|
1 /******************************************************************************* |
|
2 |
|
3 Intel PRO/1000 Linux driver |
|
4 Copyright(c) 1999 - 2013 Intel Corporation. |
|
5 |
|
6 This program is free software; you can redistribute it and/or modify it |
|
7 under the terms and conditions of the GNU General Public License, |
|
8 version 2, as published by the Free Software Foundation. |
|
9 |
|
10 This program is distributed in the hope it will be useful, but WITHOUT |
|
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
|
13 more details. |
|
14 |
|
15 You should have received a copy of the GNU General Public License along with |
|
16 this program; if not, write to the Free Software Foundation, Inc., |
|
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 |
|
19 The full GNU General Public License is included in this distribution in |
|
20 the file called "COPYING". |
|
21 |
|
22 Contact Information: |
|
23 Linux NICS <linux.nics@intel.com> |
|
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
|
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
|
26 |
|
27 *******************************************************************************/ |
|
28 |
|
29 /* 82562G 10/100 Network Connection |
|
30 * 82562G-2 10/100 Network Connection |
|
31 * 82562GT 10/100 Network Connection |
|
32 * 82562GT-2 10/100 Network Connection |
|
33 * 82562V 10/100 Network Connection |
|
34 * 82562V-2 10/100 Network Connection |
|
35 * 82566DC-2 Gigabit Network Connection |
|
36 * 82566DC Gigabit Network Connection |
|
37 * 82566DM-2 Gigabit Network Connection |
|
38 * 82566DM Gigabit Network Connection |
|
39 * 82566MC Gigabit Network Connection |
|
40 * 82566MM Gigabit Network Connection |
|
41 * 82567LM Gigabit Network Connection |
|
42 * 82567LF Gigabit Network Connection |
|
43 * 82567V Gigabit Network Connection |
|
44 * 82567LM-2 Gigabit Network Connection |
|
45 * 82567LF-2 Gigabit Network Connection |
|
46 * 82567V-2 Gigabit Network Connection |
|
47 * 82567LF-3 Gigabit Network Connection |
|
48 * 82567LM-3 Gigabit Network Connection |
|
49 * 82567LM-4 Gigabit Network Connection |
|
50 * 82577LM Gigabit Network Connection |
|
51 * 82577LC Gigabit Network Connection |
|
52 * 82578DM Gigabit Network Connection |
|
53 * 82578DC Gigabit Network Connection |
|
54 * 82579LM Gigabit Network Connection |
|
55 * 82579V Gigabit Network Connection |
|
56 */ |
|
57 |
|
58 #include "e1000.h" |
|
59 |
|
60 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */ |
|
61 /* Offset 04h HSFSTS */ |
|
62 union ich8_hws_flash_status { |
|
63 struct ich8_hsfsts { |
|
64 u16 flcdone:1; /* bit 0 Flash Cycle Done */ |
|
65 u16 flcerr:1; /* bit 1 Flash Cycle Error */ |
|
66 u16 dael:1; /* bit 2 Direct Access error Log */ |
|
67 u16 berasesz:2; /* bit 4:3 Sector Erase Size */ |
|
68 u16 flcinprog:1; /* bit 5 flash cycle in Progress */ |
|
69 u16 reserved1:2; /* bit 13:6 Reserved */ |
|
70 u16 reserved2:6; /* bit 13:6 Reserved */ |
|
71 u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */ |
|
72 u16 flockdn:1; /* bit 15 Flash Config Lock-Down */ |
|
73 } hsf_status; |
|
74 u16 regval; |
|
75 }; |
|
76 |
|
77 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */ |
|
78 /* Offset 06h FLCTL */ |
|
79 union ich8_hws_flash_ctrl { |
|
80 struct ich8_hsflctl { |
|
81 u16 flcgo:1; /* 0 Flash Cycle Go */ |
|
82 u16 flcycle:2; /* 2:1 Flash Cycle */ |
|
83 u16 reserved:5; /* 7:3 Reserved */ |
|
84 u16 fldbcount:2; /* 9:8 Flash Data Byte Count */ |
|
85 u16 flockdn:6; /* 15:10 Reserved */ |
|
86 } hsf_ctrl; |
|
87 u16 regval; |
|
88 }; |
|
89 |
|
90 /* ICH Flash Region Access Permissions */ |
|
91 union ich8_hws_flash_regacc { |
|
92 struct ich8_flracc { |
|
93 u32 grra:8; /* 0:7 GbE region Read Access */ |
|
94 u32 grwa:8; /* 8:15 GbE region Write Access */ |
|
95 u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */ |
|
96 u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */ |
|
97 } hsf_flregacc; |
|
98 u16 regval; |
|
99 }; |
|
100 |
|
101 /* ICH Flash Protected Region */ |
|
102 union ich8_flash_protected_range { |
|
103 struct ich8_pr { |
|
104 u32 base:13; /* 0:12 Protected Range Base */ |
|
105 u32 reserved1:2; /* 13:14 Reserved */ |
|
106 u32 rpe:1; /* 15 Read Protection Enable */ |
|
107 u32 limit:13; /* 16:28 Protected Range Limit */ |
|
108 u32 reserved2:2; /* 29:30 Reserved */ |
|
109 u32 wpe:1; /* 31 Write Protection Enable */ |
|
110 } range; |
|
111 u32 regval; |
|
112 }; |
|
113 |
|
114 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw); |
|
115 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw); |
|
116 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank); |
|
117 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, |
|
118 u32 offset, u8 byte); |
|
119 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, |
|
120 u8 *data); |
|
121 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, |
|
122 u16 *data); |
|
123 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, |
|
124 u8 size, u16 *data); |
|
125 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw); |
|
126 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw); |
|
127 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw); |
|
128 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw); |
|
129 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw); |
|
130 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw); |
|
131 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw); |
|
132 static s32 e1000_led_on_pchlan(struct e1000_hw *hw); |
|
133 static s32 e1000_led_off_pchlan(struct e1000_hw *hw); |
|
134 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active); |
|
135 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw); |
|
136 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw); |
|
137 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link); |
|
138 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw); |
|
139 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw); |
|
140 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw); |
|
141 static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index); |
|
142 static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index); |
|
143 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw); |
|
144 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate); |
|
145 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw); |
|
146 |
|
147 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg) |
|
148 { |
|
149 return readw(hw->flash_address + reg); |
|
150 } |
|
151 |
|
152 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg) |
|
153 { |
|
154 return readl(hw->flash_address + reg); |
|
155 } |
|
156 |
|
157 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val) |
|
158 { |
|
159 writew(val, hw->flash_address + reg); |
|
160 } |
|
161 |
|
162 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val) |
|
163 { |
|
164 writel(val, hw->flash_address + reg); |
|
165 } |
|
166 |
|
167 #define er16flash(reg) __er16flash(hw, (reg)) |
|
168 #define er32flash(reg) __er32flash(hw, (reg)) |
|
169 #define ew16flash(reg, val) __ew16flash(hw, (reg), (val)) |
|
170 #define ew32flash(reg, val) __ew32flash(hw, (reg), (val)) |
|
171 |
|
172 /** |
|
173 * e1000_phy_is_accessible_pchlan - Check if able to access PHY registers |
|
174 * @hw: pointer to the HW structure |
|
175 * |
|
176 * Test access to the PHY registers by reading the PHY ID registers. If |
|
177 * the PHY ID is already known (e.g. resume path) compare it with known ID, |
|
178 * otherwise assume the read PHY ID is correct if it is valid. |
|
179 * |
|
180 * Assumes the sw/fw/hw semaphore is already acquired. |
|
181 **/ |
|
182 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw) |
|
183 { |
|
184 u16 phy_reg = 0; |
|
185 u32 phy_id = 0; |
|
186 s32 ret_val; |
|
187 u16 retry_count; |
|
188 u32 mac_reg = 0; |
|
189 |
|
190 for (retry_count = 0; retry_count < 2; retry_count++) { |
|
191 ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg); |
|
192 if (ret_val || (phy_reg == 0xFFFF)) |
|
193 continue; |
|
194 phy_id = (u32)(phy_reg << 16); |
|
195 |
|
196 ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg); |
|
197 if (ret_val || (phy_reg == 0xFFFF)) { |
|
198 phy_id = 0; |
|
199 continue; |
|
200 } |
|
201 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK); |
|
202 break; |
|
203 } |
|
204 |
|
205 if (hw->phy.id) { |
|
206 if (hw->phy.id == phy_id) |
|
207 goto out; |
|
208 } else if (phy_id) { |
|
209 hw->phy.id = phy_id; |
|
210 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK); |
|
211 goto out; |
|
212 } |
|
213 |
|
214 /* In case the PHY needs to be in mdio slow mode, |
|
215 * set slow mode and try to get the PHY id again. |
|
216 */ |
|
217 hw->phy.ops.release(hw); |
|
218 ret_val = e1000_set_mdio_slow_mode_hv(hw); |
|
219 if (!ret_val) |
|
220 ret_val = e1000e_get_phy_id(hw); |
|
221 hw->phy.ops.acquire(hw); |
|
222 |
|
223 if (ret_val) |
|
224 return false; |
|
225 out: |
|
226 if (hw->mac.type == e1000_pch_lpt) { |
|
227 /* Unforce SMBus mode in PHY */ |
|
228 e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg); |
|
229 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS; |
|
230 e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg); |
|
231 |
|
232 /* Unforce SMBus mode in MAC */ |
|
233 mac_reg = er32(CTRL_EXT); |
|
234 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; |
|
235 ew32(CTRL_EXT, mac_reg); |
|
236 } |
|
237 |
|
238 return true; |
|
239 } |
|
240 |
|
241 /** |
|
242 * e1000_init_phy_workarounds_pchlan - PHY initialization workarounds |
|
243 * @hw: pointer to the HW structure |
|
244 * |
|
245 * Workarounds/flow necessary for PHY initialization during driver load |
|
246 * and resume paths. |
|
247 **/ |
|
248 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw) |
|
249 { |
|
250 u32 mac_reg, fwsm = er32(FWSM); |
|
251 s32 ret_val; |
|
252 |
|
253 /* Gate automatic PHY configuration by hardware on managed and |
|
254 * non-managed 82579 and newer adapters. |
|
255 */ |
|
256 e1000_gate_hw_phy_config_ich8lan(hw, true); |
|
257 |
|
258 ret_val = hw->phy.ops.acquire(hw); |
|
259 if (ret_val) { |
|
260 e_dbg("Failed to initialize PHY flow\n"); |
|
261 goto out; |
|
262 } |
|
263 |
|
264 /* The MAC-PHY interconnect may be in SMBus mode. If the PHY is |
|
265 * inaccessible and resetting the PHY is not blocked, toggle the |
|
266 * LANPHYPC Value bit to force the interconnect to PCIe mode. |
|
267 */ |
|
268 switch (hw->mac.type) { |
|
269 case e1000_pch_lpt: |
|
270 if (e1000_phy_is_accessible_pchlan(hw)) |
|
271 break; |
|
272 |
|
273 /* Before toggling LANPHYPC, see if PHY is accessible by |
|
274 * forcing MAC to SMBus mode first. |
|
275 */ |
|
276 mac_reg = er32(CTRL_EXT); |
|
277 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; |
|
278 ew32(CTRL_EXT, mac_reg); |
|
279 |
|
280 /* Wait 50 milliseconds for MAC to finish any retries |
|
281 * that it might be trying to perform from previous |
|
282 * attempts to acknowledge any phy read requests. |
|
283 */ |
|
284 msleep(50); |
|
285 |
|
286 /* fall-through */ |
|
287 case e1000_pch2lan: |
|
288 if (e1000_phy_is_accessible_pchlan(hw)) |
|
289 break; |
|
290 |
|
291 /* fall-through */ |
|
292 case e1000_pchlan: |
|
293 if ((hw->mac.type == e1000_pchlan) && |
|
294 (fwsm & E1000_ICH_FWSM_FW_VALID)) |
|
295 break; |
|
296 |
|
297 if (hw->phy.ops.check_reset_block(hw)) { |
|
298 e_dbg("Required LANPHYPC toggle blocked by ME\n"); |
|
299 ret_val = -E1000_ERR_PHY; |
|
300 break; |
|
301 } |
|
302 |
|
303 e_dbg("Toggling LANPHYPC\n"); |
|
304 |
|
305 /* Set Phy Config Counter to 50msec */ |
|
306 mac_reg = er32(FEXTNVM3); |
|
307 mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK; |
|
308 mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC; |
|
309 ew32(FEXTNVM3, mac_reg); |
|
310 |
|
311 /* Toggle LANPHYPC Value bit */ |
|
312 mac_reg = er32(CTRL); |
|
313 mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE; |
|
314 mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE; |
|
315 ew32(CTRL, mac_reg); |
|
316 e1e_flush(); |
|
317 usleep_range(10, 20); |
|
318 mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE; |
|
319 ew32(CTRL, mac_reg); |
|
320 e1e_flush(); |
|
321 if (hw->mac.type < e1000_pch_lpt) { |
|
322 msleep(50); |
|
323 } else { |
|
324 u16 count = 20; |
|
325 do { |
|
326 usleep_range(5000, 10000); |
|
327 } while (!(er32(CTRL_EXT) & |
|
328 E1000_CTRL_EXT_LPCD) && count--); |
|
329 usleep_range(30000, 60000); |
|
330 if (e1000_phy_is_accessible_pchlan(hw)) |
|
331 break; |
|
332 |
|
333 /* Toggling LANPHYPC brings the PHY out of SMBus mode |
|
334 * so ensure that the MAC is also out of SMBus mode |
|
335 */ |
|
336 mac_reg = er32(CTRL_EXT); |
|
337 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; |
|
338 ew32(CTRL_EXT, mac_reg); |
|
339 |
|
340 if (e1000_phy_is_accessible_pchlan(hw)) |
|
341 break; |
|
342 |
|
343 ret_val = -E1000_ERR_PHY; |
|
344 } |
|
345 break; |
|
346 default: |
|
347 break; |
|
348 } |
|
349 |
|
350 hw->phy.ops.release(hw); |
|
351 if (!ret_val) { |
|
352 /* Reset the PHY before any access to it. Doing so, ensures |
|
353 * that the PHY is in a known good state before we read/write |
|
354 * PHY registers. The generic reset is sufficient here, |
|
355 * because we haven't determined the PHY type yet. |
|
356 */ |
|
357 ret_val = e1000e_phy_hw_reset_generic(hw); |
|
358 } |
|
359 |
|
360 out: |
|
361 /* Ungate automatic PHY configuration on non-managed 82579 */ |
|
362 if ((hw->mac.type == e1000_pch2lan) && |
|
363 !(fwsm & E1000_ICH_FWSM_FW_VALID)) { |
|
364 usleep_range(10000, 20000); |
|
365 e1000_gate_hw_phy_config_ich8lan(hw, false); |
|
366 } |
|
367 |
|
368 return ret_val; |
|
369 } |
|
370 |
|
371 /** |
|
372 * e1000_init_phy_params_pchlan - Initialize PHY function pointers |
|
373 * @hw: pointer to the HW structure |
|
374 * |
|
375 * Initialize family-specific PHY parameters and function pointers. |
|
376 **/ |
|
377 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw) |
|
378 { |
|
379 struct e1000_phy_info *phy = &hw->phy; |
|
380 s32 ret_val; |
|
381 |
|
382 phy->addr = 1; |
|
383 phy->reset_delay_us = 100; |
|
384 |
|
385 phy->ops.set_page = e1000_set_page_igp; |
|
386 phy->ops.read_reg = e1000_read_phy_reg_hv; |
|
387 phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked; |
|
388 phy->ops.read_reg_page = e1000_read_phy_reg_page_hv; |
|
389 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan; |
|
390 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan; |
|
391 phy->ops.write_reg = e1000_write_phy_reg_hv; |
|
392 phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked; |
|
393 phy->ops.write_reg_page = e1000_write_phy_reg_page_hv; |
|
394 phy->ops.power_up = e1000_power_up_phy_copper; |
|
395 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; |
|
396 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; |
|
397 |
|
398 phy->id = e1000_phy_unknown; |
|
399 |
|
400 ret_val = e1000_init_phy_workarounds_pchlan(hw); |
|
401 if (ret_val) |
|
402 return ret_val; |
|
403 |
|
404 if (phy->id == e1000_phy_unknown) |
|
405 switch (hw->mac.type) { |
|
406 default: |
|
407 ret_val = e1000e_get_phy_id(hw); |
|
408 if (ret_val) |
|
409 return ret_val; |
|
410 if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK)) |
|
411 break; |
|
412 /* fall-through */ |
|
413 case e1000_pch2lan: |
|
414 case e1000_pch_lpt: |
|
415 /* In case the PHY needs to be in mdio slow mode, |
|
416 * set slow mode and try to get the PHY id again. |
|
417 */ |
|
418 ret_val = e1000_set_mdio_slow_mode_hv(hw); |
|
419 if (ret_val) |
|
420 return ret_val; |
|
421 ret_val = e1000e_get_phy_id(hw); |
|
422 if (ret_val) |
|
423 return ret_val; |
|
424 break; |
|
425 } |
|
426 phy->type = e1000e_get_phy_type_from_id(phy->id); |
|
427 |
|
428 switch (phy->type) { |
|
429 case e1000_phy_82577: |
|
430 case e1000_phy_82579: |
|
431 case e1000_phy_i217: |
|
432 phy->ops.check_polarity = e1000_check_polarity_82577; |
|
433 phy->ops.force_speed_duplex = |
|
434 e1000_phy_force_speed_duplex_82577; |
|
435 phy->ops.get_cable_length = e1000_get_cable_length_82577; |
|
436 phy->ops.get_info = e1000_get_phy_info_82577; |
|
437 phy->ops.commit = e1000e_phy_sw_reset; |
|
438 break; |
|
439 case e1000_phy_82578: |
|
440 phy->ops.check_polarity = e1000_check_polarity_m88; |
|
441 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88; |
|
442 phy->ops.get_cable_length = e1000e_get_cable_length_m88; |
|
443 phy->ops.get_info = e1000e_get_phy_info_m88; |
|
444 break; |
|
445 default: |
|
446 ret_val = -E1000_ERR_PHY; |
|
447 break; |
|
448 } |
|
449 |
|
450 return ret_val; |
|
451 } |
|
452 |
|
453 /** |
|
454 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers |
|
455 * @hw: pointer to the HW structure |
|
456 * |
|
457 * Initialize family-specific PHY parameters and function pointers. |
|
458 **/ |
|
459 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw) |
|
460 { |
|
461 struct e1000_phy_info *phy = &hw->phy; |
|
462 s32 ret_val; |
|
463 u16 i = 0; |
|
464 |
|
465 phy->addr = 1; |
|
466 phy->reset_delay_us = 100; |
|
467 |
|
468 phy->ops.power_up = e1000_power_up_phy_copper; |
|
469 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; |
|
470 |
|
471 /* We may need to do this twice - once for IGP and if that fails, |
|
472 * we'll set BM func pointers and try again |
|
473 */ |
|
474 ret_val = e1000e_determine_phy_address(hw); |
|
475 if (ret_val) { |
|
476 phy->ops.write_reg = e1000e_write_phy_reg_bm; |
|
477 phy->ops.read_reg = e1000e_read_phy_reg_bm; |
|
478 ret_val = e1000e_determine_phy_address(hw); |
|
479 if (ret_val) { |
|
480 e_dbg("Cannot determine PHY addr. Erroring out\n"); |
|
481 return ret_val; |
|
482 } |
|
483 } |
|
484 |
|
485 phy->id = 0; |
|
486 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) && |
|
487 (i++ < 100)) { |
|
488 usleep_range(1000, 2000); |
|
489 ret_val = e1000e_get_phy_id(hw); |
|
490 if (ret_val) |
|
491 return ret_val; |
|
492 } |
|
493 |
|
494 /* Verify phy id */ |
|
495 switch (phy->id) { |
|
496 case IGP03E1000_E_PHY_ID: |
|
497 phy->type = e1000_phy_igp_3; |
|
498 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; |
|
499 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked; |
|
500 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked; |
|
501 phy->ops.get_info = e1000e_get_phy_info_igp; |
|
502 phy->ops.check_polarity = e1000_check_polarity_igp; |
|
503 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp; |
|
504 break; |
|
505 case IFE_E_PHY_ID: |
|
506 case IFE_PLUS_E_PHY_ID: |
|
507 case IFE_C_E_PHY_ID: |
|
508 phy->type = e1000_phy_ife; |
|
509 phy->autoneg_mask = E1000_ALL_NOT_GIG; |
|
510 phy->ops.get_info = e1000_get_phy_info_ife; |
|
511 phy->ops.check_polarity = e1000_check_polarity_ife; |
|
512 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife; |
|
513 break; |
|
514 case BME1000_E_PHY_ID: |
|
515 phy->type = e1000_phy_bm; |
|
516 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; |
|
517 phy->ops.read_reg = e1000e_read_phy_reg_bm; |
|
518 phy->ops.write_reg = e1000e_write_phy_reg_bm; |
|
519 phy->ops.commit = e1000e_phy_sw_reset; |
|
520 phy->ops.get_info = e1000e_get_phy_info_m88; |
|
521 phy->ops.check_polarity = e1000_check_polarity_m88; |
|
522 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88; |
|
523 break; |
|
524 default: |
|
525 return -E1000_ERR_PHY; |
|
526 break; |
|
527 } |
|
528 |
|
529 return 0; |
|
530 } |
|
531 |
|
532 /** |
|
533 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers |
|
534 * @hw: pointer to the HW structure |
|
535 * |
|
536 * Initialize family-specific NVM parameters and function |
|
537 * pointers. |
|
538 **/ |
|
539 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw) |
|
540 { |
|
541 struct e1000_nvm_info *nvm = &hw->nvm; |
|
542 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; |
|
543 u32 gfpreg, sector_base_addr, sector_end_addr; |
|
544 u16 i; |
|
545 |
|
546 /* Can't read flash registers if the register set isn't mapped. */ |
|
547 if (!hw->flash_address) { |
|
548 e_dbg("ERROR: Flash registers not mapped\n"); |
|
549 return -E1000_ERR_CONFIG; |
|
550 } |
|
551 |
|
552 nvm->type = e1000_nvm_flash_sw; |
|
553 |
|
554 gfpreg = er32flash(ICH_FLASH_GFPREG); |
|
555 |
|
556 /* sector_X_addr is a "sector"-aligned address (4096 bytes) |
|
557 * Add 1 to sector_end_addr since this sector is included in |
|
558 * the overall size. |
|
559 */ |
|
560 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK; |
|
561 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1; |
|
562 |
|
563 /* flash_base_addr is byte-aligned */ |
|
564 nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT; |
|
565 |
|
566 /* find total size of the NVM, then cut in half since the total |
|
567 * size represents two separate NVM banks. |
|
568 */ |
|
569 nvm->flash_bank_size = ((sector_end_addr - sector_base_addr) |
