|
1 /******************************************************************************* |
|
2 |
|
3 Intel PRO/1000 Linux driver |
|
4 Copyright(c) 1999 - 2006 Intel Corporation. |
|
5 |
|
6 This program is free software; you can redistribute it and/or modify it |
|
7 under the terms and conditions of the GNU General Public License, |
|
8 version 2, as published by the Free Software Foundation. |
|
9 |
|
10 This program is distributed in the hope it will be useful, but WITHOUT |
|
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
|
13 more details. |
|
14 |
|
15 You should have received a copy of the GNU General Public License along with |
|
16 this program; if not, write to the Free Software Foundation, Inc., |
|
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 |
|
19 The full GNU General Public License is included in this distribution in |
|
20 the file called "COPYING". |
|
21 |
|
22 Contact Information: |
|
23 Linux NICS <linux.nics@intel.com> |
|
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
|
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
|
26 |
|
27 *******************************************************************************/ |
|
28 |
|
29 #include "e1000.h" |
|
30 #include <net/ip6_checksum.h> |
|
31 #include <linux/io.h> |
|
32 #include <linux/prefetch.h> |
|
33 #include <linux/bitops.h> |
|
34 #include <linux/if_vlan.h> |
|
35 |
|
36 char e1000_driver_name[] = "e1000"; |
|
37 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver"; |
|
38 #define DRV_VERSION "7.3.21-k8-NAPI" |
|
39 const char e1000_driver_version[] = DRV_VERSION; |
|
40 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation."; |
|
41 |
|
42 /* e1000_pci_tbl - PCI Device ID Table |
|
43 * |
|
44 * Last entry must be all 0s |
|
45 * |
|
46 * Macro expands to... |
|
47 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)} |
|
48 */ |
|
49 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = { |
|
50 INTEL_E1000_ETHERNET_DEVICE(0x1000), |
|
51 INTEL_E1000_ETHERNET_DEVICE(0x1001), |
|
52 INTEL_E1000_ETHERNET_DEVICE(0x1004), |
|
53 INTEL_E1000_ETHERNET_DEVICE(0x1008), |
|
54 INTEL_E1000_ETHERNET_DEVICE(0x1009), |
|
55 INTEL_E1000_ETHERNET_DEVICE(0x100C), |
|
56 INTEL_E1000_ETHERNET_DEVICE(0x100D), |
|
57 INTEL_E1000_ETHERNET_DEVICE(0x100E), |
|
58 INTEL_E1000_ETHERNET_DEVICE(0x100F), |
|
59 INTEL_E1000_ETHERNET_DEVICE(0x1010), |
|
60 INTEL_E1000_ETHERNET_DEVICE(0x1011), |
|
61 INTEL_E1000_ETHERNET_DEVICE(0x1012), |
|
62 INTEL_E1000_ETHERNET_DEVICE(0x1013), |
|
63 INTEL_E1000_ETHERNET_DEVICE(0x1014), |
|
64 INTEL_E1000_ETHERNET_DEVICE(0x1015), |
|
65 INTEL_E1000_ETHERNET_DEVICE(0x1016), |
|
66 INTEL_E1000_ETHERNET_DEVICE(0x1017), |
|
67 INTEL_E1000_ETHERNET_DEVICE(0x1018), |
|
68 INTEL_E1000_ETHERNET_DEVICE(0x1019), |
|
69 INTEL_E1000_ETHERNET_DEVICE(0x101A), |
|
70 INTEL_E1000_ETHERNET_DEVICE(0x101D), |
|
71 INTEL_E1000_ETHERNET_DEVICE(0x101E), |
|
72 INTEL_E1000_ETHERNET_DEVICE(0x1026), |
|
73 INTEL_E1000_ETHERNET_DEVICE(0x1027), |
|
74 INTEL_E1000_ETHERNET_DEVICE(0x1028), |
|
75 INTEL_E1000_ETHERNET_DEVICE(0x1075), |
|
76 INTEL_E1000_ETHERNET_DEVICE(0x1076), |
|
77 INTEL_E1000_ETHERNET_DEVICE(0x1077), |
|
78 INTEL_E1000_ETHERNET_DEVICE(0x1078), |
|
79 INTEL_E1000_ETHERNET_DEVICE(0x1079), |
|
80 INTEL_E1000_ETHERNET_DEVICE(0x107A), |
|
81 INTEL_E1000_ETHERNET_DEVICE(0x107B), |
|
82 INTEL_E1000_ETHERNET_DEVICE(0x107C), |
|
83 INTEL_E1000_ETHERNET_DEVICE(0x108A), |
|
84 INTEL_E1000_ETHERNET_DEVICE(0x1099), |
|
85 INTEL_E1000_ETHERNET_DEVICE(0x10B5), |
|
86 INTEL_E1000_ETHERNET_DEVICE(0x2E6E), |
|
87 /* required last entry */ |
|
88 {0,} |
|
89 }; |
|
90 |
|
91 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); |
|
92 |
|
93 int e1000_up(struct e1000_adapter *adapter); |
|
94 void e1000_down(struct e1000_adapter *adapter); |
|
95 void e1000_reinit_locked(struct e1000_adapter *adapter); |
|
96 void e1000_reset(struct e1000_adapter *adapter); |
|
97 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter); |
|
98 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter); |
|
99 void e1000_free_all_tx_resources(struct e1000_adapter *adapter); |
|
100 void e1000_free_all_rx_resources(struct e1000_adapter *adapter); |
|
101 static int e1000_setup_tx_resources(struct e1000_adapter *adapter, |
|
102 struct e1000_tx_ring *txdr); |
|
103 static int e1000_setup_rx_resources(struct e1000_adapter *adapter, |
|
104 struct e1000_rx_ring *rxdr); |
|
105 static void e1000_free_tx_resources(struct e1000_adapter *adapter, |
|
106 struct e1000_tx_ring *tx_ring); |
|
107 static void e1000_free_rx_resources(struct e1000_adapter *adapter, |
|
108 struct e1000_rx_ring *rx_ring); |
|
109 void e1000_update_stats(struct e1000_adapter *adapter); |
|
110 |
|
111 static int e1000_init_module(void); |
|
112 static void e1000_exit_module(void); |
|
113 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent); |
|
114 static void e1000_remove(struct pci_dev *pdev); |
|
115 static int e1000_alloc_queues(struct e1000_adapter *adapter); |
|
116 static int e1000_sw_init(struct e1000_adapter *adapter); |
|
117 static int e1000_open(struct net_device *netdev); |
|
118 static int e1000_close(struct net_device *netdev); |
|
119 static void e1000_configure_tx(struct e1000_adapter *adapter); |
|
120 static void e1000_configure_rx(struct e1000_adapter *adapter); |
|
121 static void e1000_setup_rctl(struct e1000_adapter *adapter); |
|
122 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter); |
|
123 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter); |
|
124 static void e1000_clean_tx_ring(struct e1000_adapter *adapter, |
|
125 struct e1000_tx_ring *tx_ring); |
|
126 static void e1000_clean_rx_ring(struct e1000_adapter *adapter, |
|
127 struct e1000_rx_ring *rx_ring); |
|
128 static void e1000_set_rx_mode(struct net_device *netdev); |
|
129 static void e1000_update_phy_info_task(struct work_struct *work); |
|
130 static void e1000_watchdog(struct work_struct *work); |
|
131 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work); |
|
132 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, |
|
133 struct net_device *netdev); |
|
134 static struct net_device_stats * e1000_get_stats(struct net_device *netdev); |
|
135 static int e1000_change_mtu(struct net_device *netdev, int new_mtu); |
|
136 static int e1000_set_mac(struct net_device *netdev, void *p); |
|
137 static irqreturn_t e1000_intr(int irq, void *data); |
|
138 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, |
|
139 struct e1000_tx_ring *tx_ring); |
|
140 static int e1000_clean(struct napi_struct *napi, int budget); |
|
141 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, |
|
142 struct e1000_rx_ring *rx_ring, |
|
143 int *work_done, int work_to_do); |
|
144 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, |
|
145 struct e1000_rx_ring *rx_ring, |
|
146 int *work_done, int work_to_do); |
|
147 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, |
|
148 struct e1000_rx_ring *rx_ring, |
|
149 int cleaned_count); |
|
150 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, |
|
151 struct e1000_rx_ring *rx_ring, |
|
152 int cleaned_count); |
|
153 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd); |
|
154 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, |
|
155 int cmd); |
|
156 static void e1000_enter_82542_rst(struct e1000_adapter *adapter); |
|
157 static void e1000_leave_82542_rst(struct e1000_adapter *adapter); |
|
158 static void e1000_tx_timeout(struct net_device *dev); |
|
159 static void e1000_reset_task(struct work_struct *work); |
|
160 static void e1000_smartspeed(struct e1000_adapter *adapter); |
|
161 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, |
|
162 struct sk_buff *skb); |
|
163 |
|
164 static bool e1000_vlan_used(struct e1000_adapter *adapter); |
|
165 static void e1000_vlan_mode(struct net_device *netdev, |
|
166 netdev_features_t features); |
|
167 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter, |
|
168 bool filter_on); |
|
169 static int e1000_vlan_rx_add_vid(struct net_device *netdev, |
|
170 __be16 proto, u16 vid); |
|
171 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, |
|
172 __be16 proto, u16 vid); |
|
173 static void e1000_restore_vlan(struct e1000_adapter *adapter); |
|
174 |
|
175 #ifdef CONFIG_PM |
|
176 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state); |
|
177 static int e1000_resume(struct pci_dev *pdev); |
|
178 #endif |
|
179 static void e1000_shutdown(struct pci_dev *pdev); |
|
180 |
|
181 #ifdef CONFIG_NET_POLL_CONTROLLER |
|
182 /* for netdump / net console */ |
|
183 static void e1000_netpoll (struct net_device *netdev); |
|
184 #endif |
|
185 |
|
186 #define COPYBREAK_DEFAULT 256 |
|
187 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT; |
|
188 module_param(copybreak, uint, 0644); |
|
189 MODULE_PARM_DESC(copybreak, |
|
190 "Maximum size of packet that is copied to a new buffer on receive"); |
|
191 |
|
192 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, |
|
193 pci_channel_state_t state); |
|
194 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev); |
|
195 static void e1000_io_resume(struct pci_dev *pdev); |
|
196 |
|
197 static const struct pci_error_handlers e1000_err_handler = { |
|
198 .error_detected = e1000_io_error_detected, |
|
199 .slot_reset = e1000_io_slot_reset, |
|
200 .resume = e1000_io_resume, |
|
201 }; |
|
202 |
|
203 static struct pci_driver e1000_driver = { |
|
204 .name = e1000_driver_name, |
|
205 .id_table = e1000_pci_tbl, |
|
206 .probe = e1000_probe, |
|
207 .remove = e1000_remove, |
|
208 #ifdef CONFIG_PM |
|
209 /* Power Management Hooks */ |
|
210 .suspend = e1000_suspend, |
|
211 .resume = e1000_resume, |
|
212 #endif |
|
213 .shutdown = e1000_shutdown, |
|
214 .err_handler = &e1000_err_handler |
|
215 }; |
|
216 |
|
217 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); |
|
218 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); |
|
219 MODULE_LICENSE("GPL"); |
|
220 MODULE_VERSION(DRV_VERSION); |
|
221 |
|
222 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) |
|
223 static int debug = -1; |
|
224 module_param(debug, int, 0); |
|
225 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); |
|
226 |
|
227 /** |
|
228 * e1000_get_hw_dev - return device |
|
229 * used by hardware layer to print debugging information |
|
230 * |
|
231 **/ |
|
232 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw) |
|
233 { |
|
234 struct e1000_adapter *adapter = hw->back; |
|
235 return adapter->netdev; |
|
236 } |
|
237 |
|
238 /** |
|
239 * e1000_init_module - Driver Registration Routine |
|
240 * |
|
241 * e1000_init_module is the first routine called when the driver is |
|
242 * loaded. All it does is register with the PCI subsystem. |
|
243 **/ |
|
244 static int __init e1000_init_module(void) |
|
245 { |
|
246 int ret; |
|
247 pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version); |
|
248 |
|
249 pr_info("%s\n", e1000_copyright); |
|
250 |
|
251 ret = pci_register_driver(&e1000_driver); |
|
252 if (copybreak != COPYBREAK_DEFAULT) { |
|
253 if (copybreak == 0) |
|
254 pr_info("copybreak disabled\n"); |
|
255 else |
|
256 pr_info("copybreak enabled for " |
|
257 "packets <= %u bytes\n", copybreak); |
|
258 } |
|
259 return ret; |
|
260 } |
|
261 |
|
262 module_init(e1000_init_module); |
|
263 |
|
264 /** |
|
265 * e1000_exit_module - Driver Exit Cleanup Routine |
|
266 * |
|
267 * e1000_exit_module is called just before the driver is removed |
|
268 * from memory. |
|
269 **/ |
|
270 static void __exit e1000_exit_module(void) |
|
271 { |
|
272 pci_unregister_driver(&e1000_driver); |
|
273 } |
|
274 |
|
275 module_exit(e1000_exit_module); |
|
276 |
|
277 static int e1000_request_irq(struct e1000_adapter *adapter) |
|
278 { |
|
279 struct net_device *netdev = adapter->netdev; |
|
280 irq_handler_t handler = e1000_intr; |
|
281 int irq_flags = IRQF_SHARED; |
|
282 int err; |
|
283 |
|
284 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name, |
|
285 netdev); |
|
286 if (err) { |
|
287 e_err(probe, "Unable to allocate interrupt Error: %d\n", err); |
|
288 } |
|
289 |
|
290 return err; |
|
291 } |
|
292 |
|
293 static void e1000_free_irq(struct e1000_adapter *adapter) |
