|
1 /******************************************************************************* |
|
2 |
|
3 Intel PRO/1000 Linux driver |
|
4 Copyright(c) 1999 - 2012 Intel Corporation. |
|
5 |
|
6 This program is free software; you can redistribute it and/or modify it |
|
7 under the terms and conditions of the GNU General Public License, |
|
8 version 2, as published by the Free Software Foundation. |
|
9 |
|
10 This program is distributed in the hope it will be useful, but WITHOUT |
|
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
|
13 more details. |
|
14 |
|
15 You should have received a copy of the GNU General Public License along with |
|
16 this program; if not, write to the Free Software Foundation, Inc., |
|
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 |
|
19 The full GNU General Public License is included in this distribution in |
|
20 the file called "COPYING". |
|
21 |
|
22 Contact Information: |
|
23 Linux NICS <linux.nics@intel.com> |
|
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
|
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
|
26 |
|
27 *******************************************************************************/ |
|
28 |
|
29 #include "e1000.h" |
|
30 |
|
31 /** |
|
32 * e1000_raise_eec_clk - Raise EEPROM clock |
|
33 * @hw: pointer to the HW structure |
|
34 * @eecd: pointer to the EEPROM |
|
35 * |
|
36 * Enable/Raise the EEPROM clock bit. |
|
37 **/ |
|
38 static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd) |
|
39 { |
|
40 *eecd = *eecd | E1000_EECD_SK; |
|
41 ew32(EECD, *eecd); |
|
42 e1e_flush(); |
|
43 udelay(hw->nvm.delay_usec); |
|
44 } |
|
45 |
|
46 /** |
|
47 * e1000_lower_eec_clk - Lower EEPROM clock |
|
48 * @hw: pointer to the HW structure |
|
49 * @eecd: pointer to the EEPROM |
|
50 * |
|
51 * Clear/Lower the EEPROM clock bit. |
|
52 **/ |
|
53 static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd) |
|
54 { |
|
55 *eecd = *eecd & ~E1000_EECD_SK; |
|
56 ew32(EECD, *eecd); |
|
57 e1e_flush(); |
|
58 udelay(hw->nvm.delay_usec); |
|
59 } |
|
60 |
|
61 /** |
|
62 * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM |
|
63 * @hw: pointer to the HW structure |
|
64 * @data: data to send to the EEPROM |
|
65 * @count: number of bits to shift out |
|
66 * |
|
67 * We need to shift 'count' bits out to the EEPROM. So, the value in the |
|
68 * "data" parameter will be shifted out to the EEPROM one bit at a time. |
|
69 * In order to do this, "data" must be broken down into bits. |
|
70 **/ |
|
71 static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count) |
|
72 { |
|
73 struct e1000_nvm_info *nvm = &hw->nvm; |
|
74 u32 eecd = er32(EECD); |
|
75 u32 mask; |
|
76 |
|
77 mask = 0x01 << (count - 1); |
|
78 if (nvm->type == e1000_nvm_eeprom_spi) |
|
79 eecd |= E1000_EECD_DO; |
|
80 |
|
81 do { |
|
82 eecd &= ~E1000_EECD_DI; |
|
83 |
|
84 if (data & mask) |
|
85 eecd |= E1000_EECD_DI; |
|
86 |
|
87 ew32(EECD, eecd); |
|
88 e1e_flush(); |
|
89 |
|
90 udelay(nvm->delay_usec); |
|
91 |
|
92 e1000_raise_eec_clk(hw, &eecd); |
|
93 e1000_lower_eec_clk(hw, &eecd); |
|
94 |
|
95 mask >>= 1; |
|
96 } while (mask); |
|
97 |
|
98 eecd &= ~E1000_EECD_DI; |
|
99 ew32(EECD, eecd); |
|
100 } |
|
101 |
|
102 /** |
|
103 * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM |
|
