657 "on GG82563 phy.\n"); |
|
658 |
|
659 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, |
|
660 100000, &link); |
|
661 if (ret_val) |
|
662 return ret_val; |
|
663 |
|
664 if (!link) { |
|
665 /* |
|
666 * We didn't get link. |
|
667 * Reset the DSP and cross our fingers. |
|
668 */ |
|
669 ret_val = e1000e_phy_reset_dsp(hw); |
|
670 if (ret_val) |
|
671 return ret_val; |
|
672 } |
|
673 |
|
674 /* Try once more */ |
|
675 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, |
|
676 100000, &link); |
|
677 if (ret_val) |
|
678 return ret_val; |
|
679 } |
|
680 |
|
681 ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data); |
|
682 if (ret_val) |
|
683 return ret_val; |
|
684 |
|
685 /* |
|
686 * Resetting the phy means we need to verify the TX_CLK corresponds |
|
687 * to the link speed. 10Mbps -> 2.5MHz, else 25MHz. |
|
688 */ |
|
689 phy_data &= ~GG82563_MSCR_TX_CLK_MASK; |
|
690 if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED) |
|
691 phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5; |
|
692 else |
|
693 phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25; |
|
694 |
|
695 /* |
|
696 * In addition, we must re-enable CRS on Tx for both half and full |
|
697 * duplex. |
|
698 */ |
|
699 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX; |
|
700 ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data); |
|
701 |
|
702 return ret_val; |
|
703 } |
|
704 |
|
705 /** |
|
706 * e1000_get_cable_length_80003es2lan - Set approximate cable length |
|
707 * @hw: pointer to the HW structure |
|
708 * |
|
709 * Find the approximate cable length as measured by the GG82563 PHY. |
|
710 * This is a function pointer entry point called by the phy module. |
|
711 **/ |
|
712 static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw) |
|
713 { |
|
714 struct e1000_phy_info *phy = &hw->phy; |
|
715 s32 ret_val; |
|
716 u16 phy_data; |
|
717 u16 index; |
|
718 |
|
719 ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data); |
|
720 if (ret_val) |
|
721 return ret_val; |
|
722 |
|
723 index = phy_data & GG82563_DSPD_CABLE_LENGTH; |
|
724 phy->min_cable_length = e1000_gg82563_cable_length_table[index]; |
|
725 phy->max_cable_length = e1000_gg82563_cable_length_table[index+5]; |
|
726 |
|
727 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; |
|
728 |
|
729 return 0; |
|
730 } |
|
731 |
|
732 /** |
|
733 * e1000_get_link_up_info_80003es2lan - Report speed and duplex |
|
734 * @hw: pointer to the HW structure |
|
735 * @speed: pointer to speed buffer |
|
736 * @duplex: pointer to duplex buffer |
|
737 * |
|
738 * Retrieve the current speed and duplex configuration. |
|
739 * This is a function pointer entry point called by the api module. |
|
740 **/ |
|
741 static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed, |
|
742 u16 *duplex) |
|
743 { |
|
744 s32 ret_val; |
|
745 |
|
746 if (hw->phy.media_type == e1000_media_type_copper) { |
|
747 ret_val = e1000e_get_speed_and_duplex_copper(hw, |
|
748 speed, |
|
749 duplex); |
|
750 hw->phy.ops.cfg_on_link_up(hw); |
|
751 } else { |
|
752 ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw, |
|
753 speed, |
|
754 duplex); |
|
755 } |
|
756 |
|
757 return ret_val; |
|
758 } |
|
759 |
|
760 /** |
