|
1 /******************************************************************************* |
|
2 |
|
3 Intel PRO/1000 Linux driver |
|
4 Copyright(c) 1999 - 2013 Intel Corporation. |
|
5 |
|
6 This program is free software; you can redistribute it and/or modify it |
|
7 under the terms and conditions of the GNU General Public License, |
|
8 version 2, as published by the Free Software Foundation. |
|
9 |
|
10 This program is distributed in the hope it will be useful, but WITHOUT |
|
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
|
13 more details. |
|
14 |
|
15 You should have received a copy of the GNU General Public License along with |
|
16 this program; if not, write to the Free Software Foundation, Inc., |
|
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 |
|
19 The full GNU General Public License is included in this distribution in |
|
20 the file called "COPYING". |
|
21 |
|
22 Contact Information: |
|
23 Linux NICS <linux.nics@intel.com> |
|
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
|
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
|
26 |
|
27 *******************************************************************************/ |
|
28 |
|
29 /* ethtool support for e1000 */ |
|
30 |
|
31 #include <linux/netdevice.h> |
|
32 #include <linux/interrupt.h> |
|
33 #include <linux/ethtool.h> |
|
34 #include <linux/pci.h> |
|
35 #include <linux/slab.h> |
|
36 #include <linux/delay.h> |
|
37 #include <linux/vmalloc.h> |
|
38 #include <linux/pm_runtime.h> |
|
39 |
|
40 #include "e1000.h" |
|
41 |
|
42 enum { NETDEV_STATS, E1000_STATS }; |
|
43 |
|
44 struct e1000_stats { |
|
45 char stat_string[ETH_GSTRING_LEN]; |
|
46 int type; |
|
47 int sizeof_stat; |
|
48 int stat_offset; |
|
49 }; |
|
50 |
|
51 #define E1000_STAT(str, m) { \ |
|
52 .stat_string = str, \ |
|
53 .type = E1000_STATS, \ |
|
54 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \ |
|
55 .stat_offset = offsetof(struct e1000_adapter, m) } |
|
56 #define E1000_NETDEV_STAT(str, m) { \ |
|
57 .stat_string = str, \ |
|
58 .type = NETDEV_STATS, \ |
|
59 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \ |
|
60 .stat_offset = offsetof(struct rtnl_link_stats64, m) } |
|
61 |
|
62 static const struct e1000_stats e1000_gstrings_stats[] = { |
|
63 E1000_STAT("rx_packets", stats.gprc), |
|
64 E1000_STAT("tx_packets", stats.gptc), |
|
65 E1000_STAT("rx_bytes", stats.gorc), |
|
66 E1000_STAT("tx_bytes", stats.gotc), |
|
67 E1000_STAT("rx_broadcast", stats.bprc), |
|
68 E1000_STAT("tx_broadcast", stats.bptc), |
|
69 E1000_STAT("rx_multicast", stats.mprc), |
|
70 E1000_STAT("tx_multicast", stats.mptc), |
|
71 E1000_NETDEV_STAT("rx_errors", rx_errors), |
|
72 E1000_NETDEV_STAT("tx_errors", tx_errors), |
|
73 E1000_NETDEV_STAT("tx_dropped", tx_dropped), |
|
74 E1000_STAT("multicast", stats.mprc), |
|
75 E1000_STAT("collisions", stats.colc), |
|
76 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors), |
|
77 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors), |
|
78 E1000_STAT("rx_crc_errors", stats.crcerrs), |
|
79 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors), |
|
80 E1000_STAT("rx_no_buffer_count", stats.rnbc), |
|
81 E1000_STAT("rx_missed_errors", stats.mpc), |
|
82 E1000_STAT("tx_aborted_errors", stats.ecol), |
|
83 E1000_STAT("tx_carrier_errors", stats.tncrs), |
|
84 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors), |
|
85 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors), |
|
86 E1000_STAT("tx_window_errors", stats.latecol), |
|
87 E1000_STAT("tx_abort_late_coll", stats.latecol), |
|
88 E1000_STAT("tx_deferred_ok", stats.dc), |
|
89 E1000_STAT("tx_single_coll_ok", stats.scc), |
|
90 E1000_STAT("tx_multi_coll_ok", stats.mcc), |
|
91 E1000_STAT("tx_timeout_count", tx_timeout_count), |
|
92 E1000_STAT("tx_restart_queue", restart_queue), |
|
93 E1000_STAT("rx_long_length_errors", stats.roc), |
|
94 E1000_STAT("rx_short_length_errors", stats.ruc), |
|
95 E1000_STAT("rx_align_errors", stats.algnerrc), |
|
96 E1000_STAT("tx_tcp_seg_good", stats.tsctc), |
|
97 E1000_STAT("tx_tcp_seg_failed", stats.tsctfc), |
|
98 E1000_STAT("rx_flow_control_xon", stats.xonrxc), |
|
99 E1000_STAT("rx_flow_control_xoff", stats.xoffrxc), |
|
100 E1000_STAT("tx_flow_control_xon", stats.xontxc), |
|
101 E1000_STAT("tx_flow_control_xoff", stats.xofftxc), |
|
102 E1000_STAT("rx_csum_offload_good", hw_csum_good), |
|
103 E1000_STAT("rx_csum_offload_errors", hw_csum_err), |
|
104 E1000_STAT("rx_header_split", rx_hdr_split), |
|
105 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed), |
|
106 E1000_STAT("tx_smbus", stats.mgptc), |
|
107 E1000_STAT("rx_smbus", stats.mgprc), |
|
108 E1000_STAT("dropped_smbus", stats.mgpdc), |
|
109 E1000_STAT("rx_dma_failed", rx_dma_failed), |
|
110 E1000_STAT("tx_dma_failed", tx_dma_failed), |
|
111 E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared), |
|
112 E1000_STAT("uncorr_ecc_errors", uncorr_errors), |
|
113 E1000_STAT("corr_ecc_errors", corr_errors), |
|
114 }; |
|
115 |
|
116 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats) |
|
117 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN) |
|
118 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { |
|
119 "Register test (offline)", "Eeprom test (offline)", |
|
120 "Interrupt test (offline)", "Loopback test (offline)", |
|
121 "Link test (on/offline)" |
|
122 }; |
|
123 |
|
124 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test) |
|
125 |
|
126 static int e1000_get_settings(struct net_device *netdev, |
|
127 struct ethtool_cmd *ecmd) |
|
128 { |
|
129 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
130 struct e1000_hw *hw = &adapter->hw; |
|
131 u32 speed; |
|
132 |
|
133 if (hw->phy.media_type == e1000_media_type_copper) { |
|
134 ecmd->supported = (SUPPORTED_10baseT_Half | |
|
135 SUPPORTED_10baseT_Full | |
|
136 SUPPORTED_100baseT_Half | |
|
137 SUPPORTED_100baseT_Full | |
|
138 SUPPORTED_1000baseT_Full | |
|
139 SUPPORTED_Autoneg | |
|
140 SUPPORTED_TP); |
|
141 if (hw->phy.type == e1000_phy_ife) |
|
142 ecmd->supported &= ~SUPPORTED_1000baseT_Full; |
|
143 ecmd->advertising = ADVERTISED_TP; |
|
144 |
|
145 if (hw->mac.autoneg == 1) { |
|
146 ecmd->advertising |= ADVERTISED_Autoneg; |
|
147 /* the e1000 autoneg seems to match ethtool nicely */ |
|
148 ecmd->advertising |= hw->phy.autoneg_advertised; |
|
149 } |
|
150 |
|
151 ecmd->port = PORT_TP; |
|
152 ecmd->phy_address = hw->phy.addr; |
|
153 ecmd->transceiver = XCVR_INTERNAL; |
|
154 |
|
155 } else { |
|
156 ecmd->supported = (SUPPORTED_1000baseT_Full | |
|
157 SUPPORTED_FIBRE | |
|
158 SUPPORTED_Autoneg); |
|
159 |
|
160 ecmd->advertising = (ADVERTISED_1000baseT_Full | |
|
161 ADVERTISED_FIBRE | |
|
162 ADVERTISED_Autoneg); |
|
163 |
|
164 ecmd->port = PORT_FIBRE; |
|
165 ecmd->transceiver = XCVR_EXTERNAL; |
|
166 } |
|
167 |
|
168 speed = -1; |
|
169 ecmd->duplex = -1; |
|
170 |
|
171 if (netif_running(netdev)) { |
|
172 if (netif_carrier_ok(netdev)) { |
|
173 speed = adapter->link_speed; |
|
174 ecmd->duplex = adapter->link_duplex - 1; |
|
175 } |
|
176 } else { |
|
177 u32 status = er32(STATUS); |
|
178 if (status & E1000_STATUS_LU) { |
|
179 if (status & E1000_STATUS_SPEED_1000) |
|
180 speed = SPEED_1000; |
|
181 else if (status & E1000_STATUS_SPEED_100) |
|
182 speed = SPEED_100; |
|
183 else |
|
184 speed = SPEED_10; |
|
185 |
|
186 if (status & E1000_STATUS_FD) |
|
187 ecmd->duplex = DUPLEX_FULL; |
|
188 else |
|
189 ecmd->duplex = DUPLEX_HALF; |
|
190 } |
|
191 } |
|
192 |
|
193 ethtool_cmd_speed_set(ecmd, speed); |
|
194 ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) || |
|
195 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; |
|
196 |
|
197 /* MDI-X => 2; MDI =>1; Invalid =>0 */ |
|
198 if ((hw->phy.media_type == e1000_media_type_copper) && |
|
199 netif_carrier_ok(netdev)) |
|
200 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X : ETH_TP_MDI; |
|
201 else |
|
202 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID; |
|
203 |
|
204 if (hw->phy.mdix == AUTO_ALL_MODES) |
|
205 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO; |
|
206 else |
|
207 ecmd->eth_tp_mdix_ctrl = hw->phy.mdix; |
|
208 |
|
209 return 0; |
|
210 } |
|
211 |
|
212 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx) |
|
213 { |
|
214 struct e1000_mac_info *mac = &adapter->hw.mac; |
|
215 |
|
216 mac->autoneg = 0; |
|
217 |
|
218 /* Make sure dplx is at most 1 bit and lsb of speed is not set |
|
219 * for the switch() below to work |
|
220 */ |
|
221 if ((spd & 1) || (dplx & ~1)) |
|
222 goto err_inval; |
|
223 |
|
224 /* Fiber NICs only allow 1000 gbps Full duplex */ |
|
225 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) && |
|
226 (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) { |
|
227 goto err_inval; |
|
228 } |
|
229 |
|
230 switch (spd + dplx) { |
|
231 case SPEED_10 + DUPLEX_HALF: |
|
232 mac->forced_speed_duplex = ADVERTISE_10_HALF; |
|
233 break; |
|
234 case SPEED_10 + DUPLEX_FULL: |
|
235 mac->forced_speed_duplex = ADVERTISE_10_FULL; |
|
236 break; |
|
237 case SPEED_100 + DUPLEX_HALF: |
|
238 mac->forced_speed_duplex = ADVERTISE_100_HALF; |
|
239 break; |
|
240 case SPEED_100 + DUPLEX_FULL: |
|
241 mac->forced_speed_duplex = ADVERTISE_100_FULL; |
|
242 break; |
|
243 case SPEED_1000 + DUPLEX_FULL: |
|
244 mac->autoneg = 1; |
|
245 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; |
|
246 break; |
|
247 case SPEED_1000 + DUPLEX_HALF: /* not supported */ |
|
248 default: |
|
249 goto err_inval; |
|
250 } |
|
251 |
|
252 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ |
|
253 adapter->hw.phy.mdix = AUTO_ALL_MODES; |
|
254 |
|