|
570 << FLASH_SECTOR_ADDR_SHIFT); |
|
571 nvm->flash_bank_size /= 2; |
|
572 /* Adjust to word count */ |
|
573 nvm->flash_bank_size /= sizeof(u16); |
|
574 |
|
575 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS; |
|
576 |
|
577 /* Clear shadow ram */ |
|
578 for (i = 0; i < nvm->word_size; i++) { |
|
579 dev_spec->shadow_ram[i].modified = false; |
|
580 dev_spec->shadow_ram[i].value = 0xFFFF; |
|
581 } |
|
582 |
|
583 return 0; |
|
584 } |
|
585 |
|
586 /** |
|
587 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers |
|
588 * @hw: pointer to the HW structure |
|
589 * |
|
590 * Initialize family-specific MAC parameters and function |
|
591 * pointers. |
|
592 **/ |
|
593 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw) |
|
594 { |
|
595 struct e1000_mac_info *mac = &hw->mac; |
|
596 |
|
597 /* Set media type function pointer */ |
|
598 hw->phy.media_type = e1000_media_type_copper; |
|
599 |
|
600 /* Set mta register count */ |
|
601 mac->mta_reg_count = 32; |
|
602 /* Set rar entry count */ |
|
603 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES; |
|
604 if (mac->type == e1000_ich8lan) |
|
605 mac->rar_entry_count--; |
|
606 /* FWSM register */ |
|
607 mac->has_fwsm = true; |
|
608 /* ARC subsystem not supported */ |
|
609 mac->arc_subsystem_valid = false; |
|
610 /* Adaptive IFS supported */ |
|
611 mac->adaptive_ifs = true; |
|
612 |
|
613 /* LED and other operations */ |
|
614 switch (mac->type) { |
|
615 case e1000_ich8lan: |
|
616 case e1000_ich9lan: |
|
617 case e1000_ich10lan: |
|
618 /* check management mode */ |
|
619 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan; |
|
620 /* ID LED init */ |
|
621 mac->ops.id_led_init = e1000e_id_led_init_generic; |
|
622 /* blink LED */ |
|
623 mac->ops.blink_led = e1000e_blink_led_generic; |
|
624 /* setup LED */ |
|
625 mac->ops.setup_led = e1000e_setup_led_generic; |
|
626 /* cleanup LED */ |
|
627 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan; |
|
628 /* turn on/off LED */ |
|
629 mac->ops.led_on = e1000_led_on_ich8lan; |
|
630 mac->ops.led_off = e1000_led_off_ich8lan; |
|
631 break; |
|
632 case e1000_pch2lan: |
|
633 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES; |
|
634 mac->ops.rar_set = e1000_rar_set_pch2lan; |
|
635 /* fall-through */ |
|
636 case e1000_pch_lpt: |
|
637 case e1000_pchlan: |
|
638 /* check management mode */ |
|
639 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan; |
|
640 /* ID LED init */ |
|
641 mac->ops.id_led_init = e1000_id_led_init_pchlan; |
|
642 /* setup LED */ |
|
643 mac->ops.setup_led = e1000_setup_led_pchlan; |
|
644 /* cleanup LED */ |
|
645 mac->ops.cleanup_led = e1000_cleanup_led_pchlan; |
|
646 /* turn on/off LED */ |
|
647 mac->ops.led_on = e1000_led_on_pchlan; |
|
648 mac->ops.led_off = e1000_led_off_pchlan; |
|
649 break; |
|
650 default: |
|
651 break; |
|
652 } |
|
653 |
|
654 if (mac->type == e1000_pch_lpt) { |
|
655 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES; |
|
656 mac->ops.rar_set = e1000_rar_set_pch_lpt; |
|
657 mac->ops.setup_physical_interface = |
|
658 e1000_setup_copper_link_pch_lpt; |
|
659 } |
|
660 |
|
661 /* Enable PCS Lock-loss workaround for ICH8 */ |
|
662 if (mac->type == e1000_ich8lan) |
|
663 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true); |
|
664 |
|
665 return 0; |
|
666 } |
|
667 |
|
668 /** |
|
669 * __e1000_access_emi_reg_locked - Read/write EMI register |
|
670 * @hw: pointer to the HW structure |
|
671 * @addr: EMI address to program |
|
672 * @data: pointer to value to read/write from/to the EMI address |
|
673 * @read: boolean flag to indicate read or write |
|
674 * |
|
675 * This helper function assumes the SW/FW/HW Semaphore is already acquired. |
|
676 **/ |
|
677 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address, |
|
678 u16 *data, bool read) |
|
679 { |
|
680 s32 ret_val; |
|
681 |
|
682 ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address); |
|
683 if (ret_val) |
|
684 return ret_val; |
|
685 |
|
686 if (read) |
|
687 ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data); |
|
688 else |
|
689 ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data); |
|
690 |
|
691 return ret_val; |
|
692 } |
|
693 |
|
694 /** |
|
695 * e1000_read_emi_reg_locked - Read Extended Management Interface register |
|
696 * @hw: pointer to the HW structure |
|
697 * @addr: EMI address to program |
|
698 * @data: value to be read from the EMI address |
|
699 * |
|
700 * Assumes the SW/FW/HW Semaphore is already acquired. |
|
701 **/ |
|
702 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data) |
|
703 { |
|
704 return __e1000_access_emi_reg_locked(hw, addr, data, true); |
|
705 } |
|
706 |
|
707 /** |
|
708 * e1000_write_emi_reg_locked - Write Extended Management Interface register |
|
709 * @hw: pointer to the HW structure |
|
710 * @addr: EMI address to program |
|
711 * @data: value to be written to the EMI address |
|
712 * |
|
713 * Assumes the SW/FW/HW Semaphore is already acquired. |
|
714 **/ |
|
715 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data) |
|
716 { |
|
717 return __e1000_access_emi_reg_locked(hw, addr, &data, false); |
|
718 } |
|
719 |
|
720 /** |
|
721 * e1000_set_eee_pchlan - Enable/disable EEE support |
|
722 * @hw: pointer to the HW structure |
|
723 * |
|
724 * Enable/disable EEE based on setting in dev_spec structure, the duplex of |
|
725 * the link and the EEE capabilities of the link partner. The LPI Control |
|
726 * register bits will remain set only if/when link is up. |
|
727 **/ |
|
728 static s32 e1000_set_eee_pchlan(struct e1000_hw *hw) |
|
729 { |
|
730 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; |
|
731 s32 ret_val; |
|
732 u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data; |
|
733 |
|
734 switch (hw->phy.type) { |
|
735 case e1000_phy_82579: |
|
736 lpa = I82579_EEE_LP_ABILITY; |
|
737 pcs_status = I82579_EEE_PCS_STATUS; |
|
738 adv_addr = I82579_EEE_ADVERTISEMENT; |
|
739 break; |
|
740 case e1000_phy_i217: |
|
741 lpa = I217_EEE_LP_ABILITY; |
|
742 pcs_status = I217_EEE_PCS_STATUS; |
|
743 adv_addr = I217_EEE_ADVERTISEMENT; |
|
744 break; |
|
745 default: |
|
746 return 0; |
|
747 } |
|
748 |
|
749 ret_val = hw->phy.ops.acquire(hw); |
|
750 if (ret_val) |
|
751 return ret_val; |
|
752 |
|
753 ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl); |
|
754 if (ret_val) |
|
755 goto release; |
|
756 |
|
757 /* Clear bits that enable EEE in various speeds */ |
|
758 lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK; |
|
759 |
|
760 /* Enable EEE if not disabled by user */ |
|
761 if (!dev_spec->eee_disable) { |
|
762 /* Save off link partner's EEE ability */ |
|
763 ret_val = e1000_read_emi_reg_locked(hw, lpa, |
|
764 &dev_spec->eee_lp_ability); |
|
765 if (ret_val) |
|
766 goto release; |
|
767 |
|
768 /* Read EEE advertisement */ |
|
769 ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv); |
|
770 if (ret_val) |
|
771 goto release; |
|
772 |
|
773 /* Enable EEE only for speeds in which the link partner is |
|
774 * EEE capable and for which we advertise EEE. |
|
775 */ |
|
776 if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED) |
|
777 lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE; |
|
778 |
|
779 if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) { |
|
780 e1e_rphy_locked(hw, MII_LPA, &data); |
|
781 if (data & LPA_100FULL) |
|
782 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE; |
|
783 else |
|
784 /* EEE is not supported in 100Half, so ignore |
|
785 * partner's EEE in 100 ability if full-duplex |
|
786 * is not advertised. |
|
787 */ |
|
788 dev_spec->eee_lp_ability &= |
|
789 ~I82579_EEE_100_SUPPORTED; |
|
790 } |
|
791 } |
|
792 |
|
793 /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */ |
|
794 ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data); |
|
795 if (ret_val) |
|
796 goto release; |
|
797 |
|
798 ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl); |
|
799 release: |
|
800 hw->phy.ops.release(hw); |
|
801 |
|
802 return ret_val; |
|
803 } |
|
804 |
|
805 /** |
|
806 * e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP |
|
807 * @hw: pointer to the HW structure |
|
808 * @link: link up bool flag |
|
809 * |
|
810 * When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications |
|
811 * preventing further DMA write requests. Workaround the issue by disabling |
|
812 * the de-assertion of the clock request when in 1Gpbs mode. |
|
813 * Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link |
|
814 * speeds in order to avoid Tx hangs. |
|
815 **/ |
|
816 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link) |
|
817 { |
|
818 u32 fextnvm6 = er32(FEXTNVM6); |
|
819 u32 status = er32(STATUS); |
|
820 s32 ret_val = 0; |
|
821 u16 reg; |
|
822 |
|
823 if (link && (status & E1000_STATUS_SPEED_1000)) { |
|
824 ret_val = hw->phy.ops.acquire(hw); |
|
825 if (ret_val) |
|
826 return ret_val; |
|
827 |
|
828 ret_val = |
|
829 e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, |
|
830 ®); |
|
831 if (ret_val) |
|
832 goto release; |
|
833 |
|
834 ret_val = |
|
835 e1000e_write_kmrn_reg_locked(hw, |
|
836 E1000_KMRNCTRLSTA_K1_CONFIG, |
|
837 reg & |
|
838 ~E1000_KMRNCTRLSTA_K1_ENABLE); |
|
839 if (ret_val) |
|
840 goto release; |
|
841 |
|
842 usleep_range(10, 20); |
|
843 |
|
844 ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK); |
|
845 |
|
846 ret_val = |
|
847 e1000e_write_kmrn_reg_locked(hw, |
|
848 E1000_KMRNCTRLSTA_K1_CONFIG, |
|
849 reg); |
|
850 release: |
|
851 hw->phy.ops.release(hw); |
|
852 } else { |
|
853 /* clear FEXTNVM6 bit 8 on link down or 10/100 */ |
|
854 fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK; |
|
855 |
|
856 if (!link || ((status & E1000_STATUS_SPEED_100) && |
|
857 (status & E1000_STATUS_FD))) |
|
858 goto update_fextnvm6; |
|
859 |
|
860 ret_val = e1e_rphy(hw, I217_INBAND_CTRL, ®); |
|
861 if (ret_val) |
|
862 return ret_val; |
|
863 |
|
864 /* Clear link status transmit timeout */ |
|
865 reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK; |
|
866 |
|
867 if (status & E1000_STATUS_SPEED_100) { |
|
868 /* Set inband Tx timeout to 5x10us for 100Half */ |
|
869 reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT; |
|
870 |
|
871 /* Do not extend the K1 entry latency for 100Half */ |
|
872 fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION; |
|
873 } else { |
|
874 /* Set inband Tx timeout to 50x10us for 10Full/Half */ |
|
875 reg |= 50 << |
|
876 I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT; |
|
877 |
|
878 /* Extend the K1 entry latency for 10 Mbps */ |
|
879 fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION; |
|
880 } |
|
881 |
|
882 ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg); |
|
883 if (ret_val) |
|
884 return ret_val; |
|
885 |
|
886 update_fextnvm6: |
|
887 ew32(FEXTNVM6, fextnvm6); |
|
888 } |
|
889 |
|
890 return ret_val; |
|
891 } |
|
892 |
|
893 /** |
|
894 * e1000_platform_pm_pch_lpt - Set platform power management values |
|
895 * @hw: pointer to the HW structure |
|
896 * @link: bool indicating link status |
|
897 * |
|
898 * Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like" |
|
899 * GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed |
|
900 * when link is up (which must not exceed the maximum latency supported |
|
901 * by the platform), otherwise specify there is no LTR requirement. |
|
902 * Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop |
|
903 * latencies in the LTR Extended Capability Structure in the PCIe Extended |
|
904 * Capability register set, on this device LTR is set by writing the |
|
905 * equivalent snoop/no-snoop latencies in the LTRV register in the MAC and |
|
906 * set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB) |
|
907 * message to the PMC. |
|
908 **/ |
|
909 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link) |
|
910 { |
|
911 u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) | |
|
912 link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND; |
|
913 u16 lat_enc = 0; /* latency encoded */ |
|
914 |
|
915 if (link) { |
|
916 u16 speed, duplex, scale = 0; |
|
917 u16 max_snoop, max_nosnoop; |
|
918 u16 max_ltr_enc; /* max LTR latency encoded */ |
|
919 s64 lat_ns; /* latency (ns) */ |
|
920 s64 value; |
|
921 u32 rxa; |
|
922 |
|
923 if (!hw->adapter->max_frame_size) { |
|
924 e_dbg("max_frame_size not set.\n"); |
|
925 return -E1000_ERR_CONFIG; |
|
926 } |
|
927 |
|
928 hw->mac.ops.get_link_up_info(hw, &speed, &duplex); |
|
929 if (!speed) { |
|
930 e_dbg("Speed not set.\n"); |
|
931 return -E1000_ERR_CONFIG; |
|
932 } |
|
933 |
|
934 /* Rx Packet Buffer Allocation size (KB) */ |
|
935 rxa = er32(PBA) & E1000_PBA_RXA_MASK; |
|
936 |
|
937 /* Determine the maximum latency tolerated by the device. |
|
938 * |
|
939 * Per the PCIe spec, the tolerated latencies are encoded as |
|
940 * a 3-bit encoded scale (only 0-5 are valid) multiplied by |
|
941 * a 10-bit value (0-1023) to provide a range from 1 ns to |
|
942 * 2^25*(2^10-1) ns. The scale is encoded as 0=2^0ns, |
|
943 * 1=2^5ns, 2=2^10ns,...5=2^25ns. |
|
944 */ |
|
945 lat_ns = ((s64)rxa * 1024 - |
|
946 (2 * (s64)hw->adapter->max_frame_size)) * 8 * 1000; |
|
947 if (lat_ns < 0) |
|
948 lat_ns = 0; |
|
949 else |
|
950 do_div(lat_ns, speed); |
|
951 |
|
952 value = lat_ns; |
|
953 while (value > PCI_LTR_VALUE_MASK) { |
|
954 scale++; |
|
955 value = DIV_ROUND_UP(value, (1 << 5)); |
|
956 } |
|
957 if (scale > E1000_LTRV_SCALE_MAX) { |
|
958 e_dbg("Invalid LTR latency scale %d\n", scale); |
|
959 return -E1000_ERR_CONFIG; |
|
960 } |
|
961 lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value); |
|
962 |
|
963 /* Determine the maximum latency tolerated by the platform */ |
|
964 pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT, |
|
965 &max_snoop); |
|
966 pci_read_config_word(hw->adapter->pdev, |
|
967 E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop); |
|
968 max_ltr_enc = max_t(u16, max_snoop, max_nosnoop); |
|
969 |
|
970 if (lat_enc > max_ltr_enc) |
|
971 lat_enc = max_ltr_enc; |
|
972 } |
|
973 |
|
974 /* Set Snoop and No-Snoop latencies the same */ |
|
975 reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT); |
|
976 ew32(LTRV, reg); |
|
977 |
|
978 return 0; |
|
979 } |
|
980 |
|
981 /** |
|
982 * e1000_check_for_copper_link_ich8lan - Check for link (Copper) |
|
983 * @hw: pointer to the HW structure |
|
984 * |
|
985 * Checks to see of the link status of the hardware has changed. If a |
|
986 * change in link status has been detected, then we read the PHY registers |
|
987 * to get the current speed/duplex if link exists. |
|
988 **/ |
|
989 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw) |
|
990 { |
|
991 struct e1000_mac_info *mac = &hw->mac; |
|
992 s32 ret_val; |
|
993 bool link; |
|
994 u16 phy_reg; |
|
995 |
|
996 /* We only want to go out to the PHY registers to see if Auto-Neg |
|
997 * has completed and/or if our link status has changed. The |
|
998 * get_link_status flag is set upon receiving a Link Status |
|
999 * Change or Rx Sequence Error interrupt. |
|
1000 */ |
|
1001 if (!mac->get_link_status) |
|
1002 return 0; |
|
1003 |
|
1004 /* First we want to see if the MII Status Register reports |
|
1005 * link. If so, then we want to get the current speed/duplex |
|
1006 * of the PHY. |
|
1007 */ |
|
1008 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); |
|
1009 if (ret_val) |
|
1010 return ret_val; |
|
1011 |
|
1012 if (hw->mac.type == e1000_pchlan) { |
|
1013 ret_val = e1000_k1_gig_workaround_hv(hw, link); |
|
1014 if (ret_val) |
|
1015 return ret_val; |
|
1016 } |
|
1017 |
|
1018 /* When connected at 10Mbps half-duplex, 82579 parts are excessively |
|
1019 * aggressive resulting in many collisions. To avoid this, increase |
|
1020 * the IPG and reduce Rx latency in the PHY. |
|
1021 */ |
|
1022 if ((hw->mac.type == e1000_pch2lan) && link) { |
|
1023 u32 reg; |
|
1024 reg = er32(STATUS); |
|
1025 if (!(reg & (E1000_STATUS_FD | E1000_STATUS_SPEED_MASK))) { |
|
1026 reg = er32(TIPG); |
|
1027 reg &= ~E1000_TIPG_IPGT_MASK; |
|
1028 reg |= 0xFF; |
|
1029 ew32(TIPG, reg); |
|
1030 |
|
1031 /* Reduce Rx latency in analog PHY */ |
|
1032 ret_val = hw->phy.ops.acquire(hw); |
|
1033 if (ret_val) |
|
1034 return ret_val; |
|
1035 |
|
1036 ret_val = |
|
1037 e1000_write_emi_reg_locked(hw, I82579_RX_CONFIG, 0); |
|
1038 |
|
1039 hw->phy.ops.release(hw); |
|
1040 |
|
1041 if (ret_val) |
|
1042 return ret_val; |
|
1043 } |
|
1044 } |
|
1045 |
|
1046 /* Work-around I218 hang issue */ |
|
1047 if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) || |
|
1048 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) || |
|
1049 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) || |
|
1050 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) { |
|
1051 ret_val = e1000_k1_workaround_lpt_lp(hw, link); |
|
1052 if (ret_val) |
|
1053 return ret_val; |
|
1054 } |
|
1055 |
|
1056 if (hw->mac.type == e1000_pch_lpt) { |
|
1057 /* Set platform power management values for |
|
1058 * Latency Tolerance Reporting (LTR) |
|
1059 */ |
|
1060 ret_val = e1000_platform_pm_pch_lpt(hw, link); |
|
1061 if (ret_val) |
|
1062 return ret_val; |
|
1063 } |
|
1064 |
|
1065 /* Clear link partner's EEE ability */ |
|
1066 hw->dev_spec.ich8lan.eee_lp_ability = 0; |
|
1067 |
|
1068 if (!link) |
|
1069 return 0; /* No link detected */ |
|
1070 |
|
1071 mac->get_link_status = false; |
|
1072 |
|
1073 switch (hw->mac.type) { |
|
1074 case e1000_pch2lan: |
|
1075 ret_val = e1000_k1_workaround_lv(hw); |
|
1076 if (ret_val) |
|
1077 return ret_val; |
|
1078 /* fall-thru */ |
|
1079 case e1000_pchlan: |
|
1080 if (hw->phy.type == e1000_phy_82578) { |
|
1081 ret_val = e1000_link_stall_workaround_hv(hw); |
|
1082 if (ret_val) |
|
1083 return ret_val; |
|
1084 } |
|
1085 |
|
1086 /* Workaround for PCHx parts in half-duplex: |
|
1087 * Set the number of preambles removed from the packet |
|
1088 * when it is passed from the PHY to the MAC to prevent |
|
1089 * the MAC from misinterpreting the packet type. |
|
1090 */ |
|
1091 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg); |
|
1092 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK; |
|
1093 |
|
1094 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD) |
|
1095 phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT); |
|
1096 |
|
1097 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg); |
|
1098 break; |
|
1099 default: |
|
1100 break; |
|
1101 } |
|
1102 |
|
1103 /* Check if there was DownShift, must be checked |
|
1104 * immediately after link-up |
|
1105 */ |
|
1106 e1000e_check_downshift(hw); |
|
1107 |
|
1108 /* Enable/Disable EEE after link up */ |
|
1109 ret_val = e1000_set_eee_pchlan(hw); |
|
1110 if (ret_val) |
|
1111 return ret_val; |
|
1112 |
|
1113 /* If we are forcing speed/duplex, then we simply return since |
|
1114 * we have already determined whether we have link or not. |
|
1115 */ |
|
1116 if (!mac->autoneg) |
|
1117 return -E1000_ERR_CONFIG; |
|
1118 |
|
1119 /* Auto-Neg is enabled. Auto Speed Detection takes care |
|
1120 * of MAC speed/duplex configuration. So we only need to |
|
1121 * configure Collision Distance in the MAC. |
|
1122 */ |
|
1123 mac->ops.config_collision_dist(hw); |
|
1124 |
|
1125 /* Configure Flow Control now that Auto-Neg has completed. |
|
1126 * First, we need to restore the desired flow control |
|
1127 * settings because we may have had to re-autoneg with a |
|
1128 * different link partner. |
|
1129 */ |
|
1130 ret_val = e1000e_config_fc_after_link_up(hw); |
|
1131 if (ret_val) |
|
1132 e_dbg("Error configuring flow control\n"); |
|
1133 |
|
1134 return ret_val; |
|
1135 } |
|
1136 |
|
1137 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter) |
|
1138 { |
|
1139 struct e1000_hw *hw = &adapter->hw; |
|
1140 s32 rc; |
|
1141 |
|
1142 rc = e1000_init_mac_params_ich8lan(hw); |
|
1143 if (rc) |
|
1144 return rc; |
|
1145 |
|
1146 rc = e1000_init_nvm_params_ich8lan(hw); |
|
1147 if (rc) |
|
1148 return rc; |
|
1149 |
|
1150 switch (hw->mac.type) { |
|
1151 case e1000_ich8lan: |
|
1152 case e1000_ich9lan: |
|
1153 case e1000_ich10lan: |
|
1154 rc = e1000_init_phy_params_ich8lan(hw); |
|
1155 break; |
|
1156 case e1000_pchlan: |
|
1157 case e1000_pch2lan: |
|
1158 case e1000_pch_lpt: |
|
1159 rc = e1000_init_phy_params_pchlan(hw); |
|
1160 break; |
|
1161 default: |
|
1162 break; |
|
1163 } |
|
1164 if (rc) |
|
1165 return rc; |
|
1166 |
|
1167 /* Disable Jumbo Frame support on parts with Intel 10/100 PHY or |
|
1168 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT). |
|
1169 */ |
|
1170 if ((adapter->hw.phy.type == e1000_phy_ife) || |
|
1171 ((adapter->hw.mac.type >= e1000_pch2lan) && |
|
1172 (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) { |
|
1173 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES; |