|
761 * e1000_reset_hw_80003es2lan - Reset the ESB2 controller |
|
762 * @hw: pointer to the HW structure |
|
763 * |
|
764 * Perform a global reset to the ESB2 controller. |
|
765 * This is a function pointer entry point called by the api module. |
|
766 **/ |
|
767 static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw) |
|
768 { |
|
769 u32 ctrl; |
|
770 u32 icr; |
|
771 s32 ret_val; |
|
772 |
|
773 /* |
|
774 * Prevent the PCI-E bus from sticking if there is no TLP connection |
|
775 * on the last TLP read/write transaction when MAC is reset. |
|
776 */ |
|
777 ret_val = e1000e_disable_pcie_master(hw); |
|
778 if (ret_val) |
|
779 hw_dbg(hw, "PCI-E Master disable polling has failed.\n"); |
|
780 |
|
781 hw_dbg(hw, "Masking off all interrupts\n"); |
|
782 ew32(IMC, 0xffffffff); |
|
783 |
|
784 ew32(RCTL, 0); |
|
785 ew32(TCTL, E1000_TCTL_PSP); |
|
786 e1e_flush(); |
|
787 |
|
788 msleep(10); |
|
789 |
|
790 ctrl = er32(CTRL); |
|
791 |
|
792 ret_val = e1000_acquire_phy_80003es2lan(hw); |
|
793 hw_dbg(hw, "Issuing a global reset to MAC\n"); |
|
794 ew32(CTRL, ctrl | E1000_CTRL_RST); |
|
795 e1000_release_phy_80003es2lan(hw); |
|
796 |
|
797 ret_val = e1000e_get_auto_rd_done(hw); |
|
798 if (ret_val) |
|
799 /* We don't want to continue accessing MAC registers. */ |
|
800 return ret_val; |
|
801 |
|
802 /* Clear any pending interrupt events. */ |
|
803 ew32(IMC, 0xffffffff); |
|
804 icr = er32(ICR); |
|
805 |
|
806 return 0; |
|
807 } |
|
808 |
|
809 /** |
|
810 * e1000_init_hw_80003es2lan - Initialize the ESB2 controller |
|
811 * @hw: pointer to the HW structure |
|
812 * |
|
813 * Initialize the hw bits, LED, VFTA, MTA, link and hw counters. |
|
814 * This is a function pointer entry point called by the api module. |
|
815 **/ |
|
816 static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw) |
|
817 { |
|
818 struct e1000_mac_info *mac = &hw->mac; |
|
819 u32 reg_data; |
|
820 s32 ret_val; |
|
821 u16 i; |
|
822 |
|
823 e1000_initialize_hw_bits_80003es2lan(hw); |
|
824 |
|
825 /* Initialize identification LED */ |
|
826 ret_val = e1000e_id_led_init(hw); |
|
827 if (ret_val) { |
|
828 hw_dbg(hw, "Error initializing identification LED\n"); |
|
829 return ret_val; |
|
830 } |
|
831 |
|
832 /* Disabling VLAN filtering */ |
|
833 hw_dbg(hw, "Initializing the IEEE VLAN\n"); |
|
834 e1000e_clear_vfta(hw); |
|
835 |
|
836 /* Setup the receive address. */ |
|
837 e1000e_init_rx_addrs(hw, mac->rar_entry_count); |
|
838 |
|
839 /* Zero out the Multicast HASH table */ |
|
840 hw_dbg(hw, "Zeroing the MTA\n"); |
|
841 for (i = 0; i < mac->mta_reg_count; i++) |
|
842 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); |
|
843 |
|
844 /* Setup link and flow control */ |
|
845 ret_val = e1000e_setup_link(hw); |
|
846 |
|
847 /* Set the transmit descriptor write-back policy */ |
|
848 reg_data = er32(TXDCTL(0)); |
|
849 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) | |
|
850 E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC; |
|
851 ew32(TXDCTL(0), reg_data); |
|
852 |
|
853 /* ...for both queues. */ |
|
854 reg_data = er32(TXDCTL(1)); |
|
855 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) | |
|
856 E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC; |