104 * @hw: pointer to the HW structure |
|
105 * @count: number of bits to shift in |
|
106 * |
|
107 * In order to read a register from the EEPROM, we need to shift 'count' bits |
|
108 * in from the EEPROM. Bits are "shifted in" by raising the clock input to |
|
109 * the EEPROM (setting the SK bit), and then reading the value of the data out |
|
110 * "DO" bit. During this "shifting in" process the data in "DI" bit should |
|
111 * always be clear. |
|
112 **/ |
|
113 static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count) |
|
114 { |
|
115 u32 eecd; |
|
116 u32 i; |
|
117 u16 data; |
|
118 |
|
119 eecd = er32(EECD); |
|
120 |
|
121 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); |
|
122 data = 0; |
|
123 |
|
124 for (i = 0; i < count; i++) { |
|
125 data <<= 1; |
|
126 e1000_raise_eec_clk(hw, &eecd); |
|
127 |
|
128 eecd = er32(EECD); |
|
129 |
|
130 eecd &= ~E1000_EECD_DI; |
|
131 if (eecd & E1000_EECD_DO) |
|
132 data |= 1; |
|
133 |
|
134 e1000_lower_eec_clk(hw, &eecd); |
|
135 } |
|
136 |
|
137 return data; |
|
138 } |
|
139 |
|
140 /** |
|
141 * e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion |
|
142 * @hw: pointer to the HW structure |
|
143 * @ee_reg: EEPROM flag for polling |
|
144 * |
|
145 * Polls the EEPROM status bit for either read or write completion based |
|
146 * upon the value of 'ee_reg'. |
|
147 **/ |
|
148 s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg) |
|
149 { |
|
150 u32 attempts = 100000; |
|
151 u32 i, reg = 0; |
|
152 |
|
153 for (i = 0; i < attempts; i++) { |
|
154 if (ee_reg == E1000_NVM_POLL_READ) |
|
155 reg = er32(EERD); |
|
156 else |
|
157 reg = er32(EEWR); |
|
158 |
|
159 if (reg & E1000_NVM_RW_REG_DONE) |
|
160 return 0; |
|
161 |
|
162 udelay(5); |
|
163 } |
|
164 |
|
165 return -E1000_ERR_NVM; |
|
166 } |
|
167 |
|
168 /** |
|
169 * e1000e_acquire_nvm - Generic request for access to EEPROM |
|
170 * @hw: pointer to the HW structure |
|
171 * |
|
172 * Set the EEPROM access request bit and wait for EEPROM access grant bit. |
|
173 * Return successful if access grant bit set, else clear the request for |
|
174 * EEPROM access and return -E1000_ERR_NVM (-1). |
|
175 **/ |
|
176 s32 e1000e_acquire_nvm(struct e1000_hw *hw) |
|
177 { |
|
178 u32 eecd = er32(EECD); |
|
179 s32 timeout = E1000_NVM_GRANT_ATTEMPTS; |
|
180 |
|
181 ew32(EECD, eecd | E1000_EECD_REQ); |
|
182 eecd = er32(EECD); |
|
183 |
|
184 while (timeout) { |
|
185 if (eecd & E1000_EECD_GNT) |
|
186 break; |
|
187 udelay(5); |
|
188 eecd = er32(EECD); |
|
189 timeout--; |
|
190 } |
|
191 |
|
192 if (!timeout) { |
|
193 eecd &= ~E1000_EECD_REQ; |
|
194 ew32(EECD, eecd); |
|
195 e_dbg("Could not acquire NVM grant\n"); |
|
196 return -E1000_ERR_NVM; |
|
197 } |
|
198 |
|
199 return 0; |
|
200 } |
|
201 |
|
202 /** |
|
203 * e1000_standby_nvm - Return EEPROM to standby state |
|
204 * @hw: pointer to the HW structure |
|
205 * |
|
206 * Return the EEPROM to a standby state. |
|
207 **/ |
|
208 static void e1000_standby_nvm(struct e1000_hw *hw) |
|
209 { |
|
210 struct e1000_nvm_info *nvm = &hw->nvm; |
|
211 u32 eecd = er32(EECD); |
|
212 |
|
213 if (nvm->type == e1000_nvm_eeprom_spi) { |
|
214 /* Toggle CS to flush commands */ |
|
215 eecd |= E1000_EECD_CS; |
|
216 ew32(EECD, eecd); |
|
217 e1e_flush(); |