|
1174 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN; |
|
1175 |
|
1176 hw->mac.ops.blink_led = NULL; |
|
1177 } |
|
1178 |
|
1179 if ((adapter->hw.mac.type == e1000_ich8lan) && |
|
1180 (adapter->hw.phy.type != e1000_phy_ife)) |
|
1181 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP; |
|
1182 |
|
1183 /* Enable workaround for 82579 w/ ME enabled */ |
|
1184 if ((adapter->hw.mac.type == e1000_pch2lan) && |
|
1185 (er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) |
|
1186 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA; |
|
1187 |
|
1188 return 0; |
|
1189 } |
|
1190 |
|
1191 static DEFINE_MUTEX(nvm_mutex); |
|
1192 |
|
1193 /** |
|
1194 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex |
|
1195 * @hw: pointer to the HW structure |
|
1196 * |
|
1197 * Acquires the mutex for performing NVM operations. |
|
1198 **/ |
|
1199 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw) |
|
1200 { |
|
1201 mutex_lock(&nvm_mutex); |
|
1202 |
|
1203 return 0; |
|
1204 } |
|
1205 |
|
1206 /** |
|
1207 * e1000_release_nvm_ich8lan - Release NVM mutex |
|
1208 * @hw: pointer to the HW structure |
|
1209 * |
|
1210 * Releases the mutex used while performing NVM operations. |
|
1211 **/ |
|
1212 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw) |
|
1213 { |
|
1214 mutex_unlock(&nvm_mutex); |
|
1215 } |
|
1216 |
|
1217 /** |
|
1218 * e1000_acquire_swflag_ich8lan - Acquire software control flag |
|
1219 * @hw: pointer to the HW structure |
|
1220 * |
|
1221 * Acquires the software control flag for performing PHY and select |
|
1222 * MAC CSR accesses. |
|
1223 **/ |
|
1224 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw) |
|
1225 { |
|
1226 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT; |
|
1227 s32 ret_val = 0; |
|
1228 |
|
1229 if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE, |
|
1230 &hw->adapter->state)) { |
|
1231 e_dbg("contention for Phy access\n"); |
|
1232 return -E1000_ERR_PHY; |
|
1233 } |
|
1234 |
|
1235 while (timeout) { |
|
1236 extcnf_ctrl = er32(EXTCNF_CTRL); |
|
1237 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)) |
|
1238 break; |
|
1239 |
|
1240 mdelay(1); |
|
1241 timeout--; |
|
1242 } |
|
1243 |
|
1244 if (!timeout) { |
|
1245 e_dbg("SW has already locked the resource.\n"); |
|
1246 ret_val = -E1000_ERR_CONFIG; |
|
1247 goto out; |
|
1248 } |
|
1249 |
|
1250 timeout = SW_FLAG_TIMEOUT; |
|
1251 |
|
1252 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG; |
|
1253 ew32(EXTCNF_CTRL, extcnf_ctrl); |
|
1254 |
|
1255 while (timeout) { |
|
1256 extcnf_ctrl = er32(EXTCNF_CTRL); |
|
1257 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) |
|
1258 break; |
|
1259 |
|
1260 mdelay(1); |
|
1261 timeout--; |
|
1262 } |
|
1263 |
|
1264 if (!timeout) { |
|
1265 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n", |
|
1266 er32(FWSM), extcnf_ctrl); |
|
1267 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; |
|
1268 ew32(EXTCNF_CTRL, extcnf_ctrl); |
|
1269 ret_val = -E1000_ERR_CONFIG; |
|
1270 goto out; |
|
1271 } |
|
1272 |
|
1273 out: |
|
1274 if (ret_val) |
|
1275 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state); |
|
1276 |
|
1277 return ret_val; |
|
1278 } |
|
1279 |
|
1280 /** |
|
1281 * e1000_release_swflag_ich8lan - Release software control flag |
|
1282 * @hw: pointer to the HW structure |
|
1283 * |
|
1284 * Releases the software control flag for performing PHY and select |
|
1285 * MAC CSR accesses. |
|
1286 **/ |
|
1287 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw) |
|
1288 { |
|
1289 u32 extcnf_ctrl; |
|
1290 |
|
1291 extcnf_ctrl = er32(EXTCNF_CTRL); |
|
1292 |
|
1293 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) { |
|
1294 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; |
|
1295 ew32(EXTCNF_CTRL, extcnf_ctrl); |
|
1296 } else { |
|
1297 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n"); |
|
1298 } |
|
1299 |
|
1300 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state); |
|
1301 } |
|
1302 |
|
1303 /** |
|
1304 * e1000_check_mng_mode_ich8lan - Checks management mode |
|
1305 * @hw: pointer to the HW structure |
|
1306 * |
|
1307 * This checks if the adapter has any manageability enabled. |
|
1308 * This is a function pointer entry point only called by read/write |
|
1309 * routines for the PHY and NVM parts. |
|
1310 **/ |
|
1311 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw) |
|
1312 { |
|
1313 u32 fwsm; |
|
1314 |
|
1315 fwsm = er32(FWSM); |
|
1316 return ((fwsm & E1000_ICH_FWSM_FW_VALID) && |
|
1317 ((fwsm & E1000_FWSM_MODE_MASK) == |
|
1318 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))); |
|
1319 } |
|
1320 |
|
1321 /** |
|
1322 * e1000_check_mng_mode_pchlan - Checks management mode |
|
1323 * @hw: pointer to the HW structure |
|
1324 * |
|
1325 * This checks if the adapter has iAMT enabled. |
|
1326 * This is a function pointer entry point only called by read/write |
|
1327 * routines for the PHY and NVM parts. |
|
1328 **/ |
|
1329 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw) |
|
1330 { |
|
1331 u32 fwsm; |
|
1332 |
|
1333 fwsm = er32(FWSM); |
|
1334 return (fwsm & E1000_ICH_FWSM_FW_VALID) && |
|
1335 (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); |
|
1336 } |
|
1337 |
|
1338 /** |
|
1339 * e1000_rar_set_pch2lan - Set receive address register |
|
1340 * @hw: pointer to the HW structure |
|
1341 * @addr: pointer to the receive address |
|
1342 * @index: receive address array register |
|
1343 * |
|
1344 * Sets the receive address array register at index to the address passed |
|
1345 * in by addr. For 82579, RAR[0] is the base address register that is to |
|
1346 * contain the MAC address but RAR[1-6] are reserved for manageability (ME). |
|
1347 * Use SHRA[0-3] in place of those reserved for ME. |
|
1348 **/ |
|
1349 static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index) |
|
1350 { |
|
1351 u32 rar_low, rar_high; |
|
1352 |
|
1353 /* HW expects these in little endian so we reverse the byte order |
|
1354 * from network order (big endian) to little endian |
|
1355 */ |
|
1356 rar_low = ((u32)addr[0] | |
|
1357 ((u32)addr[1] << 8) | |
|
1358 ((u32)addr[2] << 16) | ((u32)addr[3] << 24)); |
|
1359 |
|
1360 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8)); |
|
1361 |
|
1362 /* If MAC address zero, no need to set the AV bit */ |
|
1363 if (rar_low || rar_high) |
|
1364 rar_high |= E1000_RAH_AV; |
|
1365 |
|
1366 if (index == 0) { |
|
1367 ew32(RAL(index), rar_low); |
|
1368 e1e_flush(); |
|
1369 ew32(RAH(index), rar_high); |
|
1370 e1e_flush(); |
|
1371 return; |
|
1372 } |
|
1373 |
|
1374 /* RAR[1-6] are owned by manageability. Skip those and program the |
|
1375 * next address into the SHRA register array. |
|
1376 */ |
|
1377 if (index < (u32)(hw->mac.rar_entry_count)) { |
|
1378 s32 ret_val; |
|
1379 |
|
1380 ret_val = e1000_acquire_swflag_ich8lan(hw); |
|
1381 if (ret_val) |
|
1382 goto out; |
|
1383 |
|
1384 ew32(SHRAL(index - 1), rar_low); |
|
1385 e1e_flush(); |
|
1386 ew32(SHRAH(index - 1), rar_high); |
|
1387 e1e_flush(); |
|
1388 |
|
1389 e1000_release_swflag_ich8lan(hw); |
|
1390 |
|
1391 /* verify the register updates */ |
|
1392 if ((er32(SHRAL(index - 1)) == rar_low) && |
|
1393 (er32(SHRAH(index - 1)) == rar_high)) |
|
1394 return; |
|
1395 |
|
1396 e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n", |
|
1397 (index - 1), er32(FWSM)); |
|
1398 } |
|
1399 |
|
1400 out: |
|
1401 e_dbg("Failed to write receive address at index %d\n", index); |
|
1402 } |
|
1403 |
|
1404 /** |
|
1405 * e1000_rar_set_pch_lpt - Set receive address registers |
|
1406 * @hw: pointer to the HW structure |
|
1407 * @addr: pointer to the receive address |
|
1408 * @index: receive address array register |
|
1409 * |
|
1410 * Sets the receive address register array at index to the address passed |
|
1411 * in by addr. For LPT, RAR[0] is the base address register that is to |
|
1412 * contain the MAC address. SHRA[0-10] are the shared receive address |
|
1413 * registers that are shared between the Host and manageability engine (ME). |
|
1414 **/ |
|
1415 static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index) |
|
1416 { |
|
1417 u32 rar_low, rar_high; |
|
1418 u32 wlock_mac; |
|
1419 |
|
1420 /* HW expects these in little endian so we reverse the byte order |
|
1421 * from network order (big endian) to little endian |
|
1422 */ |
|
1423 rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) | |
|
1424 ((u32)addr[2] << 16) | ((u32)addr[3] << 24)); |
|
1425 |
|
1426 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8)); |
|
1427 |
|
1428 /* If MAC address zero, no need to set the AV bit */ |
|
1429 if (rar_low || rar_high) |
|
1430 rar_high |= E1000_RAH_AV; |
|
1431 |
|
1432 if (index == 0) { |
|
1433 ew32(RAL(index), rar_low); |
|
1434 e1e_flush(); |
|
1435 ew32(RAH(index), rar_high); |
|
1436 e1e_flush(); |
|
1437 return; |
|
1438 } |
|
1439 |
|
1440 /* The manageability engine (ME) can lock certain SHRAR registers that |
|
1441 * it is using - those registers are unavailable for use. |
|
1442 */ |
|
1443 if (index < hw->mac.rar_entry_count) { |
|
1444 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK; |
|
1445 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT; |
|
1446 |
|
1447 /* Check if all SHRAR registers are locked */ |
|
1448 if (wlock_mac == 1) |
|
1449 goto out; |
|
1450 |
|
1451 if ((wlock_mac == 0) || (index <= wlock_mac)) { |
|
1452 s32 ret_val; |
|
1453 |
|
1454 ret_val = e1000_acquire_swflag_ich8lan(hw); |
|
1455 |
|
1456 if (ret_val) |
|
1457 goto out; |
|
1458 |
|
1459 ew32(SHRAL_PCH_LPT(index - 1), rar_low); |
|
1460 e1e_flush(); |
|
1461 ew32(SHRAH_PCH_LPT(index - 1), rar_high); |
|
1462 e1e_flush(); |
|
1463 |
|
1464 e1000_release_swflag_ich8lan(hw); |
|
1465 |
|
1466 /* verify the register updates */ |
|
1467 if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) && |
|
1468 (er32(SHRAH_PCH_LPT(index - 1)) == rar_high)) |
|
1469 return; |
|
1470 } |
|
1471 } |
|
1472 |
|
1473 out: |
|
1474 e_dbg("Failed to write receive address at index %d\n", index); |
|
1475 } |
|
1476 |
|
1477 /** |
|
1478 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked |
|
1479 * @hw: pointer to the HW structure |
|
1480 * |
|
1481 * Checks if firmware is blocking the reset of the PHY. |
|
1482 * This is a function pointer entry point only called by |
|
1483 * reset routines. |
|
1484 **/ |
|
1485 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw) |
|
1486 { |
|
1487 u32 fwsm; |
|
1488 |
|
1489 fwsm = er32(FWSM); |
|
1490 |
|
1491 return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET; |
|
1492 } |
|
1493 |
|
1494 /** |
|
1495 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states |
|
1496 * @hw: pointer to the HW structure |
|
1497 * |
|
1498 * Assumes semaphore already acquired. |
|
1499 * |
|
1500 **/ |
|
1501 static s32 e1000_write_smbus_addr(struct e1000_hw *hw) |
|
1502 { |
|
1503 u16 phy_data; |
|
1504 u32 strap = er32(STRAP); |
|
1505 u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >> |
|
1506 E1000_STRAP_SMT_FREQ_SHIFT; |
|
1507 s32 ret_val; |
|
1508 |
|
1509 strap &= E1000_STRAP_SMBUS_ADDRESS_MASK; |
|
1510 |
|
1511 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data); |
|
1512 if (ret_val) |
|
1513 return ret_val; |
|
1514 |
|
1515 phy_data &= ~HV_SMB_ADDR_MASK; |
|
1516 phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT); |
|
1517 phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID; |
|
1518 |
|
1519 if (hw->phy.type == e1000_phy_i217) { |
|
1520 /* Restore SMBus frequency */ |
|
1521 if (freq--) { |
|
1522 phy_data &= ~HV_SMB_ADDR_FREQ_MASK; |
|
1523 phy_data |= (freq & (1 << 0)) << |
|
1524 HV_SMB_ADDR_FREQ_LOW_SHIFT; |
|
1525 phy_data |= (freq & (1 << 1)) << |
|
1526 (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1); |
|
1527 } else { |
|
1528 e_dbg("Unsupported SMB frequency in PHY\n"); |
|
1529 } |
|
1530 } |
|
1531 |
|
1532 return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data); |
|
1533 } |
|
1534 |
|
1535 /** |
|
1536 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration |
|
1537 * @hw: pointer to the HW structure |
|
1538 * |
|
1539 * SW should configure the LCD from the NVM extended configuration region |
|
1540 * as a workaround for certain parts. |
|
1541 **/ |
|
1542 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw) |
|
1543 { |
|
1544 struct e1000_phy_info *phy = &hw->phy; |
|
1545 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask; |
|
1546 s32 ret_val = 0; |
|
1547 u16 word_addr, reg_data, reg_addr, phy_page = 0; |
|
1548 |
|
1549 /* Initialize the PHY from the NVM on ICH platforms. This |
|
1550 * is needed due to an issue where the NVM configuration is |
|
1551 * not properly autoloaded after power transitions. |
|
1552 * Therefore, after each PHY reset, we will load the |
|
1553 * configuration data out of the NVM manually. |
|
1554 */ |
|
1555 switch (hw->mac.type) { |
|
1556 case e1000_ich8lan: |
|
1557 if (phy->type != e1000_phy_igp_3) |
|
1558 return ret_val; |
|
1559 |
|
1560 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) || |
|
1561 (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) { |
|
1562 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG; |
|
1563 break; |
|
1564 } |
|
1565 /* Fall-thru */ |
|
1566 case e1000_pchlan: |
|
1567 case e1000_pch2lan: |
|
1568 case e1000_pch_lpt: |
|
1569 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M; |
|
1570 break; |
|
1571 default: |
|
1572 return ret_val; |
|
1573 } |
|
1574 |
|
1575 ret_val = hw->phy.ops.acquire(hw); |
|
1576 if (ret_val) |
|
1577 return ret_val; |
|
1578 |
|
1579 data = er32(FEXTNVM); |
|
1580 if (!(data & sw_cfg_mask)) |
|
1581 goto release; |
|
1582 |
|
1583 /* Make sure HW does not configure LCD from PHY |
|
1584 * extended configuration before SW configuration |
|
1585 */ |
|
1586 data = er32(EXTCNF_CTRL); |
|
1587 if ((hw->mac.type < e1000_pch2lan) && |
|
1588 (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)) |
|
1589 goto release; |
|
1590 |
|
1591 cnf_size = er32(EXTCNF_SIZE); |
|
1592 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK; |
|
1593 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT; |
|
1594 if (!cnf_size) |
|
1595 goto release; |
|
1596 |
|
1597 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK; |
|
1598 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT; |
|
1599 |
|
1600 if (((hw->mac.type == e1000_pchlan) && |
|
1601 !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) || |
|
1602 (hw->mac.type > e1000_pchlan)) { |
|
1603 /* HW configures the SMBus address and LEDs when the |
|
1604 * OEM and LCD Write Enable bits are set in the NVM. |
|
1605 * When both NVM bits are cleared, SW will configure |
|
1606 * them instead. |
|
1607 */ |
|
1608 ret_val = e1000_write_smbus_addr(hw); |
|
1609 if (ret_val) |
|
1610 goto release; |
|
1611 |
|
1612 data = er32(LEDCTL); |
|
1613 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG, |
|
1614 (u16)data); |
|
1615 if (ret_val) |
|
1616 goto release; |
|
1617 } |
|
1618 |
|
1619 /* Configure LCD from extended configuration region. */ |
|
1620 |
|
1621 /* cnf_base_addr is in DWORD */ |
|
1622 word_addr = (u16)(cnf_base_addr << 1); |
|
1623 |
|
1624 for (i = 0; i < cnf_size; i++) { |
|
1625 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, ®_data); |
|
1626 if (ret_val) |
|
1627 goto release; |
|
1628 |
|
1629 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1), |
|
1630 1, ®_addr); |
|
1631 if (ret_val) |
|
1632 goto release; |
|
1633 |
|
1634 /* Save off the PHY page for future writes. */ |
|
1635 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) { |
|
1636 phy_page = reg_data; |
|
1637 continue; |
|
1638 } |
|
1639 |
|
1640 reg_addr &= PHY_REG_MASK; |
|
1641 reg_addr |= phy_page; |
|
1642 |
|
1643 ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data); |
|
1644 if (ret_val) |
|
1645 goto release; |
|
1646 } |
|
1647 |
|
1648 release: |
|
1649 hw->phy.ops.release(hw); |
|
1650 return ret_val; |
|
1651 } |
|
1652 |
|
1653 /** |
|
1654 * e1000_k1_gig_workaround_hv - K1 Si workaround |
|
1655 * @hw: pointer to the HW structure |
|
1656 * @link: link up bool flag |
|
1657 * |
|
1658 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning |
|
1659 * from a lower speed. This workaround disables K1 whenever link is at 1Gig |
|
1660 * If link is down, the function will restore the default K1 setting located |
|
1661 * in the NVM. |
|
1662 **/ |
|
1663 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link) |
|
1664 { |
|
1665 s32 ret_val = 0; |
|
1666 u16 status_reg = 0; |
|
1667 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled; |
|
1668 |
|
1669 if (hw->mac.type != e1000_pchlan) |
|
1670 return 0; |
|
1671 |
|
1672 /* Wrap the whole flow with the sw flag */ |
|
1673 ret_val = hw->phy.ops.acquire(hw); |
|
1674 if (ret_val) |
|
1675 return ret_val; |
|
1676 |
|
1677 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */ |
|
1678 if (link) { |
|
1679 if (hw->phy.type == e1000_phy_82578) { |
|
1680 ret_val = e1e_rphy_locked(hw, BM_CS_STATUS, |
|
1681 &status_reg); |
|
1682 if (ret_val) |
|
1683 goto release; |
|
1684 |
|
1685 status_reg &= (BM_CS_STATUS_LINK_UP | |
|
1686 BM_CS_STATUS_RESOLVED | |
|
1687 BM_CS_STATUS_SPEED_MASK); |
|
1688 |
|
1689 if (status_reg == (BM_CS_STATUS_LINK_UP | |
|
1690 BM_CS_STATUS_RESOLVED | |
|
1691 BM_CS_STATUS_SPEED_1000)) |
|
1692 k1_enable = false; |
|
1693 } |
|
1694 |
|
1695 if (hw->phy.type == e1000_phy_82577) { |
|
1696 ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg); |
|
1697 if (ret_val) |
|
1698 goto release; |
|
1699 |
|
1700 status_reg &= (HV_M_STATUS_LINK_UP | |
|
1701 HV_M_STATUS_AUTONEG_COMPLETE | |
|
1702 HV_M_STATUS_SPEED_MASK); |
|
1703 |
|
1704 if (status_reg == (HV_M_STATUS_LINK_UP | |
|
1705 HV_M_STATUS_AUTONEG_COMPLETE | |
|
1706 HV_M_STATUS_SPEED_1000)) |
|
1707 k1_enable = false; |
|
1708 } |
|
1709 |
|
1710 /* Link stall fix for link up */ |
|
1711 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100); |
|
1712 if (ret_val) |
|
1713 goto release; |
|
1714 |
|
1715 } else { |
|
1716 /* Link stall fix for link down */ |
|
1717 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100); |
|
1718 if (ret_val) |
|
1719 goto release; |
|
1720 } |
|
1721 |
|
1722 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable); |
|
1723 |
|
1724 release: |
|
1725 hw->phy.ops.release(hw); |
|
1726 |
|
1727 return ret_val; |
|
1728 } |
|
1729 |
|
1730 /** |
|
1731 * e1000_configure_k1_ich8lan - Configure K1 power state |
|
1732 * @hw: pointer to the HW structure |
|
1733 * @enable: K1 state to configure |
|
1734 * |
|
1735 * Configure the K1 power state based on the provided parameter. |
|
1736 * Assumes semaphore already acquired. |
|
1737 * |
|
1738 * Success returns 0, Failure returns -E1000_ERR_PHY (-2) |
|
1739 **/ |
|
1740 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable) |
|
1741 { |
|
1742 s32 ret_val; |
|
1743 u32 ctrl_reg = 0; |
|
1744 u32 ctrl_ext = 0; |
|
1745 u32 reg = 0; |
|
1746 u16 kmrn_reg = 0; |
|
1747 |
|
1748 ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, |
|
1749 &kmrn_reg); |
|
1750 if (ret_val) |
|
1751 return ret_val; |
|
1752 |
|
1753 if (k1_enable) |
|
1754 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE; |
|
1755 else |
|
1756 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE; |
|
1757 |
|
1758 ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, |
|
1759 kmrn_reg); |
|
1760 if (ret_val) |
|
1761 return ret_val; |
|
1762 |
|
1763 usleep_range(20, 40); |
|
1764 ctrl_ext = er32(CTRL_EXT); |
|
1765 ctrl_reg = er32(CTRL); |
|
1766 |
|
1767 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); |
|
1768 reg |= E1000_CTRL_FRCSPD; |
|
1769 ew32(CTRL, reg); |
|
1770 |
|
1771 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS); |
|
1772 e1e_flush(); |
|
1773 usleep_range(20, 40); |
|
1774 ew32(CTRL, ctrl_reg); |
|
1775 ew32(CTRL_EXT, ctrl_ext); |
|
1776 e1e_flush(); |
|
1777 usleep_range(20, 40); |
|
1778 |
|
1779 return 0; |
|
1780 } |
|
1781 |
|
1782 /** |
|
1783 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration |
|
1784 * @hw: pointer to the HW structure |
|
1785 * @d0_state: boolean if entering d0 or d3 device state |
|
1786 * |
|
1787 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are |
|
1788 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit |
|
1789 * in NVM determines whether HW should configure LPLU and Gbe Disable. |
|
1790 **/ |
|
1791 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state) |
|
1792 { |
|
1793 s32 ret_val = 0; |
|
1794 u32 mac_reg; |
|
1795 u16 oem_reg; |
|
1796 |
|
1797 if (hw->mac.type < e1000_pchlan) |
|
1798 return ret_val; |
|
1799 |
|
1800 ret_val = hw->phy.ops.acquire(hw); |
|
1801 if (ret_val) |
|
1802 return ret_val; |
|
1803 |
|
1804 if (hw->mac.type == e1000_pchlan) { |
|
