devices/e1000e/netdev-3.4-ethercat.c
changeset 2589 2b9c78543663
equal deleted inserted replaced
2415:af21f0bdc7c9 2589:2b9c78543663
       
     1 /*******************************************************************************
       
     2 
       
     3   Intel PRO/1000 Linux driver
       
     4   Copyright(c) 1999 - 2012 Intel Corporation.
       
     5 
       
     6   This program is free software; you can redistribute it and/or modify it
       
     7   under the terms and conditions of the GNU General Public License,
       
     8   version 2, as published by the Free Software Foundation.
       
     9 
       
    10   This program is distributed in the hope it will be useful, but WITHOUT
       
    11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
       
    13   more details.
       
    14 
       
    15   You should have received a copy of the GNU General Public License along with
       
    16   this program; if not, write to the Free Software Foundation, Inc.,
       
    17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
       
    18 
       
    19   The full GNU General Public License is included in this distribution in
       
    20   the file called "COPYING".
       
    21 
       
    22   Contact Information:
       
    23   Linux NICS <linux.nics@intel.com>
       
    24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
       
    25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
       
    26 
       
    27   vim: noexpandtab
       
    28 
       
    29 *******************************************************************************/
       
    30 
       
    31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
       
    32 
       
    33 #include <linux/module.h>
       
    34 #include <linux/types.h>
       
    35 #include <linux/init.h>
       
    36 #include <linux/pci.h>
       
    37 #include <linux/vmalloc.h>
       
    38 #include <linux/pagemap.h>
       
    39 #include <linux/delay.h>
       
    40 #include <linux/netdevice.h>
       
    41 #include <linux/interrupt.h>
       
    42 #include <linux/tcp.h>
       
    43 #include <linux/ipv6.h>
       
    44 #include <linux/slab.h>
       
    45 #include <net/checksum.h>
       
    46 #include <net/ip6_checksum.h>
       
    47 #include <linux/mii.h>
       
    48 #include <linux/ethtool.h>
       
    49 #include <linux/if_vlan.h>
       
    50 #include <linux/cpu.h>
       
    51 #include <linux/smp.h>
       
    52 #include <linux/pm_qos.h>
       
    53 #include <linux/pm_runtime.h>
       
    54 #include <linux/aer.h>
       
    55 #include <linux/prefetch.h>
       
    56 
       
    57 #include "e1000-3.4-ethercat.h"
       
    58 
       
    59 #define DRV_EXTRAVERSION "-k-EtherCAT"
       
    60 
       
    61 #define DRV_VERSION "1.9.5" DRV_EXTRAVERSION
       
    62 char e1000e_driver_name[] = "ec_e1000e";
       
    63 const char e1000e_driver_version[] = DRV_VERSION;
       
    64 
       
    65 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
       
    66 static int debug = -1;
       
    67 module_param(debug, int, 0);
       
    68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
       
    69 
       
    70 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state);
       
    71 
       
    72 static const struct e1000_info *e1000_info_tbl[] = {
       
    73 	[board_82571]		= &e1000_82571_info,
       
    74 	[board_82572]		= &e1000_82572_info,
       
    75 	[board_82573]		= &e1000_82573_info,
       
    76 	[board_82574]		= &e1000_82574_info,
       
    77 	[board_82583]		= &e1000_82583_info,
       
    78 	[board_80003es2lan]	= &e1000_es2_info,
       
    79 	[board_ich8lan]		= &e1000_ich8_info,
       
    80 	[board_ich9lan]		= &e1000_ich9_info,
       
    81 	[board_ich10lan]	= &e1000_ich10_info,
       
    82 	[board_pchlan]		= &e1000_pch_info,
       
    83 	[board_pch2lan]		= &e1000_pch2_info,
       
    84 };
       
    85 
       
    86 struct e1000_reg_info {
       
    87 	u32 ofs;
       
    88 	char *name;
       
    89 };
       
    90 
       
    91 #define E1000_RDFH	0x02410	/* Rx Data FIFO Head - RW */
       
    92 #define E1000_RDFT	0x02418	/* Rx Data FIFO Tail - RW */
       
    93 #define E1000_RDFHS	0x02420	/* Rx Data FIFO Head Saved - RW */
       
    94 #define E1000_RDFTS	0x02428	/* Rx Data FIFO Tail Saved - RW */
       
    95 #define E1000_RDFPC	0x02430	/* Rx Data FIFO Packet Count - RW */
       
    96 
       
    97 #define E1000_TDFH	0x03410	/* Tx Data FIFO Head - RW */
       
    98 #define E1000_TDFT	0x03418	/* Tx Data FIFO Tail - RW */
       
    99 #define E1000_TDFHS	0x03420	/* Tx Data FIFO Head Saved - RW */
       
   100 #define E1000_TDFTS	0x03428	/* Tx Data FIFO Tail Saved - RW */
       
   101 #define E1000_TDFPC	0x03430	/* Tx Data FIFO Packet Count - RW */
       
   102 
       
   103 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
       
   104 
       
   105 	/* General Registers */
       
   106 	{E1000_CTRL, "CTRL"},
       
   107 	{E1000_STATUS, "STATUS"},
       
   108 	{E1000_CTRL_EXT, "CTRL_EXT"},
       
   109 
       
   110 	/* Interrupt Registers */
       
   111 	{E1000_ICR, "ICR"},
       
   112 
       
   113 	/* Rx Registers */
       
   114 	{E1000_RCTL, "RCTL"},
       
   115 	{E1000_RDLEN, "RDLEN"},
       
   116 	{E1000_RDH, "RDH"},
       
   117 	{E1000_RDT, "RDT"},
       
   118 	{E1000_RDTR, "RDTR"},
       
   119 	{E1000_RXDCTL(0), "RXDCTL"},
       
   120 	{E1000_ERT, "ERT"},
       
   121 	{E1000_RDBAL, "RDBAL"},
       
   122 	{E1000_RDBAH, "RDBAH"},
       
   123 	{E1000_RDFH, "RDFH"},
       
   124 	{E1000_RDFT, "RDFT"},
       
   125 	{E1000_RDFHS, "RDFHS"},
       
   126 	{E1000_RDFTS, "RDFTS"},
       
   127 	{E1000_RDFPC, "RDFPC"},
       
   128 
       
   129 	/* Tx Registers */
       
   130 	{E1000_TCTL, "TCTL"},
       
   131 	{E1000_TDBAL, "TDBAL"},
       
   132 	{E1000_TDBAH, "TDBAH"},
       
   133 	{E1000_TDLEN, "TDLEN"},
       
   134 	{E1000_TDH, "TDH"},
       
   135 	{E1000_TDT, "TDT"},
       
   136 	{E1000_TIDV, "TIDV"},
       
   137 	{E1000_TXDCTL(0), "TXDCTL"},
       
   138 	{E1000_TADV, "TADV"},
       
   139 	{E1000_TARC(0), "TARC"},
       
   140 	{E1000_TDFH, "TDFH"},
       
   141 	{E1000_TDFT, "TDFT"},
       
   142 	{E1000_TDFHS, "TDFHS"},
       
   143 	{E1000_TDFTS, "TDFTS"},
       
   144 	{E1000_TDFPC, "TDFPC"},
       
   145 
       
   146 	/* List Terminator */
       
   147 	{0, NULL}
       
   148 };
       
   149 
       
   150 /*
       
   151  * e1000_regdump - register printout routine
       
   152  */
       
   153 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
       
   154 {
       
   155 	int n = 0;
       
   156 	char rname[16];
       
   157 	u32 regs[8];
       
   158 
       
   159 	switch (reginfo->ofs) {
       
   160 	case E1000_RXDCTL(0):
       
   161 		for (n = 0; n < 2; n++)
       
   162 			regs[n] = __er32(hw, E1000_RXDCTL(n));
       
   163 		break;
       
   164 	case E1000_TXDCTL(0):
       
   165 		for (n = 0; n < 2; n++)
       
   166 			regs[n] = __er32(hw, E1000_TXDCTL(n));
       
   167 		break;
       
   168 	case E1000_TARC(0):
       
   169 		for (n = 0; n < 2; n++)
       
   170 			regs[n] = __er32(hw, E1000_TARC(n));
       
   171 		break;
       
   172 	default:
       
   173 		pr_info("%-15s %08x\n",
       
   174 			reginfo->name, __er32(hw, reginfo->ofs));
       
   175 		return;
       
   176 	}
       
   177 
       
   178 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
       
   179 	pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
       
   180 }
       
   181 
       
   182 /*
       
   183  * e1000e_dump - Print registers, Tx-ring and Rx-ring
       
   184  */
       
   185 static void e1000e_dump(struct e1000_adapter *adapter)
       
   186 {
       
   187 	struct net_device *netdev = adapter->netdev;
       
   188 	struct e1000_hw *hw = &adapter->hw;
       
   189 	struct e1000_reg_info *reginfo;
       
   190 	struct e1000_ring *tx_ring = adapter->tx_ring;
       
   191 	struct e1000_tx_desc *tx_desc;
       
   192 	struct my_u0 {
       
   193 		__le64 a;
       
   194 		__le64 b;
       
   195 	} *u0;
       
   196 	struct e1000_buffer *buffer_info;
       
   197 	struct e1000_ring *rx_ring = adapter->rx_ring;
       
   198 	union e1000_rx_desc_packet_split *rx_desc_ps;
       
   199 	union e1000_rx_desc_extended *rx_desc;
       
   200 	struct my_u1 {
       
   201 		__le64 a;
       
   202 		__le64 b;
       
   203 		__le64 c;
       
   204 		__le64 d;
       
   205 	} *u1;
       
   206 	u32 staterr;
       
   207 	int i = 0;
       
   208 
       
   209 	if (!netif_msg_hw(adapter))
       
   210 		return;
       
   211 
       
   212 	/* Print netdevice Info */
       
   213 	if (netdev) {
       
   214 		dev_info(&adapter->pdev->dev, "Net device Info\n");
       
   215 		pr_info("Device Name     state            trans_start      last_rx\n");
       
   216 		pr_info("%-15s %016lX %016lX %016lX\n",
       
   217 			netdev->name, netdev->state, netdev->trans_start,
       
   218 			netdev->last_rx);
       
   219 	}
       
   220 
       
   221 	/* Print Registers */
       
   222 	dev_info(&adapter->pdev->dev, "Register Dump\n");
       
   223 	pr_info(" Register Name   Value\n");
       
   224 	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
       
   225 	     reginfo->name; reginfo++) {
       
   226 		e1000_regdump(hw, reginfo);
       
   227 	}
       
   228 
       
   229 	/* Print Tx Ring Summary */
       
   230 	if (!netdev || !netif_running(netdev))
       
   231 		return;
       
   232 
       
   233 	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
       
   234 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
       
   235 	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
       
   236 	pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
       
   237 		0, tx_ring->next_to_use, tx_ring->next_to_clean,
       
   238 		(unsigned long long)buffer_info->dma,
       
   239 		buffer_info->length,
       
   240 		buffer_info->next_to_watch,
       
   241 		(unsigned long long)buffer_info->time_stamp);
       
   242 
       
   243 	/* Print Tx Ring */
       
   244 	if (!netif_msg_tx_done(adapter))
       
   245 		goto rx_ring_summary;
       
   246 
       
   247 	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
       
   248 
       
   249 	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
       
   250 	 *
       
   251 	 * Legacy Transmit Descriptor
       
   252 	 *   +--------------------------------------------------------------+
       
   253 	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
       
   254 	 *   +--------------------------------------------------------------+
       
   255 	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
       
   256 	 *   +--------------------------------------------------------------+
       
   257 	 *   63       48 47        36 35    32 31     24 23    16 15        0
       
   258 	 *
       
   259 	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
       
   260 	 *   63      48 47    40 39       32 31             16 15    8 7      0
       
   261 	 *   +----------------------------------------------------------------+
       
   262 	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
       
   263 	 *   +----------------------------------------------------------------+
       
   264 	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
       
   265 	 *   +----------------------------------------------------------------+
       
   266 	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
       
   267 	 *
       
   268 	 * Extended Data Descriptor (DTYP=0x1)
       
   269 	 *   +----------------------------------------------------------------+
       
   270 	 * 0 |                     Buffer Address [63:0]                      |
       
   271 	 *   +----------------------------------------------------------------+
       
   272 	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
       
   273 	 *   +----------------------------------------------------------------+
       
   274 	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
       
   275 	 */
       
   276 	pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
       
   277 	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
       
   278 	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
       
   279 	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
       
   280 		const char *next_desc;
       
   281 		tx_desc = E1000_TX_DESC(*tx_ring, i);
       
   282 		buffer_info = &tx_ring->buffer_info[i];
       
   283 		u0 = (struct my_u0 *)tx_desc;
       
   284 		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
       
   285 			next_desc = " NTC/U";
       
   286 		else if (i == tx_ring->next_to_use)
       
   287 			next_desc = " NTU";
       
   288 		else if (i == tx_ring->next_to_clean)
       
   289 			next_desc = " NTC";
       
   290 		else
       
   291 			next_desc = "";
       
   292 		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
       
   293 			(!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
       
   294 			 ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
       
   295 			i,
       
   296 			(unsigned long long)le64_to_cpu(u0->a),
       
   297 			(unsigned long long)le64_to_cpu(u0->b),
       
   298 			(unsigned long long)buffer_info->dma,
       
   299 			buffer_info->length, buffer_info->next_to_watch,
       
   300 			(unsigned long long)buffer_info->time_stamp,
       
   301 			buffer_info->skb, next_desc);
       
   302 
       
   303 		if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
       
   304 			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
       
   305 				       16, 1, phys_to_virt(buffer_info->dma),
       
   306 				       buffer_info->length, true);
       
   307 	}
       
   308 
       
   309 	/* Print Rx Ring Summary */
       
   310 rx_ring_summary:
       
   311 	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
       
   312 	pr_info("Queue [NTU] [NTC]\n");
       
   313 	pr_info(" %5d %5X %5X\n",
       
   314 		0, rx_ring->next_to_use, rx_ring->next_to_clean);
       
   315 
       
   316 	/* Print Rx Ring */
       
   317 	if (!netif_msg_rx_status(adapter))
       
   318 		return;
       
   319 
       
   320 	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
       
   321 	switch (adapter->rx_ps_pages) {
       
   322 	case 1:
       
   323 	case 2:
       
   324 	case 3:
       
   325 		/* [Extended] Packet Split Receive Descriptor Format
       
   326 		 *
       
   327 		 *    +-----------------------------------------------------+
       
   328 		 *  0 |                Buffer Address 0 [63:0]              |
       
   329 		 *    +-----------------------------------------------------+
       
   330 		 *  8 |                Buffer Address 1 [63:0]              |
       
   331 		 *    +-----------------------------------------------------+
       
   332 		 * 16 |                Buffer Address 2 [63:0]              |
       
   333 		 *    +-----------------------------------------------------+
       
   334 		 * 24 |                Buffer Address 3 [63:0]              |
       
   335 		 *    +-----------------------------------------------------+
       
   336 		 */
       
   337 		pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
       
   338 		/* [Extended] Receive Descriptor (Write-Back) Format
       
   339 		 *
       
   340 		 *   63       48 47    32 31     13 12    8 7    4 3        0
       
   341 		 *   +------------------------------------------------------+
       
   342 		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
       
   343 		 *   | Checksum | Ident  |         | Queue |      |  Type   |
       
   344 		 *   +------------------------------------------------------+
       
   345 		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
       
   346 		 *   +------------------------------------------------------+
       
   347 		 *   63       48 47    32 31            20 19               0
       
   348 		 */
       
   349 		pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
       
   350 		for (i = 0; i < rx_ring->count; i++) {
       
   351 			const char *next_desc;
       
   352 			buffer_info = &rx_ring->buffer_info[i];
       
   353 			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
       
   354 			u1 = (struct my_u1 *)rx_desc_ps;
       
   355 			staterr =
       
   356 			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
       
   357 
       
   358 			if (i == rx_ring->next_to_use)
       
   359 				next_desc = " NTU";
       
   360 			else if (i == rx_ring->next_to_clean)
       
   361 				next_desc = " NTC";
       
   362 			else
       
   363 				next_desc = "";
       
   364 
       
   365 			if (staterr & E1000_RXD_STAT_DD) {
       
   366 				/* Descriptor Done */
       
   367 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
       
   368 					"RWB", i,
       
   369 					(unsigned long long)le64_to_cpu(u1->a),
       
   370 					(unsigned long long)le64_to_cpu(u1->b),
       
   371 					(unsigned long long)le64_to_cpu(u1->c),
       
   372 					(unsigned long long)le64_to_cpu(u1->d),
       
   373 					buffer_info->skb, next_desc);
       
   374 			} else {
       
   375 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
       
   376 					"R  ", i,
       
   377 					(unsigned long long)le64_to_cpu(u1->a),
       
   378 					(unsigned long long)le64_to_cpu(u1->b),
       
   379 					(unsigned long long)le64_to_cpu(u1->c),
       
   380 					(unsigned long long)le64_to_cpu(u1->d),
       
   381 					(unsigned long long)buffer_info->dma,
       
   382 					buffer_info->skb, next_desc);
       
   383 
       
   384 				if (netif_msg_pktdata(adapter))
       
   385 					print_hex_dump(KERN_INFO, "",
       
   386 						DUMP_PREFIX_ADDRESS, 16, 1,
       
   387 						phys_to_virt(buffer_info->dma),
       
   388 						adapter->rx_ps_bsize0, true);
       
   389 			}
       
   390 		}
       
   391 		break;
       
   392 	default:
       
   393 	case 0:
       
   394 		/* Extended Receive Descriptor (Read) Format
       
   395 		 *
       
   396 		 *   +-----------------------------------------------------+
       
   397 		 * 0 |                Buffer Address [63:0]                |
       
   398 		 *   +-----------------------------------------------------+
       
   399 		 * 8 |                      Reserved                       |
       
   400 		 *   +-----------------------------------------------------+
       
   401 		 */
       
   402 		pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
       
   403 		/* Extended Receive Descriptor (Write-Back) Format
       
   404 		 *
       
   405 		 *   63       48 47    32 31    24 23            4 3        0
       
   406 		 *   +------------------------------------------------------+
       
   407 		 *   |     RSS Hash      |        |               |         |
       
   408 		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
       
   409 		 *   | Packet   | IP     |        |               |  Type   |
       
   410 		 *   | Checksum | Ident  |        |               |         |
       
   411 		 *   +------------------------------------------------------+
       
   412 		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
       
   413 		 *   +------------------------------------------------------+
       
   414 		 *   63       48 47    32 31            20 19               0
       
   415 		 */
       
   416 		pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
       
   417 
       
   418 		for (i = 0; i < rx_ring->count; i++) {
       
   419 			const char *next_desc;
       
   420 
       
   421 			buffer_info = &rx_ring->buffer_info[i];
       
   422 			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
       
   423 			u1 = (struct my_u1 *)rx_desc;
       
   424 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
       
   425 
       
   426 			if (i == rx_ring->next_to_use)
       
   427 				next_desc = " NTU";
       
   428 			else if (i == rx_ring->next_to_clean)
       
   429 				next_desc = " NTC";
       
   430 			else
       
   431 				next_desc = "";
       
   432 
       
   433 			if (staterr & E1000_RXD_STAT_DD) {
       
   434 				/* Descriptor Done */
       
   435 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
       
   436 					"RWB", i,
       
   437 					(unsigned long long)le64_to_cpu(u1->a),
       
   438 					(unsigned long long)le64_to_cpu(u1->b),
       
   439 					buffer_info->skb, next_desc);
       
   440 			} else {
       
   441 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
       
   442 					"R  ", i,
       
   443 					(unsigned long long)le64_to_cpu(u1->a),
       
   444 					(unsigned long long)le64_to_cpu(u1->b),
       
   445 					(unsigned long long)buffer_info->dma,
       
   446 					buffer_info->skb, next_desc);
       
   447 
       
   448 				if (netif_msg_pktdata(adapter))
       
   449 					print_hex_dump(KERN_INFO, "",
       
   450 						       DUMP_PREFIX_ADDRESS, 16,
       
   451 						       1,
       
   452 						       phys_to_virt
       
   453 						       (buffer_info->dma),
       
   454 						       adapter->rx_buffer_len,
       
   455 						       true);
       
   456 			}
       
   457 		}
       
   458 	}
       
   459 }
       
   460 
       
   461 /**
       
   462  * e1000_desc_unused - calculate if we have unused descriptors
       
   463  **/
       
   464 static int e1000_desc_unused(struct e1000_ring *ring)
       
   465 {
       
   466 	if (ring->next_to_clean > ring->next_to_use)
       
   467 		return ring->next_to_clean - ring->next_to_use - 1;
       
   468 
       
   469 	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
       
   470 }
       
   471 
       
   472 /**
       
   473  * e1000_receive_skb - helper function to handle Rx indications
       
   474  * @adapter: board private structure
       
   475  * @status: descriptor status field as written by hardware
       
   476  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
       
   477  * @skb: pointer to sk_buff to be indicated to stack
       
   478  **/
       
   479 static void e1000_receive_skb(struct e1000_adapter *adapter,
       
   480 			      struct net_device *netdev, struct sk_buff *skb,
       
   481 			      u8 status, __le16 vlan)
       
   482 {
       
   483 	u16 tag = le16_to_cpu(vlan);
       
   484 	skb->protocol = eth_type_trans(skb, netdev);
       
   485 
       
   486 	if (status & E1000_RXD_STAT_VP)
       
   487 		__vlan_hwaccel_put_tag(skb, tag);
       
   488 
       
   489 	napi_gro_receive(&adapter->napi, skb);
       
   490 }
       
   491 
       
   492 /**
       
   493  * e1000_rx_checksum - Receive Checksum Offload
       
   494  * @adapter: board private structure
       
   495  * @status_err: receive descriptor status and error fields
       
   496  * @csum: receive descriptor csum field
       
   497  * @sk_buff: socket buffer with received data
       
   498  **/
       
   499 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
       
   500 			      struct sk_buff *skb)
       
   501 {
       
   502 	u16 status = (u16)status_err;
       
   503 	u8 errors = (u8)(status_err >> 24);
       
   504 
       
   505 	skb_checksum_none_assert(skb);
       
   506 
       
   507 	/* Rx checksum disabled */
       
   508 	if (!(adapter->netdev->features & NETIF_F_RXCSUM))
       
   509 		return;
       
   510 
       
   511 	/* Ignore Checksum bit is set */
       
   512 	if (status & E1000_RXD_STAT_IXSM)
       
   513 		return;
       
   514 
       
   515 	/* TCP/UDP checksum error bit or IP checksum error bit is set */
       
   516 	if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
       
   517 		/* let the stack verify checksum errors */
       
   518 		adapter->hw_csum_err++;
       
   519 		return;
       
   520 	}
       
   521 
       
   522 	/* TCP/UDP Checksum has not been calculated */
       
   523 	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
       
   524 		return;
       
   525 
       
   526 	/* It must be a TCP or UDP packet with a valid checksum */
       
   527 	skb->ip_summed = CHECKSUM_UNNECESSARY;
       
   528 	adapter->hw_csum_good++;
       
   529 }
       
   530 
       
   531 /**
       
   532  * e1000e_update_tail_wa - helper function for e1000e_update_[rt]dt_wa()
       
   533  * @hw: pointer to the HW structure
       
   534  * @tail: address of tail descriptor register
       
   535  * @i: value to write to tail descriptor register
       
   536  *
       
   537  * When updating the tail register, the ME could be accessing Host CSR
       
   538  * registers at the same time.  Normally, this is handled in h/w by an
       
   539  * arbiter but on some parts there is a bug that acknowledges Host accesses
       
   540  * later than it should which could result in the descriptor register to
       
   541  * have an incorrect value.  Workaround this by checking the FWSM register
       
   542  * which has bit 24 set while ME is accessing Host CSR registers, wait
       
   543  * if it is set and try again a number of times.
       
   544  **/
       
   545 static inline s32 e1000e_update_tail_wa(struct e1000_hw *hw, void __iomem *tail,
       
   546 					unsigned int i)
       
   547 {
       
   548 	unsigned int j = 0;
       
   549 
       
   550 	while ((j++ < E1000_ICH_FWSM_PCIM2PCI_COUNT) &&
       
   551 	       (er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI))
       
   552 		udelay(50);
       
   553 
       
   554 	writel(i, tail);
       
   555 
       
   556 	if ((j == E1000_ICH_FWSM_PCIM2PCI_COUNT) && (i != readl(tail)))
       
   557 		return E1000_ERR_SWFW_SYNC;
       
   558 
       
   559 	return 0;
       
   560 }
       
   561 
       
   562 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
       
   563 {
       
   564 	struct e1000_adapter *adapter = rx_ring->adapter;
       
   565 	struct e1000_hw *hw = &adapter->hw;
       
   566 
       
   567 	if (e1000e_update_tail_wa(hw, rx_ring->tail, i)) {
       
   568 		u32 rctl = er32(RCTL);
       
   569 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
       
   570 		e_err("ME firmware caused invalid RDT - resetting\n");
       
   571 		schedule_work(&adapter->reset_task);
       
   572 	}
       
   573 }
       
   574 
       
   575 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
       
   576 {
       
   577 	struct e1000_adapter *adapter = tx_ring->adapter;
       
   578 	struct e1000_hw *hw = &adapter->hw;
       
   579 
       
   580 	if (e1000e_update_tail_wa(hw, tx_ring->tail, i)) {
       
   581 		u32 tctl = er32(TCTL);
       
   582 		ew32(TCTL, tctl & ~E1000_TCTL_EN);
       
   583 		e_err("ME firmware caused invalid TDT - resetting\n");
       
   584 		schedule_work(&adapter->reset_task);
       
   585 	}
       
   586 }
       
   587 
       
   588 /**
       
   589  * e1000_alloc_rx_buffers - Replace used receive buffers
       
   590  * @rx_ring: Rx descriptor ring
       
   591  **/
       
   592 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
       
   593 				   int cleaned_count, gfp_t gfp)
       
   594 {
       
   595 	struct e1000_adapter *adapter = rx_ring->adapter;
       
   596 	struct net_device *netdev = adapter->netdev;
       
   597 	struct pci_dev *pdev = adapter->pdev;
       
   598 	union e1000_rx_desc_extended *rx_desc;
       
   599 	struct e1000_buffer *buffer_info;
       
   600 	struct sk_buff *skb;
       
   601 	unsigned int i;
       
   602 	unsigned int bufsz = adapter->rx_buffer_len;
       
   603 
       
   604 	i = rx_ring->next_to_use;
       
   605 	buffer_info = &rx_ring->buffer_info[i];
       
   606 
       
   607 	while (cleaned_count--) {
       
   608 		skb = buffer_info->skb;
       
   609 		if (skb) {
       
   610 			skb_trim(skb, 0);
       
   611 			goto map_skb;
       
   612 		}
       
   613 
       
   614 		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
       
   615 		if (!skb) {
       
   616 			/* Better luck next round */
       
   617 			adapter->alloc_rx_buff_failed++;
       
   618 			break;
       
   619 		}
       
   620 
       
   621 		buffer_info->skb = skb;
       
   622 map_skb:
       
   623 		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
       
   624 						  adapter->rx_buffer_len,
       
   625 						  DMA_FROM_DEVICE);
       
   626 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
       
   627 			dev_err(&pdev->dev, "Rx DMA map failed\n");
       
   628 			adapter->rx_dma_failed++;
       
   629 			break;
       
   630 		}
       
   631 
       
   632 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
       
   633 		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
       
   634 
       
   635 		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
       
   636 			/*
       
   637 			 * Force memory writes to complete before letting h/w
       
   638 			 * know there are new descriptors to fetch.  (Only
       
   639 			 * applicable for weak-ordered memory model archs,
       
   640 			 * such as IA-64).
       
   641 			 */
       
   642 			wmb();
       
   643 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
       
   644 				e1000e_update_rdt_wa(rx_ring, i);
       
   645 			else
       
   646 				writel(i, rx_ring->tail);
       
   647 		}
       
   648 		i++;
       
   649 		if (i == rx_ring->count)
       
   650 			i = 0;
       
   651 		buffer_info = &rx_ring->buffer_info[i];
       
   652 	}
       
   653 
       
   654 	rx_ring->next_to_use = i;
       
   655 }
       
   656 
       
   657 /**
       
   658  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
       
   659  * @rx_ring: Rx descriptor ring
       
   660  **/
       
   661 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
       
   662 				      int cleaned_count, gfp_t gfp)
       
   663 {
       
   664 	struct e1000_adapter *adapter = rx_ring->adapter;
       
   665 	struct net_device *netdev = adapter->netdev;
       
   666 	struct pci_dev *pdev = adapter->pdev;
       
   667 	union e1000_rx_desc_packet_split *rx_desc;
       
   668 	struct e1000_buffer *buffer_info;
       
   669 	struct e1000_ps_page *ps_page;
       
   670 	struct sk_buff *skb;
       
   671 	unsigned int i, j;
       
   672 
       
   673 	i = rx_ring->next_to_use;
       
   674 	buffer_info = &rx_ring->buffer_info[i];
       
   675 
       
   676 	while (cleaned_count--) {
       
   677 		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
       
   678 
       
   679 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
       
   680 			ps_page = &buffer_info->ps_pages[j];
       
   681 			if (j >= adapter->rx_ps_pages) {
       
   682 				/* all unused desc entries get hw null ptr */
       
   683 				rx_desc->read.buffer_addr[j + 1] =
       
   684 				    ~cpu_to_le64(0);
       
   685 				continue;
       
   686 			}
       
   687 			if (!ps_page->page) {
       
   688 				ps_page->page = alloc_page(gfp);
       
   689 				if (!ps_page->page) {
       
   690 					adapter->alloc_rx_buff_failed++;
       
   691 					goto no_buffers;
       
   692 				}
       
   693 				ps_page->dma = dma_map_page(&pdev->dev,
       
   694 							    ps_page->page,
       
   695 							    0, PAGE_SIZE,
       
   696 							    DMA_FROM_DEVICE);
       
   697 				if (dma_mapping_error(&pdev->dev,
       
   698 						      ps_page->dma)) {
       
   699 					dev_err(&adapter->pdev->dev,
       
   700 						"Rx DMA page map failed\n");
       
   701 					adapter->rx_dma_failed++;
       
   702 					goto no_buffers;
       
   703 				}
       
   704 			}
       
   705 			/*
       
   706 			 * Refresh the desc even if buffer_addrs
       
   707 			 * didn't change because each write-back
       
   708 			 * erases this info.
       
   709 			 */
       
   710 			rx_desc->read.buffer_addr[j + 1] =
       
   711 			    cpu_to_le64(ps_page->dma);
       
   712 		}
       
   713 
       
   714 		skb = __netdev_alloc_skb_ip_align(netdev,
       
   715 						  adapter->rx_ps_bsize0,
       
   716 						  gfp);
       
   717 
       
   718 		if (!skb) {
       
   719 			adapter->alloc_rx_buff_failed++;
       
   720 			break;
       
   721 		}
       
   722 
       
   723 		buffer_info->skb = skb;
       
   724 		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
       
   725 						  adapter->rx_ps_bsize0,
       
   726 						  DMA_FROM_DEVICE);
       
   727 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
       
   728 			dev_err(&pdev->dev, "Rx DMA map failed\n");
       
   729 			adapter->rx_dma_failed++;
       
   730 			/* cleanup skb */
       
   731 			dev_kfree_skb_any(skb);
       
   732 			buffer_info->skb = NULL;
       
   733 			break;
       
   734 		}
       
   735 
       
   736 		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
       
   737 
       
   738 		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
       
   739 			/*
       
   740 			 * Force memory writes to complete before letting h/w
       
   741 			 * know there are new descriptors to fetch.  (Only
       
   742 			 * applicable for weak-ordered memory model archs,
       
   743 			 * such as IA-64).
       