|
218 udelay(nvm->delay_usec); |
|
219 eecd &= ~E1000_EECD_CS; |
|
220 ew32(EECD, eecd); |
|
221 e1e_flush(); |
|
222 udelay(nvm->delay_usec); |
|
223 } |
|
224 } |
|
225 |
|
226 /** |
|
227 * e1000_stop_nvm - Terminate EEPROM command |
|
228 * @hw: pointer to the HW structure |
|
229 * |
|
230 * Terminates the current command by inverting the EEPROM's chip select pin. |
|
231 **/ |
|
232 static void e1000_stop_nvm(struct e1000_hw *hw) |
|
233 { |
|
234 u32 eecd; |
|
235 |
|
236 eecd = er32(EECD); |
|
237 if (hw->nvm.type == e1000_nvm_eeprom_spi) { |
|
238 /* Pull CS high */ |
|
239 eecd |= E1000_EECD_CS; |
|
240 e1000_lower_eec_clk(hw, &eecd); |
|
241 } |
|
242 } |
|
243 |
|
244 /** |
|
245 * e1000e_release_nvm - Release exclusive access to EEPROM |
|
246 * @hw: pointer to the HW structure |
|
247 * |
|
248 * Stop any current commands to the EEPROM and clear the EEPROM request bit. |
|
249 **/ |
|
250 void e1000e_release_nvm(struct e1000_hw *hw) |
|
251 { |
|
252 u32 eecd; |
|
253 |
|
254 e1000_stop_nvm(hw); |
|
255 |
|
256 eecd = er32(EECD); |
|
257 eecd &= ~E1000_EECD_REQ; |
|
258 ew32(EECD, eecd); |
|
259 } |
|
260 |
|
261 /** |
|
262 * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write |
|
263 * @hw: pointer to the HW structure |
|
264 * |
|
265 * Setups the EEPROM for reading and writing. |
|
266 **/ |
|
267 static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw) |
|
268 { |
|
269 struct e1000_nvm_info *nvm = &hw->nvm; |
|
270 u32 eecd = er32(EECD); |
|
271 u8 spi_stat_reg; |
|
272 |
|
273 if (nvm->type == e1000_nvm_eeprom_spi) { |
|
274 u16 timeout = NVM_MAX_RETRY_SPI; |
|
275 |
|
276 /* Clear SK and CS */ |
|
277 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); |
|
278 ew32(EECD, eecd); |
|
279 e1e_flush(); |
|
280 udelay(1); |
|
281 |
|
282 /* |
|
283 * Read "Status Register" repeatedly until the LSB is cleared. |
|
284 * The EEPROM will signal that the command has been completed |
|
285 * by clearing bit 0 of the internal status register. If it's |
|
286 * not cleared within 'timeout', then error out. |
|
287 */ |
|
288 while (timeout) { |
|
289 e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI, |
|
290 hw->nvm.opcode_bits); |
|
291 spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8); |
|
292 if (!(spi_stat_reg & NVM_STATUS_RDY_SPI)) |
|
293 break; |
|
294 |
|
295 udelay(5); |
|
296 e1000_standby_nvm(hw); |
|
297 timeout--; |
|
298 } |
|
299 |
|
300 if (!timeout) { |
|
301 e_dbg("SPI NVM Status error\n"); |
|
302 return -E1000_ERR_NVM; |
|
303 } |
|
304 } |
|
305 |
|
306 return 0; |
|
307 } |
|
308 |
|
309 /** |
|
310 * e1000e_read_nvm_eerd - Reads EEPROM using EERD register |
|
311 * @hw: pointer to the HW structure |
|
312 * @offset: offset of word in the EEPROM to read |
|
313 * @words: number of words to read |
|
314 * @data: word read from the EEPROM |
|
315 * |
|
316 * Reads a 16 bit word from the EEPROM using the EERD register. |
|
317 **/ |
|
318 s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) |
|
319 { |
|
320 struct e1000_nvm_info *nvm = &hw->nvm; |
|
321 u32 i, eerd = 0; |
|
322 s32 ret_val = 0; |
|
323 |
|
324 /* |
|
325 * A check for invalid values: offset too large, too many words, |
|
326 * too many words for the offset, and not enough words. |
|
327 */ |
|