255 return 0; |
|
256 |
|
257 err_inval: |
|
258 e_err("Unsupported Speed/Duplex configuration\n"); |
|
259 return -EINVAL; |
|
260 } |
|
261 |
|
262 static int e1000_set_settings(struct net_device *netdev, |
|
263 struct ethtool_cmd *ecmd) |
|
264 { |
|
265 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
266 struct e1000_hw *hw = &adapter->hw; |
|
267 |
|
268 /* When SoL/IDER sessions are active, autoneg/speed/duplex |
|
269 * cannot be changed |
|
270 */ |
|
271 if (hw->phy.ops.check_reset_block && |
|
272 hw->phy.ops.check_reset_block(hw)) { |
|
273 e_err("Cannot change link characteristics when SoL/IDER is active.\n"); |
|
274 return -EINVAL; |
|
275 } |
|
276 |
|
277 /* MDI setting is only allowed when autoneg enabled because |
|
278 * some hardware doesn't allow MDI setting when speed or |
|
279 * duplex is forced. |
|
280 */ |
|
281 if (ecmd->eth_tp_mdix_ctrl) { |
|
282 if (hw->phy.media_type != e1000_media_type_copper) |
|
283 return -EOPNOTSUPP; |
|
284 |
|
285 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) && |
|
286 (ecmd->autoneg != AUTONEG_ENABLE)) { |
|
287 e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n"); |
|
288 return -EINVAL; |
|
289 } |
|
290 } |
|
291 |
|
292 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) |
|
293 usleep_range(1000, 2000); |
|
294 |
|
295 if (ecmd->autoneg == AUTONEG_ENABLE) { |
|
296 hw->mac.autoneg = 1; |
|
297 if (hw->phy.media_type == e1000_media_type_fiber) |
|
298 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full | |
|
299 ADVERTISED_FIBRE | ADVERTISED_Autoneg; |
|
300 else |
|
301 hw->phy.autoneg_advertised = ecmd->advertising | |
|
302 ADVERTISED_TP | ADVERTISED_Autoneg; |
|
303 ecmd->advertising = hw->phy.autoneg_advertised; |
|
304 if (adapter->fc_autoneg) |
|
305 hw->fc.requested_mode = e1000_fc_default; |
|
306 } else { |
|
307 u32 speed = ethtool_cmd_speed(ecmd); |
|
308 /* calling this overrides forced MDI setting */ |
|
309 if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) { |
|
310 clear_bit(__E1000_RESETTING, &adapter->state); |
|
311 return -EINVAL; |
|
312 } |
|
313 } |
|
314 |
|
315 /* MDI-X => 2; MDI => 1; Auto => 3 */ |
|
316 if (ecmd->eth_tp_mdix_ctrl) { |
|
317 /* fix up the value for auto (3 => 0) as zero is mapped |
|
318 * internally to auto |
|
319 */ |
|
320 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO) |
|
321 hw->phy.mdix = AUTO_ALL_MODES; |
|
322 else |
|
323 hw->phy.mdix = ecmd->eth_tp_mdix_ctrl; |
|
324 } |
|
325 |
|
326 /* reset the link */ |
|
327 if (netif_running(adapter->netdev)) { |
|
328 e1000e_down(adapter); |
|
329 e1000e_up(adapter); |
|
330 } else { |
|
331 e1000e_reset(adapter); |
|
332 } |
|
333 |
|
334 clear_bit(__E1000_RESETTING, &adapter->state); |
|
335 return 0; |
|
336 } |
|
337 |
|
338 static void e1000_get_pauseparam(struct net_device *netdev, |
|
339 struct ethtool_pauseparam *pause) |
|
340 { |
|
341 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
342 struct e1000_hw *hw = &adapter->hw; |
|
343 |
|
344 pause->autoneg = |
|
345 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); |
|
346 |
|
347 if (hw->fc.current_mode == e1000_fc_rx_pause) { |
|
348 pause->rx_pause = 1; |
|
349 } else if (hw->fc.current_mode == e1000_fc_tx_pause) { |
|
350 pause->tx_pause = 1; |
|
351 } else if (hw->fc.current_mode == e1000_fc_full) { |
|
352 pause->rx_pause = 1; |
|
353 pause->tx_pause = 1; |
|
354 } |
|
355 } |
|
356 |
|
357 static int e1000_set_pauseparam(struct net_device *netdev, |
|
358 struct ethtool_pauseparam *pause) |
|
359 { |
|
360 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
361 struct e1000_hw *hw = &adapter->hw; |
|
362 int retval = 0; |
|
363 |
|
364 adapter->fc_autoneg = pause->autoneg; |
|
365 |
|
366 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) |
|
367 usleep_range(1000, 2000); |
|
368 |
|
369 if (adapter->fc_autoneg == AUTONEG_ENABLE) { |
|
370 hw->fc.requested_mode = e1000_fc_default; |
|
371 if (netif_running(adapter->netdev)) { |
|
372 e1000e_down(adapter); |
|
373 e1000e_up(adapter); |
|
374 } else { |
|
375 e1000e_reset(adapter); |
|
376 } |
|
377 } else { |
|
378 if (pause->rx_pause && pause->tx_pause) |
|
379 hw->fc.requested_mode = e1000_fc_full; |
|
380 else if (pause->rx_pause && !pause->tx_pause) |
|
381 hw->fc.requested_mode = e1000_fc_rx_pause; |
|
382 else if (!pause->rx_pause && pause->tx_pause) |
|
383 hw->fc.requested_mode = e1000_fc_tx_pause; |
|
384 else if (!pause->rx_pause && !pause->tx_pause) |
|
385 hw->fc.requested_mode = e1000_fc_none; |
|
386 |
|
387 hw->fc.current_mode = hw->fc.requested_mode; |
|
388 |
|
389 if (hw->phy.media_type == e1000_media_type_fiber) { |
|
390 retval = hw->mac.ops.setup_link(hw); |
|
391 /* implicit goto out */ |
|
392 } else { |
|
393 retval = e1000e_force_mac_fc(hw); |
|
394 if (retval) |
|
395 goto out; |
|
396 e1000e_set_fc_watermarks(hw); |
|
397 } |
|
398 } |
|
399 |
|
400 out: |
|
401 clear_bit(__E1000_RESETTING, &adapter->state); |
|
402 return retval; |
|
403 } |
|
404 |
|
405 static u32 e1000_get_msglevel(struct net_device *netdev) |
|
406 { |
|
407 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
408 return adapter->msg_enable; |
|
409 } |
|
410 |
|
411 static void e1000_set_msglevel(struct net_device *netdev, u32 data) |
|
412 { |
|
413 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
414 adapter->msg_enable = data; |
|
415 } |
|
416 |
|
417 static int e1000_get_regs_len(struct net_device __always_unused *netdev) |
|
418 { |
|
419 #define E1000_REGS_LEN 32 /* overestimate */ |
|
420 return E1000_REGS_LEN * sizeof(u32); |
|
421 } |
|
422 |
|
423 static void e1000_get_regs(struct net_device *netdev, |
|
424 struct ethtool_regs *regs, void *p) |
|
425 { |
|
426 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
427 struct e1000_hw *hw = &adapter->hw; |
|
428 u32 *regs_buff = p; |
|
429 u16 phy_data; |
|
430 |
|
431 memset(p, 0, E1000_REGS_LEN * sizeof(u32)); |
|
432 |
|
433 regs->version = (1 << 24) | (adapter->pdev->revision << 16) | |
|
434 adapter->pdev->device; |
|
435 |
|
436 regs_buff[0] = er32(CTRL); |
|
437 regs_buff[1] = er32(STATUS); |
|
438 |
|
439 regs_buff[2] = er32(RCTL); |
|
440 regs_buff[3] = er32(RDLEN(0)); |
|
441 regs_buff[4] = er32(RDH(0)); |
|
442 regs_buff[5] = er32(RDT(0)); |
|
443 regs_buff[6] = er32(RDTR); |
|
444 |
|
445 regs_buff[7] = er32(TCTL); |
|
446 regs_buff[8] = er32(TDLEN(0)); |
|
447 regs_buff[9] = er32(TDH(0)); |
|
448 regs_buff[10] = er32(TDT(0)); |
|
449 regs_buff[11] = er32(TIDV); |
|
450 |
|
451 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */ |
|
452 |
|
453 /* ethtool doesn't use anything past this point, so all this |
|
454 * code is likely legacy junk for apps that may or may not exist |
|
455 */ |
|
456 if (hw->phy.type == e1000_phy_m88) { |
|
457 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); |
|
458 regs_buff[13] = (u32)phy_data; /* cable length */ |
|
459 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */ |
|
460 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */ |
|
461 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */ |
|
462 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
|
463 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */ |
|
464 regs_buff[18] = regs_buff[13]; /* cable polarity */ |
|
465 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */ |
|
466 regs_buff[20] = regs_buff[17]; /* polarity correction */ |
|
467 /* phy receive errors */ |
|
468 regs_buff[22] = adapter->phy_stats.receive_errors; |
|
469 regs_buff[23] = regs_buff[13]; /* mdix mode */ |
|
470 } |
|
471 regs_buff[21] = 0; /* was idle_errors */ |
|
472 e1e_rphy(hw, MII_STAT1000, &phy_data); |
|
473 regs_buff[24] = (u32)phy_data; /* phy local receiver status */ |
|
474 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ |
|
475 } |
|
476 |
|
477 static int e1000_get_eeprom_len(struct net_device *netdev) |
|
478 { |
|
479 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
480 return adapter->hw.nvm.word_size * 2; |
|
481 } |
|
482 |
|
483 static int e1000_get_eeprom(struct net_device *netdev, |
|
484 struct ethtool_eeprom *eeprom, u8 *bytes) |
|
485 { |
|
486 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
487 struct e1000_hw *hw = &adapter->hw; |
|
488 u16 *eeprom_buff; |
|
489 int first_word; |
|
490 int last_word; |
|
491 int ret_val = 0; |
|
492 u16 i; |
|
493 |
|
494 if (eeprom->len == 0) |
|
495 return -EINVAL; |
|
496 |
|
497 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16); |
|
498 |
|
499 first_word = eeprom->offset >> 1; |
|
500 last_word = (eeprom->offset + eeprom->len - 1) >> 1; |
|
501 |
|
502 eeprom_buff = kmalloc(sizeof(u16) * (last_word - first_word + 1), |
|
503 GFP_KERNEL); |
|
504 if (!eeprom_buff) |
|
505 return -ENOMEM; |
|
506 |
|
507 if (hw->nvm.type == e1000_nvm_eeprom_spi) { |
|
508 ret_val = e1000_read_nvm(hw, first_word, |
|
509 last_word - first_word + 1, |
|
510 eeprom_buff); |
|
511 } else { |
|
512 for (i = 0; i < last_word - first_word + 1; i++) { |
|
513 ret_val = e1000_read_nvm(hw, first_word + i, 1, |
|
514 &eeprom_buff[i]); |
|
515 if (ret_val) |
|
516 break; |
|
517 } |
|
518 } |
|
519 |
|
520 if (ret_val) { |
|
521 /* a read error occurred, throw away the result */ |
|
522 memset(eeprom_buff, 0xff, sizeof(u16) * |
|
523 (last_word - first_word + 1)); |
|
524 } else { |
|
525 /* Device's eeprom is always little-endian, word addressable */ |
|
526 for (i = 0; i < last_word - first_word + 1; i++) |
|
527 le16_to_cpus(&eeprom_buff[i]); |
|
528 } |
|
529 |
|
530 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len); |
|
531 kfree(eeprom_buff); |
|
532 |
|
533 return ret_val; |
|
534 } |