   744 			 */
       
   745 			wmb();
       
   746 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
       
   747 				e1000e_update_rdt_wa(rx_ring, i << 1);
       
   748 			else
       
   749 				writel(i << 1, rx_ring->tail);
       
   750 		}
       
   751 
       
   752 		i++;
       
   753 		if (i == rx_ring->count)
       
   754 			i = 0;
       
   755 		buffer_info = &rx_ring->buffer_info[i];
       
   756 	}
       
   757 
       
   758 no_buffers:
       
   759 	rx_ring->next_to_use = i;
       
   760 }
       
   761 
       
   762 /**
       
   763  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
       
   764  * @rx_ring: Rx descriptor ring
       
   765  * @cleaned_count: number of buffers to allocate this pass
       
   766  **/
       
   767 
       
   768 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
       
   769 					 int cleaned_count, gfp_t gfp)
       
   770 {
       
   771 	struct e1000_adapter *adapter = rx_ring->adapter;
       
   772 	struct net_device *netdev = adapter->netdev;
       
   773 	struct pci_dev *pdev = adapter->pdev;
       
   774 	union e1000_rx_desc_extended *rx_desc;
       
   775 	struct e1000_buffer *buffer_info;
       
   776 	struct sk_buff *skb;
       
   777 	unsigned int i;
       
   778 	unsigned int bufsz = 256 - 16 /* for skb_reserve */;
       
   779 
       
   780 	i = rx_ring->next_to_use;
       
   781 	buffer_info = &rx_ring->buffer_info[i];
       
   782 
       
   783 	while (cleaned_count--) {
       
   784 		skb = buffer_info->skb;
       
   785 		if (skb) {
       
   786 			skb_trim(skb, 0);
       
   787 			goto check_page;
       
   788 		}
       
   789 
       
   790 		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
       
   791 		if (unlikely(!skb)) {
       
   792 			/* Better luck next round */
       
   793 			adapter->alloc_rx_buff_failed++;
       
   794 			break;
       
   795 		}
       
   796 
       
   797 		buffer_info->skb = skb;
       
   798 check_page:
       
   799 		/* allocate a new page if necessary */
       
   800 		if (!buffer_info->page) {
       
   801 			buffer_info->page = alloc_page(gfp);
       
   802 			if (unlikely(!buffer_info->page)) {
       
   803 				adapter->alloc_rx_buff_failed++;
       
   804 				break;
       
   805 			}
       
   806 		}
       
   807 
       
   808 		if (!buffer_info->dma)
       
   809 			buffer_info->dma = dma_map_page(&pdev->dev,
       
   810 			                                buffer_info->page, 0,
       
   811 			                                PAGE_SIZE,
       
   812 							DMA_FROM_DEVICE);
       
   813 
       
   814 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
       
   815 		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
       
   816 
       
   817 		if (unlikely(++i == rx_ring->count))
       
   818 			i = 0;
       
   819 		buffer_info = &rx_ring->buffer_info[i];
       
   820 	}
       
   821 
       
   822 	if (likely(rx_ring->next_to_use != i)) {
       
   823 		rx_ring->next_to_use = i;
       
   824 		if (unlikely(i-- == 0))
       
   825 			i = (rx_ring->count - 1);
       
   826 
       
   827 		/* Force memory writes to complete before letting h/w
       
   828 		 * know there are new descriptors to fetch.  (Only
       
   829 		 * applicable for weak-ordered memory model archs,
       
   830 		 * such as IA-64). */
       
   831 		wmb();
       
   832 		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
       
   833 			e1000e_update_rdt_wa(rx_ring, i);
       
   834 		else
       
   835 			writel(i, rx_ring->tail);
       
   836 	}
       
   837 }
       
   838 
       
   839 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
       
   840 				 struct sk_buff *skb)
       
   841 {
       
   842 	if (netdev->features & NETIF_F_RXHASH)
       
   843 		skb->rxhash = le32_to_cpu(rss);
       
   844 }
       
   845 
       
   846 /**
       
   847  * e1000_clean_rx_irq - Send received data up the network stack
       
   848  * @rx_ring: Rx descriptor ring
       
   849  *
       
   850  * the return value indicates whether actual cleaning was done, there
       
   851  * is no guarantee that everything was cleaned
       
   852  **/
       
   853 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
       
   854 			       int work_to_do)
       
   855 {
       
   856 	struct e1000_adapter *adapter = rx_ring->adapter;
       
   857 	struct net_device *netdev = adapter->netdev;
       
   858 	struct pci_dev *pdev = adapter->pdev;
       
   859 	struct e1000_hw *hw = &adapter->hw;
       
   860 	union e1000_rx_desc_extended *rx_desc, *next_rxd;
       
   861 	struct e1000_buffer *buffer_info, *next_buffer;
       
   862 	u32 length, staterr;
       
   863 	unsigned int i;
       
   864 	int cleaned_count = 0;
       
   865 	bool cleaned = false;
       
   866 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
       
   867 
       
   868 	i = rx_ring->next_to_clean;
       
   869 	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
       
   870 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
       
   871 	buffer_info = &rx_ring->buffer_info[i];
       
   872 
       
   873 	while (staterr & E1000_RXD_STAT_DD) {
       
   874 		struct sk_buff *skb;
       
   875 
       
   876 		if (*work_done >= work_to_do)
       
   877 			break;
       
   878 		(*work_done)++;
       
   879 		rmb();	/* read descriptor and rx_buffer_info after status DD */
       
   880 
       
   881 		skb = buffer_info->skb;
       
   882 
       
   883 		if (!adapter->ecdev)
       
   884 			buffer_info->skb = NULL;
       
   885 
       
   886 		prefetch(skb->data - NET_IP_ALIGN);
       
   887 
       
   888 		i++;
       
   889 		if (i == rx_ring->count)
       
   890 			i = 0;
       
   891 		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
       
   892 		prefetch(next_rxd);
       
   893 
       
   894 		next_buffer = &rx_ring->buffer_info[i];
       
   895 
       
   896 		cleaned = true;
       
   897 		cleaned_count++;
       
   898 		dma_unmap_single(&pdev->dev,
       
   899 				 buffer_info->dma,
       
   900 				 adapter->rx_buffer_len,
       
   901 				 DMA_FROM_DEVICE);
       
   902 		buffer_info->dma = 0;
       
   903 
       
   904 		length = le16_to_cpu(rx_desc->wb.upper.length);
       
   905 
       
   906 		/*
       
   907 		 * !EOP means multiple descriptors were used to store a single
       
   908 		 * packet, if that's the case we need to toss it.  In fact, we
       
   909 		 * need to toss every packet with the EOP bit clear and the
       
   910 		 * next frame that _does_ have the EOP bit set, as it is by
       
   911 		 * definition only a frame fragment
       
   912 		 */
       
   913 		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
       
   914 			adapter->flags2 |= FLAG2_IS_DISCARDING;
       
   915 
       
   916 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
       
   917 			/* All receives must fit into a single buffer */
       
   918 			e_dbg("Receive packet consumed multiple buffers\n");
       
   919 			/* recycle */
       
   920 			buffer_info->skb = skb;
       
   921 			if (staterr & E1000_RXD_STAT_EOP)
       
   922 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
       
   923 			goto next_desc;
       
   924 		}
       
   925 
       
   926 		if (unlikely(!adapter->ecdev &&
       
   927 					(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
       
   928 			     !(netdev->features & NETIF_F_RXALL))) {
       
   929 			/* recycle */
       
   930 			buffer_info->skb = skb;
       
   931 			goto next_desc;
       
   932 		}
       
   933 
       
   934 		/* adjust length to remove Ethernet CRC */
       
   935 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
       
   936 			/* If configured to store CRC, don't subtract FCS,
       
   937 			 * but keep the FCS bytes out of the total_rx_bytes
       
   938 			 * counter
       
   939 			 */
       
   940 			if (netdev->features & NETIF_F_RXFCS)
       
   941 				total_rx_bytes -= 4;
       
   942 			else
       
   943 				length -= 4;
       
   944 		}
       
   945 
       
   946 		total_rx_bytes += length;
       
   947 		total_rx_packets++;
       
   948 
       
   949 		/*
       
   950 		 * code added for copybreak, this should improve
       
   951 		 * performance for small packets with large amounts
       
   952 		 * of reassembly being done in the stack
       
   953 		 */
       
   954 		if (!adapter->ecdev && length < copybreak) {
       
   955 			struct sk_buff *new_skb =
       
   956 			    netdev_alloc_skb_ip_align(netdev, length);
       
   957 			if (new_skb) {
       
   958 				skb_copy_to_linear_data_offset(new_skb,
       
   959 							       -NET_IP_ALIGN,
       
   960 							       (skb->data -
       
   961 								NET_IP_ALIGN),
       
   962 							       (length +
       
   963 								NET_IP_ALIGN));
       
   964 				/* save the skb in buffer_info as good */
       
   965 				buffer_info->skb = skb;
       
   966 				skb = new_skb;
       
   967 			}
       
   968 			/* else just continue with the old one */
       
   969 		}
       
   970 		/* end copybreak code */
       
   971 		skb_put(skb, length);
       
   972 
       
   973 		/* Receive Checksum Offload */
       
   974 		e1000_rx_checksum(adapter, staterr, skb);
       
   975 
       
   976 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
       
   977 
       
   978 		if (adapter->ecdev) {
       
   979 			ecdev_receive(adapter->ecdev, skb->data, length);
       
   980 			adapter->ec_watchdog_jiffies = jiffies;
       
   981 		} else {
       
   982 		    e1000_receive_skb(adapter, netdev, skb, staterr,
       
   983 				      rx_desc->wb.upper.vlan);
       
   984 		}
       
   985 
       
   986 next_desc:
       
   987 		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
       
   988 
       
   989 		/* return some buffers to hardware, one at a time is too slow */
       
   990 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
       
   991 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
       
   992 					      GFP_ATOMIC);
       
   993 			cleaned_count = 0;
       
   994 		}
       
   995 
       
   996 		/* use prefetched values */
       
   997 		rx_desc = next_rxd;
       
   998 		buffer_info = next_buffer;
       
   999 
       
  1000 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
       
  1001 	}
       
  1002 	rx_ring->next_to_clean = i;
       
  1003 
       
  1004 	cleaned_count = e1000_desc_unused(rx_ring);
       
  1005 	if (cleaned_count)
       
  1006 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
       
  1007 
       
  1008 	adapter->total_rx_bytes += total_rx_bytes;
       
  1009 	adapter->total_rx_packets += total_rx_packets;
       
  1010 	return cleaned;
       
  1011 }
       
  1012 
       
  1013 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
       
  1014 			    struct e1000_buffer *buffer_info)
       
  1015 {
       
  1016 	struct e1000_adapter *adapter = tx_ring->adapter;
       
  1017 
       
  1018 	if (adapter->ecdev) {
       
  1019 		return;
       
  1020 	}
       
  1021 
       
  1022 	if (buffer_info->dma) {
       
  1023 		if (buffer_info->mapped_as_page)
       
  1024 			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
       
  1025 				       buffer_info->length, DMA_TO_DEVICE);
       
  1026 		else
       
  1027 			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
       
  1028 					 buffer_info->length, DMA_TO_DEVICE);
       
  1029 		buffer_info->dma = 0;
       
  1030 	}
       
  1031 	if (buffer_info->skb) {
       
  1032 		dev_kfree_skb_any(buffer_info->skb);
       
  1033 		buffer_info->skb = NULL;
       
  1034 	}
       
  1035 	buffer_info->time_stamp = 0;
       
  1036 }
       
  1037 
       
  1038 static void e1000_print_hw_hang(struct work_struct *work)
       
  1039 {
       
  1040 	struct e1000_adapter *adapter = container_of(work,
       
  1041 	                                             struct e1000_adapter,
       
  1042 	                                             print_hang_task);
       
  1043 	struct net_device *netdev = adapter->netdev;
       
  1044 	struct e1000_ring *tx_ring = adapter->tx_ring;
       
  1045 	unsigned int i = tx_ring->next_to_clean;
       
  1046 	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
       
  1047 	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
       
  1048 	struct e1000_hw *hw = &adapter->hw;
       
  1049 	u16 phy_status, phy_1000t_status, phy_ext_status;
       
  1050 	u16 pci_status;
       
  1051 
       
  1052 	if (test_bit(__E1000_DOWN, &adapter->state))
       
  1053 		return;
       
  1054 
       
  1055 	if (!adapter->tx_hang_recheck &&
       
  1056 	    (adapter->flags2 & FLAG2_DMA_BURST)) {
       
  1057 		/* May be block on write-back, flush and detect again
       
  1058 		 * flush pending descriptor writebacks to memory
       
  1059 		 */
       
  1060 		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
       
  1061 		/* execute the writes immediately */
       
  1062 		e1e_flush();
       
  1063 		/*
       
  1064 		 * Due to rare timing issues, write to TIDV again to ensure
       
  1065 		 * the write is successful
       
  1066 		 */
       
  1067 		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
       
  1068 		/* execute the writes immediately */
       
  1069 		e1e_flush();
       
  1070 		adapter->tx_hang_recheck = true;
       
  1071 		return;
       
  1072 	}
       
  1073 	/* Real hang detected */
       
  1074 	adapter->tx_hang_recheck = false;
       
  1075 	if (!adapter->ecdev) {
       
  1076 		netif_stop_queue(netdev);
       
  1077 	}
       
  1078 
       
  1079 	e1e_rphy(hw, PHY_STATUS, &phy_status);
       
  1080 	e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
       
  1081 	e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
       
  1082 
       
  1083 	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
       
  1084 
       
  1085 	/* detected Hardware unit hang */
       
  1086 	e_err("Detected Hardware Unit Hang:\n"
       
  1087 	      "  TDH                  <%x>\n"
       
  1088 	      "  TDT                  <%x>\n"
       
  1089 	      "  next_to_use          <%x>\n"
       
  1090 	      "  next_to_clean        <%x>\n"
       
  1091 	      "buffer_info[next_to_clean]:\n"
       
  1092 	      "  time_stamp           <%lx>\n"
       
  1093 	      "  next_to_watch        <%x>\n"
       
  1094 	      "  jiffies              <%lx>\n"
       
  1095 	      "  next_to_watch.status <%x>\n"
       
  1096 	      "MAC Status             <%x>\n"
       
  1097 	      "PHY Status             <%x>\n"
       
  1098 	      "PHY 1000BASE-T Status  <%x>\n"
       
  1099 	      "PHY Extended Status    <%x>\n"
       
  1100 	      "PCI Status             <%x>\n",
       
  1101 	      readl(tx_ring->head),
       
  1102 	      readl(tx_ring->tail),
       
  1103 	      tx_ring->next_to_use,
       
  1104 	      tx_ring->next_to_clean,
       
  1105 	      tx_ring->buffer_info[eop].time_stamp,
       
  1106 	      eop,
       
  1107 	      jiffies,
       
  1108 	      eop_desc->upper.fields.status,
       
  1109 	      er32(STATUS),
       
  1110 	      phy_status,
       
  1111 	      phy_1000t_status,
       
  1112 	      phy_ext_status,
       
  1113 	      pci_status);
       
  1114 }
       
  1115 
       
  1116 /**
       
  1117  * e1000_clean_tx_irq - Reclaim resources after transmit completes
       
  1118  * @tx_ring: Tx descriptor ring
       
  1119  *
       
  1120  * the return value indicates whether actual cleaning was done, there
       
  1121  * is no guarantee that everything was cleaned
       
  1122  **/
       
  1123 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
       
  1124 {
       
  1125 	struct e1000_adapter *adapter = tx_ring->adapter;
       
  1126 	struct net_device *netdev = adapter->netdev;
       
  1127 	struct e1000_hw *hw = &adapter->hw;
       
  1128 	struct e1000_tx_desc *tx_desc, *eop_desc;
       
  1129 	struct e1000_buffer *buffer_info;
       
  1130 	unsigned int i, eop;
       
  1131 	unsigned int count = 0;
       
  1132 	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
       
  1133 	unsigned int bytes_compl = 0, pkts_compl = 0;
       
  1134 
       
  1135 	i = tx_ring->next_to_clean;
       
  1136 	eop = tx_ring->buffer_info[i].next_to_watch;
       
  1137 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
       
  1138 
       
  1139 	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
       
  1140 	       (count < tx_ring->count)) {
       
  1141 		bool cleaned = false;
       
  1142 		rmb(); /* read buffer_info after eop_desc */
       
  1143 		for (; !cleaned; count++) {
       
  1144 			tx_desc = E1000_TX_DESC(*tx_ring, i);
       
  1145 			buffer_info = &tx_ring->buffer_info[i];
       
  1146 			cleaned = (i == eop);
       
  1147 
       
  1148 			if (cleaned) {
       
  1149 				total_tx_packets += buffer_info->segs;
       
  1150 				total_tx_bytes += buffer_info->bytecount;
       
  1151 				if (buffer_info->skb) {
       
  1152 					bytes_compl += buffer_info->skb->len;
       
  1153 					pkts_compl++;
       
  1154 				}
       
  1155 			}
       
  1156 
       
  1157 			e1000_put_txbuf(tx_ring, buffer_info);
       
  1158 			tx_desc->upper.data = 0;
       
  1159 
       
  1160 			i++;
       
  1161 			if (i == tx_ring->count)
       
  1162 				i = 0;
       
  1163 		}
       
  1164 
       
  1165 		if (i == tx_ring->next_to_use)
       
  1166 			break;
       
  1167 		eop = tx_ring->buffer_info[i].next_to_watch;
       
  1168 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
       
  1169 	}
       
  1170 
       
  1171 	tx_ring->next_to_clean = i;
       
  1172 
       
  1173 	if (!adapter->ecdev) {
       
  1174 		netdev_completed_queue(netdev, pkts_compl, bytes_compl);
       
  1175 	}
       
  1176 
       
  1177 #define TX_WAKE_THRESHOLD 32
       
  1178 	if (!adapter->ecdev && count && netif_carrier_ok(netdev) &&
       
  1179 	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
       
  1180 		/* Make sure that anybody stopping the queue after this
       
  1181 		 * sees the new next_to_clean.
       
  1182 		 */
       
  1183 		smp_mb();
       
  1184 
       
  1185 		if (netif_queue_stopped(netdev) &&
       
  1186 		    !(test_bit(__E1000_DOWN, &adapter->state))) {
       
  1187 			netif_wake_queue(netdev);
       
  1188 			++adapter->restart_queue;
       
  1189 		}
       
  1190 	}
       
  1191 
       
  1192 	if (!adapter->ecdev && adapter->detect_tx_hung) {
       
  1193 		/*
       
  1194 		 * Detect a transmit hang in hardware, this serializes the
       
  1195 		 * check with the clearing of time_stamp and movement of i
       
  1196 		 */
       
  1197 		adapter->detect_tx_hung = false;
       
  1198 		if (tx_ring->buffer_info[i].time_stamp &&
       
  1199 		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
       
  1200 			       + (adapter->tx_timeout_factor * HZ)) &&
       
  1201 		    !(er32(STATUS) & E1000_STATUS_TXOFF))
       
  1202 			schedule_work(&adapter->print_hang_task);
       
  1203 		else
       
  1204 			adapter->tx_hang_recheck = false;
       
  1205 	}
       
  1206 	adapter->total_tx_bytes += total_tx_bytes;
       
  1207 	adapter->total_tx_packets += total_tx_packets;
       
  1208 	return count < tx_ring->count;
       
  1209 }
       
  1210 
       
  1211 /**
       
  1212  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
       
  1213  * @rx_ring: Rx descriptor ring
       
  1214  *
       
  1215  * the return value indicates whether actual cleaning was done, there
       
  1216  * is no guarantee that everything was cleaned
       
  1217  **/
       
  1218 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
       
  1219 				  int work_to_do)
       
  1220 {
       
  1221 	struct e1000_adapter *adapter = rx_ring->adapter;
       
  1222 	struct e1000_hw *hw = &adapter->hw;
       
  1223 	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
       
  1224 	struct net_device *netdev = adapter->netdev;
       
  1225 	struct pci_dev *pdev = adapter->pdev;
       
  1226 	struct e1000_buffer *buffer_info, *next_buffer;
       
  1227 	struct e1000_ps_page *ps_page;
       
  1228 	struct sk_buff *skb;
       
  1229 	unsigned int i, j;
       
  1230 	u32 length, staterr;
       
  1231 	int cleaned_count = 0;
       
  1232 	bool cleaned = false;
       
  1233 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
       
  1234 
       
  1235 	i = rx_ring->next_to_clean;
       
  1236 	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
       
  1237 	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
       
  1238 	buffer_info = &rx_ring->buffer_info[i];
       
  1239 
       
  1240 	while (staterr & E1000_RXD_STAT_DD) {
       
  1241 		if (*work_done >= work_to_do)
       
  1242 			break;
       
  1243 		(*work_done)++;
       
  1244 		skb = buffer_info->skb;
       
  1245 		rmb();	/* read descriptor and rx_buffer_info after status DD */
       
  1246 
       
  1247 		/* in the packet split case this is header only */
       
  1248 		prefetch(skb->data - NET_IP_ALIGN);
       
  1249 
       
  1250 		i++;
       
  1251 		if (i == rx_ring->count)
       
  1252 			i = 0;
       
  1253 		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
       
  1254 		prefetch(next_rxd);
       
  1255 
       
  1256 		next_buffer = &rx_ring->buffer_info[i];
       
  1257 
       
  1258 		cleaned = true;
       
  1259 		cleaned_count++;
       
  1260 		dma_unmap_single(&pdev->dev, buffer_info->dma,
       
  1261 				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
       
  1262 		buffer_info->dma = 0;
       
  1263 
       
  1264 		/* see !EOP comment in other Rx routine */
       
  1265 		if (!(staterr & E1000_RXD_STAT_EOP))
       
  1266 			adapter->flags2 |= FLAG2_IS_DISCARDING;
       
  1267 
       
  1268 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
       
  1269 			e_dbg("Packet Split buffers didn't pick up the full packet\n");
       
  1270 			if (!adapter->ecdev) {
       
  1271 				dev_kfree_skb_irq(skb);
       
  1272 			}
       
  1273 			if (staterr & E1000_RXD_STAT_EOP)
       
  1274 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
       
  1275 			goto next_desc;
       
  1276 		}
       
  1277 
       
  1278 		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
       
  1279 			     !(netdev->features & NETIF_F_RXALL))) {
       
  1280 			if (!adapter->ecdev) {
       
  1281 				dev_kfree_skb_irq(skb);
       
  1282 			}
       
  1283 			goto next_desc;
       
  1284 		}
       
  1285 
       
  1286 		length = le16_to_cpu(rx_desc->wb.middle.length0);
       
  1287 
       
  1288 		if (!length) {
       
  1289 			e_dbg("Last part of the packet spanning multiple descriptors\n");
       
  1290 			if (!adapter->ecdev) {
       
  1291 				dev_kfree_skb_irq(skb);
       
  1292 			}
       
  1293 			goto next_desc;
       
  1294 		}
       
  1295 
       
  1296 		/* Good Receive */
       
  1297 		skb_put(skb, length);
       
  1298 
       
  1299 		{
       
  1300 			/*
       
  1301 			 * this looks ugly, but it seems compiler issues make
       
  1302 			 * it more efficient than reusing j
       
  1303 			 */
       
  1304 			int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
       
  1305 
       
  1306 			/*
       
  1307 			 * page alloc/put takes too long and effects small
       
  1308 			 * packet throughput, so unsplit small packets and
       
  1309 			 * save the alloc/put only valid in softirq (napi)
       
  1310 			 * context to call kmap_*
       
  1311 			 */
       
  1312 			if (l1 && (l1 <= copybreak) &&
       
  1313 			    ((length + l1) <= adapter->rx_ps_bsize0)) {
       
  1314 				u8 *vaddr;
       
  1315 
       
  1316 				ps_page = &buffer_info->ps_pages[0];
       
  1317 
       
  1318 				/*
       
  1319 				 * there is no documentation about how to call
       
  1320 				 * kmap_atomic, so we can't hold the mapping
       
  1321 				 * very long
       
  1322 				 */
       
  1323 				dma_sync_single_for_cpu(&pdev->dev,
       
  1324 							ps_page->dma,
       
  1325 							PAGE_SIZE,
       
  1326 							DMA_FROM_DEVICE);
       
  1327 				vaddr = kmap_atomic(ps_page->page);
       
  1328 				memcpy(skb_tail_pointer(skb), vaddr, l1);
       
  1329 				kunmap_atomic(vaddr);
       
  1330 				dma_sync_single_for_device(&pdev->dev,
       
  1331 							   ps_page->dma,
       
  1332 							   PAGE_SIZE,
       
  1333 							   DMA_FROM_DEVICE);
       
  1334 
       
  1335 				/* remove the CRC */
       
  1336 				if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
       
  1337 					if (!(netdev->features & NETIF_F_RXFCS))
       
  1338 						l1 -= 4;
       
  1339 				}
       
  1340 
       
  1341 				skb_put(skb, l1);
       
  1342 				goto copydone;
       
  1343 			} /* if */
       
  1344 		}
       
  1345 
       
  1346 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
       
  1347 			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
       
  1348 			if (!length)
       
  1349 				break;
       
  1350 
       
  1351 			ps_page = &buffer_info->ps_pages[j];
       
  1352 			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
       
  1353 				       DMA_FROM_DEVICE);
       
  1354 			ps_page->dma = 0;
       
  1355 			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
       
  1356 			ps_page->page = NULL;
       
  1357 			skb->len += length;
       
  1358 			skb->data_len += length;
       
  1359 			skb->truesize += PAGE_SIZE;
       
  1360 		}
       
  1361 
       
  1362 		/* strip the ethernet crc, problem is we're using pages now so
       
  1363 		 * this whole operation can get a little cpu intensive
       
  1364 		 */
       
  1365 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
       
  1366 			if (!(netdev->features & NETIF_F_RXFCS))
       
  1367 				pskb_trim(skb, skb->len - 4);
       
  1368 		}
       
  1369 
       
  1370 copydone:
       
  1371 		total_rx_bytes += skb->len;
       
  1372 		total_rx_packets++;
       
  1373 
       
  1374 		e1000_rx_checksum(adapter, staterr, skb);
       
  1375 
       
  1376 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
       
  1377 
       
  1378 		if (rx_desc->wb.upper.header_status &
       
  1379 			   cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
       
  1380 			adapter->rx_hdr_split++;
       
  1381 
       
  1382 		if (adapter->ecdev) {
       
  1383 			ecdev_receive(adapter->ecdev, skb->data, length);
       
  1384 			adapter->ec_watchdog_jiffies = jiffies;
       
  1385 		} else {
       
  1386 			e1000_receive_skb(adapter, netdev, skb,
       
  1387 					  staterr, rx_desc->wb.middle.vlan);
       
  1388 		}
       
  1389 
       
  1390 next_desc:
       
  1391 		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
       
  1392 		if (!adapter->ecdev) buffer_info->skb = NULL;
       
  1393 
       
  1394 		/* return some buffers to hardware, one at a time is too slow */
       
  1395 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
       
  1396 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
       
  1397 					      GFP_ATOMIC);
       
  1398 			cleaned_count = 0;
       
  1399 		}
       
  1400 
       
  1401 		/* use prefetched values */
       
  1402 		rx_desc = next_rxd;
       
  1403 		buffer_info = next_buffer;
       
  1404 
       
  1405 		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
       
  1406 	}
       
  1407 	rx_ring->next_to_clean = i;
       
  1408 
       
  1409 	cleaned_count = e1000_desc_unused(rx_ring);
       
  1410 	if (cleaned_count)
       
  1411 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
       
  1412 
       
  1413 	adapter->total_rx_bytes += total_rx_bytes;
       
  1414 	adapter->total_rx_packets += total_rx_packets;
       
  1415 	return cleaned;
       
  1416 }
       
  1417 
       
  1418 /**
       
  1419  * e1000_consume_page - helper function
       
  1420  **/
       
  1421 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
       
  1422                                u16 length)
       
  1423 {
       
  1424 	bi->page = NULL;
       
  1425 	skb->len += length;
       
  1426 	skb->data_len += length;
       
  1427 	skb->truesize += PAGE_SIZE;
       
  1428 }
       
  1429 
       
  1430 /**
       
  1431  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
       
  1432  * @adapter: board private structure
       
  1433  *
       
  1434  * the return value indicates whether actual cleaning was done, there
       
  1435  * is no guarantee that everything was cleaned
       
  1436  **/
       
  1437 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
       
  1438 				     int work_to_do)
       
  1439 {
       
  1440 	struct e1000_adapter *adapter = rx_ring->adapter;
       
  1441 	struct net_device *netdev = adapter->netdev;
       
  1442 	struct pci_dev *pdev = adapter->pdev;
       
  1443 	union e1000_rx_desc_extended *rx_desc, *next_rxd;
       
  1444 	struct e1000_buffer *buffer_info, *next_buffer;
       
  1445 	u32 length, staterr;
       
  1446 	unsigned int i;
       
  1447 	int cleaned_count = 0;
       
  1448 	bool cleaned = false;
       
  1449 	unsigned int total_rx_bytes=0, total_rx_packets=0;
       
  1450 
       
  1451 	i = rx_ring->next_to_clean;
       
  1452 	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
       
  1453 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
       
  1454 	buffer_info = &rx_ring->buffer_info[i];
       
  1455 
       
  1456 	while (staterr & E1000_RXD_STAT_DD) {
       
  1457 		struct sk_buff *skb;
       
  1458 
       
  1459 		if (*work_done >= work_to_do)
       
  1460 			break;
       
  1461 		(*work_done)++;
       
  1462 		rmb();	/* read descriptor and rx_buffer_info after status DD */
       
  1463 
       
  1464 		skb = buffer_info->skb;
       
  1465 
       
  1466 		if (!adapter->ecdev)
       
  1467 			buffer_info->skb = NULL;
       
  1468 
       
  1469 		++i;
       
  1470 		if (i == rx_ring->count)
       
  1471 			i = 0;
       
  1472 		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
       
  1473 		prefetch(next_rxd);
       
  1474 
       
  1475 		next_buffer = &rx_ring->buffer_info[i];
       
  1476 
       
  1477 		cleaned = true;
       
  1478 		cleaned_count++;
       
  1479 		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
       
  1480 			       DMA_FROM_DEVICE);
       
  1481 		buffer_info->dma = 0;
       
  1482 
       
  1483 		length = le16_to_cpu(rx_desc->wb.upper.length);
       
  1484 
       
  1485 		/* errors is only valid for DD + EOP descriptors */
       
  1486 		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
       
  1487 			     ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
       
  1488 			      !(netdev->features & NETIF_F_RXALL)))) {
       
  1489 			/* recycle both page and skb */
       
  1490 			buffer_info->skb = skb;
       
  1491 			/* an error means any chain goes out the window too */
       
  1492 			if (!adapter->ecdev && rx_ring->rx_skb_top) {
       
  1493 				dev_kfree_skb_irq(rx_ring->rx_skb_top);
       
  1494 			}
       
  1495 			rx_ring->rx_skb_top = NULL;
       
  1496 			goto next_desc;
       
  1497 		}
       
  1498 
       
  1499 #define rxtop (rx_ring->rx_skb_top)
       
  1500 		if (!(staterr & E1000_RXD_STAT_EOP)) {
       
  1501 			/* this descriptor is only the beginning (or middle) */
       
  1502 			if (!rxtop) {
       
  1503 				/* this is the beginning of a chain */
       
  1504 				rxtop = skb;
       
  1505 				skb_fill_page_desc(rxtop, 0, buffer_info->page,
       
  1506 				                   0, length);
       
  1507 			} else {
       
  1508 				/* this is the middle of a chain */
       
  1509 				skb_fill_page_desc(rxtop,
       
  1510 				    skb_shinfo(rxtop)->nr_frags,
       
  1511 				    buffer_info->page, 0, length);
       
  1512 				/* re-use the skb, only consumed the page */
       
  1513 				buffer_info->skb = skb;
       
  1514 			}
       
  1515 			e1000_consume_page(buffer_info, rxtop, length);
       
  1516 			goto next_desc;
       
  1517 		} else {
       
  1518 			if (rxtop) {
       
  1519 				/* end of the chain */
       
  1520 				skb_fill_page_desc(rxtop,
       
  1521 				    skb_shinfo(rxtop)->nr_frags,
       
  1522 				    buffer_info->page, 0, length);
       
  1523 				/* re-use the current skb, we only consumed the
       
  1524 				 * page */
       
  1525 				buffer_info->skb = skb;
       
  1526 				skb = rxtop;
       
  1527 				rxtop = NULL;
       
  1528 				e1000_consume_page(buffer_info, skb, length);
       
  1529 			} else {
       
  1530 				/* no chain, got EOP, this buf is the packet
       
  1531 				 * copybreak to save the put_page/alloc_page */
       
  1532 				if (length <= copybreak &&
       
  1533 				    skb_tailroom(skb) >= length) {
       
  1534 					u8 *vaddr;
       
  1535 					vaddr = kmap_atomic(buffer_info->page);
       
  1536 					memcpy(skb_tail_pointer(skb), vaddr,
       
  1537 					       length);
       
  1538 					kunmap_atomic(vaddr);
       
  1539 					/* re-use the page, so don't erase
       
  1540 					 * buffer_info->page */
       
  1541 					skb_put(skb, length);
       
  1542 				} else {
       
  1543 					skb_fill_page_desc(skb, 0,
       
  1544 					                   buffer_info->page, 0,
       
  1545 				                           length);
       
  1546 					e1000_consume_page(buffer_info, skb,
       
  1547 					                   length);
       
  1548 				}
       
  1549 			}
       
  1550 		}
       
  1551 
       
  1552 		/* Receive Checksum Offload */
       
  1553 		e1000_rx_checksum(adapter, staterr, skb);
       
  1554 
       
  1555 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
       
  1556 
       
  1557 		/* probably a little skewed due to removing CRC */
       
  1558 		total_rx_bytes += skb->len;
       
  1559 		total_rx_packets++;
       
  1560 
       
  1561 		/* eth type trans needs skb->data to point to something */
       
  1562 		if (!adapter->ecdev && !pskb_may_pull(skb, ETH_HLEN)) {
       
  1563 			e_err("pskb_may_pull failed.\n");
       
  1564 			dev_kfree_skb_irq(skb);
       
  1565 			goto next_desc;
       
  1566 		}
       
  1567 
       
  1568 		if (adapter->ecdev) {
       
  1569 			ecdev_receive(adapter->ecdev, skb->data, length);
       
  1570 			adapter->ec_watchdog_jiffies = jiffies;
       
  1571 		} else {
       
  1572 			e1000_receive_skb(adapter, netdev, skb, staterr,
       
  1573 					  rx_desc->wb.upper.vlan);
       
  1574 		}
       
  1575 
       
  1576 
       
  1577 next_desc:
       
  1578 		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
       
  1579 
       
  1580 		/* return some buffers to hardware, one at a time is too slow */
       
  1581 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
       
  1582 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
       
  1583 					      GFP_ATOMIC);
       
  1584 			cleaned_count = 0;
       
  1585 		}
       
  1586 
       
  1587 		/* use prefetched values */
       
  1588 		rx_desc = next_rxd;
       
  1589 		buffer_info = next_buffer;
       
  1590 
       
  1591 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
       
  1592 	}
       
  1593 	rx_ring->next_to_clean = i;
       
  1594 
       
  1595 	cleaned_count = e1000_desc_unused(rx_ring);
       
  1596 	if (cleaned_count)
       
  1597 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
       
  1598 
       
  1599 	adapter->total_rx_bytes += total_rx_bytes;
       
  1600 	adapter->total_rx_packets += total_rx_packets;
       
  1601 	return cleaned;
       
  1602 }
       
  1603 
       
  1604 /**
       
  1605  * e1000_clean_rx_ring - Free Rx Buffers per Queue
       
  1606  * @rx_ring: Rx descriptor ring
       
  1607  **/
       
  1608 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
       
  1609 {
       
  1610 	struct e1000_adapter *adapter = rx_ring->adapter;
       
  1611 	struct e1000_buffer *buffer_info;
       
  1612 	struct e1000_ps_page *ps_page;
       
  1613 	struct pci_dev *pdev = adapter->pdev;
       
  1614 	unsigned int i, j;
       
  1615 
       
  1616 	/* Free all the Rx ring sk_buffs */
       
  1617 	for (i = 0; i < rx_ring->count; i++) {
       
  1618 		buffer_info = &rx_ring->buffer_info[i];
       
  1619 		if (buffer_info->dma) {
       
  1620 			if (adapter->clean_rx == e1000_clean_rx_irq)
       
  1621 				dma_unmap_single(&pdev->dev, buffer_info->dma,
       
  1622 						 adapter->rx_buffer_len,
       
  1623 						 DMA_FROM_DEVICE);
       
  1624 			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
       
  1625 				dma_unmap_page(&pdev->dev, buffer_info->dma,
       
  1626 				               PAGE_SIZE,
       
  1627 					       DMA_FROM_DEVICE);
       
  1628 			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
       
  1629 				dma_unmap_single(&pdev->dev, buffer_info->dma,
       
  1630 						 adapter->rx_ps_bsize0,
       
  1631 						 DMA_FROM_DEVICE);
       
  1632 			buffer_info->dma = 0;
       
  1633 		}
       
  1634 
       
  1635 		if (buffer_info->page) {
       
  1636 			put_page(buffer_info->page);
       
  1637 			buffer_info->page = NULL;
       
  1638 		}
       
  1639 
       
  1640 		if (buffer_info->skb) {
       
  1641 			dev_kfree_skb(buffer_info->skb);
       
  1642 			buffer_info->skb = NULL;
       
  1643 		}
       
  1644 
       
  1645 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
       
  1646 			ps_page = &buffer_info->ps_pages[j];
       
  1647 			if (!ps_page->page)
       
  1648 				break;
       
  1649 			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
       
  1650 				       DMA_FROM_DEVICE);
       
  1651 			ps_page->dma = 0;
       
  1652 			put_page(ps_page->page);
       
  1653 			ps_page->page = NULL;
       
  1654 		}
       
  1655 	}
       
  1656 
       
  1657 	/* there also may be some cached data from a chained receive */
       
  1658 	if (rx_ring->rx_skb_top) {
       
  1659 		dev_kfree_skb(rx_ring->rx_skb_top);
       
  1660 		rx_ring->rx_skb_top = NULL;
       
  1661 	}
       
  1662 
       
  1663 	/* Zero out the descriptor ring */
       
  1664 	memset(rx_ring->desc, 0, rx_ring->size);
       
  1665 
       
  1666 	rx_ring->next_to_clean = 0;
       
  1667 	rx_ring->next_to_use = 0;
       
  1668 	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
       
  1669 
       
  1670 	writel(0, rx_ring->head);
       
  1671 	writel(0, rx_ring->tail);
       
  1672 }
       
  1673 
       
  1674 static void e1000e_downshift_workaround(struct work_struct *work)
       
  1675 {
       
  1676 	struct e1000_adapter *adapter = container_of(work,
       
  1677 					struct e1000_adapter, downshift_task);
       
  1678 
       
  1679 	if (test_bit(__E1000_DOWN, &adapter->state))
       
  1680 		return;
       
