|
1 /* Intel PRO/1000 Linux driver |
|
2 * Copyright(c) 1999 - 2014 Intel Corporation. |
|
3 * |
|
4 * This program is free software; you can redistribute it and/or modify it |
|
5 * under the terms and conditions of the GNU General Public License, |
|
6 * version 2, as published by the Free Software Foundation. |
|
7 * |
|
8 * This program is distributed in the hope it will be useful, but WITHOUT |
|
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
|
11 * more details. |
|
12 * |
|
13 * The full GNU General Public License is included in this distribution in |
|
14 * the file called "COPYING". |
|
15 * |
|
16 * Contact Information: |
|
17 * Linux NICS <linux.nics@intel.com> |
|
18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
|
19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
|
20 */ |
|
21 |
|
22 /* 82571EB Gigabit Ethernet Controller |
|
23 * 82571EB Gigabit Ethernet Controller (Copper) |
|
24 * 82571EB Gigabit Ethernet Controller (Fiber) |
|
25 * 82571EB Dual Port Gigabit Mezzanine Adapter |
|
26 * 82571EB Quad Port Gigabit Mezzanine Adapter |
|
27 * 82571PT Gigabit PT Quad Port Server ExpressModule |
|
28 * 82572EI Gigabit Ethernet Controller (Copper) |
|
29 * 82572EI Gigabit Ethernet Controller (Fiber) |
|
30 * 82572EI Gigabit Ethernet Controller |
|
31 * 82573V Gigabit Ethernet Controller (Copper) |
|
32 * 82573E Gigabit Ethernet Controller (Copper) |
|
33 * 82573L Gigabit Ethernet Controller |
|
34 * 82574L Gigabit Network Connection |
|
35 * 82583V Gigabit Network Connection |
|
36 */ |
|
37 |
|
38 #include "e1000-3.16-ethercat.h" |
|
39 |
|
40 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw); |
|
41 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw); |
|
42 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw); |
|
43 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw); |
|
44 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset, |
|
45 u16 words, u16 *data); |
|
46 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw); |
|
47 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw); |
|
48 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw); |
|
49 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw); |
|
50 static s32 e1000_led_on_82574(struct e1000_hw *hw); |
|
51 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw); |
|
52 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw); |
|
53 static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw); |
|
54 static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw); |
|
55 static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw); |
|
56 static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active); |
|
57 static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active); |
|
58 |
|
59 /** |
|
60 * e1000_init_phy_params_82571 - Init PHY func ptrs. |
|
61 * @hw: pointer to the HW structure |
|
62 **/ |
|
63 static s32 e1000_init_phy_params_82571(struct e1000_hw *hw) |
|
64 { |
|
65 struct e1000_phy_info *phy = &hw->phy; |
|
66 s32 ret_val __attribute__ ((unused)); |
|
67 |
|
68 if (hw->phy.media_type != e1000_media_type_copper) { |
|
69 phy->type = e1000_phy_none; |
|
70 return 0; |
|
71 } |
|
72 |
|
73 phy->addr = 1; |
|
74 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; |
|
75 phy->reset_delay_us = 100; |
|
76 |
|
77 phy->ops.power_up = e1000_power_up_phy_copper; |
|
78 phy->ops.power_down = e1000_power_down_phy_copper_82571; |
|
79 |
|
80 switch (hw->mac.type) { |
|
81 case e1000_82571: |
|
82 case e1000_82572: |
|
83 phy->type = e1000_phy_igp_2; |
|
84 break; |
|
85 case e1000_82573: |
|
86 phy->type = e1000_phy_m88; |
|
87 break; |
|
88 case e1000_82574: |
|
89 case e1000_82583: |
|
90 phy->type = e1000_phy_bm; |
|
91 phy->ops.acquire = e1000_get_hw_semaphore_82574; |
|
92 phy->ops.release = e1000_put_hw_semaphore_82574; |
|
93 phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574; |
|
94 phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574; |
|
95 break; |
|
96 default: |
|
97 return -E1000_ERR_PHY; |
|
98 break; |
|
99 } |
|
100 |
|
101 /* This can only be done after all function pointers are setup. */ |
|
102 ret_val = e1000_get_phy_id_82571(hw); |
|
103 if (ret_val) { |
|
104 e_dbg("Error getting PHY ID\n"); |
|
105 return ret_val; |
|
106 } |
|
107 |
|
108 /* Verify phy id */ |
|
109 switch (hw->mac.type) { |
|
110 case e1000_82571: |
|
111 case e1000_82572: |
|
112 if (phy->id != IGP01E1000_I_PHY_ID) |
|
113 ret_val = -E1000_ERR_PHY; |
|
114 break; |
|
115 case e1000_82573: |
|
116 if (phy->id != M88E1111_I_PHY_ID) |
|
117 ret_val = -E1000_ERR_PHY; |
|
118 break; |
|
119 case e1000_82574: |
|
120 case e1000_82583: |
|
121 if (phy->id != BME1000_E_PHY_ID_R2) |
|
122 ret_val = -E1000_ERR_PHY; |
|
123 break; |
|
124 default: |
|
125 ret_val = -E1000_ERR_PHY; |
|
126 break; |
|
127 } |
|
128 |
|
129 if (ret_val) |
|
130 e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id); |
|
131 |
|
132 return ret_val; |
|
133 } |
|
134 |
|
135 /** |
|
136 * e1000_init_nvm_params_82571 - Init NVM func ptrs. |
|
137 * @hw: pointer to the HW structure |
|
138 **/ |
|
139 static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw) |
|
140 { |
|
141 struct e1000_nvm_info *nvm = &hw->nvm; |
|
142 u32 eecd = er32(EECD); |
|
143 u16 size; |
|
144 |
|
145 nvm->opcode_bits = 8; |
|
146 nvm->delay_usec = 1; |
|
147 switch (nvm->override) { |
|
148 case e1000_nvm_override_spi_large: |
|
149 nvm->page_size = 32; |
|
150 nvm->address_bits = 16; |
|
151 break; |
|
152 case e1000_nvm_override_spi_small: |
|
153 nvm->page_size = 8; |
|
154 nvm->address_bits = 8; |
|
155 break; |
|
156 default: |
|
157 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; |
|
158 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8; |
|
159 break; |
|
160 } |
|
161 |
|
162 switch (hw->mac.type) { |
|
163 case e1000_82573: |
|
164 case e1000_82574: |
|
165 case e1000_82583: |
|
166 if (((eecd >> 15) & 0x3) == 0x3) { |
|
167 nvm->type = e1000_nvm_flash_hw; |
|
168 nvm->word_size = 2048; |
|
169 /* Autonomous Flash update bit must be cleared due |
|
170 * to Flash update issue. |
|
171 */ |
|
172 eecd &= ~E1000_EECD_AUPDEN; |
|
173 ew32(EECD, eecd); |
|
174 break; |
|
175 } |
|
176 /* Fall Through */ |
|
177 default: |
|
178 nvm->type = e1000_nvm_eeprom_spi; |
|
179 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> |
|
180 E1000_EECD_SIZE_EX_SHIFT); |
|
181 /* Added to a constant, "size" becomes the left-shift value |
|
182 * for setting word_size. |
|
183 */ |
|
184 size += NVM_WORD_SIZE_BASE_SHIFT; |
|
185 |
|
186 /* EEPROM access above 16k is unsupported */ |
|
187 if (size > 14) |
|
188 size = 14; |
|
189 nvm->word_size = 1 << size; |
|
190 break; |
|
191 } |
|
192 |
|
193 /* Function Pointers */ |
|
194 switch (hw->mac.type) { |
|
195 case e1000_82574: |
|
196 case e1000_82583: |
|
197 nvm->ops.acquire = e1000_get_hw_semaphore_82574; |
|
198 nvm->ops.release = e1000_put_hw_semaphore_82574; |
|
199 break; |
|
200 default: |
|
201 break; |
|
202 } |
|
203 |
|
204 return 0; |
|
205 } |
|
206 |
|
207 /** |
|
208 * e1000_init_mac_params_82571 - Init MAC func ptrs. |
|
209 * @hw: pointer to the HW structure |
|
210 **/ |
|
211 static s32 e1000_init_mac_params_82571(struct e1000_hw *hw) |
|
212 { |
|
213 struct e1000_mac_info *mac = &hw->mac; |
|
214 u32 swsm = 0; |
|
215 u32 swsm2 = 0; |
|
216 bool force_clear_smbi = false; |
|
217 |
|
218 /* Set media type and media-dependent function pointers */ |
|
219 switch (hw->adapter->pdev->device) { |
|
220 case E1000_DEV_ID_82571EB_FIBER: |
|
221 case E1000_DEV_ID_82572EI_FIBER: |
|
222 case E1000_DEV_ID_82571EB_QUAD_FIBER: |
|
223 hw->phy.media_type = e1000_media_type_fiber; |
|
224 mac->ops.setup_physical_interface = |
|
225 e1000_setup_fiber_serdes_link_82571; |
|
226 mac->ops.check_for_link = e1000e_check_for_fiber_link; |
|
227 mac->ops.get_link_up_info = |
|
228 e1000e_get_speed_and_duplex_fiber_serdes; |
|
229 break; |
|
230 case E1000_DEV_ID_82571EB_SERDES: |
|
231 case E1000_DEV_ID_82571EB_SERDES_DUAL: |
|
232 case E1000_DEV_ID_82571EB_SERDES_QUAD: |
|
233 case E1000_DEV_ID_82572EI_SERDES: |
|
234 hw->phy.media_type = e1000_media_type_internal_serdes; |
|
235 mac->ops.setup_physical_interface = |
|
236 e1000_setup_fiber_serdes_link_82571; |
|
237 mac->ops.check_for_link = e1000_check_for_serdes_link_82571; |
|
238 mac->ops.get_link_up_info = |
|
239 e1000e_get_speed_and_duplex_fiber_serdes; |
|
240 break; |
|
241 default: |
|
242 hw->phy.media_type = e1000_media_type_copper; |
|
243 mac->ops.setup_physical_interface = |
|
244 e1000_setup_copper_link_82571; |
|
245 mac->ops.check_for_link = e1000e_check_for_copper_link; |
|