|
857 ew32(TXDCTL(1), reg_data); |
|
858 |
|
859 /* Enable retransmit on late collisions */ |
|
860 reg_data = er32(TCTL); |
|
861 reg_data |= E1000_TCTL_RTLC; |
|
862 ew32(TCTL, reg_data); |
|
863 |
|
864 /* Configure Gigabit Carry Extend Padding */ |
|
865 reg_data = er32(TCTL_EXT); |
|
866 reg_data &= ~E1000_TCTL_EXT_GCEX_MASK; |
|
867 reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN; |
|
868 ew32(TCTL_EXT, reg_data); |
|
869 |
|
870 /* Configure Transmit Inter-Packet Gap */ |
|
871 reg_data = er32(TIPG); |
|
872 reg_data &= ~E1000_TIPG_IPGT_MASK; |
|
873 reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN; |
|
874 ew32(TIPG, reg_data); |
|
875 |
|
876 reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001); |
|
877 reg_data &= ~0x00100000; |
|
878 E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data); |
|
879 |
|
880 /* |
|
881 * Clear all of the statistics registers (clear on read). It is |
|
882 * important that we do this after we have tried to establish link |
|
883 * because the symbol error count will increment wildly if there |
|
884 * is no link. |
|
885 */ |
|
886 e1000_clear_hw_cntrs_80003es2lan(hw); |
|
887 |
|
888 return ret_val; |
|
889 } |
|
890 |
|
891 /** |
|
892 * e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2 |
|
893 * @hw: pointer to the HW structure |
|
894 * |
|
895 * Initializes required hardware-dependent bits needed for normal operation. |
|
896 **/ |
|
897 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw) |
|
898 { |
|
899 u32 reg; |
|
900 |
|
901 /* Transmit Descriptor Control 0 */ |
|
902 reg = er32(TXDCTL(0)); |
|
903 reg |= (1 << 22); |
|
904 ew32(TXDCTL(0), reg); |
|
905 |
|
906 /* Transmit Descriptor Control 1 */ |
|
907 reg = er32(TXDCTL(1)); |
|
908 reg |= (1 << 22); |
|
909 ew32(TXDCTL(1), reg); |
|
910 |
|
911 /* Transmit Arbitration Control 0 */ |
|
912 reg = er32(TARC(0)); |
|
913 reg &= ~(0xF << 27); /* 30:27 */ |
|
914 if (hw->phy.media_type != e1000_media_type_copper) |
|
915 reg &= ~(1 << 20); |
|
916 ew32(TARC(0), reg); |
|
917 |
|
918 /* Transmit Arbitration Control 1 */ |
|
919 reg = er32(TARC(1)); |
|
920 if (er32(TCTL) & E1000_TCTL_MULR) |
|
921 reg &= ~(1 << 28); |
|
922 else |
|
923 reg |= (1 << 28); |
|
924 ew32(TARC(1), reg); |
|
925 } |
|
926 |
|
927 /** |
|
928 * e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link |
|
929 * @hw: pointer to the HW structure |
|
930 * |
|
931 * Setup some GG82563 PHY registers for obtaining link |
|
932 **/ |
|
933 static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw) |
|
934 { |
|
935 struct e1000_phy_info *phy = &hw->phy; |
|
936 s32 ret_val; |
|
937 u32 ctrl_ext; |
|
938 u16 data; |
|
939 |
|
940 ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data); |
|
941 if (ret_val) |
|
942 return ret_val; |
|
943 |
|
944 data |= GG82563_MSCR_ASSERT_CRS_ON_TX; |
|
945 /* Use 25MHz for both link down and 1000Base-T for Tx clock. */ |
|
946 data |= GG82563_MSCR_TX_CLK_1000MBPS_25; |
|
947 |
|
948 ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data); |
|
949 if (ret_val) |
|
950 return ret_val; |
|
951 |
|
952 /* |
|
953 * Options: |
|
954 * MDI/MDI-X = 0 (default) |
|
955 * 0 - Auto for all speeds |
|
956 * 1 - MDI mode |
|
957 * 2 - MDI-X mode |