|
535 |
|
536 static int e1000_set_eeprom(struct net_device *netdev, |
|
537 struct ethtool_eeprom *eeprom, u8 *bytes) |
|
538 { |
|
539 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
540 struct e1000_hw *hw = &adapter->hw; |
|
541 u16 *eeprom_buff; |
|
542 void *ptr; |
|
543 int max_len; |
|
544 int first_word; |
|
545 int last_word; |
|
546 int ret_val = 0; |
|
547 u16 i; |
|
548 |
|
549 if (eeprom->len == 0) |
|
550 return -EOPNOTSUPP; |
|
551 |
|
552 if (eeprom->magic != |
|
553 (adapter->pdev->vendor | (adapter->pdev->device << 16))) |
|
554 return -EFAULT; |
|
555 |
|
556 if (adapter->flags & FLAG_READ_ONLY_NVM) |
|
557 return -EINVAL; |
|
558 |
|
559 max_len = hw->nvm.word_size * 2; |
|
560 |
|
561 first_word = eeprom->offset >> 1; |
|
562 last_word = (eeprom->offset + eeprom->len - 1) >> 1; |
|
563 eeprom_buff = kmalloc(max_len, GFP_KERNEL); |
|
564 if (!eeprom_buff) |
|
565 return -ENOMEM; |
|
566 |
|
567 ptr = (void *)eeprom_buff; |
|
568 |
|
569 if (eeprom->offset & 1) { |
|
570 /* need read/modify/write of first changed EEPROM word */ |
|
571 /* only the second byte of the word is being modified */ |
|
572 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]); |
|
573 ptr++; |
|
574 } |
|
575 if (((eeprom->offset + eeprom->len) & 1) && (!ret_val)) |
|
576 /* need read/modify/write of last changed EEPROM word */ |
|
577 /* only the first byte of the word is being modified */ |
|
578 ret_val = e1000_read_nvm(hw, last_word, 1, |
|
579 &eeprom_buff[last_word - first_word]); |
|
580 |
|
581 if (ret_val) |
|
582 goto out; |
|
583 |
|
584 /* Device's eeprom is always little-endian, word addressable */ |
|
585 for (i = 0; i < last_word - first_word + 1; i++) |
|
586 le16_to_cpus(&eeprom_buff[i]); |
|
587 |
|
588 memcpy(ptr, bytes, eeprom->len); |
|
589 |
|
590 for (i = 0; i < last_word - first_word + 1; i++) |
|
591 cpu_to_le16s(&eeprom_buff[i]); |
|
592 |
|
593 ret_val = e1000_write_nvm(hw, first_word, |
|
594 last_word - first_word + 1, eeprom_buff); |
|
595 |
|
596 if (ret_val) |
|
597 goto out; |
|
598 |
|
599 /* Update the checksum over the first part of the EEPROM if needed |
|
600 * and flush shadow RAM for applicable controllers |
|
601 */ |
|
602 if ((first_word <= NVM_CHECKSUM_REG) || |
|
603 (hw->mac.type == e1000_82583) || |
|
604 (hw->mac.type == e1000_82574) || |
|
605 (hw->mac.type == e1000_82573)) |
|
606 ret_val = e1000e_update_nvm_checksum(hw); |
|
607 |
|
608 out: |
|
609 kfree(eeprom_buff); |
|
610 return ret_val; |
|
611 } |
|
612 |
|
613 static void e1000_get_drvinfo(struct net_device *netdev, |
|
614 struct ethtool_drvinfo *drvinfo) |
|
615 { |
|
616 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
617 |
|
618 strlcpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver)); |
|
619 strlcpy(drvinfo->version, e1000e_driver_version, |
|
620 sizeof(drvinfo->version)); |
|
621 |
|
622 /* EEPROM image version # is reported as firmware version # for |
|
623 * PCI-E controllers |
|
624 */ |
|
625 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version), |
|
626 "%d.%d-%d", |
|
627 (adapter->eeprom_vers & 0xF000) >> 12, |
|
628 (adapter->eeprom_vers & 0x0FF0) >> 4, |
|
629 (adapter->eeprom_vers & 0x000F)); |
|
630 |
|
631 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev), |
|
632 sizeof(drvinfo->bus_info)); |
|
633 drvinfo->regdump_len = e1000_get_regs_len(netdev); |
|
634 drvinfo->eedump_len = e1000_get_eeprom_len(netdev); |
|
635 } |
|
636 |
|
637 static void e1000_get_ringparam(struct net_device *netdev, |
|
638 struct ethtool_ringparam *ring) |
|
639 { |
|
640 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
641 |
|
642 ring->rx_max_pending = E1000_MAX_RXD; |
|
643 ring->tx_max_pending = E1000_MAX_TXD; |
|
644 ring->rx_pending = adapter->rx_ring_count; |
|
645 ring->tx_pending = adapter->tx_ring_count; |
|
646 } |
|
647 |
|
648 static int e1000_set_ringparam(struct net_device *netdev, |
|
649 struct ethtool_ringparam *ring) |
|
650 { |
|
651 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
652 struct e1000_ring *temp_tx = NULL, *temp_rx = NULL; |
|
653 int err = 0, size = sizeof(struct e1000_ring); |
|
654 bool set_tx = false, set_rx = false; |
|
655 u16 new_rx_count, new_tx_count; |
|
656 |
|
657 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) |
|
658 return -EINVAL; |
|
659 |
|
660 new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD, |
|
661 E1000_MAX_RXD); |
|
662 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE); |
|
663 |
|
664 new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD, |
|
665 E1000_MAX_TXD); |
|
666 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE); |
|
667 |
|
668 if ((new_tx_count == adapter->tx_ring_count) && |
|
669 (new_rx_count == adapter->rx_ring_count)) |
|
670 /* nothing to do */ |
|
671 return 0; |
|
672 |
|
673 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) |
|
674 usleep_range(1000, 2000); |
|
675 |
|
676 if (!netif_running(adapter->netdev)) { |
|
677 /* Set counts now and allocate resources during open() */ |
|
678 adapter->tx_ring->count = new_tx_count; |
|
679 adapter->rx_ring->count = new_rx_count; |
|
680 adapter->tx_ring_count = new_tx_count; |
|
681 adapter->rx_ring_count = new_rx_count; |
|
682 goto clear_reset; |
|
683 } |
|
684 |
|
685 set_tx = (new_tx_count != adapter->tx_ring_count); |
|
686 set_rx = (new_rx_count != adapter->rx_ring_count); |
|
687 |
|
688 /* Allocate temporary storage for ring updates */ |
|
689 if (set_tx) { |
|
690 temp_tx = vmalloc(size); |
|
691 if (!temp_tx) { |
|
692 err = -ENOMEM; |
|
693 goto free_temp; |
|
694 } |
|
695 } |
|
696 if (set_rx) { |
|
697 temp_rx = vmalloc(size); |
|
698 if (!temp_rx) { |
|
699 err = -ENOMEM; |
|
700 goto free_temp; |
|
701 } |
|
702 } |
|
703 |
|
704 e1000e_down(adapter); |
|
705 |
|
706 /* We can't just free everything and then setup again, because the |
|
707 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring |
|
708 * structs. First, attempt to allocate new resources... |
|
709 */ |
|
710 if (set_tx) { |
|
711 memcpy(temp_tx, adapter->tx_ring, size); |
|
712 temp_tx->count = new_tx_count; |
|
713 err = e1000e_setup_tx_resources(temp_tx); |
|
714 if (err) |
|
715 goto err_setup; |
|
716 } |
|
717 if (set_rx) { |
|
718 memcpy(temp_rx, adapter->rx_ring, size); |
|
719 temp_rx->count = new_rx_count; |
|
720 err = e1000e_setup_rx_resources(temp_rx); |
|
721 if (err) |
|
722 goto err_setup_rx; |
|
723 } |
|
724 |
|
725 /* ...then free the old resources and copy back any new ring data */ |
|
726 if (set_tx) { |
|
727 e1000e_free_tx_resources(adapter->tx_ring); |
|
728 memcpy(adapter->tx_ring, temp_tx, size); |
|
729 adapter->tx_ring_count = new_tx_count; |
|
730 } |
|
731 if (set_rx) { |
|
732 e1000e_free_rx_resources(adapter->rx_ring); |
|
733 memcpy(adapter->rx_ring, temp_rx, size); |
|
734 adapter->rx_ring_count = new_rx_count; |
|
735 } |
|
736 |
|
737 err_setup_rx: |
|
738 if (err && set_tx) |
|
739 e1000e_free_tx_resources(temp_tx); |
|
740 err_setup: |
|
741 e1000e_up(adapter); |
|
742 free_temp: |
|
743 vfree(temp_tx); |
|
744 vfree(temp_rx); |
|
745 clear_reset: |
|
746 clear_bit(__E1000_RESETTING, &adapter->state); |
|
747 return err; |
|
748 } |
|
749 |
|
750 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, |
|
751 int reg, int offset, u32 mask, u32 write) |
|
752 { |
|
753 u32 pat, val; |
|
754 static const u32 test[] = { |
|
755 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF |
|
756 }; |
|
757 for (pat = 0; pat < ARRAY_SIZE(test); pat++) { |
|
758 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset, |
|
759 (test[pat] & write)); |
|
760 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset); |
|
761 if (val != (test[pat] & write & mask)) { |
|
762 e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n", |
|
763 reg + (offset << 2), val, |
|
764 (test[pat] & write & mask)); |
|
765 *data = reg; |
|
766 return 1; |
|
767 } |
|
768 } |
|
769 return 0; |
|
770 } |
|
771 |
|
772 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, |
|
773 int reg, u32 mask, u32 write) |
|
774 { |
|
775 u32 val; |
|
776 __ew32(&adapter->hw, reg, write & mask); |
|
777 val = __er32(&adapter->hw, reg); |
|
778 if ((write & mask) != (val & mask)) { |
|
779 e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n", |
|
780 reg, (val & mask), (write & mask)); |
|
781 *data = reg; |
|
782 return 1; |
|
783 } |
|
784 return 0; |
|
785 } |
|
786 |
|
787 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \ |
|
788 do { \ |
|
789 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \ |
|
790 return 1; \ |
|
791 } while (0) |
|
792 #define REG_PATTERN_TEST(reg, mask, write) \ |
|
793 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write) |
|
794 |
|
795 #define REG_SET_AND_CHECK(reg, mask, write) \ |
|
796 do { \ |
|
797 if (reg_set_and_check(adapter, data, reg, mask, write)) \ |
|
798 return 1; \ |
|
799 } while (0) |
|
800 |
|
801 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) |
|
802 { |
|
803 struct e1000_hw *hw = &adapter->hw; |
|
804 struct e1000_mac_info *mac = &adapter->hw.mac; |
|
805 u32 value; |
|
806 u32 before; |
|
807 u32 after; |
|
808 u32 i; |
|
809 u32 toggle; |
|
810 u32 mask; |
|
811 u32 wlock_mac = 0; |
|
812 |
|
813 /* The status register is Read Only, so a write should fail. |
|
814 * Some bits that get toggled are ignored. There are several bits |
|
815 * on newer hardware that are r/w. |
|
816 */ |
|
817 switch (mac->type) { |
|
818 case e1000_82571: |
|
819 case e1000_82572: |
|
820 case e1000_80003es2lan: |
|
821 toggle = 0x7FFFF3FF; |
|
822 break; |
|
823 default: |
|
824 toggle = 0x7FFFF033; |
|
825 break; |