328 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || |
|
329 (words == 0)) { |
|
330 e_dbg("nvm parameter(s) out of bounds\n"); |
|
331 return -E1000_ERR_NVM; |
|
332 } |
|
333 |
|
334 for (i = 0; i < words; i++) { |
|
335 eerd = ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) + |
|
336 E1000_NVM_RW_REG_START; |
|
337 |
|
338 ew32(EERD, eerd); |
|
339 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ); |
|
340 if (ret_val) |
|
341 break; |
|
342 |
|
343 data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA); |
|
344 } |
|
345 |
|
346 return ret_val; |
|
347 } |
|
348 |
|
349 /** |
|
350 * e1000e_write_nvm_spi - Write to EEPROM using SPI |
|
351 * @hw: pointer to the HW structure |
|
352 * @offset: offset within the EEPROM to be written to |
|
353 * @words: number of words to write |
|
354 * @data: 16 bit word(s) to be written to the EEPROM |
|
355 * |
|
356 * Writes data to EEPROM at offset using SPI interface. |
|
357 * |
|
358 * If e1000e_update_nvm_checksum is not called after this function , the |
|
359 * EEPROM will most likely contain an invalid checksum. |
|
360 **/ |
|
361 s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) |
|
362 { |
|
363 struct e1000_nvm_info *nvm = &hw->nvm; |
|
364 s32 ret_val; |
|
365 u16 widx = 0; |
|
366 |
|
367 /* |
|
368 * A check for invalid values: offset too large, too many words, |
|
369 * and not enough words. |
|
370 */ |
|
371 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || |
|
372 (words == 0)) { |
|
373 e_dbg("nvm parameter(s) out of bounds\n"); |
|
374 return -E1000_ERR_NVM; |
|
375 } |
|
376 |
|
377 ret_val = nvm->ops.acquire(hw); |
|
378 if (ret_val) |
|
379 return ret_val; |
|
380 |
|
381 while (widx < words) { |
|
382 u8 write_opcode = NVM_WRITE_OPCODE_SPI; |
|
383 |
|
384 ret_val = e1000_ready_nvm_eeprom(hw); |
|
385 if (ret_val) |
|
386 goto release; |
|
387 |
|
388 e1000_standby_nvm(hw); |
|
389 |
|
390 /* Send the WRITE ENABLE command (8 bit opcode) */ |
|
391 e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI, |
|
392 nvm->opcode_bits); |
|
393 |
|
394 e1000_standby_nvm(hw); |
|
395 |
|
396 /* |
|
397 * Some SPI eeproms use the 8th address bit embedded in the |
|
398 * opcode |
|
399 */ |
|
400 if ((nvm->address_bits == 8) && (offset >= 128)) |
|
401 write_opcode |= NVM_A8_OPCODE_SPI; |
|
402 |
|
403 /* Send the Write command (8-bit opcode + addr) */ |
|
404 e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits); |
|
405 e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2), |
|
406 nvm->address_bits); |
|
407 |
|
408 /* Loop to allow for up to whole page write of eeprom */ |
|
409 while (widx < words) { |
|
410 u16 word_out = data[widx]; |
|
411 word_out = (word_out >> 8) | (word_out << 8); |
|
412 e1000_shift_out_eec_bits(hw, word_out, 16); |
|
413 widx++; |
|
414 |
|
415 if ((((offset + widx) * 2) % nvm->page_size) == 0) { |
|
416 e1000_standby_nvm(hw); |
|
417 break; |
|
418 } |
|
419 } |
|
420 } |
|
421 |
|
422 usleep_range(10000, 20000); |
|
423 release: |
|
424 nvm->ops.release(hw); |
|
425 |
|
426 return ret_val; |
|
427 } |
|
428 |
|
429 /** |
|
430 * e1000_read_pba_string_generic - Read device part number |
|
431 * @hw: pointer to the HW structure |
|
432 * @pba_num: pointer to device part number |
|
433 * @pba_num_size: size of part number buffer |