|
958 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) |
|
959 */ |
|
960 ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data); |
|
961 if (ret_val) |
|
962 return ret_val; |
|
963 |
|
964 data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK; |
|
965 |
|
966 switch (phy->mdix) { |
|
967 case 1: |
|
968 data |= GG82563_PSCR_CROSSOVER_MODE_MDI; |
|
969 break; |
|
970 case 2: |
|
971 data |= GG82563_PSCR_CROSSOVER_MODE_MDIX; |
|
972 break; |
|
973 case 0: |
|
974 default: |
|
975 data |= GG82563_PSCR_CROSSOVER_MODE_AUTO; |
|
976 break; |
|
977 } |
|
978 |
|
979 /* |
|
980 * Options: |
|
981 * disable_polarity_correction = 0 (default) |
|
982 * Automatic Correction for Reversed Cable Polarity |
|
983 * 0 - Disabled |
|
984 * 1 - Enabled |
|
985 */ |
|
986 data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE; |
|
987 if (phy->disable_polarity_correction) |
|
988 data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE; |
|
989 |
|
990 ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data); |
|
991 if (ret_val) |
|
992 return ret_val; |
|
993 |
|
994 /* SW Reset the PHY so all changes take effect */ |
|
995 ret_val = e1000e_commit_phy(hw); |
|
996 if (ret_val) { |
|
997 hw_dbg(hw, "Error Resetting the PHY\n"); |
|
998 return ret_val; |
|
999 } |
|
1000 |
|
1001 /* Bypass Rx and Tx FIFO's */ |
|
1002 ret_val = e1000_write_kmrn_reg_80003es2lan(hw, |
|
1003 E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL, |
|
1004 E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS | |
|
1005 E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS); |
|
1006 if (ret_val) |
|
1007 return ret_val; |
|
1008 |
|
1009 ret_val = e1000_read_kmrn_reg_80003es2lan(hw, |
|
1010 E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE, |
|
1011 &data); |
|
1012 if (ret_val) |
|
1013 return ret_val; |
|
1014 data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE; |
|
1015 ret_val = e1000_write_kmrn_reg_80003es2lan(hw, |
|
1016 E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE, |
|
1017 data); |
|
1018 if (ret_val) |
|
1019 return ret_val; |
|
1020 |
|
1021 ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data); |
|
1022 if (ret_val) |
|
1023 return ret_val; |
|
1024 |
|
1025 data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG; |
|
1026 ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data); |
|
1027 if (ret_val) |
|
1028 return ret_val; |
|
1029 |
|
1030 ctrl_ext = er32(CTRL_EXT); |
|
1031 ctrl_ext &= ~(E1000_CTRL_EXT_LINK_MODE_MASK); |
|
1032 ew32(CTRL_EXT, ctrl_ext); |
|
1033 |
|
1034 ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data); |
|
1035 if (ret_val) |
|
1036 return ret_val; |
|
1037 |
|
1038 /* |
|
1039 * Do not init these registers when the HW is in IAMT mode, since the |
|
1040 * firmware will have already initialized them. We only initialize |
|
1041 * them if the HW is not in IAMT mode. |
|
1042 */ |
|
1043 if (!e1000e_check_mng_mode(hw)) { |
|
1044 /* Enable Electrical Idle on the PHY */ |
|
1045 data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE; |
|
1046 ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data); |
|
1047 if (ret_val) |
|
1048 return ret_val; |
|
1049 |
|
1050 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data); |