|
826 } |
|
827 |
|
828 before = er32(STATUS); |
|
829 value = (er32(STATUS) & toggle); |
|
830 ew32(STATUS, toggle); |
|
831 after = er32(STATUS) & toggle; |
|
832 if (value != after) { |
|
833 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n", |
|
834 after, value); |
|
835 *data = 1; |
|
836 return 1; |
|
837 } |
|
838 /* restore previous status */ |
|
839 ew32(STATUS, before); |
|
840 |
|
841 if (!(adapter->flags & FLAG_IS_ICH)) { |
|
842 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF); |
|
843 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF); |
|
844 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF); |
|
845 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF); |
|
846 } |
|
847 |
|
848 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF); |
|
849 REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF); |
|
850 REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF); |
|
851 REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF); |
|
852 REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF); |
|
853 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8); |
|
854 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF); |
|
855 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF); |
|
856 REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF); |
|
857 REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF); |
|
858 |
|
859 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000); |
|
860 |
|
861 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE); |
|
862 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB); |
|
863 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000); |
|
864 |
|
865 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF); |
|
866 REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF); |
|
867 if (!(adapter->flags & FLAG_IS_ICH)) |
|
868 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF); |
|
869 REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF); |
|
870 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF); |
|
871 mask = 0x8003FFFF; |
|
872 switch (mac->type) { |
|
873 case e1000_ich10lan: |
|
874 case e1000_pchlan: |
|
875 case e1000_pch2lan: |
|
876 case e1000_pch_lpt: |
|
877 mask |= (1 << 18); |
|
878 break; |
|
879 default: |
|
880 break; |
|
881 } |
|
882 |
|
883 if (mac->type == e1000_pch_lpt) |
|
884 wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >> |
|
885 E1000_FWSM_WLOCK_MAC_SHIFT; |
|
886 |
|
887 for (i = 0; i < mac->rar_entry_count; i++) { |
|
888 if (mac->type == e1000_pch_lpt) { |
|
889 /* Cannot test write-protected SHRAL[n] registers */ |
|
890 if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac))) |
|
891 continue; |
|
892 |
|
893 /* SHRAH[9] different than the others */ |
|
894 if (i == 10) |
|
895 mask |= (1 << 30); |
|
896 else |
|
897 mask &= ~(1 << 30); |
|
898 } |
|
899 |
|
900 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask, |
|
901 0xFFFFFFFF); |
|
902 } |
|
903 |
|
904 for (i = 0; i < mac->mta_reg_count; i++) |
|
905 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF); |
|
906 |
|
907 *data = 0; |
|
908 |
|
909 return 0; |
|
910 } |
|
911 |
|
912 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data) |
|
913 { |
|
914 u16 temp; |
|
915 u16 checksum = 0; |
|
916 u16 i; |
|
917 |
|
918 *data = 0; |
|
919 /* Read and add up the contents of the EEPROM */ |
|
920 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { |
|
921 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) { |
|
922 *data = 1; |
|
923 return *data; |
|
924 } |
|
925 checksum += temp; |
|
926 } |
|
927 |
|
928 /* If Checksum is not Correct return error else test passed */ |
|
929 if ((checksum != (u16)NVM_SUM) && !(*data)) |
|
930 *data = 2; |
|
931 |
|
932 return *data; |
|
933 } |
|
934 |
|
935 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data) |
|
936 { |
|
937 struct net_device *netdev = (struct net_device *)data; |
|
938 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
939 struct e1000_hw *hw = &adapter->hw; |
|
940 |
|
941 adapter->test_icr |= er32(ICR); |
|
942 |
|
943 return IRQ_HANDLED; |
|
944 } |
|
945 |
|
946 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) |
|
947 { |
|
948 struct net_device *netdev = adapter->netdev; |
|
949 struct e1000_hw *hw = &adapter->hw; |
|
950 u32 mask; |
|
951 u32 shared_int = 1; |
|
952 u32 irq = adapter->pdev->irq; |
|
953 int i; |
|
954 int ret_val = 0; |
|
955 int int_mode = E1000E_INT_MODE_LEGACY; |
|
956 |
|
957 *data = 0; |
|
958 |
|
959 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */ |
|
960 if (adapter->int_mode == E1000E_INT_MODE_MSIX) { |
|
961 int_mode = adapter->int_mode; |
|
962 e1000e_reset_interrupt_capability(adapter); |
|
963 adapter->int_mode = E1000E_INT_MODE_LEGACY; |
|
964 e1000e_set_interrupt_capability(adapter); |
|
965 } |
|
966 /* Hook up test interrupt handler just for this test */ |
|
967 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name, |
|
968 netdev)) { |
|
969 shared_int = 0; |
|
970 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name, |
|
971 netdev)) { |
|
972 *data = 1; |
|
973 ret_val = -1; |
|
974 goto out; |
|
975 } |
|
976 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared")); |
|
977 |
|
978 /* Disable all the interrupts */ |
|
979 ew32(IMC, 0xFFFFFFFF); |
|
980 e1e_flush(); |
|
981 usleep_range(10000, 20000); |
|
982 |
|
983 /* Test each interrupt */ |
|
984 for (i = 0; i < 10; i++) { |
|
985 /* Interrupt to test */ |
|
986 mask = 1 << i; |
|
987 |
|
988 if (adapter->flags & FLAG_IS_ICH) { |
|
989 switch (mask) { |
|
990 case E1000_ICR_RXSEQ: |
|
991 continue; |
|
992 case 0x00000100: |
|
993 if (adapter->hw.mac.type == e1000_ich8lan || |
|
994 adapter->hw.mac.type == e1000_ich9lan) |
|
995 continue; |
|
996 break; |
|
997 default: |
|
998 break; |
|
999 } |
|
1000 } |
|
1001 |
|
1002 if (!shared_int) { |
|
1003 /* Disable the interrupt to be reported in |
|
1004 * the cause register and then force the same |
|
1005 * interrupt and see if one gets posted. If |
|
1006 * an interrupt was posted to the bus, the |
|
1007 * test failed. |
|
1008 */ |
|
1009 adapter->test_icr = 0; |
|
1010 ew32(IMC, mask); |
|
1011 ew32(ICS, mask); |
|
1012 e1e_flush(); |
|
1013 usleep_range(10000, 20000); |
|
1014 |
|
1015 if (adapter->test_icr & mask) { |
|
1016 *data = 3; |
|
1017 break; |
|
1018 } |
|
1019 } |
|
1020 |
|
1021 /* Enable the interrupt to be reported in |
|
1022 * the cause register and then force the same |
|
1023 * interrupt and see if one gets posted. If |
|
1024 * an interrupt was not posted to the bus, the |
|
1025 * test failed. |
|
1026 */ |
|
1027 adapter->test_icr = 0; |
|
1028 ew32(IMS, mask); |
|
1029 ew32(ICS, mask); |
|
1030 e1e_flush(); |
|
1031 usleep_range(10000, 20000); |
|
1032 |
|
1033 if (!(adapter->test_icr & mask)) { |
|
1034 *data = 4; |
|
1035 break; |
|
1036 } |
|
1037 |
|
1038 if (!shared_int) { |
|
1039 /* Disable the other interrupts to be reported in |
|
1040 * the cause register and then force the other |
|
1041 * interrupts and see if any get posted. If |
|
1042 * an interrupt was posted to the bus, the |
|
1043 * test failed. |
|
1044 */ |
|
1045 adapter->test_icr = 0; |
|
1046 ew32(IMC, ~mask & 0x00007FFF); |
|
1047 ew32(ICS, ~mask & 0x00007FFF); |
|
1048 e1e_flush(); |
|
1049 usleep_range(10000, 20000); |
|
1050 |
|
1051 if (adapter->test_icr) { |
|
1052 *data = 5; |
|
1053 break; |
|
1054 } |
|
1055 } |
|
1056 } |
|
1057 |
|
1058 /* Disable all the interrupts */ |
|
1059 ew32(IMC, 0xFFFFFFFF); |
|
1060 e1e_flush(); |
|
1061 usleep_range(10000, 20000); |
|
1062 |
|
1063 /* Unhook test interrupt handler */ |
|
1064 free_irq(irq, netdev); |
|
1065 |
|
1066 out: |
|
1067 if (int_mode == E1000E_INT_MODE_MSIX) { |
|
1068 e1000e_reset_interrupt_capability(adapter); |
|
1069 adapter->int_mode = int_mode; |
|
1070 e1000e_set_interrupt_capability(adapter); |
|
1071 } |
|
1072 |
|
1073 return ret_val; |
|
1074 } |
|
1075 |
|
1076 static void e1000_free_desc_rings(struct e1000_adapter *adapter) |
|
1077 { |
|
1078 struct e1000_ring *tx_ring = &adapter->test_tx_ring; |
|
1079 struct e1000_ring *rx_ring = &adapter->test_rx_ring; |
|
1080 struct pci_dev *pdev = adapter->pdev; |
|
1081 struct e1000_buffer *buffer_info; |
|
1082 int i; |
|
1083 |
|
1084 if (tx_ring->desc && tx_ring->buffer_info) { |
|
1085 for (i = 0; i < tx_ring->count; i++) { |
|
1086 buffer_info = &tx_ring->buffer_info[i]; |
|
1087 |
|
1088 if (buffer_info->dma) |
|
1089 dma_unmap_single(&pdev->dev, |
|
1090 buffer_info->dma, |
|
1091 buffer_info->length, |
|
1092 DMA_TO_DEVICE); |
|
1093 if (buffer_info->skb) |
|
1094 dev_kfree_skb(buffer_info->skb); |
|
1095 } |
|
1096 } |
|
1097 |
|
1098 if (rx_ring->desc && rx_ring->buffer_info) { |
|
1099 for (i = 0; i < rx_ring->count; i++) { |
|
1100 buffer_info = &rx_ring->buffer_info[i]; |
|
1101 |
|
1102 if (buffer_info->dma) |
|
1103 dma_unmap_single(&pdev->dev, |
|
1104 buffer_info->dma, |
|
1105 2048, DMA_FROM_DEVICE); |
|
1106 if (buffer_info->skb) |
|
1107 dev_kfree_skb(buffer_info->skb); |
|
1108 } |
|
1109 } |
|
1110 |
|
1111 if (tx_ring->desc) { |
|
1112 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, |
|
1113 tx_ring->dma); |
|
1114 tx_ring->desc = NULL; |
|
1115 } |
|
1116 if (rx_ring->desc) { |
|
1117 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, |
|
1118 rx_ring->dma); |
|
1119 rx_ring->desc = NULL; |
|
1120 } |
|
1121 |
|
1122 kfree(tx_ring->buffer_info); |
|
1123 tx_ring->buffer_info = NULL; |
|
1124 kfree(rx_ring->buffer_info); |
|
1125 rx_ring->buffer_info = NULL; |
|
1126 } |
|
1127 |
|
1128 static int e1000_setup_desc_rings(struct e1000_adapter *adapter) |