|
434 * |
|
435 * Reads the product board assembly (PBA) number from the EEPROM and stores |
|
436 * the value in pba_num. |
|
437 **/ |
|
438 s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num, |
|
439 u32 pba_num_size) |
|
440 { |
|
441 s32 ret_val; |
|
442 u16 nvm_data; |
|
443 u16 pba_ptr; |
|
444 u16 offset; |
|
445 u16 length; |
|
446 |
|
447 if (pba_num == NULL) { |
|
448 e_dbg("PBA string buffer was null\n"); |
|
449 return -E1000_ERR_INVALID_ARGUMENT; |
|
450 } |
|
451 |
|
452 ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); |
|
453 if (ret_val) { |
|
454 e_dbg("NVM Read Error\n"); |
|
455 return ret_val; |
|
456 } |
|
457 |
|
458 ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr); |
|
459 if (ret_val) { |
|
460 e_dbg("NVM Read Error\n"); |
|
461 return ret_val; |
|
462 } |
|
463 |
|
464 /* |
|
465 * if nvm_data is not ptr guard the PBA must be in legacy format which |
|
466 * means pba_ptr is actually our second data word for the PBA number |
|
467 * and we can decode it into an ascii string |
|
468 */ |
|
469 if (nvm_data != NVM_PBA_PTR_GUARD) { |
|
470 e_dbg("NVM PBA number is not stored as string\n"); |
|
471 |
|
472 /* we will need 11 characters to store the PBA */ |
|
473 if (pba_num_size < 11) { |
|
474 e_dbg("PBA string buffer too small\n"); |
|
475 return E1000_ERR_NO_SPACE; |
|
476 } |
|
477 |
|
478 /* extract hex string from data and pba_ptr */ |
|
479 pba_num[0] = (nvm_data >> 12) & 0xF; |
|
480 pba_num[1] = (nvm_data >> 8) & 0xF; |
|
481 pba_num[2] = (nvm_data >> 4) & 0xF; |
|
482 pba_num[3] = nvm_data & 0xF; |
|
483 pba_num[4] = (pba_ptr >> 12) & 0xF; |
|
484 pba_num[5] = (pba_ptr >> 8) & 0xF; |
|
485 pba_num[6] = '-'; |
|
486 pba_num[7] = 0; |
|
487 pba_num[8] = (pba_ptr >> 4) & 0xF; |
|
488 pba_num[9] = pba_ptr & 0xF; |
|
489 |
|
490 /* put a null character on the end of our string */ |
|
491 pba_num[10] = '\0'; |
|
492 |
|
493 /* switch all the data but the '-' to hex char */ |
|
494 for (offset = 0; offset < 10; offset++) { |
|
495 if (pba_num[offset] < 0xA) |
|
496 pba_num[offset] += '0'; |
|
497 else if (pba_num[offset] < 0x10) |
|
498 pba_num[offset] += 'A' - 0xA; |
|
499 } |
|
500 |
|
501 return 0; |
|
502 } |
|
503 |
|
504 ret_val = e1000_read_nvm(hw, pba_ptr, 1, &length); |
|
505 if (ret_val) { |
|
506 e_dbg("NVM Read Error\n"); |
|
507 return ret_val; |
|
508 } |
|
509 |
|
510 if (length == 0xFFFF || length == 0) { |
|
511 e_dbg("NVM PBA number section invalid length\n"); |
|
512 return -E1000_ERR_NVM_PBA_SECTION; |
|
513 } |
|
514 /* check if pba_num buffer is big enough */ |
|
515 if (pba_num_size < (((u32)length * 2) - 1)) { |
|
516 e_dbg("PBA string buffer too small\n"); |
|
517 return -E1000_ERR_NO_SPACE; |
|
518 } |
|
519 |
|
520 /* trim pba length from start of string */ |
|
521 pba_ptr++; |
|
522 length--; |
|
523 |
|
524 for (offset = 0; offset < length; offset++) { |
|
525 ret_val = e1000_read_nvm(hw, pba_ptr + offset, 1, &nvm_data); |
|
526 if (ret_val) { |
|
527 e_dbg("NVM Read Error\n"); |
|
528 return ret_val; |
|
529 } |
|
530 pba_num[offset * 2] = (u8)(nvm_data >> 8); |
|
531 pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF); |
|
532 } |
|
533 pba_num[offset * 2] = '\0'; |
|
534 |
|
535 return 0; |
|
536 } |
|
537 |
|
538 /** |
|