|
1051 if (ret_val) |
|
1052 return ret_val; |
|
1053 |
|
1054 data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; |
|
1055 ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data); |
|
1056 if (ret_val) |
|
1057 return ret_val; |
|
1058 } |
|
1059 |
|
1060 /* |
|
1061 * Workaround: Disable padding in Kumeran interface in the MAC |
|
1062 * and in the PHY to avoid CRC errors. |
|
1063 */ |
|
1064 ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data); |
|
1065 if (ret_val) |
|
1066 return ret_val; |
|
1067 |
|
1068 data |= GG82563_ICR_DIS_PADDING; |
|
1069 ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data); |
|
1070 if (ret_val) |
|
1071 return ret_val; |
|
1072 |
|
1073 return 0; |
|
1074 } |
|
1075 |
|
1076 /** |
|
1077 * e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2 |
|
1078 * @hw: pointer to the HW structure |
|
1079 * |
|
1080 * Essentially a wrapper for setting up all things "copper" related. |
|
1081 * This is a function pointer entry point called by the mac module. |
|
1082 **/ |
|
1083 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw) |
|
1084 { |
|
1085 u32 ctrl; |
|
1086 s32 ret_val; |
|
1087 u16 reg_data; |
|
1088 |
|
1089 ctrl = er32(CTRL); |
|
1090 ctrl |= E1000_CTRL_SLU; |
|
1091 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
|
1092 ew32(CTRL, ctrl); |
|
1093 |
|
1094 /* |
|
1095 * Set the mac to wait the maximum time between each |
|
1096 * iteration and increase the max iterations when |
|
1097 * polling the phy; this fixes erroneous timeouts at 10Mbps. |
|
1098 */ |
|
1099 ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4), |
|
1100 0xFFFF); |
|
1101 if (ret_val) |
|
1102 return ret_val; |
|
1103 ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9), |
|
1104 ®_data); |
|
1105 if (ret_val) |
|
1106 return ret_val; |
|
1107 reg_data |= 0x3F; |
|
1108 ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9), |
|
1109 reg_data); |
|
1110 if (ret_val) |
|
1111 return ret_val; |
|
1112 ret_val = e1000_read_kmrn_reg_80003es2lan(hw, |
|
1113 E1000_KMRNCTRLSTA_OFFSET_INB_CTRL, |
|
1114 ®_data); |
|
1115 if (ret_val) |
|
1116 return ret_val; |
|
1117 reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING; |
|
1118 ret_val = e1000_write_kmrn_reg_80003es2lan(hw, |
|
1119 E1000_KMRNCTRLSTA_OFFSET_INB_CTRL, |
|
1120 reg_data); |
|
1121 if (ret_val) |
|
1122 return ret_val; |
|
1123 |
|
1124 ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw); |
|
1125 if (ret_val) |
|
1126 return ret_val; |
|
1127 |
|
1128 ret_val = e1000e_setup_copper_link(hw); |
|
1129 |
|
1130 return 0; |
|
1131 } |
|
1132 |
|
1133 /** |
|
1134 * e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up |
|
1135 * @hw: pointer to the HW structure |
|
1136 * @duplex: current duplex setting |
|
1137 * |
|
1138 * Configure the KMRN interface by applying last minute quirks for |
|
1139 * 10/100 operation. |
|
1140 **/ |
|
1141 static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw) |
|
1142 { |
|
1143 s32 ret_val = 0; |
|
1144 u16 speed; |
|
1145 u16 duplex; |
|
1146 |
|
1147 if (hw->phy.media_type == e1000_media_type_copper) { |
|
1148 ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed, |
|
1149 &duplex); |
|