1805 mac_reg = er32(EXTCNF_CTRL); |
|
1806 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) |
|
1807 goto release; |
|
1808 } |
|
1809 |
|
1810 mac_reg = er32(FEXTNVM); |
|
1811 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M)) |
|
1812 goto release; |
|
1813 |
|
1814 mac_reg = er32(PHY_CTRL); |
|
1815 |
|
1816 ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg); |
|
1817 if (ret_val) |
|
1818 goto release; |
|
1819 |
|
1820 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU); |
|
1821 |
|
1822 if (d0_state) { |
|
1823 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE) |
|
1824 oem_reg |= HV_OEM_BITS_GBE_DIS; |
|
1825 |
|
1826 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU) |
|
1827 oem_reg |= HV_OEM_BITS_LPLU; |
|
1828 } else { |
|
1829 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE | |
|
1830 E1000_PHY_CTRL_NOND0A_GBE_DISABLE)) |
|
1831 oem_reg |= HV_OEM_BITS_GBE_DIS; |
|
1832 |
|
1833 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU | |
|
1834 E1000_PHY_CTRL_NOND0A_LPLU)) |
|
1835 oem_reg |= HV_OEM_BITS_LPLU; |
|
1836 } |
|
1837 |
|
1838 /* Set Restart auto-neg to activate the bits */ |
|
1839 if ((d0_state || (hw->mac.type != e1000_pchlan)) && |
|
1840 !hw->phy.ops.check_reset_block(hw)) |
|
1841 oem_reg |= HV_OEM_BITS_RESTART_AN; |
|
1842 |
|
1843 ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg); |
|
1844 |
|
1845 release: |
|
1846 hw->phy.ops.release(hw); |
|
1847 |
|
1848 return ret_val; |
|
1849 } |
|
1850 |
|
1851 /** |
|
1852 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode |
|
1853 * @hw: pointer to the HW structure |
|
1854 **/ |
|
1855 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw) |
|
1856 { |
|
1857 s32 ret_val; |
|
1858 u16 data; |
|
1859 |
|
1860 ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data); |
|
1861 if (ret_val) |
|
1862 return ret_val; |
|
1863 |
|
1864 data |= HV_KMRN_MDIO_SLOW; |
|
1865 |
|
1866 ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data); |
|
1867 |
|
1868 return ret_val; |
|
1869 } |
|
1870 |
|
1871 /** |
|
1872 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be |
|
1873 * done after every PHY reset. |
|
1874 **/ |
|
1875 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw) |
|
1876 { |
|
1877 s32 ret_val = 0; |
|
1878 u16 phy_data; |
|
1879 |
|
1880 if (hw->mac.type != e1000_pchlan) |
|
1881 return 0; |
|
1882 |
|
1883 /* Set MDIO slow mode before any other MDIO access */ |
|
1884 if (hw->phy.type == e1000_phy_82577) { |
|
1885 ret_val = e1000_set_mdio_slow_mode_hv(hw); |
|
1886 if (ret_val) |
|
1887 return ret_val; |
|
1888 } |
|
1889 |
|
1890 if (((hw->phy.type == e1000_phy_82577) && |
|
1891 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) || |
|
1892 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) { |
|
1893 /* Disable generation of early preamble */ |
|
1894 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431); |
|
1895 if (ret_val) |
|
1896 return ret_val; |
|
1897 |
|
1898 /* Preamble tuning for SSC */ |
|
1899 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204); |
|
1900 if (ret_val) |
|
1901 return ret_val; |
|
1902 } |
|
1903 |
|
1904 if (hw->phy.type == e1000_phy_82578) { |
|
1905 /* Return registers to default by doing a soft reset then |
|
1906 * writing 0x3140 to the control register. |
|
1907 */ |
|
1908 if (hw->phy.revision < 2) { |
|
1909 e1000e_phy_sw_reset(hw); |
|
1910 ret_val = e1e_wphy(hw, MII_BMCR, 0x3140); |
|
1911 } |
|
1912 } |
|
1913 |
|
1914 /* Select page 0 */ |
|
1915 ret_val = hw->phy.ops.acquire(hw); |
|
1916 if (ret_val) |
|
1917 return ret_val; |
|
1918 |
|
1919 hw->phy.addr = 1; |
|
1920 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0); |
|
1921 hw->phy.ops.release(hw); |
|
1922 if (ret_val) |
|
1923 return ret_val; |
|
1924 |
|
1925 /* Configure the K1 Si workaround during phy reset assuming there is |
|
1926 * link so that it disables K1 if link is in 1Gbps. |
|
1927 */ |
|
1928 ret_val = e1000_k1_gig_workaround_hv(hw, true); |
|
1929 if (ret_val) |
|
1930 return ret_val; |
|
1931 |
|
1932 /* Workaround for link disconnects on a busy hub in half duplex */ |
|
1933 ret_val = hw->phy.ops.acquire(hw); |
|
1934 if (ret_val) |
|
1935 return ret_val; |
|
1936 ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data); |
|
1937 if (ret_val) |
|
1938 goto release; |
|
1939 ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF); |
|
1940 if (ret_val) |
|
1941 goto release; |
|
1942 |
|
1943 /* set MSE higher to enable link to stay up when noise is high */ |
|
1944 ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034); |
|
1945 release: |
|
1946 hw->phy.ops.release(hw); |
|
1947 |
|
1948 return ret_val; |
|
1949 } |
|
1950 |
|
1951 /** |
|
1952 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY |
|
1953 * @hw: pointer to the HW structure |
|
1954 **/ |
|
1955 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw) |
|
1956 { |
|
1957 u32 mac_reg; |
|
1958 u16 i, phy_reg = 0; |
|
1959 s32 ret_val; |
|
1960 |
|
1961 ret_val = hw->phy.ops.acquire(hw); |
|
1962 if (ret_val) |
|
1963 return; |
|
1964 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg); |
|
1965 if (ret_val) |
|
1966 goto release; |
|
1967 |
|
1968 /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */ |
|
1969 for (i = 0; i < (hw->mac.rar_entry_count); i++) { |
|
1970 mac_reg = er32(RAL(i)); |
|
1971 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i), |
|
1972 (u16)(mac_reg & 0xFFFF)); |
|
1973 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i), |
|
1974 (u16)((mac_reg >> 16) & 0xFFFF)); |
|
1975 |
|
1976 mac_reg = er32(RAH(i)); |
|
1977 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i), |
|
1978 (u16)(mac_reg & 0xFFFF)); |
|
1979 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i), |
|
1980 (u16)((mac_reg & E1000_RAH_AV) |
|
1981 >> 16)); |
|
1982 } |
|
1983 |
|
1984 e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg); |
|
1985 |
|
1986 release: |
|
1987 hw->phy.ops.release(hw); |
|
1988 } |
|
1989 |
|
1990 /** |
|
1991 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation |
|
1992 * with 82579 PHY |
|
1993 * @hw: pointer to the HW structure |
|
1994 * @enable: flag to enable/disable workaround when enabling/disabling jumbos |
|
1995 **/ |
|
1996 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable) |
|
1997 { |
|
1998 s32 ret_val = 0; |
|
1999 u16 phy_reg, data; |
|
2000 u32 mac_reg; |
|
2001 u16 i; |
|
2002 |
|
2003 if (hw->mac.type < e1000_pch2lan) |
|
2004 return 0; |
|
2005 |
|
2006 /* disable Rx path while enabling/disabling workaround */ |
|
2007 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg); |
|
2008 ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14)); |
|
2009 if (ret_val) |
|
2010 return ret_val; |
|
2011 |
|
2012 if (enable) { |
|
2013 /* Write Rx addresses (rar_entry_count for RAL/H, and |
|
2014 * SHRAL/H) and initial CRC values to the MAC |
|
2015 */ |
|
2016 for (i = 0; i < hw->mac.rar_entry_count; i++) { |
|
2017 u8 mac_addr[ETH_ALEN] = { 0 }; |
|
2018 u32 addr_high, addr_low; |
|
2019 |
|
2020 addr_high = er32(RAH(i)); |
|
2021 if (!(addr_high & E1000_RAH_AV)) |
|
2022 continue; |
|
2023 addr_low = er32(RAL(i)); |
|
2024 mac_addr[0] = (addr_low & 0xFF); |
|
2025 mac_addr[1] = ((addr_low >> 8) & 0xFF); |
|
2026 mac_addr[2] = ((addr_low >> 16) & 0xFF); |
|
2027 mac_addr[3] = ((addr_low >> 24) & 0xFF); |
|
2028 mac_addr[4] = (addr_high & 0xFF); |
|
2029 mac_addr[5] = ((addr_high >> 8) & 0xFF); |
|
2030 |
|
2031 ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr)); |
|
2032 } |
|
2033 |
|
2034 /* Write Rx addresses to the PHY */ |
|
2035 e1000_copy_rx_addrs_to_phy_ich8lan(hw); |
|
2036 |
|
2037 /* Enable jumbo frame workaround in the MAC */ |
|
2038 mac_reg = er32(FFLT_DBG); |
|
2039 mac_reg &= ~(1 << 14); |
|
2040 mac_reg |= (7 << 15); |
|
2041 ew32(FFLT_DBG, mac_reg); |
|
2042 |
|
2043 mac_reg = er32(RCTL); |
|
2044 mac_reg |= E1000_RCTL_SECRC; |
|
2045 ew32(RCTL, mac_reg); |
|
2046 |
|
2047 ret_val = e1000e_read_kmrn_reg(hw, |
|
2048 E1000_KMRNCTRLSTA_CTRL_OFFSET, |
|
2049 &data); |
|
2050 if (ret_val) |
|
2051 return ret_val; |
|
2052 ret_val = e1000e_write_kmrn_reg(hw, |
|
2053 E1000_KMRNCTRLSTA_CTRL_OFFSET, |
|
2054 data | (1 << 0)); |
|
2055 if (ret_val) |
|
2056 return ret_val; |
|
2057 ret_val = e1000e_read_kmrn_reg(hw, |
|
2058 E1000_KMRNCTRLSTA_HD_CTRL, |
|
2059 &data); |
|
2060 if (ret_val) |
|
2061 return ret_val; |
|
2062 data &= ~(0xF << 8); |
|
2063 data |= (0xB << 8); |
|
2064 ret_val = e1000e_write_kmrn_reg(hw, |
|
2065 E1000_KMRNCTRLSTA_HD_CTRL, |
|
2066 data); |
|
2067 if (ret_val) |
|
2068 return ret_val; |
|
2069 |
|
2070 /* Enable jumbo frame workaround in the PHY */ |
|
2071 e1e_rphy(hw, PHY_REG(769, 23), &data); |
|
2072 data &= ~(0x7F << 5); |
|
2073 data |= (0x37 << 5); |
|
2074 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data); |
|
2075 if (ret_val) |
|
2076 return ret_val; |
|
2077 e1e_rphy(hw, PHY_REG(769, 16), &data); |
|
2078 data &= ~(1 << 13); |
|
2079 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data); |
|
2080 if (ret_val) |
|
2081 return ret_val; |
|
2082 e1e_rphy(hw, PHY_REG(776, 20), &data); |
|
2083 data &= ~(0x3FF << 2); |
|
2084 data |= (0x1A << 2); |
|
2085 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data); |
|
2086 if (ret_val) |
|
2087 return ret_val; |
|
2088 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100); |
|
2089 if (ret_val) |
|
2090 return ret_val; |
|
2091 e1e_rphy(hw, HV_PM_CTRL, &data); |
|
2092 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10)); |
|
2093 if (ret_val) |
|
2094 return ret_val; |
|
2095 } else { |
|
2096 /* Write MAC register values back to h/w defaults */ |
|
2097 mac_reg = er32(FFLT_DBG); |
|
2098 mac_reg &= ~(0xF << 14); |
|
2099 ew32(FFLT_DBG, mac_reg); |
|
2100 |
|
2101 mac_reg = er32(RCTL); |
|
2102 mac_reg &= ~E1000_RCTL_SECRC; |
|
2103 ew32(RCTL, mac_reg); |
|
2104 |
|
2105 ret_val = e1000e_read_kmrn_reg(hw, |
|
2106 E1000_KMRNCTRLSTA_CTRL_OFFSET, |
|
2107 &data); |
|
2108 if (ret_val) |
|
2109 return ret_val; |
|
2110 ret_val = e1000e_write_kmrn_reg(hw, |
|
2111 E1000_KMRNCTRLSTA_CTRL_OFFSET, |
|
2112 data & ~(1 << 0)); |
|
2113 if (ret_val) |
|
2114 return ret_val; |
|
2115 ret_val = e1000e_read_kmrn_reg(hw, |
|
2116 E1000_KMRNCTRLSTA_HD_CTRL, |
|
2117 &data); |
|
2118 if (ret_val) |
|
2119 return ret_val; |
|
2120 data &= ~(0xF << 8); |
|
2121 data |= (0xB << 8); |
|
2122 ret_val = e1000e_write_kmrn_reg(hw, |
|
2123 E1000_KMRNCTRLSTA_HD_CTRL, |
|
2124 data); |
|
2125 if (ret_val) |
|
2126 return ret_val; |
|
2127 |
|
2128 /* Write PHY register values back to h/w defaults */ |
|
2129 e1e_rphy(hw, PHY_REG(769, 23), &data); |
|
2130 data &= ~(0x7F << 5); |
|
2131 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data); |
|
2132 if (ret_val) |
|
2133 return ret_val; |
|
2134 e1e_rphy(hw, PHY_REG(769, 16), &data); |
|
2135 data |= (1 << 13); |
|
2136 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data); |
|
2137 if (ret_val) |
|
2138 return ret_val; |
|
2139 e1e_rphy(hw, PHY_REG(776, 20), &data); |
|
2140 data &= ~(0x3FF << 2); |
|
2141 data |= (0x8 << 2); |
|
2142 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data); |
|
2143 if (ret_val) |
|
2144 return ret_val; |
|
2145 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00); |
|
2146 if (ret_val) |
|
2147 return ret_val; |
|
2148 e1e_rphy(hw, HV_PM_CTRL, &data); |
|
2149 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10)); |
|
2150 if (ret_val) |
|
2151 return ret_val; |
|
2152 } |
|
2153 |
|
2154 /* re-enable Rx path after enabling/disabling workaround */ |
|
2155 return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14)); |
|
2156 } |
|
2157 |
|
2158 /** |
|
2159 * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be |
|
2160 * done after every PHY reset. |
|
2161 **/ |
|
2162 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw) |
|
2163 { |
|
2164 s32 ret_val = 0; |
|
2165 |
|
2166 if (hw->mac.type != e1000_pch2lan) |
|
2167 return 0; |
|
2168 |
|
2169 /* Set MDIO slow mode before any other MDIO access */ |
|
2170 ret_val = e1000_set_mdio_slow_mode_hv(hw); |
|
2171 if (ret_val) |
|
2172 return ret_val; |
|
2173 |
|
2174 ret_val = hw->phy.ops.acquire(hw); |
|
2175 if (ret_val) |
|
2176 return ret_val; |
|
2177 /* set MSE higher to enable link to stay up when noise is high */ |
|
2178 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034); |
|
2179 if (ret_val) |
|
2180 goto release; |
|
2181 /* drop link after 5 times MSE threshold was reached */ |
|
2182 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005); |
|
2183 release: |
|
2184 hw->phy.ops.release(hw); |
|
2185 |
|
2186 return ret_val; |
|
2187 } |
|
2188 |
|
2189 /** |
|
2190 * e1000_k1_gig_workaround_lv - K1 Si workaround |
|
2191 * @hw: pointer to the HW structure |
|
2192 * |
|
2193 * Workaround to set the K1 beacon duration for 82579 parts |
|
2194 **/ |
|
2195 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw) |
|
2196 { |
|
2197 s32 ret_val = 0; |
|
2198 u16 status_reg = 0; |
|
2199 u32 mac_reg; |
|
2200 u16 phy_reg; |
|
2201 |
|
2202 if (hw->mac.type != e1000_pch2lan) |
|
2203 return 0; |
|
2204 |
|
2205 /* Set K1 beacon duration based on 1Gbps speed or otherwise */ |
|
2206 ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg); |
|
2207 if (ret_val) |
|
2208 return ret_val; |
|
2209 |
|
2210 if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) |
|
2211 == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) { |
|
2212 mac_reg = er32(FEXTNVM4); |
|
2213 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK; |
|
2214 |
|
2215 ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg); |
|
2216 if (ret_val) |
|
2217 return ret_val; |
|
2218 |
|
2219 if (status_reg & HV_M_STATUS_SPEED_1000) { |
|
2220 u16 pm_phy_reg; |
|
2221 |
|
2222 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC; |
|
2223 phy_reg &= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT; |
|
2224 /* LV 1G Packet drop issue wa */ |
|
2225 ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg); |
|
2226 if (ret_val) |
|
2227 return ret_val; |
|
2228 pm_phy_reg &= ~HV_PM_CTRL_PLL_STOP_IN_K1_GIGA; |
|
2229 ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg); |
|
2230 if (ret_val) |
|
2231 return ret_val; |
|
2232 } else { |
|
2233 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC; |
|
2234 phy_reg |= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT; |
|
2235 } |
|
2236 ew32(FEXTNVM4, mac_reg); |
|
2237 ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg); |
|
2238 } |
|
2239 |
|
2240 return ret_val; |
|
2241 } |
|
2242 |
|
2243 /** |
|
2244 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware |
|
2245 * @hw: pointer to the HW structure |
|
2246 * @gate: boolean set to true to gate, false to ungate |
|
2247 * |
|
2248 * Gate/ungate the automatic PHY configuration via hardware; perform |
|
2249 * the configuration via software instead. |
|
2250 **/ |
|
2251 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate) |
|
2252 { |
|
2253 u32 extcnf_ctrl; |
|
2254 |
|
2255 if (hw->mac.type < e1000_pch2lan) |
|
2256 return; |
|
2257 |
|
2258 extcnf_ctrl = er32(EXTCNF_CTRL); |
|
2259 |
|
2260 if (gate) |
|
2261 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG; |
|
2262 else |
|
2263 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG; |
|
2264 |
|
2265 ew32(EXTCNF_CTRL, extcnf_ctrl); |
|
2266 } |
|
2267 |
|
2268 /** |
|
2269 * e1000_lan_init_done_ich8lan - Check for PHY config completion |
|
2270 * @hw: pointer to the HW structure |
|
2271 * |
|
2272 * Check the appropriate indication the MAC has finished configuring the |
|
2273 * PHY after a software reset. |
|
2274 **/ |
|
2275 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw) |
|
2276 { |
|
2277 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT; |
|
2278 |
|
2279 /* Wait for basic configuration completes before proceeding */ |
|
2280 do { |
|
2281 data = er32(STATUS); |
|
2282 data &= E1000_STATUS_LAN_INIT_DONE; |
|
2283 usleep_range(100, 200); |
|
2284 } while ((!data) && --loop); |
|
2285 |
|
2286 /* If basic configuration is incomplete before the above loop |
|
2287 * count reaches 0, loading the configuration from NVM will |
|
2288 * leave the PHY in a bad state possibly resulting in no link. |
|
2289 */ |
|
2290 if (loop == 0) |
|
2291 e_dbg("LAN_INIT_DONE not set, increase timeout\n"); |
|
2292 |
|
2293 /* Clear the Init Done bit for the next init event */ |
|
2294 data = er32(STATUS); |
|
2295 data &= ~E1000_STATUS_LAN_INIT_DONE; |
|
2296 ew32(STATUS, data); |
|
2297 } |
|
2298 |
|
2299 /** |
|
2300 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset |
|
2301 * @hw: pointer to the HW structure |
|
2302 **/ |
|
2303 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw) |
|
2304 { |
|
2305 s32 ret_val = 0; |
|
2306 u16 reg; |
|
2307 |
|
2308 if (hw->phy.ops.check_reset_block(hw)) |
|
2309 return 0; |
|
2310 |
|
2311 /* Allow time for h/w to get to quiescent state after reset */ |
|
2312 usleep_range(10000, 20000); |
|
2313 |
|
2314 /* Perform any necessary post-reset workarounds */ |
|
2315 switch (hw->mac.type) { |
|
2316 case e1000_pchlan: |
|
2317 ret_val = e1000_hv_phy_workarounds_ich8lan(hw); |
|
2318 if (ret_val) |
|
2319 return ret_val; |
|
2320 break; |
|
2321 case e1000_pch2lan: |
|
2322 ret_val = e1000_lv_phy_workarounds_ich8lan(hw); |
|
2323 if (ret_val) |
|
2324 return ret_val; |
|
2325 break; |
|
2326 default: |
|
2327 break; |
|
2328 } |
|
2329 |
|
2330 /* Clear the host wakeup bit after lcd reset */ |
|
2331 if (hw->mac.type >= e1000_pchlan) { |
|
2332 e1e_rphy(hw, BM_PORT_GEN_CFG, ®); |
|
2333 reg &= ~BM_WUC_HOST_WU_BIT; |
|
2334 e1e_wphy(hw, BM_PORT_GEN_CFG, reg); |
|
2335 } |
|
2336 |
|
2337 /* Configure the LCD with the extended configuration region in NVM */ |
|
2338 ret_val = e1000_sw_lcd_config_ich8lan(hw); |
|
2339 if (ret_val) |
|
2340 return ret_val; |
|
2341 |
|
2342 /* Configure the LCD with the OEM bits in NVM */ |
|
2343 ret_val = e1000_oem_bits_config_ich8lan(hw, true); |
|
2344 |
|
2345 if (hw->mac.type == e1000_pch2lan) { |
|
2346 /* Ungate automatic PHY configuration on non-managed 82579 */ |
|
2347 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { |
|
2348 usleep_range(10000, 20000); |
|
2349 e1000_gate_hw_phy_config_ich8lan(hw, false); |
|
2350 } |
|
2351 |
|
2352 /* Set EEE LPI Update Timer to 200usec */ |
|
2353 ret_val = hw->phy.ops.acquire(hw); |
|
2354 if (ret_val) |
|
2355 return ret_val; |
|
2356 ret_val = e1000_write_emi_reg_locked(hw, |
|
2357 I82579_LPI_UPDATE_TIMER, |
|
2358 0x1387); |
|
2359 hw->phy.ops.release(hw); |
|
2360 } |
|
2361 |
|
2362 return ret_val; |
|
2363 } |
|
2364 |
|
2365 /** |
|
2366 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset |
|
2367 * @hw: pointer to the HW structure |
|
2368 * |
|
2369 * Resets the PHY |
|
2370 * This is a function pointer entry point called by drivers |
|
2371 * or other shared routines. |
|
2372 **/ |
|
2373 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw) |
|
2374 { |
|
2375 s32 ret_val = 0; |
|
2376 |
|
2377 /* Gate automatic PHY configuration by hardware on non-managed 82579 */ |
|
2378 if ((hw->mac.type == e1000_pch2lan) && |
|
2379 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) |
|
2380 e1000_gate_hw_phy_config_ich8lan(hw, true); |
|
2381 |
|
2382 ret_val = e1000e_phy_hw_reset_generic(hw); |
|
2383 if (ret_val) |
|
2384 return ret_val; |
|
2385 |
|
2386 return e1000_post_phy_reset_ich8lan(hw); |
|
2387 } |
|
2388 |
|
2389 /** |
|
2390 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state |
|
2391 * @hw: pointer to the HW structure |
|
2392 * @active: true to enable LPLU, false to disable |
|
2393 * |
|
2394 * Sets the LPLU state according to the active flag. For PCH, if OEM write |
|
2395 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set |
|
2396 * the phy speed. This function will manually set the LPLU bit and restart |
|
2397 * auto-neg as hw would do. D3 and D0 LPLU will call the same function |
|
2398 * since it configures the same bit. |
|
2399 **/ |
|
2400 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active) |
|
2401 { |
|
2402 s32 ret_val; |
|
2403 u16 oem_reg; |
|
2404 |
|
2405 ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg); |
|
2406 if (ret_val) |
|
2407 return ret_val; |
|
2408 |
|
2409 if (active) |
|
2410 oem_reg |= HV_OEM_BITS_LPLU; |
|
2411 else |
|
2412 oem_reg &= ~HV_OEM_BITS_LPLU; |
|
2413 |
|
2414 if (!hw->phy.ops.check_reset_block(hw)) |
|
2415 oem_reg |= HV_OEM_BITS_RESTART_AN; |
|
2416 |
|
2417 return e1e_wphy(hw, HV_OEM_BITS, oem_reg); |
|
2418 } |
|
2419 |
|
2420 /** |
|
2421 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state |
|
2422 * @hw: pointer to the HW structure |
|
2423 * @active: true to enable LPLU, false to disable |
|
2424 * |
|
2425 * Sets the LPLU D0 state according to the active flag. When |