  1681 
       
  1682 	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
       
  1683 }
       
  1684 
       
  1685 /**
       
  1686  * e1000_intr_msi - Interrupt Handler
       
  1687  * @irq: interrupt number
       
  1688  * @data: pointer to a network interface device structure
       
  1689  **/
       
  1690 static irqreturn_t e1000_intr_msi(int irq, void *data)
       
  1691 {
       
  1692 	struct net_device *netdev = data;
       
  1693 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1694 	struct e1000_hw *hw = &adapter->hw;
       
  1695 	u32 icr = er32(ICR);
       
  1696 
       
  1697 	if (adapter->ecdev) {
       
  1698 		int ec_work_done = 0;
       
  1699 		adapter->clean_rx(adapter->rx_ring, &ec_work_done, 100);
       
  1700 		e1000_clean_tx_irq(adapter->tx_ring);
       
  1701 		return IRQ_HANDLED;
       
  1702 	}
       
  1703 	/*
       
  1704 	 * read ICR disables interrupts using IAM
       
  1705 	 */
       
  1706 
       
  1707 	if (icr & E1000_ICR_LSC) {
       
  1708 		hw->mac.get_link_status = true;
       
  1709 		/*
       
  1710 		 * ICH8 workaround-- Call gig speed drop workaround on cable
       
  1711 		 * disconnect (LSC) before accessing any PHY registers
       
  1712 		 */
       
  1713 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
       
  1714 		    (!(er32(STATUS) & E1000_STATUS_LU)))
       
  1715 			schedule_work(&adapter->downshift_task);
       
  1716 
       
  1717 		/*
       
  1718 		 * 80003ES2LAN workaround-- For packet buffer work-around on
       
  1719 		 * link down event; disable receives here in the ISR and reset
       
  1720 		 * adapter in watchdog
       
  1721 		 */
       
  1722 		if (netif_carrier_ok(netdev) &&
       
  1723 		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
       
  1724 			/* disable receives */
       
  1725 			u32 rctl = er32(RCTL);
       
  1726 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
       
  1727 			adapter->flags |= FLAG_RX_RESTART_NOW;
       
  1728 		}
       
  1729 		/* guard against interrupt when we're going down */
       
  1730 		if (!test_bit(__E1000_DOWN, &adapter->state))
       
  1731 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
       
  1732 	}
       
  1733 
       
  1734 	if (napi_schedule_prep(&adapter->napi)) {
       
  1735 		adapter->total_tx_bytes = 0;
       
  1736 		adapter->total_tx_packets = 0;
       
  1737 		adapter->total_rx_bytes = 0;
       
  1738 		adapter->total_rx_packets = 0;
       
  1739 		__napi_schedule(&adapter->napi);
       
  1740 	}
       
  1741 
       
  1742 	return IRQ_HANDLED;
       
  1743 }
       
  1744 
       
  1745 /**
       
  1746  * e1000_intr - Interrupt Handler
       
  1747  * @irq: interrupt number
       
  1748  * @data: pointer to a network interface device structure
       
  1749  **/
       
  1750 static irqreturn_t e1000_intr(int irq, void *data)
       
  1751 {
       
  1752 	struct net_device *netdev = data;
       
  1753 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1754 	struct e1000_hw *hw = &adapter->hw;
       
  1755 	u32 rctl, icr = er32(ICR);
       
  1756 
       
  1757 	if (adapter->ecdev) {
       
  1758 		int ec_work_done = 0;
       
  1759 		adapter->clean_rx(adapter->rx_ring, &ec_work_done, 100);
       
  1760 		e1000_clean_tx_irq(adapter->tx_ring);
       
  1761 		return IRQ_HANDLED;
       
  1762 	}
       
  1763 
       
  1764 	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
       
  1765 		return IRQ_NONE;  /* Not our interrupt */
       
  1766 
       
  1767 	/*
       
  1768 	 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
       
  1769 	 * not set, then the adapter didn't send an interrupt
       
  1770 	 */
       
  1771 	if (!(icr & E1000_ICR_INT_ASSERTED))
       
  1772 		return IRQ_NONE;
       
  1773 
       
  1774 	/*
       
  1775 	 * Interrupt Auto-Mask...upon reading ICR,
       
  1776 	 * interrupts are masked.  No need for the
       
  1777 	 * IMC write
       
  1778 	 */
       
  1779 
       
  1780 	if (icr & E1000_ICR_LSC) {
       
  1781 		hw->mac.get_link_status = true;
       
  1782 		/*
       
  1783 		 * ICH8 workaround-- Call gig speed drop workaround on cable
       
  1784 		 * disconnect (LSC) before accessing any PHY registers
       
  1785 		 */
       
  1786 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
       
  1787 		    (!(er32(STATUS) & E1000_STATUS_LU)))
       
  1788 			schedule_work(&adapter->downshift_task);
       
  1789 
       
  1790 		/*
       
  1791 		 * 80003ES2LAN workaround--
       
  1792 		 * For packet buffer work-around on link down event;
       
  1793 		 * disable receives here in the ISR and
       
  1794 		 * reset adapter in watchdog
       
  1795 		 */
       
  1796 		if (netif_carrier_ok(netdev) &&
       
  1797 		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
       
  1798 			/* disable receives */
       
  1799 			rctl = er32(RCTL);
       
  1800 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
       
  1801 			adapter->flags |= FLAG_RX_RESTART_NOW;
       
  1802 		}
       
  1803 		/* guard against interrupt when we're going down */
       
  1804 		if (!test_bit(__E1000_DOWN, &adapter->state))
       
  1805 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
       
  1806 	}
       
  1807 
       
  1808 	if (napi_schedule_prep(&adapter->napi)) {
       
  1809 		adapter->total_tx_bytes = 0;
       
  1810 		adapter->total_tx_packets = 0;
       
  1811 		adapter->total_rx_bytes = 0;
       
  1812 		adapter->total_rx_packets = 0;
       
  1813 		__napi_schedule(&adapter->napi);
       
  1814 	}
       
  1815 
       
  1816 	return IRQ_HANDLED;
       
  1817 }
       
  1818 
       
  1819 static irqreturn_t e1000_msix_other(int irq, void *data)
       
  1820 {
       
  1821 	struct net_device *netdev = data;
       
  1822 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1823 	struct e1000_hw *hw = &adapter->hw;
       
  1824 	u32 icr = er32(ICR);
       
  1825 
       
  1826 	if (!(icr & E1000_ICR_INT_ASSERTED)) {
       
  1827 		if (!test_bit(__E1000_DOWN, &adapter->state))
       
  1828 			ew32(IMS, E1000_IMS_OTHER);
       
  1829 		return IRQ_NONE;
       
  1830 	}
       
  1831 
       
  1832 	if (icr & adapter->eiac_mask)
       
  1833 		ew32(ICS, (icr & adapter->eiac_mask));
       
  1834 
       
  1835 	if (icr & E1000_ICR_OTHER) {
       
  1836 		if (!(icr & E1000_ICR_LSC))
       
  1837 			goto no_link_interrupt;
       
  1838 		hw->mac.get_link_status = true;
       
  1839 		/* guard against interrupt when we're going down */
       
  1840 		if (!adapter->ecdev && !test_bit(__E1000_DOWN, &adapter->state))
       
  1841 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
       
  1842 	}
       
  1843 
       
  1844 no_link_interrupt:
       
  1845 	if (!test_bit(__E1000_DOWN, &adapter->state))
       
  1846 		ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
       
  1847 
       
  1848 	return IRQ_HANDLED;
       
  1849 }
       
  1850 
       
  1851 
       
  1852 static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
       
  1853 {
       
  1854 	struct net_device *netdev = data;
       
  1855 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1856 	struct e1000_hw *hw = &adapter->hw;
       
  1857 	struct e1000_ring *tx_ring = adapter->tx_ring;
       
  1858 
       
  1859 
       
  1860 	adapter->total_tx_bytes = 0;
       
  1861 	adapter->total_tx_packets = 0;
       
  1862 
       
  1863 	if (!e1000_clean_tx_irq(tx_ring))
       
  1864 		/* Ring was not completely cleaned, so fire another interrupt */
       
  1865 		ew32(ICS, tx_ring->ims_val);
       
  1866 
       
  1867 	return IRQ_HANDLED;
       
  1868 }
       
  1869 
       
  1870 static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
       
  1871 {
       
  1872 	struct net_device *netdev = data;
       
  1873 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1874 	struct e1000_ring *rx_ring = adapter->rx_ring;
       
  1875 
       
  1876 	/* Write the ITR value calculated at the end of the
       
  1877 	 * previous interrupt.
       
  1878 	 */
       
  1879 	if (rx_ring->set_itr) {
       
  1880 		writel(1000000000 / (rx_ring->itr_val * 256),
       
  1881 		       rx_ring->itr_register);
       
  1882 		rx_ring->set_itr = 0;
       
  1883 	}
       
  1884 
       
  1885 	if (adapter->ecdev) {
       
  1886 		int ec_work_done = 0;
       
  1887 		adapter->clean_rx(adapter->rx_ring, &ec_work_done, 100);
       
  1888 	} else {
       
  1889 		if (napi_schedule_prep(&adapter->napi)) {
       
  1890 			adapter->total_rx_bytes = 0;
       
  1891 			adapter->total_rx_packets = 0;
       
  1892 			__napi_schedule(&adapter->napi);
       
  1893 		}
       
  1894 	}
       
  1895 	return IRQ_HANDLED;
       
  1896 }
       
  1897 
       
  1898 /**
       
  1899  * e1000_configure_msix - Configure MSI-X hardware
       
  1900  *
       
  1901  * e1000_configure_msix sets up the hardware to properly
       
  1902  * generate MSI-X interrupts.
       
  1903  **/
       
  1904 static void e1000_configure_msix(struct e1000_adapter *adapter)
       
  1905 {
       
  1906 	struct e1000_hw *hw = &adapter->hw;
       
  1907 	struct e1000_ring *rx_ring = adapter->rx_ring;
       
  1908 	struct e1000_ring *tx_ring = adapter->tx_ring;
       
  1909 	int vector = 0;
       
  1910 	u32 ctrl_ext, ivar = 0;
       
  1911 
       
  1912 	adapter->eiac_mask = 0;
       
  1913 
       
  1914 	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
       
  1915 	if (hw->mac.type == e1000_82574) {
       
  1916 		u32 rfctl = er32(RFCTL);
       
  1917 		rfctl |= E1000_RFCTL_ACK_DIS;
       
  1918 		ew32(RFCTL, rfctl);
       
  1919 	}
       
  1920 
       
  1921 #define E1000_IVAR_INT_ALLOC_VALID	0x8
       
  1922 	/* Configure Rx vector */
       
  1923 	rx_ring->ims_val = E1000_IMS_RXQ0;
       
  1924 	adapter->eiac_mask |= rx_ring->ims_val;
       
  1925 	if (rx_ring->itr_val)
       
  1926 		writel(1000000000 / (rx_ring->itr_val * 256),
       
  1927 		       rx_ring->itr_register);
       
  1928 	else
       
  1929 		writel(1, rx_ring->itr_register);
       
  1930 	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
       
  1931 
       
  1932 	/* Configure Tx vector */
       
  1933 	tx_ring->ims_val = E1000_IMS_TXQ0;
       
  1934 	vector++;
       
  1935 	if (tx_ring->itr_val)
       
  1936 		writel(1000000000 / (tx_ring->itr_val * 256),
       
  1937 		       tx_ring->itr_register);
       
  1938 	else
       
  1939 		writel(1, tx_ring->itr_register);
       
  1940 	adapter->eiac_mask |= tx_ring->ims_val;
       
  1941 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
       
  1942 
       
  1943 	/* set vector for Other Causes, e.g. link changes */
       
  1944 	vector++;
       
  1945 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
       
  1946 	if (rx_ring->itr_val)
       
  1947 		writel(1000000000 / (rx_ring->itr_val * 256),
       
  1948 		       hw->hw_addr + E1000_EITR_82574(vector));
       
  1949 	else
       
  1950 		writel(1, hw->hw_addr + E1000_EITR_82574(vector));
       
  1951 
       
  1952 	/* Cause Tx interrupts on every write back */
       
  1953 	ivar |= (1 << 31);
       
  1954 
       
  1955 	ew32(IVAR, ivar);
       
  1956 
       
  1957 	/* enable MSI-X PBA support */
       
  1958 	ctrl_ext = er32(CTRL_EXT);
       
  1959 	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
       
  1960 
       
  1961 	/* Auto-Mask Other interrupts upon ICR read */
       
  1962 #define E1000_EIAC_MASK_82574   0x01F00000
       
  1963 	ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
       
  1964 	ctrl_ext |= E1000_CTRL_EXT_EIAME;
       
  1965 	ew32(CTRL_EXT, ctrl_ext);
       
  1966 	e1e_flush();
       
  1967 }
       
  1968 
       
  1969 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
       
  1970 {
       
  1971 	if (adapter->msix_entries) {
       
  1972 		pci_disable_msix(adapter->pdev);
       
  1973 		kfree(adapter->msix_entries);
       
  1974 		adapter->msix_entries = NULL;
       
  1975 	} else if (adapter->flags & FLAG_MSI_ENABLED) {
       
  1976 		pci_disable_msi(adapter->pdev);
       
  1977 		adapter->flags &= ~FLAG_MSI_ENABLED;
       
  1978 	}
       
  1979 }
       
  1980 
       
  1981 /**
       
  1982  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
       
  1983  *
       
  1984  * Attempt to configure interrupts using the best available
       
  1985  * capabilities of the hardware and kernel.
       
  1986  **/
       
  1987 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
       
  1988 {
       
  1989 	int err;
       
  1990 	int i;
       
  1991 
       
  1992 	switch (adapter->int_mode) {
       
  1993 	case E1000E_INT_MODE_MSIX:
       
  1994 		if (adapter->flags & FLAG_HAS_MSIX) {
       
  1995 			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
       
  1996 			adapter->msix_entries = kcalloc(adapter->num_vectors,
       
  1997 						      sizeof(struct msix_entry),
       
  1998 						      GFP_KERNEL);
       
  1999 			if (adapter->msix_entries) {
       
  2000 				for (i = 0; i < adapter->num_vectors; i++)
       
  2001 					adapter->msix_entries[i].entry = i;
       
  2002 
       
  2003 				err = pci_enable_msix(adapter->pdev,
       
  2004 						      adapter->msix_entries,
       
  2005 						      adapter->num_vectors);
       
  2006 				if (err == 0)
       
  2007 					return;
       
  2008 			}
       
  2009 			/* MSI-X failed, so fall through and try MSI */
       
  2010 			e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
       
  2011 			e1000e_reset_interrupt_capability(adapter);
       
  2012 		}
       
  2013 		adapter->int_mode = E1000E_INT_MODE_MSI;
       
  2014 		/* Fall through */
       
  2015 	case E1000E_INT_MODE_MSI:
       
  2016 		if (!pci_enable_msi(adapter->pdev)) {
       
  2017 			adapter->flags |= FLAG_MSI_ENABLED;
       
  2018 		} else {
       
  2019 			adapter->int_mode = E1000E_INT_MODE_LEGACY;
       
  2020 			e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
       
  2021 		}
       
  2022 		/* Fall through */
       
  2023 	case E1000E_INT_MODE_LEGACY:
       
  2024 		/* Don't do anything; this is the system default */
       
  2025 		break;
       
  2026 	}
       
  2027 
       
  2028 	/* store the number of vectors being used */
       
  2029 	adapter->num_vectors = 1;
       
  2030 }
       
  2031 
       
  2032 /**
       
  2033  * e1000_request_msix - Initialize MSI-X interrupts
       
  2034  *
       
  2035  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
       
  2036  * kernel.
       
  2037  **/
       
  2038 static int e1000_request_msix(struct e1000_adapter *adapter)
       
  2039 {
       
  2040 	struct net_device *netdev = adapter->netdev;
       
  2041 	int err = 0, vector = 0;
       
  2042 
       
  2043 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
       
  2044 		snprintf(adapter->rx_ring->name,
       
  2045 			 sizeof(adapter->rx_ring->name) - 1,
       
  2046 			 "%s-rx-0", netdev->name);
       
  2047 	else
       
  2048 		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
       
  2049 	err = request_irq(adapter->msix_entries[vector].vector,
       
  2050 			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
       
  2051 			  netdev);
       
  2052 	if (err)
       
  2053 		return err;
       
  2054 	adapter->rx_ring->itr_register = adapter->hw.hw_addr +
       
  2055 	    E1000_EITR_82574(vector);
       
  2056 	adapter->rx_ring->itr_val = adapter->itr;
       
  2057 	vector++;
       
  2058 
       
  2059 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
       
  2060 		snprintf(adapter->tx_ring->name,
       
  2061 			 sizeof(adapter->tx_ring->name) - 1,
       
  2062 			 "%s-tx-0", netdev->name);
       
  2063 	else
       
  2064 		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
       
  2065 	err = request_irq(adapter->msix_entries[vector].vector,
       
  2066 			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
       
  2067 			  netdev);
       
  2068 	if (err)
       
  2069 		return err;
       
  2070 	adapter->tx_ring->itr_register = adapter->hw.hw_addr +
       
  2071 	    E1000_EITR_82574(vector);
       
  2072 	adapter->tx_ring->itr_val = adapter->itr;
       
  2073 	vector++;
       
  2074 
       
  2075 	err = request_irq(adapter->msix_entries[vector].vector,
       
  2076 			  e1000_msix_other, 0, netdev->name, netdev);
       
  2077 	if (err)
       
  2078 		return err;
       
  2079 
       
  2080 	e1000_configure_msix(adapter);
       
  2081 
       
  2082 	return 0;
       
  2083 }
       
  2084 
       
  2085 /**
       
  2086  * e1000_request_irq - initialize interrupts
       
  2087  *
       
  2088  * Attempts to configure interrupts using the best available
       
  2089  * capabilities of the hardware and kernel.
       
  2090  **/
       
  2091 static int e1000_request_irq(struct e1000_adapter *adapter)
       
  2092 {
       
  2093 	struct net_device *netdev = adapter->netdev;
       
  2094 	int err;
       
  2095 
       
  2096 	if (adapter->ecdev)
       
  2097 		return 0;
       
  2098 
       
  2099 	if (adapter->msix_entries) {
       
  2100 		err = e1000_request_msix(adapter);
       
  2101 		if (!err)
       
  2102 			return err;
       
  2103 		/* fall back to MSI */
       
  2104 		e1000e_reset_interrupt_capability(adapter);
       
  2105 		adapter->int_mode = E1000E_INT_MODE_MSI;
       
  2106 		e1000e_set_interrupt_capability(adapter);
       
  2107 	}
       
  2108 	if (adapter->flags & FLAG_MSI_ENABLED) {
       
  2109 		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
       
  2110 				  netdev->name, netdev);
       
  2111 		if (!err)
       
  2112 			return err;
       
  2113 
       
  2114 		/* fall back to legacy interrupt */
       
  2115 		e1000e_reset_interrupt_capability(adapter);
       
  2116 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
       
  2117 	}
       
  2118 
       
  2119 	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
       
  2120 			  netdev->name, netdev);
       
  2121 	if (err)
       
  2122 		e_err("Unable to allocate interrupt, Error: %d\n", err);
       
  2123 
       
  2124 	return err;
       
  2125 }
       
  2126 
       
  2127 static void e1000_free_irq(struct e1000_adapter *adapter)
       
  2128 {
       
  2129 	struct net_device *netdev = adapter->netdev;
       
  2130 
       
  2131 	if (adapter->ecdev) {
       
  2132 		return;
       
  2133 	}
       
  2134 
       
  2135 	if (adapter->msix_entries) {
       
  2136 		int vector = 0;
       
  2137 
       
  2138 		free_irq(adapter->msix_entries[vector].vector, netdev);
       
  2139 		vector++;
       
  2140 
       
  2141 		free_irq(adapter->msix_entries[vector].vector, netdev);
       
  2142 		vector++;
       
  2143 
       
  2144 		/* Other Causes interrupt vector */
       
  2145 		free_irq(adapter->msix_entries[vector].vector, netdev);
       
  2146 		return;
       
  2147 	}
       
  2148 
       
  2149 	free_irq(adapter->pdev->irq, netdev);
       
  2150 }
       
  2151 
       
  2152 /**
       
  2153  * e1000_irq_disable - Mask off interrupt generation on the NIC
       
  2154  **/
       
  2155 static void e1000_irq_disable(struct e1000_adapter *adapter)
       
  2156 {
       
  2157 	struct e1000_hw *hw = &adapter->hw;
       
  2158 
       
  2159 	ew32(IMC, ~0);
       
  2160 	if (adapter->msix_entries)
       
  2161 		ew32(EIAC_82574, 0);
       
  2162 	e1e_flush();
       
  2163 
       
  2164 	if (adapter->ecdev) {
       
  2165 		return;
       
  2166 	}
       
  2167 
       
  2168 	if (adapter->msix_entries) {
       
  2169 		int i;
       
  2170 		for (i = 0; i < adapter->num_vectors; i++)
       
  2171 			synchronize_irq(adapter->msix_entries[i].vector);
       
  2172 	} else {
       
  2173 		synchronize_irq(adapter->pdev->irq);
       
  2174 	}
       
  2175 }
       
  2176 
       
  2177 /**
       
  2178  * e1000_irq_enable - Enable default interrupt generation settings
       
  2179  **/
       
  2180 static void e1000_irq_enable(struct e1000_adapter *adapter)
       
  2181 {
       
  2182 	struct e1000_hw *hw = &adapter->hw;
       
  2183 
       
  2184 	if (adapter->ecdev)
       
  2185 		return;
       
  2186 
       
  2187 	if (adapter->msix_entries) {
       
  2188 		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
       
  2189 		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
       
  2190 	} else {
       
  2191 		ew32(IMS, IMS_ENABLE_MASK);
       
  2192 	}
       
  2193 	e1e_flush();
       
  2194 }
       
  2195 
       
  2196 /**
       
  2197  * e1000e_get_hw_control - get control of the h/w from f/w
       
  2198  * @adapter: address of board private structure
       
  2199  *
       
  2200  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
       
  2201  * For ASF and Pass Through versions of f/w this means that
       
  2202  * the driver is loaded. For AMT version (only with 82573)
       
  2203  * of the f/w this means that the network i/f is open.
       
  2204  **/
       
  2205 void e1000e_get_hw_control(struct e1000_adapter *adapter)
       
  2206 {
       
  2207 	struct e1000_hw *hw = &adapter->hw;
       
  2208 	u32 ctrl_ext;
       
  2209 	u32 swsm;
       
  2210 
       
  2211 	/* Let firmware know the driver has taken over */
       
  2212 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
       
  2213 		swsm = er32(SWSM);
       
  2214 		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
       
  2215 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
       
  2216 		ctrl_ext = er32(CTRL_EXT);
       
  2217 		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
       
  2218 	}
       
  2219 }
       
  2220 
       
  2221 /**
       
  2222  * e1000e_release_hw_control - release control of the h/w to f/w
       
  2223  * @adapter: address of board private structure
       
  2224  *
       
  2225  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
       
  2226  * For ASF and Pass Through versions of f/w this means that the
       
  2227  * driver is no longer loaded. For AMT version (only with 82573) i
       
  2228  * of the f/w this means that the network i/f is closed.
       
  2229  *
       
  2230  **/
       
  2231 void e1000e_release_hw_control(struct e1000_adapter *adapter)
       
  2232 {
       
  2233 	struct e1000_hw *hw = &adapter->hw;
       
  2234 	u32 ctrl_ext;
       
  2235 	u32 swsm;
       
  2236 
       
  2237 	/* Let firmware taken over control of h/w */
       
  2238 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
       
  2239 		swsm = er32(SWSM);
       
  2240 		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
       
  2241 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
       
  2242 		ctrl_ext = er32(CTRL_EXT);
       
  2243 		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
       
  2244 	}
       
  2245 }
       
  2246 
       
  2247 /**
       
  2248  * @e1000_alloc_ring - allocate memory for a ring structure
       
  2249  **/
       
  2250 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
       
  2251 				struct e1000_ring *ring)
       
  2252 {
       
  2253 	struct pci_dev *pdev = adapter->pdev;
       
  2254 
       
  2255 	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
       
  2256 					GFP_KERNEL);
       
  2257 	if (!ring->desc)
       
  2258 		return -ENOMEM;
       
  2259 
       
  2260 	return 0;
       
  2261 }
       
  2262 
       
  2263 /**
       
  2264  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
       
  2265  * @tx_ring: Tx descriptor ring
       
  2266  *
       
  2267  * Return 0 on success, negative on failure
       
  2268  **/
       
  2269 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
       
  2270 {
       
  2271 	struct e1000_adapter *adapter = tx_ring->adapter;
       
  2272 	int err = -ENOMEM, size;
       
  2273 
       
  2274 	size = sizeof(struct e1000_buffer) * tx_ring->count;
       
  2275 	tx_ring->buffer_info = vzalloc(size);
       
  2276 	if (!tx_ring->buffer_info)
       
  2277 		goto err;
       
  2278 
       
  2279 	/* round up to nearest 4K */
       
  2280 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
       
  2281 	tx_ring->size = ALIGN(tx_ring->size, 4096);
       
  2282 
       
  2283 	err = e1000_alloc_ring_dma(adapter, tx_ring);
       
  2284 	if (err)
       
  2285 		goto err;
       
  2286 
       
  2287 	tx_ring->next_to_use = 0;
       
  2288 	tx_ring->next_to_clean = 0;
       
  2289 
       
  2290 	return 0;
       
  2291 err:
       
  2292 	vfree(tx_ring->buffer_info);
       
  2293 	e_err("Unable to allocate memory for the transmit descriptor ring\n");
       
  2294 	return err;
       
  2295 }
       
  2296 
       
  2297 /**
       
  2298  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
       
  2299  * @rx_ring: Rx descriptor ring
       
  2300  *
       
  2301  * Returns 0 on success, negative on failure
       
  2302  **/
       
  2303 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
       
  2304 {
       
  2305 	struct e1000_adapter *adapter = rx_ring->adapter;
       
  2306 	struct e1000_buffer *buffer_info;
       
  2307 	int i, size, desc_len, err = -ENOMEM;
       
  2308 
       
  2309 	size = sizeof(struct e1000_buffer) * rx_ring->count;
       
  2310 	rx_ring->buffer_info = vzalloc(size);
       
  2311 	if (!rx_ring->buffer_info)
       
  2312 		goto err;
       
  2313 
       
  2314 	for (i = 0; i < rx_ring->count; i++) {
       
  2315 		buffer_info = &rx_ring->buffer_info[i];
       
  2316 		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
       
  2317 						sizeof(struct e1000_ps_page),
       
  2318 						GFP_KERNEL);
       
  2319 		if (!buffer_info->ps_pages)
       
  2320 			goto err_pages;
       
  2321 	}
       
  2322 
       
  2323 	desc_len = sizeof(union e1000_rx_desc_packet_split);
       
  2324 
       
  2325 	/* Round up to nearest 4K */
       
  2326 	rx_ring->size = rx_ring->count * desc_len;
       
  2327 	rx_ring->size = ALIGN(rx_ring->size, 4096);
       
  2328 
       
  2329 	err = e1000_alloc_ring_dma(adapter, rx_ring);
       
  2330 	if (err)
       
  2331 		goto err_pages;
       
  2332 
       
  2333 	rx_ring->next_to_clean = 0;
       
  2334 	rx_ring->next_to_use = 0;
       
  2335 	rx_ring->rx_skb_top = NULL;
       
  2336 
       
  2337 	return 0;
       
  2338 
       
  2339 err_pages:
       
  2340 	for (i = 0; i < rx_ring->count; i++) {
       
  2341 		buffer_info = &rx_ring->buffer_info[i];
       
  2342 		kfree(buffer_info->ps_pages);
       
  2343 	}
       
  2344 err:
       
  2345 	vfree(rx_ring->buffer_info);
       
  2346 	e_err("Unable to allocate memory for the receive descriptor ring\n");
       
  2347 	return err;
       
  2348 }
       
  2349 
       
  2350 /**
       
  2351  * e1000_clean_tx_ring - Free Tx Buffers
       
  2352  * @tx_ring: Tx descriptor ring
       
  2353  **/
       
  2354 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
       
  2355 {
       
  2356 	struct e1000_adapter *adapter = tx_ring->adapter;
       
  2357 	struct e1000_buffer *buffer_info;
       
  2358 	unsigned long size;
       
  2359 	unsigned int i;
       
  2360 
       
  2361 	for (i = 0; i < tx_ring->count; i++) {
       
  2362 		buffer_info = &tx_ring->buffer_info[i];
       
  2363 		e1000_put_txbuf(tx_ring, buffer_info);
       
  2364 	}
       
  2365 
       
  2366 	netdev_reset_queue(adapter->netdev);
       
  2367 	size = sizeof(struct e1000_buffer) * tx_ring->count;
       
  2368 	memset(tx_ring->buffer_info, 0, size);
       
  2369 
       
  2370 	memset(tx_ring->desc, 0, tx_ring->size);
       
  2371 
       
  2372 	tx_ring->next_to_use = 0;
       
  2373 	tx_ring->next_to_clean = 0;
       
  2374 
       
  2375 	writel(0, tx_ring->head);
       
  2376 	writel(0, tx_ring->tail);
       
  2377 }
       
  2378 
       
  2379 /**
       
  2380  * e1000e_free_tx_resources - Free Tx Resources per Queue
       
  2381  * @tx_ring: Tx descriptor ring
       
  2382  *
       
  2383  * Free all transmit software resources
       
  2384  **/
       
  2385 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
       
  2386 {
       
  2387 	struct e1000_adapter *adapter = tx_ring->adapter;
       
  2388 	struct pci_dev *pdev = adapter->pdev;
       
  2389 
       
  2390 	e1000_clean_tx_ring(tx_ring);
       
  2391 
       
  2392 	vfree(tx_ring->buffer_info);
       
  2393 	tx_ring->buffer_info = NULL;
       
  2394 
       
  2395 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
       
  2396 			  tx_ring->dma);
       
  2397 	tx_ring->desc = NULL;
       
  2398 }
       
  2399 
       
  2400 /**
       
  2401  * e1000e_free_rx_resources - Free Rx Resources
       
  2402  * @rx_ring: Rx descriptor ring
       
  2403  *
       
  2404  * Free all receive software resources
       
  2405  **/
       
  2406 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
       
  2407 {
       
  2408 	struct e1000_adapter *adapter = rx_ring->adapter;
       
  2409 	struct pci_dev *pdev = adapter->pdev;
       
  2410 	int i;
       
  2411 
       
  2412 	e1000_clean_rx_ring(rx_ring);
       
  2413 
       
  2414 	for (i = 0; i < rx_ring->count; i++)
       
  2415 		kfree(rx_ring->buffer_info[i].ps_pages);
       
  2416 
       
  2417 	vfree(rx_ring->buffer_info);
       
  2418 	rx_ring->buffer_info = NULL;
       
  2419 
       
  2420 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
       
  2421 			  rx_ring->dma);
       
  2422 	rx_ring->desc = NULL;
       
  2423 }
       
  2424 
       
  2425 /**
       
  2426  * e1000_update_itr - update the dynamic ITR value based on statistics
       
  2427  * @adapter: pointer to adapter
       
  2428  * @itr_setting: current adapter->itr
       
  2429  * @packets: the number of packets during this measurement interval
       
  2430  * @bytes: the number of bytes during this measurement interval
       
  2431  *
       
  2432  *      Stores a new ITR value based on packets and byte
       
  2433  *      counts during the last interrupt.  The advantage of per interrupt
       
  2434  *      computation is faster updates and more accurate ITR for the current
       
  2435  *      traffic pattern.  Constants in this function were computed
       
  2436  *      based on theoretical maximum wire speed and thresholds were set based
       
  2437  *      on testing data as well as attempting to minimize response time
       
  2438  *      while increasing bulk throughput.  This functionality is controlled
       
  2439  *      by the InterruptThrottleRate module parameter.
       
  2440  **/
       
  2441 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
       
  2442 				     u16 itr_setting, int packets,
       
  2443 				     int bytes)
       
  2444 {
       
  2445 	unsigned int retval = itr_setting;
       
  2446 
       
  2447 	if (packets == 0)
       
  2448 		return itr_setting;
       
  2449 
       
  2450 	switch (itr_setting) {
       
  2451 	case lowest_latency:
       
  2452 		/* handle TSO and jumbo frames */
       
  2453 		if (bytes/packets > 8000)
       
  2454 			retval = bulk_latency;
       
  2455 		else if ((packets < 5) && (bytes > 512))
       
  2456 			retval = low_latency;
       
  2457 		break;
       
  2458 	case low_latency:  /* 50 usec aka 20000 ints/s */
       
  2459 		if (bytes > 10000) {
       
  2460 			/* this if handles the TSO accounting */
       
  2461 			if (bytes/packets > 8000)
       
  2462 				retval = bulk_latency;
       
  2463 			else if ((packets < 10) || ((bytes/packets) > 1200))
       
  2464 				retval = bulk_latency;
       
  2465 			else if ((packets > 35))
       
  2466 				retval = lowest_latency;
       
  2467 		} else if (bytes/packets > 2000) {
       
  2468 			retval = bulk_latency;
       
  2469 		} else if (packets <= 2 && bytes < 512) {
       
  2470 			retval = lowest_latency;
       
  2471 		}
       
  2472 		break;
       
  2473 	case bulk_latency: /* 250 usec aka 4000 ints/s */
       
  2474 		if (bytes > 25000) {
       
  2475 			if (packets > 35)
       
  2476 				retval = low_latency;
       
  2477 		} else if (bytes < 6000) {
       
  2478 			retval = low_latency;
       
  2479 		}
       
  2480 		break;
       
  2481 	}
       
  2482 
       
  2483 	return retval;
       
  2484 }
       
  2485 
       
  2486 static void e1000_set_itr(struct e1000_adapter *adapter)
       
  2487 {
       
  2488 	struct e1000_hw *hw = &adapter->hw;
       
  2489 	u16 current_itr;
       
  2490 	u32 new_itr = adapter->itr;
       
  2491 
       
  2492 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
       
  2493 	if (adapter->link_speed != SPEED_1000) {
       
  2494 		current_itr = 0;
       
  2495 		new_itr = 4000;
       
  2496 		goto set_itr_now;
       
  2497 	}
       
  2498 
       
  2499 	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
       
  2500 		new_itr = 0;
       
  2501 		goto set_itr_now;
       
  2502 	}
       
  2503 
       
  2504 	adapter->tx_itr = e1000_update_itr(adapter,
       
  2505 				    adapter->tx_itr,
       
  2506 				    adapter->total_tx_packets,
       
  2507 				    adapter->total_tx_bytes);
       
  2508 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
       
  2509 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
       
  2510 		adapter->tx_itr = low_latency;
       
  2511 
       
  2512 	adapter->rx_itr = e1000_update_itr(adapter,
       
  2513 				    adapter->rx_itr,
       
  2514 				    adapter->total_rx_packets,
       
  2515 				    adapter->total_rx_bytes);
       
  2516 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
       
  2517 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
       
  2518 		adapter->rx_itr = low_latency;
       
  2519 
       
  2520 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
       
  2521 
       
  2522 	switch (current_itr) {
       
  2523 	/* counts and packets in update_itr are dependent on these numbers */
       
  2524 	case lowest_latency:
       
  2525 		new_itr = 70000;
       
  2526 		break;
       
  2527 	case low_latency:
       
  2528 		new_itr = 20000; /* aka hwitr = ~200 */
       
  2529 		break;
       
  2530 	case bulk_latency:
       
  2531 		new_itr = 4000;
       
  2532 		break;
       
  2533 	default:
       
  2534 		break;
       
  2535 	}
       
  2536 
       
  2537 set_itr_now:
       
  2538 	if (new_itr != adapter->itr) {
       
  2539 		/*
       
  2540 		 * this attempts to bias the interrupt rate towards Bulk
       
  2541 		 * by adding intermediate steps when interrupt rate is
       
  2542 		 * increasing
       
  2543 		 */
       
  2544 		new_itr = new_itr > adapter->itr ?
       