|
294 { |
|
295 struct net_device *netdev = adapter->netdev; |
|
296 |
|
297 free_irq(adapter->pdev->irq, netdev); |
|
298 } |
|
299 |
|
300 /** |
|
301 * e1000_irq_disable - Mask off interrupt generation on the NIC |
|
302 * @adapter: board private structure |
|
303 **/ |
|
304 static void e1000_irq_disable(struct e1000_adapter *adapter) |
|
305 { |
|
306 struct e1000_hw *hw = &adapter->hw; |
|
307 |
|
308 ew32(IMC, ~0); |
|
309 E1000_WRITE_FLUSH(); |
|
310 synchronize_irq(adapter->pdev->irq); |
|
311 } |
|
312 |
|
313 /** |
|
314 * e1000_irq_enable - Enable default interrupt generation settings |
|
315 * @adapter: board private structure |
|
316 **/ |
|
317 static void e1000_irq_enable(struct e1000_adapter *adapter) |
|
318 { |
|
319 struct e1000_hw *hw = &adapter->hw; |
|
320 |
|
321 ew32(IMS, IMS_ENABLE_MASK); |
|
322 E1000_WRITE_FLUSH(); |
|
323 } |
|
324 |
|
325 static void e1000_update_mng_vlan(struct e1000_adapter *adapter) |
|
326 { |
|
327 struct e1000_hw *hw = &adapter->hw; |
|
328 struct net_device *netdev = adapter->netdev; |
|
329 u16 vid = hw->mng_cookie.vlan_id; |
|
330 u16 old_vid = adapter->mng_vlan_id; |
|
331 |
|
332 if (!e1000_vlan_used(adapter)) |
|
333 return; |
|
334 |
|
335 if (!test_bit(vid, adapter->active_vlans)) { |
|
336 if (hw->mng_cookie.status & |
|
337 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) { |
|
338 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid); |
|
339 adapter->mng_vlan_id = vid; |
|
340 } else { |
|
341 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; |
|
342 } |
|
343 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && |
|
344 (vid != old_vid) && |
|
345 !test_bit(old_vid, adapter->active_vlans)) |
|
346 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), |
|
347 old_vid); |
|
348 } else { |
|
349 adapter->mng_vlan_id = vid; |
|
350 } |
|
351 } |
|
352 |
|
353 static void e1000_init_manageability(struct e1000_adapter *adapter) |
|
354 { |
|
355 struct e1000_hw *hw = &adapter->hw; |
|
356 |
|
357 if (adapter->en_mng_pt) { |
|
358 u32 manc = er32(MANC); |
|
359 |
|
360 /* disable hardware interception of ARP */ |
|
361 manc &= ~(E1000_MANC_ARP_EN); |
|
362 |
|
363 ew32(MANC, manc); |
|
364 } |
|
365 } |
|
366 |
|
367 static void e1000_release_manageability(struct e1000_adapter *adapter) |
|
368 { |
|
369 struct e1000_hw *hw = &adapter->hw; |
|
370 |
|
371 if (adapter->en_mng_pt) { |
|
372 u32 manc = er32(MANC); |
|
373 |
|
374 /* re-enable hardware interception of ARP */ |
|
375 manc |= E1000_MANC_ARP_EN; |
|
376 |
|
377 ew32(MANC, manc); |
|
378 } |
|
379 } |
|
380 |
|
381 /** |
|
382 * e1000_configure - configure the hardware for RX and TX |
|
383 * @adapter = private board structure |
|
384 **/ |
|
385 static void e1000_configure(struct e1000_adapter *adapter) |
|
386 { |
|
387 struct net_device *netdev = adapter->netdev; |
|
388 int i; |
|
389 |
|
390 e1000_set_rx_mode(netdev); |
|
391 |
|
392 e1000_restore_vlan(adapter); |
|
393 e1000_init_manageability(adapter); |
|
394 |
|
395 e1000_configure_tx(adapter); |
|
396 e1000_setup_rctl(adapter); |
|
397 e1000_configure_rx(adapter); |
|
398 /* call E1000_DESC_UNUSED which always leaves |
|
399 * at least 1 descriptor unused to make sure |
|
400 * next_to_use != next_to_clean |
|
401 */ |
|
402 for (i = 0; i < adapter->num_rx_queues; i++) { |
|
403 struct e1000_rx_ring *ring = &adapter->rx_ring[i]; |
|
404 adapter->alloc_rx_buf(adapter, ring, |
|
405 E1000_DESC_UNUSED(ring)); |
|
406 } |
|
407 } |
|
408 |
|
409 int e1000_up(struct e1000_adapter *adapter) |
|
410 { |
|
411 struct e1000_hw *hw = &adapter->hw; |
|
412 |
|
413 /* hardware has been reset, we need to reload some things */ |
|
414 e1000_configure(adapter); |
|
415 |
|
416 clear_bit(__E1000_DOWN, &adapter->flags); |
|
417 |
|
418 napi_enable(&adapter->napi); |
|
419 |
|
420 e1000_irq_enable(adapter); |
|
421 |
|
422 netif_wake_queue(adapter->netdev); |
|
423 |
|
424 /* fire a link change interrupt to start the watchdog */ |
|
425 ew32(ICS, E1000_ICS_LSC); |
|
426 return 0; |
|
427 } |
|
428 |
|
429 /** |
|
430 * e1000_power_up_phy - restore link in case the phy was powered down |
|
431 * @adapter: address of board private structure |
|
432 * |
|
433 * The phy may be powered down to save power and turn off link when the |
|
434 * driver is unloaded and wake on lan is not enabled (among others) |
|
435 * *** this routine MUST be followed by a call to e1000_reset *** |
|
436 **/ |
|
437 void e1000_power_up_phy(struct e1000_adapter *adapter) |
|
438 { |
|
439 struct e1000_hw *hw = &adapter->hw; |
|
440 u16 mii_reg = 0; |
|
441 |
|
442 /* Just clear the power down bit to wake the phy back up */ |
|
443 if (hw->media_type == e1000_media_type_copper) { |
|
444 /* according to the manual, the phy will retain its |
|
445 * settings across a power-down/up cycle |
|
446 */ |
|
447 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); |
|
448 mii_reg &= ~MII_CR_POWER_DOWN; |
|
449 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); |
|
450 } |
|
451 } |
|
452 |
|
453 static void e1000_power_down_phy(struct e1000_adapter *adapter) |
|
454 { |
|
455 struct e1000_hw *hw = &adapter->hw; |
|
456 |
|
457 /* Power down the PHY so no link is implied when interface is down * |
|
458 * The PHY cannot be powered down if any of the following is true * |
|
459 * (a) WoL is enabled |
|
460 * (b) AMT is active |
|
461 * (c) SoL/IDER session is active |
|
462 */ |
|
463 if (!adapter->wol && hw->mac_type >= e1000_82540 && |
|
464 hw->media_type == e1000_media_type_copper) { |
|
465 u16 mii_reg = 0; |
|
466 |
|
467 switch (hw->mac_type) { |
|
468 case e1000_82540: |
|
469 case e1000_82545: |
|
470 case e1000_82545_rev_3: |
|
471 case e1000_82546: |
|
472 case e1000_ce4100: |
|
473 case e1000_82546_rev_3: |
|
474 case e1000_82541: |
|
475 case e1000_82541_rev_2: |
|
476 case e1000_82547: |
|
477 case e1000_82547_rev_2: |
|
478 if (er32(MANC) & E1000_MANC_SMBUS_EN) |
|
479 goto out; |
|
480 break; |
|
481 default: |
|
482 goto out; |
|
483 } |
|
484 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); |
|
485 mii_reg |= MII_CR_POWER_DOWN; |
|
486 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); |
|
487 msleep(1); |
|
488 } |
|
489 out: |
|
490 return; |
|
491 } |
|
492 |
|
493 static void e1000_down_and_stop(struct e1000_adapter *adapter) |
|
494 { |
|
495 set_bit(__E1000_DOWN, &adapter->flags); |
|
496 |
|
497 /* Only kill reset task if adapter is not resetting */ |
|
498 if (!test_bit(__E1000_RESETTING, &adapter->flags)) |
|
499 cancel_work_sync(&adapter->reset_task); |
|
500 |
|
501 cancel_delayed_work_sync(&adapter->watchdog_task); |
|
502 cancel_delayed_work_sync(&adapter->phy_info_task); |
|
503 cancel_delayed_work_sync(&adapter->fifo_stall_task); |
|
504 } |
|
505 |
|
506 void e1000_down(struct e1000_adapter *adapter) |
|
507 { |
|
508 struct e1000_hw *hw = &adapter->hw; |
|
509 struct net_device *netdev = adapter->netdev; |
|
510 u32 rctl, tctl; |
|
511 |
|
512 |
|
513 /* disable receives in the hardware */ |
|
514 rctl = er32(RCTL); |
|
515 ew32(RCTL, rctl & ~E1000_RCTL_EN); |
|
516 /* flush and sleep below */ |
|
517 |
|
518 netif_tx_disable(netdev); |
|
519 |
|
520 /* disable transmits in the hardware */ |
|
521 tctl = er32(TCTL); |
|
522 tctl &= ~E1000_TCTL_EN; |
|
523 ew32(TCTL, tctl); |
|
524 /* flush both disables and wait for them to finish */ |
|
525 E1000_WRITE_FLUSH(); |
|
526 msleep(10); |
|
527 |
|
528 napi_disable(&adapter->napi); |
|
529 |
|
530 e1000_irq_disable(adapter); |
|
531 |
|
532 /* Setting DOWN must be after irq_disable to prevent |
|
533 * a screaming interrupt. Setting DOWN also prevents |
|
534 * tasks from rescheduling. |
|
535 */ |
|
536 e1000_down_and_stop(adapter); |
|
537 |
|
538 adapter->link_speed = 0; |
|
539 adapter->link_duplex = 0; |
|
540 netif_carrier_off(netdev); |
|
541 |
|
542 e1000_reset(adapter); |
|
543 e1000_clean_all_tx_rings(adapter); |
|
544 e1000_clean_all_rx_rings(adapter); |
|
545 } |
|
546 |
|
547 static void e1000_reinit_safe(struct e1000_adapter *adapter) |
|
548 { |
|
549 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) |
|
550 msleep(1); |
|
551 mutex_lock(&adapter->mutex); |
|
552 e1000_down(adapter); |
|
553 e1000_up(adapter); |
|
554 mutex_unlock(&adapter->mutex); |
|
555 clear_bit(__E1000_RESETTING, &adapter->flags); |
|
556 } |
|
557 |
|
558 void e1000_reinit_locked(struct e1000_adapter *adapter) |
|
559 { |
|
560 /* if rtnl_lock is not held the call path is bogus */ |
|
561 ASSERT_RTNL(); |
|
562 WARN_ON(in_interrupt()); |
|
563 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) |
|
564 msleep(1); |
|
565 e1000_down(adapter); |
|
566 e1000_up(adapter); |
|
567 clear_bit(__E1000_RESETTING, &adapter->flags); |
|
568 } |
|
569 |
|
570 void e1000_reset(struct e1000_adapter *adapter) |
|
571 { |
|
572 struct e1000_hw *hw = &adapter->hw; |
|
573 u32 pba = 0, tx_space, min_tx_space, min_rx_space; |
|
574 bool legacy_pba_adjust = false; |
|
575 u16 hwm; |
|
576 |
|
577 /* Repartition Pba for greater than 9k mtu |
|
578 * To take effect CTRL.RST is required. |
|
579 */ |
|
580 |
|
581 switch (hw->mac_type) { |
|
582 case e1000_82542_rev2_0: |
|
583 case e1000_82542_rev2_1: |
|
584 case e1000_82543: |
|
585 case e1000_82544: |
|
586 case e1000_82540: |
|
587 case e1000_82541: |
|
588 case e1000_82541_rev_2: |
|
589 legacy_pba_adjust = true; |
|
590 pba = E1000_PBA_48K; |
|
591 break; |
|
592 case e1000_82545: |
|
593 case e1000_82545_rev_3: |
|
594 case e1000_82546: |
|
595 case e1000_ce4100: |
|
596 case e1000_82546_rev_3: |
|
597 pba = E1000_PBA_48K; |
|
598 break; |
|
599 case e1000_82547: |
|
600 case e1000_82547_rev_2: |
|
601 legacy_pba_adjust = true; |
|
602 pba = E1000_PBA_30K; |
|
603 break; |
|
604 case e1000_undefined: |
|
605 case e1000_num_macs: |
|
606 break; |
|
607 } |
|
608 |
|
609 if (legacy_pba_adjust) { |
|
610 if (hw->max_frame_size > E1000_RXBUFFER_8192) |
|
611 pba -= 8; /* allocate more FIFO for Tx */ |
|
612 |
|
613 if (hw->mac_type == e1000_82547) { |
|
614 adapter->tx_fifo_head = 0; |
|
615 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT; |
|
616 adapter->tx_fifo_size = |
|
617 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT; |
|
618 atomic_set(&adapter->tx_fifo_stall, 0); |
|
619 } |
|
620 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) { |
|
621 /* adjust PBA for jumbo frames */ |
|
622 ew32(PBA, pba); |
|
623 |
|
624 /* To maintain wire speed transmits, the Tx FIFO should be |
|
625 * large enough to accommodate two full transmit packets, |
|
626 * rounded up to the next 1KB and expressed in KB. Likewise, |
|
627 * the Rx FIFO should be large enough to accommodate at least |
|
628 * one full receive packet and is similarly rounded up and |
|
629 * expressed in KB. |
|
630 */ |
|
631 pba = er32(PBA); |
|
632 /* upper 16 bits has Tx packet buffer allocation size in KB */ |
|
633 tx_space = pba >> 16; |
|
634 /* lower 16 bits has Rx packet buffer allocation size in KB */ |
|
635 pba &= 0xffff; |
|
636 /* the Tx fifo also stores 16 bytes of information about the Tx |
|
637 * but don't include ethernet FCS because hardware appends it |
|
638 */ |
|
639 min_tx_space = (hw->max_frame_size + |
|
640 sizeof(struct e1000_tx_desc) - |
|
641 ETH_FCS_LEN) * 2; |
|
642 min_tx_space = ALIGN(min_tx_space, 1024); |
|
643 min_tx_space >>= 10; |
|
644 /* software strips receive CRC, so leave room for it */ |
|
645 min_rx_space = hw->max_frame_size; |
|
646 min_rx_space = ALIGN(min_rx_space, 1024); |
|
647 min_rx_space >>= 10; |
|
648 |
|
649 /* If current Tx allocation is less than the min Tx FIFO size, |
|
650 * and the min Tx FIFO size is less than the current Rx FIFO |
|
651 * allocation, take space away from current Rx allocation |
|
652 */ |
|
653 if (tx_space < min_tx_space && |
|
654 ((min_tx_space - tx_space) < pba)) { |
|
655 pba = pba - (min_tx_space - tx_space); |
|
656 |
|
657 /* PCI/PCIx hardware has PBA alignment constraints */ |
|
658 switch (hw->mac_type) { |
|
659 case e1000_82545 ... e1000_82546_rev_3: |
|
660 pba &= ~(E1000_PBA_8K - 1); |
|
661 break; |
|
662 default: |
|
663 break; |
|
664 } |
|
665 |
|
666 /* if short on Rx space, Rx wins and must trump Tx |
|