|
1129 { |
|
1130 struct e1000_ring *tx_ring = &adapter->test_tx_ring; |
|
1131 struct e1000_ring *rx_ring = &adapter->test_rx_ring; |
|
1132 struct pci_dev *pdev = adapter->pdev; |
|
1133 struct e1000_hw *hw = &adapter->hw; |
|
1134 u32 rctl; |
|
1135 int i; |
|
1136 int ret_val; |
|
1137 |
|
1138 /* Setup Tx descriptor ring and Tx buffers */ |
|
1139 |
|
1140 if (!tx_ring->count) |
|
1141 tx_ring->count = E1000_DEFAULT_TXD; |
|
1142 |
|
1143 tx_ring->buffer_info = kcalloc(tx_ring->count, |
|
1144 sizeof(struct e1000_buffer), GFP_KERNEL); |
|
1145 if (!tx_ring->buffer_info) { |
|
1146 ret_val = 1; |
|
1147 goto err_nomem; |
|
1148 } |
|
1149 |
|
1150 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); |
|
1151 tx_ring->size = ALIGN(tx_ring->size, 4096); |
|
1152 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size, |
|
1153 &tx_ring->dma, GFP_KERNEL); |
|
1154 if (!tx_ring->desc) { |
|
1155 ret_val = 2; |
|
1156 goto err_nomem; |
|
1157 } |
|
1158 tx_ring->next_to_use = 0; |
|
1159 tx_ring->next_to_clean = 0; |
|
1160 |
|
1161 ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF)); |
|
1162 ew32(TDBAH(0), ((u64)tx_ring->dma >> 32)); |
|
1163 ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc)); |
|
1164 ew32(TDH(0), 0); |
|
1165 ew32(TDT(0), 0); |
|
1166 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR | |
|
1167 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | |
|
1168 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT); |
|
1169 |
|
1170 for (i = 0; i < tx_ring->count; i++) { |
|
1171 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i); |
|
1172 struct sk_buff *skb; |
|
1173 unsigned int skb_size = 1024; |
|
1174 |
|
1175 skb = alloc_skb(skb_size, GFP_KERNEL); |
|
1176 if (!skb) { |
|
1177 ret_val = 3; |
|
1178 goto err_nomem; |
|
1179 } |
|
1180 skb_put(skb, skb_size); |
|
1181 tx_ring->buffer_info[i].skb = skb; |
|
1182 tx_ring->buffer_info[i].length = skb->len; |
|
1183 tx_ring->buffer_info[i].dma = |
|
1184 dma_map_single(&pdev->dev, skb->data, skb->len, |
|
1185 DMA_TO_DEVICE); |
|
1186 if (dma_mapping_error(&pdev->dev, |
|
1187 tx_ring->buffer_info[i].dma)) { |
|
1188 ret_val = 4; |
|
1189 goto err_nomem; |
|
1190 } |
|
1191 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma); |
|
1192 tx_desc->lower.data = cpu_to_le32(skb->len); |
|
1193 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | |
|
1194 E1000_TXD_CMD_IFCS | |
|
1195 E1000_TXD_CMD_RS); |
|
1196 tx_desc->upper.data = 0; |
|
1197 } |
|
1198 |
|
1199 /* Setup Rx descriptor ring and Rx buffers */ |
|
1200 |
|
1201 if (!rx_ring->count) |
|
1202 rx_ring->count = E1000_DEFAULT_RXD; |
|
1203 |
|
1204 rx_ring->buffer_info = kcalloc(rx_ring->count, |
|
1205 sizeof(struct e1000_buffer), GFP_KERNEL); |
|
1206 if (!rx_ring->buffer_info) { |
|
1207 ret_val = 5; |
|
1208 goto err_nomem; |
|
1209 } |
|
1210 |
|
1211 rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended); |
|
1212 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size, |
|
1213 &rx_ring->dma, GFP_KERNEL); |
|
1214 if (!rx_ring->desc) { |
|
1215 ret_val = 6; |
|
1216 goto err_nomem; |
|
1217 } |
|
1218 rx_ring->next_to_use = 0; |
|
1219 rx_ring->next_to_clean = 0; |
|
1220 |
|
1221 rctl = er32(RCTL); |
|
1222 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX)) |
|
1223 ew32(RCTL, rctl & ~E1000_RCTL_EN); |
|
1224 ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF)); |
|
1225 ew32(RDBAH(0), ((u64)rx_ring->dma >> 32)); |
|
1226 ew32(RDLEN(0), rx_ring->size); |
|
1227 ew32(RDH(0), 0); |
|
1228 ew32(RDT(0), 0); |
|
1229 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | |
|
1230 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE | |
|
1231 E1000_RCTL_SBP | E1000_RCTL_SECRC | |
|
1232 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | |
|
1233 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); |
|
1234 ew32(RCTL, rctl); |
|
1235 |
|
1236 for (i = 0; i < rx_ring->count; i++) { |
|
1237 union e1000_rx_desc_extended *rx_desc; |
|
1238 struct sk_buff *skb; |
|
1239 |
|
1240 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL); |
|
1241 if (!skb) { |
|
1242 ret_val = 7; |
|
1243 goto err_nomem; |
|
1244 } |
|
1245 skb_reserve(skb, NET_IP_ALIGN); |
|
1246 rx_ring->buffer_info[i].skb = skb; |
|
1247 rx_ring->buffer_info[i].dma = |
|
1248 dma_map_single(&pdev->dev, skb->data, 2048, |
|
1249 DMA_FROM_DEVICE); |
|
1250 if (dma_mapping_error(&pdev->dev, |
|
1251 rx_ring->buffer_info[i].dma)) { |
|
1252 ret_val = 8; |
|
1253 goto err_nomem; |
|
1254 } |
|
1255 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); |
|
1256 rx_desc->read.buffer_addr = |
|
1257 cpu_to_le64(rx_ring->buffer_info[i].dma); |
|
1258 memset(skb->data, 0x00, skb->len); |
|
1259 } |
|
1260 |
|
1261 return 0; |
|
1262 |
|
1263 err_nomem: |
|
1264 e1000_free_desc_rings(adapter); |
|
1265 return ret_val; |
|
1266 } |
|
1267 |
|
1268 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter) |
|
1269 { |
|
1270 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ |
|
1271 e1e_wphy(&adapter->hw, 29, 0x001F); |
|
1272 e1e_wphy(&adapter->hw, 30, 0x8FFC); |
|
1273 e1e_wphy(&adapter->hw, 29, 0x001A); |
|
1274 e1e_wphy(&adapter->hw, 30, 0x8FF0); |
|
1275 } |
|
1276 |
|
1277 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) |
|
1278 { |
|
1279 struct e1000_hw *hw = &adapter->hw; |
|
1280 u32 ctrl_reg = 0; |
|
1281 u16 phy_reg = 0; |
|
1282 s32 ret_val = 0; |
|
1283 |
|
1284 hw->mac.autoneg = 0; |
|
1285 |
|
1286 if (hw->phy.type == e1000_phy_ife) { |
|
1287 /* force 100, set loopback */ |
|
1288 e1e_wphy(hw, MII_BMCR, 0x6100); |
|
1289 |
|
1290 /* Now set up the MAC to the same speed/duplex as the PHY. */ |
|
1291 ctrl_reg = er32(CTRL); |
|
1292 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ |
|
1293 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ |
|
1294 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ |
|
1295 E1000_CTRL_SPD_100 |/* Force Speed to 100 */ |
|
1296 E1000_CTRL_FD); /* Force Duplex to FULL */ |
|
1297 |
|
1298 ew32(CTRL, ctrl_reg); |
|
1299 e1e_flush(); |
|
1300 usleep_range(500, 1000); |
|
1301 |
|
1302 return 0; |
|
1303 } |
|
1304 |
|
1305 /* Specific PHY configuration for loopback */ |
|
1306 switch (hw->phy.type) { |
|
1307 case e1000_phy_m88: |
|
1308 /* Auto-MDI/MDIX Off */ |
|
1309 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808); |
|
1310 /* reset to update Auto-MDI/MDIX */ |
|
1311 e1e_wphy(hw, MII_BMCR, 0x9140); |
|
1312 /* autoneg off */ |
|
1313 e1e_wphy(hw, MII_BMCR, 0x8140); |
|
1314 break; |
|
1315 case e1000_phy_gg82563: |
|
1316 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC); |
|
1317 break; |
|
1318 case e1000_phy_bm: |
|
1319 /* Set Default MAC Interface speed to 1GB */ |
|
1320 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg); |
|
1321 phy_reg &= ~0x0007; |
|
1322 phy_reg |= 0x006; |
|
1323 e1e_wphy(hw, PHY_REG(2, 21), phy_reg); |
|
1324 /* Assert SW reset for above settings to take effect */ |
|
1325 hw->phy.ops.commit(hw); |
|
1326 usleep_range(1000, 2000); |
|
1327 /* Force Full Duplex */ |
|
1328 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); |
|
1329 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C); |
|
1330 /* Set Link Up (in force link) */ |
|
1331 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg); |
|
1332 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040); |
|
1333 /* Force Link */ |
|
1334 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); |
|
1335 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040); |
|
1336 /* Set Early Link Enable */ |
|
1337 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg); |
|
1338 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400); |
|
1339 break; |
|
1340 case e1000_phy_82577: |
|
1341 case e1000_phy_82578: |
|
1342 /* Workaround: K1 must be disabled for stable 1Gbps operation */ |
|
1343 ret_val = hw->phy.ops.acquire(hw); |
|
1344 if (ret_val) { |
|
1345 e_err("Cannot setup 1Gbps loopback.\n"); |
|
1346 return ret_val; |
|
1347 } |
|
1348 e1000_configure_k1_ich8lan(hw, false); |
|
1349 hw->phy.ops.release(hw); |
|
1350 break; |
|
1351 case e1000_phy_82579: |
|
1352 /* Disable PHY energy detect power down */ |
|
1353 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg); |
|
1354 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3)); |
|
1355 /* Disable full chip energy detect */ |
|
1356 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg); |
|
1357 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1); |
|
1358 /* Enable loopback on the PHY */ |
|
1359 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001); |
|
1360 break; |
|
1361 default: |
|
1362 break; |
|
1363 } |
|
1364 |
|
1365 /* force 1000, set loopback */ |
|
1366 e1e_wphy(hw, MII_BMCR, 0x4140); |
|
1367 msleep(250); |
|
1368 |
|
1369 /* Now set up the MAC to the same speed/duplex as the PHY. */ |
|
1370 ctrl_reg = er32(CTRL); |
|
1371 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ |
|
1372 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ |
|
1373 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ |
|
1374 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ |
|
1375 E1000_CTRL_FD); /* Force Duplex to FULL */ |
|
1376 |
|
1377 if (adapter->flags & FLAG_IS_ICH) |
|
1378 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */ |
|
1379 |
|
1380 if (hw->phy.media_type == e1000_media_type_copper && |
|
1381 hw->phy.type == e1000_phy_m88) { |
|
1382 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ |
|
1383 } else { |
|
1384 /* Set the ILOS bit on the fiber Nic if half duplex link is |
|
1385 * detected. |
|
1386 */ |