246 mac->ops.get_link_up_info = e1000e_get_speed_and_duplex_copper; |
|
247 break; |
|
248 } |
|
249 |
|
250 /* Set mta register count */ |
|
251 mac->mta_reg_count = 128; |
|
252 /* Set rar entry count */ |
|
253 mac->rar_entry_count = E1000_RAR_ENTRIES; |
|
254 /* Adaptive IFS supported */ |
|
255 mac->adaptive_ifs = true; |
|
256 |
|
257 /* MAC-specific function pointers */ |
|
258 switch (hw->mac.type) { |
|
259 case e1000_82573: |
|
260 mac->ops.set_lan_id = e1000_set_lan_id_single_port; |
|
261 mac->ops.check_mng_mode = e1000e_check_mng_mode_generic; |
|
262 mac->ops.led_on = e1000e_led_on_generic; |
|
263 mac->ops.blink_led = e1000e_blink_led_generic; |
|
264 |
|
265 /* FWSM register */ |
|
266 mac->has_fwsm = true; |
|
267 /* ARC supported; valid only if manageability features are |
|
268 * enabled. |
|
269 */ |
|
270 mac->arc_subsystem_valid = !!(er32(FWSM) & |
|
271 E1000_FWSM_MODE_MASK); |
|
272 break; |
|
273 case e1000_82574: |
|
274 case e1000_82583: |
|
275 mac->ops.set_lan_id = e1000_set_lan_id_single_port; |
|
276 mac->ops.check_mng_mode = e1000_check_mng_mode_82574; |
|
277 mac->ops.led_on = e1000_led_on_82574; |
|
278 break; |
|
279 default: |
|
280 mac->ops.check_mng_mode = e1000e_check_mng_mode_generic; |
|
281 mac->ops.led_on = e1000e_led_on_generic; |
|
282 mac->ops.blink_led = e1000e_blink_led_generic; |
|
283 |
|
284 /* FWSM register */ |
|
285 mac->has_fwsm = true; |
|
286 break; |
|
287 } |
|
288 |
|
289 /* Ensure that the inter-port SWSM.SMBI lock bit is clear before |
|
290 * first NVM or PHY access. This should be done for single-port |
|
291 * devices, and for one port only on dual-port devices so that |
|
292 * for those devices we can still use the SMBI lock to synchronize |
|
293 * inter-port accesses to the PHY & NVM. |
|
294 */ |
|
295 switch (hw->mac.type) { |
|
296 case e1000_82571: |
|
297 case e1000_82572: |
|
298 swsm2 = er32(SWSM2); |
|
299 |
|
300 if (!(swsm2 & E1000_SWSM2_LOCK)) { |
|
301 /* Only do this for the first interface on this card */ |
|
302 ew32(SWSM2, swsm2 | E1000_SWSM2_LOCK); |
|
303 force_clear_smbi = true; |
|
304 } else { |
|
305 force_clear_smbi = false; |
|
306 } |
|
307 break; |
|
308 default: |
|
309 force_clear_smbi = true; |
|
310 break; |
|
311 } |
|
312 |
|
313 if (force_clear_smbi) { |
|
314 /* Make sure SWSM.SMBI is clear */ |
|
315 swsm = er32(SWSM); |
|
316 if (swsm & E1000_SWSM_SMBI) { |
|
317 /* This bit should not be set on a first interface, and |
|
318 * indicates that the bootagent or EFI code has |
|
319 * improperly left this bit enabled |
|
320 */ |
|
321 e_dbg("Please update your 82571 Bootagent\n"); |
|
322 } |
|
323 ew32(SWSM, swsm & ~E1000_SWSM_SMBI); |
|
324 } |
|
325 |
|
326 /* Initialize device specific counter of SMBI acquisition timeouts. */ |
|
327 hw->dev_spec.e82571.smb_counter = 0; |
|
328 |
|
329 return 0; |
|
330 } |
|
331 |
|
332 static s32 e1000_get_variants_82571(struct e1000_adapter *adapter) |
|
333 { |
|
334 struct e1000_hw *hw = &adapter->hw; |
|
335 static int global_quad_port_a; /* global port a indication */ |
|
336 struct pci_dev *pdev = adapter->pdev; |
|
337 int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1; |
|
338 s32 rc; |
|
339 |
|
340 rc = e1000_init_mac_params_82571(hw); |
|
341 if (rc) |
|
342 return rc; |
|
343 |
|
344 rc = e1000_init_nvm_params_82571(hw); |
|
345 if (rc) |
|
346 return rc; |
|
347 |
|
348 rc = e1000_init_phy_params_82571(hw); |
|
349 if (rc) |
|
350 return rc; |
|
351 |
|
352 /* tag quad port adapters first, it's used below */ |
|
353 switch (pdev->device) { |
|
354 case E1000_DEV_ID_82571EB_QUAD_COPPER: |
|
355 case E1000_DEV_ID_82571EB_QUAD_FIBER: |
|
356 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: |
|
357 case E1000_DEV_ID_82571PT_QUAD_COPPER: |
|
358 adapter->flags |= FLAG_IS_QUAD_PORT; |
|
359 /* mark the first port */ |
|
360 if (global_quad_port_a == 0) |
|
361 adapter->flags |= FLAG_IS_QUAD_PORT_A; |
|
362 /* Reset for multiple quad port adapters */ |
|
363 global_quad_port_a++; |
|
364 if (global_quad_port_a == 4) |
|
365 global_quad_port_a = 0; |
|
366 break; |
|
367 default: |
|
368 break; |
|
369 } |
|
370 |
|
371 switch (adapter->hw.mac.type) { |
|
372 case e1000_82571: |
|
373 /* these dual ports don't have WoL on port B at all */ |
|
374 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) || |
|
375 (pdev->device == E1000_DEV_ID_82571EB_SERDES) || |
|
376 (pdev->device == E1000_DEV_ID_82571EB_COPPER)) && |
|
377 (is_port_b)) |
|
378 adapter->flags &= ~FLAG_HAS_WOL; |
|
379 /* quad ports only support WoL on port A */ |
|
380 if (adapter->flags & FLAG_IS_QUAD_PORT && |
|
381 (!(adapter->flags & FLAG_IS_QUAD_PORT_A))) |
|
382 adapter->flags &= ~FLAG_HAS_WOL; |
|
383 /* Does not support WoL on any port */ |
|
384 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD) |
|
385 adapter->flags &= ~FLAG_HAS_WOL; |
|
386 break; |
|
387 case e1000_82573: |
|
388 if (pdev->device == E1000_DEV_ID_82573L) { |
|
389 adapter->flags |= FLAG_HAS_JUMBO_FRAMES; |
|
390 adapter->max_hw_frame_size = DEFAULT_JUMBO; |
|
391 } |
|
392 break; |
|
393 default: |
|
394 break; |
|
395 } |
|
396 |
|
397 return 0; |
|
398 } |
|
399 |
|
400 /** |
|
401 * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision |
|
402 * @hw: pointer to the HW structure |
|
403 * |
|
404 * Reads the PHY registers and stores the PHY ID and possibly the PHY |
|
405 * revision in the hardware structure. |
|
406 **/ |
|
407 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw) |
|
408 { |
|
409 struct e1000_phy_info *phy = &hw->phy; |
|
410 s32 ret_val; |
|
411 u16 phy_id = 0; |
|
412 |
|
413 switch (hw->mac.type) { |
|
414 case e1000_82571: |
|
415 case e1000_82572: |
|
416 /* The 82571 firmware may still be configuring the PHY. |
|
417 * In this case, we cannot access the PHY until the |
|
418 * configuration is done. So we explicitly set the |
|
419 * PHY ID. |
|
420 */ |
|
421 phy->id = IGP01E1000_I_PHY_ID; |
|
422 break; |
|
423 case e1000_82573: |
|
424 return e1000e_get_phy_id(hw); |
|
425 break; |
|
426 case e1000_82574: |
|
427 case e1000_82583: |
|
428 ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id); |
|
429 if (ret_val) |
|
430 return ret_val; |
|
431 |
|
432 phy->id = (u32)(phy_id << 16); |
|
433 usleep_range(20, 40); |
|
434 ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id); |
|
435 if (ret_val) |
|
436 return ret_val; |
|
437 |
|
438 phy->id |= (u32)(phy_id); |
|
439 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); |
|
440 break; |
|
441 default: |
|
442 return -E1000_ERR_PHY; |
|
443 break; |
|
444 } |
|
445 |
|
446 return 0; |
|
447 } |
|
448 |
|
449 /** |
|
450 * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore |
|
451 * @hw: pointer to the HW structure |
|
452 * |
|
453 * Acquire the HW semaphore to access the PHY or NVM |
|
454 **/ |
|
455 static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw) |
|
456 { |
|
457 u32 swsm; |
|
458 s32 sw_timeout = hw->nvm.word_size + 1; |
|
459 s32 fw_timeout = hw->nvm.word_size + 1; |
|
460 s32 i = 0; |
|
461 |
|
462 /* If we have timedout 3 times on trying to acquire |
|
463 * the inter-port SMBI semaphore, there is old code |
|
464 * operating on the other port, and it is not |
|
465 * releasing SMBI. Modify the number of times that |
|
466 * we try for the semaphore to interwork with this |
|
467 * older code. |
|
468 */ |
|
469 if (hw->dev_spec.e82571.smb_counter > 2) |
|
470 sw_timeout = 1; |
|
471 |
|
472 /* Get the SW semaphore */ |
|
473 while (i < sw_timeout) { |
|
474 swsm = er32(SWSM); |
|
475 if (!(swsm & E1000_SWSM_SMBI)) |
|
476 break; |
|
477 |
|
478 usleep_range(50, 100); |
|
479 i++; |
|
480 } |
|
481 |
|
482 if (i == sw_timeout) { |
|
483 e_dbg("Driver can't access device - SMBI bit is set.\n"); |
|
484 hw->dev_spec.e82571.smb_counter++; |
|
485 } |
|
486 /* Get the FW semaphore. */ |
|
487 for (i = 0; i < fw_timeout; i++) { |
|
488 swsm = er32(SWSM); |
|
489 ew32(SWSM, swsm | E1000_SWSM_SWESMBI); |
|
490 |
|
491 /* Semaphore acquired if bit latched */ |
|
492 if (er32(SWSM) & E1000_SWSM_SWESMBI) |
|
493 break; |
|
494 |
|
495 usleep_range(50, 100); |
|
496 } |
|
497 |
|
498 if (i == fw_timeout) { |
|
499 /* Release semaphores */ |
|
500 e1000_put_hw_semaphore_82571(hw); |
|
501 e_dbg("Driver can't access the NVM\n"); |
|
502 return -E1000_ERR_NVM; |
|
503 } |
|
504 |
|
505 return 0; |
|
506 } |
|
507 |
|
508 /** |
|
509 * e1000_put_hw_semaphore_82571 - Release hardware semaphore |
|
510 * @hw: pointer to the HW structure |
|
511 * |
|
512 * Release hardware semaphore used to access the PHY or NVM |
|
513 **/ |
|
514 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw) |