667 * adjustment or use Early Receive if available |
|
668 */ |
|
669 if (pba < min_rx_space) |
|
670 pba = min_rx_space; |
|
671 } |
|
672 } |
|
673 |
|
674 ew32(PBA, pba); |
|
675 |
|
676 /* flow control settings: |
|
677 * The high water mark must be low enough to fit one full frame |
|
678 * (or the size used for early receive) above it in the Rx FIFO. |
|
679 * Set it to the lower of: |
|
680 * - 90% of the Rx FIFO size, and |
|
681 * - the full Rx FIFO size minus the early receive size (for parts |
|
682 * with ERT support assuming ERT set to E1000_ERT_2048), or |
|
683 * - the full Rx FIFO size minus one full frame |
|
684 */ |
|
685 hwm = min(((pba << 10) * 9 / 10), |
|
686 ((pba << 10) - hw->max_frame_size)); |
|
687 |
|
688 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */ |
|
689 hw->fc_low_water = hw->fc_high_water - 8; |
|
690 hw->fc_pause_time = E1000_FC_PAUSE_TIME; |
|
691 hw->fc_send_xon = 1; |
|
692 hw->fc = hw->original_fc; |
|
693 |
|
694 /* Allow time for pending master requests to run */ |
|
695 e1000_reset_hw(hw); |
|
696 if (hw->mac_type >= e1000_82544) |
|
697 ew32(WUC, 0); |
|
698 |
|
699 if (e1000_init_hw(hw)) |
|
700 e_dev_err("Hardware Error\n"); |
|
701 e1000_update_mng_vlan(adapter); |
|
702 |
|
703 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */ |
|
704 if (hw->mac_type >= e1000_82544 && |
|
705 hw->autoneg == 1 && |
|
706 hw->autoneg_advertised == ADVERTISE_1000_FULL) { |
|
707 u32 ctrl = er32(CTRL); |
|
708 /* clear phy power management bit if we are in gig only mode, |
|
709 * which if enabled will attempt negotiation to 100Mb, which |
|
710 * can cause a loss of link at power off or driver unload |
|
711 */ |
|
712 ctrl &= ~E1000_CTRL_SWDPIN3; |
|
713 ew32(CTRL, ctrl); |
|
714 } |
|
715 |
|
716 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ |
|
717 ew32(VET, ETHERNET_IEEE_VLAN_TYPE); |
|
718 |
|
719 e1000_reset_adaptive(hw); |
|
720 e1000_phy_get_info(hw, &adapter->phy_info); |
|
721 |
|
722 e1000_release_manageability(adapter); |
|
723 } |
|
724 |
|
725 /* Dump the eeprom for users having checksum issues */ |
|
726 static void e1000_dump_eeprom(struct e1000_adapter *adapter) |
|
727 { |
|
728 struct net_device *netdev = adapter->netdev; |
|
729 struct ethtool_eeprom eeprom; |
|
730 const struct ethtool_ops *ops = netdev->ethtool_ops; |
|
731 u8 *data; |
|
732 int i; |
|
733 u16 csum_old, csum_new = 0; |
|
734 |
|
735 eeprom.len = ops->get_eeprom_len(netdev); |
|
736 eeprom.offset = 0; |
|
737 |
|
738 data = kmalloc(eeprom.len, GFP_KERNEL); |
|
739 if (!data) |
|
740 return; |
|
741 |
|
742 ops->get_eeprom(netdev, &eeprom, data); |
|
743 |
|
744 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) + |
|
745 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8); |
|
746 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2) |
|
747 csum_new += data[i] + (data[i + 1] << 8); |
|
748 csum_new = EEPROM_SUM - csum_new; |
|
749 |
|
750 pr_err("/*********************/\n"); |
|
751 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old); |
|
752 pr_err("Calculated : 0x%04x\n", csum_new); |
|
753 |
|
754 pr_err("Offset Values\n"); |
|
755 pr_err("======== ======\n"); |
|
756 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0); |
|
757 |
|
758 pr_err("Include this output when contacting your support provider.\n"); |
|
759 pr_err("This is not a software error! Something bad happened to\n"); |
|
760 pr_err("your hardware or EEPROM image. Ignoring this problem could\n"); |
|
761 pr_err("result in further problems, possibly loss of data,\n"); |
|
762 pr_err("corruption or system hangs!\n"); |
|
763 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n"); |
|
764 pr_err("which is invalid and requires you to set the proper MAC\n"); |
|
765 pr_err("address manually before continuing to enable this network\n"); |
|
766 pr_err("device. Please inspect the EEPROM dump and report the\n"); |
|
767 pr_err("issue to your hardware vendor or Intel Customer Support.\n"); |
|
768 pr_err("/*********************/\n"); |
|
769 |
|
770 kfree(data); |
|
771 } |
|
772 |
|
773 /** |
|
774 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not |
|
775 * @pdev: PCI device information struct |
|
776 * |
|
777 * Return true if an adapter needs ioport resources |
|
778 **/ |
|
779 static int e1000_is_need_ioport(struct pci_dev *pdev) |
|
780 { |
|
781 switch (pdev->device) { |
|
782 case E1000_DEV_ID_82540EM: |
|
783 case E1000_DEV_ID_82540EM_LOM: |
|
784 case E1000_DEV_ID_82540EP: |
|
785 case E1000_DEV_ID_82540EP_LOM: |
|
786 case E1000_DEV_ID_82540EP_LP: |
|
787 case E1000_DEV_ID_82541EI: |
|
788 case E1000_DEV_ID_82541EI_MOBILE: |
|
789 case E1000_DEV_ID_82541ER: |
|
790 case E1000_DEV_ID_82541ER_LOM: |
|
791 case E1000_DEV_ID_82541GI: |
|
792 case E1000_DEV_ID_82541GI_LF: |
|
793 case E1000_DEV_ID_82541GI_MOBILE: |
|
794 case E1000_DEV_ID_82544EI_COPPER: |
|
795 case E1000_DEV_ID_82544EI_FIBER: |
|
796 case E1000_DEV_ID_82544GC_COPPER: |
|
797 case E1000_DEV_ID_82544GC_LOM: |
|
798 case E1000_DEV_ID_82545EM_COPPER: |
|
799 case E1000_DEV_ID_82545EM_FIBER: |
|
800 case E1000_DEV_ID_82546EB_COPPER: |
|
801 case E1000_DEV_ID_82546EB_FIBER: |
|
802 case E1000_DEV_ID_82546EB_QUAD_COPPER: |
|
803 return true; |
|
804 default: |
|
805 return false; |
|
806 } |
|
807 } |
|
808 |
|
809 static netdev_features_t e1000_fix_features(struct net_device *netdev, |
|
810 netdev_features_t features) |
|
811 { |
|
812 /* Since there is no support for separate Rx/Tx vlan accel |
|
813 * enable/disable make sure Tx flag is always in same state as Rx. |
|
814 */ |
|
815 if (features & NETIF_F_HW_VLAN_CTAG_RX) |
|
816 features |= NETIF_F_HW_VLAN_CTAG_TX; |
|
817 else |
|
818 features &= ~NETIF_F_HW_VLAN_CTAG_TX; |
|
819 |
|
820 return features; |
|
821 } |
|
822 |
|
823 static int e1000_set_features(struct net_device *netdev, |
|
824 netdev_features_t features) |
|
825 { |
|
826 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
827 netdev_features_t changed = features ^ netdev->features; |
|
828 |
|
829 if (changed & NETIF_F_HW_VLAN_CTAG_RX) |
|
830 e1000_vlan_mode(netdev, features); |
|
831 |
|
832 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL))) |
|
833 return 0; |
|
834 |
|
835 netdev->features = features; |
|
836 adapter->rx_csum = !!(features & NETIF_F_RXCSUM); |
|
837 |
|
838 if (netif_running(netdev)) |
|
839 e1000_reinit_locked(adapter); |
|
840 else |
|
841 e1000_reset(adapter); |
|
842 |
|
843 return 0; |
|
844 } |
|
845 |
|
846 static const struct net_device_ops e1000_netdev_ops = { |
|
847 .ndo_open = e1000_open, |
|
848 .ndo_stop = e1000_close, |
|
849 .ndo_start_xmit = e1000_xmit_frame, |
|
850 .ndo_get_stats = e1000_get_stats, |
|
851 .ndo_set_rx_mode = e1000_set_rx_mode, |
|
852 .ndo_set_mac_address = e1000_set_mac, |
|
853 .ndo_tx_timeout = e1000_tx_timeout, |
|
854 .ndo_change_mtu = e1000_change_mtu, |
|
855 .ndo_do_ioctl = e1000_ioctl, |
|
856 .ndo_validate_addr = eth_validate_addr, |
|
857 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid, |
|
858 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid, |
|
859 #ifdef CONFIG_NET_POLL_CONTROLLER |
|
860 .ndo_poll_controller = e1000_netpoll, |
|
861 #endif |
|
862 .ndo_fix_features = e1000_fix_features, |
|
863 .ndo_set_features = e1000_set_features, |
|
864 }; |
|
865 |
|
866 /** |
|
867 * e1000_init_hw_struct - initialize members of hw struct |
|
868 * @adapter: board private struct |
|
869 * @hw: structure used by e1000_hw.c |
|
870 * |
|
871 * Factors out initialization of the e1000_hw struct to its own function |
|
872 * that can be called very early at init (just after struct allocation). |
|
873 * Fields are initialized based on PCI device information and |
|
874 * OS network device settings (MTU size). |
|
875 * Returns negative error codes if MAC type setup fails. |
|
876 */ |
|
877 static int e1000_init_hw_struct(struct e1000_adapter *adapter, |
|
878 struct e1000_hw *hw) |
|
879 { |
|
880 struct pci_dev *pdev = adapter->pdev; |
|
881 |
|
882 /* PCI config space info */ |
|
883 hw->vendor_id = pdev->vendor; |
|
884 hw->device_id = pdev->device; |
|
885 hw->subsystem_vendor_id = pdev->subsystem_vendor; |
|
886 hw->subsystem_id = pdev->subsystem_device; |
|
887 hw->revision_id = pdev->revision; |
|
888 |
|
889 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word); |
|
890 |
|
891 hw->max_frame_size = adapter->netdev->mtu + |
|
892 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; |
|
893 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE; |
|
894 |
|
895 /* identify the MAC */ |
|
896 if (e1000_set_mac_type(hw)) { |
|
897 e_err(probe, "Unknown MAC Type\n"); |
|
898 return -EIO; |
|
899 } |
|
900 |
|
901 switch (hw->mac_type) { |
|
902 default: |
|
903 break; |
|
904 case e1000_82541: |
|
905 case e1000_82547: |
|
906 case e1000_82541_rev_2: |
|
907 case e1000_82547_rev_2: |
|
908 hw->phy_init_script = 1; |
|
909 break; |
|
910 } |
|
911 |
|
912 e1000_set_media_type(hw); |
|
913 e1000_get_bus_info(hw); |
|
914 |
|
915 hw->wait_autoneg_complete = false; |
|
916 hw->tbi_compatibility_en = true; |
|
917 hw->adaptive_ifs = true; |
|
918 |
|
919 /* Copper options */ |
|
920 |
|
921 if (hw->media_type == e1000_media_type_copper) { |
|
922 hw->mdix = AUTO_ALL_MODES; |
|
923 hw->disable_polarity_correction = false; |
|
924 hw->master_slave = E1000_MASTER_SLAVE; |
|
925 } |
|
926 |
|
927 return 0; |
|
928 } |
|
929 |
|
930 /** |
|
931 * e1000_probe - Device Initialization Routine |
|
932 * @pdev: PCI device information struct |
|
933 * @ent: entry in e1000_pci_tbl |
|
934 * |
|
935 * Returns 0 on success, negative on failure |
|
936 * |
|
937 * e1000_probe initializes an adapter identified by a pci_dev structure. |
|
938 * The OS initialization, configuring of the adapter private structure, |
|
939 * and a hardware reset occur. |
|
940 **/ |
|
941 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent) |
|
942 { |
|
943 struct net_device *netdev; |
|
944 struct e1000_adapter *adapter; |
|
945 struct e1000_hw *hw; |
|
946 |
|
947 static int cards_found = 0; |
|
948 static int global_quad_port_a = 0; /* global ksp3 port a indication */ |
|
949 int i, err, pci_using_dac; |
|
950 u16 eeprom_data = 0; |
|
951 u16 tmp = 0; |
|
952 u16 eeprom_apme_mask = E1000_EEPROM_APME; |
|
953 int bars, need_ioport; |
|
954 |
|
955 /* do not allocate ioport bars when not needed */ |
|
956 need_ioport = e1000_is_need_ioport(pdev); |
|
957 if (need_ioport) { |
|
958 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO); |
|
959 err = pci_enable_device(pdev); |
|
960 } else { |
|
961 bars = pci_select_bars(pdev, IORESOURCE_MEM); |
|
962 err = pci_enable_device_mem(pdev); |
|
963 } |
|
964 if (err) |
|
965 return err; |
|
966 |
|
967 err = pci_request_selected_regions(pdev, bars, e1000_driver_name); |
|
968 if (err) |
|
969 goto err_pci_reg; |
|
970 |
|
971 pci_set_master(pdev); |
|
972 err = pci_save_state(pdev); |
|
973 if (err) |
|
974 goto err_alloc_etherdev; |
|
975 |
|
976 err = -ENOMEM; |
|
977 netdev = alloc_etherdev(sizeof(struct e1000_adapter)); |
|
978 if (!netdev) |
|
979 goto err_alloc_etherdev; |
|
980 |
|
981 SET_NETDEV_DEV(netdev, &pdev->dev); |
|
982 |
|
983 pci_set_drvdata(pdev, netdev); |
|
984 adapter = netdev_priv(netdev); |
|
985 adapter->netdev = netdev; |
|
986 adapter->pdev = pdev; |
|
987 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); |
|
988 adapter->bars = bars; |
|
989 adapter->need_ioport = need_ioport; |
|
990 |
|
991 hw = &adapter->hw; |
|
992 hw->back = adapter; |
|
993 |
|
994 err = -EIO; |
|
995 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0); |
|
996 if (!hw->hw_addr) |
|
997 goto err_ioremap; |
|
998 |
|
999 if (adapter->need_ioport) { |
|
1000 for (i = BAR_1; i <= BAR_5; i++) { |
|
1001 if (pci_resource_len(pdev, i) == 0) |
|
1002 continue; |
|
1003 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { |
|
1004 hw->io_base = pci_resource_start(pdev, i); |
|
1005 break; |
|
1006 } |
|
1007 } |
|
1008 } |
|
1009 |
|
1010 /* make ready for any if (hw->...) below */ |
|
1011 err = e1000_init_hw_struct(adapter, hw); |
|
1012 if (err) |
|
1013 goto err_sw_init; |
|
1014 |
|
1015 /* there is a workaround being applied below that limits |