1150 if (ret_val) |
|
1151 return ret_val; |
|
1152 |
|
1153 if (speed == SPEED_1000) |
|
1154 ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw); |
|
1155 else |
|
1156 ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex); |
|
1157 } |
|
1158 |
|
1159 return ret_val; |
|
1160 } |
|
1161 |
|
1162 /** |
|
1163 * e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation |
|
1164 * @hw: pointer to the HW structure |
|
1165 * @duplex: current duplex setting |
|
1166 * |
|
1167 * Configure the KMRN interface by applying last minute quirks for |
|
1168 * 10/100 operation. |
|
1169 **/ |
|
1170 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex) |
|
1171 { |
|
1172 s32 ret_val; |
|
1173 u32 tipg; |
|
1174 u32 i = 0; |
|
1175 u16 reg_data, reg_data2; |
|
1176 |
|
1177 reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT; |
|
1178 ret_val = e1000_write_kmrn_reg_80003es2lan(hw, |
|
1179 E1000_KMRNCTRLSTA_OFFSET_HD_CTRL, |
|
1180 reg_data); |
|
1181 if (ret_val) |
|
1182 return ret_val; |
|
1183 |
|
1184 /* Configure Transmit Inter-Packet Gap */ |
|
1185 tipg = er32(TIPG); |
|
1186 tipg &= ~E1000_TIPG_IPGT_MASK; |
|
1187 tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN; |
|
1188 ew32(TIPG, tipg); |
|
1189 |
|
1190 do { |
|
1191 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); |
|
1192 if (ret_val) |
|
1193 return ret_val; |
|
1194 |
|
1195 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data2); |
|
1196 if (ret_val) |
|
1197 return ret_val; |
|
1198 i++; |
|
1199 } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY)); |
|
1200 |
|
1201 if (duplex == HALF_DUPLEX) |
|
1202 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER; |
|
1203 else |
|
1204 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; |
|
1205 |
|
1206 ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); |
|
1207 |
|
1208 return 0; |
|
1209 } |
|
1210 |
|
1211 /** |
|
1212 * e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation |
|
1213 * @hw: pointer to the HW structure |
|
1214 * |
|
1215 * Configure the KMRN interface by applying last minute quirks for |
|
1216 * gigabit operation. |
|
1217 **/ |
|
1218 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw) |
|
1219 { |
|
1220 s32 ret_val; |
|
1221 u16 reg_data, reg_data2; |
|
1222 u32 tipg; |
|
1223 u32 i = 0; |
|
1224 |
|
1225 reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT; |
|
1226 ret_val = e1000_write_kmrn_reg_80003es2lan(hw, |
|
1227 E1000_KMRNCTRLSTA_OFFSET_HD_CTRL, |
|
1228 reg_data); |
|
1229 if (ret_val) |
|
1230 return ret_val; |
|
1231 |
|
1232 /* Configure Transmit Inter-Packet Gap */ |
|
1233 tipg = er32(TIPG); |
|
1234 tipg &= ~E1000_TIPG_IPGT_MASK; |
|
1235 tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN; |
|
1236 ew32(TIPG, tipg); |
|
1237 |
|
1238 do { |
|
1239 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); |
|
1240 if (ret_val) |
|
1241 return ret_val; |
|
1242 |
|
1243 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data2); |
|
1244 if (ret_val) |
|
1245 return ret_val; |
|
1246 i++; |
|
1247 } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY)); |
|
1248 |
|
1249 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; |
|
1250 ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); |