|
2426 * activating LPLU this function also disables smart speed |
|
2427 * and vice versa. LPLU will not be activated unless the |
|
2428 * device autonegotiation advertisement meets standards of |
|
2429 * either 10 or 10/100 or 10/100/1000 at all duplexes. |
|
2430 * This is a function pointer entry point only called by |
|
2431 * PHY setup routines. |
|
2432 **/ |
|
2433 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active) |
|
2434 { |
|
2435 struct e1000_phy_info *phy = &hw->phy; |
|
2436 u32 phy_ctrl; |
|
2437 s32 ret_val = 0; |
|
2438 u16 data; |
|
2439 |
|
2440 if (phy->type == e1000_phy_ife) |
|
2441 return 0; |
|
2442 |
|
2443 phy_ctrl = er32(PHY_CTRL); |
|
2444 |
|
2445 if (active) { |
|
2446 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; |
|
2447 ew32(PHY_CTRL, phy_ctrl); |
|
2448 |
|
2449 if (phy->type != e1000_phy_igp_3) |
|
2450 return 0; |
|
2451 |
|
2452 /* Call gig speed drop workaround on LPLU before accessing |
|
2453 * any PHY registers |
|
2454 */ |
|
2455 if (hw->mac.type == e1000_ich8lan) |
|
2456 e1000e_gig_downshift_workaround_ich8lan(hw); |
|
2457 |
|
2458 /* When LPLU is enabled, we should disable SmartSpeed */ |
|
2459 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); |
|
2460 if (ret_val) |
|
2461 return ret_val; |
|
2462 data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
|
2463 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); |
|
2464 if (ret_val) |
|
2465 return ret_val; |
|
2466 } else { |
|
2467 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; |
|
2468 ew32(PHY_CTRL, phy_ctrl); |
|
2469 |
|
2470 if (phy->type != e1000_phy_igp_3) |
|
2471 return 0; |
|
2472 |
|
2473 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used |
|
2474 * during Dx states where the power conservation is most |
|
2475 * important. During driver activity we should enable |
|
2476 * SmartSpeed, so performance is maintained. |
|
2477 */ |
|
2478 if (phy->smart_speed == e1000_smart_speed_on) { |
|
2479 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
2480 &data); |
|
2481 if (ret_val) |
|
2482 return ret_val; |
|
2483 |
|
2484 data |= IGP01E1000_PSCFR_SMART_SPEED; |
|
2485 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
2486 data); |
|
2487 if (ret_val) |
|
2488 return ret_val; |
|
2489 } else if (phy->smart_speed == e1000_smart_speed_off) { |
|
2490 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
2491 &data); |
|
2492 if (ret_val) |
|
2493 return ret_val; |
|
2494 |
|
2495 data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
|
2496 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
2497 data); |
|
2498 if (ret_val) |
|
2499 return ret_val; |
|
2500 } |
|
2501 } |
|
2502 |
|
2503 return 0; |
|
2504 } |
|
2505 |
|
2506 /** |
|
2507 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state |
|
2508 * @hw: pointer to the HW structure |
|
2509 * @active: true to enable LPLU, false to disable |
|
2510 * |
|
2511 * Sets the LPLU D3 state according to the active flag. When |
|
2512 * activating LPLU this function also disables smart speed |
|
2513 * and vice versa. LPLU will not be activated unless the |
|
2514 * device autonegotiation advertisement meets standards of |
|
2515 * either 10 or 10/100 or 10/100/1000 at all duplexes. |
|
2516 * This is a function pointer entry point only called by |
|
2517 * PHY setup routines. |
|
2518 **/ |
|
2519 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active) |
|
2520 { |
|
2521 struct e1000_phy_info *phy = &hw->phy; |
|
2522 u32 phy_ctrl; |
|
2523 s32 ret_val = 0; |
|
2524 u16 data; |
|
2525 |
|
2526 phy_ctrl = er32(PHY_CTRL); |
|
2527 |
|
2528 if (!active) { |
|
2529 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; |
|
2530 ew32(PHY_CTRL, phy_ctrl); |
|
2531 |
|
2532 if (phy->type != e1000_phy_igp_3) |
|
2533 return 0; |
|
2534 |
|
2535 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used |
|
2536 * during Dx states where the power conservation is most |
|
2537 * important. During driver activity we should enable |
|
2538 * SmartSpeed, so performance is maintained. |
|
2539 */ |
|
2540 if (phy->smart_speed == e1000_smart_speed_on) { |
|
2541 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
2542 &data); |
|
2543 if (ret_val) |
|
2544 return ret_val; |
|
2545 |
|
2546 data |= IGP01E1000_PSCFR_SMART_SPEED; |
|
2547 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
2548 data); |
|
2549 if (ret_val) |
|
2550 return ret_val; |
|
2551 } else if (phy->smart_speed == e1000_smart_speed_off) { |
|
2552 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
2553 &data); |
|
2554 if (ret_val) |
|
2555 return ret_val; |
|
2556 |
|
2557 data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
|
2558 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
2559 data); |
|
2560 if (ret_val) |
|
2561 return ret_val; |
|
2562 } |
|
2563 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || |
|
2564 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || |
|
2565 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { |
|
2566 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU; |
|
2567 ew32(PHY_CTRL, phy_ctrl); |
|
2568 |
|
2569 if (phy->type != e1000_phy_igp_3) |
|
2570 return 0; |
|
2571 |
|
2572 /* Call gig speed drop workaround on LPLU before accessing |
|
2573 * any PHY registers |
|
2574 */ |
|
2575 if (hw->mac.type == e1000_ich8lan) |
|
2576 e1000e_gig_downshift_workaround_ich8lan(hw); |
|
2577 |
|
2578 /* When LPLU is enabled, we should disable SmartSpeed */ |
|
2579 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); |
|
2580 if (ret_val) |
|
2581 return ret_val; |
|
2582 |
|
2583 data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
|
2584 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); |
|
2585 } |
|
2586 |
|
2587 return ret_val; |
|
2588 } |
|
2589 |
|
2590 /** |
|
2591 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1 |
|
2592 * @hw: pointer to the HW structure |
|
2593 * @bank: pointer to the variable that returns the active bank |
|
2594 * |
|
2595 * Reads signature byte from the NVM using the flash access registers. |
|
2596 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank. |
|
2597 **/ |
|
2598 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank) |
|
2599 { |
|
2600 u32 eecd; |
|
2601 struct e1000_nvm_info *nvm = &hw->nvm; |
|
2602 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16); |
|
2603 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1; |
|
2604 u8 sig_byte = 0; |
|
2605 s32 ret_val; |
|
2606 |
|
2607 switch (hw->mac.type) { |
|
2608 case e1000_ich8lan: |
|
2609 case e1000_ich9lan: |
|
2610 eecd = er32(EECD); |
|
2611 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) == |
|
2612 E1000_EECD_SEC1VAL_VALID_MASK) { |
|
2613 if (eecd & E1000_EECD_SEC1VAL) |
|
2614 *bank = 1; |
|
2615 else |
|
2616 *bank = 0; |
|
2617 |
|
2618 return 0; |
|
2619 } |
|
2620 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n"); |
|
2621 /* fall-thru */ |
|
2622 default: |
|
2623 /* set bank to 0 in case flash read fails */ |
|
2624 *bank = 0; |
|
2625 |
|
2626 /* Check bank 0 */ |
|
2627 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset, |
|
2628 &sig_byte); |
|
2629 if (ret_val) |
|
2630 return ret_val; |
|
2631 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == |
|
2632 E1000_ICH_NVM_SIG_VALUE) { |
|
2633 *bank = 0; |
|
2634 return 0; |
|
2635 } |
|
2636 |
|
2637 /* Check bank 1 */ |
|
2638 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset + |
|
2639 bank1_offset, |
|
2640 &sig_byte); |
|
2641 if (ret_val) |
|
2642 return ret_val; |
|
2643 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == |
|
2644 E1000_ICH_NVM_SIG_VALUE) { |
|
2645 *bank = 1; |
|
2646 return 0; |
|
2647 } |
|
2648 |
|
2649 e_dbg("ERROR: No valid NVM bank present\n"); |
|
2650 return -E1000_ERR_NVM; |
|
2651 } |
|
2652 } |
|
2653 |
|
2654 /** |
|
2655 * e1000_read_nvm_ich8lan - Read word(s) from the NVM |
|
2656 * @hw: pointer to the HW structure |
|
2657 * @offset: The offset (in bytes) of the word(s) to read. |
|
2658 * @words: Size of data to read in words |
|
2659 * @data: Pointer to the word(s) to read at offset. |
|
2660 * |
|
2661 * Reads a word(s) from the NVM using the flash access registers. |
|
2662 **/ |
|
2663 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, |
|
2664 u16 *data) |
|
2665 { |
|
2666 struct e1000_nvm_info *nvm = &hw->nvm; |
|
2667 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; |
|
2668 u32 act_offset; |
|
2669 s32 ret_val = 0; |
|
2670 u32 bank = 0; |
|
2671 u16 i, word; |
|
2672 |
|
2673 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || |
|
2674 (words == 0)) { |
|
2675 e_dbg("nvm parameter(s) out of bounds\n"); |
|
2676 ret_val = -E1000_ERR_NVM; |
|
2677 goto out; |
|
2678 } |
|
2679 |
|
2680 nvm->ops.acquire(hw); |
|
2681 |
|
2682 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); |
|
2683 if (ret_val) { |
|
2684 e_dbg("Could not detect valid bank, assuming bank 0\n"); |
|
2685 bank = 0; |
|
2686 } |
|
2687 |
|
2688 act_offset = (bank) ? nvm->flash_bank_size : 0; |
|
2689 act_offset += offset; |
|
2690 |
|
2691 ret_val = 0; |
|
2692 for (i = 0; i < words; i++) { |
|
2693 if (dev_spec->shadow_ram[offset + i].modified) { |
|
2694 data[i] = dev_spec->shadow_ram[offset + i].value; |
|
2695 } else { |
|
2696 ret_val = e1000_read_flash_word_ich8lan(hw, |
|
2697 act_offset + i, |
|
2698 &word); |
|
2699 if (ret_val) |
|
2700 break; |
|
2701 data[i] = word; |
|
2702 } |
|
2703 } |
|
2704 |
|
2705 nvm->ops.release(hw); |
|
2706 |
|
2707 out: |
|
2708 if (ret_val) |
|
2709 e_dbg("NVM read error: %d\n", ret_val); |
|
2710 |
|
2711 return ret_val; |
|
2712 } |
|
2713 |
|
2714 /** |
|
2715 * e1000_flash_cycle_init_ich8lan - Initialize flash |
|
2716 * @hw: pointer to the HW structure |
|
2717 * |
|
2718 * This function does initial flash setup so that a new read/write/erase cycle |
|
2719 * can be started. |
|
2720 **/ |
|
2721 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw) |
|
2722 { |
|
2723 union ich8_hws_flash_status hsfsts; |
|
2724 s32 ret_val = -E1000_ERR_NVM; |
|
2725 |
|
2726 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); |
|
2727 |
|
2728 /* Check if the flash descriptor is valid */ |
|
2729 if (!hsfsts.hsf_status.fldesvalid) { |
|
2730 e_dbg("Flash descriptor invalid. SW Sequencing must be used.\n"); |
|
2731 return -E1000_ERR_NVM; |
|
2732 } |
|
2733 |
|
2734 /* Clear FCERR and DAEL in hw status by writing 1 */ |
|
2735 hsfsts.hsf_status.flcerr = 1; |
|
2736 hsfsts.hsf_status.dael = 1; |
|
2737 |
|
2738 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); |
|
2739 |
|
2740 /* Either we should have a hardware SPI cycle in progress |
|
2741 * bit to check against, in order to start a new cycle or |
|
2742 * FDONE bit should be changed in the hardware so that it |
|
2743 * is 1 after hardware reset, which can then be used as an |
|
2744 * indication whether a cycle is in progress or has been |
|
2745 * completed. |
|
2746 */ |
|
2747 |
|
2748 if (!hsfsts.hsf_status.flcinprog) { |
|
2749 /* There is no cycle running at present, |
|
2750 * so we can start a cycle. |
|
2751 * Begin by setting Flash Cycle Done. |
|
2752 */ |
|
2753 hsfsts.hsf_status.flcdone = 1; |
|
2754 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); |
|
2755 ret_val = 0; |
|
2756 } else { |
|
2757 s32 i; |
|
2758 |
|
2759 /* Otherwise poll for sometime so the current |
|
2760 * cycle has a chance to end before giving up. |
|
2761 */ |
|
2762 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) { |
|
2763 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); |
|
2764 if (!hsfsts.hsf_status.flcinprog) { |
|
2765 ret_val = 0; |
|
2766 break; |
|
2767 } |
|
2768 udelay(1); |
|
2769 } |
|
2770 if (!ret_val) { |
|
2771 /* Successful in waiting for previous cycle to timeout, |
|
2772 * now set the Flash Cycle Done. |
|
2773 */ |
|
2774 hsfsts.hsf_status.flcdone = 1; |
|
2775 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); |
|
2776 } else { |
|
2777 e_dbg("Flash controller busy, cannot get access\n"); |
|
2778 } |
|
2779 } |
|
2780 |
|
2781 return ret_val; |
|
2782 } |
|
2783 |
|
2784 /** |
|
2785 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase) |
|
2786 * @hw: pointer to the HW structure |
|
2787 * @timeout: maximum time to wait for completion |
|
2788 * |
|
2789 * This function starts a flash cycle and waits for its completion. |
|
2790 **/ |
|
2791 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout) |
|
2792 { |
|
2793 union ich8_hws_flash_ctrl hsflctl; |
|
2794 union ich8_hws_flash_status hsfsts; |
|
2795 u32 i = 0; |
|
2796 |
|
2797 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */ |
|
2798 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); |
|
2799 hsflctl.hsf_ctrl.flcgo = 1; |
|
2800 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); |
|
2801 |
|
2802 /* wait till FDONE bit is set to 1 */ |
|
2803 do { |
|
2804 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); |
|
2805 if (hsfsts.hsf_status.flcdone) |
|
2806 break; |
|
2807 udelay(1); |
|
2808 } while (i++ < timeout); |
|
2809 |
|
2810 if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr) |
|
2811 return 0; |
|
2812 |
|
2813 return -E1000_ERR_NVM; |
|
2814 } |
|
2815 |
|
2816 /** |
|
2817 * e1000_read_flash_word_ich8lan - Read word from flash |
|
2818 * @hw: pointer to the HW structure |
|
2819 * @offset: offset to data location |
|
2820 * @data: pointer to the location for storing the data |
|
2821 * |
|
2822 * Reads the flash word at offset into data. Offset is converted |
|
2823 * to bytes before read. |
|
2824 **/ |
|
2825 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, |
|
2826 u16 *data) |
|
2827 { |
|
2828 /* Must convert offset into bytes. */ |
|
2829 offset <<= 1; |
|
2830 |
|
2831 return e1000_read_flash_data_ich8lan(hw, offset, 2, data); |
|
2832 } |
|
2833 |
|
2834 /** |
|
2835 * e1000_read_flash_byte_ich8lan - Read byte from flash |
|
2836 * @hw: pointer to the HW structure |
|
2837 * @offset: The offset of the byte to read. |
|
2838 * @data: Pointer to a byte to store the value read. |
|
2839 * |
|
2840 * Reads a single byte from the NVM using the flash access registers. |
|
2841 **/ |
|
2842 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, |
|
2843 u8 *data) |
|
2844 { |
|
2845 s32 ret_val; |
|
2846 u16 word = 0; |
|
2847 |
|
2848 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word); |
|
2849 if (ret_val) |
|
2850 return ret_val; |
|
2851 |
|
2852 *data = (u8)word; |
|
2853 |
|
2854 return 0; |
|
2855 } |
|
2856 |
|
2857 /** |
|
2858 * e1000_read_flash_data_ich8lan - Read byte or word from NVM |
|
2859 * @hw: pointer to the HW structure |
|
2860 * @offset: The offset (in bytes) of the byte or word to read. |
|
2861 * @size: Size of data to read, 1=byte 2=word |
|
2862 * @data: Pointer to the word to store the value read. |
|
2863 * |
|
2864 * Reads a byte or word from the NVM using the flash access registers. |
|
2865 **/ |
|
2866 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, |
|
2867 u8 size, u16 *data) |
|
2868 { |
|
2869 union ich8_hws_flash_status hsfsts; |
|
2870 union ich8_hws_flash_ctrl hsflctl; |
|
2871 u32 flash_linear_addr; |
|
2872 u32 flash_data = 0; |
|
2873 s32 ret_val = -E1000_ERR_NVM; |
|
2874 u8 count = 0; |
|
2875 |
|
2876 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK) |
|
2877 return -E1000_ERR_NVM; |
|
2878 |
|
2879 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + |
|
2880 hw->nvm.flash_base_addr); |
|
2881 |
|
2882 do { |
|
2883 udelay(1); |
|
2884 /* Steps */ |
|
2885 ret_val = e1000_flash_cycle_init_ich8lan(hw); |
|
2886 if (ret_val) |
|
2887 break; |
|
2888 |
|
2889 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); |
|
2890 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ |
|
2891 hsflctl.hsf_ctrl.fldbcount = size - 1; |
|
2892 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; |
|
2893 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); |
|
2894 |
|
2895 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); |
|
2896 |
|
2897 ret_val = |
|
2898 e1000_flash_cycle_ich8lan(hw, |
|
2899 ICH_FLASH_READ_COMMAND_TIMEOUT); |
|
2900 |
|
2901 /* Check if FCERR is set to 1, if set to 1, clear it |
|
2902 * and try the whole sequence a few more times, else |
|
2903 * read in (shift in) the Flash Data0, the order is |
|
2904 * least significant byte first msb to lsb |
|
2905 */ |
|
2906 if (!ret_val) { |
|
2907 flash_data = er32flash(ICH_FLASH_FDATA0); |
|
2908 if (size == 1) |
|
2909 *data = (u8)(flash_data & 0x000000FF); |
|
2910 else if (size == 2) |
|
2911 *data = (u16)(flash_data & 0x0000FFFF); |
|
2912 break; |
|
2913 } else { |
|
2914 /* If we've gotten here, then things are probably |
|
2915 * completely hosed, but if the error condition is |
|
2916 * detected, it won't hurt to give it another try... |
|
2917 * ICH_FLASH_CYCLE_REPEAT_COUNT times. |
|
2918 */ |
|
2919 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); |
|
2920 if (hsfsts.hsf_status.flcerr) { |
|
2921 /* Repeat for some time before giving up. */ |
|
2922 continue; |
|
2923 } else if (!hsfsts.hsf_status.flcdone) { |
|
2924 e_dbg("Timeout error - flash cycle did not complete.\n"); |
|
2925 break; |
|
2926 } |
|
2927 } |
|
2928 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); |
|
2929 |
|
2930 return ret_val; |
|
2931 } |
|
2932 |
|
2933 /** |
|
2934 * e1000_write_nvm_ich8lan - Write word(s) to the NVM |
|
2935 * @hw: pointer to the HW structure |
|
2936 * @offset: The offset (in bytes) of the word(s) to write. |
|
2937 * @words: Size of data to write in words |
|
2938 * @data: Pointer to the word(s) to write at offset. |
|
2939 * |
|
2940 * Writes a byte or word to the NVM using the flash access registers. |
|
2941 **/ |
|
2942 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, |
|
2943 u16 *data) |
|
2944 { |
|
2945 struct e1000_nvm_info *nvm = &hw->nvm; |
|
2946 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; |
|
2947 u16 i; |
|
2948 |
|
2949 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || |
|
2950 (words == 0)) { |
|
2951 e_dbg("nvm parameter(s) out of bounds\n"); |
|
2952 return -E1000_ERR_NVM; |
|
2953 } |
|
2954 |
|
2955 nvm->ops.acquire(hw); |
|
2956 |
|
2957 for (i = 0; i < words; i++) { |
|
2958 dev_spec->shadow_ram[offset + i].modified = true; |
|
2959 dev_spec->shadow_ram[offset + i].value = data[i]; |
|
2960 } |
|
2961 |
|
2962 nvm->ops.release(hw); |
|
2963 |
|
2964 return 0; |
|
2965 } |
|
2966 |
|
2967 /** |
|
2968 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM |
|
2969 * @hw: pointer to the HW structure |
|
2970 * |
|
2971 * The NVM checksum is updated by calling the generic update_nvm_checksum, |
|
2972 * which writes the checksum to the shadow ram. The changes in the shadow |
|
2973 * ram are then committed to the EEPROM by processing each bank at a time |
|
2974 * checking for the modified bit and writing only the pending changes. |
|
2975 * After a successful commit, the shadow ram is cleared and is ready for |
|
2976 * future writes. |
|
2977 **/ |
|
2978 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw) |
|
2979 { |
|
2980 struct e1000_nvm_info *nvm = &hw->nvm; |
|
2981 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; |
|
2982 u32 i, act_offset, new_bank_offset, old_bank_offset, bank; |
|
2983 s32 ret_val; |
|
2984 u16 data; |
|
2985 |
|
2986 ret_val = e1000e_update_nvm_checksum_generic(hw); |
|
2987 if (ret_val) |
|
2988 goto out; |
|
2989 |
|
2990 if (nvm->type != e1000_nvm_flash_sw) |
|
2991 goto out; |
|
2992 |
|
2993 nvm->ops.acquire(hw); |
|
2994 |
|
2995 /* We're writing to the opposite bank so if we're on bank 1, |
|
2996 * write to bank 0 etc. We also need to erase the segment that |
|
2997 * is going to be written |
|
2998 */ |
|
2999 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); |
|
3000 if (ret_val) { |
|
3001 e_dbg("Could not detect valid bank, assuming bank 0\n"); |
|
3002 bank = 0; |
|
3003 } |
|
3004 |
|
3005 if (bank == 0) { |
|
3006 new_bank_offset = nvm->flash_bank_size; |
|
3007 old_bank_offset = 0; |
|
3008 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1); |
|
3009 if (ret_val) |
|
3010 goto release; |
|
3011 } else { |
|
3012 old_bank_offset = nvm->flash_bank_size; |
|
3013 new_bank_offset = 0; |
|
3014 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0); |
|
3015 if (ret_val) |
|
3016 goto release; |
|
3017 } |
|
3018 |
|
3019 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { |
|
3020 /* Determine whether to write the value stored |
|
3021 * in the other NVM bank or a modified value stored |
|
3022 * in the shadow RAM |
|
3023 */ |
|
3024 if (dev_spec->shadow_ram[i].modified) { |
|
3025 data = dev_spec->shadow_ram[i].value; |
|
3026 } else { |
|
3027 ret_val = e1000_read_flash_word_ich8lan(hw, i + |
|
3028 old_bank_offset, |
|
3029 &data); |
|
3030 if (ret_val) |
|
3031 break; |