|
1387 if ((er32(STATUS) & E1000_STATUS_FD) == 0) |
|
1388 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); |
|
1389 } |
|
1390 |
|
1391 ew32(CTRL, ctrl_reg); |
|
1392 |
|
1393 /* Disable the receiver on the PHY so when a cable is plugged in, the |
|
1394 * PHY does not begin to autoneg when a cable is reconnected to the NIC. |
|
1395 */ |
|
1396 if (hw->phy.type == e1000_phy_m88) |
|
1397 e1000_phy_disable_receiver(adapter); |
|
1398 |
|
1399 usleep_range(500, 1000); |
|
1400 |
|
1401 return 0; |
|
1402 } |
|
1403 |
|
1404 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter) |
|
1405 { |
|
1406 struct e1000_hw *hw = &adapter->hw; |
|
1407 u32 ctrl = er32(CTRL); |
|
1408 int link; |
|
1409 |
|
1410 /* special requirements for 82571/82572 fiber adapters */ |
|
1411 |
|
1412 /* jump through hoops to make sure link is up because serdes |
|
1413 * link is hardwired up |
|
1414 */ |
|
1415 ctrl |= E1000_CTRL_SLU; |
|
1416 ew32(CTRL, ctrl); |
|
1417 |
|
1418 /* disable autoneg */ |
|
1419 ctrl = er32(TXCW); |
|
1420 ctrl &= ~(1 << 31); |
|
1421 ew32(TXCW, ctrl); |
|
1422 |
|
1423 link = (er32(STATUS) & E1000_STATUS_LU); |
|
1424 |
|
1425 if (!link) { |
|
1426 /* set invert loss of signal */ |
|
1427 ctrl = er32(CTRL); |
|
1428 ctrl |= E1000_CTRL_ILOS; |
|
1429 ew32(CTRL, ctrl); |
|
1430 } |
|
1431 |
|
1432 /* special write to serdes control register to enable SerDes analog |
|
1433 * loopback |
|
1434 */ |
|
1435 ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK); |
|
1436 e1e_flush(); |
|
1437 usleep_range(10000, 20000); |
|
1438 |
|
1439 return 0; |
|
1440 } |
|
1441 |
|
1442 /* only call this for fiber/serdes connections to es2lan */ |
|
1443 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter) |
|
1444 { |
|
1445 struct e1000_hw *hw = &adapter->hw; |
|
1446 u32 ctrlext = er32(CTRL_EXT); |
|
1447 u32 ctrl = er32(CTRL); |
|
1448 |
|
1449 /* save CTRL_EXT to restore later, reuse an empty variable (unused |
|
1450 * on mac_type 80003es2lan) |
|
1451 */ |
|
1452 adapter->tx_fifo_head = ctrlext; |
|
1453 |
|
1454 /* clear the serdes mode bits, putting the device into mac loopback */ |
|
1455 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; |
|
1456 ew32(CTRL_EXT, ctrlext); |
|
1457 |
|
1458 /* force speed to 1000/FD, link up */ |
|
1459 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); |
|
1460 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | |
|
1461 E1000_CTRL_SPD_1000 | E1000_CTRL_FD); |
|
1462 ew32(CTRL, ctrl); |
|
1463 |
|
1464 /* set mac loopback */ |
|
1465 ctrl = er32(RCTL); |
|
1466 ctrl |= E1000_RCTL_LBM_MAC; |
|
1467 ew32(RCTL, ctrl); |
|
1468 |
|
1469 /* set testing mode parameters (no need to reset later) */ |
|
1470 #define KMRNCTRLSTA_OPMODE (0x1F << 16) |
|
1471 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582 |
|
1472 ew32(KMRNCTRLSTA, |
|
1473 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII)); |
|
1474 |
|
1475 return 0; |
|
1476 } |
|
1477 |
|
1478 static int e1000_setup_loopback_test(struct e1000_adapter *adapter) |
|
1479 { |
|
1480 struct e1000_hw *hw = &adapter->hw; |
|
1481 u32 rctl; |
|
1482 |
|
1483 if (hw->phy.media_type == e1000_media_type_fiber || |
|
1484 hw->phy.media_type == e1000_media_type_internal_serdes) { |
|
1485 switch (hw->mac.type) { |
|
1486 case e1000_80003es2lan: |
|
1487 return e1000_set_es2lan_mac_loopback(adapter); |
|
1488 break; |
|
1489 case e1000_82571: |
|
1490 case e1000_82572: |
|
1491 return e1000_set_82571_fiber_loopback(adapter); |
|
1492 break; |
|
1493 default: |
|
1494 rctl = er32(RCTL); |
|
1495 rctl |= E1000_RCTL_LBM_TCVR; |
|
1496 ew32(RCTL, rctl); |
|
1497 return 0; |
|
1498 } |
|
1499 } else if (hw->phy.media_type == e1000_media_type_copper) { |
|
1500 return e1000_integrated_phy_loopback(adapter); |
|
1501 } |
|
1502 |
|
1503 return 7; |
|
1504 } |
|
1505 |
|
1506 static void e1000_loopback_cleanup(struct e1000_adapter *adapter) |
|
1507 { |
|
1508 struct e1000_hw *hw = &adapter->hw; |
|
1509 u32 rctl; |
|
1510 u16 phy_reg; |
|
1511 |
|
1512 rctl = er32(RCTL); |
|
1513 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); |
|
1514 ew32(RCTL, rctl); |
|
1515 |
|
1516 switch (hw->mac.type) { |
|
1517 case e1000_80003es2lan: |
|
1518 if (hw->phy.media_type == e1000_media_type_fiber || |
|
1519 hw->phy.media_type == e1000_media_type_internal_serdes) { |
|
1520 /* restore CTRL_EXT, stealing space from tx_fifo_head */ |
|
1521 ew32(CTRL_EXT, adapter->tx_fifo_head); |
|
1522 adapter->tx_fifo_head = 0; |
|
1523 } |
|
1524 /* fall through */ |
|
1525 case e1000_82571: |
|
1526 case e1000_82572: |
|
1527 if (hw->phy.media_type == e1000_media_type_fiber || |
|
1528 hw->phy.media_type == e1000_media_type_internal_serdes) { |
|
1529 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); |
|
1530 e1e_flush(); |
|
1531 usleep_range(10000, 20000); |
|
1532 break; |
|
1533 } |
|
1534 /* Fall Through */ |
|
1535 default: |
|
1536 hw->mac.autoneg = 1; |
|
1537 if (hw->phy.type == e1000_phy_gg82563) |
|
1538 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180); |
|
1539 e1e_rphy(hw, MII_BMCR, &phy_reg); |
|
1540 if (phy_reg & BMCR_LOOPBACK) { |
|
1541 phy_reg &= ~BMCR_LOOPBACK; |
|
1542 e1e_wphy(hw, MII_BMCR, phy_reg); |
|
1543 if (hw->phy.ops.commit) |
|
1544 hw->phy.ops.commit(hw); |
|
1545 } |
|
1546 break; |
|
1547 } |
|
1548 } |
|
1549 |
|
1550 static void e1000_create_lbtest_frame(struct sk_buff *skb, |
|
1551 unsigned int frame_size) |
|
1552 { |
|
1553 memset(skb->data, 0xFF, frame_size); |
|
1554 frame_size &= ~1; |
|
1555 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); |
|
1556 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1); |
|
1557 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1); |
|
1558 } |
|
1559 |
|
1560 static int e1000_check_lbtest_frame(struct sk_buff *skb, |
|
1561 unsigned int frame_size) |
|
1562 { |
|
1563 frame_size &= ~1; |
|
1564 if (*(skb->data + 3) == 0xFF) |
|
1565 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) && |
|
1566 (*(skb->data + frame_size / 2 + 12) == 0xAF)) |
|
1567 return 0; |
|
1568 return 13; |
|
1569 } |
|
1570 |
|
1571 static int e1000_run_loopback_test(struct e1000_adapter *adapter) |
|
1572 { |
|
1573 struct e1000_ring *tx_ring = &adapter->test_tx_ring; |
|
1574 struct e1000_ring *rx_ring = &adapter->test_rx_ring; |
|
1575 struct pci_dev *pdev = adapter->pdev; |
|
1576 struct e1000_hw *hw = &adapter->hw; |
|
1577 struct e1000_buffer *buffer_info; |
|
1578 int i, j, k, l; |
|
1579 int lc; |
|
1580 int good_cnt; |
|
1581 int ret_val = 0; |
|
1582 unsigned long time; |
|
1583 |
|
1584 ew32(RDT(0), rx_ring->count - 1); |
|
1585 |
|
1586 /* Calculate the loop count based on the largest descriptor ring |
|
1587 * The idea is to wrap the largest ring a number of times using 64 |
|
1588 * send/receive pairs during each loop |
|
1589 */ |
|
1590 |
|
1591 if (rx_ring->count <= tx_ring->count) |
|
1592 lc = ((tx_ring->count / 64) * 2) + 1; |
|
1593 else |
|
1594 lc = ((rx_ring->count / 64) * 2) + 1; |
|
1595 |
|
1596 k = 0; |
|
1597 l = 0; |
|
1598 /* loop count loop */ |
|
1599 for (j = 0; j <= lc; j++) { |
|
1600 /* send the packets */ |
|
1601 for (i = 0; i < 64; i++) { |
|
1602 buffer_info = &tx_ring->buffer_info[k]; |
|
1603 |
|
1604 e1000_create_lbtest_frame(buffer_info->skb, 1024); |
|
1605 dma_sync_single_for_device(&pdev->dev, |
|
1606 buffer_info->dma, |
|
1607 buffer_info->length, |
|
1608 DMA_TO_DEVICE); |
|
1609 k++; |
|
1610 if (k == tx_ring->count) |
|
1611 k = 0; |
|
1612 } |
|
1613 ew32(TDT(0), k); |
|
1614 e1e_flush(); |
|
1615 msleep(200); |
|
1616 time = jiffies; /* set the start time for the receive */ |
|
1617 good_cnt = 0; |
|
1618 /* receive the sent packets */ |
|
1619 do { |
|
1620 buffer_info = &rx_ring->buffer_info[l]; |
|
1621 |
|
1622 dma_sync_single_for_cpu(&pdev->dev, |
|
1623 buffer_info->dma, 2048, |
|
1624 DMA_FROM_DEVICE); |
|
1625 |
|
1626 ret_val = e1000_check_lbtest_frame(buffer_info->skb, |
|
1627 1024); |
|
1628 if (!ret_val) |
|
1629 good_cnt++; |
|
1630 l++; |
|
1631 if (l == rx_ring->count) |
|
1632 l = 0; |
|
1633 /* time + 20 msecs (200 msecs on 2.4) is more than |
|
1634 * enough time to complete the receives, if it's |
|
1635 * exceeded, break and error off |
|
1636 */ |
|
1637 } while ((good_cnt < 64) && !time_after(jiffies, time + 20)); |
|
1638 if (good_cnt != 64) { |
|
1639 ret_val = 13; /* ret_val is the same as mis-compare */ |
|
1640 break; |
|
1641 } |
|
1642 if (jiffies >= (time + 20)) { |
|
1643 ret_val = 14; /* error code for time out error */ |
|
1644 break; |
|
1645 } |
|
1646 } |
|
1647 return ret_val; |
|
1648 } |
|
1649 |
|
1650 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data) |
|
1651 { |
|
1652 struct e1000_hw *hw = &adapter->hw; |
|
1653 |
|
1654 /* PHY loopback cannot be performed if SoL/IDER sessions are active */ |
|
1655 if (hw->phy.ops.check_reset_block && |
|
1656 hw->phy.ops.check_reset_block(hw)) { |
|
1657 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n"); |
|
1658 *data = 0; |
|
1659 goto out; |
|
1660 } |
|
1661 |
|
1662 *data = e1000_setup_desc_rings(adapter); |
|
1663 if (*data) |
|
1664 goto out; |
|
1665 |
|
1666 *data = e1000_setup_loopback_test(adapter); |
|
1667 if (*data) |
|
1668 goto err_loopback; |
|
1669 |
|
1670 *data = e1000_run_loopback_test(adapter); |
|
1671 e1000_loopback_cleanup(adapter); |
|
1672 |
|
1673 err_loopback: |
|
1674 e1000_free_desc_rings(adapter); |
|
1675 out: |
|
1676 return *data; |
|
1677 } |
|
1678 |
|
1679 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data) |
|
1680 { |
|
1681 struct e1000_hw *hw = &adapter->hw; |
|
1682 |
|
1683 *data = 0; |