|
1016 * 64-bit DMA addresses to 64-bit hardware. There are some |
|
1017 * 32-bit adapters that Tx hang when given 64-bit DMA addresses |
|
1018 */ |
|
1019 pci_using_dac = 0; |
|
1020 if ((hw->bus_type == e1000_bus_type_pcix) && |
|
1021 !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) { |
|
1022 /* according to DMA-API-HOWTO, coherent calls will always |
|
1023 * succeed if the set call did |
|
1024 */ |
|
1025 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64)); |
|
1026 pci_using_dac = 1; |
|
1027 } else { |
|
1028 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); |
|
1029 if (err) { |
|
1030 pr_err("No usable DMA config, aborting\n"); |
|
1031 goto err_dma; |
|
1032 } |
|
1033 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)); |
|
1034 } |
|
1035 |
|
1036 netdev->netdev_ops = &e1000_netdev_ops; |
|
1037 e1000_set_ethtool_ops(netdev); |
|
1038 netdev->watchdog_timeo = 5 * HZ; |
|
1039 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64); |
|
1040 |
|
1041 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); |
|
1042 |
|
1043 adapter->bd_number = cards_found; |
|
1044 |
|
1045 /* setup the private structure */ |
|
1046 |
|
1047 err = e1000_sw_init(adapter); |
|
1048 if (err) |
|
1049 goto err_sw_init; |
|
1050 |
|
1051 err = -EIO; |
|
1052 if (hw->mac_type == e1000_ce4100) { |
|
1053 hw->ce4100_gbe_mdio_base_virt = |
|
1054 ioremap(pci_resource_start(pdev, BAR_1), |
|
1055 pci_resource_len(pdev, BAR_1)); |
|
1056 |
|
1057 if (!hw->ce4100_gbe_mdio_base_virt) |
|
1058 goto err_mdio_ioremap; |
|
1059 } |
|
1060 |
|
1061 if (hw->mac_type >= e1000_82543) { |
|
1062 netdev->hw_features = NETIF_F_SG | |
|
1063 NETIF_F_HW_CSUM | |
|
1064 NETIF_F_HW_VLAN_CTAG_RX; |
|
1065 netdev->features = NETIF_F_HW_VLAN_CTAG_TX | |
|
1066 NETIF_F_HW_VLAN_CTAG_FILTER; |
|
1067 } |
|
1068 |
|
1069 if ((hw->mac_type >= e1000_82544) && |
|
1070 (hw->mac_type != e1000_82547)) |
|
1071 netdev->hw_features |= NETIF_F_TSO; |
|
1072 |
|
1073 netdev->priv_flags |= IFF_SUPP_NOFCS; |
|
1074 |
|
1075 netdev->features |= netdev->hw_features; |
|
1076 netdev->hw_features |= (NETIF_F_RXCSUM | |
|
1077 NETIF_F_RXALL | |
|
1078 NETIF_F_RXFCS); |
|
1079 |
|
1080 if (pci_using_dac) { |
|
1081 netdev->features |= NETIF_F_HIGHDMA; |
|
1082 netdev->vlan_features |= NETIF_F_HIGHDMA; |
|
1083 } |
|
1084 |
|
1085 netdev->vlan_features |= (NETIF_F_TSO | |
|
1086 NETIF_F_HW_CSUM | |
|
1087 NETIF_F_SG); |
|
1088 |
|
1089 netdev->priv_flags |= IFF_UNICAST_FLT; |
|
1090 |
|
1091 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw); |
|
1092 |
|
1093 /* initialize eeprom parameters */ |
|
1094 if (e1000_init_eeprom_params(hw)) { |
|
1095 e_err(probe, "EEPROM initialization failed\n"); |
|
1096 goto err_eeprom; |
|
1097 } |
|
1098 |
|
1099 /* before reading the EEPROM, reset the controller to |
|
1100 * put the device in a known good starting state |
|
1101 */ |
|
1102 |
|
1103 e1000_reset_hw(hw); |
|
1104 |
|
1105 /* make sure the EEPROM is good */ |
|
1106 if (e1000_validate_eeprom_checksum(hw) < 0) { |
|
1107 e_err(probe, "The EEPROM Checksum Is Not Valid\n"); |
|
1108 e1000_dump_eeprom(adapter); |
|
1109 /* set MAC address to all zeroes to invalidate and temporary |
|
1110 * disable this device for the user. This blocks regular |
|
1111 * traffic while still permitting ethtool ioctls from reaching |
|
1112 * the hardware as well as allowing the user to run the |
|
1113 * interface after manually setting a hw addr using |
|
1114 * `ip set address` |
|
1115 */ |
|
1116 memset(hw->mac_addr, 0, netdev->addr_len); |
|
1117 } else { |
|
1118 /* copy the MAC address out of the EEPROM */ |
|
1119 if (e1000_read_mac_addr(hw)) |
|
1120 e_err(probe, "EEPROM Read Error\n"); |
|
1121 } |
|
1122 /* don't block initalization here due to bad MAC address */ |
|
1123 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len); |
|
1124 |
|
1125 if (!is_valid_ether_addr(netdev->dev_addr)) |
|
1126 e_err(probe, "Invalid MAC Address\n"); |
|
1127 |
|
1128 |
|
1129 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog); |
|
1130 INIT_DELAYED_WORK(&adapter->fifo_stall_task, |
|
1131 e1000_82547_tx_fifo_stall_task); |
|
1132 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task); |
|
1133 INIT_WORK(&adapter->reset_task, e1000_reset_task); |
|
1134 |
|
1135 e1000_check_options(adapter); |
|
1136 |
|
1137 /* Initial Wake on LAN setting |
|
1138 * If APM wake is enabled in the EEPROM, |
|
1139 * enable the ACPI Magic Packet filter |
|
1140 */ |
|
1141 |
|
1142 switch (hw->mac_type) { |
|
1143 case e1000_82542_rev2_0: |
|
1144 case e1000_82542_rev2_1: |
|
1145 case e1000_82543: |
|
1146 break; |
|
1147 case e1000_82544: |
|
1148 e1000_read_eeprom(hw, |
|
1149 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data); |
|
1150 eeprom_apme_mask = E1000_EEPROM_82544_APM; |
|
1151 break; |
|
1152 case e1000_82546: |
|
1153 case e1000_82546_rev_3: |
|
1154 if (er32(STATUS) & E1000_STATUS_FUNC_1){ |
|
1155 e1000_read_eeprom(hw, |
|
1156 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); |
|
1157 break; |
|
1158 } |
|
1159 /* Fall Through */ |
|
1160 default: |
|
1161 e1000_read_eeprom(hw, |
|
1162 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); |
|
1163 break; |
|
1164 } |
|
1165 if (eeprom_data & eeprom_apme_mask) |
|
1166 adapter->eeprom_wol |= E1000_WUFC_MAG; |
|
1167 |
|
1168 /* now that we have the eeprom settings, apply the special cases |
|
1169 * where the eeprom may be wrong or the board simply won't support |
|
1170 * wake on lan on a particular port |
|
1171 */ |
|
1172 switch (pdev->device) { |
|
1173 case E1000_DEV_ID_82546GB_PCIE: |
|
1174 adapter->eeprom_wol = 0; |
|
1175 break; |
|
1176 case E1000_DEV_ID_82546EB_FIBER: |
|
1177 case E1000_DEV_ID_82546GB_FIBER: |
|
1178 /* Wake events only supported on port A for dual fiber |
|
1179 * regardless of eeprom setting |
|
1180 */ |
|
1181 if (er32(STATUS) & E1000_STATUS_FUNC_1) |
|
1182 adapter->eeprom_wol = 0; |
|
1183 break; |
|
1184 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: |
|
1185 /* if quad port adapter, disable WoL on all but port A */ |
|
1186 if (global_quad_port_a != 0) |
|
1187 adapter->eeprom_wol = 0; |
|
1188 else |
|
1189 adapter->quad_port_a = true; |
|
1190 /* Reset for multiple quad port adapters */ |
|
1191 if (++global_quad_port_a == 4) |
|
1192 global_quad_port_a = 0; |
|
1193 break; |
|
1194 } |
|
1195 |
|
1196 /* initialize the wol settings based on the eeprom settings */ |
|
1197 adapter->wol = adapter->eeprom_wol; |
|
1198 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); |
|
1199 |
|
1200 /* Auto detect PHY address */ |
|
1201 if (hw->mac_type == e1000_ce4100) { |
|
1202 for (i = 0; i < 32; i++) { |
|
1203 hw->phy_addr = i; |
|
1204 e1000_read_phy_reg(hw, PHY_ID2, &tmp); |
|
1205 if (tmp == 0 || tmp == 0xFF) { |
|
1206 if (i == 31) |
|
1207 goto err_eeprom; |
|
1208 continue; |
|
1209 } else |
|
1210 break; |
|
1211 } |
|
1212 } |
|
1213 |
|
1214 /* reset the hardware with the new settings */ |
|
1215 e1000_reset(adapter); |
|
1216 |
|
1217 strcpy(netdev->name, "eth%d"); |
|
1218 err = register_netdev(netdev); |
|
1219 if (err) |
|
1220 goto err_register; |
|
1221 |
|
1222 e1000_vlan_filter_on_off(adapter, false); |
|
1223 |
|
1224 /* print bus type/speed/width info */ |
|
1225 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n", |
|
1226 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""), |
|
1227 ((hw->bus_speed == e1000_bus_speed_133) ? 133 : |
|
1228 (hw->bus_speed == e1000_bus_speed_120) ? 120 : |
|
1229 (hw->bus_speed == e1000_bus_speed_100) ? 100 : |
|
1230 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33), |
|
1231 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32), |
|
1232 netdev->dev_addr); |
|
1233 |
|
1234 /* carrier off reporting is important to ethtool even BEFORE open */ |
|
1235 netif_carrier_off(netdev); |
|
1236 |
|
1237 e_info(probe, "Intel(R) PRO/1000 Network Connection\n"); |
|
1238 |
|
1239 cards_found++; |
|
1240 return 0; |
|
1241 |
|
1242 err_register: |
|
1243 err_eeprom: |
|
1244 e1000_phy_hw_reset(hw); |
|
1245 |
|
1246 if (hw->flash_address) |
|
1247 iounmap(hw->flash_address); |
|
1248 kfree(adapter->tx_ring); |
|
1249 kfree(adapter->rx_ring); |
|
1250 err_dma: |
|
1251 err_sw_init: |
|
1252 err_mdio_ioremap: |
|
1253 iounmap(hw->ce4100_gbe_mdio_base_virt); |
|
1254 iounmap(hw->hw_addr); |
|
1255 err_ioremap: |
|
1256 free_netdev(netdev); |
|
1257 err_alloc_etherdev: |
|
1258 pci_release_selected_regions(pdev, bars); |
|
1259 err_pci_reg: |
|
1260 pci_disable_device(pdev); |
|
1261 return err; |
|
1262 } |
|
1263 |
|
1264 /** |
|
1265 * e1000_remove - Device Removal Routine |
|
1266 * @pdev: PCI device information struct |
|
1267 * |
|
1268 * e1000_remove is called by the PCI subsystem to alert the driver |
|
1269 * that it should release a PCI device. The could be caused by a |
|
1270 * Hot-Plug event, or because the driver is going to be removed from |
|
1271 * memory. |
|
1272 **/ |
|
1273 static void e1000_remove(struct pci_dev *pdev) |
|
1274 { |
|
1275 struct net_device *netdev = pci_get_drvdata(pdev); |
|
1276 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1277 struct e1000_hw *hw = &adapter->hw; |
|
1278 |
|
1279 e1000_down_and_stop(adapter); |
|
1280 e1000_release_manageability(adapter); |
|
1281 |
|
1282 unregister_netdev(netdev); |
|
1283 |
|
1284 e1000_phy_hw_reset(hw); |
|
1285 |
|
1286 kfree(adapter->tx_ring); |
|
1287 kfree(adapter->rx_ring); |
|
1288 |
|
1289 if (hw->mac_type == e1000_ce4100) |
|
1290 iounmap(hw->ce4100_gbe_mdio_base_virt); |
|
1291 iounmap(hw->hw_addr); |
|
1292 if (hw->flash_address) |
|
1293 iounmap(hw->flash_address); |
|
1294 pci_release_selected_regions(pdev, adapter->bars); |
|
1295 |
|
1296 free_netdev(netdev); |
|
1297 |
|
1298 pci_disable_device(pdev); |
|
1299 } |
|
1300 |
|
1301 /** |
|
1302 * e1000_sw_init - Initialize general software structures (struct e1000_adapter) |
|
1303 * @adapter: board private structure to initialize |
|
1304 * |
|
1305 * e1000_sw_init initializes the Adapter private data structure. |
|
1306 * e1000_init_hw_struct MUST be called before this function |
|
1307 **/ |
|
1308 static int e1000_sw_init(struct e1000_adapter *adapter) |
|
1309 { |
|
1310 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; |
|
1311 |
|
1312 adapter->num_tx_queues = 1; |
|
1313 adapter->num_rx_queues = 1; |
|
1314 |
|
1315 if (e1000_alloc_queues(adapter)) { |
|
1316 e_err(probe, "Unable to allocate memory for queues\n"); |
|
1317 return -ENOMEM; |
|
1318 } |
|
1319 |
|
1320 /* Explicitly disable IRQ since the NIC can be in any state. */ |
|
1321 e1000_irq_disable(adapter); |
|
1322 |
|
1323 spin_lock_init(&adapter->stats_lock); |
|
1324 mutex_init(&adapter->mutex); |
|
1325 |
|
1326 set_bit(__E1000_DOWN, &adapter->flags); |
|
1327 |
|
1328 return 0; |
|
1329 } |
|
1330 |
|
1331 /** |
|
1332 * e1000_alloc_queues - Allocate memory for all rings |
|
1333 * @adapter: board private structure to initialize |
|
1334 * |
|
1335 * We allocate one ring per queue at run-time since we don't know the |
|
1336 * number of queues at compile-time. |
|
1337 **/ |
|
1338 static int e1000_alloc_queues(struct e1000_adapter *adapter) |
|
1339 { |
|
1340 adapter->tx_ring = kcalloc(adapter->num_tx_queues, |
|
1341 sizeof(struct e1000_tx_ring), GFP_KERNEL); |
|
1342 if (!adapter->tx_ring) |
|
1343 return -ENOMEM; |
|
1344 |
|
1345 adapter->rx_ring = kcalloc(adapter->num_rx_queues, |
|
1346 sizeof(struct e1000_rx_ring), GFP_KERNEL); |
|
1347 if (!adapter->rx_ring) { |
|
1348 kfree(adapter->tx_ring); |
|
1349 return -ENOMEM; |
|
1350 } |
|
1351 |
|
1352 return E1000_SUCCESS; |
|
1353 } |
|
1354 |
|
1355 /** |
|
1356 * e1000_open - Called when a network interface is made active |
|
1357 * @netdev: network interface device structure |
|
1358 * |
|
1359 * Returns 0 on success, negative value on failure |
|
1360 * |
|
1361 * The open entry point is called when a network interface is made |
|
1362 * active by the system (IFF_UP). At this point all resources needed |
|
1363 * for transmit and receive operations are allocated, the interrupt |
|
1364 * handler is registered with the OS, the watchdog task is started, |