|
3032 } |
|
3033 |
|
3034 /* If the word is 0x13, then make sure the signature bits |
|
3035 * (15:14) are 11b until the commit has completed. |
|
3036 * This will allow us to write 10b which indicates the |
|
3037 * signature is valid. We want to do this after the write |
|
3038 * has completed so that we don't mark the segment valid |
|
3039 * while the write is still in progress |
|
3040 */ |
|
3041 if (i == E1000_ICH_NVM_SIG_WORD) |
|
3042 data |= E1000_ICH_NVM_SIG_MASK; |
|
3043 |
|
3044 /* Convert offset to bytes. */ |
|
3045 act_offset = (i + new_bank_offset) << 1; |
|
3046 |
|
3047 usleep_range(100, 200); |
|
3048 /* Write the bytes to the new bank. */ |
|
3049 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, |
|
3050 act_offset, |
|
3051 (u8)data); |
|
3052 if (ret_val) |
|
3053 break; |
|
3054 |
|
3055 usleep_range(100, 200); |
|
3056 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, |
|
3057 act_offset + 1, |
|
3058 (u8)(data >> 8)); |
|
3059 if (ret_val) |
|
3060 break; |
|
3061 } |
|
3062 |
|
3063 /* Don't bother writing the segment valid bits if sector |
|
3064 * programming failed. |
|
3065 */ |
|
3066 if (ret_val) { |
|
3067 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */ |
|
3068 e_dbg("Flash commit failed.\n"); |
|
3069 goto release; |
|
3070 } |
|
3071 |
|
3072 /* Finally validate the new segment by setting bit 15:14 |
|
3073 * to 10b in word 0x13 , this can be done without an |
|
3074 * erase as well since these bits are 11 to start with |
|
3075 * and we need to change bit 14 to 0b |
|
3076 */ |
|
3077 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD; |
|
3078 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data); |
|
3079 if (ret_val) |
|
3080 goto release; |
|
3081 |
|
3082 data &= 0xBFFF; |
|
3083 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, |
|
3084 act_offset * 2 + 1, |
|
3085 (u8)(data >> 8)); |
|
3086 if (ret_val) |
|
3087 goto release; |
|
3088 |
|
3089 /* And invalidate the previously valid segment by setting |
|
3090 * its signature word (0x13) high_byte to 0b. This can be |
|
3091 * done without an erase because flash erase sets all bits |
|
3092 * to 1's. We can write 1's to 0's without an erase |
|
3093 */ |
|
3094 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1; |
|
3095 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0); |
|
3096 if (ret_val) |
|
3097 goto release; |
|
3098 |
|
3099 /* Great! Everything worked, we can now clear the cached entries. */ |
|
3100 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { |
|
3101 dev_spec->shadow_ram[i].modified = false; |
|
3102 dev_spec->shadow_ram[i].value = 0xFFFF; |
|
3103 } |
|
3104 |
|
3105 release: |
|
3106 nvm->ops.release(hw); |
|
3107 |
|
3108 /* Reload the EEPROM, or else modifications will not appear |
|
3109 * until after the next adapter reset. |
|
3110 */ |
|
3111 if (!ret_val) { |
|
3112 nvm->ops.reload(hw); |
|
3113 usleep_range(10000, 20000); |
|
3114 } |
|
3115 |
|
3116 out: |
|
3117 if (ret_val) |
|
3118 e_dbg("NVM update error: %d\n", ret_val); |
|
3119 |
|
3120 return ret_val; |
|
3121 } |
|
3122 |
|
3123 /** |
|
3124 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum |
|
3125 * @hw: pointer to the HW structure |
|
3126 * |
|
3127 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19. |
|
3128 * If the bit is 0, that the EEPROM had been modified, but the checksum was not |
|
3129 * calculated, in which case we need to calculate the checksum and set bit 6. |
|
3130 **/ |
|
3131 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw) |
|
3132 { |
|
3133 s32 ret_val; |
|
3134 u16 data; |
|
3135 u16 word; |
|
3136 u16 valid_csum_mask; |
|
3137 |
|
3138 /* Read NVM and check Invalid Image CSUM bit. If this bit is 0, |
|
3139 * the checksum needs to be fixed. This bit is an indication that |
|
3140 * the NVM was prepared by OEM software and did not calculate |
|
3141 * the checksum...a likely scenario. |
|
3142 */ |
|
3143 switch (hw->mac.type) { |
|
3144 case e1000_pch_lpt: |
|
3145 word = NVM_COMPAT; |
|
3146 valid_csum_mask = NVM_COMPAT_VALID_CSUM; |
|
3147 break; |
|
3148 default: |
|
3149 word = NVM_FUTURE_INIT_WORD1; |
|
3150 valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM; |
|
3151 break; |
|
3152 } |
|
3153 |
|
3154 ret_val = e1000_read_nvm(hw, word, 1, &data); |
|
3155 if (ret_val) |
|
3156 return ret_val; |
|
3157 |
|
3158 if (!(data & valid_csum_mask)) { |
|
3159 data |= valid_csum_mask; |
|
3160 ret_val = e1000_write_nvm(hw, word, 1, &data); |
|
3161 if (ret_val) |
|
3162 return ret_val; |
|
3163 ret_val = e1000e_update_nvm_checksum(hw); |
|
3164 if (ret_val) |
|
3165 return ret_val; |
|
3166 } |
|
3167 |
|
3168 return e1000e_validate_nvm_checksum_generic(hw); |
|
3169 } |
|
3170 |
|
3171 /** |
|
3172 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only |
|
3173 * @hw: pointer to the HW structure |
|
3174 * |
|
3175 * To prevent malicious write/erase of the NVM, set it to be read-only |
|
3176 * so that the hardware ignores all write/erase cycles of the NVM via |
|
3177 * the flash control registers. The shadow-ram copy of the NVM will |
|
3178 * still be updated, however any updates to this copy will not stick |
|
3179 * across driver reloads. |
|
3180 **/ |
|
3181 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw) |
|
3182 { |
|
3183 struct e1000_nvm_info *nvm = &hw->nvm; |
|
3184 union ich8_flash_protected_range pr0; |
|
3185 union ich8_hws_flash_status hsfsts; |
|
3186 u32 gfpreg; |
|
3187 |
|
3188 nvm->ops.acquire(hw); |
|
3189 |
|
3190 gfpreg = er32flash(ICH_FLASH_GFPREG); |
|
3191 |
|
3192 /* Write-protect GbE Sector of NVM */ |
|
3193 pr0.regval = er32flash(ICH_FLASH_PR0); |
|
3194 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK; |
|
3195 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK); |
|
3196 pr0.range.wpe = true; |
|
3197 ew32flash(ICH_FLASH_PR0, pr0.regval); |
|
3198 |
|
3199 /* Lock down a subset of GbE Flash Control Registers, e.g. |
|
3200 * PR0 to prevent the write-protection from being lifted. |
|
3201 * Once FLOCKDN is set, the registers protected by it cannot |
|
3202 * be written until FLOCKDN is cleared by a hardware reset. |
|
3203 */ |
|
3204 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); |
|
3205 hsfsts.hsf_status.flockdn = true; |
|
3206 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval); |
|
3207 |
|
3208 nvm->ops.release(hw); |
|
3209 } |
|
3210 |
|
3211 /** |
|
3212 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM |
|
3213 * @hw: pointer to the HW structure |
|
3214 * @offset: The offset (in bytes) of the byte/word to read. |
|
3215 * @size: Size of data to read, 1=byte 2=word |
|
3216 * @data: The byte(s) to write to the NVM. |
|
3217 * |
|
3218 * Writes one/two bytes to the NVM using the flash access registers. |
|
3219 **/ |
|
3220 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, |
|
3221 u8 size, u16 data) |
|
3222 { |
|
3223 union ich8_hws_flash_status hsfsts; |
|
3224 union ich8_hws_flash_ctrl hsflctl; |
|
3225 u32 flash_linear_addr; |
|
3226 u32 flash_data = 0; |
|
3227 s32 ret_val; |
|
3228 u8 count = 0; |
|
3229 |
|
3230 if (size < 1 || size > 2 || data > size * 0xff || |
|
3231 offset > ICH_FLASH_LINEAR_ADDR_MASK) |
|
3232 return -E1000_ERR_NVM; |
|
3233 |
|
3234 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + |
|
3235 hw->nvm.flash_base_addr); |
|
3236 |
|
3237 do { |
|
3238 udelay(1); |
|
3239 /* Steps */ |
|
3240 ret_val = e1000_flash_cycle_init_ich8lan(hw); |
|
3241 if (ret_val) |
|
3242 break; |
|
3243 |
|
3244 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); |
|
3245 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ |
|
3246 hsflctl.hsf_ctrl.fldbcount = size - 1; |
|
3247 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; |
|
3248 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); |
|
3249 |
|
3250 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); |
|
3251 |
|
3252 if (size == 1) |
|
3253 flash_data = (u32)data & 0x00FF; |
|
3254 else |
|
3255 flash_data = (u32)data; |
|
3256 |
|
3257 ew32flash(ICH_FLASH_FDATA0, flash_data); |
|
3258 |
|
3259 /* check if FCERR is set to 1 , if set to 1, clear it |
|
3260 * and try the whole sequence a few more times else done |
|
3261 */ |
|
3262 ret_val = |
|
3263 e1000_flash_cycle_ich8lan(hw, |
|
3264 ICH_FLASH_WRITE_COMMAND_TIMEOUT); |
|
3265 if (!ret_val) |
|
3266 break; |
|
3267 |
|
3268 /* If we're here, then things are most likely |
|
3269 * completely hosed, but if the error condition |
|
3270 * is detected, it won't hurt to give it another |
|
3271 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. |
|
3272 */ |
|
3273 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); |
|
3274 if (hsfsts.hsf_status.flcerr) |
|
3275 /* Repeat for some time before giving up. */ |
|
3276 continue; |
|
3277 if (!hsfsts.hsf_status.flcdone) { |
|
3278 e_dbg("Timeout error - flash cycle did not complete.\n"); |
|
3279 break; |
|
3280 } |
|
3281 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); |
|
3282 |
|
3283 return ret_val; |
|
3284 } |
|
3285 |
|
3286 /** |
|
3287 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM |
|
3288 * @hw: pointer to the HW structure |
|
3289 * @offset: The index of the byte to read. |
|
3290 * @data: The byte to write to the NVM. |
|
3291 * |
|
3292 * Writes a single byte to the NVM using the flash access registers. |
|
3293 **/ |
|
3294 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, |
|
3295 u8 data) |
|
3296 { |
|
3297 u16 word = (u16)data; |
|
3298 |
|
3299 return e1000_write_flash_data_ich8lan(hw, offset, 1, word); |
|
3300 } |
|
3301 |
|
3302 /** |
|
3303 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM |
|
3304 * @hw: pointer to the HW structure |
|
3305 * @offset: The offset of the byte to write. |
|
3306 * @byte: The byte to write to the NVM. |
|
3307 * |
|
3308 * Writes a single byte to the NVM using the flash access registers. |
|
3309 * Goes through a retry algorithm before giving up. |
|
3310 **/ |
|
3311 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, |
|
3312 u32 offset, u8 byte) |
|
3313 { |
|
3314 s32 ret_val; |
|
3315 u16 program_retries; |
|
3316 |
|
3317 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); |
|
3318 if (!ret_val) |
|
3319 return ret_val; |
|
3320 |
|
3321 for (program_retries = 0; program_retries < 100; program_retries++) { |
|
3322 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset); |
|
3323 usleep_range(100, 200); |
|
3324 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); |
|
3325 if (!ret_val) |
|
3326 break; |
|
3327 } |
|
3328 if (program_retries == 100) |
|
3329 return -E1000_ERR_NVM; |
|
3330 |
|
3331 return 0; |
|
3332 } |
|
3333 |
|
3334 /** |
|
3335 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM |
|
3336 * @hw: pointer to the HW structure |
|
3337 * @bank: 0 for first bank, 1 for second bank, etc. |
|
3338 * |
|
3339 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based. |
|
3340 * bank N is 4096 * N + flash_reg_addr. |
|
3341 **/ |
|
3342 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank) |
|
3343 { |
|
3344 struct e1000_nvm_info *nvm = &hw->nvm; |
|
3345 union ich8_hws_flash_status hsfsts; |
|
3346 union ich8_hws_flash_ctrl hsflctl; |
|
3347 u32 flash_linear_addr; |
|
3348 /* bank size is in 16bit words - adjust to bytes */ |
|
3349 u32 flash_bank_size = nvm->flash_bank_size * 2; |
|
3350 s32 ret_val; |
|
3351 s32 count = 0; |
|
3352 s32 j, iteration, sector_size; |
|
3353 |
|
3354 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); |
|
3355 |
|
3356 /* Determine HW Sector size: Read BERASE bits of hw flash status |
|
3357 * register |
|
3358 * 00: The Hw sector is 256 bytes, hence we need to erase 16 |
|
3359 * consecutive sectors. The start index for the nth Hw sector |
|
3360 * can be calculated as = bank * 4096 + n * 256 |
|
3361 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector. |
|
3362 * The start index for the nth Hw sector can be calculated |
|
3363 * as = bank * 4096 |
|
3364 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192 |
|
3365 * (ich9 only, otherwise error condition) |
|
3366 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536 |
|
3367 */ |
|
3368 switch (hsfsts.hsf_status.berasesz) { |
|
3369 case 0: |
|
3370 /* Hw sector size 256 */ |
|
3371 sector_size = ICH_FLASH_SEG_SIZE_256; |
|
3372 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256; |
|
3373 break; |
|
3374 case 1: |
|
3375 sector_size = ICH_FLASH_SEG_SIZE_4K; |
|
3376 iteration = 1; |
|
3377 break; |
|
3378 case 2: |
|
3379 sector_size = ICH_FLASH_SEG_SIZE_8K; |
|
3380 iteration = 1; |
|
3381 break; |
|
3382 case 3: |
|
3383 sector_size = ICH_FLASH_SEG_SIZE_64K; |
|
3384 iteration = 1; |
|
3385 break; |
|
3386 default: |
|
3387 return -E1000_ERR_NVM; |
|
3388 } |
|
3389 |
|
3390 /* Start with the base address, then add the sector offset. */ |
|
3391 flash_linear_addr = hw->nvm.flash_base_addr; |
|
3392 flash_linear_addr += (bank) ? flash_bank_size : 0; |
|
3393 |
|
3394 for (j = 0; j < iteration; j++) { |
|
3395 do { |
|
3396 u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT; |
|
3397 |
|
3398 /* Steps */ |
|
3399 ret_val = e1000_flash_cycle_init_ich8lan(hw); |
|
3400 if (ret_val) |
|
3401 return ret_val; |
|
3402 |
|
3403 /* Write a value 11 (block Erase) in Flash |
|
3404 * Cycle field in hw flash control |
|
3405 */ |
|
3406 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); |
|
3407 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE; |
|
3408 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); |
|
3409 |
|
3410 /* Write the last 24 bits of an index within the |
|
3411 * block into Flash Linear address field in Flash |
|
3412 * Address. |
|
3413 */ |
|
3414 flash_linear_addr += (j * sector_size); |
|
3415 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); |
|
3416 |
|
3417 ret_val = e1000_flash_cycle_ich8lan(hw, timeout); |
|
3418 if (!ret_val) |
|
3419 break; |
|
3420 |
|
3421 /* Check if FCERR is set to 1. If 1, |
|
3422 * clear it and try the whole sequence |
|
3423 * a few more times else Done |
|
3424 */ |
|
3425 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); |
|
3426 if (hsfsts.hsf_status.flcerr) |
|
3427 /* repeat for some time before giving up */ |
|
3428 continue; |
|
3429 else if (!hsfsts.hsf_status.flcdone) |
|
3430 return ret_val; |
|
3431 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT); |
|
3432 } |
|
3433 |
|
3434 return 0; |
|
3435 } |
|
3436 |
|
3437 /** |
|
3438 * e1000_valid_led_default_ich8lan - Set the default LED settings |
|
3439 * @hw: pointer to the HW structure |
|
3440 * @data: Pointer to the LED settings |
|
3441 * |
|
3442 * Reads the LED default settings from the NVM to data. If the NVM LED |
|
3443 * settings is all 0's or F's, set the LED default to a valid LED default |
|
3444 * setting. |
|
3445 **/ |
|
3446 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data) |
|
3447 { |
|
3448 s32 ret_val; |
|
3449 |
|
3450 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); |
|
3451 if (ret_val) { |
|
3452 e_dbg("NVM Read Error\n"); |
|
3453 return ret_val; |
|
3454 } |
|
3455 |
|
3456 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) |
|
3457 *data = ID_LED_DEFAULT_ICH8LAN; |
|
3458 |
|
3459 return 0; |
|
3460 } |
|
3461 |
|
3462 /** |
|
3463 * e1000_id_led_init_pchlan - store LED configurations |
|
3464 * @hw: pointer to the HW structure |
|
3465 * |
|
3466 * PCH does not control LEDs via the LEDCTL register, rather it uses |
|
3467 * the PHY LED configuration register. |
|
3468 * |
|
3469 * PCH also does not have an "always on" or "always off" mode which |
|
3470 * complicates the ID feature. Instead of using the "on" mode to indicate |
|
3471 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()), |
|
3472 * use "link_up" mode. The LEDs will still ID on request if there is no |
|
3473 * link based on logic in e1000_led_[on|off]_pchlan(). |
|
3474 **/ |
|
3475 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw) |
|
3476 { |
|
3477 struct e1000_mac_info *mac = &hw->mac; |
|
3478 s32 ret_val; |
|
3479 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP; |
|
3480 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT; |
|
3481 u16 data, i, temp, shift; |
|
3482 |
|
3483 /* Get default ID LED modes */ |
|
3484 ret_val = hw->nvm.ops.valid_led_default(hw, &data); |
|
3485 if (ret_val) |
|
3486 return ret_val; |
|
3487 |
|
3488 mac->ledctl_default = er32(LEDCTL); |
|
3489 mac->ledctl_mode1 = mac->ledctl_default; |
|
3490 mac->ledctl_mode2 = mac->ledctl_default; |
|
3491 |
|
3492 for (i = 0; i < 4; i++) { |
|
3493 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK; |
|
3494 shift = (i * 5); |
|
3495 switch (temp) { |
|
3496 case ID_LED_ON1_DEF2: |
|
3497 case ID_LED_ON1_ON2: |
|
3498 case ID_LED_ON1_OFF2: |
|
3499 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); |
|
3500 mac->ledctl_mode1 |= (ledctl_on << shift); |
|
3501 break; |
|
3502 case ID_LED_OFF1_DEF2: |
|
3503 case ID_LED_OFF1_ON2: |
|
3504 case ID_LED_OFF1_OFF2: |
|
3505 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); |
|
3506 mac->ledctl_mode1 |= (ledctl_off << shift); |
|
3507 break; |
|
3508 default: |
|
3509 /* Do nothing */ |
|
3510 break; |
|
3511 } |
|
3512 switch (temp) { |
|
3513 case ID_LED_DEF1_ON2: |
|
3514 case ID_LED_ON1_ON2: |
|
3515 case ID_LED_OFF1_ON2: |
|
3516 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); |
|
3517 mac->ledctl_mode2 |= (ledctl_on << shift); |
|
3518 break; |
|
3519 case ID_LED_DEF1_OFF2: |
|
3520 case ID_LED_ON1_OFF2: |
|
3521 case ID_LED_OFF1_OFF2: |
|
3522 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); |
|
3523 mac->ledctl_mode2 |= (ledctl_off << shift); |
|
3524 break; |
|
3525 default: |
|
3526 /* Do nothing */ |
|
3527 break; |
|
3528 } |
|
3529 } |
|
3530 |
|
3531 return 0; |
|
3532 } |
|
3533 |
|
3534 /** |
|
3535 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width |
|
3536 * @hw: pointer to the HW structure |
|
3537 * |
|
3538 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability |
|
3539 * register, so the the bus width is hard coded. |
|
3540 **/ |
|
3541 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw) |
|
3542 { |
|
3543 struct e1000_bus_info *bus = &hw->bus; |
|
3544 s32 ret_val; |
|
3545 |
|
3546 ret_val = e1000e_get_bus_info_pcie(hw); |
|
3547 |
|
3548 /* ICH devices are "PCI Express"-ish. They have |
|
3549 * a configuration space, but do not contain |
|
3550 * PCI Express Capability registers, so bus width |
|
3551 * must be hardcoded. |
|
3552 */ |
|
3553 if (bus->width == e1000_bus_width_unknown) |
|
3554 bus->width = e1000_bus_width_pcie_x1; |
|
3555 |
|
3556 return ret_val; |
|
3557 } |
|
3558 |
|
3559 /** |
|
3560 * e1000_reset_hw_ich8lan - Reset the hardware |
|
3561 * @hw: pointer to the HW structure |
|
3562 * |
|
3563 * Does a full reset of the hardware which includes a reset of the PHY and |
|
3564 * MAC. |
|
3565 **/ |
|
3566 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw) |
|
3567 { |
|
3568 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; |
|
3569 u16 kum_cfg; |
|
3570 u32 ctrl, reg; |
|
3571 s32 ret_val; |
|
3572 |
|
3573 /* Prevent the PCI-E bus from sticking if there is no TLP connection |
|
3574 * on the last TLP read/write transaction when MAC is reset. |
|
3575 */ |
|
3576 ret_val = e1000e_disable_pcie_master(hw); |
|
3577 if (ret_val) |
|
3578 e_dbg("PCI-E Master disable polling has failed.\n"); |
|
3579 |
|
3580 e_dbg("Masking off all interrupts\n"); |
|
3581 ew32(IMC, 0xffffffff); |
|
3582 |
|
3583 /* Disable the Transmit and Receive units. Then delay to allow |
|
3584 * any pending transactions to complete before we hit the MAC |
|
3585 * with the global reset. |
|
3586 */ |
|
3587 ew32(RCTL, 0); |
|
3588 ew32(TCTL, E1000_TCTL_PSP); |
|
3589 e1e_flush(); |
|
3590 |
|
3591 usleep_range(10000, 20000); |
|
3592 |
|
3593 /* Workaround for ICH8 bit corruption issue in FIFO memory */ |
|
3594 if (hw->mac.type == e1000_ich8lan) { |
|
3595 /* Set Tx and Rx buffer allocation to 8k apiece. */ |
|
3596 ew32(PBA, E1000_PBA_8K); |
|
3597 /* Set Packet Buffer Size to 16k. */ |
|
3598 ew32(PBS, E1000_PBS_16K); |
|
3599 } |
|
3600 |
|
3601 if (hw->mac.type == e1000_pchlan) { |
|
3602 /* Save the NVM K1 bit setting */ |
|
3603 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg); |
|
3604 if (ret_val) |
|
3605 return ret_val; |
|
3606 |
|
3607 if (kum_cfg & E1000_NVM_K1_ENABLE) |
|
3608 dev_spec->nvm_k1_enabled = true; |
|
3609 else |
|
3610 dev_spec->nvm_k1_enabled = false; |
|
3611 } |
|
3612 |
|
3613 ctrl = er32(CTRL); |
|
3614 |
|
3615 if (!hw->phy.ops.check_reset_block(hw)) { |
|
3616 /* Full-chip reset requires MAC and PHY reset at the same |
|
3617 * time to make sure the interface between MAC and the |
|
3618 * external PHY is reset. |
|
3619 */ |
|
3620 ctrl |= E1000_CTRL_PHY_RST; |
|
3621 |
|