|
1684 if (hw->phy.media_type == e1000_media_type_internal_serdes) { |
|
1685 int i = 0; |
|
1686 hw->mac.serdes_has_link = false; |
|
1687 |
|
1688 /* On some blade server designs, link establishment |
|
1689 * could take as long as 2-3 minutes |
|
1690 */ |
|
1691 do { |
|
1692 hw->mac.ops.check_for_link(hw); |
|
1693 if (hw->mac.serdes_has_link) |
|
1694 return *data; |
|
1695 msleep(20); |
|
1696 } while (i++ < 3750); |
|
1697 |
|
1698 *data = 1; |
|
1699 } else { |
|
1700 hw->mac.ops.check_for_link(hw); |
|
1701 if (hw->mac.autoneg) |
|
1702 /* On some Phy/switch combinations, link establishment |
|
1703 * can take a few seconds more than expected. |
|
1704 */ |
|
1705 msleep_interruptible(5000); |
|
1706 |
|
1707 if (!(er32(STATUS) & E1000_STATUS_LU)) |
|
1708 *data = 1; |
|
1709 } |
|
1710 return *data; |
|
1711 } |
|
1712 |
|
1713 static int e1000e_get_sset_count(struct net_device __always_unused *netdev, |
|
1714 int sset) |
|
1715 { |
|
1716 switch (sset) { |
|
1717 case ETH_SS_TEST: |
|
1718 return E1000_TEST_LEN; |
|
1719 case ETH_SS_STATS: |
|
1720 return E1000_STATS_LEN; |
|
1721 default: |
|
1722 return -EOPNOTSUPP; |
|
1723 } |
|
1724 } |
|
1725 |
|
1726 static void e1000_diag_test(struct net_device *netdev, |
|
1727 struct ethtool_test *eth_test, u64 *data) |
|
1728 { |
|
1729 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1730 u16 autoneg_advertised; |
|
1731 u8 forced_speed_duplex; |
|
1732 u8 autoneg; |
|
1733 bool if_running = netif_running(netdev); |
|
1734 |
|
1735 set_bit(__E1000_TESTING, &adapter->state); |
|
1736 |
|
1737 if (!if_running) { |
|
1738 /* Get control of and reset hardware */ |
|
1739 if (adapter->flags & FLAG_HAS_AMT) |
|
1740 e1000e_get_hw_control(adapter); |
|
1741 |
|
1742 e1000e_power_up_phy(adapter); |
|
1743 |
|
1744 adapter->hw.phy.autoneg_wait_to_complete = 1; |
|
1745 e1000e_reset(adapter); |
|
1746 adapter->hw.phy.autoneg_wait_to_complete = 0; |
|
1747 } |
|
1748 |
|
1749 if (eth_test->flags == ETH_TEST_FL_OFFLINE) { |
|
1750 /* Offline tests */ |
|
1751 |
|
1752 /* save speed, duplex, autoneg settings */ |
|
1753 autoneg_advertised = adapter->hw.phy.autoneg_advertised; |
|
1754 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex; |
|
1755 autoneg = adapter->hw.mac.autoneg; |
|
1756 |
|
1757 e_info("offline testing starting\n"); |
|
1758 |
|
1759 if (if_running) |
|
1760 /* indicate we're in test mode */ |
|
1761 dev_close(netdev); |
|
1762 |
|
1763 if (e1000_reg_test(adapter, &data[0])) |
|
1764 eth_test->flags |= ETH_TEST_FL_FAILED; |
|
1765 |
|
1766 e1000e_reset(adapter); |
|
1767 if (e1000_eeprom_test(adapter, &data[1])) |
|
1768 eth_test->flags |= ETH_TEST_FL_FAILED; |
|
1769 |
|
1770 e1000e_reset(adapter); |
|
1771 if (e1000_intr_test(adapter, &data[2])) |
|
1772 eth_test->flags |= ETH_TEST_FL_FAILED; |
|
1773 |
|
1774 e1000e_reset(adapter); |
|
1775 if (e1000_loopback_test(adapter, &data[3])) |
|
1776 eth_test->flags |= ETH_TEST_FL_FAILED; |
|
1777 |
|
1778 /* force this routine to wait until autoneg complete/timeout */ |
|
1779 adapter->hw.phy.autoneg_wait_to_complete = 1; |
|
1780 e1000e_reset(adapter); |
|
1781 adapter->hw.phy.autoneg_wait_to_complete = 0; |
|
1782 |
|
1783 if (e1000_link_test(adapter, &data[4])) |
|
1784 eth_test->flags |= ETH_TEST_FL_FAILED; |
|
1785 |
|
1786 /* restore speed, duplex, autoneg settings */ |
|
1787 adapter->hw.phy.autoneg_advertised = autoneg_advertised; |
|
1788 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex; |
|
1789 adapter->hw.mac.autoneg = autoneg; |
|
1790 e1000e_reset(adapter); |
|
1791 |
|
1792 clear_bit(__E1000_TESTING, &adapter->state); |
|
1793 if (if_running) |
|
1794 dev_open(netdev); |
|
1795 } else { |
|
1796 /* Online tests */ |
|
1797 |
|
1798 e_info("online testing starting\n"); |
|
1799 |
|
1800 /* register, eeprom, intr and loopback tests not run online */ |
|
1801 data[0] = 0; |
|
1802 data[1] = 0; |
|
1803 data[2] = 0; |
|
1804 data[3] = 0; |
|
1805 |
|
1806 if (e1000_link_test(adapter, &data[4])) |
|
1807 eth_test->flags |= ETH_TEST_FL_FAILED; |
|
1808 |
|
1809 clear_bit(__E1000_TESTING, &adapter->state); |
|
1810 } |
|
1811 |
|
1812 if (!if_running) { |
|
1813 e1000e_reset(adapter); |
|
1814 |
|
1815 if (adapter->flags & FLAG_HAS_AMT) |
|
1816 e1000e_release_hw_control(adapter); |
|
1817 } |
|
1818 |
|
1819 msleep_interruptible(4 * 1000); |
|
1820 } |
|
1821 |
|
1822 static void e1000_get_wol(struct net_device *netdev, |
|
1823 struct ethtool_wolinfo *wol) |
|
1824 { |
|
1825 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1826 |
|
1827 wol->supported = 0; |
|
1828 wol->wolopts = 0; |
|
1829 |
|
1830 if (!(adapter->flags & FLAG_HAS_WOL) || |
|
1831 !device_can_wakeup(&adapter->pdev->dev)) |
|
1832 return; |
|
1833 |
|
1834 wol->supported = WAKE_UCAST | WAKE_MCAST | |
|
1835 WAKE_BCAST | WAKE_MAGIC | WAKE_PHY; |
|
1836 |
|
1837 /* apply any specific unsupported masks here */ |
|
1838 if (adapter->flags & FLAG_NO_WAKE_UCAST) { |
|
1839 wol->supported &= ~WAKE_UCAST; |
|
1840 |
|
1841 if (adapter->wol & E1000_WUFC_EX) |
|
1842 e_err("Interface does not support directed (unicast) frame wake-up packets\n"); |
|
1843 } |
|
1844 |
|
1845 if (adapter->wol & E1000_WUFC_EX) |
|
1846 wol->wolopts |= WAKE_UCAST; |
|
1847 if (adapter->wol & E1000_WUFC_MC) |
|
1848 wol->wolopts |= WAKE_MCAST; |
|
1849 if (adapter->wol & E1000_WUFC_BC) |
|
1850 wol->wolopts |= WAKE_BCAST; |
|
1851 if (adapter->wol & E1000_WUFC_MAG) |
|
1852 wol->wolopts |= WAKE_MAGIC; |
|
1853 if (adapter->wol & E1000_WUFC_LNKC) |
|
1854 wol->wolopts |= WAKE_PHY; |
|
1855 } |
|
1856 |
|
1857 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) |
|
1858 { |
|
1859 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1860 |
|
1861 if (!(adapter->flags & FLAG_HAS_WOL) || |
|
1862 !device_can_wakeup(&adapter->pdev->dev) || |
|
1863 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | |
|
1864 WAKE_MAGIC | WAKE_PHY))) |
|
1865 return -EOPNOTSUPP; |
|
1866 |
|
1867 /* these settings will always override what we currently have */ |
|
1868 adapter->wol = 0; |
|
1869 |
|
1870 if (wol->wolopts & WAKE_UCAST) |
|
1871 adapter->wol |= E1000_WUFC_EX; |
|
1872 if (wol->wolopts & WAKE_MCAST) |
|
1873 adapter->wol |= E1000_WUFC_MC; |
|
1874 if (wol->wolopts & WAKE_BCAST) |
|
1875 adapter->wol |= E1000_WUFC_BC; |
|
1876 if (wol->wolopts & WAKE_MAGIC) |
|
1877 adapter->wol |= E1000_WUFC_MAG; |
|
1878 if (wol->wolopts & WAKE_PHY) |
|
1879 adapter->wol |= E1000_WUFC_LNKC; |
|
1880 |
|
1881 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); |
|
1882 |
|
1883 return 0; |
|
1884 } |
|
1885 |
|
1886 static int e1000_set_phys_id(struct net_device *netdev, |
|
1887 enum ethtool_phys_id_state state) |
|
1888 { |
|
1889 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1890 struct e1000_hw *hw = &adapter->hw; |
|
1891 |
|
1892 switch (state) { |
|
1893 case ETHTOOL_ID_ACTIVE: |
|
1894 if (!hw->mac.ops.blink_led) |
|
1895 return 2; /* cycle on/off twice per second */ |
|
1896 |
|
1897 hw->mac.ops.blink_led(hw); |
|
1898 break; |
|
1899 |
|
1900 case ETHTOOL_ID_INACTIVE: |
|
1901 if (hw->phy.type == e1000_phy_ife) |
|
1902 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); |
|
1903 hw->mac.ops.led_off(hw); |
|
1904 hw->mac.ops.cleanup_led(hw); |
|
1905 break; |
|
1906 |
|
1907 case ETHTOOL_ID_ON: |
|
1908 hw->mac.ops.led_on(hw); |
|
1909 break; |
|
1910 |
|
1911 case ETHTOOL_ID_OFF: |
|
1912 hw->mac.ops.led_off(hw); |
|
1913 break; |
|
1914 } |
|
1915 return 0; |
|
1916 } |
|
1917 |
|
1918 static int e1000_get_coalesce(struct net_device *netdev, |
|
1919 struct ethtool_coalesce *ec) |
|
1920 { |
|
1921 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1922 |
|
1923 if (adapter->itr_setting <= 4) |
|
1924 ec->rx_coalesce_usecs = adapter->itr_setting; |
|
1925 else |
|
1926 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting; |
|
1927 |
|
1928 return 0; |
|
1929 } |
|
1930 |
|
1931 static int e1000_set_coalesce(struct net_device *netdev, |
|
1932 struct ethtool_coalesce *ec) |
|
1933 { |
|
1934 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1935 |
|
1936 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) || |
|
1937 ((ec->rx_coalesce_usecs > 4) && |
|
1938 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) || |
|
1939 (ec->rx_coalesce_usecs == 2)) |
|
1940 return -EINVAL; |
|
1941 |
|
1942 if (ec->rx_coalesce_usecs == 4) { |
|
1943 adapter->itr_setting = 4; |
|
1944 adapter->itr = adapter->itr_setting; |
|
1945 } else if (ec->rx_coalesce_usecs <= 3) { |
|
1946 adapter->itr = 20000; |
|
1947 adapter->itr_setting = ec->rx_coalesce_usecs; |
|
1948 } else { |
|
1949 adapter->itr = (1000000 / ec->rx_coalesce_usecs); |
|
1950 adapter->itr_setting = adapter->itr & ~3; |
|
1951 } |
|
1952 |
|
1953 if (adapter->itr_setting != 0) |
|
1954 e1000e_write_itr(adapter, adapter->itr); |
|
1955 else |
|
1956 e1000e_write_itr(adapter, 0); |
|
1957 |
|
1958 return 0; |
|
1959 } |
|
1960 |
|
1961 static int e1000_nway_reset(struct net_device *netdev) |
|
1962 { |
|
1963 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1964 |
|
1965 if (!netif_running(netdev)) |
|
1966 return -EAGAIN; |
|
1967 |
|
1968 if (!adapter->hw.mac.autoneg) |
|
1969 return -EINVAL; |
|
1970 |
|
1971 e1000e_reinit_locked(adapter); |
|
1972 |
|
1973 return 0; |
|
1974 } |
|
1975 |
|
1976 static void e1000_get_ethtool_stats(struct net_device *netdev, |
|
1977 struct ethtool_stats __always_unused *stats, |
|
1978 u64 *data) |
|
1979 { |
|
1980 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1981 struct rtnl_link_stats64 net_stats; |
|
1982 int i; |
|
1983 char *p = NULL; |
|
1984 |