|
1365 * and the stack is notified that the interface is ready. |
|
1366 **/ |
|
1367 static int e1000_open(struct net_device *netdev) |
|
1368 { |
|
1369 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1370 struct e1000_hw *hw = &adapter->hw; |
|
1371 int err; |
|
1372 |
|
1373 /* disallow open during test */ |
|
1374 if (test_bit(__E1000_TESTING, &adapter->flags)) |
|
1375 return -EBUSY; |
|
1376 |
|
1377 netif_carrier_off(netdev); |
|
1378 |
|
1379 /* allocate transmit descriptors */ |
|
1380 err = e1000_setup_all_tx_resources(adapter); |
|
1381 if (err) |
|
1382 goto err_setup_tx; |
|
1383 |
|
1384 /* allocate receive descriptors */ |
|
1385 err = e1000_setup_all_rx_resources(adapter); |
|
1386 if (err) |
|
1387 goto err_setup_rx; |
|
1388 |
|
1389 e1000_power_up_phy(adapter); |
|
1390 |
|
1391 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; |
|
1392 if ((hw->mng_cookie.status & |
|
1393 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) { |
|
1394 e1000_update_mng_vlan(adapter); |
|
1395 } |
|
1396 |
|
1397 /* before we allocate an interrupt, we must be ready to handle it. |
|
1398 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt |
|
1399 * as soon as we call pci_request_irq, so we have to setup our |
|
1400 * clean_rx handler before we do so. |
|
1401 */ |
|
1402 e1000_configure(adapter); |
|
1403 |
|
1404 err = e1000_request_irq(adapter); |
|
1405 if (err) |
|
1406 goto err_req_irq; |
|
1407 |
|
1408 /* From here on the code is the same as e1000_up() */ |
|
1409 clear_bit(__E1000_DOWN, &adapter->flags); |
|
1410 |
|
1411 napi_enable(&adapter->napi); |
|
1412 |
|
1413 e1000_irq_enable(adapter); |
|
1414 |
|
1415 netif_start_queue(netdev); |
|
1416 |
|
1417 /* fire a link status change interrupt to start the watchdog */ |
|
1418 ew32(ICS, E1000_ICS_LSC); |
|
1419 |
|
1420 return E1000_SUCCESS; |
|
1421 |
|
1422 err_req_irq: |
|
1423 e1000_power_down_phy(adapter); |
|
1424 e1000_free_all_rx_resources(adapter); |
|
1425 err_setup_rx: |
|
1426 e1000_free_all_tx_resources(adapter); |
|
1427 err_setup_tx: |
|
1428 e1000_reset(adapter); |
|
1429 |
|
1430 return err; |
|
1431 } |
|
1432 |
|
1433 /** |
|
1434 * e1000_close - Disables a network interface |
|
1435 * @netdev: network interface device structure |
|
1436 * |
|
1437 * Returns 0, this is not allowed to fail |
|
1438 * |
|
1439 * The close entry point is called when an interface is de-activated |
|
1440 * by the OS. The hardware is still under the drivers control, but |
|
1441 * needs to be disabled. A global MAC reset is issued to stop the |
|
1442 * hardware, and all transmit and receive resources are freed. |
|
1443 **/ |
|
1444 static int e1000_close(struct net_device *netdev) |
|
1445 { |
|
1446 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
1447 struct e1000_hw *hw = &adapter->hw; |
|
1448 |
|
1449 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); |
|
1450 e1000_down(adapter); |
|
1451 e1000_power_down_phy(adapter); |
|
1452 e1000_free_irq(adapter); |
|
1453 |
|
1454 e1000_free_all_tx_resources(adapter); |
|
1455 e1000_free_all_rx_resources(adapter); |
|
1456 |
|
1457 /* kill manageability vlan ID if supported, but not if a vlan with |
|
1458 * the same ID is registered on the host OS (let 8021q kill it) |
|
1459 */ |
|
1460 if ((hw->mng_cookie.status & |
|
1461 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && |
|
1462 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) { |
|
1463 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), |
|
1464 adapter->mng_vlan_id); |
|
1465 } |
|
1466 |
|
1467 return 0; |
|
1468 } |
|
1469 |
|
1470 /** |
|
1471 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary |
|
1472 * @adapter: address of board private structure |
|
1473 * @start: address of beginning of memory |
|
1474 * @len: length of memory |
|
1475 **/ |
|
1476 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start, |
|
1477 unsigned long len) |
|
1478 { |
|
1479 struct e1000_hw *hw = &adapter->hw; |
|
1480 unsigned long begin = (unsigned long)start; |
|
1481 unsigned long end = begin + len; |
|
1482 |
|
1483 /* First rev 82545 and 82546 need to not allow any memory |
|
1484 * write location to cross 64k boundary due to errata 23 |
|
1485 */ |
|
1486 if (hw->mac_type == e1000_82545 || |
|
1487 hw->mac_type == e1000_ce4100 || |
|
1488 hw->mac_type == e1000_82546) { |
|
1489 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true; |
|
1490 } |
|
1491 |
|
1492 return true; |
|
1493 } |
|
1494 |
|
1495 /** |
|
1496 * e1000_setup_tx_resources - allocate Tx resources (Descriptors) |
|
1497 * @adapter: board private structure |
|
1498 * @txdr: tx descriptor ring (for a specific queue) to setup |
|
1499 * |
|
1500 * Return 0 on success, negative on failure |
|
1501 **/ |
|
1502 static int e1000_setup_tx_resources(struct e1000_adapter *adapter, |
|
1503 struct e1000_tx_ring *txdr) |
|
1504 { |
|
1505 struct pci_dev *pdev = adapter->pdev; |
|
1506 int size; |
|
1507 |
|
1508 size = sizeof(struct e1000_buffer) * txdr->count; |
|
1509 txdr->buffer_info = vzalloc(size); |
|
1510 if (!txdr->buffer_info) |
|
1511 return -ENOMEM; |
|
1512 |
|
1513 /* round up to nearest 4K */ |
|
1514 |
|
1515 txdr->size = txdr->count * sizeof(struct e1000_tx_desc); |
|
1516 txdr->size = ALIGN(txdr->size, 4096); |
|
1517 |
|
1518 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma, |
|
1519 GFP_KERNEL); |
|
1520 if (!txdr->desc) { |
|
1521 setup_tx_desc_die: |
|
1522 vfree(txdr->buffer_info); |
|
1523 return -ENOMEM; |
|
1524 } |
|
1525 |
|
1526 /* Fix for errata 23, can't cross 64kB boundary */ |
|
1527 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { |
|
1528 void *olddesc = txdr->desc; |
|
1529 dma_addr_t olddma = txdr->dma; |
|
1530 e_err(tx_err, "txdr align check failed: %u bytes at %p\n", |
|
1531 txdr->size, txdr->desc); |
|
1532 /* Try again, without freeing the previous */ |
|
1533 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, |
|
1534 &txdr->dma, GFP_KERNEL); |
|
1535 /* Failed allocation, critical failure */ |
|
1536 if (!txdr->desc) { |
|
1537 dma_free_coherent(&pdev->dev, txdr->size, olddesc, |
|
1538 olddma); |
|
1539 goto setup_tx_desc_die; |
|
1540 } |
|
1541 |
|
1542 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { |
|
1543 /* give up */ |
|
1544 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc, |
|
1545 txdr->dma); |
|
1546 dma_free_coherent(&pdev->dev, txdr->size, olddesc, |
|
1547 olddma); |
|
1548 e_err(probe, "Unable to allocate aligned memory " |
|
1549 "for the transmit descriptor ring\n"); |
|
1550 vfree(txdr->buffer_info); |
|
1551 return -ENOMEM; |
|
1552 } else { |
|
1553 /* Free old allocation, new allocation was successful */ |
|
1554 dma_free_coherent(&pdev->dev, txdr->size, olddesc, |
|
1555 olddma); |
|
1556 } |
|
1557 } |
|
1558 memset(txdr->desc, 0, txdr->size); |
|
1559 |
|
1560 txdr->next_to_use = 0; |
|
1561 txdr->next_to_clean = 0; |
|
1562 |
|
1563 return 0; |
|
1564 } |
|
1565 |
|
1566 /** |
|
1567 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources |
|
1568 * (Descriptors) for all queues |
|
1569 * @adapter: board private structure |
|
1570 * |
|
1571 * Return 0 on success, negative on failure |
|
1572 **/ |
|
1573 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter) |
|
1574 { |
|
1575 int i, err = 0; |
|
1576 |
|
1577 for (i = 0; i < adapter->num_tx_queues; i++) { |
|
1578 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]); |
|
1579 if (err) { |
|
1580 e_err(probe, "Allocation for Tx Queue %u failed\n", i); |
|
1581 for (i-- ; i >= 0; i--) |
|
1582 e1000_free_tx_resources(adapter, |
|
1583 &adapter->tx_ring[i]); |
|
1584 break; |
|
1585 } |
|
1586 } |
|
1587 |
|
1588 return err; |
|
1589 } |
|
1590 |
|
1591 /** |
|
1592 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset |
|
1593 * @adapter: board private structure |
|
1594 * |
|
1595 * Configure the Tx unit of the MAC after a reset. |
|
1596 **/ |
|
1597 static void e1000_configure_tx(struct e1000_adapter *adapter) |
|
1598 { |
|
1599 u64 tdba; |
|
1600 struct e1000_hw *hw = &adapter->hw; |
|
1601 u32 tdlen, tctl, tipg; |
|
1602 u32 ipgr1, ipgr2; |
|
1603 |
|
1604 /* Setup the HW Tx Head and Tail descriptor pointers */ |
|
1605 |
|
1606 switch (adapter->num_tx_queues) { |
|
1607 case 1: |
|
1608 default: |
|
1609 tdba = adapter->tx_ring[0].dma; |
|
1610 tdlen = adapter->tx_ring[0].count * |
|
1611 sizeof(struct e1000_tx_desc); |
|
1612 ew32(TDLEN, tdlen); |
|
1613 ew32(TDBAH, (tdba >> 32)); |
|
1614 ew32(TDBAL, (tdba & 0x00000000ffffffffULL)); |
|
1615 ew32(TDT, 0); |
|
1616 ew32(TDH, 0); |
|
1617 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? |
|
1618 E1000_TDH : E1000_82542_TDH); |
|
1619 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? |
|
1620 E1000_TDT : E1000_82542_TDT); |
|
1621 break; |
|
1622 } |
|
1623 |
|
1624 /* Set the default values for the Tx Inter Packet Gap timer */ |
|
1625 if ((hw->media_type == e1000_media_type_fiber || |
|
1626 hw->media_type == e1000_media_type_internal_serdes)) |
|
1627 tipg = DEFAULT_82543_TIPG_IPGT_FIBER; |
|
1628 else |
|
1629 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; |
|
1630 |
|
1631 switch (hw->mac_type) { |
|
1632 case e1000_82542_rev2_0: |
|
1633 case e1000_82542_rev2_1: |
|
1634 tipg = DEFAULT_82542_TIPG_IPGT; |
|
1635 ipgr1 = DEFAULT_82542_TIPG_IPGR1; |
|
1636 ipgr2 = DEFAULT_82542_TIPG_IPGR2; |
|
1637 break; |
|
1638 default: |
|
1639 ipgr1 = DEFAULT_82543_TIPG_IPGR1; |
|
1640 ipgr2 = DEFAULT_82543_TIPG_IPGR2; |
|
1641 break; |
|
1642 } |
|
1643 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; |
|
1644 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; |
|
1645 ew32(TIPG, tipg); |
|
1646 |
|
1647 /* Set the Tx Interrupt Delay register */ |
|
1648 |
|
1649 ew32(TIDV, adapter->tx_int_delay); |
|
1650 if (hw->mac_type >= e1000_82540) |
|
1651 ew32(TADV, adapter->tx_abs_int_delay); |
|
1652 |
|
1653 /* Program the Transmit Control Register */ |
|
1654 |
|
1655 tctl = er32(TCTL); |
|
1656 tctl &= ~E1000_TCTL_CT; |
|
1657 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | |
|
1658 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); |
|
1659 |
|
1660 e1000_config_collision_dist(hw); |
|
1661 |
|
1662 /* Setup Transmit Descriptor Settings for eop descriptor */ |
|
1663 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; |
|
1664 |
|
1665 /* only set IDE if we are delaying interrupts using the timers */ |
|
1666 if (adapter->tx_int_delay) |
|
1667 adapter->txd_cmd |= E1000_TXD_CMD_IDE; |
|
1668 |
|
1669 if (hw->mac_type < e1000_82543) |
|
1670 adapter->txd_cmd |= E1000_TXD_CMD_RPS; |
|
1671 else |
|
1672 adapter->txd_cmd |= E1000_TXD_CMD_RS; |
|
1673 |
|
1674 /* Cache if we're 82544 running in PCI-X because we'll |
|
1675 * need this to apply a workaround later in the send path. |
|
1676 */ |
|
1677 if (hw->mac_type == e1000_82544 && |
|
1678 hw->bus_type == e1000_bus_type_pcix) |
|
1679 adapter->pcix_82544 = true; |
|
1680 |
|
1681 ew32(TCTL, tctl); |
|
1682 |
|
1683 } |
|
1684 |
|
1685 /** |
|
1686 * e1000_setup_rx_resources - allocate Rx resources (Descriptors) |
|
1687 * @adapter: board private structure |
|
1688 * @rxdr: rx descriptor ring (for a specific queue) to setup |
|
1689 * |
|
1690 * Returns 0 on success, negative on failure |
|
1691 **/ |
|
1692 static int e1000_setup_rx_resources(struct e1000_adapter *adapter, |
|
1693 struct e1000_rx_ring *rxdr) |
|
1694 { |
|
1695 struct pci_dev *pdev = adapter->pdev; |
|
1696 int size, desc_len; |
|
1697 |
|
1698 size = sizeof(struct e1000_buffer) * rxdr->count; |
|
1699 rxdr->buffer_info = vzalloc(size); |
|
1700 if (!rxdr->buffer_info) |
|
1701 return -ENOMEM; |
|
1702 |
|
1703 desc_len = sizeof(struct e1000_rx_desc); |
|
1704 |
|
1705 /* Round up to nearest 4K */ |
|
1706 |
|
1707 rxdr->size = rxdr->count * desc_len; |
|
1708 rxdr->size = ALIGN(rxdr->size, 4096); |
|
1709 |
|
1710 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma, |
|
1711 GFP_KERNEL); |
|
1712 if (!rxdr->desc) { |
|
1713 setup_rx_desc_die: |
|
1714 vfree(rxdr->buffer_info); |
|
1715 return -ENOMEM; |
|
1716 } |
|
1717 |
|
1718 /* Fix for errata 23, can't cross 64kB boundary */ |
|
1719 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { |
|
1720 void *olddesc = rxdr->desc; |
|
1721 dma_addr_t olddma = rxdr->dma; |
|
1722 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n", |
|
1723 rxdr->size, rxdr->desc); |
|
1724 /* Try again, without freeing the previous */ |
|
1725 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, |
|
1726 &rxdr->dma, GFP_KERNEL); |
|
1727 /* Failed allocation, critical failure */ |
|
1728 if (!rxdr->desc) { |
|
1729 dma_free_coherent(&pdev->dev, rxdr->size, olddesc, |
|
1730 olddma); |
|
1731 goto setup_rx_desc_die; |
|
1732 } |
|
1733 |
|
1734 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { |
|
1735 /* give up */ |
|
1736 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc, |
|
1737 rxdr->dma); |
|
1738 dma_free_coherent(&pdev->dev, rxdr->size, olddesc, |
|
1739 olddma); |
|
1740 e_err(probe, "Unable to allocate aligned memory for " |
|
1741 "the Rx descriptor ring\n"); |
|
1742 goto setup_rx_desc_die; |
|
1743 } else { |
|
1744 /* Free old allocation, new allocation was successful */ |
|
1745 dma_free_coherent(&pdev->dev, rxdr->size, olddesc, |
|
1746 olddma); |
|
1747 } |
|
1748 } |
|
1749 memset(rxdr->desc, 0, rxdr->size); |
|
1750 |
|
1751 rxdr->next_to_clean = 0; |
|
1752 rxdr->next_to_use = 0; |
|
1753 rxdr->rx_skb_top = NULL; |
|
1754 |
|
1755 return 0; |
|
1756 } |
|
1757 |
|
1758 /** |
|
1759 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources |
|
1760 * (Descriptors) for all queues |
|
1761 * @adapter: board private structure |
|
1762 * |
|
1763 * Return 0 on success, negative on failure |
|
1764 **/ |
|
1765 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter) |
|
1766 { |
|
1767 int i, err = 0; |
|
1768 |
|
1769 for (i = 0; i < adapter->num_rx_queues; i++) { |
|
1770 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]); |
|
1771 if (err) { |
|
1772 e_err(probe, "Allocation for Rx Queue %u failed\n", i); |
|
1773 for (i-- ; i >= 0; i--) |
|
1774 e1000_free_rx_resources(adapter, |
|
1775 &adapter->rx_ring[i]); |
|
1776 break; |
|
1777 } |
|
1778 } |
|
1779 |
|
1780 return err; |
|
1781 } |
|
1782 |
|
1783 /** |
|
1784 * e1000_setup_rctl - configure the receive control registers |
|
1785 * @adapter: Board private structure |
|
1786 **/ |
|
1787 static void e1000_setup_rctl(struct e1000_adapter *adapter) |
|
1788 { |
|
1789 struct e1000_hw *hw = &adapter->hw; |
|
1790 u32 rctl; |
|
1791 |
|
1792 rctl = er32(RCTL); |
|
1793 |
|
1794 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); |
|
1795 |
|
1796 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO | |
|
1797 E1000_RCTL_RDMTS_HALF | |
|
1798 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT); |
|
1799 |
|
1800 if (hw->tbi_compatibility_on == 1) |
|
1801 rctl |= E1000_RCTL_SBP; |
|
1802 else |
|
1803 rctl &= ~E1000_RCTL_SBP; |
|
1804 |
|
1805 if (adapter->netdev->mtu <= ETH_DATA_LEN) |
|
1806 rctl &= ~E1000_RCTL_LPE; |
|
1807 else |
|
1808 rctl |= E1000_RCTL_LPE; |
|
1809 |
|
1810 /* Setup buffer sizes */ |
|
1811 rctl &= ~E1000_RCTL_SZ_4096; |
|
1812 rctl |= E1000_RCTL_BSEX; |
|
1813 switch (adapter->rx_buffer_len) { |
|
1814 case E1000_RXBUFFER_2048: |
|
1815 default: |
|
1816 rctl |= E1000_RCTL_SZ_2048; |
|
1817 rctl &= ~E1000_RCTL_BSEX; |
|
1818 break; |
|
1819 case E1000_RXBUFFER_4096: |
|
1820 rctl |= E1000_RCTL_SZ_4096; |
|
1821 break; |
|
1822 case E1000_RXBUFFER_8192: |
|
1823 rctl |= E1000_RCTL_SZ_8192; |
|
1824 break; |
|
1825 case E1000_RXBUFFER_16384: |
|
1826 rctl |= E1000_RCTL_SZ_16384; |
|
1827 break; |
|
1828 } |
|
1829 |
|
1830 /* This is useful for sniffing bad packets. */ |
|
1831 if (adapter->netdev->features & NETIF_F_RXALL) { |
|
1832 /* UPE and MPE will be handled by normal PROMISC logic |
|
1833 * in e1000e_set_rx_mode |
|
1834 */ |
|
1835 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */ |
|
1836 E1000_RCTL_BAM | /* RX All Bcast Pkts */ |
|
1837 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ |
|
1838 |
|
1839 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */ |
|
1840 E1000_RCTL_DPF | /* Allow filtered pause */ |
|
1841 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */ |
|
1842 /* Do not mess with E1000_CTRL_VME, it affects transmit as well, |
|
1843 * and that breaks VLANs. |
|
1844 */ |
|
1845 } |
|
1846 |
|
1847 ew32(RCTL, rctl); |
|
1848 } |
|
1849 |
|
1850 /** |
|
1851 * e1000_configure_rx - Configure 8254x Receive Unit after Reset |
|
1852 * @adapter: board private structure |
|
1853 * |
|
1854 * Configure the Rx unit of the MAC after a reset. |
|
1855 **/ |
|
1856 static void e1000_configure_rx(struct e1000_adapter *adapter) |
|
1857 { |
|
1858 u64 rdba; |
|
1859 struct e1000_hw *hw = &adapter->hw; |
|
1860 u32 rdlen, rctl, rxcsum; |
|
1861 |
|
1862 if (adapter->netdev->mtu > ETH_DATA_LEN) { |
|
1863 rdlen = adapter->rx_ring[0].count * |
|
1864 sizeof(struct e1000_rx_desc); |
|
1865 adapter->clean_rx = e1000_clean_jumbo_rx_irq; |
|
1866 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers; |
|
1867 } else { |
|
1868 rdlen = adapter->rx_ring[0].count * |
|
1869 sizeof(struct e1000_rx_desc); |
|
1870 adapter->clean_rx = e1000_clean_rx_irq; |
|
1871 adapter->alloc_rx_buf = e1000_alloc_rx_buffers; |
|
1872 } |
|
1873 |
|
1874 /* disable receives while setting up the descriptors */ |
|
1875 rctl = er32(RCTL); |
|
1876 ew32(RCTL, rctl & ~E1000_RCTL_EN); |
|
1877 |
|
1878 /* set the Receive Delay Timer Register */ |
|
1879 ew32(RDTR, adapter->rx_int_delay); |
|
1880 |
|
1881 if (hw->mac_type >= e1000_82540) { |
|
1882 ew32(RADV, adapter->rx_abs_int_delay); |
|
1883 if (adapter->itr_setting != 0) |
|
1884 ew32(ITR, 1000000000 / (adapter->itr * 256)); |
|
1885 } |
|
1886 |
|
1887 /* Setup the HW Rx Head and Tail Descriptor Pointers and |
|
1888 * the Base and Length of the Rx Descriptor Ring |
|
1889 */ |
|
1890 switch (adapter->num_rx_queues) { |
|
1891 case 1: |
|
1892 default: |
|
1893 rdba = adapter->rx_ring[0].dma; |
|
1894 ew32(RDLEN, rdlen); |
|
1895 ew32(RDBAH, (rdba >> 32)); |
|
1896 ew32(RDBAL, (rdba & 0x00000000ffffffffULL)); |
|
1897 ew32(RDT, 0); |
|
1898 ew32(RDH, 0); |
|
1899 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? |
|
1900 E1000_RDH : E1000_82542_RDH); |
|
1901 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? |
|
1902 E1000_RDT : E1000_82542_RDT); |
|
1903 break; |
|
1904 } |
|
1905 |
|
1906 /* Enable 82543 Receive Checksum Offload for TCP and UDP */ |
|
1907 if (hw->mac_type >= e1000_82543) { |
|
1908 rxcsum = er32(RXCSUM); |
|
1909 if (adapter->rx_csum) |
|
1910 rxcsum |= E1000_RXCSUM_TUOFL; |
|
1911 else |
|
1912 /* don't need to clear IPPCSE as it defaults to 0 */ |
|
1913 rxcsum &= ~E1000_RXCSUM_TUOFL; |
|
1914 ew32(RXCSUM, rxcsum); |
|
1915 } |
|
1916 |
|
1917 /* Enable Receives */ |
|
1918 ew32(RCTL, rctl | E1000_RCTL_EN); |
|
1919 } |
|
1920 |
|
1921 /** |
|
1922 * e1000_free_tx_resources - Free Tx Resources per Queue |
|
1923 * @adapter: board private structure |
|
1924 * @tx_ring: Tx descriptor ring for a specific queue |
|
1925 * |
|
1926 * Free all transmit software resources |
|
1927 **/ |
|
1928 static void e1000_free_tx_resources(struct e1000_adapter *adapter, |
|
1929 struct e1000_tx_ring *tx_ring) |
|
1930 { |
|
1931 struct pci_dev *pdev = adapter->pdev; |
|
1932 |
|
1933 e1000_clean_tx_ring(adapter, tx_ring); |
|
1934 |
|
1935 vfree(tx_ring->buffer_info); |
|
1936 tx_ring->buffer_info = NULL; |
|
1937 |
|
1938 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, |
|
1939 tx_ring->dma); |
|
1940 |
|
1941 tx_ring->desc = NULL; |
|
1942 } |
|
1943 |
|
1944 /** |
|
1945 * e1000_free_all_tx_resources - Free Tx Resources for All Queues |
|
1946 * @adapter: board private structure |
|
1947 * |
|
1948 * Free all transmit software resources |
|
1949 **/ |
|
1950 void e1000_free_all_tx_resources(struct e1000_adapter *adapter) |
|
1951 { |
|
1952 int i; |
|
1953 |
|
1954 for (i = 0; i < adapter->num_tx_queues; i++) |
|
1955 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]); |
|
1956 } |
|
1957 |
|
1958 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter, |
|
1959 struct e1000_buffer *buffer_info) |
|
1960 { |
|
1961 if (buffer_info->dma) { |
|
1962 if (buffer_info->mapped_as_page) |
|
1963 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma, |
|
1964 buffer_info->length, DMA_TO_DEVICE); |
|
1965 else |
|
1966 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, |
|
1967 buffer_info->length, |
|
1968 DMA_TO_DEVICE); |
|
1969 buffer_info->dma = 0; |
|
1970 } |
|
1971 if (buffer_info->skb) { |
|
1972 dev_kfree_skb_any(buffer_info->skb); |
|
1973 buffer_info->skb = NULL; |
|
1974 } |
|
1975 buffer_info->time_stamp = 0; |
|
1976 /* buffer_info must be completely set up in the transmit path */ |
|
1977 } |
|
1978 |
|
1979 /** |
|
1980 * e1000_clean_tx_ring - Free Tx Buffers |
|
1981 * @adapter: board private structure |
|
1982 * @tx_ring: ring to be cleaned |
|
1983 **/ |
|
1984 static void e1000_clean_tx_ring(struct e1000_adapter *adapter, |
|
1985 struct e1000_tx_ring *tx_ring) |
|
1986 { |
|
1987 struct e1000_hw *hw = &adapter->hw; |
|
1988 struct e1000_buffer *buffer_info; |
|
1989 unsigned long size; |
|
1990 unsigned int i; |
|
1991 |
|
1992 /* Free all the Tx ring sk_buffs */ |
|
1993 |
|
1994 for (i = 0; i < tx_ring->count; i++) { |
|
1995 buffer_info = &tx_ring->buffer_info[i]; |
|
1996 e1000_unmap_and_free_tx_resource(adapter, buffer_info); |
|
1997 } |
|
1998 |
|
1999 netdev_reset_queue(adapter->netdev); |
|
2000 size = sizeof(struct e1000_buffer) * tx_ring->count; |
|
2001 memset(tx_ring->buffer_info, 0, size); |
|
2002 |
|
2003 /* Zero out the descriptor ring */ |
|
2004 |
|
2005 memset(tx_ring->desc, 0, tx_ring->size); |
|
2006 |
|
2007 tx_ring->next_to_use = 0; |
|
2008 tx_ring->next_to_clean = 0; |
|
2009 tx_ring->last_tx_tso = false; |
|
2010 |
|
2011 writel(0, hw->hw_addr + tx_ring->tdh); |
|
2012 writel(0, hw->hw_addr + tx_ring->tdt); |
|
2013 } |
|
2014 |
|
2015 /** |
|
2016 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues |
|
2017 * @adapter: board private structure |
|
2018 **/ |
|
2019 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter) |
|
2020 { |
|
2021 int i; |
|
2022 |
|
2023 for (i = 0; i < adapter->num_tx_queues; i++) |
|
2024 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]); |
|
2025 } |
|
2026 |
|
2027 /** |
|
2028 * e1000_free_rx_resources - Free Rx Resources |
|
2029 * @adapter: board private structure |
|
2030 * @rx_ring: ring to clean the resources from |
|
2031 * |
|
2032 * Free all receive software resources |
|
2033 **/ |
|
2034 static void e1000_free_rx_resources(struct e1000_adapter *adapter, |
|
2035 struct e1000_rx_ring *rx_ring) |
|
2036 { |
|
2037 struct pci_dev *pdev = adapter->pdev; |
|
2038 |
|
2039 e1000_clean_rx_ring(adapter, rx_ring); |
|
2040 |
|
2041 vfree(rx_ring->buffer_info); |
|
2042 rx_ring->buffer_info = NULL; |
|
2043 |
|
2044 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, |
|
2045 rx_ring->dma); |
|
2046 |
|
2047 rx_ring->desc = NULL; |
|
2048 } |
|
2049 |
|
2050 /** |
|
2051 * e1000_free_all_rx_resources - Free Rx Resources for All Queues |
|
2052 * @adapter: board private structure |
|
2053 * |
|
2054 * Free all receive software resources |
|
2055 **/ |
|
2056 void e1000_free_all_rx_resources(struct e1000_adapter *adapter) |
|
2057 { |
|
2058 int i; |
|
2059 |
|
2060 for (i = 0; i < adapter->num_rx_queues; i++) |
|
2061 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]); |
|
2062 } |
|
2063 |
|
2064 /** |
|
2065 * e1000_clean_rx_ring - Free Rx Buffers per Queue |
|
2066 * @adapter: board private structure |
|
2067 * @rx_ring: ring to free buffers from |
|
2068 **/ |
|
2069 static void e1000_clean_rx_ring(struct e1000_adapter *adapter, |
|
2070 struct e1000_rx_ring *rx_ring) |
|
2071 { |
|
2072 struct e1000_hw *hw = &adapter->hw; |
|
2073 struct e1000_buffer *buffer_info; |
|
2074 struct pci_dev *pdev = adapter->pdev; |
|
2075 unsigned long size; |
|
2076 unsigned int i; |
|
2077 |
|
2078 /* Free all the Rx ring sk_buffs */ |
|
2079 for (i = 0; i < rx_ring->count; i++) { |
|
2080 buffer_info = &rx_ring->buffer_info[i]; |
|
2081 if (buffer_info->dma && |
|
2082 adapter->clean_rx == e1000_clean_rx_irq) { |
|
2083 dma_unmap_single(&pdev->dev, buffer_info->dma, |