  2545 			     min(adapter->itr + (new_itr >> 2), new_itr) :
       
  2546 			     new_itr;
       
  2547 		adapter->itr = new_itr;
       
  2548 		adapter->rx_ring->itr_val = new_itr;
       
  2549 		if (adapter->msix_entries)
       
  2550 			adapter->rx_ring->set_itr = 1;
       
  2551 		else
       
  2552 			if (new_itr)
       
  2553 				ew32(ITR, 1000000000 / (new_itr * 256));
       
  2554 			else
       
  2555 				ew32(ITR, 0);
       
  2556 	}
       
  2557 }
       
  2558 
       
  2559 /**
       
  2560  * e1000_alloc_queues - Allocate memory for all rings
       
  2561  * @adapter: board private structure to initialize
       
  2562  **/
       
  2563 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
       
  2564 {
       
  2565 	int size = sizeof(struct e1000_ring);
       
  2566 
       
  2567 	adapter->tx_ring = kzalloc(size, GFP_KERNEL);
       
  2568 	if (!adapter->tx_ring)
       
  2569 		goto err;
       
  2570 	adapter->tx_ring->count = adapter->tx_ring_count;
       
  2571 	adapter->tx_ring->adapter = adapter;
       
  2572 
       
  2573 	adapter->rx_ring = kzalloc(size, GFP_KERNEL);
       
  2574 	if (!adapter->rx_ring)
       
  2575 		goto err;
       
  2576 	adapter->rx_ring->count = adapter->rx_ring_count;
       
  2577 	adapter->rx_ring->adapter = adapter;
       
  2578 
       
  2579 	return 0;
       
  2580 err:
       
  2581 	e_err("Unable to allocate memory for queues\n");
       
  2582 	kfree(adapter->rx_ring);
       
  2583 	kfree(adapter->tx_ring);
       
  2584 	return -ENOMEM;
       
  2585 }
       
  2586 
       
  2587 /**
       
  2588  * e1000_clean - NAPI Rx polling callback
       
  2589  * @napi: struct associated with this polling callback
       
  2590  * @budget: amount of packets driver is allowed to process this poll
       
  2591  **/
       
  2592 static int e1000_clean(struct napi_struct *napi, int budget)
       
  2593 {
       
  2594 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
       
  2595 	struct e1000_hw *hw = &adapter->hw;
       
  2596 	struct net_device *poll_dev = adapter->netdev;
       
  2597 	int tx_cleaned = 1, work_done = 0;
       
  2598 
       
  2599 	adapter = netdev_priv(poll_dev);
       
  2600 
       
  2601 	if (adapter->msix_entries &&
       
  2602 	    !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
       
  2603 		goto clean_rx;
       
  2604 
       
  2605 	tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
       
  2606 
       
  2607 clean_rx:
       
  2608 	adapter->clean_rx(adapter->rx_ring, &work_done, budget);
       
  2609 
       
  2610 	if (!tx_cleaned)
       
  2611 		work_done = budget;
       
  2612 
       
  2613 	/* If budget not fully consumed, exit the polling mode */
       
  2614 	if (work_done < budget) {
       
  2615 		if (adapter->itr_setting & 3)
       
  2616 			e1000_set_itr(adapter);
       
  2617 		napi_complete(napi);
       
  2618 		if (!test_bit(__E1000_DOWN, &adapter->state)) {
       
  2619 			if (adapter->msix_entries)
       
  2620 				ew32(IMS, adapter->rx_ring->ims_val);
       
  2621 			else
       
  2622 				e1000_irq_enable(adapter);
       
  2623 		}
       
  2624 	}
       
  2625 
       
  2626 	return work_done;
       
  2627 }
       
  2628 
       
  2629 static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
       
  2630 {
       
  2631 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  2632 	struct e1000_hw *hw = &adapter->hw;
       
  2633 	u32 vfta, index;
       
  2634 
       
  2635 	/* don't update vlan cookie if already programmed */
       
  2636 	if ((adapter->hw.mng_cookie.status &
       
  2637 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
       
  2638 	    (vid == adapter->mng_vlan_id))
       
  2639 		return 0;
       
  2640 
       
  2641 	/* add VID to filter table */
       
  2642 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
       
  2643 		index = (vid >> 5) & 0x7F;
       
  2644 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
       
  2645 		vfta |= (1 << (vid & 0x1F));
       
  2646 		hw->mac.ops.write_vfta(hw, index, vfta);
       
  2647 	}
       
  2648 
       
  2649 	set_bit(vid, adapter->active_vlans);
       
  2650 
       
  2651 	return 0;
       
  2652 }
       
  2653 
       
  2654 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
       
  2655 {
       
  2656 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  2657 	struct e1000_hw *hw = &adapter->hw;
       
  2658 	u32 vfta, index;
       
  2659 
       
  2660 	if ((adapter->hw.mng_cookie.status &
       
  2661 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
       
  2662 	    (vid == adapter->mng_vlan_id)) {
       
  2663 		/* release control to f/w */
       
  2664 		e1000e_release_hw_control(adapter);
       
  2665 		return 0;
       
  2666 	}
       
  2667 
       
  2668 	/* remove VID from filter table */
       
  2669 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
       
  2670 		index = (vid >> 5) & 0x7F;
       
  2671 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
       
  2672 		vfta &= ~(1 << (vid & 0x1F));
       
  2673 		hw->mac.ops.write_vfta(hw, index, vfta);
       
  2674 	}
       
  2675 
       
  2676 	clear_bit(vid, adapter->active_vlans);
       
  2677 
       
  2678 	return 0;
       
  2679 }
       
  2680 
       
  2681 /**
       
  2682  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
       
  2683  * @adapter: board private structure to initialize
       
  2684  **/
       
  2685 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
       
  2686 {
       
  2687 	struct net_device *netdev = adapter->netdev;
       
  2688 	struct e1000_hw *hw = &adapter->hw;
       
  2689 	u32 rctl;
       
  2690 
       
  2691 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
       
  2692 		/* disable VLAN receive filtering */
       
  2693 		rctl = er32(RCTL);
       
  2694 		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
       
  2695 		ew32(RCTL, rctl);
       
  2696 
       
  2697 		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
       
  2698 			e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
       
  2699 			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
       
  2700 		}
       
  2701 	}
       
  2702 }
       
  2703 
       
  2704 /**
       
  2705  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
       
  2706  * @adapter: board private structure to initialize
       
  2707  **/
       
  2708 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
       
  2709 {
       
  2710 	struct e1000_hw *hw = &adapter->hw;
       
  2711 	u32 rctl;
       
  2712 
       
  2713 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
       
  2714 		/* enable VLAN receive filtering */
       
  2715 		rctl = er32(RCTL);
       
  2716 		rctl |= E1000_RCTL_VFE;
       
  2717 		rctl &= ~E1000_RCTL_CFIEN;
       
  2718 		ew32(RCTL, rctl);
       
  2719 	}
       
  2720 }
       
  2721 
       
  2722 /**
       
  2723  * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
       
  2724  * @adapter: board private structure to initialize
       
  2725  **/
       
  2726 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
       
  2727 {
       
  2728 	struct e1000_hw *hw = &adapter->hw;
       
  2729 	u32 ctrl;
       
  2730 
       
  2731 	/* disable VLAN tag insert/strip */
       
  2732 	ctrl = er32(CTRL);
       
  2733 	ctrl &= ~E1000_CTRL_VME;
       
  2734 	ew32(CTRL, ctrl);
       
  2735 }
       
  2736 
       
  2737 /**
       
  2738  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
       
  2739  * @adapter: board private structure to initialize
       
  2740  **/
       
  2741 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
       
  2742 {
       
  2743 	struct e1000_hw *hw = &adapter->hw;
       
  2744 	u32 ctrl;
       
  2745 
       
  2746 	/* enable VLAN tag insert/strip */
       
  2747 	ctrl = er32(CTRL);
       
  2748 	ctrl |= E1000_CTRL_VME;
       
  2749 	ew32(CTRL, ctrl);
       
  2750 }
       
  2751 
       
  2752 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
       
  2753 {
       
  2754 	struct net_device *netdev = adapter->netdev;
       
  2755 	u16 vid = adapter->hw.mng_cookie.vlan_id;
       
  2756 	u16 old_vid = adapter->mng_vlan_id;
       
  2757 
       
  2758 	if (adapter->hw.mng_cookie.status &
       
  2759 	    E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
       
  2760 		e1000_vlan_rx_add_vid(netdev, vid);
       
  2761 		adapter->mng_vlan_id = vid;
       
  2762 	}
       
  2763 
       
  2764 	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
       
  2765 		e1000_vlan_rx_kill_vid(netdev, old_vid);
       
  2766 }
       
  2767 
       
  2768 static void e1000_restore_vlan(struct e1000_adapter *adapter)
       
  2769 {
       
  2770 	u16 vid;
       
  2771 
       
  2772 	e1000_vlan_rx_add_vid(adapter->netdev, 0);
       
  2773 
       
  2774 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
       
  2775 		e1000_vlan_rx_add_vid(adapter->netdev, vid);
       
  2776 }
       
  2777 
       
  2778 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
       
  2779 {
       
  2780 	struct e1000_hw *hw = &adapter->hw;
       
  2781 	u32 manc, manc2h, mdef, i, j;
       
  2782 
       
  2783 	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
       
  2784 		return;
       
  2785 
       
  2786 	manc = er32(MANC);
       
  2787 
       
  2788 	/*
       
  2789 	 * enable receiving management packets to the host. this will probably
       
  2790 	 * generate destination unreachable messages from the host OS, but
       
  2791 	 * the packets will be handled on SMBUS
       
  2792 	 */
       
  2793 	manc |= E1000_MANC_EN_MNG2HOST;
       
  2794 	manc2h = er32(MANC2H);
       
  2795 
       
  2796 	switch (hw->mac.type) {
       
  2797 	default:
       
  2798 		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
       
  2799 		break;
       
  2800 	case e1000_82574:
       
  2801 	case e1000_82583:
       
  2802 		/*
       
  2803 		 * Check if IPMI pass-through decision filter already exists;
       
  2804 		 * if so, enable it.
       
  2805 		 */
       
  2806 		for (i = 0, j = 0; i < 8; i++) {
       
  2807 			mdef = er32(MDEF(i));
       
  2808 
       
  2809 			/* Ignore filters with anything other than IPMI ports */
       
  2810 			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
       
  2811 				continue;
       
  2812 
       
  2813 			/* Enable this decision filter in MANC2H */
       
  2814 			if (mdef)
       
  2815 				manc2h |= (1 << i);
       
  2816 
       
  2817 			j |= mdef;
       
  2818 		}
       
  2819 
       
  2820 		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
       
  2821 			break;
       
  2822 
       
  2823 		/* Create new decision filter in an empty filter */
       
  2824 		for (i = 0, j = 0; i < 8; i++)
       
  2825 			if (er32(MDEF(i)) == 0) {
       
  2826 				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
       
  2827 					       E1000_MDEF_PORT_664));
       
  2828 				manc2h |= (1 << 1);
       
  2829 				j++;
       
  2830 				break;
       
  2831 			}
       
  2832 
       
  2833 		if (!j)
       
  2834 			e_warn("Unable to create IPMI pass-through filter\n");
       
  2835 		break;
       
  2836 	}
       
  2837 
       
  2838 	ew32(MANC2H, manc2h);
       
  2839 	ew32(MANC, manc);
       
  2840 }
       
  2841 
       
  2842 /**
       
  2843  * e1000_configure_tx - Configure Transmit Unit after Reset
       
  2844  * @adapter: board private structure
       
  2845  *
       
  2846  * Configure the Tx unit of the MAC after a reset.
       
  2847  **/
       
  2848 static void e1000_configure_tx(struct e1000_adapter *adapter)
       
  2849 {
       
  2850 	struct e1000_hw *hw = &adapter->hw;
       
  2851 	struct e1000_ring *tx_ring = adapter->tx_ring;
       
  2852 	u64 tdba;
       
  2853 	u32 tdlen, tarc;
       
  2854 
       
  2855 	/* Setup the HW Tx Head and Tail descriptor pointers */
       
  2856 	tdba = tx_ring->dma;
       
  2857 	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
       
  2858 	ew32(TDBAL, (tdba & DMA_BIT_MASK(32)));
       
  2859 	ew32(TDBAH, (tdba >> 32));
       
  2860 	ew32(TDLEN, tdlen);
       
  2861 	ew32(TDH, 0);
       
  2862 	ew32(TDT, 0);
       
  2863 	tx_ring->head = adapter->hw.hw_addr + E1000_TDH;
       
  2864 	tx_ring->tail = adapter->hw.hw_addr + E1000_TDT;
       
  2865 
       
  2866 	/* Set the Tx Interrupt Delay register */
       
  2867 	ew32(TIDV, adapter->tx_int_delay);
       
  2868 	/* Tx irq moderation */
       
  2869 	ew32(TADV, adapter->tx_abs_int_delay);
       
  2870 
       
  2871 	if (adapter->flags2 & FLAG2_DMA_BURST) {
       
  2872 		u32 txdctl = er32(TXDCTL(0));
       
  2873 		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
       
  2874 			    E1000_TXDCTL_WTHRESH);
       
  2875 		/*
       
  2876 		 * set up some performance related parameters to encourage the
       
  2877 		 * hardware to use the bus more efficiently in bursts, depends
       
  2878 		 * on the tx_int_delay to be enabled,
       
  2879 		 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
       
  2880 		 * hthresh = 1 ==> prefetch when one or more available
       
  2881 		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
       
  2882 		 * BEWARE: this seems to work but should be considered first if
       
  2883 		 * there are Tx hangs or other Tx related bugs
       
  2884 		 */
       
  2885 		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
       
  2886 		ew32(TXDCTL(0), txdctl);
       
  2887 	}
       
  2888 	/* erratum work around: set txdctl the same for both queues */
       
  2889 	ew32(TXDCTL(1), er32(TXDCTL(0)));
       
  2890 
       
  2891 	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
       
  2892 		tarc = er32(TARC(0));
       
  2893 		/*
       
  2894 		 * set the speed mode bit, we'll clear it if we're not at
       
  2895 		 * gigabit link later
       
  2896 		 */
       
  2897 #define SPEED_MODE_BIT (1 << 21)
       
  2898 		tarc |= SPEED_MODE_BIT;
       
  2899 		ew32(TARC(0), tarc);
       
  2900 	}
       
  2901 
       
  2902 	/* errata: program both queues to unweighted RR */
       
  2903 	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
       
  2904 		tarc = er32(TARC(0));
       
  2905 		tarc |= 1;
       
  2906 		ew32(TARC(0), tarc);
       
  2907 		tarc = er32(TARC(1));
       
  2908 		tarc |= 1;
       
  2909 		ew32(TARC(1), tarc);
       
  2910 	}
       
  2911 
       
  2912 	/* Setup Transmit Descriptor Settings for eop descriptor */
       
  2913 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
       
  2914 
       
  2915 	/* only set IDE if we are delaying interrupts using the timers */
       
  2916 	if (adapter->tx_int_delay)
       
  2917 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
       
  2918 
       
  2919 	/* enable Report Status bit */
       
  2920 	adapter->txd_cmd |= E1000_TXD_CMD_RS;
       
  2921 
       
  2922 	hw->mac.ops.config_collision_dist(hw);
       
  2923 }
       
  2924 
       
  2925 /**
       
  2926  * e1000_setup_rctl - configure the receive control registers
       
  2927  * @adapter: Board private structure
       
  2928  **/
       
  2929 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
       
  2930 			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
       
  2931 static void e1000_setup_rctl(struct e1000_adapter *adapter)
       
  2932 {
       
  2933 	struct e1000_hw *hw = &adapter->hw;
       
  2934 	u32 rctl, rfctl;
       
  2935 	u32 pages = 0;
       
  2936 
       
  2937 	/* Workaround Si errata on 82579 - configure jumbo frame flow */
       
  2938 	if (hw->mac.type == e1000_pch2lan) {
       
  2939 		s32 ret_val __attribute__ ((unused));
       
  2940 
       
  2941 		if (adapter->netdev->mtu > ETH_DATA_LEN)
       
  2942 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
       
  2943 		else
       
  2944 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
       
  2945 
       
  2946 		if (ret_val)
       
  2947 			e_dbg("failed to enable jumbo frame workaround mode\n");
       
  2948 	}
       
  2949 
       
  2950 	/* Program MC offset vector base */
       
  2951 	rctl = er32(RCTL);
       
  2952 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
       
  2953 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
       
  2954 		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
       
  2955 		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
       
  2956 
       
  2957 	/* Do not Store bad packets */
       
  2958 	rctl &= ~E1000_RCTL_SBP;
       
  2959 
       
  2960 	/* Enable Long Packet receive */
       
  2961 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
       
  2962 		rctl &= ~E1000_RCTL_LPE;
       
  2963 	else
       
  2964 		rctl |= E1000_RCTL_LPE;
       
  2965 
       
  2966 	/* Some systems expect that the CRC is included in SMBUS traffic. The
       
  2967 	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
       
  2968 	 * host memory when this is enabled
       
  2969 	 */
       
  2970 	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
       
  2971 		rctl |= E1000_RCTL_SECRC;
       
  2972 
       
  2973 	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
       
  2974 	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
       
  2975 		u16 phy_data;
       
  2976 
       
  2977 		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
       
  2978 		phy_data &= 0xfff8;
       
  2979 		phy_data |= (1 << 2);
       
  2980 		e1e_wphy(hw, PHY_REG(770, 26), phy_data);
       
  2981 
       
  2982 		e1e_rphy(hw, 22, &phy_data);
       
  2983 		phy_data &= 0x0fff;
       
  2984 		phy_data |= (1 << 14);
       
  2985 		e1e_wphy(hw, 0x10, 0x2823);
       
  2986 		e1e_wphy(hw, 0x11, 0x0003);
       
  2987 		e1e_wphy(hw, 22, phy_data);
       
  2988 	}
       
  2989 
       
  2990 	/* Setup buffer sizes */
       
  2991 	rctl &= ~E1000_RCTL_SZ_4096;
       
  2992 	rctl |= E1000_RCTL_BSEX;
       
  2993 	switch (adapter->rx_buffer_len) {
       
  2994 	case 2048:
       
  2995 	default:
       
  2996 		rctl |= E1000_RCTL_SZ_2048;
       
  2997 		rctl &= ~E1000_RCTL_BSEX;
       
  2998 		break;
       
  2999 	case 4096:
       
  3000 		rctl |= E1000_RCTL_SZ_4096;
       
  3001 		break;
       
  3002 	case 8192:
       
  3003 		rctl |= E1000_RCTL_SZ_8192;
       
  3004 		break;
       
  3005 	case 16384:
       
  3006 		rctl |= E1000_RCTL_SZ_16384;
       
  3007 		break;
       
  3008 	}
       
  3009 
       
  3010 	/* Enable Extended Status in all Receive Descriptors */
       
  3011 	rfctl = er32(RFCTL);
       
  3012 	rfctl |= E1000_RFCTL_EXTEN;
       
  3013 
       
  3014 	/*
       
  3015 	 * 82571 and greater support packet-split where the protocol
       
  3016 	 * header is placed in skb->data and the packet data is
       
  3017 	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
       
  3018 	 * In the case of a non-split, skb->data is linearly filled,
       
  3019 	 * followed by the page buffers.  Therefore, skb->data is
       
  3020 	 * sized to hold the largest protocol header.
       
  3021 	 *
       
  3022 	 * allocations using alloc_page take too long for regular MTU
       
  3023 	 * so only enable packet split for jumbo frames
       
  3024 	 *
       
  3025 	 * Using pages when the page size is greater than 16k wastes
       
  3026 	 * a lot of memory, since we allocate 3 pages at all times
       
  3027 	 * per packet.
       
  3028 	 */
       
  3029 	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
       
  3030 	if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
       
  3031 		adapter->rx_ps_pages = pages;
       
  3032 	else
       
  3033 		adapter->rx_ps_pages = 0;
       
  3034 
       
  3035 	if (adapter->rx_ps_pages) {
       
  3036 		u32 psrctl = 0;
       
  3037 
       
  3038 		/*
       
  3039 		 * disable packet split support for IPv6 extension headers,
       
  3040 		 * because some malformed IPv6 headers can hang the Rx
       
  3041 		 */
       
  3042 		rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
       
  3043 			  E1000_RFCTL_NEW_IPV6_EXT_DIS);
       
  3044 
       
  3045 		/* Enable Packet split descriptors */
       
  3046 		rctl |= E1000_RCTL_DTYP_PS;
       
  3047 
       
  3048 		psrctl |= adapter->rx_ps_bsize0 >>
       
  3049 			E1000_PSRCTL_BSIZE0_SHIFT;
       
  3050 
       
  3051 		switch (adapter->rx_ps_pages) {
       
  3052 		case 3:
       
  3053 			psrctl |= PAGE_SIZE <<
       
  3054 				E1000_PSRCTL_BSIZE3_SHIFT;
       
  3055 		case 2:
       
  3056 			psrctl |= PAGE_SIZE <<
       
  3057 				E1000_PSRCTL_BSIZE2_SHIFT;
       
  3058 		case 1:
       
  3059 			psrctl |= PAGE_SIZE >>
       
  3060 				E1000_PSRCTL_BSIZE1_SHIFT;
       
  3061 			break;
       
  3062 		}
       
  3063 
       
  3064 		ew32(PSRCTL, psrctl);
       
  3065 	}
       
  3066 
       
  3067 	/* This is useful for sniffing bad packets. */
       
  3068 	if (adapter->netdev->features & NETIF_F_RXALL) {
       
  3069 		/* UPE and MPE will be handled by normal PROMISC logic
       
  3070 		 * in e1000e_set_rx_mode */
       
  3071 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
       
  3072 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
       
  3073 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
       
  3074 
       
  3075 		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
       
  3076 			  E1000_RCTL_DPF | /* Allow filtered pause */
       
  3077 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
       
  3078 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
       
  3079 		 * and that breaks VLANs.
       
  3080 		 */
       
  3081 	}
       
  3082 
       
  3083 	ew32(RFCTL, rfctl);
       
  3084 	ew32(RCTL, rctl);
       
  3085 	/* just started the receive unit, no need to restart */
       
  3086 	adapter->flags &= ~FLAG_RX_RESTART_NOW;
       
  3087 }
       
  3088 
       
  3089 /**
       
  3090  * e1000_configure_rx - Configure Receive Unit after Reset
       
  3091  * @adapter: board private structure
       
  3092  *
       
  3093  * Configure the Rx unit of the MAC after a reset.
       
  3094  **/
       
  3095 static void e1000_configure_rx(struct e1000_adapter *adapter)
       
  3096 {
       
  3097 	struct e1000_hw *hw = &adapter->hw;
       
  3098 	struct e1000_ring *rx_ring = adapter->rx_ring;
       
  3099 	u64 rdba;
       
  3100 	u32 rdlen, rctl, rxcsum, ctrl_ext;
       
  3101 
       
  3102 	if (adapter->rx_ps_pages) {
       
  3103 		/* this is a 32 byte descriptor */
       
  3104 		rdlen = rx_ring->count *
       
  3105 		    sizeof(union e1000_rx_desc_packet_split);
       
  3106 		adapter->clean_rx = e1000_clean_rx_irq_ps;
       
  3107 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
       
  3108 	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
       
  3109 		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
       
  3110 		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
       
  3111 		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
       
  3112 	} else {
       
  3113 		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
       
  3114 		adapter->clean_rx = e1000_clean_rx_irq;
       
  3115 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
       
  3116 	}
       
  3117 
       
  3118 	/* disable receives while setting up the descriptors */
       
  3119 	rctl = er32(RCTL);
       
  3120 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
       
  3121 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
       
  3122 	e1e_flush();
       
  3123 	usleep_range(10000, 20000);
       
  3124 
       
  3125 	if (adapter->flags2 & FLAG2_DMA_BURST) {
       
  3126 		/*
       
  3127 		 * set the writeback threshold (only takes effect if the RDTR
       
  3128 		 * is set). set GRAN=1 and write back up to 0x4 worth, and
       
  3129 		 * enable prefetching of 0x20 Rx descriptors
       
  3130 		 * granularity = 01
       
  3131 		 * wthresh = 04,
       
  3132 		 * hthresh = 04,
       
  3133 		 * pthresh = 0x20
       
  3134 		 */
       
  3135 		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
       
  3136 		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
       
  3137 
       
  3138 		/*
       
  3139 		 * override the delay timers for enabling bursting, only if
       
  3140 		 * the value was not set by the user via module options
       
  3141 		 */
       
  3142 		if (adapter->rx_int_delay == DEFAULT_RDTR)
       
  3143 			adapter->rx_int_delay = BURST_RDTR;
       
  3144 		if (adapter->rx_abs_int_delay == DEFAULT_RADV)
       
  3145 			adapter->rx_abs_int_delay = BURST_RADV;
       
  3146 	}
       
  3147 
       
  3148 	/* set the Receive Delay Timer Register */
       
  3149 	ew32(RDTR, adapter->rx_int_delay);
       
  3150 
       
  3151 	/* irq moderation */
       
  3152 	ew32(RADV, adapter->rx_abs_int_delay);
       
  3153 	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
       
  3154 		ew32(ITR, 1000000000 / (adapter->itr * 256));
       
  3155 
       
  3156 	ctrl_ext = er32(CTRL_EXT);
       
  3157 	/* Auto-Mask interrupts upon ICR access */
       
  3158 	ctrl_ext |= E1000_CTRL_EXT_IAME;
       
  3159 	ew32(IAM, 0xffffffff);
       
  3160 	ew32(CTRL_EXT, ctrl_ext);
       
  3161 	e1e_flush();
       
  3162 
       
  3163 	/*
       
  3164 	 * Setup the HW Rx Head and Tail Descriptor Pointers and
       
  3165 	 * the Base and Length of the Rx Descriptor Ring
       
  3166 	 */
       
  3167 	rdba = rx_ring->dma;
       
  3168 	ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));
       
  3169 	ew32(RDBAH, (rdba >> 32));
       
  3170 	ew32(RDLEN, rdlen);
       
  3171 	ew32(RDH, 0);
       
  3172 	ew32(RDT, 0);
       
  3173 	rx_ring->head = adapter->hw.hw_addr + E1000_RDH;
       
  3174 	rx_ring->tail = adapter->hw.hw_addr + E1000_RDT;
       
  3175 
       
  3176 	/* Enable Receive Checksum Offload for TCP and UDP */
       
  3177 	rxcsum = er32(RXCSUM);
       
  3178 	if (adapter->netdev->features & NETIF_F_RXCSUM)
       
  3179 		rxcsum |= E1000_RXCSUM_TUOFL;
       
  3180 	else
       
  3181 		rxcsum &= ~E1000_RXCSUM_TUOFL;
       
  3182 	ew32(RXCSUM, rxcsum);
       
  3183 
       
  3184 	if (adapter->hw.mac.type == e1000_pch2lan) {
       
  3185 		/*
       
  3186 		 * With jumbo frames, excessive C-state transition
       
  3187 		 * latencies result in dropped transactions.
       
  3188 		 */
       
  3189 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
       
  3190 			u32 rxdctl = er32(RXDCTL(0));
       
  3191 			ew32(RXDCTL(0), rxdctl | 0x3);
       
  3192 			pm_qos_update_request(&adapter->netdev->pm_qos_req, 55);
       
  3193 		} else {
       
  3194 			pm_qos_update_request(&adapter->netdev->pm_qos_req,
       
  3195 					      PM_QOS_DEFAULT_VALUE);
       
  3196 		}
       
  3197 	}
       
  3198 
       
  3199 	/* Enable Receives */
       
  3200 	ew32(RCTL, rctl);
       
  3201 }
       
  3202 
       
  3203 /**
       
  3204  * e1000e_write_mc_addr_list - write multicast addresses to MTA
       
  3205  * @netdev: network interface device structure
       
  3206  *
       
  3207  * Writes multicast address list to the MTA hash table.
       
  3208  * Returns: -ENOMEM on failure
       
  3209  *                0 on no addresses written
       
  3210  *                X on writing X addresses to MTA
       
  3211  */
       
  3212 static int e1000e_write_mc_addr_list(struct net_device *netdev)
       
  3213 {
       
  3214 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3215 	struct e1000_hw *hw = &adapter->hw;
       
  3216 	struct netdev_hw_addr *ha;
       
  3217 	u8 *mta_list;
       
  3218 	int i;
       
  3219 
       
  3220 	if (netdev_mc_empty(netdev)) {
       
  3221 		/* nothing to program, so clear mc list */
       
  3222 		hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
       
  3223 		return 0;
       
  3224 	}
       
  3225 
       
  3226 	mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
       
  3227 	if (!mta_list)
       
  3228 		return -ENOMEM;
       
  3229 
       
  3230 	/* update_mc_addr_list expects a packed array of only addresses. */
       
  3231 	i = 0;
       
  3232 	netdev_for_each_mc_addr(ha, netdev)
       
  3233 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
       
  3234 
       
  3235 	hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
       
  3236 	kfree(mta_list);
       
  3237 
       
  3238 	return netdev_mc_count(netdev);
       
  3239 }
       
  3240 
       
  3241 /**
       
  3242  * e1000e_write_uc_addr_list - write unicast addresses to RAR table
       
  3243  * @netdev: network interface device structure
       
  3244  *
       
  3245  * Writes unicast address list to the RAR table.
       
  3246  * Returns: -ENOMEM on failure/insufficient address space
       
  3247  *                0 on no addresses written
       
  3248  *                X on writing X addresses to the RAR table
       
  3249  **/
       
  3250 static int e1000e_write_uc_addr_list(struct net_device *netdev)
       
  3251 {
       
  3252 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3253 	struct e1000_hw *hw = &adapter->hw;
       
  3254 	unsigned int rar_entries = hw->mac.rar_entry_count;
       
  3255 	int count = 0;
       
  3256 
       
  3257 	/* save a rar entry for our hardware address */
       
  3258 	rar_entries--;
       
  3259 
       
  3260 	/* save a rar entry for the LAA workaround */
       
  3261 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
       
  3262 		rar_entries--;
       
  3263 
       
  3264 	/* return ENOMEM indicating insufficient memory for addresses */
       
  3265 	if (netdev_uc_count(netdev) > rar_entries)
       
  3266 		return -ENOMEM;
       
  3267 
       
  3268 	if (!netdev_uc_empty(netdev) && rar_entries) {
       
  3269 		struct netdev_hw_addr *ha;
       
  3270 
       
  3271 		/*
       
  3272 		 * write the addresses in reverse order to avoid write
       
  3273 		 * combining
       
  3274 		 */
       
  3275 		netdev_for_each_uc_addr(ha, netdev) {
       
  3276 			if (!rar_entries)
       
  3277 				break;
       
  3278 			e1000e_rar_set(hw, ha->addr, rar_entries--);
       
  3279 			count++;
       
  3280 		}
       
  3281 	}
       
  3282 
       
  3283 	/* zero out the remaining RAR entries not used above */
       
  3284 	for (; rar_entries > 0; rar_entries--) {
       
  3285 		ew32(RAH(rar_entries), 0);
       
  3286 		ew32(RAL(rar_entries), 0);
       
  3287 	}
       
  3288 	e1e_flush();
       
  3289 
       
  3290 	return count;
       
  3291 }
       
  3292 
       
  3293 /**
       
  3294  * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
       
  3295  * @netdev: network interface device structure
       
  3296  *
       
  3297  * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
       
  3298  * address list or the network interface flags are updated.  This routine is
       
  3299  * responsible for configuring the hardware for proper unicast, multicast,
       
  3300  * promiscuous mode, and all-multi behavior.
       
  3301  **/
       
  3302 static void e1000e_set_rx_mode(struct net_device *netdev)
       
  3303 {
       
  3304 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3305 	struct e1000_hw *hw = &adapter->hw;
       
  3306 	u32 rctl;
       
  3307 
       
  3308 	/* Check for Promiscuous and All Multicast modes */
       
  3309 	rctl = er32(RCTL);
       
  3310 
       
  3311 	/* clear the affected bits */
       
  3312 	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
       
  3313 
       
  3314 	if (netdev->flags & IFF_PROMISC) {
       
  3315 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
       
  3316 		/* Do not hardware filter VLANs in promisc mode */
       
  3317 		e1000e_vlan_filter_disable(adapter);
       
  3318 	} else {
       
  3319 		int count;
       
  3320 
       
  3321 		if (netdev->flags & IFF_ALLMULTI) {
       
  3322 			rctl |= E1000_RCTL_MPE;
       
  3323 		} else {
       
  3324 			/*
       
  3325 			 * Write addresses to the MTA, if the attempt fails
       
  3326 			 * then we should just turn on promiscuous mode so
       
  3327 			 * that we can at least receive multicast traffic
       
  3328 			 */
       
  3329 			count = e1000e_write_mc_addr_list(netdev);
       
  3330 			if (count < 0)
       
  3331 				rctl |= E1000_RCTL_MPE;
       
  3332 		}
       
  3333 		e1000e_vlan_filter_enable(adapter);
       
  3334 		/*
       
  3335 		 * Write addresses to available RAR registers, if there is not
       
  3336 		 * sufficient space to store all the addresses then enable
       
  3337 		 * unicast promiscuous mode
       
  3338 		 */
       
  3339 		count = e1000e_write_uc_addr_list(netdev);
       
  3340 		if (count < 0)
       
  3341 			rctl |= E1000_RCTL_UPE;
       
  3342 	}
       
  3343 
       
  3344 	ew32(RCTL, rctl);
       
  3345 
       
  3346 	if (netdev->features & NETIF_F_HW_VLAN_RX)
       
  3347 		e1000e_vlan_strip_enable(adapter);
       
  3348 	else
       
  3349 		e1000e_vlan_strip_disable(adapter);
       
  3350 }
       
  3351 
       
  3352 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
       
  3353 {
       
  3354 	struct e1000_hw *hw = &adapter->hw;
       
  3355 	u32 mrqc, rxcsum;
       
  3356 	int i;
       
  3357 	static const u32 rsskey[10] = {
       
  3358 		0xda565a6d, 0xc20e5b25, 0x3d256741, 0xb08fa343, 0xcb2bcad0,
       
  3359 		0xb4307bae, 0xa32dcb77, 0x0cf23080, 0x3bb7426a, 0xfa01acbe
       
  3360 	};
       
  3361 
       
  3362 	/* Fill out hash function seed */
       
  3363 	for (i = 0; i < 10; i++)
       
  3364 		ew32(RSSRK(i), rsskey[i]);
       
  3365 
       
  3366 	/* Direct all traffic to queue 0 */
       
  3367 	for (i = 0; i < 32; i++)
       
  3368 		ew32(RETA(i), 0);
       
  3369 
       
  3370 	/*
       
  3371 	 * Disable raw packet checksumming so that RSS hash is placed in
       
  3372 	 * descriptor on writeback.
       