|
515 { |
|
516 u32 swsm; |
|
517 |
|
518 swsm = er32(SWSM); |
|
519 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); |
|
520 ew32(SWSM, swsm); |
|
521 } |
|
522 |
|
523 /** |
|
524 * e1000_get_hw_semaphore_82573 - Acquire hardware semaphore |
|
525 * @hw: pointer to the HW structure |
|
526 * |
|
527 * Acquire the HW semaphore during reset. |
|
528 * |
|
529 **/ |
|
530 static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw) |
|
531 { |
|
532 u32 extcnf_ctrl; |
|
533 s32 i = 0; |
|
534 |
|
535 extcnf_ctrl = er32(EXTCNF_CTRL); |
|
536 do { |
|
537 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; |
|
538 ew32(EXTCNF_CTRL, extcnf_ctrl); |
|
539 extcnf_ctrl = er32(EXTCNF_CTRL); |
|
540 |
|
541 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP) |
|
542 break; |
|
543 |
|
544 usleep_range(2000, 4000); |
|
545 i++; |
|
546 } while (i < MDIO_OWNERSHIP_TIMEOUT); |
|
547 |
|
548 if (i == MDIO_OWNERSHIP_TIMEOUT) { |
|
549 /* Release semaphores */ |
|
550 e1000_put_hw_semaphore_82573(hw); |
|
551 e_dbg("Driver can't access the PHY\n"); |
|
552 return -E1000_ERR_PHY; |
|
553 } |
|
554 |
|
555 return 0; |
|
556 } |
|
557 |
|
558 /** |
|
559 * e1000_put_hw_semaphore_82573 - Release hardware semaphore |
|
560 * @hw: pointer to the HW structure |
|
561 * |
|
562 * Release hardware semaphore used during reset. |
|
563 * |
|
564 **/ |
|
565 static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw) |
|
566 { |
|
567 u32 extcnf_ctrl; |
|
568 |
|
569 extcnf_ctrl = er32(EXTCNF_CTRL); |
|
570 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; |
|
571 ew32(EXTCNF_CTRL, extcnf_ctrl); |
|
572 } |
|
573 |
|
574 static DEFINE_MUTEX(swflag_mutex); |
|
575 |
|
576 /** |
|
577 * e1000_get_hw_semaphore_82574 - Acquire hardware semaphore |
|
578 * @hw: pointer to the HW structure |
|
579 * |
|
580 * Acquire the HW semaphore to access the PHY or NVM. |
|
581 * |
|
582 **/ |
|
583 static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw) |
|
584 { |
|
585 s32 ret_val; |
|
586 |
|
587 mutex_lock(&swflag_mutex); |
|
588 ret_val = e1000_get_hw_semaphore_82573(hw); |
|
589 if (ret_val) |
|
590 mutex_unlock(&swflag_mutex); |
|
591 return ret_val; |
|
592 } |
|
593 |
|
594 /** |
|
595 * e1000_put_hw_semaphore_82574 - Release hardware semaphore |
|
596 * @hw: pointer to the HW structure |
|
597 * |
|
598 * Release hardware semaphore used to access the PHY or NVM |
|
599 * |
|
600 **/ |
|
601 static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw) |
|
602 { |
|
603 e1000_put_hw_semaphore_82573(hw); |
|
604 mutex_unlock(&swflag_mutex); |
|
605 } |
|
606 |
|
607 /** |
|
608 * e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state |
|
609 * @hw: pointer to the HW structure |
|
610 * @active: true to enable LPLU, false to disable |
|
611 * |
|
612 * Sets the LPLU D0 state according to the active flag. |
|
613 * LPLU will not be activated unless the |
|
614 * device autonegotiation advertisement meets standards of |
|
615 * either 10 or 10/100 or 10/100/1000 at all duplexes. |
|
616 * This is a function pointer entry point only called by |
|
617 * PHY setup routines. |
|
618 **/ |
|
619 static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active) |
|
620 { |
|
621 u32 data = er32(POEMB); |
|
622 |
|
623 if (active) |
|
624 data |= E1000_PHY_CTRL_D0A_LPLU; |
|
625 else |
|
626 data &= ~E1000_PHY_CTRL_D0A_LPLU; |
|
627 |
|
628 ew32(POEMB, data); |
|
629 return 0; |
|
630 } |
|
631 |
|
632 /** |
|
633 * e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3 |
|
634 * @hw: pointer to the HW structure |
|
635 * @active: boolean used to enable/disable lplu |
|
636 * |
|
637 * The low power link up (lplu) state is set to the power management level D3 |
|
638 * when active is true, else clear lplu for D3. LPLU |
|
639 * is used during Dx states where the power conservation is most important. |
|
640 * During driver activity, SmartSpeed should be enabled so performance is |
|
641 * maintained. |
|
642 **/ |
|
643 static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active) |
|
644 { |
|
645 u32 data = er32(POEMB); |
|
646 |
|
647 if (!active) { |
|
648 data &= ~E1000_PHY_CTRL_NOND0A_LPLU; |
|
649 } else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || |
|
650 (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) || |
|
651 (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) { |
|
652 data |= E1000_PHY_CTRL_NOND0A_LPLU; |
|
653 } |
|
654 |
|
655 ew32(POEMB, data); |
|
656 return 0; |
|
657 } |
|
658 |
|
659 /** |
|
660 * e1000_acquire_nvm_82571 - Request for access to the EEPROM |
|
661 * @hw: pointer to the HW structure |
|
662 * |
|
663 * To gain access to the EEPROM, first we must obtain a hardware semaphore. |
|
664 * Then for non-82573 hardware, set the EEPROM access request bit and wait |
|
665 * for EEPROM access grant bit. If the access grant bit is not set, release |
|
666 * hardware semaphore. |
|
667 **/ |
|
668 static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw) |
|
669 { |
|
670 s32 ret_val; |
|
671 |
|
672 ret_val = e1000_get_hw_semaphore_82571(hw); |
|
673 if (ret_val) |
|
674 return ret_val; |
|
675 |
|
676 switch (hw->mac.type) { |
|
677 case e1000_82573: |
|
678 break; |
|
679 default: |
|
680 ret_val = e1000e_acquire_nvm(hw); |
|
681 break; |
|
682 } |
|
683 |
|
684 if (ret_val) |
|
685 e1000_put_hw_semaphore_82571(hw); |
|
686 |
|
687 return ret_val; |
|
688 } |
|
689 |
|
690 /** |
|
691 * e1000_release_nvm_82571 - Release exclusive access to EEPROM |
|
692 * @hw: pointer to the HW structure |
|
693 * |
|
694 * Stop any current commands to the EEPROM and clear the EEPROM request bit. |
|
695 **/ |
|
696 static void e1000_release_nvm_82571(struct e1000_hw *hw) |
|
697 { |
|
698 e1000e_release_nvm(hw); |
|
699 e1000_put_hw_semaphore_82571(hw); |
|
700 } |
|
701 |
|
702 /** |
|
703 * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface |
|
704 * @hw: pointer to the HW structure |
|
705 * @offset: offset within the EEPROM to be written to |
|
706 * @words: number of words to write |
|
707 * @data: 16 bit word(s) to be written to the EEPROM |
|
708 * |
|
709 * For non-82573 silicon, write data to EEPROM at offset using SPI interface. |
|
710 * |
|
711 * If e1000e_update_nvm_checksum is not called after this function, the |
|
712 * EEPROM will most likely contain an invalid checksum. |
|
713 **/ |
|
714 static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words, |
|
715 u16 *data) |
|
716 { |
|
717 s32 ret_val; |
|
718 |
|
719 switch (hw->mac.type) { |
|
720 case e1000_82573: |
|
721 case e1000_82574: |
|
722 case e1000_82583: |
|
723 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data); |
|
724 break; |
|
725 case e1000_82571: |
|
726 case e1000_82572: |
|
727 ret_val = e1000e_write_nvm_spi(hw, offset, words, data); |
|
728 break; |
|
729 default: |
|
730 ret_val = -E1000_ERR_NVM; |
|
731 break; |
|
732 } |
|
733 |
|
734 return ret_val; |
|
735 } |
|
736 |
|
737 /** |
|
738 * e1000_update_nvm_checksum_82571 - Update EEPROM checksum |
|
739 * @hw: pointer to the HW structure |
|
740 * |
|
741 * Updates the EEPROM checksum by reading/adding each word of the EEPROM |
|
742 * up to the checksum. Then calculates the EEPROM checksum and writes the |
|
743 * value to the EEPROM. |
|
744 **/ |
|
745 static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw) |
|
746 { |
|
747 u32 eecd; |
|
748 s32 ret_val; |
|
749 u16 i; |
|
750 |
|
751 ret_val = e1000e_update_nvm_checksum_generic(hw); |
|
752 if (ret_val) |
|
753 return ret_val; |
|
754 |
|
755 /* If our nvm is an EEPROM, then we're done |
|
756 * otherwise, commit the checksum to the flash NVM. |
|
757 */ |
|
758 if (hw->nvm.type != e1000_nvm_flash_hw) |
|
759 return 0; |
|
760 |
|
761 /* Check for pending operations. */ |
|
762 for (i = 0; i < E1000_FLASH_UPDATES; i++) { |
|
763 usleep_range(1000, 2000); |
|
764 if (!(er32(EECD) & E1000_EECD_FLUPD)) |
|
765 break; |
|
766 } |
|
767 |
|
768 if (i == E1000_FLASH_UPDATES) |
|
769 return -E1000_ERR_NVM; |
|
770 |
|
771 /* Reset the firmware if using STM opcode. */ |
|
772 if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) { |
|
773 /* The enabling of and the actual reset must be done |
|
774 * in two write cycles. |
|
775 */ |
|
776 ew32(HICR, E1000_HICR_FW_RESET_ENABLE); |
|
777 e1e_flush(); |
|
778 ew32(HICR, E1000_HICR_FW_RESET); |
|
779 } |
|
780 |
|
781 /* Commit the write to flash */ |
|
782 eecd = er32(EECD) | E1000_EECD_FLUPD; |
|
783 ew32(EECD, eecd); |
|
784 |
|
785 for (i = 0; i < E1000_FLASH_UPDATES; i++) { |
|
786 usleep_range(1000, 2000); |
|
787 if (!(er32(EECD) & E1000_EECD_FLUPD)) |
|
788 break; |
|
789 } |
|
790 |
|