539 * e1000_read_mac_addr_generic - Read device MAC address |
|
540 * @hw: pointer to the HW structure |
|
541 * |
|
542 * Reads the device MAC address from the EEPROM and stores the value. |
|
543 * Since devices with two ports use the same EEPROM, we increment the |
|
544 * last bit in the MAC address for the second port. |
|
545 **/ |
|
546 s32 e1000_read_mac_addr_generic(struct e1000_hw *hw) |
|
547 { |
|
548 u32 rar_high; |
|
549 u32 rar_low; |
|
550 u16 i; |
|
551 |
|
552 rar_high = er32(RAH(0)); |
|
553 rar_low = er32(RAL(0)); |
|
554 |
|
555 for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++) |
|
556 hw->mac.perm_addr[i] = (u8)(rar_low >> (i * 8)); |
|
557 |
|
558 for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++) |
|
559 hw->mac.perm_addr[i + 4] = (u8)(rar_high >> (i * 8)); |
|
560 |
|
561 for (i = 0; i < ETH_ALEN; i++) |
|
562 hw->mac.addr[i] = hw->mac.perm_addr[i]; |
|
563 |
|
564 return 0; |
|
565 } |
|
566 |
|
567 /** |
|
568 * e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum |
|
569 * @hw: pointer to the HW structure |
|
570 * |
|
571 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM |
|
572 * and then verifies that the sum of the EEPROM is equal to 0xBABA. |
|
573 **/ |
|
574 s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw) |
|
575 { |
|
576 s32 ret_val; |
|
577 u16 checksum = 0; |
|
578 u16 i, nvm_data; |
|
579 |
|
580 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { |
|
581 ret_val = e1000_read_nvm(hw, i, 1, &nvm_data); |
|
582 if (ret_val) { |
|
583 e_dbg("NVM Read Error\n"); |
|
584 return ret_val; |
|
585 } |
|
586 checksum += nvm_data; |
|
587 } |
|
588 |
|
589 if (checksum != (u16)NVM_SUM) { |
|
590 e_dbg("NVM Checksum Invalid\n"); |
|
591 return -E1000_ERR_NVM; |
|
592 } |
|
593 |
|
594 return 0; |
|
595 } |
|
596 |
|
597 /** |
|
598 * e1000e_update_nvm_checksum_generic - Update EEPROM checksum |
|
599 * @hw: pointer to the HW structure |
|
600 * |
|
601 * Updates the EEPROM checksum by reading/adding each word of the EEPROM |
|
602 * up to the checksum. Then calculates the EEPROM checksum and writes the |
|
603 * value to the EEPROM. |
|
604 **/ |
|
605 s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw) |
|
606 { |
|
607 s32 ret_val; |
|
608 u16 checksum = 0; |
|
609 u16 i, nvm_data; |
|
610 |
|
611 for (i = 0; i < NVM_CHECKSUM_REG; i++) { |
|
612 ret_val = e1000_read_nvm(hw, i, 1, &nvm_data); |
|
613 if (ret_val) { |
|
614 e_dbg("NVM Read Error while updating checksum.\n"); |
|
615 return ret_val; |
|
616 } |
|
617 checksum += nvm_data; |
|
618 } |
|
619 checksum = (u16)NVM_SUM - checksum; |
|
620 ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum); |
|
621 if (ret_val) |
|
622 e_dbg("NVM Write Error while updating checksum.\n"); |
|
623 |
|
624 return ret_val; |
|
625 } |
|
626 |
|
627 /** |
|
628 * e1000e_reload_nvm_generic - Reloads EEPROM |
|
629 * @hw: pointer to the HW structure |
|
630 * |
|
631 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the |
|
632 * extended control register. |
|
633 **/ |
|
634 void e1000e_reload_nvm_generic(struct e1000_hw *hw) |
|
635 { |
|
636 u32 ctrl_ext; |
|
637 |
|
638 udelay(10); |
|
639 ctrl_ext = er32(CTRL_EXT); |
|
640 ctrl_ext |= E1000_CTRL_EXT_EE_RST; |
|
641 ew32(CTRL_EXT, ctrl_ext); |
|
642 e1e_flush(); |
|
643 } |