  3373 	 */
       
  3374 	rxcsum = er32(RXCSUM);
       
  3375 	rxcsum |= E1000_RXCSUM_PCSD;
       
  3376 
       
  3377 	ew32(RXCSUM, rxcsum);
       
  3378 
       
  3379 	mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
       
  3380 		E1000_MRQC_RSS_FIELD_IPV4_TCP |
       
  3381 		E1000_MRQC_RSS_FIELD_IPV6 |
       
  3382 		E1000_MRQC_RSS_FIELD_IPV6_TCP |
       
  3383 		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
       
  3384 
       
  3385 	ew32(MRQC, mrqc);
       
  3386 }
       
  3387 
       
  3388 /**
       
  3389  * e1000_configure - configure the hardware for Rx and Tx
       
  3390  * @adapter: private board structure
       
  3391  **/
       
  3392 static void e1000_configure(struct e1000_adapter *adapter)
       
  3393 {
       
  3394 	struct e1000_ring *rx_ring = adapter->rx_ring;
       
  3395 
       
  3396 	e1000e_set_rx_mode(adapter->netdev);
       
  3397 
       
  3398 	e1000_restore_vlan(adapter);
       
  3399 	e1000_init_manageability_pt(adapter);
       
  3400 
       
  3401 	e1000_configure_tx(adapter);
       
  3402 
       
  3403 	if (adapter->netdev->features & NETIF_F_RXHASH)
       
  3404 		e1000e_setup_rss_hash(adapter);
       
  3405 	e1000_setup_rctl(adapter);
       
  3406 	e1000_configure_rx(adapter);
       
  3407 	if (adapter->ecdev) {
       
  3408 		adapter->alloc_rx_buf(rx_ring, adapter->rx_ring->count, GFP_KERNEL);
       
  3409 	} else {
       
  3410 		adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring),
       
  3411 				GFP_KERNEL);
       
  3412 	}
       
  3413 }
       
  3414 
       
  3415 /**
       
  3416  * e1000e_power_up_phy - restore link in case the phy was powered down
       
  3417  * @adapter: address of board private structure
       
  3418  *
       
  3419  * The phy may be powered down to save power and turn off link when the
       
  3420  * driver is unloaded and wake on lan is not enabled (among others)
       
  3421  * *** this routine MUST be followed by a call to e1000e_reset ***
       
  3422  **/
       
  3423 void e1000e_power_up_phy(struct e1000_adapter *adapter)
       
  3424 {
       
  3425 	if (adapter->hw.phy.ops.power_up)
       
  3426 		adapter->hw.phy.ops.power_up(&adapter->hw);
       
  3427 
       
  3428 	adapter->hw.mac.ops.setup_link(&adapter->hw);
       
  3429 }
       
  3430 
       
  3431 /**
       
  3432  * e1000_power_down_phy - Power down the PHY
       
  3433  *
       
  3434  * Power down the PHY so no link is implied when interface is down.
       
  3435  * The PHY cannot be powered down if management or WoL is active.
       
  3436  */
       
  3437 static void e1000_power_down_phy(struct e1000_adapter *adapter)
       
  3438 {
       
  3439 	/* WoL is enabled */
       
  3440 	if (adapter->wol)
       
  3441 		return;
       
  3442 
       
  3443 	if (adapter->hw.phy.ops.power_down)
       
  3444 		adapter->hw.phy.ops.power_down(&adapter->hw);
       
  3445 }
       
  3446 
       
  3447 /**
       
  3448  * e1000e_reset - bring the hardware into a known good state
       
  3449  *
       
  3450  * This function boots the hardware and enables some settings that
       
  3451  * require a configuration cycle of the hardware - those cannot be
       
  3452  * set/changed during runtime. After reset the device needs to be
       
  3453  * properly configured for Rx, Tx etc.
       
  3454  */
       
  3455 void e1000e_reset(struct e1000_adapter *adapter)
       
  3456 {
       
  3457 	struct e1000_mac_info *mac = &adapter->hw.mac;
       
  3458 	struct e1000_fc_info *fc = &adapter->hw.fc;
       
  3459 	struct e1000_hw *hw = &adapter->hw;
       
  3460 	u32 tx_space, min_tx_space, min_rx_space;
       
  3461 	u32 pba = adapter->pba;
       
  3462 	u16 hwm;
       
  3463 
       
  3464 	/* reset Packet Buffer Allocation to default */
       
  3465 	ew32(PBA, pba);
       
  3466 
       
  3467 	if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
       
  3468 		/*
       
  3469 		 * To maintain wire speed transmits, the Tx FIFO should be
       
  3470 		 * large enough to accommodate two full transmit packets,
       
  3471 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
       
  3472 		 * the Rx FIFO should be large enough to accommodate at least
       
  3473 		 * one full receive packet and is similarly rounded up and
       
  3474 		 * expressed in KB.
       
  3475 		 */
       
  3476 		pba = er32(PBA);
       
  3477 		/* upper 16 bits has Tx packet buffer allocation size in KB */
       
  3478 		tx_space = pba >> 16;
       
  3479 		/* lower 16 bits has Rx packet buffer allocation size in KB */
       
  3480 		pba &= 0xffff;
       
  3481 		/*
       
  3482 		 * the Tx fifo also stores 16 bytes of information about the Tx
       
  3483 		 * but don't include ethernet FCS because hardware appends it
       
  3484 		 */
       
  3485 		min_tx_space = (adapter->max_frame_size +
       
  3486 				sizeof(struct e1000_tx_desc) -
       
  3487 				ETH_FCS_LEN) * 2;
       
  3488 		min_tx_space = ALIGN(min_tx_space, 1024);
       
  3489 		min_tx_space >>= 10;
       
  3490 		/* software strips receive CRC, so leave room for it */
       
  3491 		min_rx_space = adapter->max_frame_size;
       
  3492 		min_rx_space = ALIGN(min_rx_space, 1024);
       
  3493 		min_rx_space >>= 10;
       
  3494 
       
  3495 		/*
       
  3496 		 * If current Tx allocation is less than the min Tx FIFO size,
       
  3497 		 * and the min Tx FIFO size is less than the current Rx FIFO
       
  3498 		 * allocation, take space away from current Rx allocation
       
  3499 		 */
       
  3500 		if ((tx_space < min_tx_space) &&
       
  3501 		    ((min_tx_space - tx_space) < pba)) {
       
  3502 			pba -= min_tx_space - tx_space;
       
  3503 
       
  3504 			/*
       
  3505 			 * if short on Rx space, Rx wins and must trump Tx
       
  3506 			 * adjustment or use Early Receive if available
       
  3507 			 */
       
  3508 			if (pba < min_rx_space)
       
  3509 				pba = min_rx_space;
       
  3510 		}
       
  3511 
       
  3512 		ew32(PBA, pba);
       
  3513 	}
       
  3514 
       
  3515 	/*
       
  3516 	 * flow control settings
       
  3517 	 *
       
  3518 	 * The high water mark must be low enough to fit one full frame
       
  3519 	 * (or the size used for early receive) above it in the Rx FIFO.
       
  3520 	 * Set it to the lower of:
       
  3521 	 * - 90% of the Rx FIFO size, and
       
  3522 	 * - the full Rx FIFO size minus one full frame
       
  3523 	 */
       
  3524 	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
       
  3525 		fc->pause_time = 0xFFFF;
       
  3526 	else
       
  3527 		fc->pause_time = E1000_FC_PAUSE_TIME;
       
  3528 	fc->send_xon = true;
       
  3529 	fc->current_mode = fc->requested_mode;
       
  3530 
       
  3531 	switch (hw->mac.type) {
       
  3532 	case e1000_ich9lan:
       
  3533 	case e1000_ich10lan:
       
  3534 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
       
  3535 			pba = 14;
       
  3536 			ew32(PBA, pba);
       
  3537 			fc->high_water = 0x2800;
       
  3538 			fc->low_water = fc->high_water - 8;
       
  3539 			break;
       
  3540 		}
       
  3541 		/* fall-through */
       
  3542 	default:
       
  3543 		hwm = min(((pba << 10) * 9 / 10),
       
  3544 			  ((pba << 10) - adapter->max_frame_size));
       
  3545 
       
  3546 		fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
       
  3547 		fc->low_water = fc->high_water - 8;
       
  3548 		break;
       
  3549 	case e1000_pchlan:
       
  3550 		/*
       
  3551 		 * Workaround PCH LOM adapter hangs with certain network
       
  3552 		 * loads.  If hangs persist, try disabling Tx flow control.
       
  3553 		 */
       
  3554 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
       
  3555 			fc->high_water = 0x3500;
       
  3556 			fc->low_water  = 0x1500;
       
  3557 		} else {
       
  3558 			fc->high_water = 0x5000;
       
  3559 			fc->low_water  = 0x3000;
       
  3560 		}
       
  3561 		fc->refresh_time = 0x1000;
       
  3562 		break;
       
  3563 	case e1000_pch2lan:
       
  3564 		fc->high_water = 0x05C20;
       
  3565 		fc->low_water = 0x05048;
       
  3566 		fc->pause_time = 0x0650;
       
  3567 		fc->refresh_time = 0x0400;
       
  3568 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
       
  3569 			pba = 14;
       
  3570 			ew32(PBA, pba);
       
  3571 		}
       
  3572 		break;
       
  3573 	}
       
  3574 
       
  3575 	/*
       
  3576 	 * Disable Adaptive Interrupt Moderation if 2 full packets cannot
       
  3577 	 * fit in receive buffer.
       
  3578 	 */
       
  3579 	if (adapter->itr_setting & 0x3) {
       
  3580 		if ((adapter->max_frame_size * 2) > (pba << 10)) {
       
  3581 			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
       
  3582 				dev_info(&adapter->pdev->dev,
       
  3583 					"Interrupt Throttle Rate turned off\n");
       
  3584 				adapter->flags2 |= FLAG2_DISABLE_AIM;
       
  3585 				ew32(ITR, 0);
       
  3586 			}
       
  3587 		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
       
  3588 			dev_info(&adapter->pdev->dev,
       
  3589 				 "Interrupt Throttle Rate turned on\n");
       
  3590 			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
       
  3591 			adapter->itr = 20000;
       
  3592 			ew32(ITR, 1000000000 / (adapter->itr * 256));
       
  3593 		}
       
  3594 	}
       
  3595 
       
  3596 	/* Allow time for pending master requests to run */
       
  3597 	mac->ops.reset_hw(hw);
       
  3598 
       
  3599 	/*
       
  3600 	 * For parts with AMT enabled, let the firmware know
       
  3601 	 * that the network interface is in control
       
  3602 	 */
       
  3603 	if (adapter->flags & FLAG_HAS_AMT)
       
  3604 		e1000e_get_hw_control(adapter);
       
  3605 
       
  3606 	ew32(WUC, 0);
       
  3607 
       
  3608 	if (mac->ops.init_hw(hw))
       
  3609 		e_err("Hardware Error\n");
       
  3610 
       
  3611 	e1000_update_mng_vlan(adapter);
       
  3612 
       
  3613 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
       
  3614 	ew32(VET, ETH_P_8021Q);
       
  3615 
       
  3616 	e1000e_reset_adaptive(hw);
       
  3617 
       
  3618 	if (!netif_running(adapter->netdev) &&
       
  3619 	    !test_bit(__E1000_TESTING, &adapter->state)) {
       
  3620 		e1000_power_down_phy(adapter);
       
  3621 		return;
       
  3622 	}
       
  3623 
       
  3624 	e1000_get_phy_info(hw);
       
  3625 
       
  3626 	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
       
  3627 	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
       
  3628 		u16 phy_data = 0;
       
  3629 		/*
       
  3630 		 * speed up time to link by disabling smart power down, ignore
       
  3631 		 * the return value of this function because there is nothing
       
  3632 		 * different we would do if it failed
       
  3633 		 */
       
  3634 		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
       
  3635 		phy_data &= ~IGP02E1000_PM_SPD;
       
  3636 		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
       
  3637 	}
       
  3638 }
       
  3639 
       
  3640 int e1000e_up(struct e1000_adapter *adapter)
       
  3641 {
       
  3642 	struct e1000_hw *hw = &adapter->hw;
       
  3643 
       
  3644 	/* hardware has been reset, we need to reload some things */
       
  3645 	e1000_configure(adapter);
       
  3646 
       
  3647 	clear_bit(__E1000_DOWN, &adapter->state);
       
  3648 
       
  3649 	if (!adapter->ecdev) {
       
  3650 		if (adapter->msix_entries)
       
  3651 			e1000_configure_msix(adapter);
       
  3652 
       
  3653 		e1000_irq_enable(adapter);
       
  3654 
       
  3655 		netif_start_queue(adapter->netdev);
       
  3656 
       
  3657 		/* fire a link change interrupt to start the watchdog */
       
  3658 		if (adapter->msix_entries)
       
  3659 			ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
       
  3660 		else
       
  3661 			ew32(ICS, E1000_ICS_LSC);
       
  3662 	}
       
  3663 
       
  3664 	return 0;
       
  3665 }
       
  3666 
       
  3667 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
       
  3668 {
       
  3669 	struct e1000_hw *hw = &adapter->hw;
       
  3670 
       
  3671 	if (!(adapter->flags2 & FLAG2_DMA_BURST))
       
  3672 		return;
       
  3673 
       
  3674 	/* flush pending descriptor writebacks to memory */
       
  3675 	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
       
  3676 	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
       
  3677 
       
  3678 	/* execute the writes immediately */
       
  3679 	e1e_flush();
       
  3680 
       
  3681 	/*
       
  3682 	 * due to rare timing issues, write to TIDV/RDTR again to ensure the
       
  3683 	 * write is successful
       
  3684 	 */
       
  3685 	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
       
  3686 	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
       
  3687 
       
  3688 	/* execute the writes immediately */
       
  3689 	e1e_flush();
       
  3690 }
       
  3691 
       
  3692 static void e1000e_update_stats(struct e1000_adapter *adapter);
       
  3693 
       
  3694 void e1000e_down(struct e1000_adapter *adapter)
       
  3695 {
       
  3696 	struct net_device *netdev = adapter->netdev;
       
  3697 	struct e1000_hw *hw = &adapter->hw;
       
  3698 	u32 tctl, rctl;
       
  3699 
       
  3700 	/*
       
  3701 	 * signal that we're down so the interrupt handler does not
       
  3702 	 * reschedule our watchdog timer
       
  3703 	 */
       
  3704 	set_bit(__E1000_DOWN, &adapter->state);
       
  3705 
       
  3706 	/* disable receives in the hardware */
       
  3707 	rctl = er32(RCTL);
       
  3708 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
       
  3709 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
       
  3710 	/* flush and sleep below */
       
  3711 
       
  3712 	if (!adapter->ecdev)
       
  3713 		netif_stop_queue(netdev);
       
  3714 
       
  3715 	/* disable transmits in the hardware */
       
  3716 	tctl = er32(TCTL);
       
  3717 	tctl &= ~E1000_TCTL_EN;
       
  3718 	ew32(TCTL, tctl);
       
  3719 
       
  3720 	/* flush both disables and wait for them to finish */
       
  3721 	e1e_flush();
       
  3722 	usleep_range(10000, 20000);
       
  3723 
       
  3724 	if (!adapter->ecdev) {
       
  3725 		e1000_irq_disable(adapter);
       
  3726 
       
  3727 		del_timer_sync(&adapter->watchdog_timer);
       
  3728 		del_timer_sync(&adapter->phy_info_timer);
       
  3729 	}
       
  3730 
       
  3731 	if (adapter->ecdev) {
       
  3732 		ecdev_set_link(adapter->ecdev, 0);
       
  3733 	}
       
  3734 	else {
       
  3735 		netif_carrier_off(netdev);
       
  3736 	}
       
  3737 
       
  3738 	spin_lock(&adapter->stats64_lock);
       
  3739 	e1000e_update_stats(adapter);
       
  3740 	spin_unlock(&adapter->stats64_lock);
       
  3741 
       
  3742 	e1000e_flush_descriptors(adapter);
       
  3743 	e1000_clean_tx_ring(adapter->tx_ring);
       
  3744 	e1000_clean_rx_ring(adapter->rx_ring);
       
  3745 
       
  3746 	adapter->link_speed = 0;
       
  3747 	adapter->link_duplex = 0;
       
  3748 
       
  3749 	if (!pci_channel_offline(adapter->pdev))
       
  3750 		e1000e_reset(adapter);
       
  3751 
       
  3752 	/*
       
  3753 	 * TODO: for power management, we could drop the link and
       
  3754 	 * pci_disable_device here.
       
  3755 	 */
       
  3756 }
       
  3757 
       
  3758 void e1000e_reinit_locked(struct e1000_adapter *adapter)
       
  3759 {
       
  3760 	might_sleep();
       
  3761 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
       
  3762 		usleep_range(1000, 2000);
       
  3763 	e1000e_down(adapter);
       
  3764 	e1000e_up(adapter);
       
  3765 	clear_bit(__E1000_RESETTING, &adapter->state);
       
  3766 }
       
  3767 
       
  3768 /**
       
  3769  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
       
  3770  * @adapter: board private structure to initialize
       
  3771  *
       
  3772  * e1000_sw_init initializes the Adapter private data structure.
       
  3773  * Fields are initialized based on PCI device information and
       
  3774  * OS network device settings (MTU size).
       
  3775  **/
       
  3776 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
       
  3777 {
       
  3778 	struct net_device *netdev = adapter->netdev;
       
  3779 
       
  3780 	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
       
  3781 	adapter->rx_ps_bsize0 = 128;
       
  3782 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
       
  3783 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
       
  3784 	adapter->tx_ring_count = E1000_DEFAULT_TXD;
       
  3785 	adapter->rx_ring_count = E1000_DEFAULT_RXD;
       
  3786 
       
  3787 	spin_lock_init(&adapter->stats64_lock);
       
  3788 
       
  3789 	e1000e_set_interrupt_capability(adapter);
       
  3790 
       
  3791 	if (e1000_alloc_queues(adapter))
       
  3792 		return -ENOMEM;
       
  3793 
       
  3794 	/* Explicitly disable IRQ since the NIC can be in any state. */
       
  3795 	e1000_irq_disable(adapter);
       
  3796 
       
  3797 	set_bit(__E1000_DOWN, &adapter->state);
       
  3798 	return 0;
       
  3799 }
       
  3800 
       
  3801 /**
       
  3802  * e1000_intr_msi_test - Interrupt Handler
       
  3803  * @irq: interrupt number
       
  3804  * @data: pointer to a network interface device structure
       
  3805  **/
       
  3806 static irqreturn_t e1000_intr_msi_test(int irq, void *data)
       
  3807 {
       
  3808 	struct net_device *netdev = data;
       
  3809 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3810 	struct e1000_hw *hw = &adapter->hw;
       
  3811 	u32 icr = er32(ICR);
       
  3812 
       
  3813 	e_dbg("icr is %08X\n", icr);
       
  3814 	if (icr & E1000_ICR_RXSEQ) {
       
  3815 		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
       
  3816 		wmb();
       
  3817 	}
       
  3818 
       
  3819 	return IRQ_HANDLED;
       
  3820 }
       
  3821 
       
  3822 /**
       
  3823  * e1000_test_msi_interrupt - Returns 0 for successful test
       
  3824  * @adapter: board private struct
       
  3825  *
       
  3826  * code flow taken from tg3.c
       
  3827  **/
       
  3828 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
       
  3829 {
       
  3830 	struct net_device *netdev = adapter->netdev;
       
  3831 	struct e1000_hw *hw = &adapter->hw;
       
  3832 	int err;
       
  3833 
       
  3834 	/* poll_enable hasn't been called yet, so don't need disable */
       
  3835 	/* clear any pending events */
       
  3836 	er32(ICR);
       
  3837 
       
  3838 	/* free the real vector and request a test handler */
       
  3839 	e1000_free_irq(adapter);
       
  3840 	e1000e_reset_interrupt_capability(adapter);
       
  3841 
       
  3842 	/* Assume that the test fails, if it succeeds then the test
       
  3843 	 * MSI irq handler will unset this flag */
       
  3844 	adapter->flags |= FLAG_MSI_TEST_FAILED;
       
  3845 
       
  3846 	err = pci_enable_msi(adapter->pdev);
       
  3847 	if (err)
       
  3848 		goto msi_test_failed;
       
  3849 
       
  3850 	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
       
  3851 			  netdev->name, netdev);
       
  3852 	if (err) {
       
  3853 		pci_disable_msi(adapter->pdev);
       
  3854 		goto msi_test_failed;
       
  3855 	}
       
  3856 
       
  3857 	wmb();
       
  3858 
       
  3859 	e1000_irq_enable(adapter);
       
  3860 
       
  3861 	/* fire an unusual interrupt on the test handler */
       
  3862 	ew32(ICS, E1000_ICS_RXSEQ);
       
  3863 	e1e_flush();
       
  3864 	msleep(100);
       
  3865 
       
  3866 	e1000_irq_disable(adapter);
       
  3867 
       
  3868 	rmb();
       
  3869 
       
  3870 	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
       
  3871 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
       
  3872 		e_info("MSI interrupt test failed, using legacy interrupt.\n");
       
  3873 	} else {
       
  3874 		e_dbg("MSI interrupt test succeeded!\n");
       
  3875 	}
       
  3876 
       
  3877 	free_irq(adapter->pdev->irq, netdev);
       
  3878 	pci_disable_msi(adapter->pdev);
       
  3879 
       
  3880 msi_test_failed:
       
  3881 	e1000e_set_interrupt_capability(adapter);
       
  3882 	return e1000_request_irq(adapter);
       
  3883 }
       
  3884 
       
  3885 /**
       
  3886  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
       
  3887  * @adapter: board private struct
       
  3888  *
       
  3889  * code flow taken from tg3.c, called with e1000 interrupts disabled.
       
  3890  **/
       
  3891 static int e1000_test_msi(struct e1000_adapter *adapter)
       
  3892 {
       
  3893 	int err;
       
  3894 	u16 pci_cmd;
       
  3895 
       
  3896 	if (!(adapter->flags & FLAG_MSI_ENABLED))
       
  3897 		return 0;
       
  3898 
       
  3899 	/* disable SERR in case the MSI write causes a master abort */
       
  3900 	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
       
  3901 	if (pci_cmd & PCI_COMMAND_SERR)
       
  3902 		pci_write_config_word(adapter->pdev, PCI_COMMAND,
       
  3903 				      pci_cmd & ~PCI_COMMAND_SERR);
       
  3904 
       
  3905 	err = e1000_test_msi_interrupt(adapter);
       
  3906 
       
  3907 	/* re-enable SERR */
       
  3908 	if (pci_cmd & PCI_COMMAND_SERR) {
       
  3909 		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
       
  3910 		pci_cmd |= PCI_COMMAND_SERR;
       
  3911 		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
       
  3912 	}
       
  3913 
       
  3914 	return err;
       
  3915 }
       
  3916 
       
  3917 /**
       
  3918  * e1000_open - Called when a network interface is made active
       
  3919  * @netdev: network interface device structure
       
  3920  *
       
  3921  * Returns 0 on success, negative value on failure
       
  3922  *
       
  3923  * The open entry point is called when a network interface is made
       
  3924  * active by the system (IFF_UP).  At this point all resources needed
       
  3925  * for transmit and receive operations are allocated, the interrupt
       
  3926  * handler is registered with the OS, the watchdog timer is started,
       
  3927  * and the stack is notified that the interface is ready.
       
  3928  **/
       
  3929 static int e1000_open(struct net_device *netdev)
       
  3930 {
       
  3931 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  3932 	struct e1000_hw *hw = &adapter->hw;
       
  3933 	struct pci_dev *pdev = adapter->pdev;
       
  3934 	int err;
       
  3935 
       
  3936 	/* disallow open during test */
       
  3937 	if (test_bit(__E1000_TESTING, &adapter->state))
       
  3938 		return -EBUSY;
       
  3939 
       
  3940 	pm_runtime_get_sync(&pdev->dev);
       
  3941 
       
  3942 	if (adapter->ecdev) {
       
  3943 		ecdev_set_link(adapter->ecdev, 0);
       
  3944 	} else {
       
  3945 		netif_carrier_off(netdev);
       
  3946 	}
       
  3947 
       
  3948 	/* allocate transmit descriptors */
       
  3949 	err = e1000e_setup_tx_resources(adapter->tx_ring);
       
  3950 	if (err)
       
  3951 		goto err_setup_tx;
       
  3952 
       
  3953 	/* allocate receive descriptors */
       
  3954 	err = e1000e_setup_rx_resources(adapter->rx_ring);
       
  3955 	if (err)
       
  3956 		goto err_setup_rx;
       
  3957 
       
  3958 	/*
       
  3959 	 * If AMT is enabled, let the firmware know that the network
       
  3960 	 * interface is now open and reset the part to a known state.
       
  3961 	 */
       
  3962 	if (adapter->flags & FLAG_HAS_AMT) {
       
  3963 		e1000e_get_hw_control(adapter);
       
  3964 		e1000e_reset(adapter);
       
  3965 	}
       
  3966 
       
  3967 	e1000e_power_up_phy(adapter);
       
  3968 
       
  3969 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
       
  3970 	if ((adapter->hw.mng_cookie.status &
       
  3971 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
       
  3972 		e1000_update_mng_vlan(adapter);
       
  3973 
       
  3974 	/* DMA latency requirement to workaround jumbo issue */
       
  3975 	if (adapter->hw.mac.type == e1000_pch2lan)
       
  3976 		pm_qos_add_request(&adapter->netdev->pm_qos_req,
       
  3977 				   PM_QOS_CPU_DMA_LATENCY,
       
  3978 				   PM_QOS_DEFAULT_VALUE);
       
  3979 
       
  3980 	/*
       
  3981 	 * before we allocate an interrupt, we must be ready to handle it.
       
  3982 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
       
  3983 	 * as soon as we call pci_request_irq, so we have to setup our
       
  3984 	 * clean_rx handler before we do so.
       
  3985 	 */
       
  3986 	e1000_configure(adapter);
       
  3987 
       
  3988 	err = e1000_request_irq(adapter);
       
  3989 	if (err)
       
  3990 		goto err_req_irq;
       
  3991 
       
  3992 	/*
       
  3993 	 * Work around PCIe errata with MSI interrupts causing some chipsets to
       
  3994 	 * ignore e1000e MSI messages, which means we need to test our MSI
       
  3995 	 * interrupt now
       
  3996 	 */
       
  3997 	if (!adapter->ecdev && adapter->int_mode != E1000E_INT_MODE_LEGACY) {
       
  3998 		err = e1000_test_msi(adapter);
       
  3999 		if (err) {
       
  4000 			e_err("Interrupt allocation failed\n");
       
  4001 			goto err_req_irq;
       
  4002 		}
       
  4003 	}
       
  4004 
       
  4005 	/* From here on the code is the same as e1000e_up() */
       
  4006 	clear_bit(__E1000_DOWN, &adapter->state);
       
  4007 
       
  4008 	if (!adapter->ecdev) {
       
  4009 		napi_enable(&adapter->napi);
       
  4010 
       
  4011 		e1000_irq_enable(adapter);
       
  4012 	}
       
  4013 
       
  4014 	adapter->tx_hang_recheck = false;
       
  4015 
       
  4016 	if (!adapter->ecdev) {
       
  4017 		netif_start_queue(netdev);
       
  4018 	}
       
  4019 
       
  4020 	adapter->idle_check = true;
       
  4021 	pm_runtime_put(&pdev->dev);
       
  4022 
       
  4023 	/* fire a link status change interrupt to start the watchdog */
       
  4024 	if (adapter->msix_entries)
       
  4025 		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
       
  4026 	else
       
  4027 		ew32(ICS, E1000_ICS_LSC);
       
  4028 
       
  4029 	return 0;
       
  4030 
       
  4031 err_req_irq:
       
  4032 	e1000e_release_hw_control(adapter);
       
  4033 	e1000_power_down_phy(adapter);
       
  4034 	e1000e_free_rx_resources(adapter->rx_ring);
       
  4035 err_setup_rx:
       
  4036 	e1000e_free_tx_resources(adapter->tx_ring);
       
  4037 err_setup_tx:
       
  4038 	e1000e_reset(adapter);
       
  4039 	pm_runtime_put_sync(&pdev->dev);
       
  4040 
       
  4041 	return err;
       
  4042 }
       
  4043 
       
  4044 /**
       
  4045  * e1000_close - Disables a network interface
       
  4046  * @netdev: network interface device structure
       
  4047  *
       
  4048  * Returns 0, this is not allowed to fail
       
  4049  *
       
  4050  * The close entry point is called when an interface is de-activated
       
  4051  * by the OS.  The hardware is still under the drivers control, but
       
  4052  * needs to be disabled.  A global MAC reset is issued to stop the
       
  4053  * hardware, and all transmit and receive resources are freed.
       
  4054  **/
       
  4055 static int e1000_close(struct net_device *netdev)
       
  4056 {
       
  4057 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4058 	struct pci_dev *pdev = adapter->pdev;
       
  4059 	int count = E1000_CHECK_RESET_COUNT;
       
  4060 
       
  4061 	while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
       
  4062 		usleep_range(10000, 20000);
       
  4063 
       
  4064 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
       
  4065 
       
  4066 	pm_runtime_get_sync(&pdev->dev);
       
  4067 
       
  4068 	if (!adapter->ecdev) {
       
  4069 		napi_disable(&adapter->napi);
       
  4070 	}
       
  4071 
       
  4072 	if (!test_bit(__E1000_DOWN, &adapter->state)) {
       
  4073 		e1000e_down(adapter);
       
  4074 		e1000_free_irq(adapter);
       
  4075 	}
       
  4076 	e1000_power_down_phy(adapter);
       
  4077 
       
  4078 	e1000e_free_tx_resources(adapter->tx_ring);
       
  4079 	e1000e_free_rx_resources(adapter->rx_ring);
       
  4080 
       
  4081 	/*
       
  4082 	 * kill manageability vlan ID if supported, but not if a vlan with
       
  4083 	 * the same ID is registered on the host OS (let 8021q kill it)
       
  4084 	 */
       
  4085 	if (adapter->hw.mng_cookie.status &
       
  4086 	    E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
       
  4087 		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
       
  4088 
       
  4089 	/*
       
  4090 	 * If AMT is enabled, let the firmware know that the network
       
  4091 	 * interface is now closed
       
  4092 	 */
       
  4093 	if ((adapter->flags & FLAG_HAS_AMT) &&
       
  4094 	    !test_bit(__E1000_TESTING, &adapter->state))
       
  4095 		e1000e_release_hw_control(adapter);
       
  4096 
       
  4097 	if (adapter->hw.mac.type == e1000_pch2lan)
       
  4098 		pm_qos_remove_request(&adapter->netdev->pm_qos_req);
       
  4099 
       
  4100 	pm_runtime_put_sync(&pdev->dev);
       
  4101 
       
  4102 	return 0;
       
  4103 }
       
  4104 /**
       
  4105  * e1000_set_mac - Change the Ethernet Address of the NIC
       
  4106  * @netdev: network interface device structure
       
  4107  * @p: pointer to an address structure
       
  4108  *
       
  4109  * Returns 0 on success, negative on failure
       
  4110  **/
       
  4111 static int e1000_set_mac(struct net_device *netdev, void *p)
       
  4112 {
       
  4113 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  4114 	struct sockaddr *addr = p;
       
  4115 
       
  4116 	if (!is_valid_ether_addr(addr->sa_data))
       
  4117 		return -EADDRNOTAVAIL;
       
  4118 
       
  4119 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
       
  4120 	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
       
  4121 
       
  4122 	e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
       
  4123 
       
  4124 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
       
  4125 		/* activate the work around */
       
  4126 		e1000e_set_laa_state_82571(&adapter->hw, 1);
       
  4127 
       
  4128 		/*
       
  4129 		 * Hold a copy of the LAA in RAR[14] This is done so that
       
  4130 		 * between the time RAR[0] gets clobbered  and the time it
       
  4131 		 * gets fixed (in e1000_watchdog), the actual LAA is in one
       
  4132 		 * of the RARs and no incoming packets directed to this port
       
  4133 		 * are dropped. Eventually the LAA will be in RAR[0] and
       
  4134 		 * RAR[14]
       
  4135 		 */
       
  4136 		e1000e_rar_set(&adapter->hw,
       
  4137 			      adapter->hw.mac.addr,
       
  4138 			      adapter->hw.mac.rar_entry_count - 1);
       
  4139 	}
       
  4140 
       
  4141 	return 0;
       
  4142 }
       
  4143 
       
  4144 /**
       
  4145  * e1000e_update_phy_task - work thread to update phy
       
  4146  * @work: pointer to our work struct
       
  4147  *
       
  4148  * this worker thread exists because we must acquire a
       
  4149  * semaphore to read the phy, which we could msleep while
       
  4150  * waiting for it, and we can't msleep in a timer.
       
  4151  **/
       
  4152 static void e1000e_update_phy_task(struct work_struct *work)
       
  4153 {
       
  4154 	struct e1000_adapter *adapter = container_of(work,
       
  4155 					struct e1000_adapter, update_phy_task);
       
  4156 
       
  4157 	if (test_bit(__E1000_DOWN, &adapter->state))
       
  4158 		return;
       
  4159 
       
  4160 	e1000_get_phy_info(&adapter->hw);
       
  4161 }
       
  4162 
       
  4163 /*
       
  4164  * Need to wait a few seconds after link up to get diagnostic information from
       
  4165  * the phy
       
  4166  */
       
  4167 static void e1000_update_phy_info(unsigned long data)
       
  4168 {
       
  4169 	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
       
  4170 
       
  4171 	if (test_bit(__E1000_DOWN, &adapter->state))
       
  4172 		return;
       
  4173 
       
  4174 	schedule_work(&adapter->update_phy_task);
       
  4175 }
       
  4176 
       
  4177 /**
       
  4178  * e1000e_update_phy_stats - Update the PHY statistics counters
       
  4179  * @adapter: board private structure
       
  4180  *
       
  4181  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
       
  4182  **/
       
  4183 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
       
  4184 {
       
  4185 	struct e1000_hw *hw = &adapter->hw;
       
  4186 	s32 ret_val;
       
  4187 	u16 phy_data;
       
  4188 
       
  4189 	ret_val = hw->phy.ops.acquire(hw);
       
  4190 	if (ret_val)
       
  4191 		return;
       
  4192 
       
  4193 	/*
       
  4194 	 * A page set is expensive so check if already on desired page.
       
  4195 	 * If not, set to the page with the PHY status registers.
       