791 if (i == E1000_FLASH_UPDATES) |
|
792 return -E1000_ERR_NVM; |
|
793 |
|
794 return 0; |
|
795 } |
|
796 |
|
797 /** |
|
798 * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum |
|
799 * @hw: pointer to the HW structure |
|
800 * |
|
801 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM |
|
802 * and then verifies that the sum of the EEPROM is equal to 0xBABA. |
|
803 **/ |
|
804 static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw) |
|
805 { |
|
806 if (hw->nvm.type == e1000_nvm_flash_hw) |
|
807 e1000_fix_nvm_checksum_82571(hw); |
|
808 |
|
809 return e1000e_validate_nvm_checksum_generic(hw); |
|
810 } |
|
811 |
|
812 /** |
|
813 * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon |
|
814 * @hw: pointer to the HW structure |
|
815 * @offset: offset within the EEPROM to be written to |
|
816 * @words: number of words to write |
|
817 * @data: 16 bit word(s) to be written to the EEPROM |
|
818 * |
|
819 * After checking for invalid values, poll the EEPROM to ensure the previous |
|
820 * command has completed before trying to write the next word. After write |
|
821 * poll for completion. |
|
822 * |
|
823 * If e1000e_update_nvm_checksum is not called after this function, the |
|
824 * EEPROM will most likely contain an invalid checksum. |
|
825 **/ |
|
826 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset, |
|
827 u16 words, u16 *data) |
|
828 { |
|
829 struct e1000_nvm_info *nvm = &hw->nvm; |
|
830 u32 i, eewr = 0; |
|
831 s32 ret_val = 0; |
|
832 |
|
833 /* A check for invalid values: offset too large, too many words, |
|
834 * and not enough words. |
|
835 */ |
|
836 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || |
|
837 (words == 0)) { |
|
838 e_dbg("nvm parameter(s) out of bounds\n"); |
|
839 return -E1000_ERR_NVM; |
|
840 } |
|
841 |
|
842 for (i = 0; i < words; i++) { |
|
843 eewr = ((data[i] << E1000_NVM_RW_REG_DATA) | |
|
844 ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) | |
|
845 E1000_NVM_RW_REG_START); |
|
846 |
|
847 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE); |
|
848 if (ret_val) |
|
849 break; |
|
850 |
|
851 ew32(EEWR, eewr); |
|
852 |
|
853 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE); |
|
854 if (ret_val) |
|
855 break; |
|
856 } |
|
857 |
|
858 return ret_val; |
|
859 } |
|
860 |
|
861 /** |
|
862 * e1000_get_cfg_done_82571 - Poll for configuration done |
|
863 * @hw: pointer to the HW structure |
|
864 * |
|
865 * Reads the management control register for the config done bit to be set. |
|
866 **/ |
|
867 static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw) |
|
868 { |
|
869 s32 timeout = PHY_CFG_TIMEOUT; |
|
870 |
|
871 while (timeout) { |
|
872 if (er32(EEMNGCTL) & E1000_NVM_CFG_DONE_PORT_0) |
|
873 break; |
|
874 usleep_range(1000, 2000); |
|
875 timeout--; |
|
876 } |
|
877 if (!timeout) { |
|
878 e_dbg("MNG configuration cycle has not completed.\n"); |
|
879 return -E1000_ERR_RESET; |
|
880 } |
|
881 |
|
882 return 0; |
|
883 } |
|
884 |
|
885 /** |
|
886 * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state |
|
887 * @hw: pointer to the HW structure |
|
888 * @active: true to enable LPLU, false to disable |
|
889 * |
|
890 * Sets the LPLU D0 state according to the active flag. When activating LPLU |
|
891 * this function also disables smart speed and vice versa. LPLU will not be |
|
892 * activated unless the device autonegotiation advertisement meets standards |
|
893 * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function |
|
894 * pointer entry point only called by PHY setup routines. |
|
895 **/ |
|
896 static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active) |
|
897 { |
|
898 struct e1000_phy_info *phy = &hw->phy; |
|
899 s32 ret_val; |
|
900 u16 data; |
|
901 |
|
902 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data); |
|
903 if (ret_val) |
|
904 return ret_val; |
|
905 |
|
906 if (active) { |
|
907 data |= IGP02E1000_PM_D0_LPLU; |
|
908 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); |
|
909 if (ret_val) |
|
910 return ret_val; |
|
911 |
|
912 /* When LPLU is enabled, we should disable SmartSpeed */ |
|
913 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); |
|
914 if (ret_val) |
|
915 return ret_val; |
|
916 data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
|
917 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); |
|
918 if (ret_val) |
|
919 return ret_val; |
|
920 } else { |
|
921 data &= ~IGP02E1000_PM_D0_LPLU; |
|
922 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); |
|
923 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used |
|
924 * during Dx states where the power conservation is most |
|
925 * important. During driver activity we should enable |
|
926 * SmartSpeed, so performance is maintained. |
|
927 */ |
|
928 if (phy->smart_speed == e1000_smart_speed_on) { |
|
929 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
930 &data); |
|
931 if (ret_val) |
|
932 return ret_val; |
|
933 |
|
934 data |= IGP01E1000_PSCFR_SMART_SPEED; |
|
935 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
936 data); |
|
937 if (ret_val) |
|
938 return ret_val; |
|
939 } else if (phy->smart_speed == e1000_smart_speed_off) { |
|
940 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
941 &data); |
|
942 if (ret_val) |
|
943 return ret_val; |
|
944 |
|
945 data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
|
946 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
947 data); |
|
948 if (ret_val) |
|
949 return ret_val; |
|
950 } |
|
951 } |
|
952 |
|
953 return 0; |
|
954 } |
|
955 |
|
956 /** |
|
957 * e1000_reset_hw_82571 - Reset hardware |
|
958 * @hw: pointer to the HW structure |
|
959 * |
|
960 * This resets the hardware into a known state. |
|
961 **/ |
|
962 static s32 e1000_reset_hw_82571(struct e1000_hw *hw) |
|
963 { |
|
964 u32 ctrl, ctrl_ext, eecd, tctl; |
|
965 s32 ret_val; |
|
966 |
|
967 /* Prevent the PCI-E bus from sticking if there is no TLP connection |
|
968 * on the last TLP read/write transaction when MAC is reset. |
|
969 */ |
|
970 ret_val = e1000e_disable_pcie_master(hw); |
|
971 if (ret_val) |
|
972 e_dbg("PCI-E Master disable polling has failed.\n"); |
|
973 |
|
974 e_dbg("Masking off all interrupts\n"); |
|
975 ew32(IMC, 0xffffffff); |
|
976 |
|
977 ew32(RCTL, 0); |
|
978 tctl = er32(TCTL); |
|
979 tctl &= ~E1000_TCTL_EN; |
|
980 ew32(TCTL, tctl); |
|
981 e1e_flush(); |
|
982 |
|
983 usleep_range(10000, 20000); |
|
984 |
|
985 /* Must acquire the MDIO ownership before MAC reset. |
|
986 * Ownership defaults to firmware after a reset. |
|
987 */ |
|
988 switch (hw->mac.type) { |
|
989 case e1000_82573: |
|
990 ret_val = e1000_get_hw_semaphore_82573(hw); |
|
991 break; |
|
992 case e1000_82574: |
|
993 case e1000_82583: |
|
994 ret_val = e1000_get_hw_semaphore_82574(hw); |
|
995 break; |
|
996 default: |
|
997 break; |
|
998 } |
|
999 |
|
1000 ctrl = er32(CTRL); |
|
1001 |
|
1002 e_dbg("Issuing a global reset to MAC\n"); |
|
1003 ew32(CTRL, ctrl | E1000_CTRL_RST); |
|
1004 |
|
1005 /* Must release MDIO ownership and mutex after MAC reset. */ |
|
1006 switch (hw->mac.type) { |
|
1007 case e1000_82573: |
|
1008 /* Release mutex only if the hw semaphore is acquired */ |
|
1009 if (!ret_val) |
|
1010 e1000_put_hw_semaphore_82573(hw); |
|
1011 break; |
|
1012 case e1000_82574: |
|
1013 case e1000_82583: |
|
1014 /* Release mutex only if the hw semaphore is acquired */ |
|
1015 if (!ret_val) |
|
1016 e1000_put_hw_semaphore_82574(hw); |
|
1017 break; |
|
1018 default: |
|
1019 break; |
|
1020 } |
|
1021 |
|
1022 if (hw->nvm.type == e1000_nvm_flash_hw) { |
|
1023 usleep_range(10, 20); |
|
1024 ctrl_ext = er32(CTRL_EXT); |
|
1025 ctrl_ext |= E1000_CTRL_EXT_EE_RST; |
|
1026 ew32(CTRL_EXT, ctrl_ext); |
|
1027 e1e_flush(); |
|
1028 } |
|
1029 |
|
1030 ret_val = e1000e_get_auto_rd_done(hw); |
|
1031 if (ret_val) |
|
1032 /* We don't want to continue accessing MAC registers. */ |
|
1033 return ret_val; |
|
1034 |
|
1035 /* Phy configuration from NVM just starts after EECD_AUTO_RD is set. |
|
1036 * Need to wait for Phy configuration completion before accessing |
|
1037 * NVM and Phy. |
|
1038 */ |
|
1039 |
|
1040 switch (hw->mac.type) { |
|
1041 case e1000_82571: |
|
1042 case e1000_82572: |
|
1043 /* REQ and GNT bits need to be cleared when using AUTO_RD |
|
1044 * to access the EEPROM. |
|
1045 */ |
|
1046 eecd = er32(EECD); |
|
1047 eecd &= ~(E1000_EECD_REQ | E1000_EECD_GNT); |
|
1048 ew32(EECD, eecd); |
|
1049 break; |
|
1050 case e1000_82573: |
|
1051 case e1000_82574: |
|
1052 case e1000_82583: |
|
1053 msleep(25); |
|
1054 break; |
|
1055 default: |
|
1056 break; |
|
1057 } |
|
1058 |
|