|
2084 buffer_info->length, |
|
2085 DMA_FROM_DEVICE); |
|
2086 } else if (buffer_info->dma && |
|
2087 adapter->clean_rx == e1000_clean_jumbo_rx_irq) { |
|
2088 dma_unmap_page(&pdev->dev, buffer_info->dma, |
|
2089 buffer_info->length, |
|
2090 DMA_FROM_DEVICE); |
|
2091 } |
|
2092 |
|
2093 buffer_info->dma = 0; |
|
2094 if (buffer_info->page) { |
|
2095 put_page(buffer_info->page); |
|
2096 buffer_info->page = NULL; |
|
2097 } |
|
2098 if (buffer_info->skb) { |
|
2099 dev_kfree_skb(buffer_info->skb); |
|
2100 buffer_info->skb = NULL; |
|
2101 } |
|
2102 } |
|
2103 |
|
2104 /* there also may be some cached data from a chained receive */ |
|
2105 if (rx_ring->rx_skb_top) { |
|
2106 dev_kfree_skb(rx_ring->rx_skb_top); |
|
2107 rx_ring->rx_skb_top = NULL; |
|
2108 } |
|
2109 |
|
2110 size = sizeof(struct e1000_buffer) * rx_ring->count; |
|
2111 memset(rx_ring->buffer_info, 0, size); |
|
2112 |
|
2113 /* Zero out the descriptor ring */ |
|
2114 memset(rx_ring->desc, 0, rx_ring->size); |
|
2115 |
|
2116 rx_ring->next_to_clean = 0; |
|
2117 rx_ring->next_to_use = 0; |
|
2118 |
|
2119 writel(0, hw->hw_addr + rx_ring->rdh); |
|
2120 writel(0, hw->hw_addr + rx_ring->rdt); |
|
2121 } |
|
2122 |
|
2123 /** |
|
2124 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues |
|
2125 * @adapter: board private structure |
|
2126 **/ |
|
2127 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter) |
|
2128 { |
|
2129 int i; |
|
2130 |
|
2131 for (i = 0; i < adapter->num_rx_queues; i++) |
|
2132 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]); |
|
2133 } |
|
2134 |
|
2135 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset |
|
2136 * and memory write and invalidate disabled for certain operations |
|
2137 */ |
|
2138 static void e1000_enter_82542_rst(struct e1000_adapter *adapter) |
|
2139 { |
|
2140 struct e1000_hw *hw = &adapter->hw; |
|
2141 struct net_device *netdev = adapter->netdev; |
|
2142 u32 rctl; |
|
2143 |
|
2144 e1000_pci_clear_mwi(hw); |
|
2145 |
|
2146 rctl = er32(RCTL); |
|
2147 rctl |= E1000_RCTL_RST; |
|
2148 ew32(RCTL, rctl); |
|
2149 E1000_WRITE_FLUSH(); |
|
2150 mdelay(5); |
|
2151 |
|
2152 if (netif_running(netdev)) |
|
2153 e1000_clean_all_rx_rings(adapter); |
|
2154 } |
|
2155 |
|
2156 static void e1000_leave_82542_rst(struct e1000_adapter *adapter) |
|
2157 { |
|
2158 struct e1000_hw *hw = &adapter->hw; |
|
2159 struct net_device *netdev = adapter->netdev; |
|
2160 u32 rctl; |
|
2161 |
|
2162 rctl = er32(RCTL); |
|
2163 rctl &= ~E1000_RCTL_RST; |
|
2164 ew32(RCTL, rctl); |
|
2165 E1000_WRITE_FLUSH(); |
|
2166 mdelay(5); |
|
2167 |
|
2168 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) |
|
2169 e1000_pci_set_mwi(hw); |
|
2170 |
|
2171 if (netif_running(netdev)) { |
|
2172 /* No need to loop, because 82542 supports only 1 queue */ |
|
2173 struct e1000_rx_ring *ring = &adapter->rx_ring[0]; |
|
2174 e1000_configure_rx(adapter); |
|
2175 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring)); |
|
2176 } |
|
2177 } |
|
2178 |
|
2179 /** |
|
2180 * e1000_set_mac - Change the Ethernet Address of the NIC |
|
2181 * @netdev: network interface device structure |
|
2182 * @p: pointer to an address structure |
|
2183 * |
|
2184 * Returns 0 on success, negative on failure |
|
2185 **/ |
|
2186 static int e1000_set_mac(struct net_device *netdev, void *p) |
|
2187 { |
|
2188 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
2189 struct e1000_hw *hw = &adapter->hw; |
|
2190 struct sockaddr *addr = p; |
|
2191 |
|
2192 if (!is_valid_ether_addr(addr->sa_data)) |
|
2193 return -EADDRNOTAVAIL; |
|
2194 |
|
2195 /* 82542 2.0 needs to be in reset to write receive address registers */ |
|
2196 |
|
2197 if (hw->mac_type == e1000_82542_rev2_0) |
|
2198 e1000_enter_82542_rst(adapter); |
|
2199 |
|
2200 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); |
|
2201 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len); |
|
2202 |
|
2203 e1000_rar_set(hw, hw->mac_addr, 0); |
|
2204 |
|
2205 if (hw->mac_type == e1000_82542_rev2_0) |
|
2206 e1000_leave_82542_rst(adapter); |
|
2207 |
|
2208 return 0; |
|
2209 } |
|
2210 |
|
2211 /** |
|
2212 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set |
|
2213 * @netdev: network interface device structure |
|
2214 * |
|
2215 * The set_rx_mode entry point is called whenever the unicast or multicast |
|
2216 * address lists or the network interface flags are updated. This routine is |
|
2217 * responsible for configuring the hardware for proper unicast, multicast, |
|
2218 * promiscuous mode, and all-multi behavior. |
|
2219 **/ |
|
2220 static void e1000_set_rx_mode(struct net_device *netdev) |
|
2221 { |
|
2222 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
2223 struct e1000_hw *hw = &adapter->hw; |
|
2224 struct netdev_hw_addr *ha; |
|
2225 bool use_uc = false; |
|
2226 u32 rctl; |
|
2227 u32 hash_value; |
|
2228 int i, rar_entries = E1000_RAR_ENTRIES; |
|
2229 int mta_reg_count = E1000_NUM_MTA_REGISTERS; |
|
2230 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC); |
|
2231 |
|
2232 if (!mcarray) |
|
2233 return; |
|
2234 |
|
2235 /* Check for Promiscuous and All Multicast modes */ |
|
2236 |
|
2237 rctl = er32(RCTL); |
|
2238 |
|
2239 if (netdev->flags & IFF_PROMISC) { |
|
2240 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); |
|
2241 rctl &= ~E1000_RCTL_VFE; |
|
2242 } else { |
|
2243 if (netdev->flags & IFF_ALLMULTI) |
|
2244 rctl |= E1000_RCTL_MPE; |
|
2245 else |
|
2246 rctl &= ~E1000_RCTL_MPE; |
|
2247 /* Enable VLAN filter if there is a VLAN */ |
|
2248 if (e1000_vlan_used(adapter)) |
|
2249 rctl |= E1000_RCTL_VFE; |
|
2250 } |
|
2251 |
|
2252 if (netdev_uc_count(netdev) > rar_entries - 1) { |
|
2253 rctl |= E1000_RCTL_UPE; |
|
2254 } else if (!(netdev->flags & IFF_PROMISC)) { |
|
2255 rctl &= ~E1000_RCTL_UPE; |
|
2256 use_uc = true; |
|
2257 } |
|
2258 |
|
2259 ew32(RCTL, rctl); |
|
2260 |
|
2261 /* 82542 2.0 needs to be in reset to write receive address registers */ |
|
2262 |
|
2263 if (hw->mac_type == e1000_82542_rev2_0) |
|
2264 e1000_enter_82542_rst(adapter); |
|
2265 |
|
2266 /* load the first 14 addresses into the exact filters 1-14. Unicast |
|
2267 * addresses take precedence to avoid disabling unicast filtering |
|
2268 * when possible. |
|
2269 * |
|
2270 * RAR 0 is used for the station MAC address |
|
2271 * if there are not 14 addresses, go ahead and clear the filters |
|
2272 */ |
|
2273 i = 1; |
|
2274 if (use_uc) |
|
2275 netdev_for_each_uc_addr(ha, netdev) { |
|
2276 if (i == rar_entries) |
|
2277 break; |
|
2278 e1000_rar_set(hw, ha->addr, i++); |
|
2279 } |
|
2280 |
|
2281 netdev_for_each_mc_addr(ha, netdev) { |
|
2282 if (i == rar_entries) { |
|
2283 /* load any remaining addresses into the hash table */ |
|
2284 u32 hash_reg, hash_bit, mta; |
|
2285 hash_value = e1000_hash_mc_addr(hw, ha->addr); |
|
2286 hash_reg = (hash_value >> 5) & 0x7F; |
|
2287 hash_bit = hash_value & 0x1F; |
|
2288 mta = (1 << hash_bit); |
|
2289 mcarray[hash_reg] |= mta; |
|
2290 } else { |
|
2291 e1000_rar_set(hw, ha->addr, i++); |
|
2292 } |
|
2293 } |
|
2294 |
|
2295 for (; i < rar_entries; i++) { |
|
2296 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0); |
|
2297 E1000_WRITE_FLUSH(); |
|
2298 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0); |
|
2299 E1000_WRITE_FLUSH(); |
|
2300 } |
|
2301 |
|
2302 /* write the hash table completely, write from bottom to avoid |
|
2303 * both stupid write combining chipsets, and flushing each write |
|
2304 */ |
|
2305 for (i = mta_reg_count - 1; i >= 0 ; i--) { |
|
2306 /* If we are on an 82544 has an errata where writing odd |
|
2307 * offsets overwrites the previous even offset, but writing |
|
2308 * backwards over the range solves the issue by always |
|
2309 * writing the odd offset first |
|
2310 */ |
|
2311 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]); |
|
2312 } |
|
2313 E1000_WRITE_FLUSH(); |
|
2314 |
|
2315 if (hw->mac_type == e1000_82542_rev2_0) |
|
2316 e1000_leave_82542_rst(adapter); |
|
2317 |
|
2318 kfree(mcarray); |
|
2319 } |
|
2320 |
|
2321 /** |
|
2322 * e1000_update_phy_info_task - get phy info |
|
2323 * @work: work struct contained inside adapter struct |
|
2324 * |
|
2325 * Need to wait a few seconds after link up to get diagnostic information from |
|
2326 * the phy |
|
2327 */ |
|
2328 static void e1000_update_phy_info_task(struct work_struct *work) |
|
2329 { |
|
2330 struct e1000_adapter *adapter = container_of(work, |
|
2331 struct e1000_adapter, |
|
2332 phy_info_task.work); |
|
2333 if (test_bit(__E1000_DOWN, &adapter->flags)) |
|
2334 return; |
|
2335 mutex_lock(&adapter->mutex); |
|
2336 e1000_phy_get_info(&adapter->hw, &adapter->phy_info); |
|
2337 mutex_unlock(&adapter->mutex); |
|
2338 } |
|
2339 |
|
2340 /** |
|
2341 * e1000_82547_tx_fifo_stall_task - task to complete work |
|
2342 * @work: work struct contained inside adapter struct |
|
2343 **/ |
|
2344 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work) |
|
2345 { |
|
2346 struct e1000_adapter *adapter = container_of(work, |
|
2347 struct e1000_adapter, |
|
2348 fifo_stall_task.work); |
|
2349 struct e1000_hw *hw = &adapter->hw; |
|
2350 struct net_device *netdev = adapter->netdev; |
|
2351 u32 tctl; |
|
2352 |
|
2353 if (test_bit(__E1000_DOWN, &adapter->flags)) |
|
2354 return; |
|
2355 mutex_lock(&adapter->mutex); |
|
2356 if (atomic_read(&adapter->tx_fifo_stall)) { |
|
2357 if ((er32(TDT) == er32(TDH)) && |
|
2358 (er32(TDFT) == er32(TDFH)) && |
|
2359 (er32(TDFTS) == er32(TDFHS))) { |
|
2360 tctl = er32(TCTL); |
|
2361 ew32(TCTL, tctl & ~E1000_TCTL_EN); |
|
2362 ew32(TDFT, adapter->tx_head_addr); |
|
2363 ew32(TDFH, adapter->tx_head_addr); |
|
2364 ew32(TDFTS, adapter->tx_head_addr); |
|
2365 ew32(TDFHS, adapter->tx_head_addr); |
|
2366 ew32(TCTL, tctl); |
|
2367 E1000_WRITE_FLUSH(); |
|
2368 |
|
2369 adapter->tx_fifo_head = 0; |
|
2370 atomic_set(&adapter->tx_fifo_stall, 0); |
|
2371 netif_wake_queue(netdev); |
|
2372 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) { |
|
2373 schedule_delayed_work(&adapter->fifo_stall_task, 1); |
|
2374 } |
|
2375 } |
|
2376 mutex_unlock(&adapter->mutex); |
|
2377 } |
|
2378 |
|
2379 bool e1000_has_link(struct e1000_adapter *adapter) |
|
2380 { |
|
2381 struct e1000_hw *hw = &adapter->hw; |
|
2382 bool link_active = false; |
|
2383 |
|
2384 /* get_link_status is set on LSC (link status) interrupt or rx |
|
2385 * sequence error interrupt (except on intel ce4100). |
|
2386 * get_link_status will stay false until the |
|
2387 * e1000_check_for_link establishes link for copper adapters |
|
2388 * ONLY |
|
2389 */ |
|
2390 switch (hw->media_type) { |
|
2391 case e1000_media_type_copper: |
|
2392 if (hw->mac_type == e1000_ce4100) |
|
2393 hw->get_link_status = 1; |
|
2394 if (hw->get_link_status) { |
|
2395 e1000_check_for_link(hw); |
|
2396 link_active = !hw->get_link_status; |
|
2397 } else { |
|
2398 link_active = true; |
|
2399 } |
|
2400 break; |
|
2401 case e1000_media_type_fiber: |
|
2402 e1000_check_for_link(hw); |
|
2403 link_active = !!(er32(STATUS) & E1000_STATUS_LU); |
|
2404 break; |
|
2405 case e1000_media_type_internal_serdes: |
|
2406 e1000_check_for_link(hw); |
|
2407 link_active = hw->serdes_has_link; |
|
2408 break; |
|
2409 default: |
|
2410 break; |
|
2411 } |
|
2412 |
|
2413 return link_active; |
|
2414 } |
|
2415 |
|
2416 /** |
|
2417 * e1000_watchdog - work function |
|
2418 * @work: work struct contained inside adapter struct |
|
2419 **/ |
|
2420 static void e1000_watchdog(struct work_struct *work) |
|
2421 { |
|
2422 struct e1000_adapter *adapter = container_of(work, |
|
2423 struct e1000_adapter, |
|
2424 watchdog_task.work); |
|
2425 struct e1000_hw *hw = &adapter->hw; |
|
2426 struct net_device *netdev = adapter->netdev; |
|
2427 struct e1000_tx_ring *txdr = adapter->tx_ring; |
|
2428 u32 link, tctl; |
|
2429 |
|
2430 if (test_bit(__E1000_DOWN, &adapter->flags)) |
|
2431 return; |
|
2432 |
|
2433 mutex_lock(&adapter->mutex); |
|
2434 link = e1000_has_link(adapter); |
|
2435 if ((netif_carrier_ok(netdev)) && link) |
|
2436 goto link_up; |
|
2437 |
|
2438 if (link) { |
|
2439 if (!netif_carrier_ok(netdev)) { |
|
2440 u32 ctrl; |
|
2441 bool txb2b = true; |