3622 /* Gate automatic PHY configuration by hardware on |
|
3623 * non-managed 82579 |
|
3624 */ |
|
3625 if ((hw->mac.type == e1000_pch2lan) && |
|
3626 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) |
|
3627 e1000_gate_hw_phy_config_ich8lan(hw, true); |
|
3628 } |
|
3629 ret_val = e1000_acquire_swflag_ich8lan(hw); |
|
3630 e_dbg("Issuing a global reset to ich8lan\n"); |
|
3631 ew32(CTRL, (ctrl | E1000_CTRL_RST)); |
|
3632 /* cannot issue a flush here because it hangs the hardware */ |
|
3633 msleep(20); |
|
3634 |
|
3635 /* Set Phy Config Counter to 50msec */ |
|
3636 if (hw->mac.type == e1000_pch2lan) { |
|
3637 reg = er32(FEXTNVM3); |
|
3638 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK; |
|
3639 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC; |
|
3640 ew32(FEXTNVM3, reg); |
|
3641 } |
|
3642 |
|
3643 if (!ret_val) |
|
3644 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state); |
|
3645 |
|
3646 if (ctrl & E1000_CTRL_PHY_RST) { |
|
3647 ret_val = hw->phy.ops.get_cfg_done(hw); |
|
3648 if (ret_val) |
|
3649 return ret_val; |
|
3650 |
|
3651 ret_val = e1000_post_phy_reset_ich8lan(hw); |
|
3652 if (ret_val) |
|
3653 return ret_val; |
|
3654 } |
|
3655 |
|
3656 /* For PCH, this write will make sure that any noise |
|
3657 * will be detected as a CRC error and be dropped rather than show up |
|
3658 * as a bad packet to the DMA engine. |
|
3659 */ |
|
3660 if (hw->mac.type == e1000_pchlan) |
|
3661 ew32(CRC_OFFSET, 0x65656565); |
|
3662 |
|
3663 ew32(IMC, 0xffffffff); |
|
3664 er32(ICR); |
|
3665 |
|
3666 reg = er32(KABGTXD); |
|
3667 reg |= E1000_KABGTXD_BGSQLBIAS; |
|
3668 ew32(KABGTXD, reg); |
|
3669 |
|
3670 return 0; |
|
3671 } |
|
3672 |
|
3673 /** |
|
3674 * e1000_init_hw_ich8lan - Initialize the hardware |
|
3675 * @hw: pointer to the HW structure |
|
3676 * |
|
3677 * Prepares the hardware for transmit and receive by doing the following: |
|
3678 * - initialize hardware bits |
|
3679 * - initialize LED identification |
|
3680 * - setup receive address registers |
|
3681 * - setup flow control |
|
3682 * - setup transmit descriptors |
|
3683 * - clear statistics |
|
3684 **/ |
|
3685 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw) |
|
3686 { |
|
3687 struct e1000_mac_info *mac = &hw->mac; |
|
3688 u32 ctrl_ext, txdctl, snoop; |
|
3689 s32 ret_val; |
|
3690 u16 i; |
|
3691 |
|
3692 e1000_initialize_hw_bits_ich8lan(hw); |
|
3693 |
|
3694 /* Initialize identification LED */ |
|
3695 ret_val = mac->ops.id_led_init(hw); |
|
3696 /* An error is not fatal and we should not stop init due to this */ |
|
3697 if (ret_val) |
|
3698 e_dbg("Error initializing identification LED\n"); |
|
3699 |
|
3700 /* Setup the receive address. */ |
|
3701 e1000e_init_rx_addrs(hw, mac->rar_entry_count); |
|
3702 |
|
3703 /* Zero out the Multicast HASH table */ |
|
3704 e_dbg("Zeroing the MTA\n"); |
|
3705 for (i = 0; i < mac->mta_reg_count; i++) |
|
3706 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); |
|
3707 |
|
3708 /* The 82578 Rx buffer will stall if wakeup is enabled in host and |
|
3709 * the ME. Disable wakeup by clearing the host wakeup bit. |
|
3710 * Reset the phy after disabling host wakeup to reset the Rx buffer. |
|
3711 */ |
|
3712 if (hw->phy.type == e1000_phy_82578) { |
|
3713 e1e_rphy(hw, BM_PORT_GEN_CFG, &i); |
|
3714 i &= ~BM_WUC_HOST_WU_BIT; |
|
3715 e1e_wphy(hw, BM_PORT_GEN_CFG, i); |
|
3716 ret_val = e1000_phy_hw_reset_ich8lan(hw); |
|
3717 if (ret_val) |
|
3718 return ret_val; |
|
3719 } |
|
3720 |
|
3721 /* Setup link and flow control */ |
|
3722 ret_val = mac->ops.setup_link(hw); |
|
3723 |
|
3724 /* Set the transmit descriptor write-back policy for both queues */ |
|
3725 txdctl = er32(TXDCTL(0)); |
|
3726 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) | |
|
3727 E1000_TXDCTL_FULL_TX_DESC_WB); |
|
3728 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) | |
|
3729 E1000_TXDCTL_MAX_TX_DESC_PREFETCH); |
|
3730 ew32(TXDCTL(0), txdctl); |
|
3731 txdctl = er32(TXDCTL(1)); |
|
3732 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) | |
|
3733 E1000_TXDCTL_FULL_TX_DESC_WB); |
|
3734 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) | |
|
3735 E1000_TXDCTL_MAX_TX_DESC_PREFETCH); |
|
3736 ew32(TXDCTL(1), txdctl); |
|
3737 |
|
3738 /* ICH8 has opposite polarity of no_snoop bits. |
|
3739 * By default, we should use snoop behavior. |
|
3740 */ |
|
3741 if (mac->type == e1000_ich8lan) |
|
3742 snoop = PCIE_ICH8_SNOOP_ALL; |
|
3743 else |
|
3744 snoop = (u32)~(PCIE_NO_SNOOP_ALL); |
|
3745 e1000e_set_pcie_no_snoop(hw, snoop); |
|
3746 |
|
3747 ctrl_ext = er32(CTRL_EXT); |
|
3748 ctrl_ext |= E1000_CTRL_EXT_RO_DIS; |
|
3749 ew32(CTRL_EXT, ctrl_ext); |
|
3750 |
|
3751 /* Clear all of the statistics registers (clear on read). It is |
|
3752 * important that we do this after we have tried to establish link |
|
3753 * because the symbol error count will increment wildly if there |
|
3754 * is no link. |
|
3755 */ |
|
3756 e1000_clear_hw_cntrs_ich8lan(hw); |
|
3757 |
|
3758 return ret_val; |
|
3759 } |
|
3760 |
|
3761 /** |
|
3762 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits |
|
3763 * @hw: pointer to the HW structure |
|
3764 * |
|
3765 * Sets/Clears required hardware bits necessary for correctly setting up the |
|
3766 * hardware for transmit and receive. |
|
3767 **/ |
|
3768 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw) |
|
3769 { |
|
3770 u32 reg; |
|
3771 |
|
3772 /* Extended Device Control */ |
|
3773 reg = er32(CTRL_EXT); |
|
3774 reg |= (1 << 22); |
|
3775 /* Enable PHY low-power state when MAC is at D3 w/o WoL */ |
|
3776 if (hw->mac.type >= e1000_pchlan) |
|
3777 reg |= E1000_CTRL_EXT_PHYPDEN; |
|
3778 ew32(CTRL_EXT, reg); |
|
3779 |
|
3780 /* Transmit Descriptor Control 0 */ |
|
3781 reg = er32(TXDCTL(0)); |
|
3782 reg |= (1 << 22); |
|
3783 ew32(TXDCTL(0), reg); |
|
3784 |
|
3785 /* Transmit Descriptor Control 1 */ |
|
3786 reg = er32(TXDCTL(1)); |
|
3787 reg |= (1 << 22); |
|
3788 ew32(TXDCTL(1), reg); |
|
3789 |
|
3790 /* Transmit Arbitration Control 0 */ |
|
3791 reg = er32(TARC(0)); |
|
3792 if (hw->mac.type == e1000_ich8lan) |
|
3793 reg |= (1 << 28) | (1 << 29); |
|
3794 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27); |
|
3795 ew32(TARC(0), reg); |
|
3796 |
|
3797 /* Transmit Arbitration Control 1 */ |
|
3798 reg = er32(TARC(1)); |
|
3799 if (er32(TCTL) & E1000_TCTL_MULR) |
|
3800 reg &= ~(1 << 28); |
|
3801 else |
|
3802 reg |= (1 << 28); |
|
3803 reg |= (1 << 24) | (1 << 26) | (1 << 30); |
|
3804 ew32(TARC(1), reg); |
|
3805 |
|
3806 /* Device Status */ |
|
3807 if (hw->mac.type == e1000_ich8lan) { |
|
3808 reg = er32(STATUS); |
|
3809 reg &= ~(1 << 31); |
|
3810 ew32(STATUS, reg); |
|
3811 } |
|
3812 |
|
3813 /* work-around descriptor data corruption issue during nfs v2 udp |
|
3814 * traffic, just disable the nfs filtering capability |
|
3815 */ |
|
3816 reg = er32(RFCTL); |
|
3817 reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS); |
|
3818 |
|
3819 /* Disable IPv6 extension header parsing because some malformed |
|
3820 * IPv6 headers can hang the Rx. |
|
3821 */ |
|
3822 if (hw->mac.type == e1000_ich8lan) |
|
3823 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS); |
|
3824 ew32(RFCTL, reg); |
|
3825 |
|
3826 /* Enable ECC on Lynxpoint */ |
|
3827 if (hw->mac.type == e1000_pch_lpt) { |
|
3828 reg = er32(PBECCSTS); |
|
3829 reg |= E1000_PBECCSTS_ECC_ENABLE; |
|
3830 ew32(PBECCSTS, reg); |
|
3831 |
|
3832 reg = er32(CTRL); |
|
3833 reg |= E1000_CTRL_MEHE; |
|
3834 ew32(CTRL, reg); |
|
3835 } |
|
3836 } |
|
3837 |
|
3838 /** |
|
3839 * e1000_setup_link_ich8lan - Setup flow control and link settings |
|
3840 * @hw: pointer to the HW structure |
|
3841 * |
|
3842 * Determines which flow control settings to use, then configures flow |
|
3843 * control. Calls the appropriate media-specific link configuration |
|
3844 * function. Assuming the adapter has a valid link partner, a valid link |
|
3845 * should be established. Assumes the hardware has previously been reset |
|
3846 * and the transmitter and receiver are not enabled. |
|
3847 **/ |
|
3848 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw) |
|
3849 { |
|
3850 s32 ret_val; |
|
3851 |
|
3852 if (hw->phy.ops.check_reset_block(hw)) |
|
3853 return 0; |
|
3854 |
|
3855 /* ICH parts do not have a word in the NVM to determine |
|
3856 * the default flow control setting, so we explicitly |
|
3857 * set it to full. |
|
3858 */ |
|
3859 if (hw->fc.requested_mode == e1000_fc_default) { |
|
3860 /* Workaround h/w hang when Tx flow control enabled */ |
|
3861 if (hw->mac.type == e1000_pchlan) |
|
3862 hw->fc.requested_mode = e1000_fc_rx_pause; |
|
3863 else |
|
3864 hw->fc.requested_mode = e1000_fc_full; |
|
3865 } |
|
3866 |
|
3867 /* Save off the requested flow control mode for use later. Depending |
|
3868 * on the link partner's capabilities, we may or may not use this mode. |
|
3869 */ |
|
3870 hw->fc.current_mode = hw->fc.requested_mode; |
|
3871 |
|
3872 e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode); |
|
3873 |
|
3874 /* Continue to configure the copper link. */ |
|
3875 ret_val = hw->mac.ops.setup_physical_interface(hw); |
|
3876 if (ret_val) |
|
3877 return ret_val; |
|
3878 |
|
3879 ew32(FCTTV, hw->fc.pause_time); |
|
3880 if ((hw->phy.type == e1000_phy_82578) || |
|
3881 (hw->phy.type == e1000_phy_82579) || |
|
3882 (hw->phy.type == e1000_phy_i217) || |
|
3883 (hw->phy.type == e1000_phy_82577)) { |
|
3884 ew32(FCRTV_PCH, hw->fc.refresh_time); |
|
3885 |
|
3886 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27), |
|
3887 hw->fc.pause_time); |
|
3888 if (ret_val) |
|
3889 return ret_val; |
|
3890 } |
|
3891 |
|
3892 return e1000e_set_fc_watermarks(hw); |
|
3893 } |
|
3894 |
|
3895 /** |
|
3896 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface |
|
3897 * @hw: pointer to the HW structure |
|
3898 * |
|
3899 * Configures the kumeran interface to the PHY to wait the appropriate time |
|
3900 * when polling the PHY, then call the generic setup_copper_link to finish |
|
3901 * configuring the copper link. |
|
3902 **/ |
|
3903 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw) |
|
3904 { |
|
3905 u32 ctrl; |
|
3906 s32 ret_val; |
|
3907 u16 reg_data; |
|
3908 |
|
3909 ctrl = er32(CTRL); |
|
3910 ctrl |= E1000_CTRL_SLU; |
|
3911 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
|
3912 ew32(CTRL, ctrl); |
|
3913 |
|
3914 /* Set the mac to wait the maximum time between each iteration |
|
3915 * and increase the max iterations when polling the phy; |
|
3916 * this fixes erroneous timeouts at 10Mbps. |
|
3917 */ |
|
3918 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF); |
|
3919 if (ret_val) |
|
3920 return ret_val; |
|
3921 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, |
|
3922 ®_data); |
|
3923 if (ret_val) |
|
3924 return ret_val; |
|
3925 reg_data |= 0x3F; |
|
3926 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, |
|
3927 reg_data); |
|
3928 if (ret_val) |
|
3929 return ret_val; |
|
3930 |
|
3931 switch (hw->phy.type) { |
|
3932 case e1000_phy_igp_3: |
|
3933 ret_val = e1000e_copper_link_setup_igp(hw); |
|
3934 if (ret_val) |
|
3935 return ret_val; |
|
3936 break; |
|
3937 case e1000_phy_bm: |
|
3938 case e1000_phy_82578: |
|
3939 ret_val = e1000e_copper_link_setup_m88(hw); |
|
3940 if (ret_val) |
|
3941 return ret_val; |
|
3942 break; |
|
3943 case e1000_phy_82577: |
|
3944 case e1000_phy_82579: |
|
3945 ret_val = e1000_copper_link_setup_82577(hw); |
|
3946 if (ret_val) |
|
3947 return ret_val; |
|
3948 break; |
|
3949 case e1000_phy_ife: |
|
3950 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, ®_data); |
|
3951 if (ret_val) |
|
3952 return ret_val; |
|
3953 |
|
3954 reg_data &= ~IFE_PMC_AUTO_MDIX; |
|
3955 |
|
3956 switch (hw->phy.mdix) { |
|
3957 case 1: |
|
3958 reg_data &= ~IFE_PMC_FORCE_MDIX; |
|
3959 break; |
|
3960 case 2: |
|
3961 reg_data |= IFE_PMC_FORCE_MDIX; |
|
3962 break; |
|
3963 case 0: |
|
3964 default: |
|
3965 reg_data |= IFE_PMC_AUTO_MDIX; |
|
3966 break; |
|
3967 } |
|
3968 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data); |
|
3969 if (ret_val) |
|
3970 return ret_val; |
|
3971 break; |
|
3972 default: |
|
3973 break; |
|
3974 } |
|
3975 |
|
3976 return e1000e_setup_copper_link(hw); |
|
3977 } |
|
3978 |
|
3979 /** |
|
3980 * e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface |
|
3981 * @hw: pointer to the HW structure |
|
3982 * |
|
3983 * Calls the PHY specific link setup function and then calls the |
|
3984 * generic setup_copper_link to finish configuring the link for |
|
3985 * Lynxpoint PCH devices |
|
3986 **/ |
|
3987 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw) |
|
3988 { |
|
3989 u32 ctrl; |
|
3990 s32 ret_val; |
|
3991 |
|
3992 ctrl = er32(CTRL); |
|
3993 ctrl |= E1000_CTRL_SLU; |
|
3994 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
|
3995 ew32(CTRL, ctrl); |
|
3996 |
|
3997 ret_val = e1000_copper_link_setup_82577(hw); |
|
3998 if (ret_val) |
|
3999 return ret_val; |
|
4000 |
|
4001 return e1000e_setup_copper_link(hw); |
|
4002 } |
|
4003 |
|
4004 /** |
|
4005 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex |
|
4006 * @hw: pointer to the HW structure |
|
4007 * @speed: pointer to store current link speed |
|
4008 * @duplex: pointer to store the current link duplex |
|
4009 * |
|
4010 * Calls the generic get_speed_and_duplex to retrieve the current link |
|
4011 * information and then calls the Kumeran lock loss workaround for links at |
|
4012 * gigabit speeds. |
|
4013 **/ |
|
4014 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed, |
|
4015 u16 *duplex) |
|
4016 { |
|
4017 s32 ret_val; |
|
4018 |
|
4019 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex); |
|
4020 if (ret_val) |
|
4021 return ret_val; |
|
4022 |
|
4023 if ((hw->mac.type == e1000_ich8lan) && |
|
4024 (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) { |
|
4025 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw); |
|
4026 } |
|
4027 |
|
4028 return ret_val; |
|
4029 } |
|
4030 |
|
4031 /** |
|
4032 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround |
|
4033 * @hw: pointer to the HW structure |
|
4034 * |
|
4035 * Work-around for 82566 Kumeran PCS lock loss: |
|
4036 * On link status change (i.e. PCI reset, speed change) and link is up and |
|
4037 * speed is gigabit- |
|
4038 * 0) if workaround is optionally disabled do nothing |
|
4039 * 1) wait 1ms for Kumeran link to come up |
|
4040 * 2) check Kumeran Diagnostic register PCS lock loss bit |
|
4041 * 3) if not set the link is locked (all is good), otherwise... |
|
4042 * 4) reset the PHY |
|
4043 * 5) repeat up to 10 times |
|
4044 * Note: this is only called for IGP3 copper when speed is 1gb. |
|
4045 **/ |
|
4046 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw) |
|
4047 { |
|
4048 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; |
|
4049 u32 phy_ctrl; |
|
4050 s32 ret_val; |
|
4051 u16 i, data; |
|
4052 bool link; |
|
4053 |
|
4054 if (!dev_spec->kmrn_lock_loss_workaround_enabled) |
|
4055 return 0; |
|
4056 |
|
4057 /* Make sure link is up before proceeding. If not just return. |
|
4058 * Attempting this while link is negotiating fouled up link |
|
4059 * stability |
|
4060 */ |
|
4061 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); |
|
4062 if (!link) |
|
4063 return 0; |
|
4064 |
|
4065 for (i = 0; i < 10; i++) { |
|
4066 /* read once to clear */ |
|
4067 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data); |
|
4068 if (ret_val) |
|
4069 return ret_val; |
|
4070 /* and again to get new status */ |
|
4071 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data); |
|
4072 if (ret_val) |
|
4073 return ret_val; |
|
4074 |
|
4075 /* check for PCS lock */ |
|
4076 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) |
|
4077 return 0; |
|
4078 |
|
4079 /* Issue PHY reset */ |
|
4080 e1000_phy_hw_reset(hw); |
|
4081 mdelay(5); |
|
4082 } |
|
4083 /* Disable GigE link negotiation */ |
|
4084 phy_ctrl = er32(PHY_CTRL); |
|
4085 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE | |
|
4086 E1000_PHY_CTRL_NOND0A_GBE_DISABLE); |
|
4087 ew32(PHY_CTRL, phy_ctrl); |
|
4088 |
|
4089 /* Call gig speed drop workaround on Gig disable before accessing |
|
4090 * any PHY registers |
|
4091 */ |
|
4092 e1000e_gig_downshift_workaround_ich8lan(hw); |
|
4093 |
|
4094 /* unable to acquire PCS lock */ |
|
4095 return -E1000_ERR_PHY; |
|
4096 } |
|
4097 |
|
4098 /** |
|
4099 * e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state |
|
4100 * @hw: pointer to the HW structure |
|
4101 * @state: boolean value used to set the current Kumeran workaround state |
|
4102 * |
|
4103 * If ICH8, set the current Kumeran workaround state (enabled - true |
|
4104 * /disabled - false). |
|
4105 **/ |
|
4106 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw, |
|
4107 bool state) |
|
4108 { |
|
4109 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; |
|
4110 |
|
4111 if (hw->mac.type != e1000_ich8lan) { |
|
4112 e_dbg("Workaround applies to ICH8 only.\n"); |
|
4113 return; |
|
4114 } |
|
4115 |
|
4116 dev_spec->kmrn_lock_loss_workaround_enabled = state; |
|
4117 } |
|
4118 |
|
4119 /** |
|
4120 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3 |
|
4121 * @hw: pointer to the HW structure |
|
4122 * |
|
4123 * Workaround for 82566 power-down on D3 entry: |
|
4124 * 1) disable gigabit link |
|
4125 * 2) write VR power-down enable |
|
4126 * 3) read it back |
|
4127 * Continue if successful, else issue LCD reset and repeat |
|
4128 **/ |
|
4129 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw) |
|
4130 { |
|
4131 u32 reg; |
|
4132 u16 data; |
|
4133 u8 retry = 0; |
|
4134 |
|
4135 if (hw->phy.type != e1000_phy_igp_3) |
|
4136 return; |
|
4137 |
|
4138 /* Try the workaround twice (if needed) */ |
|
4139 do { |
|
4140 /* Disable link */ |
|
4141 reg = er32(PHY_CTRL); |
|
4142 reg |= (E1000_PHY_CTRL_GBE_DISABLE | |
|
4143 E1000_PHY_CTRL_NOND0A_GBE_DISABLE); |
|
4144 ew32(PHY_CTRL, reg); |
|
4145 |
|
4146 /* Call gig speed drop workaround on Gig disable before |
|
4147 * accessing any PHY registers |
|
4148 */ |
|
4149 if (hw->mac.type == e1000_ich8lan) |
|
4150 e1000e_gig_downshift_workaround_ich8lan(hw); |
|
4151 |
|
4152 /* Write VR power-down enable */ |
|
4153 e1e_rphy(hw, IGP3_VR_CTRL, &data); |
|
4154 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; |
|
4155 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN); |
|
4156 |
|
4157 /* Read it back and test */ |
|
4158 e1e_rphy(hw, IGP3_VR_CTRL, &data); |
|
4159 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; |
|
4160 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry) |
|
4161 break; |
|
4162 |
|
4163 /* Issue PHY reset and repeat at most one more time */ |
|
4164 reg = er32(CTRL); |
|
4165 ew32(CTRL, reg | E1000_CTRL_PHY_RST); |
|
4166 retry++; |
|
4167 } while (retry); |
|
4168 } |
|
4169 |
|
4170 /** |
|
4171 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working |
|
4172 * @hw: pointer to the HW structure |
|
4173 * |
|
4174 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC), |
|
4175 * LPLU, Gig disable, MDIC PHY reset): |
|
4176 * 1) Set Kumeran Near-end loopback |
|
4177 * 2) Clear Kumeran Near-end loopback |
|
4178 * Should only be called for ICH8[m] devices with any 1G Phy. |
|
4179 **/ |
|
4180 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw) |
|
4181 { |
|
4182 s32 ret_val; |
|
4183 u16 reg_data; |
|
4184 |
|
4185 if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife)) |
|
4186 return; |
|
4187 |
|
4188 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, |
|
4189 ®_data); |
|
4190 if (ret_val) |
|
4191 return; |
|
4192 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK; |
|
4193 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, |
|
4194 reg_data); |
|
4195 if (ret_val) |
|
4196 return; |
|
4197 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK; |
|
4198 e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data); |
|
4199 } |
|
4200 |
|
4201 /** |
|
4202 * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx |
|
4203 * @hw: pointer to the HW structure |
|
4204 * |
|
4205 * During S0 to Sx transition, it is possible the link remains at gig |
|
4206 * instead of negotiating to a lower speed. Before going to Sx, set |
|
4207 * 'Gig Disable' to force link speed negotiation to a lower speed based on |
|
4208 * the LPLU setting in the NVM or custom setting. For PCH and newer parts, |
|
4209 * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also |
|
4210 * needs to be written. |
|
4211 * Parts that support (and are linked to a partner which support) EEE in |
|
4212 * 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power |
|
4213 * than 10Mbps w/o EEE. |
|
4214 **/ |
|
4215 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw) |
|
4216 { |
|
4217 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; |