  4196 	 */
       
  4197 	hw->phy.addr = 1;
       
  4198 	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
       
  4199 					   &phy_data);
       
  4200 	if (ret_val)
       
  4201 		goto release;
       
  4202 	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
       
  4203 		ret_val = hw->phy.ops.set_page(hw,
       
  4204 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
       
  4205 		if (ret_val)
       
  4206 			goto release;
       
  4207 	}
       
  4208 
       
  4209 	/* Single Collision Count */
       
  4210 	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
       
  4211 	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
       
  4212 	if (!ret_val)
       
  4213 		adapter->stats.scc += phy_data;
       
  4214 
       
  4215 	/* Excessive Collision Count */
       
  4216 	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
       
  4217 	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
       
  4218 	if (!ret_val)
       
  4219 		adapter->stats.ecol += phy_data;
       
  4220 
       
  4221 	/* Multiple Collision Count */
       
  4222 	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
       
  4223 	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
       
  4224 	if (!ret_val)
       
  4225 		adapter->stats.mcc += phy_data;
       
  4226 
       
  4227 	/* Late Collision Count */
       
  4228 	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
       
  4229 	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
       
  4230 	if (!ret_val)
       
  4231 		adapter->stats.latecol += phy_data;
       
  4232 
       
  4233 	/* Collision Count - also used for adaptive IFS */
       
  4234 	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
       
  4235 	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
       
  4236 	if (!ret_val)
       
  4237 		hw->mac.collision_delta = phy_data;
       
  4238 
       
  4239 	/* Defer Count */
       
  4240 	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
       
  4241 	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
       
  4242 	if (!ret_val)
       
  4243 		adapter->stats.dc += phy_data;
       
  4244 
       
  4245 	/* Transmit with no CRS */
       
  4246 	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
       
  4247 	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
       
  4248 	if (!ret_val)
       
  4249 		adapter->stats.tncrs += phy_data;
       
  4250 
       
  4251 release:
       
  4252 	hw->phy.ops.release(hw);
       
  4253 }
       
  4254 
       
  4255 /**
       
  4256  * e1000e_update_stats - Update the board statistics counters
       
  4257  * @adapter: board private structure
       
  4258  **/
       
  4259 static void e1000e_update_stats(struct e1000_adapter *adapter)
       
  4260 {
       
  4261 	struct net_device *netdev = adapter->netdev;
       
  4262 	struct e1000_hw *hw = &adapter->hw;
       
  4263 	struct pci_dev *pdev = adapter->pdev;
       
  4264 
       
  4265 	/*
       
  4266 	 * Prevent stats update while adapter is being reset, or if the pci
       
  4267 	 * connection is down.
       
  4268 	 */
       
  4269 	if (adapter->link_speed == 0)
       
  4270 		return;
       
  4271 	if (pci_channel_offline(pdev))
       
  4272 		return;
       
  4273 
       
  4274 	adapter->stats.crcerrs += er32(CRCERRS);
       
  4275 	adapter->stats.gprc += er32(GPRC);
       
  4276 	adapter->stats.gorc += er32(GORCL);
       
  4277 	er32(GORCH); /* Clear gorc */
       
  4278 	adapter->stats.bprc += er32(BPRC);
       
  4279 	adapter->stats.mprc += er32(MPRC);
       
  4280 	adapter->stats.roc += er32(ROC);
       
  4281 
       
  4282 	adapter->stats.mpc += er32(MPC);
       
  4283 
       
  4284 	/* Half-duplex statistics */
       
  4285 	if (adapter->link_duplex == HALF_DUPLEX) {
       
  4286 		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
       
  4287 			e1000e_update_phy_stats(adapter);
       
  4288 		} else {
       
  4289 			adapter->stats.scc += er32(SCC);
       
  4290 			adapter->stats.ecol += er32(ECOL);
       
  4291 			adapter->stats.mcc += er32(MCC);
       
  4292 			adapter->stats.latecol += er32(LATECOL);
       
  4293 			adapter->stats.dc += er32(DC);
       
  4294 
       
  4295 			hw->mac.collision_delta = er32(COLC);
       
  4296 
       
  4297 			if ((hw->mac.type != e1000_82574) &&
       
  4298 			    (hw->mac.type != e1000_82583))
       
  4299 				adapter->stats.tncrs += er32(TNCRS);
       
  4300 		}
       
  4301 		adapter->stats.colc += hw->mac.collision_delta;
       
  4302 	}
       
  4303 
       
  4304 	adapter->stats.xonrxc += er32(XONRXC);
       
  4305 	adapter->stats.xontxc += er32(XONTXC);
       
  4306 	adapter->stats.xoffrxc += er32(XOFFRXC);
       
  4307 	adapter->stats.xofftxc += er32(XOFFTXC);
       
  4308 	adapter->stats.gptc += er32(GPTC);
       
  4309 	adapter->stats.gotc += er32(GOTCL);
       
  4310 	er32(GOTCH); /* Clear gotc */
       
  4311 	adapter->stats.rnbc += er32(RNBC);
       
  4312 	adapter->stats.ruc += er32(RUC);
       
  4313 
       
  4314 	adapter->stats.mptc += er32(MPTC);
       
  4315 	adapter->stats.bptc += er32(BPTC);
       
  4316 
       
  4317 	/* used for adaptive IFS */
       
  4318 
       
  4319 	hw->mac.tx_packet_delta = er32(TPT);
       
  4320 	adapter->stats.tpt += hw->mac.tx_packet_delta;
       
  4321 
       
  4322 	adapter->stats.algnerrc += er32(ALGNERRC);
       
  4323 	adapter->stats.rxerrc += er32(RXERRC);
       
  4324 	adapter->stats.cexterr += er32(CEXTERR);
       
  4325 	adapter->stats.tsctc += er32(TSCTC);
       
  4326 	adapter->stats.tsctfc += er32(TSCTFC);
       
  4327 
       
  4328 	/* Fill out the OS statistics structure */
       
  4329 	netdev->stats.multicast = adapter->stats.mprc;
       
  4330 	netdev->stats.collisions = adapter->stats.colc;
       
  4331 
       
  4332 	/* Rx Errors */
       
  4333 
       
  4334 	/*
       
  4335 	 * RLEC on some newer hardware can be incorrect so build
       
  4336 	 * our own version based on RUC and ROC
       
  4337 	 */
       
  4338 	netdev->stats.rx_errors = adapter->stats.rxerrc +
       
  4339 		adapter->stats.crcerrs + adapter->stats.algnerrc +
       
  4340 		adapter->stats.ruc + adapter->stats.roc +
       
  4341 		adapter->stats.cexterr;
       
  4342 	netdev->stats.rx_length_errors = adapter->stats.ruc +
       
  4343 					      adapter->stats.roc;
       
  4344 	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
       
  4345 	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
       
  4346 	netdev->stats.rx_missed_errors = adapter->stats.mpc;
       
  4347 
       
  4348 	/* Tx Errors */
       
  4349 	netdev->stats.tx_errors = adapter->stats.ecol +
       
  4350 				       adapter->stats.latecol;
       
  4351 	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
       
  4352 	netdev->stats.tx_window_errors = adapter->stats.latecol;
       
  4353 	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
       
  4354 
       
  4355 	/* Tx Dropped needs to be maintained elsewhere */
       
  4356 
       
  4357 	/* Management Stats */
       
  4358 	adapter->stats.mgptc += er32(MGTPTC);
       
  4359 	adapter->stats.mgprc += er32(MGTPRC);
       
  4360 	adapter->stats.mgpdc += er32(MGTPDC);
       
  4361 }
       
  4362 
       
  4363 /**
       
  4364  * e1000_phy_read_status - Update the PHY register status snapshot
       
  4365  * @adapter: board private structure
       
  4366  **/
       
  4367 static void e1000_phy_read_status(struct e1000_adapter *adapter)
       
  4368 {
       
  4369 	struct e1000_hw *hw = &adapter->hw;
       
  4370 	struct e1000_phy_regs *phy = &adapter->phy_regs;
       
  4371 
       
  4372 	if ((er32(STATUS) & E1000_STATUS_LU) &&
       
  4373 	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
       
  4374 		int ret_val;
       
  4375 
       
  4376 		ret_val  = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
       
  4377 		ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
       
  4378 		ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
       
  4379 		ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
       
  4380 		ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
       
  4381 		ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
       
  4382 		ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
       
  4383 		ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
       
  4384 		if (ret_val)
       
  4385 			e_warn("Error reading PHY register\n");
       
  4386 	} else {
       
  4387 		/*
       
  4388 		 * Do not read PHY registers if link is not up
       
  4389 		 * Set values to typical power-on defaults
       
  4390 		 */
       
  4391 		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
       
  4392 		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
       
  4393 			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
       
  4394 			     BMSR_ERCAP);
       
  4395 		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
       
  4396 				  ADVERTISE_ALL | ADVERTISE_CSMA);
       
  4397 		phy->lpa = 0;
       
  4398 		phy->expansion = EXPANSION_ENABLENPAGE;
       
  4399 		phy->ctrl1000 = ADVERTISE_1000FULL;
       
  4400 		phy->stat1000 = 0;
       
  4401 		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
       
  4402 	}
       
  4403 }
       
  4404 
       
  4405 static void e1000_print_link_info(struct e1000_adapter *adapter)
       
  4406 {
       
  4407 	struct e1000_hw *hw = &adapter->hw;
       
  4408 	u32 ctrl = er32(CTRL);
       
  4409 
       
  4410 	/* Link status message must follow this format for user tools */
       
  4411 	printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
       
  4412 		adapter->netdev->name,
       
  4413 		adapter->link_speed,
       
  4414 		adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
       
  4415 		(ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
       
  4416 		(ctrl & E1000_CTRL_RFCE) ? "Rx" :
       
  4417 		(ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
       
  4418 }
       
  4419 
       
  4420 static bool e1000e_has_link(struct e1000_adapter *adapter)
       
  4421 {
       
  4422 	struct e1000_hw *hw = &adapter->hw;
       
  4423 	bool link_active = false;
       
  4424 	s32 ret_val = 0;
       
  4425 
       
  4426 	/*
       
  4427 	 * get_link_status is set on LSC (link status) interrupt or
       
  4428 	 * Rx sequence error interrupt.  get_link_status will stay
       
  4429 	 * false until the check_for_link establishes link
       
  4430 	 * for copper adapters ONLY
       
  4431 	 */
       
  4432 	switch (hw->phy.media_type) {
       
  4433 	case e1000_media_type_copper:
       
  4434 		if (hw->mac.get_link_status) {
       
  4435 			ret_val = hw->mac.ops.check_for_link(hw);
       
  4436 			link_active = !hw->mac.get_link_status;
       
  4437 		} else {
       
  4438 			link_active = true;
       
  4439 		}
       
  4440 		break;
       
  4441 	case e1000_media_type_fiber:
       
  4442 		ret_val = hw->mac.ops.check_for_link(hw);
       
  4443 		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
       
  4444 		break;
       
  4445 	case e1000_media_type_internal_serdes:
       
  4446 		ret_val = hw->mac.ops.check_for_link(hw);
       
  4447 		link_active = adapter->hw.mac.serdes_has_link;
       
  4448 		break;
       
  4449 	default:
       
  4450 	case e1000_media_type_unknown:
       
  4451 		break;
       
  4452 	}
       
  4453 
       
  4454 	if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
       
  4455 	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
       
  4456 		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
       
  4457 		e_info("Gigabit has been disabled, downgrading speed\n");
       
  4458 	}
       
  4459 
       
  4460 	return link_active;
       
  4461 }
       
  4462 
       
  4463 static void e1000e_enable_receives(struct e1000_adapter *adapter)
       
  4464 {
       
  4465 	/* make sure the receive unit is started */
       
  4466 	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
       
  4467 	    (adapter->flags & FLAG_RX_RESTART_NOW)) {
       
  4468 		struct e1000_hw *hw = &adapter->hw;
       
  4469 		u32 rctl = er32(RCTL);
       
  4470 		ew32(RCTL, rctl | E1000_RCTL_EN);
       
  4471 		adapter->flags &= ~FLAG_RX_RESTART_NOW;
       
  4472 	}
       
  4473 }
       
  4474 
       
  4475 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
       
  4476 {
       
  4477 	struct e1000_hw *hw = &adapter->hw;
       
  4478 
       
  4479 	/*
       
  4480 	 * With 82574 controllers, PHY needs to be checked periodically
       
  4481 	 * for hung state and reset, if two calls return true
       
  4482 	 */
       
  4483 	if (e1000_check_phy_82574(hw))
       
  4484 		adapter->phy_hang_count++;
       
  4485 	else
       
  4486 		adapter->phy_hang_count = 0;
       
  4487 
       
  4488 	if (adapter->phy_hang_count > 1) {
       
  4489 		adapter->phy_hang_count = 0;
       
  4490 		schedule_work(&adapter->reset_task);
       
  4491 	}
       
  4492 }
       
  4493 
       
  4494 /**
       
  4495  * e1000_watchdog - Timer Call-back
       
  4496  * @data: pointer to adapter cast into an unsigned long
       
  4497  **/
       
  4498 static void e1000_watchdog(unsigned long data)
       
  4499 {
       
  4500 	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
       
  4501 
       
  4502 	/* Do the rest outside of interrupt context */
       
  4503 	schedule_work(&adapter->watchdog_task);
       
  4504 
       
  4505 	/* TODO: make this use queue_delayed_work() */
       
  4506 }
       
  4507 
       
  4508 static void e1000_watchdog_task(struct work_struct *work)
       
  4509 {
       
  4510 	struct e1000_adapter *adapter = container_of(work,
       
  4511 					struct e1000_adapter, watchdog_task);
       
  4512 	struct net_device *netdev = adapter->netdev;
       
  4513 	struct e1000_mac_info *mac = &adapter->hw.mac;
       
  4514 	struct e1000_phy_info *phy = &adapter->hw.phy;
       
  4515 	struct e1000_ring *tx_ring = adapter->tx_ring;
       
  4516 	struct e1000_hw *hw = &adapter->hw;
       
  4517 	u32 link, tctl;
       
  4518 
       
  4519 	if (test_bit(__E1000_DOWN, &adapter->state))
       
  4520 		return;
       
  4521 
       
  4522 	link = e1000e_has_link(adapter);
       
  4523 	if ((adapter->ecdev && (ecdev_get_link(adapter->ecdev)) && link)
       
  4524 			|| (!adapter->ecdev && (netif_carrier_ok(netdev)) && link)) {
       
  4525 		if (!adapter->ecdev) {
       
  4526 			/* Cancel scheduled suspend requests. */
       
  4527 			pm_runtime_resume(netdev->dev.parent);
       
  4528 		}
       
  4529 
       
  4530 		e1000e_enable_receives(adapter);
       
  4531 		goto link_up;
       
  4532 	}
       
  4533 
       
  4534 	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
       
  4535 	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
       
  4536 		e1000_update_mng_vlan(adapter);
       
  4537 
       
  4538 	if (link) {
       
  4539 		if ((adapter->ecdev && !ecdev_get_link(adapter->ecdev))
       
  4540 				|| (!adapter->ecdev && !netif_carrier_ok(netdev))) {
       
  4541 			bool txb2b = true;
       
  4542 
       
  4543 			/* Cancel scheduled suspend requests. */
       
  4544 			pm_runtime_resume(netdev->dev.parent);
       
  4545 
       
  4546 			/* update snapshot of PHY registers on LSC */
       
  4547 			e1000_phy_read_status(adapter);
       
  4548 			mac->ops.get_link_up_info(&adapter->hw,
       
  4549 						   &adapter->link_speed,
       
  4550 						   &adapter->link_duplex);
       
  4551 			e1000_print_link_info(adapter);
       
  4552 			/*
       
  4553 			 * On supported PHYs, check for duplex mismatch only
       
  4554 			 * if link has autonegotiated at 10/100 half
       
  4555 			 */
       
  4556 			if ((hw->phy.type == e1000_phy_igp_3 ||
       
  4557 			     hw->phy.type == e1000_phy_bm) &&
       
  4558 			    (hw->mac.autoneg == true) &&
       
  4559 			    (adapter->link_speed == SPEED_10 ||
       
  4560 			     adapter->link_speed == SPEED_100) &&
       
  4561 			    (adapter->link_duplex == HALF_DUPLEX)) {
       
  4562 				u16 autoneg_exp;
       
  4563 
       
  4564 				e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
       
  4565 
       
  4566 				if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
       
  4567 					e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
       
  4568 			}
       
  4569 
       
  4570 			/* adjust timeout factor according to speed/duplex */
       
  4571 			adapter->tx_timeout_factor = 1;
       
  4572 			switch (adapter->link_speed) {
       
  4573 			case SPEED_10:
       
  4574 				txb2b = false;
       
  4575 				adapter->tx_timeout_factor = 16;
       
  4576 				break;
       
  4577 			case SPEED_100:
       
  4578 				txb2b = false;
       
  4579 				adapter->tx_timeout_factor = 10;
       
  4580 				break;
       
  4581 			}
       
  4582 
       
  4583 			/*
       
  4584 			 * workaround: re-program speed mode bit after
       
  4585 			 * link-up event
       
  4586 			 */
       
  4587 			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
       
  4588 			    !txb2b) {
       
  4589 				u32 tarc0;
       
  4590 				tarc0 = er32(TARC(0));
       
  4591 				tarc0 &= ~SPEED_MODE_BIT;
       
  4592 				ew32(TARC(0), tarc0);
       
  4593 			}
       
  4594 
       
  4595 			/*
       
  4596 			 * disable TSO for pcie and 10/100 speeds, to avoid
       
  4597 			 * some hardware issues
       
  4598 			 */
       
  4599 			if (!(adapter->flags & FLAG_TSO_FORCE)) {
       
  4600 				switch (adapter->link_speed) {
       
  4601 				case SPEED_10:
       
  4602 				case SPEED_100:
       
  4603 					e_info("10/100 speed: disabling TSO\n");
       
  4604 					netdev->features &= ~NETIF_F_TSO;
       
  4605 					netdev->features &= ~NETIF_F_TSO6;
       
  4606 					break;
       
  4607 				case SPEED_1000:
       
  4608 					netdev->features |= NETIF_F_TSO;
       
  4609 					netdev->features |= NETIF_F_TSO6;
       
  4610 					break;
       
  4611 				default:
       
  4612 					/* oops */
       
  4613 					break;
       
  4614 				}
       
  4615 			}
       
  4616 
       
  4617 			/*
       
  4618 			 * enable transmits in the hardware, need to do this
       
  4619 			 * after setting TARC(0)
       
  4620 			 */
       
  4621 			tctl = er32(TCTL);
       
  4622 			tctl |= E1000_TCTL_EN;
       
  4623 			ew32(TCTL, tctl);
       
  4624 
       
  4625                         /*
       
  4626 			 * Perform any post-link-up configuration before
       
  4627 			 * reporting link up.
       
  4628 			 */
       
  4629 			if (phy->ops.cfg_on_link_up)
       
  4630 				phy->ops.cfg_on_link_up(hw);
       
  4631 
       
  4632 			if (adapter->ecdev)
       
  4633 				ecdev_set_link(adapter->ecdev, 1);
       
  4634 			else
       
  4635 				netif_carrier_on(netdev);
       
  4636 
       
  4637 			if (!adapter->ecdev && !test_bit(__E1000_DOWN, &adapter->state))
       
  4638 				mod_timer(&adapter->phy_info_timer,
       
  4639 					  round_jiffies(jiffies + 2 * HZ));
       
  4640 		}
       
  4641 	} else {
       
  4642 		if ((adapter->ecdev && ecdev_get_link(adapter->ecdev))
       
  4643 				|| (!adapter->ecdev && netif_carrier_ok(netdev))) {
       
  4644 			adapter->link_speed = 0;
       
  4645 			adapter->link_duplex = 0;
       
  4646 			/* Link status message must follow this format */
       
  4647 			printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
       
  4648 			       adapter->netdev->name);
       
  4649 			if (adapter->ecdev) {
       
  4650 				ecdev_set_link(adapter->ecdev, 0);
       
  4651 			}
       
  4652 			else {
       
  4653 				netif_carrier_off(netdev);
       
  4654 				if (!test_bit(__E1000_DOWN, &adapter->state))
       
  4655 					mod_timer(&adapter->phy_info_timer,
       
  4656 							round_jiffies(jiffies + 2 * HZ));
       
  4657 			}
       
  4658 
       
  4659 			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
       
  4660 				schedule_work(&adapter->reset_task);
       
  4661 			else
       
  4662 				pm_schedule_suspend(netdev->dev.parent,
       
  4663 						LINK_TIMEOUT);
       
  4664 		}
       
  4665 	}
       
  4666 
       
  4667 link_up:
       
  4668 	spin_lock(&adapter->stats64_lock);
       
  4669 	e1000e_update_stats(adapter);
       
  4670 
       
  4671 	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
       
  4672 	adapter->tpt_old = adapter->stats.tpt;
       
  4673 	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
       
  4674 	adapter->colc_old = adapter->stats.colc;
       
  4675 
       
  4676 	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
       
  4677 	adapter->gorc_old = adapter->stats.gorc;
       
  4678 	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
       
  4679 	adapter->gotc_old = adapter->stats.gotc;
       
  4680 	spin_unlock(&adapter->stats64_lock);
       
  4681 
       
  4682 	e1000e_update_adaptive(&adapter->hw);
       
  4683 
       
  4684 	if (!adapter->ecdev && !netif_carrier_ok(netdev) &&
       
  4685 		(e1000_desc_unused(tx_ring) + 1 < tx_ring->count)) {
       
  4686 		/*
       
  4687 		 * We've lost link, so the controller stops DMA,
       
  4688 		 * but we've got queued Tx work that's never going
       
  4689 		 * to get done, so reset controller to flush Tx.
       
  4690 		 * (Do the reset outside of interrupt context).
       
  4691 		 */
       
  4692 		schedule_work(&adapter->reset_task);
       
  4693 		/* return immediately since reset is imminent */
       
  4694 		return;
       
  4695 	}
       
  4696 
       
  4697 	/* Simple mode for Interrupt Throttle Rate (ITR) */
       
  4698 	if (adapter->itr_setting == 4) {
       
  4699 		/*
       
  4700 		 * Symmetric Tx/Rx gets a reduced ITR=2000;
       
  4701 		 * Total asymmetrical Tx or Rx gets ITR=8000;
       
  4702 		 * everyone else is between 2000-8000.
       
  4703 		 */
       
  4704 		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
       
  4705 		u32 dif = (adapter->gotc > adapter->gorc ?
       
  4706 			    adapter->gotc - adapter->gorc :
       
  4707 			    adapter->gorc - adapter->gotc) / 10000;
       
  4708 		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
       
  4709 
       
  4710 		ew32(ITR, 1000000000 / (itr * 256));
       
  4711 	}
       
  4712 
       
  4713 	/* Cause software interrupt to ensure Rx ring is cleaned */
       
  4714 	if (adapter->msix_entries)
       
  4715 		ew32(ICS, adapter->rx_ring->ims_val);
       
  4716 	else
       
  4717 		ew32(ICS, E1000_ICS_RXDMT0);
       
  4718 
       
  4719 	/* flush pending descriptors to memory before detecting Tx hang */
       
  4720 	e1000e_flush_descriptors(adapter);
       
  4721 
       
  4722 	/* Force detection of hung controller every watchdog period */
       
  4723 	adapter->detect_tx_hung = true;
       
  4724 
       
  4725 	/*
       
  4726 	 * With 82571 controllers, LAA may be overwritten due to controller
       
  4727 	 * reset from the other port. Set the appropriate LAA in RAR[0]
       
  4728 	 */
       
  4729 	if (e1000e_get_laa_state_82571(hw))
       
  4730 		e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
       
  4731 
       
  4732 	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
       
  4733 		e1000e_check_82574_phy_workaround(adapter);
       
  4734 
       
  4735 	/* Reset the timer */
       
  4736 	if (!adapter->ecdev && !test_bit(__E1000_DOWN, &adapter->state))
       
  4737 		mod_timer(&adapter->watchdog_timer,
       
  4738 			  round_jiffies(jiffies + 2 * HZ));
       
  4739 }
       
  4740 
       
  4741 #define E1000_TX_FLAGS_CSUM		0x00000001
       
  4742 #define E1000_TX_FLAGS_VLAN		0x00000002
       
  4743 #define E1000_TX_FLAGS_TSO		0x00000004
       
  4744 #define E1000_TX_FLAGS_IPV4		0x00000008
       
  4745 #define E1000_TX_FLAGS_NO_FCS		0x00000010
       
  4746 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
       
  4747 #define E1000_TX_FLAGS_VLAN_SHIFT	16
       
  4748 
       
  4749 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb)
       
  4750 {
       
  4751 	struct e1000_context_desc *context_desc;
       
  4752 	struct e1000_buffer *buffer_info;
       
  4753 	unsigned int i;
       
  4754 	u32 cmd_length = 0;
       
  4755 	u16 ipcse = 0, tucse, mss;
       
  4756 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
       
  4757 
       
  4758 	if (!skb_is_gso(skb))
       
  4759 		return 0;
       
  4760 
       
  4761 	if (skb_header_cloned(skb)) {
       
  4762 		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
       
  4763 
       
  4764 		if (err)
       
  4765 			return err;
       
  4766 	}
       
  4767 
       
  4768 	hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
       
  4769 	mss = skb_shinfo(skb)->gso_size;
       
  4770 	if (skb->protocol == htons(ETH_P_IP)) {
       
  4771 		struct iphdr *iph = ip_hdr(skb);
       
  4772 		iph->tot_len = 0;
       
  4773 		iph->check = 0;
       
  4774 		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
       
  4775 		                                         0, IPPROTO_TCP, 0);
       
  4776 		cmd_length = E1000_TXD_CMD_IP;
       
  4777 		ipcse = skb_transport_offset(skb) - 1;
       
  4778 	} else if (skb_is_gso_v6(skb)) {
       
  4779 		ipv6_hdr(skb)->payload_len = 0;
       
  4780 		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
       
  4781 		                                       &ipv6_hdr(skb)->daddr,
       
  4782 		                                       0, IPPROTO_TCP, 0);
       
  4783 		ipcse = 0;
       
  4784 	}
       
  4785 	ipcss = skb_network_offset(skb);
       
  4786 	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
       
  4787 	tucss = skb_transport_offset(skb);
       
  4788 	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
       
  4789 	tucse = 0;
       
  4790 
       
  4791 	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
       
  4792 	               E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
       
  4793 
       
  4794 	i = tx_ring->next_to_use;
       
  4795 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
       
  4796 	buffer_info = &tx_ring->buffer_info[i];
       
  4797 
       
  4798 	context_desc->lower_setup.ip_fields.ipcss  = ipcss;
       
  4799 	context_desc->lower_setup.ip_fields.ipcso  = ipcso;
       
  4800 	context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
       
  4801 	context_desc->upper_setup.tcp_fields.tucss = tucss;
       
  4802 	context_desc->upper_setup.tcp_fields.tucso = tucso;
       
  4803 	context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
       
  4804 	context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
       
  4805 	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
       
  4806 	context_desc->cmd_and_length = cpu_to_le32(cmd_length);
       
  4807 
       
  4808 	buffer_info->time_stamp = jiffies;
       
  4809 	buffer_info->next_to_watch = i;
       
  4810 
       
  4811 	i++;
       
  4812 	if (i == tx_ring->count)
       
  4813 		i = 0;
       
  4814 	tx_ring->next_to_use = i;
       
  4815 
       
  4816 	return 1;
       
  4817 }
       
  4818 
       
  4819 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb)
       
  4820 {
       
  4821 	struct e1000_adapter *adapter = tx_ring->adapter;
       
  4822 	struct e1000_context_desc *context_desc;
       
  4823 	struct e1000_buffer *buffer_info;
       
  4824 	unsigned int i;
       
  4825 	u8 css;
       
  4826 	u32 cmd_len = E1000_TXD_CMD_DEXT;
       
  4827 	__be16 protocol;
       
  4828 
       
  4829 	if (skb->ip_summed != CHECKSUM_PARTIAL)
       
  4830 		return 0;
       
  4831 
       
  4832 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
       
  4833 		protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
       
  4834 	else
       
  4835 		protocol = skb->protocol;
       
  4836 
       
  4837 	switch (protocol) {
       
  4838 	case cpu_to_be16(ETH_P_IP):
       
  4839 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
       
  4840 			cmd_len |= E1000_TXD_CMD_TCP;
       
  4841 		break;
       
  4842 	case cpu_to_be16(ETH_P_IPV6):
       
  4843 		/* XXX not handling all IPV6 headers */
       
  4844 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
       
  4845 			cmd_len |= E1000_TXD_CMD_TCP;
       
  4846 		break;
       
  4847 	default:
       
  4848 		if (unlikely(net_ratelimit()))
       
  4849 			e_warn("checksum_partial proto=%x!\n",
       
  4850 			       be16_to_cpu(protocol));
       
  4851 		break;
       
  4852 	}
       
  4853 
       
  4854 	css = skb_checksum_start_offset(skb);
       
  4855 
       
  4856 	i = tx_ring->next_to_use;
       
  4857 	buffer_info = &tx_ring->buffer_info[i];
       
  4858 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
       
  4859 
       
  4860 	context_desc->lower_setup.ip_config = 0;
       
  4861 	context_desc->upper_setup.tcp_fields.tucss = css;
       
  4862 	context_desc->upper_setup.tcp_fields.tucso =
       
  4863 				css + skb->csum_offset;
       
  4864 	context_desc->upper_setup.tcp_fields.tucse = 0;
       
  4865 	context_desc->tcp_seg_setup.data = 0;
       
  4866 	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
       
  4867 
       
  4868 	buffer_info->time_stamp = jiffies;
       
  4869 	buffer_info->next_to_watch = i;
       
  4870 
       
  4871 	i++;
       
  4872 	if (i == tx_ring->count)
       
  4873 		i = 0;
       
  4874 	tx_ring->next_to_use = i;
       
  4875 
       
  4876 	return 1;
       
  4877 }
       
  4878 
       
  4879 #define E1000_MAX_PER_TXD	8192
       
  4880 #define E1000_MAX_TXD_PWR	12
       
  4881 
       
  4882 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
       
  4883 			unsigned int first, unsigned int max_per_txd,
       
  4884 			unsigned int nr_frags, unsigned int mss)
       
  4885 {
       
  4886 	struct e1000_adapter *adapter = tx_ring->adapter;
       
  4887 	struct pci_dev *pdev = adapter->pdev;
       
  4888 	struct e1000_buffer *buffer_info;
       
  4889 	unsigned int len = skb_headlen(skb);
       
  4890 	unsigned int offset = 0, size, count = 0, i;
       
  4891 	unsigned int f, bytecount, segs;
       
  4892 
       
  4893 	i = tx_ring->next_to_use;
       
  4894 
       
  4895 	while (len) {
       
  4896 		buffer_info = &tx_ring->buffer_info[i];
       
  4897 		size = min(len, max_per_txd);
       
  4898 
       
  4899 		buffer_info->length = size;
       
  4900 		buffer_info->time_stamp = jiffies;
       
  4901 		buffer_info->next_to_watch = i;
       
  4902 		buffer_info->dma = dma_map_single(&pdev->dev,
       
  4903 						  skb->data + offset,
       
  4904 						  size, DMA_TO_DEVICE);
       
  4905 		buffer_info->mapped_as_page = false;
       
  4906 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
       
  4907 			goto dma_error;
       
  4908 
       
  4909 		len -= size;
       
  4910 		offset += size;
       
  4911 		count++;
       
  4912 
       
  4913 		if (len) {
       
  4914 			i++;
       
  4915 			if (i == tx_ring->count)
       
  4916 				i = 0;
       
  4917 		}
       
  4918 	}
       
  4919 
       
  4920 	for (f = 0; f < nr_frags; f++) {
       
  4921 		const struct skb_frag_struct *frag;
       
  4922 
       
  4923 		frag = &skb_shinfo(skb)->frags[f];
       
  4924 		len = skb_frag_size(frag);
       
  4925 		offset = 0;
       
  4926 
       
  4927 		while (len) {
       
  4928 			i++;
       
  4929 			if (i == tx_ring->count)
       
  4930 				i = 0;
       
  4931 
       
  4932 			buffer_info = &tx_ring->buffer_info[i];
       
  4933 			size = min(len, max_per_txd);
       
  4934 
       
  4935 			buffer_info->length = size;
       
  4936 			buffer_info->time_stamp = jiffies;
       
  4937 			buffer_info->next_to_watch = i;
       
  4938 			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
       
  4939 						offset, size, DMA_TO_DEVICE);
       
  4940 			buffer_info->mapped_as_page = true;
       
  4941 			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
       
  4942 				goto dma_error;
       
  4943 
       
  4944 			len -= size;
       
  4945 			offset += size;
       
  4946 			count++;
       
  4947 		}
       
  4948 	}
       
  4949 
       
  4950 	segs = skb_shinfo(skb)->gso_segs ? : 1;
       
  4951 	/* multiply data chunks by size of headers */
       
  4952 	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
       
  4953 
       
  4954 	tx_ring->buffer_info[i].skb = skb;
       
  4955 	tx_ring->buffer_info[i].segs = segs;
       
  4956 	tx_ring->buffer_info[i].bytecount = bytecount;
       
  4957 	tx_ring->buffer_info[first].next_to_watch = i;
       
  4958 
       
  4959 	return count;
       
  4960 
       
  4961 dma_error:
       
  4962 	dev_err(&pdev->dev, "Tx DMA map failed\n");
       
  4963 	buffer_info->dma = 0;
       
  4964 	if (count)
       
  4965 		count--;
       
  4966 
       
  4967 	while (count--) {
       
  4968 		if (i == 0)
       
  4969 			i += tx_ring->count;
       
  4970 		i--;
       
  4971 		buffer_info = &tx_ring->buffer_info[i];
       
  4972 		e1000_put_txbuf(tx_ring, buffer_info);
       
  4973 	}
       
  4974 
       
  4975 	return 0;
       
  4976 }
       
  4977 
       
  4978 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
       
  4979 {
       
  4980 	struct e1000_adapter *adapter = tx_ring->adapter;
       
  4981 	struct e1000_tx_desc *tx_desc = NULL;
       
  4982 	struct e1000_buffer *buffer_info;
       
  4983 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
       
  4984 	unsigned int i;
       
  4985 
       
  4986 	if (tx_flags & E1000_TX_FLAGS_TSO) {
       
  4987 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
       
  4988 			     E1000_TXD_CMD_TSE;
       
  4989 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
       
  4990 
       
  4991 		if (tx_flags & E1000_TX_FLAGS_IPV4)
       
  4992 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
       
  4993 	}
       
  4994 
       
  4995 	if (tx_flags & E1000_TX_FLAGS_CSUM) {
       
  4996 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
       
  4997 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
       
  4998 	}
       
  4999 
       
  5000 	if (tx_flags & E1000_TX_FLAGS_VLAN) {
       
  5001 		txd_lower |= E1000_TXD_CMD_VLE;
       
  5002 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
       
  5003 	}
       
  5004 
       
  5005 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
       
  5006 		txd_lower &= ~(E1000_TXD_CMD_IFCS);
       
  5007 
       
  5008 	i = tx_ring->next_to_use;
       
  5009 
       
  5010 	do {
       
  5011 		buffer_info = &tx_ring->buffer_info[i];
       
  5012 		tx_desc = E1000_TX_DESC(*tx_ring, i);
       
  5013 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
       
  5014 		tx_desc->lower.data =
       
  5015 			cpu_to_le32(txd_lower | buffer_info->length);
       
  5016 		tx_desc->upper.data = cpu_to_le32(txd_upper);
       
  5017 
       
  5018 		i++;
       
  5019 		if (i == tx_ring->count)
       
  5020 			i = 0;
       
  5021 	} while (--count > 0);
       
  5022 
       
  5023 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
       
  5024 
       
  5025 	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
       
  5026 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
       
  5027 		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
       
  5028 
       
  5029 	/*
       
  5030 	 * Force memory writes to complete before letting h/w
       
  5031 	 * know there are new descriptors to fetch.  (Only
       
  5032 	 * applicable for weak-ordered memory model archs,
       
  5033 	 * such as IA-64).
       