|
1251 |
|
1252 return ret_val; |
|
1253 } |
|
1254 |
|
1255 /** |
|
1256 * e1000_read_kmrn_reg_80003es2lan - Read kumeran register |
|
1257 * @hw: pointer to the HW structure |
|
1258 * @offset: register offset to be read |
|
1259 * @data: pointer to the read data |
|
1260 * |
|
1261 * Acquire semaphore, then read the PHY register at offset |
|
1262 * using the kumeran interface. The information retrieved is stored in data. |
|
1263 * Release the semaphore before exiting. |
|
1264 **/ |
|
1265 static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset, |
|
1266 u16 *data) |
|
1267 { |
|
1268 u32 kmrnctrlsta; |
|
1269 s32 ret_val = 0; |
|
1270 |
|
1271 ret_val = e1000_acquire_mac_csr_80003es2lan(hw); |
|
1272 if (ret_val) |
|
1273 return ret_val; |
|
1274 |
|
1275 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & |
|
1276 E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN; |
|
1277 ew32(KMRNCTRLSTA, kmrnctrlsta); |
|
1278 |
|
1279 udelay(2); |
|
1280 |
|
1281 kmrnctrlsta = er32(KMRNCTRLSTA); |
|
1282 *data = (u16)kmrnctrlsta; |
|
1283 |
|
1284 e1000_release_mac_csr_80003es2lan(hw); |
|
1285 |
|
1286 return ret_val; |
|
1287 } |
|
1288 |
|
1289 /** |
|
1290 * e1000_write_kmrn_reg_80003es2lan - Write kumeran register |
|
1291 * @hw: pointer to the HW structure |
|
1292 * @offset: register offset to write to |
|
1293 * @data: data to write at register offset |
|
1294 * |
|
1295 * Acquire semaphore, then write the data to PHY register |
|
1296 * at the offset using the kumeran interface. Release semaphore |
|
1297 * before exiting. |
|
1298 **/ |
|
1299 static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset, |
|
1300 u16 data) |
|
1301 { |
|
1302 u32 kmrnctrlsta; |
|
1303 s32 ret_val = 0; |
|
1304 |
|
1305 ret_val = e1000_acquire_mac_csr_80003es2lan(hw); |
|
1306 if (ret_val) |
|
1307 return ret_val; |
|
1308 |
|
1309 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & |
|
1310 E1000_KMRNCTRLSTA_OFFSET) | data; |
|
1311 ew32(KMRNCTRLSTA, kmrnctrlsta); |
|
1312 |
|
1313 udelay(2); |
|
1314 |
|
1315 e1000_release_mac_csr_80003es2lan(hw); |
|
1316 |
|
1317 return ret_val; |
|
1318 } |
|
1319 |
|
1320 /** |
|
1321 * e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters |
|
1322 * @hw: pointer to the HW structure |
|
1323 * |
|
1324 * Clears the hardware counters by reading the counter registers. |
|
1325 **/ |
|
1326 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw) |
|
1327 { |
|
1328 u32 temp; |
|
1329 |
|
1330 e1000e_clear_hw_cntrs_base(hw); |
|
1331 |
|
1332 temp = er32(PRC64); |
|
1333 temp = er32(PRC127); |
|
1334 temp = er32(PRC255); |
|
1335 temp = er32(PRC511); |
|
1336 temp = er32(PRC1023); |
|
1337 temp = er32(PRC1522); |
|
1338 temp = er32(PTC64); |
|
1339 temp = er32(PTC127); |
|
1340 temp = er32(PTC255); |
|
1341 temp = er32(PTC511); |
|
1342 temp = er32(PTC1023); |
|
1343 temp = er32(PTC1522); |
|
1344 |
|
1345 temp = er32(ALGNERRC); |
|
1346 temp = er32(RXERRC); |
|
1347 temp = er32(TNCRS); |
|
1348 temp = er32(CEXTERR); |
|
1349 temp = er32(TSCTC); |
|
1350 temp = er32(TSCTFC); |
|
1351 |
|
1352 temp = er32(MGTPRC); |
|
1353 temp = er32(MGTPDC); |
|
1354 temp = er32(MGTPTC); |
|
1355 |
|
1356 temp = er32(IAC); |
|