1059 /* Clear any pending interrupt events. */ |
|
1060 ew32(IMC, 0xffffffff); |
|
1061 er32(ICR); |
|
1062 |
|
1063 if (hw->mac.type == e1000_82571) { |
|
1064 /* Install any alternate MAC address into RAR0 */ |
|
1065 ret_val = e1000_check_alt_mac_addr_generic(hw); |
|
1066 if (ret_val) |
|
1067 return ret_val; |
|
1068 |
|
1069 e1000e_set_laa_state_82571(hw, true); |
|
1070 } |
|
1071 |
|
1072 /* Reinitialize the 82571 serdes link state machine */ |
|
1073 if (hw->phy.media_type == e1000_media_type_internal_serdes) |
|
1074 hw->mac.serdes_link_state = e1000_serdes_link_down; |
|
1075 |
|
1076 return 0; |
|
1077 } |
|
1078 |
|
1079 /** |
|
1080 * e1000_init_hw_82571 - Initialize hardware |
|
1081 * @hw: pointer to the HW structure |
|
1082 * |
|
1083 * This inits the hardware readying it for operation. |
|
1084 **/ |
|
1085 static s32 e1000_init_hw_82571(struct e1000_hw *hw) |
|
1086 { |
|
1087 struct e1000_mac_info *mac = &hw->mac; |
|
1088 u32 reg_data; |
|
1089 s32 ret_val; |
|
1090 u16 i, rar_count = mac->rar_entry_count; |
|
1091 |
|
1092 e1000_initialize_hw_bits_82571(hw); |
|
1093 |
|
1094 /* Initialize identification LED */ |
|
1095 ret_val = mac->ops.id_led_init(hw); |
|
1096 /* An error is not fatal and we should not stop init due to this */ |
|
1097 if (ret_val) |
|
1098 e_dbg("Error initializing identification LED\n"); |
|
1099 |
|
1100 /* Disabling VLAN filtering */ |
|
1101 e_dbg("Initializing the IEEE VLAN\n"); |
|
1102 mac->ops.clear_vfta(hw); |
|
1103 |
|
1104 /* Setup the receive address. |
|
1105 * If, however, a locally administered address was assigned to the |
|
1106 * 82571, we must reserve a RAR for it to work around an issue where |
|
1107 * resetting one port will reload the MAC on the other port. |
|
1108 */ |
|
1109 if (e1000e_get_laa_state_82571(hw)) |
|
1110 rar_count--; |
|
1111 e1000e_init_rx_addrs(hw, rar_count); |
|
1112 |
|
1113 /* Zero out the Multicast HASH table */ |
|
1114 e_dbg("Zeroing the MTA\n"); |
|
1115 for (i = 0; i < mac->mta_reg_count; i++) |
|
1116 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); |
|
1117 |
|
1118 /* Setup link and flow control */ |
|
1119 ret_val = mac->ops.setup_link(hw); |
|
1120 |
|
1121 /* Set the transmit descriptor write-back policy */ |
|
1122 reg_data = er32(TXDCTL(0)); |
|
1123 reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) | |
|
1124 E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC); |
|
1125 ew32(TXDCTL(0), reg_data); |
|
1126 |
|
1127 /* ...for both queues. */ |
|
1128 switch (mac->type) { |
|
1129 case e1000_82573: |
|
1130 e1000e_enable_tx_pkt_filtering(hw); |
|
1131 /* fall through */ |
|
1132 case e1000_82574: |
|
1133 case e1000_82583: |
|
1134 reg_data = er32(GCR); |
|
1135 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX; |
|
1136 ew32(GCR, reg_data); |
|
1137 break; |
|
1138 default: |
|
1139 reg_data = er32(TXDCTL(1)); |
|
1140 reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) | |
|
1141 E1000_TXDCTL_FULL_TX_DESC_WB | |
|
1142 E1000_TXDCTL_COUNT_DESC); |
|
1143 ew32(TXDCTL(1), reg_data); |
|
1144 break; |
|
1145 } |
|
1146 |
|
1147 /* Clear all of the statistics registers (clear on read). It is |
|
1148 * important that we do this after we have tried to establish link |
|
1149 * because the symbol error count will increment wildly if there |
|
1150 * is no link. |
|
1151 */ |
|
1152 e1000_clear_hw_cntrs_82571(hw); |
|
1153 |
|
1154 return ret_val; |
|
1155 } |
|
1156 |
|
1157 /** |
|
1158 * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits |
|
1159 * @hw: pointer to the HW structure |
|
1160 * |
|
1161 * Initializes required hardware-dependent bits needed for normal operation. |
|
1162 **/ |
|
1163 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw) |
|
1164 { |
|
1165 u32 reg; |
|
1166 |
|
1167 /* Transmit Descriptor Control 0 */ |
|
1168 reg = er32(TXDCTL(0)); |
|
1169 reg |= (1 << 22); |
|
1170 ew32(TXDCTL(0), reg); |
|
1171 |
|
1172 /* Transmit Descriptor Control 1 */ |
|
1173 reg = er32(TXDCTL(1)); |
|
1174 reg |= (1 << 22); |
|
1175 ew32(TXDCTL(1), reg); |
|
1176 |
|
1177 /* Transmit Arbitration Control 0 */ |
|
1178 reg = er32(TARC(0)); |
|
1179 reg &= ~(0xF << 27); /* 30:27 */ |
|
1180 switch (hw->mac.type) { |
|
1181 case e1000_82571: |
|
1182 case e1000_82572: |
|
1183 reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26); |
|
1184 break; |
|
1185 case e1000_82574: |
|
1186 case e1000_82583: |
|
1187 reg |= (1 << 26); |
|
1188 break; |
|
1189 default: |
|
1190 break; |
|
1191 } |
|
1192 ew32(TARC(0), reg); |
|
1193 |
|
1194 /* Transmit Arbitration Control 1 */ |
|
1195 reg = er32(TARC(1)); |
|
1196 switch (hw->mac.type) { |
|
1197 case e1000_82571: |
|
1198 case e1000_82572: |
|
1199 reg &= ~((1 << 29) | (1 << 30)); |
|
1200 reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26); |
|
1201 if (er32(TCTL) & E1000_TCTL_MULR) |
|
1202 reg &= ~(1 << 28); |
|
1203 else |
|
1204 reg |= (1 << 28); |
|
1205 ew32(TARC(1), reg); |
|
1206 break; |
|
1207 default: |
|
1208 break; |
|
1209 } |
|
1210 |
|
1211 /* Device Control */ |
|
1212 switch (hw->mac.type) { |
|
1213 case e1000_82573: |
|
1214 case e1000_82574: |
|
1215 case e1000_82583: |
|
1216 reg = er32(CTRL); |
|
1217 reg &= ~(1 << 29); |
|
1218 ew32(CTRL, reg); |
|
1219 break; |
|
1220 default: |
|
1221 break; |
|
1222 } |
|
1223 |
|
1224 /* Extended Device Control */ |
|
1225 switch (hw->mac.type) { |
|
1226 case e1000_82573: |
|
1227 case e1000_82574: |
|
1228 case e1000_82583: |
|
1229 reg = er32(CTRL_EXT); |
|
1230 reg &= ~(1 << 23); |
|
1231 reg |= (1 << 22); |
|
1232 ew32(CTRL_EXT, reg); |
|
1233 break; |
|
1234 default: |
|
1235 break; |
|
1236 } |
|
1237 |
|
1238 if (hw->mac.type == e1000_82571) { |
|
1239 reg = er32(PBA_ECC); |
|
1240 reg |= E1000_PBA_ECC_CORR_EN; |
|
1241 ew32(PBA_ECC, reg); |
|
1242 } |
|
1243 |
|
1244 /* Workaround for hardware errata. |
|
1245 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572 |
|
1246 */ |
|
1247 if ((hw->mac.type == e1000_82571) || (hw->mac.type == e1000_82572)) { |
|
1248 reg = er32(CTRL_EXT); |
|
1249 reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN; |
|
1250 ew32(CTRL_EXT, reg); |
|
1251 } |
|
1252 |
|
1253 /* Disable IPv6 extension header parsing because some malformed |
|
1254 * IPv6 headers can hang the Rx. |
|
1255 */ |
|
1256 if (hw->mac.type <= e1000_82573) { |
|
1257 reg = er32(RFCTL); |
|
1258 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS); |
|
1259 ew32(RFCTL, reg); |
|
1260 } |
|
1261 |
|
1262 /* PCI-Ex Control Registers */ |
|
1263 switch (hw->mac.type) { |
|
1264 case e1000_82574: |
|
1265 case e1000_82583: |
|
1266 reg = er32(GCR); |
|
1267 reg |= (1 << 22); |
|
1268 ew32(GCR, reg); |
|
1269 |
|
1270 /* Workaround for hardware errata. |
|
1271 * apply workaround for hardware errata documented in errata |
|
1272 * docs Fixes issue where some error prone or unreliable PCIe |
|
1273 * completions are occurring, particularly with ASPM enabled. |
|
1274 * Without fix, issue can cause Tx timeouts. |
|
1275 */ |
|
1276 reg = er32(GCR2); |
|
1277 reg |= 1; |
|
1278 ew32(GCR2, reg); |
|
1279 break; |
|
1280 default: |
|
1281 break; |
|
1282 } |
|
1283 } |
|
1284 |
|
1285 /** |
|
1286 * e1000_clear_vfta_82571 - Clear VLAN filter table |
|
1287 * @hw: pointer to the HW structure |
|
1288 * |
|
1289 * Clears the register array which contains the VLAN filter table by |
|
1290 * setting all the values to 0. |
|
1291 **/ |
|
1292 static void e1000_clear_vfta_82571(struct e1000_hw *hw) |
|
1293 { |
|
1294 u32 offset; |
|
1295 u32 vfta_value = 0; |
|
1296 u32 vfta_offset = 0; |
|
1297 u32 vfta_bit_in_reg = 0; |
|
1298 |
|
1299 switch (hw->mac.type) { |
|
1300 case e1000_82573: |
|
1301 case e1000_82574: |
|
1302 case e1000_82583: |
|
1303 if (hw->mng_cookie.vlan_id != 0) { |
|
1304 /* The VFTA is a 4096b bit-field, each identifying |
|
1305 * a single VLAN ID. The following operations |
|
1306 * determine which 32b entry (i.e. offset) into the |
|
1307 * array we want to set the VLAN ID (i.e. bit) of |
|
1308 * the manageability unit. |
|
1309 */ |
|
1310 vfta_offset = (hw->mng_cookie.vlan_id >> |
|
1311 E1000_VFTA_ENTRY_SHIFT) & |
|
1312 E1000_VFTA_ENTRY_MASK; |
|
1313 vfta_bit_in_reg = |
|
1314 1 << (hw->mng_cookie.vlan_id & |
|
1315 E1000_VFTA_ENTRY_BIT_SHIFT_MASK); |
|
1316 } |
|
1317 break; |
|
1318 default: |
|
1319 break; |
|
1320 } |
|
1321 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { |
|
1322 /* If the offset we want to clear is the same offset of the |
|
1323 * manageability VLAN ID, then clear all bits except that of |
|
1324 * the manageability unit. |
|
1325 */ |
|
1326 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; |