  5034 	 */
       
  5035 	wmb();
       
  5036 
       
  5037 	tx_ring->next_to_use = i;
       
  5038 
       
  5039 	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
       
  5040 		e1000e_update_tdt_wa(tx_ring, i);
       
  5041 	else
       
  5042 		writel(i, tx_ring->tail);
       
  5043 
       
  5044 	/*
       
  5045 	 * we need this if more than one processor can write to our tail
       
  5046 	 * at a time, it synchronizes IO on IA64/Altix systems
       
  5047 	 */
       
  5048 	mmiowb();
       
  5049 }
       
  5050 
       
  5051 #define MINIMUM_DHCP_PACKET_SIZE 282
       
  5052 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
       
  5053 				    struct sk_buff *skb)
       
  5054 {
       
  5055 	struct e1000_hw *hw =  &adapter->hw;
       
  5056 	u16 length, offset;
       
  5057 
       
  5058 	if (vlan_tx_tag_present(skb)) {
       
  5059 		if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
       
  5060 		    (adapter->hw.mng_cookie.status &
       
  5061 			E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
       
  5062 			return 0;
       
  5063 	}
       
  5064 
       
  5065 	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
       
  5066 		return 0;
       
  5067 
       
  5068 	if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
       
  5069 		return 0;
       
  5070 
       
  5071 	{
       
  5072 		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
       
  5073 		struct udphdr *udp;
       
  5074 
       
  5075 		if (ip->protocol != IPPROTO_UDP)
       
  5076 			return 0;
       
  5077 
       
  5078 		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
       
  5079 		if (ntohs(udp->dest) != 67)
       
  5080 			return 0;
       
  5081 
       
  5082 		offset = (u8 *)udp + 8 - skb->data;
       
  5083 		length = skb->len - offset;
       
  5084 		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
       
  5085 	}
       
  5086 
       
  5087 	return 0;
       
  5088 }
       
  5089 
       
  5090 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
       
  5091 {
       
  5092 	struct e1000_adapter *adapter = tx_ring->adapter;
       
  5093 
       
  5094 	netif_stop_queue(adapter->netdev);
       
  5095 	/*
       
  5096 	 * Herbert's original patch had:
       
  5097 	 *  smp_mb__after_netif_stop_queue();
       
  5098 	 * but since that doesn't exist yet, just open code it.
       
  5099 	 */
       
  5100 	smp_mb();
       
  5101 
       
  5102 	/*
       
  5103 	 * We need to check again in a case another CPU has just
       
  5104 	 * made room available.
       
  5105 	 */
       
  5106 	if (e1000_desc_unused(tx_ring) < size)
       
  5107 		return -EBUSY;
       
  5108 
       
  5109 	/* A reprieve! */
       
  5110 	netif_start_queue(adapter->netdev);
       
  5111 	++adapter->restart_queue;
       
  5112 	return 0;
       
  5113 }
       
  5114 
       
  5115 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
       
  5116 {
       
  5117 	if (e1000_desc_unused(tx_ring) >= size)
       
  5118 		return 0;
       
  5119 	return __e1000_maybe_stop_tx(tx_ring, size);
       
  5120 }
       
  5121 
       
  5122 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1)
       
  5123 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
       
  5124 				    struct net_device *netdev)
       
  5125 {
       
  5126 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  5127 	struct e1000_ring *tx_ring = adapter->tx_ring;
       
  5128 	unsigned int first;
       
  5129 	unsigned int max_per_txd = E1000_MAX_PER_TXD;
       
  5130 	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
       
  5131 	unsigned int tx_flags = 0;
       
  5132 	unsigned int len = skb_headlen(skb);
       
  5133 	unsigned int nr_frags;
       
  5134 	unsigned int mss;
       
  5135 	int count = 0;
       
  5136 	int tso;
       
  5137 	unsigned int f;
       
  5138 
       
  5139 	if (test_bit(__E1000_DOWN, &adapter->state)) {
       
  5140 		if (!adapter->ecdev)
       
  5141 			dev_kfree_skb_any(skb);
       
  5142 		return NETDEV_TX_OK;
       
  5143 	}
       
  5144 
       
  5145 	if (skb->len <= 0) {
       
  5146 		if (!adapter->ecdev)
       
  5147 			dev_kfree_skb_any(skb);
       
  5148 		return NETDEV_TX_OK;
       
  5149 	}
       
  5150 
       
  5151 	mss = skb_shinfo(skb)->gso_size;
       
  5152 	/*
       
  5153 	 * The controller does a simple calculation to
       
  5154 	 * make sure there is enough room in the FIFO before
       
  5155 	 * initiating the DMA for each buffer.  The calc is:
       
  5156 	 * 4 = ceil(buffer len/mss).  To make sure we don't
       
  5157 	 * overrun the FIFO, adjust the max buffer len if mss
       
  5158 	 * drops.
       
  5159 	 */
       
  5160 	if (mss) {
       
  5161 		u8 hdr_len;
       
  5162 		max_per_txd = min(mss << 2, max_per_txd);
       
  5163 		max_txd_pwr = fls(max_per_txd) - 1;
       
  5164 
       
  5165 		/*
       
  5166 		 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
       
  5167 		 * points to just header, pull a few bytes of payload from
       
  5168 		 * frags into skb->data
       
  5169 		 */
       
  5170 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
       
  5171 		/*
       
  5172 		 * we do this workaround for ES2LAN, but it is un-necessary,
       
  5173 		 * avoiding it could save a lot of cycles
       
  5174 		 */
       
  5175 		if (skb->data_len && (hdr_len == len)) {
       
  5176 			unsigned int pull_size;
       
  5177 
       
  5178 			pull_size = min_t(unsigned int, 4, skb->data_len);
       
  5179 			if (!__pskb_pull_tail(skb, pull_size)) {
       
  5180 				e_err("__pskb_pull_tail failed.\n");
       
  5181 				if (!adapter->ecdev)
       
  5182 					dev_kfree_skb_any(skb);
       
  5183 				return NETDEV_TX_OK;
       
  5184 			}
       
  5185 			len = skb_headlen(skb);
       
  5186 		}
       
  5187 	}
       
  5188 
       
  5189 	/* reserve a descriptor for the offload context */
       
  5190 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
       
  5191 		count++;
       
  5192 	count++;
       
  5193 
       
  5194 	count += TXD_USE_COUNT(len, max_txd_pwr);
       
  5195 
       
  5196 	nr_frags = skb_shinfo(skb)->nr_frags;
       
  5197 	for (f = 0; f < nr_frags; f++)
       
  5198 		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
       
  5199 				       max_txd_pwr);
       
  5200 
       
  5201 	if (adapter->hw.mac.tx_pkt_filtering)
       
  5202 		e1000_transfer_dhcp_info(adapter, skb);
       
  5203 
       
  5204 	/*
       
  5205 	 * need: count + 2 desc gap to keep tail from touching
       
  5206 	 * head, otherwise try next time
       
  5207 	 */
       
  5208 	if (!adapter->ecdev && e1000_maybe_stop_tx(tx_ring, count + 2))
       
  5209 		return NETDEV_TX_BUSY;
       
  5210 
       
  5211 	if (vlan_tx_tag_present(skb)) {
       
  5212 		tx_flags |= E1000_TX_FLAGS_VLAN;
       
  5213 		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
       
  5214 	}
       
  5215 
       
  5216 	first = tx_ring->next_to_use;
       
  5217 
       
  5218 	tso = e1000_tso(tx_ring, skb);
       
  5219 	if (tso < 0) {
       
  5220 		if (!adapter->ecdev)
       
  5221 			dev_kfree_skb_any(skb);
       
  5222 		return NETDEV_TX_OK;
       
  5223 	}
       
  5224 
       
  5225 	if (tso)
       
  5226 		tx_flags |= E1000_TX_FLAGS_TSO;
       
  5227 	else if (e1000_tx_csum(tx_ring, skb))
       
  5228 		tx_flags |= E1000_TX_FLAGS_CSUM;
       
  5229 
       
  5230 	/*
       
  5231 	 * Old method was to assume IPv4 packet by default if TSO was enabled.
       
  5232 	 * 82571 hardware supports TSO capabilities for IPv6 as well...
       
  5233 	 * no longer assume, we must.
       
  5234 	 */
       
  5235 	if (skb->protocol == htons(ETH_P_IP))
       
  5236 		tx_flags |= E1000_TX_FLAGS_IPV4;
       
  5237 
       
  5238 	if (unlikely(skb->no_fcs))
       
  5239 		tx_flags |= E1000_TX_FLAGS_NO_FCS;
       
  5240 
       
  5241 	/* if count is 0 then mapping error has occurred */
       
  5242 	count = e1000_tx_map(tx_ring, skb, first, max_per_txd, nr_frags, mss);
       
  5243 	if (count) {
       
  5244 		netdev_sent_queue(netdev, skb->len);
       
  5245 		e1000_tx_queue(tx_ring, tx_flags, count);
       
  5246 		/* Make sure there is space in the ring for the next send. */
       
  5247 		if (!adapter->ecdev) {
       
  5248 			e1000_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 2);
       
  5249 		}
       
  5250 
       
  5251 	} else {
       
  5252 		if (!adapter->ecdev) {
       
  5253 			dev_kfree_skb_any(skb);
       
  5254 		}
       
  5255 		tx_ring->buffer_info[first].time_stamp = 0;
       
  5256 		tx_ring->next_to_use = first;
       
  5257 	}
       
  5258 
       
  5259 	return NETDEV_TX_OK;
       
  5260 }
       
  5261 
       
  5262 /**
       
  5263  * e1000_tx_timeout - Respond to a Tx Hang
       
  5264  * @netdev: network interface device structure
       
  5265  **/
       
  5266 static void e1000_tx_timeout(struct net_device *netdev)
       
  5267 {
       
  5268 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  5269 
       
  5270 	/* Do the reset outside of interrupt context */
       
  5271 	adapter->tx_timeout_count++;
       
  5272 	schedule_work(&adapter->reset_task);
       
  5273 }
       
  5274 
       
  5275 static void e1000_reset_task(struct work_struct *work)
       
  5276 {
       
  5277 	struct e1000_adapter *adapter;
       
  5278 	adapter = container_of(work, struct e1000_adapter, reset_task);
       
  5279 
       
  5280 	/* don't run the task if already down */
       
  5281 	if (test_bit(__E1000_DOWN, &adapter->state))
       
  5282 		return;
       
  5283 
       
  5284 	if (!((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
       
  5285 	      (adapter->flags & FLAG_RX_RESTART_NOW))) {
       
  5286 		e1000e_dump(adapter);
       
  5287 		e_err("Reset adapter\n");
       
  5288 	}
       
  5289 	e1000e_reinit_locked(adapter);
       
  5290 }
       
  5291 
       
  5292 /**
       
  5293  * e1000_get_stats64 - Get System Network Statistics
       
  5294  * @netdev: network interface device structure
       
  5295  * @stats: rtnl_link_stats64 pointer
       
  5296  *
       
  5297  * Returns the address of the device statistics structure.
       
  5298  **/
       
  5299 struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
       
  5300                                              struct rtnl_link_stats64 *stats)
       
  5301 {
       
  5302 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  5303 
       
  5304 	memset(stats, 0, sizeof(struct rtnl_link_stats64));
       
  5305 	spin_lock(&adapter->stats64_lock);
       
  5306 	e1000e_update_stats(adapter);
       
  5307 	/* Fill out the OS statistics structure */
       
  5308 	stats->rx_bytes = adapter->stats.gorc;
       
  5309 	stats->rx_packets = adapter->stats.gprc;
       
  5310 	stats->tx_bytes = adapter->stats.gotc;
       
  5311 	stats->tx_packets = adapter->stats.gptc;
       
  5312 	stats->multicast = adapter->stats.mprc;
       
  5313 	stats->collisions = adapter->stats.colc;
       
  5314 
       
  5315 	/* Rx Errors */
       
  5316 
       
  5317 	/*
       
  5318 	 * RLEC on some newer hardware can be incorrect so build
       
  5319 	 * our own version based on RUC and ROC
       
  5320 	 */
       
  5321 	stats->rx_errors = adapter->stats.rxerrc +
       
  5322 		adapter->stats.crcerrs + adapter->stats.algnerrc +
       
  5323 		adapter->stats.ruc + adapter->stats.roc +
       
  5324 		adapter->stats.cexterr;
       
  5325 	stats->rx_length_errors = adapter->stats.ruc +
       
  5326 					      adapter->stats.roc;
       
  5327 	stats->rx_crc_errors = adapter->stats.crcerrs;
       
  5328 	stats->rx_frame_errors = adapter->stats.algnerrc;
       
  5329 	stats->rx_missed_errors = adapter->stats.mpc;
       
  5330 
       
  5331 	/* Tx Errors */
       
  5332 	stats->tx_errors = adapter->stats.ecol +
       
  5333 				       adapter->stats.latecol;
       
  5334 	stats->tx_aborted_errors = adapter->stats.ecol;
       
  5335 	stats->tx_window_errors = adapter->stats.latecol;
       
  5336 	stats->tx_carrier_errors = adapter->stats.tncrs;
       
  5337 
       
  5338 	/* Tx Dropped needs to be maintained elsewhere */
       
  5339 
       
  5340 	spin_unlock(&adapter->stats64_lock);
       
  5341 	return stats;
       
  5342 }
       
  5343 
       
  5344 /**
       
  5345  * e1000_change_mtu - Change the Maximum Transfer Unit
       
  5346  * @netdev: network interface device structure
       
  5347  * @new_mtu: new value for maximum frame size
       
  5348  *
       
  5349  * Returns 0 on success, negative on failure
       
  5350  **/
       
  5351 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
       
  5352 {
       
  5353 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  5354 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
       
  5355 
       
  5356 	if (adapter->ecdev)
       
  5357 		return -EBUSY;
       
  5358 
       
  5359 	/* Jumbo frame support */
       
  5360 	if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
       
  5361 	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
       
  5362 		e_err("Jumbo Frames not supported.\n");
       
  5363 		return -EINVAL;
       
  5364 	}
       
  5365 
       
  5366 	/* Supported frame sizes */
       
  5367 	if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
       
  5368 	    (max_frame > adapter->max_hw_frame_size)) {
       
  5369 		e_err("Unsupported MTU setting\n");
       
  5370 		return -EINVAL;
       
  5371 	}
       
  5372 
       
  5373 	/* Jumbo frame workaround on 82579 requires CRC be stripped */
       
  5374 	if ((adapter->hw.mac.type == e1000_pch2lan) &&
       
  5375 	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
       
  5376 	    (new_mtu > ETH_DATA_LEN)) {
       
  5377 		e_err("Jumbo Frames not supported on 82579 when CRC stripping is disabled.\n");
       
  5378 		return -EINVAL;
       
  5379 	}
       
  5380 
       
  5381 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
       
  5382 		usleep_range(1000, 2000);
       
  5383 	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
       
  5384 	adapter->max_frame_size = max_frame;
       
  5385 	e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
       
  5386 	netdev->mtu = new_mtu;
       
  5387 	if (netif_running(netdev))
       
  5388 		e1000e_down(adapter);
       
  5389 
       
  5390 	/*
       
  5391 	 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
       
  5392 	 * means we reserve 2 more, this pushes us to allocate from the next
       
  5393 	 * larger slab size.
       
  5394 	 * i.e. RXBUFFER_2048 --> size-4096 slab
       
  5395 	 * However with the new *_jumbo_rx* routines, jumbo receives will use
       
  5396 	 * fragmented skbs
       
  5397 	 */
       
  5398 
       
  5399 	if (max_frame <= 2048)
       
  5400 		adapter->rx_buffer_len = 2048;
       
  5401 	else
       
  5402 		adapter->rx_buffer_len = 4096;
       
  5403 
       
  5404 	/* adjust allocation if LPE protects us, and we aren't using SBP */
       
  5405 	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
       
  5406 	     (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
       
  5407 		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
       
  5408 					 + ETH_FCS_LEN;
       
  5409 
       
  5410 	if (netif_running(netdev))
       
  5411 		e1000e_up(adapter);
       
  5412 	else
       
  5413 		e1000e_reset(adapter);
       
  5414 
       
  5415 	clear_bit(__E1000_RESETTING, &adapter->state);
       
  5416 
       
  5417 	return 0;
       
  5418 }
       
  5419 
       
  5420 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
       
  5421 			   int cmd)
       
  5422 {
       
  5423 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  5424 	struct mii_ioctl_data *data = if_mii(ifr);
       
  5425 
       
  5426 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
       
  5427 		return -EOPNOTSUPP;
       
  5428 
       
  5429 	switch (cmd) {
       
  5430 	case SIOCGMIIPHY:
       
  5431 		data->phy_id = adapter->hw.phy.addr;
       
  5432 		break;
       
  5433 	case SIOCGMIIREG:
       
  5434 		e1000_phy_read_status(adapter);
       
  5435 
       
  5436 		switch (data->reg_num & 0x1F) {
       
  5437 		case MII_BMCR:
       
  5438 			data->val_out = adapter->phy_regs.bmcr;
       
  5439 			break;
       
  5440 		case MII_BMSR:
       
  5441 			data->val_out = adapter->phy_regs.bmsr;
       
  5442 			break;
       
  5443 		case MII_PHYSID1:
       
  5444 			data->val_out = (adapter->hw.phy.id >> 16);
       
  5445 			break;
       
  5446 		case MII_PHYSID2:
       
  5447 			data->val_out = (adapter->hw.phy.id & 0xFFFF);
       
  5448 			break;
       
  5449 		case MII_ADVERTISE:
       
  5450 			data->val_out = adapter->phy_regs.advertise;
       
  5451 			break;
       
  5452 		case MII_LPA:
       
  5453 			data->val_out = adapter->phy_regs.lpa;
       
  5454 			break;
       
  5455 		case MII_EXPANSION:
       
  5456 			data->val_out = adapter->phy_regs.expansion;
       
  5457 			break;
       
  5458 		case MII_CTRL1000:
       
  5459 			data->val_out = adapter->phy_regs.ctrl1000;
       
  5460 			break;
       
  5461 		case MII_STAT1000:
       
  5462 			data->val_out = adapter->phy_regs.stat1000;
       
  5463 			break;
       
  5464 		case MII_ESTATUS:
       
  5465 			data->val_out = adapter->phy_regs.estatus;
       
  5466 			break;
       
  5467 		default:
       
  5468 			return -EIO;
       
  5469 		}
       
  5470 		break;
       
  5471 	case SIOCSMIIREG:
       
  5472 	default:
       
  5473 		return -EOPNOTSUPP;
       
  5474 	}
       
  5475 	return 0;
       
  5476 }
       
  5477 
       
  5478 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
       
  5479 {
       
  5480 	switch (cmd) {
       
  5481 	case SIOCGMIIPHY:
       
  5482 	case SIOCGMIIREG:
       
  5483 	case SIOCSMIIREG:
       
  5484 		return e1000_mii_ioctl(netdev, ifr, cmd);
       
  5485 	default:
       
  5486 		return -EOPNOTSUPP;
       
  5487 	}
       
  5488 }
       
  5489 
       
  5490 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
       
  5491 {
       
  5492 	struct e1000_hw *hw = &adapter->hw;
       
  5493 	u32 i, mac_reg;
       
  5494 	u16 phy_reg, wuc_enable;
       
  5495 	int retval = 0;
       
  5496 
       
  5497 	/* copy MAC RARs to PHY RARs */
       
  5498 	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
       
  5499 
       
  5500 	retval = hw->phy.ops.acquire(hw);
       
  5501 	if (retval) {
       
  5502 		e_err("Could not acquire PHY\n");
       
  5503 		return retval;
       
  5504 	}
       
  5505 
       
  5506 	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
       
  5507 	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
       
  5508 	if (retval)
       
  5509 		goto release;
       
  5510 
       
  5511 	/* copy MAC MTA to PHY MTA - only needed for pchlan */
       
  5512 	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
       
  5513 		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
       
  5514 		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
       
  5515 					   (u16)(mac_reg & 0xFFFF));
       
  5516 		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
       
  5517 					   (u16)((mac_reg >> 16) & 0xFFFF));
       
  5518 	}
       
  5519 
       
  5520 	/* configure PHY Rx Control register */
       
  5521 	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
       
  5522 	mac_reg = er32(RCTL);
       
  5523 	if (mac_reg & E1000_RCTL_UPE)
       
  5524 		phy_reg |= BM_RCTL_UPE;
       
  5525 	if (mac_reg & E1000_RCTL_MPE)
       
  5526 		phy_reg |= BM_RCTL_MPE;
       
  5527 	phy_reg &= ~(BM_RCTL_MO_MASK);
       
  5528 	if (mac_reg & E1000_RCTL_MO_3)
       
  5529 		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
       
  5530 				<< BM_RCTL_MO_SHIFT);
       
  5531 	if (mac_reg & E1000_RCTL_BAM)
       
  5532 		phy_reg |= BM_RCTL_BAM;
       
  5533 	if (mac_reg & E1000_RCTL_PMCF)
       
  5534 		phy_reg |= BM_RCTL_PMCF;
       
  5535 	mac_reg = er32(CTRL);
       
  5536 	if (mac_reg & E1000_CTRL_RFCE)
       
  5537 		phy_reg |= BM_RCTL_RFCE;
       
  5538 	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
       
  5539 
       
  5540 	/* enable PHY wakeup in MAC register */
       
  5541 	ew32(WUFC, wufc);
       
  5542 	ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
       
  5543 
       
  5544 	/* configure and enable PHY wakeup in PHY registers */
       
  5545 	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
       
  5546 	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
       
  5547 
       
  5548 	/* activate PHY wakeup */
       
  5549 	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
       
  5550 	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
       
  5551 	if (retval)
       
  5552 		e_err("Could not set PHY Host Wakeup bit\n");
       
  5553 release:
       
  5554 	hw->phy.ops.release(hw);
       
  5555 
       
  5556 	return retval;
       
  5557 }
       
  5558 
       
  5559 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake,
       
  5560 			    bool runtime)
       
  5561 {
       
  5562 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  5563 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  5564 	struct e1000_hw *hw = &adapter->hw;
       
  5565 	u32 ctrl, ctrl_ext, rctl, status;
       
  5566 	/* Runtime suspend should only enable wakeup for link changes */
       
  5567 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
       
  5568 	int retval = 0;
       
  5569 
       
  5570 	netif_device_detach(netdev);
       
  5571 
       
  5572 	if (netif_running(netdev)) {
       
  5573 		int count = E1000_CHECK_RESET_COUNT;
       
  5574 
       
  5575 		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
       
  5576 			usleep_range(10000, 20000);
       
  5577 
       
  5578 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
       
  5579 		e1000e_down(adapter);
       
  5580 		e1000_free_irq(adapter);
       
  5581 	}
       
  5582 	e1000e_reset_interrupt_capability(adapter);
       
  5583 
       
  5584 	retval = pci_save_state(pdev);
       
  5585 	if (retval)
       
  5586 		return retval;
       
  5587 
       
  5588 	status = er32(STATUS);
       
  5589 	if (status & E1000_STATUS_LU)
       
  5590 		wufc &= ~E1000_WUFC_LNKC;
       
  5591 
       
  5592 	if (wufc) {
       
  5593 		e1000_setup_rctl(adapter);
       
  5594 		e1000e_set_rx_mode(netdev);
       
  5595 
       
  5596 		/* turn on all-multi mode if wake on multicast is enabled */
       
  5597 		if (wufc & E1000_WUFC_MC) {
       
  5598 			rctl = er32(RCTL);
       
  5599 			rctl |= E1000_RCTL_MPE;
       
  5600 			ew32(RCTL, rctl);
       
  5601 		}
       
  5602 
       
  5603 		ctrl = er32(CTRL);
       
  5604 		/* advertise wake from D3Cold */
       
  5605 		#define E1000_CTRL_ADVD3WUC 0x00100000
       
  5606 		/* phy power management enable */
       
  5607 		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
       
  5608 		ctrl |= E1000_CTRL_ADVD3WUC;
       
  5609 		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
       
  5610 			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
       
  5611 		ew32(CTRL, ctrl);
       
  5612 
       
  5613 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
       
  5614 		    adapter->hw.phy.media_type ==
       
  5615 		    e1000_media_type_internal_serdes) {
       
  5616 			/* keep the laser running in D3 */
       
  5617 			ctrl_ext = er32(CTRL_EXT);
       
  5618 			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
       
  5619 			ew32(CTRL_EXT, ctrl_ext);
       
  5620 		}
       
  5621 
       
  5622 		if (adapter->flags & FLAG_IS_ICH)
       
  5623 			e1000_suspend_workarounds_ich8lan(&adapter->hw);
       
  5624 
       
  5625 		/* Allow time for pending master requests to run */
       
  5626 		e1000e_disable_pcie_master(&adapter->hw);
       
  5627 
       
  5628 		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
       
  5629 			/* enable wakeup by the PHY */
       
  5630 			retval = e1000_init_phy_wakeup(adapter, wufc);
       
  5631 			if (retval)
       
  5632 				return retval;
       
  5633 		} else {
       
  5634 			/* enable wakeup by the MAC */
       
  5635 			ew32(WUFC, wufc);
       
  5636 			ew32(WUC, E1000_WUC_PME_EN);
       
  5637 		}
       
  5638 	} else {
       
  5639 		ew32(WUC, 0);
       
  5640 		ew32(WUFC, 0);
       
  5641 	}
       
  5642 
       
  5643 	*enable_wake = !!wufc;
       
  5644 
       
  5645 	/* make sure adapter isn't asleep if manageability is enabled */
       
  5646 	if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
       
  5647 	    (hw->mac.ops.check_mng_mode(hw)))
       
  5648 		*enable_wake = true;
       
  5649 
       
  5650 	if (adapter->hw.phy.type == e1000_phy_igp_3)
       
  5651 		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
       
  5652 
       
  5653 	/*
       
  5654 	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
       
  5655 	 * would have already happened in close and is redundant.
       
  5656 	 */
       
  5657 	e1000e_release_hw_control(adapter);
       
  5658 
       
  5659 	pci_disable_device(pdev);
       
  5660 
       
  5661 	return 0;
       
  5662 }
       
  5663 
       
  5664 static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
       
  5665 {
       
  5666 	if (sleep && wake) {
       
  5667 		pci_prepare_to_sleep(pdev);
       
  5668 		return;
       
  5669 	}
       
  5670 
       
  5671 	pci_wake_from_d3(pdev, wake);
       
  5672 	pci_set_power_state(pdev, PCI_D3hot);
       
  5673 }
       
  5674 
       
  5675 static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
       
  5676                                     bool wake)
       
  5677 {
       
  5678 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  5679 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  5680 
       
  5681 	/*
       
  5682 	 * The pci-e switch on some quad port adapters will report a
       
  5683 	 * correctable error when the MAC transitions from D0 to D3.  To
       
  5684 	 * prevent this we need to mask off the correctable errors on the
       
  5685 	 * downstream port of the pci-e switch.
       
  5686 	 */
       
  5687 	if (adapter->flags & FLAG_IS_QUAD_PORT) {
       
  5688 		struct pci_dev *us_dev = pdev->bus->self;
       
  5689 		int pos = pci_pcie_cap(us_dev);
       
  5690 		u16 devctl;
       
  5691 
       
  5692 		pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
       
  5693 		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
       
  5694 		                      (devctl & ~PCI_EXP_DEVCTL_CERE));
       
  5695 
       
  5696 		e1000_power_off(pdev, sleep, wake);
       
  5697 
       
  5698 		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
       
  5699 	} else {
       
  5700 		e1000_power_off(pdev, sleep, wake);
       
  5701 	}
       
  5702 }
       
  5703 
       
  5704 #ifdef CONFIG_PCIEASPM
       
  5705 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
       
  5706 {
       
  5707 	pci_disable_link_state_locked(pdev, state);
       
  5708 }
       
  5709 #else
       
  5710 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
       
  5711 {
       
  5712 	int pos;
       
  5713 	u16 reg16;
       
  5714 
       
  5715 	/*
       
  5716 	 * Both device and parent should have the same ASPM setting.
       
  5717 	 * Disable ASPM in downstream component first and then upstream.
       
  5718 	 */
       
  5719 	pos = pci_pcie_cap(pdev);
       
  5720 	pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &reg16);
       
  5721 	reg16 &= ~state;
       
  5722 	pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16);
       
  5723 
       
  5724 	if (!pdev->bus->self)
       
  5725 		return;
       
  5726 
       
  5727 	pos = pci_pcie_cap(pdev->bus->self);
       
  5728 	pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, &reg16);
       
  5729 	reg16 &= ~state;
       
  5730 	pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16);
       
  5731 }
       
  5732 #endif
       
  5733 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
       
  5734 {
       
  5735 	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
       
  5736 		 (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
       
  5737 		 (state & PCIE_LINK_STATE_L1) ? "L1" : "");
       
  5738 
       
  5739 	__e1000e_disable_aspm(pdev, state);
       
  5740 }
       
  5741 
       
  5742 #ifdef CONFIG_PM
       
  5743 static bool e1000e_pm_ready(struct e1000_adapter *adapter)
       
  5744 {
       
  5745 	return !!adapter->tx_ring->buffer_info;
       
  5746 }
       
  5747 
       
  5748 static int __e1000_resume(struct pci_dev *pdev)
       
  5749 {
       
  5750 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  5751 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  5752 	struct e1000_hw *hw = &adapter->hw;
       
  5753 	u16 aspm_disable_flag = 0;
       
  5754 	u32 err;
       
  5755 
       
  5756 	if (adapter->ecdev)
       
  5757 		return -EBUSY;
       
  5758 
       
  5759 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
       
  5760 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
       
  5761 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
       
  5762 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
       
  5763 	if (aspm_disable_flag)
       
  5764 		e1000e_disable_aspm(pdev, aspm_disable_flag);
       
  5765 
       
  5766 	pci_set_power_state(pdev, PCI_D0);
       
  5767 	pci_restore_state(pdev);
       
  5768 	pci_save_state(pdev);
       
  5769 
       
  5770 	e1000e_set_interrupt_capability(adapter);
       
  5771 	if (netif_running(netdev)) {
       
  5772 		err = e1000_request_irq(adapter);
       
  5773 		if (err)
       
  5774 			return err;
       
  5775 	}
       
  5776 
       
  5777 	if (hw->mac.type == e1000_pch2lan)
       
  5778 		e1000_resume_workarounds_pchlan(&adapter->hw);
       
  5779 
       
  5780 	e1000e_power_up_phy(adapter);
       
  5781 
       
  5782 	/* report the system wakeup cause from S3/S4 */
       
  5783 	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
       
  5784 		u16 phy_data;
       
  5785 
       
  5786 		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
       
  5787 		if (phy_data) {
       
  5788 			e_info("PHY Wakeup cause - %s\n",
       
  5789 				phy_data & E1000_WUS_EX ? "Unicast Packet" :
       
  5790 				phy_data & E1000_WUS_MC ? "Multicast Packet" :
       
  5791 				phy_data & E1000_WUS_BC ? "Broadcast Packet" :
       
  5792 				phy_data & E1000_WUS_MAG ? "Magic Packet" :
       
  5793 				phy_data & E1000_WUS_LNKC ?
       
  5794 				"Link Status Change" : "other");
       
  5795 		}
       
  5796 		e1e_wphy(&adapter->hw, BM_WUS, ~0);
       
  5797 	} else {
       
  5798 		u32 wus = er32(WUS);
       
  5799 		if (wus) {
       
  5800 			e_info("MAC Wakeup cause - %s\n",
       
  5801 				wus & E1000_WUS_EX ? "Unicast Packet" :
       
  5802 				wus & E1000_WUS_MC ? "Multicast Packet" :
       
  5803 				wus & E1000_WUS_BC ? "Broadcast Packet" :
       
  5804 				wus & E1000_WUS_MAG ? "Magic Packet" :
       
  5805 				wus & E1000_WUS_LNKC ? "Link Status Change" :
       
  5806 				"other");
       
  5807 		}
       
  5808 		ew32(WUS, ~0);
       
  5809 	}
       
  5810 
       
  5811 	e1000e_reset(adapter);
       
  5812 
       
  5813 	e1000_init_manageability_pt(adapter);
       
  5814 
       
  5815 	if (netif_running(netdev))
       
  5816 		e1000e_up(adapter);
       
  5817 
       
  5818 	netif_device_attach(netdev);
       
  5819 
       
  5820 	/*
       
  5821 	 * If the controller has AMT, do not set DRV_LOAD until the interface
       
  5822 	 * is up.  For all other cases, let the f/w know that the h/w is now
       
  5823 	 * under the control of the driver.
       
  5824 	 */
       
  5825 	if (!(adapter->flags & FLAG_HAS_AMT))
       
  5826 		e1000e_get_hw_control(adapter);
       
  5827 
       
  5828 	return 0;
       
  5829 }
       
  5830 
       
  5831 #ifdef CONFIG_PM_SLEEP
       
  5832 static int e1000_suspend(struct device *dev)
       
  5833 {
       
  5834 	struct pci_dev *pdev = to_pci_dev(dev);
       
  5835 	int retval;
       
  5836 	bool wake;
       
  5837 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  5838 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  5839 
       
  5840 	if (adapter->ecdev)
       
  5841 		return -EBUSY;
       
  5842 
       
  5843 	retval = __e1000_shutdown(pdev, &wake, false);
       
  5844 	if (!retval)
       
  5845 		e1000_complete_shutdown(pdev, true, wake);
       
  5846 
       
  5847 	return retval;
       
  5848 }
       
  5849 
       
  5850 static int e1000_resume(struct device *dev)
       
  5851 {
       
  5852 	struct pci_dev *pdev = to_pci_dev(dev);
       
  5853 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  5854 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  5855 
       
  5856 	if (e1000e_pm_ready(adapter))
       
  5857 		adapter->idle_check = true;
       
  5858 
       
  5859 	return __e1000_resume(pdev);
       
  5860 }
       
  5861 #endif /* CONFIG_PM_SLEEP */
       
  5862 
       
  5863 #ifdef CONFIG_PM_RUNTIME
       
  5864 static int e1000_runtime_suspend(struct device *dev)
       
  5865 {
       
  5866 	struct pci_dev *pdev = to_pci_dev(dev);
       
  5867 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  5868 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  5869 
       
  5870 	if (e1000e_pm_ready(adapter)) {
       
  5871 		bool wake;
       
  5872 
       
  5873 		__e1000_shutdown(pdev, &wake, true);
       
  5874 	}
       
  5875 
       
  5876 	return 0;
       
  5877 }
       
  5878 
       
  5879 static int e1000_idle(struct device *dev)
       
  5880 {
       
  5881 	struct pci_dev *pdev = to_pci_dev(dev);
       
  5882 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  5883 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  5884 
       
  5885 	if (!e1000e_pm_ready(adapter))
       
  5886 		return 0;
       
  5887 
       
  5888 	if (adapter->idle_check) {
       
  5889 		adapter->idle_check = false;
       
  5890 		if (!e1000e_has_link(adapter))
       
  5891 			pm_schedule_suspend(dev, MSEC_PER_SEC);
       
  5892 	}
       
  5893 
       
  5894 	return -EBUSY;
       
  5895 }
       
  5896 
       
  5897 static int e1000_runtime_resume(struct device *dev)
       
  5898 {
       
  5899 	struct pci_dev *pdev = to_pci_dev(dev);
       
  5900 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  5901 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  5902 
       
  5903 	if (!e1000e_pm_ready(adapter))
       
  5904 		return 0;
       
  5905 
       
  5906 	adapter->idle_check = !dev->power.runtime_auto;
       
  5907 	return __e1000_resume(pdev);
       
  5908 }
       
  5909 #endif /* CONFIG_PM_RUNTIME */
       
  5910 #endif /* CONFIG_PM */
       
  5911 
       
  5912 static void e1000_shutdown(struct pci_dev *pdev)
       
  5913 {
       
  5914 	bool wake = false;
       
  5915 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  5916 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  5917 
       
  5918 	if (adapter->ecdev)
       
  5919 		return;
       
  5920 
       
  5921 	__e1000_shutdown(pdev, &wake, false);
       
  5922 
       
  5923 	if (system_state == SYSTEM_POWER_OFF)
       
  5924 		e1000_complete_shutdown(pdev, false, wake);
       
  5925 }
       
  5926 
       
  5927 #ifdef CONFIG_NET_POLL_CONTROLLER
       
  5928 
       
  5929 static irqreturn_t e1000_intr_msix(int irq, void *data)
       
  5930 {
       
  5931 	struct net_device *netdev = data;
       
  5932 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  5933 
       
  5934 	if (adapter->msix_entries) {
       
  5935 		int vector, msix_irq;
       
  5936 
       
  5937 		vector = 0;
       
  5938 		msix_irq = adapter->msix_entries[vector].vector;
       
  5939 		disable_irq(msix_irq);
       
  5940 		e1000_intr_msix_rx(msix_irq, netdev);
       
  5941 		enable_irq(msix_irq);
       
  5942 
       
  5943 		vector++;
       
  5944 		msix_irq = adapter->msix_entries[vector].vector;
       
  5945 		disable_irq(msix_irq);
       
  5946 		e1000_intr_msix_tx(msix_irq, netdev);
       
  5947 		enable_irq(msix_irq);
       
  5948 
       
  5949 		vector++;
       
  5950 		msix_irq = adapter->msix_entries[vector].vector;
       
  5951 		disable_irq(msix_irq);
       
  5952 		e1000_msix_other(msix_irq, netdev);
       
  5953 		enable_irq(msix_irq);
       
  5954 	}
       
  5955 
       
  5956 	return IRQ_HANDLED;
       
  5957 }
       
  5958 
       
  5959 /*
       
  5960  * Polling 'interrupt' - used by things like netconsole to send skbs
       
  5961  * without having to re-enable interrupts. It's not called while
       
  5962  * the interrupt routine is executing.
       