|
4218 u32 phy_ctrl; |
|
4219 s32 ret_val; |
|
4220 |
|
4221 phy_ctrl = er32(PHY_CTRL); |
|
4222 phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE; |
|
4223 |
|
4224 if (hw->phy.type == e1000_phy_i217) { |
|
4225 u16 phy_reg, device_id = hw->adapter->pdev->device; |
|
4226 |
|
4227 if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) || |
|
4228 (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) || |
|
4229 (device_id == E1000_DEV_ID_PCH_I218_LM3) || |
|
4230 (device_id == E1000_DEV_ID_PCH_I218_V3)) { |
|
4231 u32 fextnvm6 = er32(FEXTNVM6); |
|
4232 |
|
4233 ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK); |
|
4234 } |
|
4235 |
|
4236 ret_val = hw->phy.ops.acquire(hw); |
|
4237 if (ret_val) |
|
4238 goto out; |
|
4239 |
|
4240 if (!dev_spec->eee_disable) { |
|
4241 u16 eee_advert; |
|
4242 |
|
4243 ret_val = |
|
4244 e1000_read_emi_reg_locked(hw, |
|
4245 I217_EEE_ADVERTISEMENT, |
|
4246 &eee_advert); |
|
4247 if (ret_val) |
|
4248 goto release; |
|
4249 |
|
4250 /* Disable LPLU if both link partners support 100BaseT |
|
4251 * EEE and 100Full is advertised on both ends of the |
|
4252 * link. |
|
4253 */ |
|
4254 if ((eee_advert & I82579_EEE_100_SUPPORTED) && |
|
4255 (dev_spec->eee_lp_ability & |
|
4256 I82579_EEE_100_SUPPORTED) && |
|
4257 (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) |
|
4258 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU | |
|
4259 E1000_PHY_CTRL_NOND0A_LPLU); |
|
4260 } |
|
4261 |
|
4262 /* For i217 Intel Rapid Start Technology support, |
|
4263 * when the system is going into Sx and no manageability engine |
|
4264 * is present, the driver must configure proxy to reset only on |
|
4265 * power good. LPI (Low Power Idle) state must also reset only |
|
4266 * on power good, as well as the MTA (Multicast table array). |
|
4267 * The SMBus release must also be disabled on LCD reset. |
|
4268 */ |
|
4269 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { |
|
4270 /* Enable proxy to reset only on power good. */ |
|
4271 e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg); |
|
4272 phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE; |
|
4273 e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg); |
|
4274 |
|
4275 /* Set bit enable LPI (EEE) to reset only on |
|
4276 * power good. |
|
4277 */ |
|
4278 e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg); |
|
4279 phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET; |
|
4280 e1e_wphy_locked(hw, I217_SxCTRL, phy_reg); |
|
4281 |
|
4282 /* Disable the SMB release on LCD reset. */ |
|
4283 e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg); |
|
4284 phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE; |
|
4285 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg); |
|
4286 } |
|
4287 |
|
4288 /* Enable MTA to reset for Intel Rapid Start Technology |
|
4289 * Support |
|
4290 */ |
|
4291 e1e_rphy_locked(hw, I217_CGFREG, &phy_reg); |
|
4292 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET; |
|
4293 e1e_wphy_locked(hw, I217_CGFREG, phy_reg); |
|
4294 |
|
4295 release: |
|
4296 hw->phy.ops.release(hw); |
|
4297 } |
|
4298 out: |
|
4299 ew32(PHY_CTRL, phy_ctrl); |
|
4300 |
|
4301 if (hw->mac.type == e1000_ich8lan) |
|
4302 e1000e_gig_downshift_workaround_ich8lan(hw); |
|
4303 |
|
4304 if (hw->mac.type >= e1000_pchlan) { |
|
4305 e1000_oem_bits_config_ich8lan(hw, false); |
|
4306 |
|
4307 /* Reset PHY to activate OEM bits on 82577/8 */ |
|
4308 if (hw->mac.type == e1000_pchlan) |
|
4309 e1000e_phy_hw_reset_generic(hw); |
|
4310 |
|
4311 ret_val = hw->phy.ops.acquire(hw); |
|
4312 if (ret_val) |
|
4313 return; |
|
4314 e1000_write_smbus_addr(hw); |
|
4315 hw->phy.ops.release(hw); |
|
4316 } |
|
4317 } |
|
4318 |
|
4319 /** |
|
4320 * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0 |
|
4321 * @hw: pointer to the HW structure |
|
4322 * |
|
4323 * During Sx to S0 transitions on non-managed devices or managed devices |
|
4324 * on which PHY resets are not blocked, if the PHY registers cannot be |
|
4325 * accessed properly by the s/w toggle the LANPHYPC value to power cycle |
|
4326 * the PHY. |
|
4327 * On i217, setup Intel Rapid Start Technology. |
|
4328 **/ |
|
4329 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw) |
|
4330 { |
|
4331 s32 ret_val; |
|
4332 |
|
4333 if (hw->mac.type < e1000_pch2lan) |
|
4334 return; |
|
4335 |
|
4336 ret_val = e1000_init_phy_workarounds_pchlan(hw); |
|
4337 if (ret_val) { |
|
4338 e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val); |
|
4339 return; |
|
4340 } |
|
4341 |
|
4342 /* For i217 Intel Rapid Start Technology support when the system |
|
4343 * is transitioning from Sx and no manageability engine is present |
|
4344 * configure SMBus to restore on reset, disable proxy, and enable |
|
4345 * the reset on MTA (Multicast table array). |
|
4346 */ |
|
4347 if (hw->phy.type == e1000_phy_i217) { |
|
4348 u16 phy_reg; |
|
4349 |
|
4350 ret_val = hw->phy.ops.acquire(hw); |
|
4351 if (ret_val) { |
|
4352 e_dbg("Failed to setup iRST\n"); |
|
4353 return; |
|
4354 } |
|
4355 |
|
4356 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { |
|
4357 /* Restore clear on SMB if no manageability engine |
|
4358 * is present |
|
4359 */ |
|
4360 ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg); |
|
4361 if (ret_val) |
|
4362 goto release; |
|
4363 phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE; |
|
4364 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg); |
|
4365 |
|
4366 /* Disable Proxy */ |
|
4367 e1e_wphy_locked(hw, I217_PROXY_CTRL, 0); |
|
4368 } |
|
4369 /* Enable reset on MTA */ |
|
4370 ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg); |
|
4371 if (ret_val) |
|
4372 goto release; |
|
4373 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET; |
|
4374 e1e_wphy_locked(hw, I217_CGFREG, phy_reg); |
|
4375 release: |
|
4376 if (ret_val) |
|
4377 e_dbg("Error %d in resume workarounds\n", ret_val); |
|
4378 hw->phy.ops.release(hw); |
|
4379 } |
|
4380 } |
|
4381 |
|
4382 /** |
|
4383 * e1000_cleanup_led_ich8lan - Restore the default LED operation |
|
4384 * @hw: pointer to the HW structure |
|
4385 * |
|
4386 * Return the LED back to the default configuration. |
|
4387 **/ |
|
4388 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw) |
|
4389 { |
|
4390 if (hw->phy.type == e1000_phy_ife) |
|
4391 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); |
|
4392 |
|
4393 ew32(LEDCTL, hw->mac.ledctl_default); |
|
4394 return 0; |
|
4395 } |
|
4396 |
|
4397 /** |
|
4398 * e1000_led_on_ich8lan - Turn LEDs on |
|
4399 * @hw: pointer to the HW structure |
|
4400 * |
|
4401 * Turn on the LEDs. |
|
4402 **/ |
|
4403 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw) |
|
4404 { |
|
4405 if (hw->phy.type == e1000_phy_ife) |
|
4406 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, |
|
4407 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON)); |
|
4408 |
|
4409 ew32(LEDCTL, hw->mac.ledctl_mode2); |
|
4410 return 0; |
|
4411 } |
|
4412 |
|
4413 /** |
|
4414 * e1000_led_off_ich8lan - Turn LEDs off |
|
4415 * @hw: pointer to the HW structure |
|
4416 * |
|
4417 * Turn off the LEDs. |
|
4418 **/ |
|
4419 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw) |
|
4420 { |
|
4421 if (hw->phy.type == e1000_phy_ife) |
|
4422 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, |
|
4423 (IFE_PSCL_PROBE_MODE | |
|
4424 IFE_PSCL_PROBE_LEDS_OFF)); |
|
4425 |
|
4426 ew32(LEDCTL, hw->mac.ledctl_mode1); |
|
4427 return 0; |
|
4428 } |
|
4429 |
|
4430 /** |
|
4431 * e1000_setup_led_pchlan - Configures SW controllable LED |
|
4432 * @hw: pointer to the HW structure |
|
4433 * |
|
4434 * This prepares the SW controllable LED for use. |
|
4435 **/ |
|
4436 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw) |
|
4437 { |
|
4438 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1); |
|
4439 } |
|
4440 |
|
4441 /** |
|
4442 * e1000_cleanup_led_pchlan - Restore the default LED operation |
|
4443 * @hw: pointer to the HW structure |
|
4444 * |
|
4445 * Return the LED back to the default configuration. |
|
4446 **/ |
|
4447 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw) |
|
4448 { |
|
4449 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default); |
|
4450 } |
|
4451 |
|
4452 /** |
|
4453 * e1000_led_on_pchlan - Turn LEDs on |
|
4454 * @hw: pointer to the HW structure |
|
4455 * |
|
4456 * Turn on the LEDs. |
|
4457 **/ |
|
4458 static s32 e1000_led_on_pchlan(struct e1000_hw *hw) |
|
4459 { |
|
4460 u16 data = (u16)hw->mac.ledctl_mode2; |
|
4461 u32 i, led; |
|
4462 |
|
4463 /* If no link, then turn LED on by setting the invert bit |
|
4464 * for each LED that's mode is "link_up" in ledctl_mode2. |
|
4465 */ |
|
4466 if (!(er32(STATUS) & E1000_STATUS_LU)) { |
|
4467 for (i = 0; i < 3; i++) { |
|
4468 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; |
|
4469 if ((led & E1000_PHY_LED0_MODE_MASK) != |
|
4470 E1000_LEDCTL_MODE_LINK_UP) |
|
4471 continue; |
|
4472 if (led & E1000_PHY_LED0_IVRT) |
|
4473 data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); |
|
4474 else |
|
4475 data |= (E1000_PHY_LED0_IVRT << (i * 5)); |
|
4476 } |
|
4477 } |
|
4478 |
|
4479 return e1e_wphy(hw, HV_LED_CONFIG, data); |
|
4480 } |
|
4481 |
|
4482 /** |
|
4483 * e1000_led_off_pchlan - Turn LEDs off |
|
4484 * @hw: pointer to the HW structure |
|
4485 * |
|
4486 * Turn off the LEDs. |
|
4487 **/ |
|
4488 static s32 e1000_led_off_pchlan(struct e1000_hw *hw) |
|
4489 { |
|
4490 u16 data = (u16)hw->mac.ledctl_mode1; |
|
4491 u32 i, led; |
|
4492 |
|
4493 /* If no link, then turn LED off by clearing the invert bit |
|
4494 * for each LED that's mode is "link_up" in ledctl_mode1. |
|
4495 */ |
|
4496 if (!(er32(STATUS) & E1000_STATUS_LU)) { |
|
4497 for (i = 0; i < 3; i++) { |
|
4498 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; |
|
4499 if ((led & E1000_PHY_LED0_MODE_MASK) != |
|
4500 E1000_LEDCTL_MODE_LINK_UP) |
|
4501 continue; |
|
4502 if (led & E1000_PHY_LED0_IVRT) |
|
4503 data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); |
|
4504 else |
|
4505 data |= (E1000_PHY_LED0_IVRT << (i * 5)); |
|
4506 } |
|
4507 } |
|
4508 |
|
4509 return e1e_wphy(hw, HV_LED_CONFIG, data); |
|
4510 } |
|
4511 |
|
4512 /** |
|
4513 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset |
|
4514 * @hw: pointer to the HW structure |
|
4515 * |
|
4516 * Read appropriate register for the config done bit for completion status |
|
4517 * and configure the PHY through s/w for EEPROM-less parts. |
|
4518 * |
|
4519 * NOTE: some silicon which is EEPROM-less will fail trying to read the |
|
4520 * config done bit, so only an error is logged and continues. If we were |
|
4521 * to return with error, EEPROM-less silicon would not be able to be reset |
|
4522 * or change link. |
|
4523 **/ |
|
4524 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw) |
|
4525 { |
|
4526 s32 ret_val = 0; |
|
4527 u32 bank = 0; |
|
4528 u32 status; |
|
4529 |
|
4530 e1000e_get_cfg_done_generic(hw); |
|
4531 |
|
4532 /* Wait for indication from h/w that it has completed basic config */ |
|
4533 if (hw->mac.type >= e1000_ich10lan) { |
|
4534 e1000_lan_init_done_ich8lan(hw); |
|
4535 } else { |
|
4536 ret_val = e1000e_get_auto_rd_done(hw); |
|
4537 if (ret_val) { |
|
4538 /* When auto config read does not complete, do not |
|
4539 * return with an error. This can happen in situations |
|
4540 * where there is no eeprom and prevents getting link. |
|
4541 */ |
|
4542 e_dbg("Auto Read Done did not complete\n"); |
|
4543 ret_val = 0; |
|
4544 } |
|
4545 } |
|
4546 |
|
4547 /* Clear PHY Reset Asserted bit */ |
|
4548 status = er32(STATUS); |
|
4549 if (status & E1000_STATUS_PHYRA) |
|
4550 ew32(STATUS, status & ~E1000_STATUS_PHYRA); |
|
4551 else |
|
4552 e_dbg("PHY Reset Asserted not set - needs delay\n"); |
|
4553 |
|
4554 /* If EEPROM is not marked present, init the IGP 3 PHY manually */ |
|
4555 if (hw->mac.type <= e1000_ich9lan) { |
|
4556 if (!(er32(EECD) & E1000_EECD_PRES) && |
|
4557 (hw->phy.type == e1000_phy_igp_3)) { |
|
4558 e1000e_phy_init_script_igp3(hw); |
|
4559 } |
|
4560 } else { |
|
4561 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) { |
|
4562 /* Maybe we should do a basic PHY config */ |
|
4563 e_dbg("EEPROM not present\n"); |
|
4564 ret_val = -E1000_ERR_CONFIG; |
|
4565 } |
|
4566 } |
|
4567 |
|
4568 return ret_val; |
|
4569 } |
|
4570 |
|
4571 /** |
|
4572 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down |
|
4573 * @hw: pointer to the HW structure |
|
4574 * |
|
4575 * In the case of a PHY power down to save power, or to turn off link during a |
|
4576 * driver unload, or wake on lan is not enabled, remove the link. |
|
4577 **/ |
|
4578 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw) |
|
4579 { |
|
4580 /* If the management interface is not enabled, then power down */ |
|
4581 if (!(hw->mac.ops.check_mng_mode(hw) || |
|
4582 hw->phy.ops.check_reset_block(hw))) |
|
4583 e1000_power_down_phy_copper(hw); |
|
4584 } |
|
4585 |
|
4586 /** |
|
4587 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters |
|
4588 * @hw: pointer to the HW structure |
|
4589 * |
|
4590 * Clears hardware counters specific to the silicon family and calls |
|
4591 * clear_hw_cntrs_generic to clear all general purpose counters. |
|
4592 **/ |
|
4593 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw) |
|
4594 { |
|
4595 u16 phy_data; |
|
4596 s32 ret_val; |
|
4597 |
|
4598 e1000e_clear_hw_cntrs_base(hw); |
|
4599 |
|
4600 er32(ALGNERRC); |
|
4601 er32(RXERRC); |
|
4602 er32(TNCRS); |
|
4603 er32(CEXTERR); |
|
4604 er32(TSCTC); |
|
4605 er32(TSCTFC); |
|
4606 |
|
4607 er32(MGTPRC); |
|
4608 er32(MGTPDC); |
|
4609 er32(MGTPTC); |
|
4610 |
|
4611 er32(IAC); |
|
4612 er32(ICRXOC); |
|
4613 |
|
4614 /* Clear PHY statistics registers */ |
|
4615 if ((hw->phy.type == e1000_phy_82578) || |
|
4616 (hw->phy.type == e1000_phy_82579) || |
|
4617 (hw->phy.type == e1000_phy_i217) || |
|
4618 (hw->phy.type == e1000_phy_82577)) { |
|
4619 ret_val = hw->phy.ops.acquire(hw); |
|
4620 if (ret_val) |
|
4621 return; |
|
4622 ret_val = hw->phy.ops.set_page(hw, |
|
4623 HV_STATS_PAGE << IGP_PAGE_SHIFT); |
|
4624 if (ret_val) |
|
4625 goto release; |
|
4626 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data); |
|
4627 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data); |
|
4628 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data); |
|
4629 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data); |
|
4630 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data); |
|
4631 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data); |
|
4632 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data); |
|
4633 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data); |
|
4634 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data); |
|
4635 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data); |
|
4636 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data); |
|
4637 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data); |
|
4638 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data); |
|
4639 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data); |
|
4640 release: |
|
4641 hw->phy.ops.release(hw); |
|
4642 } |
|
4643 } |
|
4644 |
|
4645 static const struct e1000_mac_operations ich8_mac_ops = { |
|
4646 /* check_mng_mode dependent on mac type */ |
|
4647 .check_for_link = e1000_check_for_copper_link_ich8lan, |
|
4648 /* cleanup_led dependent on mac type */ |
|
4649 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan, |
|
4650 .get_bus_info = e1000_get_bus_info_ich8lan, |
|
4651 .set_lan_id = e1000_set_lan_id_single_port, |
|
4652 .get_link_up_info = e1000_get_link_up_info_ich8lan, |
|
4653 /* led_on dependent on mac type */ |
|
4654 /* led_off dependent on mac type */ |
|
4655 .update_mc_addr_list = e1000e_update_mc_addr_list_generic, |
|
4656 .reset_hw = e1000_reset_hw_ich8lan, |
|
4657 .init_hw = e1000_init_hw_ich8lan, |
|
4658 .setup_link = e1000_setup_link_ich8lan, |
|
4659 .setup_physical_interface = e1000_setup_copper_link_ich8lan, |
|
4660 /* id_led_init dependent on mac type */ |
|
4661 .config_collision_dist = e1000e_config_collision_dist_generic, |
|
4662 .rar_set = e1000e_rar_set_generic, |
|
4663 }; |
|
4664 |
|
4665 static const struct e1000_phy_operations ich8_phy_ops = { |
|
4666 .acquire = e1000_acquire_swflag_ich8lan, |
|
4667 .check_reset_block = e1000_check_reset_block_ich8lan, |
|
4668 .commit = NULL, |
|
4669 .get_cfg_done = e1000_get_cfg_done_ich8lan, |
|
4670 .get_cable_length = e1000e_get_cable_length_igp_2, |
|
4671 .read_reg = e1000e_read_phy_reg_igp, |
|
4672 .release = e1000_release_swflag_ich8lan, |
|
4673 .reset = e1000_phy_hw_reset_ich8lan, |
|
4674 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan, |
|
4675 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan, |
|
4676 .write_reg = e1000e_write_phy_reg_igp, |
|
4677 }; |
|
4678 |
|
4679 static const struct e1000_nvm_operations ich8_nvm_ops = { |
|
4680 .acquire = e1000_acquire_nvm_ich8lan, |
|
4681 .read = e1000_read_nvm_ich8lan, |
|
4682 .release = e1000_release_nvm_ich8lan, |
|
4683 .reload = e1000e_reload_nvm_generic, |
|
4684 .update = e1000_update_nvm_checksum_ich8lan, |
|
4685 .valid_led_default = e1000_valid_led_default_ich8lan, |
|
4686 .validate = e1000_validate_nvm_checksum_ich8lan, |
|
4687 .write = e1000_write_nvm_ich8lan, |
|
4688 }; |
|
4689 |
|
4690 const struct e1000_info e1000_ich8_info = { |
|
4691 .mac = e1000_ich8lan, |
|
4692 .flags = FLAG_HAS_WOL |
|
4693 | FLAG_IS_ICH |
|
4694 | FLAG_HAS_CTRLEXT_ON_LOAD |
|
4695 | FLAG_HAS_AMT |
|
4696 | FLAG_HAS_FLASH |
|
4697 | FLAG_APME_IN_WUC, |
|
4698 .pba = 8, |
|
4699 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN, |
|
4700 .get_variants = e1000_get_variants_ich8lan, |
|
4701 .mac_ops = &ich8_mac_ops, |
|
4702 .phy_ops = &ich8_phy_ops, |
|
4703 .nvm_ops = &ich8_nvm_ops, |
|
4704 }; |
|
4705 |
|
4706 const struct e1000_info e1000_ich9_info = { |
|
4707 .mac = e1000_ich9lan, |
|
4708 .flags = FLAG_HAS_JUMBO_FRAMES |
|
4709 | FLAG_IS_ICH |
|
4710 | FLAG_HAS_WOL |
|
4711 | FLAG_HAS_CTRLEXT_ON_LOAD |
|
4712 | FLAG_HAS_AMT |
|
4713 | FLAG_HAS_FLASH |
|
4714 | FLAG_APME_IN_WUC, |
|
4715 .pba = 18, |
|
4716 .max_hw_frame_size = DEFAULT_JUMBO, |
|
4717 .get_variants = e1000_get_variants_ich8lan, |
|
4718 .mac_ops = &ich8_mac_ops, |
|
4719 .phy_ops = &ich8_phy_ops, |
|
4720 .nvm_ops = &ich8_nvm_ops, |
|
4721 }; |
|
4722 |
|
4723 const struct e1000_info e1000_ich10_info = { |
|
4724 .mac = e1000_ich10lan, |
|
4725 .flags = FLAG_HAS_JUMBO_FRAMES |
|
4726 | FLAG_IS_ICH |
|
4727 | FLAG_HAS_WOL |
|
4728 | FLAG_HAS_CTRLEXT_ON_LOAD |
|
4729 | FLAG_HAS_AMT |
|
4730 | FLAG_HAS_FLASH |
|
4731 | FLAG_APME_IN_WUC, |
|
4732 .pba = 18, |
|
4733 .max_hw_frame_size = DEFAULT_JUMBO, |
|
4734 .get_variants = e1000_get_variants_ich8lan, |
|
4735 .mac_ops = &ich8_mac_ops, |
|
4736 .phy_ops = &ich8_phy_ops, |
|
4737 .nvm_ops = &ich8_nvm_ops, |
|
4738 }; |
|
4739 |
|
4740 const struct e1000_info e1000_pch_info = { |
|
4741 .mac = e1000_pchlan, |
|
4742 .flags = FLAG_IS_ICH |
|
4743 | FLAG_HAS_WOL |
|
4744 | FLAG_HAS_CTRLEXT_ON_LOAD |
|
4745 | FLAG_HAS_AMT |
|
4746 | FLAG_HAS_FLASH |
|
4747 | FLAG_HAS_JUMBO_FRAMES |
|
4748 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */ |
|
4749 | FLAG_APME_IN_WUC, |
|
4750 .flags2 = FLAG2_HAS_PHY_STATS, |
|
4751 .pba = 26, |
|
4752 .max_hw_frame_size = 4096, |
|
4753 .get_variants = e1000_get_variants_ich8lan, |
|
4754 .mac_ops = &ich8_mac_ops, |
|
4755 .phy_ops = &ich8_phy_ops, |
|
4756 .nvm_ops = &ich8_nvm_ops, |
|
4757 }; |
|
4758 |
|
4759 const struct e1000_info e1000_pch2_info = { |
|
4760 .mac = e1000_pch2lan, |
|
4761 .flags = FLAG_IS_ICH |
|
4762 | FLAG_HAS_WOL |
|
4763 | FLAG_HAS_HW_TIMESTAMP |
|
4764 | FLAG_HAS_CTRLEXT_ON_LOAD |
|
4765 | FLAG_HAS_AMT |
|
4766 | FLAG_HAS_FLASH |
|
4767 | FLAG_HAS_JUMBO_FRAMES |
|
4768 | FLAG_APME_IN_WUC, |
|
4769 .flags2 = FLAG2_HAS_PHY_STATS |
|
4770 | FLAG2_HAS_EEE, |
|
4771 .pba = 26, |
|
4772 .max_hw_frame_size = 9018, |
|
4773 .get_variants = e1000_get_variants_ich8lan, |
|
4774 .mac_ops = &ich8_mac_ops, |
|
4775 .phy_ops = &ich8_phy_ops, |
|
4776 .nvm_ops = &ich8_nvm_ops, |
|
4777 }; |
|
4778 |
|
4779 const struct e1000_info e1000_pch_lpt_info = { |
|
4780 .mac = e1000_pch_lpt, |
|
4781 .flags = FLAG_IS_ICH |
|
4782 | FLAG_HAS_WOL |
|
4783 | FLAG_HAS_HW_TIMESTAMP |
|
4784 | FLAG_HAS_CTRLEXT_ON_LOAD |
|
4785 | FLAG_HAS_AMT |
|
4786 | FLAG_HAS_FLASH |
|
4787 | FLAG_HAS_JUMBO_FRAMES |
|
4788 | FLAG_APME_IN_WUC, |
|
4789 .flags2 = FLAG2_HAS_PHY_STATS |
|
4790 | FLAG2_HAS_EEE, |
|
4791 .pba = 26, |
|
4792 .max_hw_frame_size = 9018, |
|
4793 .get_variants = e1000_get_variants_ich8lan, |
|
4794 .mac_ops = &ich8_mac_ops, |
|
4795 .phy_ops = &ich8_phy_ops, |
|
4796 .nvm_ops = &ich8_nvm_ops, |
|
4797 }; |