|
1985 e1000e_get_stats64(netdev, &net_stats); |
|
1986 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { |
|
1987 switch (e1000_gstrings_stats[i].type) { |
|
1988 case NETDEV_STATS: |
|
1989 p = (char *)&net_stats + |
|
1990 e1000_gstrings_stats[i].stat_offset; |
|
1991 break; |
|
1992 case E1000_STATS: |
|
1993 p = (char *)adapter + |
|
1994 e1000_gstrings_stats[i].stat_offset; |
|
1995 break; |
|
1996 default: |
|
1997 data[i] = 0; |
|
1998 continue; |
|
1999 } |
|
2000 |
|
2001 data[i] = (e1000_gstrings_stats[i].sizeof_stat == |
|
2002 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; |
|
2003 } |
|
2004 } |
|
2005 |
|
2006 static void e1000_get_strings(struct net_device __always_unused *netdev, |
|
2007 u32 stringset, u8 *data) |
|
2008 { |
|
2009 u8 *p = data; |
|
2010 int i; |
|
2011 |
|
2012 switch (stringset) { |
|
2013 case ETH_SS_TEST: |
|
2014 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test)); |
|
2015 break; |
|
2016 case ETH_SS_STATS: |
|
2017 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { |
|
2018 memcpy(p, e1000_gstrings_stats[i].stat_string, |
|
2019 ETH_GSTRING_LEN); |
|
2020 p += ETH_GSTRING_LEN; |
|
2021 } |
|
2022 break; |
|
2023 } |
|
2024 } |
|
2025 |
|
2026 static int e1000_get_rxnfc(struct net_device *netdev, |
|
2027 struct ethtool_rxnfc *info, |
|
2028 u32 __always_unused *rule_locs) |
|
2029 { |
|
2030 info->data = 0; |
|
2031 |
|
2032 switch (info->cmd) { |
|
2033 case ETHTOOL_GRXFH: { |
|
2034 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
2035 struct e1000_hw *hw = &adapter->hw; |
|
2036 u32 mrqc = er32(MRQC); |
|
2037 |
|
2038 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK)) |
|
2039 return 0; |
|
2040 |
|
2041 switch (info->flow_type) { |
|
2042 case TCP_V4_FLOW: |
|
2043 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP) |
|
2044 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; |
|
2045 /* fall through */ |
|
2046 case UDP_V4_FLOW: |
|
2047 case SCTP_V4_FLOW: |
|
2048 case AH_ESP_V4_FLOW: |
|
2049 case IPV4_FLOW: |
|
2050 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4) |
|
2051 info->data |= RXH_IP_SRC | RXH_IP_DST; |
|
2052 break; |
|
2053 case TCP_V6_FLOW: |
|
2054 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP) |
|
2055 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; |
|
2056 /* fall through */ |
|
2057 case UDP_V6_FLOW: |
|
2058 case SCTP_V6_FLOW: |
|
2059 case AH_ESP_V6_FLOW: |
|
2060 case IPV6_FLOW: |
|
2061 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6) |
|
2062 info->data |= RXH_IP_SRC | RXH_IP_DST; |
|
2063 break; |
|
2064 default: |
|
2065 break; |
|
2066 } |
|
2067 return 0; |
|
2068 } |
|
2069 default: |
|
2070 return -EOPNOTSUPP; |
|
2071 } |
|
2072 } |
|
2073 |
|
2074 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata) |
|
2075 { |
|
2076 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
2077 struct e1000_hw *hw = &adapter->hw; |
|
2078 u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data; |
|
2079 u32 ret_val; |
|
2080 |
|
2081 if (!(adapter->flags2 & FLAG2_HAS_EEE)) |
|
2082 return -EOPNOTSUPP; |
|
2083 |
|
2084 switch (hw->phy.type) { |
|
2085 case e1000_phy_82579: |
|
2086 cap_addr = I82579_EEE_CAPABILITY; |
|
2087 lpa_addr = I82579_EEE_LP_ABILITY; |
|
2088 pcs_stat_addr = I82579_EEE_PCS_STATUS; |
|
2089 break; |
|
2090 case e1000_phy_i217: |
|
2091 cap_addr = I217_EEE_CAPABILITY; |
|
2092 lpa_addr = I217_EEE_LP_ABILITY; |
|
2093 pcs_stat_addr = I217_EEE_PCS_STATUS; |
|
2094 break; |
|
2095 default: |
|
2096 return -EOPNOTSUPP; |
|
2097 } |
|
2098 |
|
2099 ret_val = hw->phy.ops.acquire(hw); |
|
2100 if (ret_val) |
|
2101 return -EBUSY; |
|
2102 |
|
2103 /* EEE Capability */ |
|
2104 ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data); |
|
2105 if (ret_val) |
|
2106 goto release; |
|
2107 edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data); |
|
2108 |
|
2109 /* EEE Advertised */ |
|
2110 edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert); |
|
2111 |
|
2112 /* EEE Link Partner Advertised */ |
|
2113 ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data); |
|
2114 if (ret_val) |
|
2115 goto release; |
|
2116 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data); |
|
2117 |
|
2118 /* EEE PCS Status */ |
|
2119 ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data); |
|
2120 if (hw->phy.type == e1000_phy_82579) |
|
2121 phy_data <<= 8; |
|
2122 |
|
2123 release: |
|
2124 hw->phy.ops.release(hw); |
|
2125 if (ret_val) |
|
2126 return -ENODATA; |
|
2127 |
|
2128 /* Result of the EEE auto negotiation - there is no register that |
|
2129 * has the status of the EEE negotiation so do a best-guess based |
|
2130 * on whether Tx or Rx LPI indications have been received. |
|
2131 */ |
|
2132 if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD)) |
|
2133 edata->eee_active = true; |
|
2134 |
|
2135 edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable; |
|
2136 edata->tx_lpi_enabled = true; |
|
2137 edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT; |
|
2138 |
|
2139 return 0; |
|
2140 } |
|
2141 |
|
2142 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata) |
|
2143 { |
|
2144 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
2145 struct e1000_hw *hw = &adapter->hw; |
|
2146 struct ethtool_eee eee_curr; |
|
2147 s32 ret_val; |
|
2148 |
|
2149 ret_val = e1000e_get_eee(netdev, &eee_curr); |
|
2150 if (ret_val) |
|
2151 return ret_val; |
|
2152 |
|
2153 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) { |
|
2154 e_err("Setting EEE tx-lpi is not supported\n"); |
|
2155 return -EINVAL; |
|
2156 } |
|
2157 |
|
2158 if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) { |
|
2159 e_err("Setting EEE Tx LPI timer is not supported\n"); |
|
2160 return -EINVAL; |
|
2161 } |
|
2162 |
|
2163 if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) { |
|
2164 e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n"); |
|
2165 return -EINVAL; |
|
2166 } |
|
2167 |
|
2168 adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised); |
|
2169 |
|
2170 hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled; |
|
2171 |
|
2172 /* reset the link */ |
|
2173 if (netif_running(netdev)) |
|
2174 e1000e_reinit_locked(adapter); |
|
2175 else |
|
2176 e1000e_reset(adapter); |
|
2177 |
|
2178 return 0; |
|
2179 } |
|
2180 |
|
2181 static int e1000e_get_ts_info(struct net_device *netdev, |
|
2182 struct ethtool_ts_info *info) |
|
2183 { |
|
2184 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
2185 |
|
2186 ethtool_op_get_ts_info(netdev, info); |
|
2187 |
|
2188 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP)) |
|
2189 return 0; |
|
2190 |
|
2191 info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE | |
|
2192 SOF_TIMESTAMPING_RX_HARDWARE | |
|
2193 SOF_TIMESTAMPING_RAW_HARDWARE); |
|
2194 |
|
2195 info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON); |
|
2196 |
|
2197 info->rx_filters = ((1 << HWTSTAMP_FILTER_NONE) | |
|
2198 (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) | |
|
2199 (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) | |
|
2200 (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) | |
|
2201 (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) | |
|
2202 (1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) | |
|
2203 (1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) | |
|
2204 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT) | |
|
2205 (1 << HWTSTAMP_FILTER_PTP_V2_SYNC) | |
|
2206 (1 << HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) | |
|
2207 (1 << HWTSTAMP_FILTER_ALL)); |
|
2208 |
|
2209 if (adapter->ptp_clock) |
|
2210 info->phc_index = ptp_clock_index(adapter->ptp_clock); |
|
2211 |
|
2212 return 0; |
|
2213 } |
|
2214 |
|
2215 static int e1000e_ethtool_begin(struct net_device *netdev) |
|
2216 { |
|
2217 return pm_runtime_get_sync(netdev->dev.parent); |
|
2218 } |
|
2219 |
|
2220 static void e1000e_ethtool_complete(struct net_device *netdev) |
|
2221 { |
|
2222 pm_runtime_put_sync(netdev->dev.parent); |
|
2223 } |
|
2224 |
|
2225 static const struct ethtool_ops e1000_ethtool_ops = { |
|
2226 .begin = e1000e_ethtool_begin, |
|
2227 .complete = e1000e_ethtool_complete, |
|
2228 .get_settings = e1000_get_settings, |
|
2229 .set_settings = e1000_set_settings, |
|
2230 .get_drvinfo = e1000_get_drvinfo, |
|
2231 .get_regs_len = e1000_get_regs_len, |
|
2232 .get_regs = e1000_get_regs, |
|
2233 .get_wol = e1000_get_wol, |
|
2234 .set_wol = e1000_set_wol, |
|
2235 .get_msglevel = e1000_get_msglevel, |
|
2236 .set_msglevel = e1000_set_msglevel, |
|
2237 .nway_reset = e1000_nway_reset, |
|
2238 .get_link = ethtool_op_get_link, |
|
2239 .get_eeprom_len = e1000_get_eeprom_len, |
|
2240 .get_eeprom = e1000_get_eeprom, |
|
2241 .set_eeprom = e1000_set_eeprom, |
|
2242 .get_ringparam = e1000_get_ringparam, |
|
2243 .set_ringparam = e1000_set_ringparam, |
|
2244 .get_pauseparam = e1000_get_pauseparam, |
|
2245 .set_pauseparam = e1000_set_pauseparam, |
|
2246 .self_test = e1000_diag_test, |
|
2247 .get_strings = e1000_get_strings, |
|
2248 .set_phys_id = e1000_set_phys_id, |
|
2249 .get_ethtool_stats = e1000_get_ethtool_stats, |
|
2250 .get_sset_count = e1000e_get_sset_count, |
|
2251 .get_coalesce = e1000_get_coalesce, |
|
2252 .set_coalesce = e1000_set_coalesce, |
|
2253 .get_rxnfc = e1000_get_rxnfc, |
|
2254 .get_ts_info = e1000e_get_ts_info, |
|
2255 .get_eee = e1000e_get_eee, |
|
2256 .set_eee = e1000e_set_eee, |
|
2257 }; |
|
2258 |
|
2259 void e1000e_set_ethtool_ops(struct net_device *netdev) |
|
2260 { |
|
2261 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops); |
|
2262 } |