1357 temp = er32(ICRXOC); |
|
1358 |
|
1359 temp = er32(ICRXPTC); |
|
1360 temp = er32(ICRXATC); |
|
1361 temp = er32(ICTXPTC); |
|
1362 temp = er32(ICTXATC); |
|
1363 temp = er32(ICTXQEC); |
|
1364 temp = er32(ICTXQMTC); |
|
1365 temp = er32(ICRXDMTC); |
|
1366 } |
|
1367 |
|
1368 static struct e1000_mac_operations es2_mac_ops = { |
|
1369 .id_led_init = e1000e_id_led_init, |
|
1370 .check_mng_mode = e1000e_check_mng_mode_generic, |
|
1371 /* check_for_link dependent on media type */ |
|
1372 .cleanup_led = e1000e_cleanup_led_generic, |
|
1373 .clear_hw_cntrs = e1000_clear_hw_cntrs_80003es2lan, |
|
1374 .get_bus_info = e1000e_get_bus_info_pcie, |
|
1375 .get_link_up_info = e1000_get_link_up_info_80003es2lan, |
|
1376 .led_on = e1000e_led_on_generic, |
|
1377 .led_off = e1000e_led_off_generic, |
|
1378 .update_mc_addr_list = e1000e_update_mc_addr_list_generic, |
|
1379 .reset_hw = e1000_reset_hw_80003es2lan, |
|
1380 .init_hw = e1000_init_hw_80003es2lan, |
|
1381 .setup_link = e1000e_setup_link, |
|
1382 /* setup_physical_interface dependent on media type */ |
|
1383 .setup_led = e1000e_setup_led_generic, |
|
1384 }; |
|
1385 |
|
1386 static struct e1000_phy_operations es2_phy_ops = { |
|
1387 .acquire_phy = e1000_acquire_phy_80003es2lan, |
|
1388 .check_reset_block = e1000e_check_reset_block_generic, |
|
1389 .commit_phy = e1000e_phy_sw_reset, |
|
1390 .force_speed_duplex = e1000_phy_force_speed_duplex_80003es2lan, |
|
1391 .get_cfg_done = e1000_get_cfg_done_80003es2lan, |
|
1392 .get_cable_length = e1000_get_cable_length_80003es2lan, |
|
1393 .get_phy_info = e1000e_get_phy_info_m88, |
|
1394 .read_phy_reg = e1000_read_phy_reg_gg82563_80003es2lan, |
|
1395 .release_phy = e1000_release_phy_80003es2lan, |
|
1396 .reset_phy = e1000e_phy_hw_reset_generic, |
|
1397 .set_d0_lplu_state = NULL, |
|
1398 .set_d3_lplu_state = e1000e_set_d3_lplu_state, |
|
1399 .write_phy_reg = e1000_write_phy_reg_gg82563_80003es2lan, |
|
1400 .cfg_on_link_up = e1000_cfg_on_link_up_80003es2lan, |
|
1401 }; |
|
1402 |
|
1403 static struct e1000_nvm_operations es2_nvm_ops = { |
|
1404 .acquire_nvm = e1000_acquire_nvm_80003es2lan, |
|
1405 .read_nvm = e1000e_read_nvm_eerd, |
|
1406 .release_nvm = e1000_release_nvm_80003es2lan, |
|
1407 .update_nvm = e1000e_update_nvm_checksum_generic, |
|
1408 .valid_led_default = e1000e_valid_led_default, |
|
1409 .validate_nvm = e1000e_validate_nvm_checksum_generic, |
|
1410 .write_nvm = e1000_write_nvm_80003es2lan, |
|
1411 }; |
|
1412 |
|
1413 struct e1000_info e1000_es2_info = { |
|
1414 .mac = e1000_80003es2lan, |
|
1415 .flags = FLAG_HAS_HW_VLAN_FILTER |
|
1416 | FLAG_HAS_JUMBO_FRAMES |
|
1417 | FLAG_HAS_WOL |
|
1418 | FLAG_APME_IN_CTRL3 |
|
1419 | FLAG_RX_CSUM_ENABLED |
|
1420 | FLAG_HAS_CTRLEXT_ON_LOAD |
|
1421 | FLAG_RX_NEEDS_RESTART /* errata */ |
|
1422 | FLAG_TARC_SET_BIT_ZERO /* errata */ |
|
1423 | FLAG_APME_CHECK_PORT_B |
|
1424 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */ |
|
1425 | FLAG_TIPG_MEDIUM_FOR_80003ESLAN, |
|
1426 .pba = 38, |
|
1427 .max_hw_frame_size = DEFAULT_JUMBO, |
|
1428 .get_variants = e1000_get_variants_80003es2lan, |
|
1429 .mac_ops = &es2_mac_ops, |
|
1430 .phy_ops = &es2_phy_ops, |
|
1431 .nvm_ops = &es2_nvm_ops, |
|
1432 }; |
|
1433 |