|
1327 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value); |
|
1328 e1e_flush(); |
|
1329 } |
|
1330 } |
|
1331 |
|
1332 /** |
|
1333 * e1000_check_mng_mode_82574 - Check manageability is enabled |
|
1334 * @hw: pointer to the HW structure |
|
1335 * |
|
1336 * Reads the NVM Initialization Control Word 2 and returns true |
|
1337 * (>0) if any manageability is enabled, else false (0). |
|
1338 **/ |
|
1339 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw) |
|
1340 { |
|
1341 u16 data; |
|
1342 |
|
1343 e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data); |
|
1344 return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0; |
|
1345 } |
|
1346 |
|
1347 /** |
|
1348 * e1000_led_on_82574 - Turn LED on |
|
1349 * @hw: pointer to the HW structure |
|
1350 * |
|
1351 * Turn LED on. |
|
1352 **/ |
|
1353 static s32 e1000_led_on_82574(struct e1000_hw *hw) |
|
1354 { |
|
1355 u32 ctrl; |
|
1356 u32 i; |
|
1357 |
|
1358 ctrl = hw->mac.ledctl_mode2; |
|
1359 if (!(E1000_STATUS_LU & er32(STATUS))) { |
|
1360 /* If no link, then turn LED on by setting the invert bit |
|
1361 * for each LED that's "on" (0x0E) in ledctl_mode2. |
|
1362 */ |
|
1363 for (i = 0; i < 4; i++) |
|
1364 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) == |
|
1365 E1000_LEDCTL_MODE_LED_ON) |
|
1366 ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8)); |
|
1367 } |
|
1368 ew32(LEDCTL, ctrl); |
|
1369 |
|
1370 return 0; |
|
1371 } |
|
1372 |
|
1373 /** |
|
1374 * e1000_check_phy_82574 - check 82574 phy hung state |
|
1375 * @hw: pointer to the HW structure |
|
1376 * |
|
1377 * Returns whether phy is hung or not |
|
1378 **/ |
|
1379 bool e1000_check_phy_82574(struct e1000_hw *hw) |
|
1380 { |
|
1381 u16 status_1kbt = 0; |
|
1382 u16 receive_errors = 0; |
|
1383 s32 ret_val; |
|
1384 |
|
1385 /* Read PHY Receive Error counter first, if its is max - all F's then |
|
1386 * read the Base1000T status register If both are max then PHY is hung. |
|
1387 */ |
|
1388 ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors); |
|
1389 if (ret_val) |
|
1390 return false; |
|
1391 if (receive_errors == E1000_RECEIVE_ERROR_MAX) { |
|
1392 ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt); |
|
1393 if (ret_val) |
|
1394 return false; |
|
1395 if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) == |
|
1396 E1000_IDLE_ERROR_COUNT_MASK) |
|
1397 return true; |
|
1398 } |
|
1399 |
|
1400 return false; |
|
1401 } |
|
1402 |
|
1403 /** |
|
1404 * e1000_setup_link_82571 - Setup flow control and link settings |
|
1405 * @hw: pointer to the HW structure |
|
1406 * |
|
1407 * Determines which flow control settings to use, then configures flow |
|
1408 * control. Calls the appropriate media-specific link configuration |
|
1409 * function. Assuming the adapter has a valid link partner, a valid link |
|
1410 * should be established. Assumes the hardware has previously been reset |
|
1411 * and the transmitter and receiver are not enabled. |
|
1412 **/ |
|
1413 static s32 e1000_setup_link_82571(struct e1000_hw *hw) |
|
1414 { |
|
1415 /* 82573 does not have a word in the NVM to determine |
|
1416 * the default flow control setting, so we explicitly |
|
1417 * set it to full. |
|
1418 */ |
|
1419 switch (hw->mac.type) { |
|
1420 case e1000_82573: |
|
1421 case e1000_82574: |
|
1422 case e1000_82583: |
|
1423 if (hw->fc.requested_mode == e1000_fc_default) |
|
1424 hw->fc.requested_mode = e1000_fc_full; |
|
1425 break; |
|
1426 default: |
|
1427 break; |
|
1428 } |
|
1429 |
|
1430 return e1000e_setup_link_generic(hw); |
|
1431 } |
|
1432 |
|
1433 /** |
|
1434 * e1000_setup_copper_link_82571 - Configure copper link settings |
|
1435 * @hw: pointer to the HW structure |
|
1436 * |
|
1437 * Configures the link for auto-neg or forced speed and duplex. Then we check |
|
1438 * for link, once link is established calls to configure collision distance |
|
1439 * and flow control are called. |
|
1440 **/ |
|
1441 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw) |
|
1442 { |
|
1443 u32 ctrl; |
|
1444 s32 ret_val; |
|
1445 |
|
1446 ctrl = er32(CTRL); |
|
1447 ctrl |= E1000_CTRL_SLU; |
|
1448 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
|
1449 ew32(CTRL, ctrl); |
|
1450 |
|
1451 switch (hw->phy.type) { |
|
1452 case e1000_phy_m88: |
|
1453 case e1000_phy_bm: |
|
1454 ret_val = e1000e_copper_link_setup_m88(hw); |
|
1455 break; |
|
1456 case e1000_phy_igp_2: |
|
1457 ret_val = e1000e_copper_link_setup_igp(hw); |
|
1458 break; |
|
1459 default: |
|
1460 return -E1000_ERR_PHY; |
|
1461 break; |
|
1462 } |
|
1463 |
|
1464 if (ret_val) |
|
1465 return ret_val; |
|
1466 |
|
1467 return e1000e_setup_copper_link(hw); |
|
1468 } |
|
1469 |
|
1470 /** |
|
1471 * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes |
|
1472 * @hw: pointer to the HW structure |
|
1473 * |
|
1474 * Configures collision distance and flow control for fiber and serdes links. |
|
1475 * Upon successful setup, poll for link. |
|
1476 **/ |
|
1477 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw) |
|
1478 { |
|
1479 switch (hw->mac.type) { |
|
1480 case e1000_82571: |
|
1481 case e1000_82572: |
|
1482 /* If SerDes loopback mode is entered, there is no form |
|
1483 * of reset to take the adapter out of that mode. So we |
|
1484 * have to explicitly take the adapter out of loopback |
|
1485 * mode. This prevents drivers from twiddling their thumbs |
|
1486 * if another tool failed to take it out of loopback mode. |
|
1487 */ |
|
1488 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); |
|
1489 break; |
|
1490 default: |
|
1491 break; |
|
1492 } |
|
1493 |
|
1494 return e1000e_setup_fiber_serdes_link(hw); |
|
1495 } |
|
1496 |
|
1497 /** |
|
1498 * e1000_check_for_serdes_link_82571 - Check for link (Serdes) |
|
1499 * @hw: pointer to the HW structure |
|
1500 * |
|
1501 * Reports the link state as up or down. |
|
1502 * |
|
1503 * If autonegotiation is supported by the link partner, the link state is |
|
1504 * determined by the result of autonegotiation. This is the most likely case. |
|
1505 * If autonegotiation is not supported by the link partner, and the link |
|
1506 * has a valid signal, force the link up. |
|
1507 * |
|
1508 * The link state is represented internally here by 4 states: |
|
1509 * |
|
1510 * 1) down |
|
1511 * 2) autoneg_progress |
|
1512 * 3) autoneg_complete (the link successfully autonegotiated) |
|
1513 * 4) forced_up (the link has been forced up, it did not autonegotiate) |
|
1514 * |
|
1515 **/ |
|
1516 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw) |
|
1517 { |
|
1518 struct e1000_mac_info *mac = &hw->mac; |
|
1519 u32 rxcw; |
|
1520 u32 ctrl; |
|
1521 u32 status; |
|
1522 u32 txcw; |
|
1523 u32 i; |
|
1524 s32 ret_val = 0; |
|
1525 |
|
1526 ctrl = er32(CTRL); |
|
1527 status = er32(STATUS); |
|
1528 er32(RXCW); |
|
1529 /* SYNCH bit and IV bit are sticky */ |
|
1530 usleep_range(10, 20); |
|
1531 rxcw = er32(RXCW); |
|
1532 |
|
1533 if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) { |
|
1534 /* Receiver is synchronized with no invalid bits. */ |
|
1535 switch (mac->serdes_link_state) { |
|
1536 case e1000_serdes_link_autoneg_complete: |
|
1537 if (!(status & E1000_STATUS_LU)) { |
|
1538 /* We have lost link, retry autoneg before |
|
1539 * reporting link failure |
|
1540 */ |
|
1541 mac->serdes_link_state = |
|
1542 e1000_serdes_link_autoneg_progress; |
|
1543 mac->serdes_has_link = false; |
|
1544 e_dbg("AN_UP -> AN_PROG\n"); |
|
1545 } else { |
|
1546 mac->serdes_has_link = true; |
|
1547 } |
|
1548 break; |
|
1549 |
|
1550 case e1000_serdes_link_forced_up: |
|
1551 /* If we are receiving /C/ ordered sets, re-enable |
|
1552 * auto-negotiation in the TXCW register and disable |
|
1553 * forced link in the Device Control register in an |
|
1554 * attempt to auto-negotiate with our link partner. |
|
1555 */ |
|
1556 if (rxcw & E1000_RXCW_C) { |
|
1557 /* Enable autoneg, and unforce link up */ |
|
1558 ew32(TXCW, mac->txcw); |
|
1559 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); |
|
1560 mac->serdes_link_state = |
|
1561 e1000_serdes_link_autoneg_progress; |
|
1562 mac->serdes_has_link = false; |
|
1563 e_dbg("FORCED_UP -> AN_PROG\n"); |
|
1564 } else { |
|
1565 mac->serdes_has_link = true; |
|
1566 } |
|
1567 break; |
|
1568 |
|
1569 case e1000_serdes_link_autoneg_progress: |
|
1570 if (rxcw & E1000_RXCW_C) { |
|
1571 /* We received /C/ ordered sets, meaning the |
|
1572 * link partner has autonegotiated, and we can |
|
1573 * trust the Link Up (LU) status bit. |
|
1574 */ |
|
1575 if (status & E1000_STATUS_LU) { |
|
1576 mac->serdes_link_state = |
|