  5963  */
       
  5964 static void e1000_netpoll(struct net_device *netdev)
       
  5965 {
       
  5966 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  5967 
       
  5968 	switch (adapter->int_mode) {
       
  5969 	case E1000E_INT_MODE_MSIX:
       
  5970 		e1000_intr_msix(adapter->pdev->irq, netdev);
       
  5971 		break;
       
  5972 	case E1000E_INT_MODE_MSI:
       
  5973 		disable_irq(adapter->pdev->irq);
       
  5974 		e1000_intr_msi(adapter->pdev->irq, netdev);
       
  5975 		enable_irq(adapter->pdev->irq);
       
  5976 		break;
       
  5977 	default: /* E1000E_INT_MODE_LEGACY */
       
  5978 		disable_irq(adapter->pdev->irq);
       
  5979 		e1000_intr(adapter->pdev->irq, netdev);
       
  5980 		enable_irq(adapter->pdev->irq);
       
  5981 		break;
       
  5982 	}
       
  5983 }
       
  5984 #endif
       
  5985 
       
  5986 /**
       
  5987  * e1000_io_error_detected - called when PCI error is detected
       
  5988  * @pdev: Pointer to PCI device
       
  5989  * @state: The current pci connection state
       
  5990  *
       
  5991  * This function is called after a PCI bus error affecting
       
  5992  * this device has been detected.
       
  5993  */
       
  5994 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
       
  5995 						pci_channel_state_t state)
       
  5996 {
       
  5997 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  5998 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  5999 
       
  6000 	netif_device_detach(netdev);
       
  6001 
       
  6002 	if (state == pci_channel_io_perm_failure)
       
  6003 		return PCI_ERS_RESULT_DISCONNECT;
       
  6004 
       
  6005 	if (netif_running(netdev))
       
  6006 		e1000e_down(adapter);
       
  6007 	pci_disable_device(pdev);
       
  6008 
       
  6009 	/* Request a slot slot reset. */
       
  6010 	return PCI_ERS_RESULT_NEED_RESET;
       
  6011 }
       
  6012 
       
  6013 /**
       
  6014  * e1000_io_slot_reset - called after the pci bus has been reset.
       
  6015  * @pdev: Pointer to PCI device
       
  6016  *
       
  6017  * Restart the card from scratch, as if from a cold-boot. Implementation
       
  6018  * resembles the first-half of the e1000_resume routine.
       
  6019  */
       
  6020 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
       
  6021 {
       
  6022 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  6023 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  6024 	struct e1000_hw *hw = &adapter->hw;
       
  6025 	u16 aspm_disable_flag = 0;
       
  6026 	int err;
       
  6027 	pci_ers_result_t result;
       
  6028 
       
  6029 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
       
  6030 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
       
  6031 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
       
  6032 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
       
  6033 	if (aspm_disable_flag)
       
  6034 		e1000e_disable_aspm(pdev, aspm_disable_flag);
       
  6035 
       
  6036 	err = pci_enable_device_mem(pdev);
       
  6037 	if (err) {
       
  6038 		dev_err(&pdev->dev,
       
  6039 			"Cannot re-enable PCI device after reset.\n");
       
  6040 		result = PCI_ERS_RESULT_DISCONNECT;
       
  6041 	} else {
       
  6042 		pci_set_master(pdev);
       
  6043 		pdev->state_saved = true;
       
  6044 		pci_restore_state(pdev);
       
  6045 
       
  6046 		pci_enable_wake(pdev, PCI_D3hot, 0);
       
  6047 		pci_enable_wake(pdev, PCI_D3cold, 0);
       
  6048 
       
  6049 		e1000e_reset(adapter);
       
  6050 		ew32(WUS, ~0);
       
  6051 		result = PCI_ERS_RESULT_RECOVERED;
       
  6052 	}
       
  6053 
       
  6054 	pci_cleanup_aer_uncorrect_error_status(pdev);
       
  6055 
       
  6056 	return result;
       
  6057 }
       
  6058 
       
  6059 /**
       
  6060  * e1000_io_resume - called when traffic can start flowing again.
       
  6061  * @pdev: Pointer to PCI device
       
  6062  *
       
  6063  * This callback is called when the error recovery driver tells us that
       
  6064  * its OK to resume normal operation. Implementation resembles the
       
  6065  * second-half of the e1000_resume routine.
       
  6066  */
       
  6067 static void e1000_io_resume(struct pci_dev *pdev)
       
  6068 {
       
  6069 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  6070 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  6071 
       
  6072 	e1000_init_manageability_pt(adapter);
       
  6073 
       
  6074 	if (netif_running(netdev)) {
       
  6075 		if (e1000e_up(adapter)) {
       
  6076 			dev_err(&pdev->dev,
       
  6077 				"can't bring device back up after reset\n");
       
  6078 			return;
       
  6079 		}
       
  6080 	}
       
  6081 
       
  6082 	netif_device_attach(netdev);
       
  6083 
       
  6084 	/*
       
  6085 	 * If the controller has AMT, do not set DRV_LOAD until the interface
       
  6086 	 * is up.  For all other cases, let the f/w know that the h/w is now
       
  6087 	 * under the control of the driver.
       
  6088 	 */
       
  6089 	if (!(adapter->flags & FLAG_HAS_AMT))
       
  6090 		e1000e_get_hw_control(adapter);
       
  6091 
       
  6092 }
       
  6093 
       
  6094 static void e1000_print_device_info(struct e1000_adapter *adapter)
       
  6095 {
       
  6096 	struct e1000_hw *hw = &adapter->hw;
       
  6097 	struct net_device *netdev = adapter->netdev;
       
  6098 	u32 ret_val;
       
  6099 	u8 pba_str[E1000_PBANUM_LENGTH];
       
  6100 
       
  6101 	/* print bus type/speed/width info */
       
  6102 	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
       
  6103 	       /* bus width */
       
  6104 	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
       
  6105 	        "Width x1"),
       
  6106 	       /* MAC address */
       
  6107 	       netdev->dev_addr);
       
  6108 	e_info("Intel(R) PRO/%s Network Connection\n",
       
  6109 	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
       
  6110 	ret_val = e1000_read_pba_string_generic(hw, pba_str,
       
  6111 						E1000_PBANUM_LENGTH);
       
  6112 	if (ret_val)
       
  6113 		strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
       
  6114 	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
       
  6115 	       hw->mac.type, hw->phy.type, pba_str);
       
  6116 }
       
  6117 
       
  6118 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
       
  6119 {
       
  6120 	struct e1000_hw *hw = &adapter->hw;
       
  6121 	int ret_val;
       
  6122 	u16 buf = 0;
       
  6123 
       
  6124 	if (hw->mac.type != e1000_82573)
       
  6125 		return;
       
  6126 
       
  6127 	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
       
  6128 	le16_to_cpus(&buf);
       
  6129 	if (!ret_val && (!(buf & (1 << 0)))) {
       
  6130 		/* Deep Smart Power Down (DSPD) */
       
  6131 		dev_warn(&adapter->pdev->dev,
       
  6132 			 "Warning: detected DSPD enabled in EEPROM\n");
       
  6133 	}
       
  6134 }
       
  6135 
       
  6136 static int e1000_set_features(struct net_device *netdev,
       
  6137 			      netdev_features_t features)
       
  6138 {
       
  6139 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  6140 	netdev_features_t changed = features ^ netdev->features;
       
  6141 
       
  6142 	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
       
  6143 		adapter->flags |= FLAG_TSO_FORCE;
       
  6144 
       
  6145 	if (!(changed & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX |
       
  6146 			 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
       
  6147 			 NETIF_F_RXALL)))
       
  6148 		return 0;
       
  6149 
       
  6150 	if (changed & NETIF_F_RXFCS) {
       
  6151 		if (features & NETIF_F_RXFCS) {
       
  6152 			adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
       
  6153 		} else {
       
  6154 			/* We need to take it back to defaults, which might mean
       
  6155 			 * stripping is still disabled at the adapter level.
       
  6156 			 */
       
  6157 			if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
       
  6158 				adapter->flags2 |= FLAG2_CRC_STRIPPING;
       
  6159 			else
       
  6160 				adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
       
  6161 		}
       
  6162 	}
       
  6163 
       
  6164 	netdev->features = features;
       
  6165 
       
  6166 	if (netif_running(netdev))
       
  6167 		e1000e_reinit_locked(adapter);
       
  6168 	else
       
  6169 		e1000e_reset(adapter);
       
  6170 
       
  6171 	return 0;
       
  6172 }
       
  6173 
       
  6174 static const struct net_device_ops e1000e_netdev_ops = {
       
  6175 	.ndo_open		= e1000_open,
       
  6176 	.ndo_stop		= e1000_close,
       
  6177 	.ndo_start_xmit		= e1000_xmit_frame,
       
  6178 	.ndo_get_stats64	= e1000e_get_stats64,
       
  6179 	.ndo_set_rx_mode	= e1000e_set_rx_mode,
       
  6180 	.ndo_set_mac_address	= e1000_set_mac,
       
  6181 	.ndo_change_mtu		= e1000_change_mtu,
       
  6182 	.ndo_do_ioctl		= e1000_ioctl,
       
  6183 	.ndo_tx_timeout		= e1000_tx_timeout,
       
  6184 	.ndo_validate_addr	= eth_validate_addr,
       
  6185 
       
  6186 	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
       
  6187 	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
       
  6188 #ifdef CONFIG_NET_POLL_CONTROLLER
       
  6189 	.ndo_poll_controller	= e1000_netpoll,
       
  6190 #endif
       
  6191 	.ndo_set_features = e1000_set_features,
       
  6192 };
       
  6193 
       
  6194 /**
       
  6195  * ec_poll - Ethercat poll Routine
       
  6196  * @netdev: net device structure
       
  6197  *
       
  6198  * This function can never fail.
       
  6199  *
       
  6200  **/
       
  6201 void ec_poll(struct net_device *netdev)
       
  6202 {
       
  6203 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  6204 
       
  6205 	if (jiffies - adapter->ec_watchdog_jiffies >= 2 * HZ) {
       
  6206 		struct e1000_hw *hw = &adapter->hw;
       
  6207 		hw->mac.get_link_status = true;
       
  6208 		e1000_watchdog_task(&adapter->watchdog_task);
       
  6209 		adapter->ec_watchdog_jiffies = jiffies;
       
  6210 	}
       
  6211 
       
  6212 #ifdef CONFIG_PCI_MSI
       
  6213 	e1000_intr_msi(0, netdev);
       
  6214 #else
       
  6215 	e1000_intr(0, netdev);
       
  6216 #endif
       
  6217 }
       
  6218 
       
  6219 /**
       
  6220  * e1000_probe - Device Initialization Routine
       
  6221  * @pdev: PCI device information struct
       
  6222  * @ent: entry in e1000_pci_tbl
       
  6223  *
       
  6224  * Returns 0 on success, negative on failure
       
  6225  *
       
  6226  * e1000_probe initializes an adapter identified by a pci_dev structure.
       
  6227  * The OS initialization, configuring of the adapter private structure,
       
  6228  * and a hardware reset occur.
       
  6229  **/
       
  6230 static int __devinit e1000_probe(struct pci_dev *pdev,
       
  6231 				 const struct pci_device_id *ent)
       
  6232 {
       
  6233 	struct net_device *netdev;
       
  6234 	struct e1000_adapter *adapter;
       
  6235 	struct e1000_hw *hw;
       
  6236 	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
       
  6237 	resource_size_t mmio_start, mmio_len;
       
  6238 	resource_size_t flash_start, flash_len;
       
  6239 	static int cards_found;
       
  6240 	u16 aspm_disable_flag = 0;
       
  6241 	int i, err, pci_using_dac;
       
  6242 	u16 eeprom_data = 0;
       
  6243 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
       
  6244 
       
  6245 	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
       
  6246 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
       
  6247 	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
       
  6248 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
       
  6249 	if (aspm_disable_flag)
       
  6250 		e1000e_disable_aspm(pdev, aspm_disable_flag);
       
  6251 
       
  6252 	err = pci_enable_device_mem(pdev);
       
  6253 	if (err)
       
  6254 		return err;
       
  6255 
       
  6256 	pci_using_dac = 0;
       
  6257 	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
       
  6258 	if (!err) {
       
  6259 		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
       
  6260 		if (!err)
       
  6261 			pci_using_dac = 1;
       
  6262 	} else {
       
  6263 		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
       
  6264 		if (err) {
       
  6265 			err = dma_set_coherent_mask(&pdev->dev,
       
  6266 						    DMA_BIT_MASK(32));
       
  6267 			if (err) {
       
  6268 				dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
       
  6269 				goto err_dma;
       
  6270 			}
       
  6271 		}
       
  6272 	}
       
  6273 
       
  6274 	err = pci_request_selected_regions_exclusive(pdev,
       
  6275 	                                  pci_select_bars(pdev, IORESOURCE_MEM),
       
  6276 	                                  e1000e_driver_name);
       
  6277 	if (err)
       
  6278 		goto err_pci_reg;
       
  6279 
       
  6280 	/* AER (Advanced Error Reporting) hooks */
       
  6281 	pci_enable_pcie_error_reporting(pdev);
       
  6282 
       
  6283 	pci_set_master(pdev);
       
  6284 	/* PCI config space info */
       
  6285 	err = pci_save_state(pdev);
       
  6286 	if (err)
       
  6287 		goto err_alloc_etherdev;
       
  6288 
       
  6289 	err = -ENOMEM;
       
  6290 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
       
  6291 	if (!netdev)
       
  6292 		goto err_alloc_etherdev;
       
  6293 
       
  6294 	SET_NETDEV_DEV(netdev, &pdev->dev);
       
  6295 
       
  6296 	netdev->irq = pdev->irq;
       
  6297 
       
  6298 	pci_set_drvdata(pdev, netdev);
       
  6299 	adapter = netdev_priv(netdev);
       
  6300 	hw = &adapter->hw;
       
  6301 	adapter->netdev = netdev;
       
  6302 	adapter->pdev = pdev;
       
  6303 	adapter->ei = ei;
       
  6304 	adapter->pba = ei->pba;
       
  6305 	adapter->flags = ei->flags;
       
  6306 	adapter->flags2 = ei->flags2;
       
  6307 	adapter->hw.adapter = adapter;
       
  6308 	adapter->hw.mac.type = ei->mac;
       
  6309 	adapter->max_hw_frame_size = ei->max_hw_frame_size;
       
  6310 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
       
  6311 
       
  6312 	mmio_start = pci_resource_start(pdev, 0);
       
  6313 	mmio_len = pci_resource_len(pdev, 0);
       
  6314 
       
  6315 	err = -EIO;
       
  6316 	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
       
  6317 	if (!adapter->hw.hw_addr)
       
  6318 		goto err_ioremap;
       
  6319 
       
  6320 	if ((adapter->flags & FLAG_HAS_FLASH) &&
       
  6321 	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
       
  6322 		flash_start = pci_resource_start(pdev, 1);
       
  6323 		flash_len = pci_resource_len(pdev, 1);
       
  6324 		adapter->hw.flash_address = ioremap(flash_start, flash_len);
       
  6325 		if (!adapter->hw.flash_address)
       
  6326 			goto err_flashmap;
       
  6327 	}
       
  6328 
       
  6329 	/* construct the net_device struct */
       
  6330 	netdev->netdev_ops		= &e1000e_netdev_ops;
       
  6331 	e1000e_set_ethtool_ops(netdev);
       
  6332 	netdev->watchdog_timeo		= 5 * HZ;
       
  6333 	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
       
  6334 	strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
       
  6335 
       
  6336 	netdev->mem_start = mmio_start;
       
  6337 	netdev->mem_end = mmio_start + mmio_len;
       
  6338 
       
  6339 	adapter->bd_number = cards_found++;
       
  6340 
       
  6341 	e1000e_check_options(adapter);
       
  6342 
       
  6343 	/* setup adapter struct */
       
  6344 	err = e1000_sw_init(adapter);
       
  6345 	if (err)
       
  6346 		goto err_sw_init;
       
  6347 
       
  6348 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
       
  6349 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
       
  6350 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
       
  6351 
       
  6352 	err = ei->get_variants(adapter);
       
  6353 	if (err)
       
  6354 		goto err_hw_init;
       
  6355 
       
  6356 	if ((adapter->flags & FLAG_IS_ICH) &&
       
  6357 	    (adapter->flags & FLAG_READ_ONLY_NVM))
       
  6358 		e1000e_write_protect_nvm_ich8lan(&adapter->hw);
       
  6359 
       
  6360 	hw->mac.ops.get_bus_info(&adapter->hw);
       
  6361 
       
  6362 	adapter->hw.phy.autoneg_wait_to_complete = 0;
       
  6363 
       
  6364 	/* Copper options */
       
  6365 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
       
  6366 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
       
  6367 		adapter->hw.phy.disable_polarity_correction = 0;
       
  6368 		adapter->hw.phy.ms_type = e1000_ms_hw_default;
       
  6369 	}
       
  6370 
       
  6371 	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
       
  6372 		e_info("PHY reset is blocked due to SOL/IDER session.\n");
       
  6373 
       
  6374 	/* Set initial default active device features */
       
  6375 	netdev->features = (NETIF_F_SG |
       
  6376 			    NETIF_F_HW_VLAN_RX |
       
  6377 			    NETIF_F_HW_VLAN_TX |
       
  6378 			    NETIF_F_TSO |
       
  6379 			    NETIF_F_TSO6 |
       
  6380 			    NETIF_F_RXHASH |
       
  6381 			    NETIF_F_RXCSUM |
       
  6382 			    NETIF_F_HW_CSUM);
       
  6383 
       
  6384 	/* Set user-changeable features (subset of all device features) */
       
  6385 	netdev->hw_features = netdev->features;
       
  6386 	netdev->hw_features |= NETIF_F_RXFCS;
       
  6387 	netdev->priv_flags |= IFF_SUPP_NOFCS;
       
  6388 	netdev->hw_features |= NETIF_F_RXALL;
       
  6389 
       
  6390 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
       
  6391 		netdev->features |= NETIF_F_HW_VLAN_FILTER;
       
  6392 
       
  6393 	netdev->vlan_features |= (NETIF_F_SG |
       
  6394 				  NETIF_F_TSO |
       
  6395 				  NETIF_F_TSO6 |
       
  6396 				  NETIF_F_HW_CSUM);
       
  6397 
       
  6398 	netdev->priv_flags |= IFF_UNICAST_FLT;
       
  6399 
       
  6400 	if (pci_using_dac) {
       
  6401 		netdev->features |= NETIF_F_HIGHDMA;
       
  6402 		netdev->vlan_features |= NETIF_F_HIGHDMA;
       
  6403 	}
       
  6404 
       
  6405 	if (e1000e_enable_mng_pass_thru(&adapter->hw))
       
  6406 		adapter->flags |= FLAG_MNG_PT_ENABLED;
       
  6407 
       
  6408 	/*
       
  6409 	 * before reading the NVM, reset the controller to
       
  6410 	 * put the device in a known good starting state
       
  6411 	 */
       
  6412 	adapter->hw.mac.ops.reset_hw(&adapter->hw);
       
  6413 
       
  6414 	/*
       
  6415 	 * systems with ASPM and others may see the checksum fail on the first
       
  6416 	 * attempt. Let's give it a few tries
       
  6417 	 */
       
  6418 	for (i = 0;; i++) {
       
  6419 		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
       
  6420 			break;
       
  6421 		if (i == 2) {
       
  6422 			e_err("The NVM Checksum Is Not Valid\n");
       
  6423 			err = -EIO;
       
  6424 			goto err_eeprom;
       
  6425 		}
       
  6426 	}
       
  6427 
       
  6428 	e1000_eeprom_checks(adapter);
       
  6429 
       
  6430 	/* copy the MAC address */
       
  6431 	if (e1000e_read_mac_addr(&adapter->hw))
       
  6432 		e_err("NVM Read Error while reading MAC address\n");
       
  6433 
       
  6434 	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
       
  6435 	memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
       
  6436 
       
  6437 	if (!is_valid_ether_addr(netdev->perm_addr)) {
       
  6438 		e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
       
  6439 		err = -EIO;
       
  6440 		goto err_eeprom;
       
  6441 	}
       
  6442 
       
  6443 	init_timer(&adapter->watchdog_timer);
       
  6444 	adapter->watchdog_timer.function = e1000_watchdog;
       
  6445 	adapter->watchdog_timer.data = (unsigned long) adapter;
       
  6446 
       
  6447 	init_timer(&adapter->phy_info_timer);
       
  6448 	adapter->phy_info_timer.function = e1000_update_phy_info;
       
  6449 	adapter->phy_info_timer.data = (unsigned long) adapter;
       
  6450 
       
  6451 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
       
  6452 	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
       
  6453 	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
       
  6454 	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
       
  6455 	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
       
  6456 
       
  6457 	/* Initialize link parameters. User can change them with ethtool */
       
  6458 	adapter->hw.mac.autoneg = 1;
       
  6459 	adapter->fc_autoneg = true;
       
  6460 	adapter->hw.fc.requested_mode = e1000_fc_default;
       
  6461 	adapter->hw.fc.current_mode = e1000_fc_default;
       
  6462 	adapter->hw.phy.autoneg_advertised = 0x2f;
       
  6463 
       
  6464 	/* ring size defaults */
       
  6465 	adapter->rx_ring->count = 256;
       
  6466 	adapter->tx_ring->count = 256;
       
  6467 
       
  6468 	/*
       
  6469 	 * Initial Wake on LAN setting - If APM wake is enabled in
       
  6470 	 * the EEPROM, enable the ACPI Magic Packet filter
       
  6471 	 */
       
  6472 	if (adapter->flags & FLAG_APME_IN_WUC) {
       
  6473 		/* APME bit in EEPROM is mapped to WUC.APME */
       
  6474 		eeprom_data = er32(WUC);
       
  6475 		eeprom_apme_mask = E1000_WUC_APME;
       
  6476 		if ((hw->mac.type > e1000_ich10lan) &&
       
  6477 		    (eeprom_data & E1000_WUC_PHY_WAKE))
       
  6478 			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
       
  6479 	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
       
  6480 		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
       
  6481 		    (adapter->hw.bus.func == 1))
       
  6482 			e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_B,
       
  6483 				       1, &eeprom_data);
       
  6484 		else
       
  6485 			e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_A,
       
  6486 				       1, &eeprom_data);
       
  6487 	}
       
  6488 
       
  6489 	/* fetch WoL from EEPROM */
       
  6490 	if (eeprom_data & eeprom_apme_mask)
       
  6491 		adapter->eeprom_wol |= E1000_WUFC_MAG;
       
  6492 
       
  6493 	/*
       
  6494 	 * now that we have the eeprom settings, apply the special cases
       
  6495 	 * where the eeprom may be wrong or the board simply won't support
       
  6496 	 * wake on lan on a particular port
       
  6497 	 */
       
  6498 	if (!(adapter->flags & FLAG_HAS_WOL))
       
  6499 		adapter->eeprom_wol = 0;
       
  6500 
       
  6501 	/* initialize the wol settings based on the eeprom settings */
       
  6502 	adapter->wol = adapter->eeprom_wol;
       
  6503 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
       
  6504 
       
  6505 	/* save off EEPROM version number */
       
  6506 	e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
       
  6507 
       
  6508 	/* reset the hardware with the new settings */
       
  6509 	e1000e_reset(adapter);
       
  6510 
       
  6511 	/*
       
  6512 	 * If the controller has AMT, do not set DRV_LOAD until the interface
       
  6513 	 * is up.  For all other cases, let the f/w know that the h/w is now
       
  6514 	 * under the control of the driver.
       
  6515 	 */
       
  6516 	if (!(adapter->flags & FLAG_HAS_AMT))
       
  6517 		e1000e_get_hw_control(adapter);
       
  6518 
       
  6519 	adapter->ecdev = ecdev_offer(netdev, ec_poll, THIS_MODULE);
       
  6520 	if (adapter->ecdev) {
       
  6521 		err = ecdev_open(adapter->ecdev);
       
  6522 		if (err) {
       
  6523 			ecdev_withdraw(adapter->ecdev);
       
  6524 			goto err_register;
       
  6525 		}
       
  6526 		adapter->ec_watchdog_jiffies = jiffies;
       
  6527 	} else {
       
  6528 		strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
       
  6529 		err = register_netdev(netdev);
       
  6530 		if (err)
       
  6531 			goto err_register;
       
  6532 
       
  6533 		/* carrier off reporting is important to ethtool even BEFORE open */
       
  6534 		netif_carrier_off(netdev);
       
  6535 	}
       
  6536 
       
  6537 	e1000_print_device_info(adapter);
       
  6538 
       
  6539 	if (pci_dev_run_wake(pdev))
       
  6540 		pm_runtime_put_noidle(&pdev->dev);
       
  6541 
       
  6542 	return 0;
       
  6543 
       
  6544 err_register:
       
  6545 	if (!(adapter->flags & FLAG_HAS_AMT))
       
  6546 		e1000e_release_hw_control(adapter);
       
  6547 err_eeprom:
       
  6548 	if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
       
  6549 		e1000_phy_hw_reset(&adapter->hw);
       
  6550 err_hw_init:
       
  6551 	kfree(adapter->tx_ring);
       
  6552 	kfree(adapter->rx_ring);
       
  6553 err_sw_init:
       
  6554 	if (adapter->hw.flash_address)
       
  6555 		iounmap(adapter->hw.flash_address);
       
  6556 	e1000e_reset_interrupt_capability(adapter);
       
  6557 err_flashmap:
       
  6558 	iounmap(adapter->hw.hw_addr);
       
  6559 err_ioremap:
       
  6560 	free_netdev(netdev);
       
  6561 err_alloc_etherdev:
       
  6562 	pci_release_selected_regions(pdev,
       
  6563 	                             pci_select_bars(pdev, IORESOURCE_MEM));
       
  6564 err_pci_reg:
       
  6565 err_dma:
       
  6566 	pci_disable_device(pdev);
       
  6567 	return err;
       
  6568 }
       
  6569 
       
  6570 /**
       
  6571  * e1000_remove - Device Removal Routine
       
  6572  * @pdev: PCI device information struct
       
  6573  *
       
  6574  * e1000_remove is called by the PCI subsystem to alert the driver
       
  6575  * that it should release a PCI device.  The could be caused by a
       
  6576  * Hot-Plug event, or because the driver is going to be removed from
       
  6577  * memory.
       
  6578  **/
       
  6579 static void __devexit e1000_remove(struct pci_dev *pdev)
       
  6580 {
       
  6581 	struct net_device *netdev = pci_get_drvdata(pdev);
       
  6582 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  6583 	bool down = test_bit(__E1000_DOWN, &adapter->state);
       
  6584 
       
  6585 	if (adapter->ecdev) {
       
  6586 		ecdev_close(adapter->ecdev);
       
  6587 		ecdev_withdraw(adapter->ecdev);
       
  6588 	}
       
  6589 
       
  6590 	/*
       
  6591 	 * The timers may be rescheduled, so explicitly disable them
       
  6592 	 * from being rescheduled.
       
  6593 	 */
       
  6594 	if (!down)
       
  6595 		set_bit(__E1000_DOWN, &adapter->state);
       
  6596 	del_timer_sync(&adapter->watchdog_timer);
       
  6597 	del_timer_sync(&adapter->phy_info_timer);
       
  6598 
       
  6599 	cancel_work_sync(&adapter->reset_task);
       
  6600 	cancel_work_sync(&adapter->watchdog_task);
       
  6601 	cancel_work_sync(&adapter->downshift_task);
       
  6602 	cancel_work_sync(&adapter->update_phy_task);
       
  6603 	cancel_work_sync(&adapter->print_hang_task);
       
  6604 
       
  6605 	if (!(netdev->flags & IFF_UP))
       
  6606 		e1000_power_down_phy(adapter);
       
  6607 
       
  6608 	/* Don't lie to e1000_close() down the road. */
       
  6609 	if (!down)
       
  6610 		clear_bit(__E1000_DOWN, &adapter->state);
       
  6611 
       
  6612 	if (!adapter->ecdev) {
       
  6613 		unregister_netdev(netdev);
       
  6614 	}
       
  6615 
       
  6616 	if (pci_dev_run_wake(pdev))
       
  6617 		pm_runtime_get_noresume(&pdev->dev);
       
  6618 
       
  6619 	/*
       
  6620 	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
       
  6621 	 * would have already happened in close and is redundant.
       
  6622 	 */
       
  6623 	e1000e_release_hw_control(adapter);
       
  6624 
       
  6625 	e1000e_reset_interrupt_capability(adapter);
       
  6626 	kfree(adapter->tx_ring);
       
  6627 	kfree(adapter->rx_ring);
       
  6628 
       
  6629 	iounmap(adapter->hw.hw_addr);
       
  6630 	if (adapter->hw.flash_address)
       
  6631 		iounmap(adapter->hw.flash_address);
       
  6632 	pci_release_selected_regions(pdev,
       
  6633 	                             pci_select_bars(pdev, IORESOURCE_MEM));
       
  6634 
       
  6635 	free_netdev(netdev);
       
  6636 
       
  6637 	/* AER disable */
       
  6638 	pci_disable_pcie_error_reporting(pdev);
       
  6639 
       
  6640 	pci_disable_device(pdev);
       
  6641 }
       
  6642 
       
  6643 /* PCI Error Recovery (ERS) */
       
  6644 static struct pci_error_handlers e1000_err_handler = {
       
  6645 	.error_detected = e1000_io_error_detected,
       
  6646 	.slot_reset = e1000_io_slot_reset,
       
  6647 	.resume = e1000_io_resume,
       
  6648 };
       
  6649 
       
  6650 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
       
  6651 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
       
  6652 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
       
  6653 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
       
  6654 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
       
  6655 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
       
  6656 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
       
  6657 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
       
  6658 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
       
  6659 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
       
  6660 
       
  6661 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
       
  6662 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
       
  6663 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
       
  6664 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
       
  6665 
       
  6666 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
       
  6667 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
       
  6668 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
       
  6669 
       
  6670 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
       
  6671 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
       
  6672 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
       
  6673 
       
  6674 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
       
  6675 	  board_80003es2lan },
       
  6676 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
       
  6677 	  board_80003es2lan },
       
  6678 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
       
  6679 	  board_80003es2lan },
       
  6680 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
       
  6681 	  board_80003es2lan },
       
  6682 
       
  6683 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
       
  6684 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
       
  6685 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
       
  6686 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
       
  6687 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
       
  6688 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
       
  6689 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
       
  6690 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
       
  6691 
       
  6692 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
       
  6693 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
       
  6694 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
       
  6695 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
       
  6696 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
       
  6697 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
       
  6698 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
       
  6699 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
       
  6700 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
       
  6701 
       
  6702 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
       
  6703 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
       
  6704 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
       
  6705 
       
  6706 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
       
  6707 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
       
  6708 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
       
  6709 
       
  6710 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
       
  6711 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
       
  6712 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
       
  6713 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
       
  6714 
       
  6715 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
       
  6716 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
       
  6717 
       
  6718 	{ 0, 0, 0, 0, 0, 0, 0 }	/* terminate list */
       
  6719 };
       
  6720 //MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
       
  6721 
       
  6722 #ifdef CONFIG_PM
       
  6723 static const struct dev_pm_ops e1000_pm_ops = {
       
  6724 	SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
       
  6725 	SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
       
  6726 				e1000_runtime_resume, e1000_idle)
       
  6727 };
       
  6728 #endif
       
  6729 
       
  6730 /* PCI Device API Driver */
       
  6731 static struct pci_driver e1000_driver = {
       
  6732 	.name     = e1000e_driver_name,
       
  6733 	.id_table = e1000_pci_tbl,
       
  6734 	.probe    = e1000_probe,
       
  6735 	.remove   = __devexit_p(e1000_remove),
       
  6736 #ifdef CONFIG_PM
       
  6737 	.driver   = {
       
  6738 		.pm = &e1000_pm_ops,
       
  6739 	},
       
  6740 #endif
       
  6741 	.shutdown = e1000_shutdown,
       
  6742 	.err_handler = &e1000_err_handler
       
  6743 };
       
  6744 
       
  6745 /**
       
  6746  * e1000_init_module - Driver Registration Routine
       
  6747  *
       
  6748  * e1000_init_module is the first routine called when the driver is
       
  6749  * loaded. All it does is register with the PCI subsystem.
       
  6750  **/
       
  6751 static int __init e1000_init_module(void)
       
  6752 {
       
  6753 	int ret;
       
  6754 	pr_info("EtherCAT-capable Intel(R) PRO/1000 Network Driver - %s\n",
       
  6755 		e1000e_driver_version);
       
  6756 	pr_info("Copyright(c) 1999 - 2012 Intel Corporation.\n");
       
  6757 	ret = pci_register_driver(&e1000_driver);
       
  6758 
       
  6759 	return ret;
       
  6760 }
       
  6761 module_init(e1000_init_module);
       
  6762 
       
  6763 /**
       
  6764  * e1000_exit_module - Driver Exit Cleanup Routine
       
  6765  *
       
  6766  * e1000_exit_module is called just before the driver is removed
       
  6767  * from memory.
       
  6768  **/
       
  6769 static void __exit e1000_exit_module(void)
       
  6770 {
       
  6771 	pci_unregister_driver(&e1000_driver);
       
  6772 }
       
  6773 module_exit(e1000_exit_module);
       
  6774 
       
  6775 
       
  6776 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
       
  6777 MODULE_DESCRIPTION("Ethercat-capable Intel(R) PRO/1000 Network Driver");
       
  6778 MODULE_LICENSE("GPL");
       
  6779 MODULE_VERSION(DRV_VERSION);
       
  6780 
       
  6781 /* netdev.c */