1577 e1000_serdes_link_autoneg_complete; |
|
1578 e_dbg("AN_PROG -> AN_UP\n"); |
|
1579 mac->serdes_has_link = true; |
|
1580 } else { |
|
1581 /* Autoneg completed, but failed. */ |
|
1582 mac->serdes_link_state = |
|
1583 e1000_serdes_link_down; |
|
1584 e_dbg("AN_PROG -> DOWN\n"); |
|
1585 } |
|
1586 } else { |
|
1587 /* The link partner did not autoneg. |
|
1588 * Force link up and full duplex, and change |
|
1589 * state to forced. |
|
1590 */ |
|
1591 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE)); |
|
1592 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); |
|
1593 ew32(CTRL, ctrl); |
|
1594 |
|
1595 /* Configure Flow Control after link up. */ |
|
1596 ret_val = e1000e_config_fc_after_link_up(hw); |
|
1597 if (ret_val) { |
|
1598 e_dbg("Error config flow control\n"); |
|
1599 break; |
|
1600 } |
|
1601 mac->serdes_link_state = |
|
1602 e1000_serdes_link_forced_up; |
|
1603 mac->serdes_has_link = true; |
|
1604 e_dbg("AN_PROG -> FORCED_UP\n"); |
|
1605 } |
|
1606 break; |
|
1607 |
|
1608 case e1000_serdes_link_down: |
|
1609 default: |
|
1610 /* The link was down but the receiver has now gained |
|
1611 * valid sync, so lets see if we can bring the link |
|
1612 * up. |
|
1613 */ |
|
1614 ew32(TXCW, mac->txcw); |
|
1615 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); |
|
1616 mac->serdes_link_state = |
|
1617 e1000_serdes_link_autoneg_progress; |
|
1618 mac->serdes_has_link = false; |
|
1619 e_dbg("DOWN -> AN_PROG\n"); |
|
1620 break; |
|
1621 } |
|
1622 } else { |
|
1623 if (!(rxcw & E1000_RXCW_SYNCH)) { |
|
1624 mac->serdes_has_link = false; |
|
1625 mac->serdes_link_state = e1000_serdes_link_down; |
|
1626 e_dbg("ANYSTATE -> DOWN\n"); |
|
1627 } else { |
|
1628 /* Check several times, if SYNCH bit and CONFIG |
|
1629 * bit both are consistently 1 then simply ignore |
|
1630 * the IV bit and restart Autoneg |
|
1631 */ |
|
1632 for (i = 0; i < AN_RETRY_COUNT; i++) { |
|
1633 usleep_range(10, 20); |
|
1634 rxcw = er32(RXCW); |
|
1635 if ((rxcw & E1000_RXCW_SYNCH) && |
|
1636 (rxcw & E1000_RXCW_C)) |
|
1637 continue; |
|
1638 |
|
1639 if (rxcw & E1000_RXCW_IV) { |
|
1640 mac->serdes_has_link = false; |
|
1641 mac->serdes_link_state = |
|
1642 e1000_serdes_link_down; |
|
1643 e_dbg("ANYSTATE -> DOWN\n"); |
|
1644 break; |
|
1645 } |
|
1646 } |
|
1647 |
|
1648 if (i == AN_RETRY_COUNT) { |
|
1649 txcw = er32(TXCW); |
|
1650 txcw |= E1000_TXCW_ANE; |
|
1651 ew32(TXCW, txcw); |
|
1652 mac->serdes_link_state = |
|
1653 e1000_serdes_link_autoneg_progress; |
|
1654 mac->serdes_has_link = false; |
|
1655 e_dbg("ANYSTATE -> AN_PROG\n"); |
|
1656 } |
|
1657 } |
|
1658 } |
|
1659 |
|
1660 return ret_val; |
|
1661 } |
|
1662 |
|
1663 /** |
|
1664 * e1000_valid_led_default_82571 - Verify a valid default LED config |
|
1665 * @hw: pointer to the HW structure |
|
1666 * @data: pointer to the NVM (EEPROM) |
|
1667 * |
|
1668 * Read the EEPROM for the current default LED configuration. If the |
|
1669 * LED configuration is not valid, set to a valid LED configuration. |
|
1670 **/ |
|
1671 static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data) |
|
1672 { |
|
1673 s32 ret_val; |
|
1674 |
|
1675 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); |
|
1676 if (ret_val) { |
|
1677 e_dbg("NVM Read Error\n"); |
|
1678 return ret_val; |
|
1679 } |
|
1680 |
|
1681 switch (hw->mac.type) { |
|
1682 case e1000_82573: |
|
1683 case e1000_82574: |
|
1684 case e1000_82583: |
|
1685 if (*data == ID_LED_RESERVED_F746) |
|
1686 *data = ID_LED_DEFAULT_82573; |
|
1687 break; |
|
1688 default: |
|
1689 if (*data == ID_LED_RESERVED_0000 || |
|
1690 *data == ID_LED_RESERVED_FFFF) |
|
1691 *data = ID_LED_DEFAULT; |
|
1692 break; |
|
1693 } |
|
1694 |
|
1695 return 0; |
|
1696 } |
|
1697 |
|
1698 /** |
|
1699 * e1000e_get_laa_state_82571 - Get locally administered address state |
|
1700 * @hw: pointer to the HW structure |
|
1701 * |
|
1702 * Retrieve and return the current locally administered address state. |
|
1703 **/ |
|
1704 bool e1000e_get_laa_state_82571(struct e1000_hw *hw) |
|
1705 { |
|
1706 if (hw->mac.type != e1000_82571) |
|
1707 return false; |
|
1708 |
|
1709 return hw->dev_spec.e82571.laa_is_present; |
|
1710 } |
|
1711 |
|
1712 /** |
|
1713 * e1000e_set_laa_state_82571 - Set locally administered address state |
|
1714 * @hw: pointer to the HW structure |
|
1715 * @state: enable/disable locally administered address |
|
1716 * |
|
1717 * Enable/Disable the current locally administered address state. |
|
1718 **/ |
|
1719 void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state) |
|
1720 { |
|
1721 if (hw->mac.type != e1000_82571) |
|
1722 return; |
|
1723 |
|
1724 hw->dev_spec.e82571.laa_is_present = state; |
|
1725 |
|
1726 /* If workaround is activated... */ |
|
1727 if (state) |
|
1728 /* Hold a copy of the LAA in RAR[14] This is done so that |
|
1729 * between the time RAR[0] gets clobbered and the time it |
|
1730 * gets fixed, the actual LAA is in one of the RARs and no |
|
1731 * incoming packets directed to this port are dropped. |
|
1732 * Eventually the LAA will be in RAR[0] and RAR[14]. |
|
1733 */ |
|
1734 hw->mac.ops.rar_set(hw, hw->mac.addr, |
|
1735 hw->mac.rar_entry_count - 1); |
|
1736 } |
|
1737 |
|
1738 /** |
|
1739 * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum |
|
1740 * @hw: pointer to the HW structure |
|
1741 * |
|
1742 * Verifies that the EEPROM has completed the update. After updating the |
|
1743 * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If |
|
1744 * the checksum fix is not implemented, we need to set the bit and update |
|
1745 * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect, |
|
1746 * we need to return bad checksum. |
|
1747 **/ |
|
1748 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw) |
|
1749 { |
|
1750 struct e1000_nvm_info *nvm = &hw->nvm; |
|
1751 s32 ret_val; |
|
1752 u16 data; |
|
1753 |
|
1754 if (nvm->type != e1000_nvm_flash_hw) |
|
1755 return 0; |
|
1756 |
|
1757 /* Check bit 4 of word 10h. If it is 0, firmware is done updating |
|
1758 * 10h-12h. Checksum may need to be fixed. |
|
1759 */ |
|
1760 ret_val = e1000_read_nvm(hw, 0x10, 1, &data); |
|
1761 if (ret_val) |
|
1762 return ret_val; |
|
1763 |
|
1764 if (!(data & 0x10)) { |
|
1765 /* Read 0x23 and check bit 15. This bit is a 1 |
|
1766 * when the checksum has already been fixed. If |
|
1767 * the checksum is still wrong and this bit is a |
|
1768 * 1, we need to return bad checksum. Otherwise, |
|
1769 * we need to set this bit to a 1 and update the |
|
1770 * checksum. |
|
1771 */ |
|
1772 ret_val = e1000_read_nvm(hw, 0x23, 1, &data); |
|
1773 if (ret_val) |
|
1774 return ret_val; |
|
1775 |
|
1776 if (!(data & 0x8000)) { |
|
1777 data |= 0x8000; |
|
1778 ret_val = e1000_write_nvm(hw, 0x23, 1, &data); |
|
1779 if (ret_val) |
|
1780 return ret_val; |
|
1781 ret_val = e1000e_update_nvm_checksum(hw); |
|
1782 if (ret_val) |
|
1783 return ret_val; |
|
1784 } |
|
1785 } |
|
1786 |
|
1787 return 0; |
|
1788 } |
|
1789 |
|
1790 /** |
|
1791 * e1000_read_mac_addr_82571 - Read device MAC address |
|
1792 * @hw: pointer to the HW structure |
|
1793 **/ |
|
1794 static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw) |
|
1795 { |
|
1796 if (hw->mac.type == e1000_82571) { |
|
1797 s32 ret_val; |
|
1798 |
|
1799 /* If there's an alternate MAC address place it in RAR0 |
|
1800 * so that it will override the Si installed default perm |
|
1801 * address. |
|
1802 */ |
|
1803 ret_val = e1000_check_alt_mac_addr_generic(hw); |
|
1804 if (ret_val) |
|
1805 return ret_val; |
|
1806 } |
|
1807 |
|
1808 return e1000_read_mac_addr_generic(hw); |
|
1809 } |
|
1810 |
|
1811 /** |
|
1812 * e1000_power_down_phy_copper_82571 - Remove link during PHY power down |
|
1813 * @hw: pointer to the HW structure |
|
1814 * |
|
1815 * In the case of a PHY power down to save power, or to turn off link during a |
|
1816 * driver unload, or wake on lan is not enabled, remove the link. |
|
1817 **/ |
|
1818 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw) |
|
1819 { |
|
1820 struct e1000_phy_info *phy = &hw->phy; |
|
1821 struct e1000_mac_info *mac = &hw->mac; |
|
1822 |
|
1823 if (!phy->ops.check_reset_block) |
|
1824 return; |
|
1825 |
|
1826 /* If the management interface is not enabled, then power down */ |
|
1827 if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw))) |
|
1828 e1000_power_down_phy_copper(hw); |
|
1829 } |
|
1830 |
|
1831 /** |
|
1832 * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters |
|
1833 * @hw: pointer to the HW structure |
|
1834 * |
|
1835 * Clears the hardware counters by reading the counter registers. |
|
1836 **/ |
|
1837 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw) |
|
1838 { |
|
1839 e1000e_clear_hw_cntrs_base(hw); |
|
1840 |
|
1841 er32(PRC64); |
|
1842 er32(PRC127); |
|
1843 er32(PRC255); |
|
1844 er32(PRC511); |
|
1845 er32(PRC1023); |
|
1846 er32(PRC1522); |
|
1847 er32(PTC64); |
|
1848 er32(PTC127); |
|
1849 er32(PTC255); |
|
1850 er32(PTC511); |
|
1851 er32(PTC1023); |
|
1852 er32(PTC1522); |
|
1853 |
|
1854 er32(ALGNERRC); |
|
1855 er32(RXERRC); |
|
1856 er32(TNCRS); |
|
1857 er32(CEXTERR); |
|
1858 er32(TSCTC); |
|
1859 er32(TSCTFC); |
|
1860 |
|
1861 er32(MGTPRC); |
|
1862 er32(MGTPDC); |
|
1863 er32(MGTPTC); |
|
1864 |
|
1865 er32(IAC); |
|
1866 er32(ICRXOC); |
|
1867 |
|
1868 er32(ICRXPTC); |
|
1869 er32(ICRXATC); |
|
1870 er32(ICTXPTC); |
|
1871 er32(ICTXATC); |
|
1872 er32(ICTXQEC); |
|
1873 er32(ICTXQMTC); |
|
1874 er32(ICRXDMTC); |
|
1875 } |
|
1876 |
|
1877 static const struct e1000_mac_operations e82571_mac_ops = { |
|
1878 /* .check_mng_mode: mac type dependent */ |
|
1879 /* .check_for_link: media type dependent */ |
|
1880 .id_led_init = e1000e_id_led_init_generic, |
|
1881 .cleanup_led = e1000e_cleanup_led_generic, |
|
1882 .clear_hw_cntrs = e1000_clear_hw_cntrs_82571, |
|
1883 .get_bus_info = e1000e_get_bus_info_pcie, |
|
1884 .set_lan_id = e1000_set_lan_id_multi_port_pcie, |
|
1885 /* .get_link_up_info: media type dependent */ |
|
1886 /* .led_on: mac type dependent */ |
|
1887 .led_off = e1000e_led_off_generic, |
|
1888 .update_mc_addr_list = e1000e_update_mc_addr_list_generic, |
|
1889 .write_vfta = e1000_write_vfta_generic, |
|
1890 .clear_vfta = e1000_clear_vfta_82571, |
|
1891 .reset_hw = e1000_reset_hw_82571, |
|
1892 .init_hw = e1000_init_hw_82571, |
|
1893 .setup_link = e1000_setup_link_82571, |
|
1894 /* .setup_physical_interface: media type dependent */ |
|
1895 .setup_led = e1000e_setup_led_generic, |
|
1896 .config_collision_dist = e1000e_config_collision_dist_generic, |
|
1897 .read_mac_addr = e1000_read_mac_addr_82571, |
|
1898 .rar_set = e1000e_rar_set_generic, |
|
1899 .rar_get_count = e1000e_rar_get_count_generic, |
|
1900 }; |
|
1901 |
|
1902 static const struct e1000_phy_operations e82_phy_ops_igp = { |
|
1903 .acquire = e1000_get_hw_semaphore_82571, |
|
1904 .check_polarity = e1000_check_polarity_igp, |
|
1905 .check_reset_block = e1000e_check_reset_block_generic, |
|
1906 .commit = NULL, |
|
1907 .force_speed_duplex = e1000e_phy_force_speed_duplex_igp, |
|
1908 .get_cfg_done = e1000_get_cfg_done_82571, |
|
1909 .get_cable_length = e1000e_get_cable_length_igp_2, |
|
1910 .get_info = e1000e_get_phy_info_igp, |
|
1911 .read_reg = e1000e_read_phy_reg_igp, |
|
1912 .release = e1000_put_hw_semaphore_82571, |
|
1913 .reset = e1000e_phy_hw_reset_generic, |
|
1914 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571, |
|
1915 .set_d3_lplu_state = e1000e_set_d3_lplu_state, |
|
1916 .write_reg = e1000e_write_phy_reg_igp, |
|
1917 .cfg_on_link_up = NULL, |
|
1918 }; |
|
1919 |
|
1920 static const struct e1000_phy_operations e82_phy_ops_m88 = { |
|
1921 .acquire = e1000_get_hw_semaphore_82571, |
|
1922 .check_polarity = e1000_check_polarity_m88, |
|
1923 .check_reset_block = e1000e_check_reset_block_generic, |
|
1924 .commit = e1000e_phy_sw_reset, |
|
1925 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88, |
|
1926 .get_cfg_done = e1000e_get_cfg_done_generic, |
|
1927 .get_cable_length = e1000e_get_cable_length_m88, |
|
1928 .get_info = e1000e_get_phy_info_m88, |
|
1929 .read_reg = e1000e_read_phy_reg_m88, |
|
1930 .release = e1000_put_hw_semaphore_82571, |
|
1931 .reset = e1000e_phy_hw_reset_generic, |
|
1932 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571, |
|
1933 .set_d3_lplu_state = e1000e_set_d3_lplu_state, |
|
1934 .write_reg = e1000e_write_phy_reg_m88, |
|
1935 .cfg_on_link_up = NULL, |
|
1936 }; |
|
1937 |
|
1938 static const struct e1000_phy_operations e82_phy_ops_bm = { |
|
1939 .acquire = e1000_get_hw_semaphore_82571, |
|
1940 .check_polarity = e1000_check_polarity_m88, |
|
1941 .check_reset_block = e1000e_check_reset_block_generic, |
|
1942 .commit = e1000e_phy_sw_reset, |
|
1943 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88, |
|
1944 .get_cfg_done = e1000e_get_cfg_done_generic, |
|
1945 .get_cable_length = e1000e_get_cable_length_m88, |
|
1946 .get_info = e1000e_get_phy_info_m88, |
|
1947 .read_reg = e1000e_read_phy_reg_bm2, |
|
1948 .release = e1000_put_hw_semaphore_82571, |
|
1949 .reset = e1000e_phy_hw_reset_generic, |
|
1950 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571, |
|
1951 .set_d3_lplu_state = e1000e_set_d3_lplu_state, |
|
1952 .write_reg = e1000e_write_phy_reg_bm2, |
|
1953 .cfg_on_link_up = NULL, |
|
1954 }; |
|
1955 |
|
1956 static const struct e1000_nvm_operations e82571_nvm_ops = { |
|
1957 .acquire = e1000_acquire_nvm_82571, |
|
1958 .read = e1000e_read_nvm_eerd, |
|
1959 .release = e1000_release_nvm_82571, |
|
1960 .reload = e1000e_reload_nvm_generic, |
|
1961 .update = e1000_update_nvm_checksum_82571, |
|
1962 .valid_led_default = e1000_valid_led_default_82571, |
|
1963 .validate = e1000_validate_nvm_checksum_82571, |
|
1964 .write = e1000_write_nvm_82571, |
|
1965 }; |
|
1966 |
|
1967 const struct e1000_info e1000_82571_info = { |
|
1968 .mac = e1000_82571, |
|
1969 .flags = FLAG_HAS_HW_VLAN_FILTER |
|
1970 | FLAG_HAS_JUMBO_FRAMES |
|
1971 | FLAG_HAS_WOL |
|
1972 | FLAG_APME_IN_CTRL3 |
|
1973 | FLAG_HAS_CTRLEXT_ON_LOAD |
|
1974 | FLAG_HAS_SMART_POWER_DOWN |
|
1975 | FLAG_RESET_OVERWRITES_LAA /* errata */ |
|
1976 | FLAG_TARC_SPEED_MODE_BIT /* errata */ |
|
1977 | FLAG_APME_CHECK_PORT_B, |
|
1978 .flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */ |
|
1979 | FLAG2_DMA_BURST, |
|
1980 .pba = 38, |
|
1981 .max_hw_frame_size = DEFAULT_JUMBO, |
|
1982 .get_variants = e1000_get_variants_82571, |
|
1983 .mac_ops = &e82571_mac_ops, |
|
1984 .phy_ops = &e82_phy_ops_igp, |
|
1985 .nvm_ops = &e82571_nvm_ops, |
|
1986 }; |
|
1987 |
|
1988 const struct e1000_info e1000_82572_info = { |
|
1989 .mac = e1000_82572, |
|
1990 .flags = FLAG_HAS_HW_VLAN_FILTER |
|
1991 | FLAG_HAS_JUMBO_FRAMES |
|
1992 | FLAG_HAS_WOL |
|
1993 | FLAG_APME_IN_CTRL3 |
|
1994 | FLAG_HAS_CTRLEXT_ON_LOAD |
|
1995 | FLAG_TARC_SPEED_MODE_BIT, /* errata */ |
|
1996 .flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */ |
|
1997 | FLAG2_DMA_BURST, |
|
1998 .pba = 38, |
|
1999 .max_hw_frame_size = DEFAULT_JUMBO, |
|
2000 .get_variants = e1000_get_variants_82571, |
|
2001 .mac_ops = &e82571_mac_ops, |
|
2002 .phy_ops = &e82_phy_ops_igp, |
|
2003 .nvm_ops = &e82571_nvm_ops, |
|
2004 }; |
|
2005 |
|
2006 const struct e1000_info e1000_82573_info = { |
|
2007 .mac = e1000_82573, |
|
2008 .flags = FLAG_HAS_HW_VLAN_FILTER |
|
2009 | FLAG_HAS_WOL |
|
2010 | FLAG_APME_IN_CTRL3 |
|
2011 | FLAG_HAS_SMART_POWER_DOWN |
|
2012 | FLAG_HAS_AMT |
|
2013 | FLAG_HAS_SWSM_ON_LOAD, |
|
2014 .flags2 = FLAG2_DISABLE_ASPM_L1 |
|
2015 | FLAG2_DISABLE_ASPM_L0S, |
|
2016 .pba = 20, |
|
2017 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN, |
|
2018 .get_variants = e1000_get_variants_82571, |
|
2019 .mac_ops = &e82571_mac_ops, |
|
2020 .phy_ops = &e82_phy_ops_m88, |
|
2021 .nvm_ops = &e82571_nvm_ops, |
|
2022 }; |
|
2023 |
|
2024 const struct e1000_info e1000_82574_info = { |
|
2025 .mac = e1000_82574, |
|
2026 .flags = FLAG_HAS_HW_VLAN_FILTER |
|
2027 | FLAG_HAS_MSIX |
|
2028 | FLAG_HAS_JUMBO_FRAMES |
|
2029 | FLAG_HAS_WOL |
|
2030 | FLAG_HAS_HW_TIMESTAMP |
|
2031 | FLAG_APME_IN_CTRL3 |
|
2032 | FLAG_HAS_SMART_POWER_DOWN |
|
2033 | FLAG_HAS_AMT |
|
2034 | FLAG_HAS_CTRLEXT_ON_LOAD, |
|
2035 .flags2 = FLAG2_CHECK_PHY_HANG |
|
2036 | FLAG2_DISABLE_ASPM_L0S |
|
2037 | FLAG2_DISABLE_ASPM_L1 |
|
2038 | FLAG2_NO_DISABLE_RX |
|
2039 | FLAG2_DMA_BURST, |
|
2040 .pba = 32, |
|
2041 .max_hw_frame_size = DEFAULT_JUMBO, |
|
2042 .get_variants = e1000_get_variants_82571, |
|
2043 .mac_ops = &e82571_mac_ops, |
|
2044 .phy_ops = &e82_phy_ops_bm, |
|
2045 .nvm_ops = &e82571_nvm_ops, |
|
2046 }; |
|
2047 |
|
2048 const struct e1000_info e1000_82583_info = { |
|
2049 .mac = e1000_82583, |
|
2050 .flags = FLAG_HAS_HW_VLAN_FILTER |
|
2051 | FLAG_HAS_WOL |
|
2052 | FLAG_HAS_HW_TIMESTAMP |
|
2053 | FLAG_APME_IN_CTRL3 |
|
2054 | FLAG_HAS_SMART_POWER_DOWN |
|
2055 | FLAG_HAS_AMT |
|
2056 | FLAG_HAS_JUMBO_FRAMES |
|
2057 | FLAG_HAS_CTRLEXT_ON_LOAD, |
|
2058 .flags2 = FLAG2_DISABLE_ASPM_L0S |
|
2059 | FLAG2_DISABLE_ASPM_L1 |
|
2060 | FLAG2_NO_DISABLE_RX, |
|
2061 .pba = 32, |
|
2062 .max_hw_frame_size = DEFAULT_JUMBO, |
|
2063 .get_variants = e1000_get_variants_82571, |
|
2064 .mac_ops = &e82571_mac_ops, |
|
2065 .phy_ops = &e82_phy_ops_bm, |
|
2066 .nvm_ops = &e82571_nvm_ops, |
|
2067 }; |