|
2442 /* update snapshot of PHY registers on LSC */ |
|
2443 e1000_get_speed_and_duplex(hw, |
|
2444 &adapter->link_speed, |
|
2445 &adapter->link_duplex); |
|
2446 |
|
2447 ctrl = er32(CTRL); |
|
2448 pr_info("%s NIC Link is Up %d Mbps %s, " |
|
2449 "Flow Control: %s\n", |
|
2450 netdev->name, |
|
2451 adapter->link_speed, |
|
2452 adapter->link_duplex == FULL_DUPLEX ? |
|
2453 "Full Duplex" : "Half Duplex", |
|
2454 ((ctrl & E1000_CTRL_TFCE) && (ctrl & |
|
2455 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl & |
|
2456 E1000_CTRL_RFCE) ? "RX" : ((ctrl & |
|
2457 E1000_CTRL_TFCE) ? "TX" : "None"))); |
|
2458 |
|
2459 /* adjust timeout factor according to speed/duplex */ |
|
2460 adapter->tx_timeout_factor = 1; |
|
2461 switch (adapter->link_speed) { |
|
2462 case SPEED_10: |
|
2463 txb2b = false; |
|
2464 adapter->tx_timeout_factor = 16; |
|
2465 break; |
|
2466 case SPEED_100: |
|
2467 txb2b = false; |
|
2468 /* maybe add some timeout factor ? */ |
|
2469 break; |
|
2470 } |
|
2471 |
|
2472 /* enable transmits in the hardware */ |
|
2473 tctl = er32(TCTL); |
|
2474 tctl |= E1000_TCTL_EN; |
|
2475 ew32(TCTL, tctl); |
|
2476 |
|
2477 netif_carrier_on(netdev); |
|
2478 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
2479 schedule_delayed_work(&adapter->phy_info_task, |
|
2480 2 * HZ); |
|
2481 adapter->smartspeed = 0; |
|
2482 } |
|
2483 } else { |
|
2484 if (netif_carrier_ok(netdev)) { |
|
2485 adapter->link_speed = 0; |
|
2486 adapter->link_duplex = 0; |
|
2487 pr_info("%s NIC Link is Down\n", |
|
2488 netdev->name); |
|
2489 netif_carrier_off(netdev); |
|
2490 |
|
2491 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
2492 schedule_delayed_work(&adapter->phy_info_task, |
|
2493 2 * HZ); |
|
2494 } |
|
2495 |
|
2496 e1000_smartspeed(adapter); |
|
2497 } |
|
2498 |
|
2499 link_up: |
|
2500 e1000_update_stats(adapter); |
|
2501 |
|
2502 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; |
|
2503 adapter->tpt_old = adapter->stats.tpt; |
|
2504 hw->collision_delta = adapter->stats.colc - adapter->colc_old; |
|
2505 adapter->colc_old = adapter->stats.colc; |
|
2506 |
|
2507 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old; |
|
2508 adapter->gorcl_old = adapter->stats.gorcl; |
|
2509 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old; |
|
2510 adapter->gotcl_old = adapter->stats.gotcl; |
|
2511 |
|
2512 e1000_update_adaptive(hw); |
|
2513 |
|
2514 if (!netif_carrier_ok(netdev)) { |
|
2515 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) { |
|
2516 /* We've lost link, so the controller stops DMA, |
|
2517 * but we've got queued Tx work that's never going |
|
2518 * to get done, so reset controller to flush Tx. |
|
2519 * (Do the reset outside of interrupt context). |
|
2520 */ |
|
2521 adapter->tx_timeout_count++; |
|
2522 schedule_work(&adapter->reset_task); |
|
2523 /* exit immediately since reset is imminent */ |
|
2524 goto unlock; |
|
2525 } |
|
2526 } |
|
2527 |
|
2528 /* Simple mode for Interrupt Throttle Rate (ITR) */ |
|
2529 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) { |
|
2530 /* Symmetric Tx/Rx gets a reduced ITR=2000; |
|
2531 * Total asymmetrical Tx or Rx gets ITR=8000; |
|
2532 * everyone else is between 2000-8000. |
|
2533 */ |
|
2534 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000; |
|
2535 u32 dif = (adapter->gotcl > adapter->gorcl ? |
|
2536 adapter->gotcl - adapter->gorcl : |
|
2537 adapter->gorcl - adapter->gotcl) / 10000; |
|
2538 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000; |
|
2539 |
|
2540 ew32(ITR, 1000000000 / (itr * 256)); |
|
2541 } |
|
2542 |
|
2543 /* Cause software interrupt to ensure rx ring is cleaned */ |
|
2544 ew32(ICS, E1000_ICS_RXDMT0); |
|
2545 |
|
2546 /* Force detection of hung controller every watchdog period */ |
|
2547 adapter->detect_tx_hung = true; |
|
2548 |
|
2549 /* Reschedule the task */ |
|
2550 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
2551 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ); |
|
2552 |
|
2553 unlock: |
|
2554 mutex_unlock(&adapter->mutex); |
|
2555 } |
|
2556 |
|
2557 enum latency_range { |
|
2558 lowest_latency = 0, |
|
2559 low_latency = 1, |
|
2560 bulk_latency = 2, |
|
2561 latency_invalid = 255 |
|
2562 }; |
|
2563 |
|
2564 /** |
|
2565 * e1000_update_itr - update the dynamic ITR value based on statistics |
|
2566 * @adapter: pointer to adapter |
|
2567 * @itr_setting: current adapter->itr |
|
2568 * @packets: the number of packets during this measurement interval |
|
2569 * @bytes: the number of bytes during this measurement interval |
|
2570 * |
|
2571 * Stores a new ITR value based on packets and byte |
|
2572 * counts during the last interrupt. The advantage of per interrupt |
|
2573 * computation is faster updates and more accurate ITR for the current |
|
2574 * traffic pattern. Constants in this function were computed |
|
2575 * based on theoretical maximum wire speed and thresholds were set based |
|
2576 * on testing data as well as attempting to minimize response time |
|
2577 * while increasing bulk throughput. |
|
2578 * this functionality is controlled by the InterruptThrottleRate module |
|
2579 * parameter (see e1000_param.c) |
|
2580 **/ |
|
2581 static unsigned int e1000_update_itr(struct e1000_adapter *adapter, |
|
2582 u16 itr_setting, int packets, int bytes) |
|
2583 { |
|
2584 unsigned int retval = itr_setting; |
|
2585 struct e1000_hw *hw = &adapter->hw; |
|
2586 |
|
2587 if (unlikely(hw->mac_type < e1000_82540)) |
|
2588 goto update_itr_done; |
|
2589 |
|
2590 if (packets == 0) |
|
2591 goto update_itr_done; |
|
2592 |
|
2593 switch (itr_setting) { |
|
2594 case lowest_latency: |
|
2595 /* jumbo frames get bulk treatment*/ |
|
2596 if (bytes/packets > 8000) |
|
2597 retval = bulk_latency; |
|
2598 else if ((packets < 5) && (bytes > 512)) |
|
2599 retval = low_latency; |
|
2600 break; |
|
2601 case low_latency: /* 50 usec aka 20000 ints/s */ |
|
2602 if (bytes > 10000) { |
|
2603 /* jumbo frames need bulk latency setting */ |
|
2604 if (bytes/packets > 8000) |
|
2605 retval = bulk_latency; |
|
2606 else if ((packets < 10) || ((bytes/packets) > 1200)) |
|
2607 retval = bulk_latency; |
|
2608 else if ((packets > 35)) |
|
2609 retval = lowest_latency; |
|
2610 } else if (bytes/packets > 2000) |
|
2611 retval = bulk_latency; |
|
2612 else if (packets <= 2 && bytes < 512) |
|
2613 retval = lowest_latency; |
|
2614 break; |
|
2615 case bulk_latency: /* 250 usec aka 4000 ints/s */ |
|
2616 if (bytes > 25000) { |
|
2617 if (packets > 35) |
|
2618 retval = low_latency; |
|
2619 } else if (bytes < 6000) { |
|
2620 retval = low_latency; |
|
2621 } |
|
2622 break; |
|
2623 } |
|
2624 |
|
2625 update_itr_done: |
|
2626 return retval; |
|
2627 } |
|
2628 |
|
2629 static void e1000_set_itr(struct e1000_adapter *adapter) |
|
2630 { |
|
2631 struct e1000_hw *hw = &adapter->hw; |
|
2632 u16 current_itr; |
|
2633 u32 new_itr = adapter->itr; |
|
2634 |
|
2635 if (unlikely(hw->mac_type < e1000_82540)) |
|
2636 return; |
|
2637 |
|
2638 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ |
|
2639 if (unlikely(adapter->link_speed != SPEED_1000)) { |
|
2640 current_itr = 0; |
|
2641 new_itr = 4000; |
|
2642 goto set_itr_now; |
|
2643 } |
|
2644 |
|
2645 adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr, |
|
2646 adapter->total_tx_packets, |
|
2647 adapter->total_tx_bytes); |
|
2648 /* conservative mode (itr 3) eliminates the lowest_latency setting */ |
|
2649 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) |
|
2650 adapter->tx_itr = low_latency; |
|
2651 |
|
2652 adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr, |
|
2653 adapter->total_rx_packets, |
|
2654 adapter->total_rx_bytes); |
|
2655 /* conservative mode (itr 3) eliminates the lowest_latency setting */ |
|
2656 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) |
|
2657 adapter->rx_itr = low_latency; |
|
2658 |
|
2659 current_itr = max(adapter->rx_itr, adapter->tx_itr); |
|
2660 |
|
2661 switch (current_itr) { |
|
2662 /* counts and packets in update_itr are dependent on these numbers */ |
|
2663 case lowest_latency: |
|
2664 new_itr = 70000; |
|
2665 break; |
|
2666 case low_latency: |
|
2667 new_itr = 20000; /* aka hwitr = ~200 */ |
|
2668 break; |
|
2669 case bulk_latency: |
|
2670 new_itr = 4000; |
|
2671 break; |
|
2672 default: |
|
2673 break; |
|
2674 } |
|
2675 |
|
2676 set_itr_now: |
|
2677 if (new_itr != adapter->itr) { |
|
2678 /* this attempts to bias the interrupt rate towards Bulk |
|
2679 * by adding intermediate steps when interrupt rate is |
|
2680 * increasing |
|
2681 */ |
|
2682 new_itr = new_itr > adapter->itr ? |
|
2683 min(adapter->itr + (new_itr >> 2), new_itr) : |
|
2684 new_itr; |
|
2685 adapter->itr = new_itr; |
|
2686 ew32(ITR, 1000000000 / (new_itr * 256)); |
|
2687 } |
|
2688 } |
|
2689 |
|
2690 #define E1000_TX_FLAGS_CSUM 0x00000001 |
|
2691 #define E1000_TX_FLAGS_VLAN 0x00000002 |
|
2692 #define E1000_TX_FLAGS_TSO 0x00000004 |
|
2693 #define E1000_TX_FLAGS_IPV4 0x00000008 |
|
2694 #define E1000_TX_FLAGS_NO_FCS 0x00000010 |
|
2695 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 |
|
2696 #define E1000_TX_FLAGS_VLAN_SHIFT 16 |
|
2697 |
|
2698 static int e1000_tso(struct e1000_adapter *adapter, |
|
2699 struct e1000_tx_ring *tx_ring, struct sk_buff *skb) |
|
2700 { |
|
2701 struct e1000_context_desc *context_desc; |
|
2702 struct e1000_buffer *buffer_info; |
|
2703 unsigned int i; |
|
2704 u32 cmd_length = 0; |
|
2705 u16 ipcse = 0, tucse, mss; |
|
2706 u8 ipcss, ipcso, tucss, tucso, hdr_len; |
|
2707 int err; |
|
2708 |
|
2709 if (skb_is_gso(skb)) { |
|
2710 if (skb_header_cloned(skb)) { |
|
2711 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); |
|
2712 if (err) |
|
2713 return err; |
|
2714 } |
|
2715 |
|
2716 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); |
|
2717 mss = skb_shinfo(skb)->gso_size; |
|
2718 if (skb->protocol == htons(ETH_P_IP)) { |
|
2719 struct iphdr *iph = ip_hdr(skb); |
|
2720 iph->tot_len = 0; |
|
2721 iph->check = 0; |
|
2722 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, |
|
2723 iph->daddr, 0, |
|
2724 IPPROTO_TCP, |
|
2725 0); |
|
2726 cmd_length = E1000_TXD_CMD_IP; |
|
2727 ipcse = skb_transport_offset(skb) - 1; |
|
2728 } else if (skb->protocol == htons(ETH_P_IPV6)) { |
|
2729 ipv6_hdr(skb)->payload_len = 0; |
|
2730 tcp_hdr(skb)->check = |
|
2731 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, |
|
2732 &ipv6_hdr(skb)->daddr, |
|
2733 0, IPPROTO_TCP, 0); |
|
2734 ipcse = 0; |
|
2735 } |
|
2736 ipcss = skb_network_offset(skb); |
|
2737 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; |
|
2738 tucss = skb_transport_offset(skb); |
|
2739 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; |
|
2740 tucse = 0; |
|
2741 |
|
2742 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | |
|
2743 E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); |
|
2744 |
|
2745 i = tx_ring->next_to_use; |
|
2746 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); |
|
2747 buffer_info = &tx_ring->buffer_info[i]; |
|
2748 |
|
2749 context_desc->lower_setup.ip_fields.ipcss = ipcss; |
|
2750 context_desc->lower_setup.ip_fields.ipcso = ipcso; |
|
2751 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); |
|
2752 context_desc->upper_setup.tcp_fields.tucss = tucss; |
|
2753 context_desc->upper_setup.tcp_fields.tucso = tucso; |
|
2754 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); |
|
2755 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); |
|
2756 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; |
|
2757 context_desc->cmd_and_length = cpu_to_le32(cmd_length); |
|
2758 |
|
2759 buffer_info->time_stamp = jiffies; |
|
2760 buffer_info->next_to_watch = i; |
|
2761 |
|
2762 if (++i == tx_ring->count) i = 0; |
|
2763 tx_ring->next_to_use = i; |
|
2764 |
|
2765 return true; |
|
2766 } |
|
2767 return false; |
|
2768 } |
|
2769 |
|
2770 static bool e1000_tx_csum(struct e1000_adapter *adapter, |
|
2771 struct e1000_tx_ring *tx_ring, struct sk_buff *skb) |
|
2772 { |
|
2773 struct e1000_context_desc *context_desc; |
|
2774 struct e1000_buffer *buffer_info; |
|
2775 unsigned int i; |
|
2776 u8 css; |
|
2777 u32 cmd_len = E1000_TXD_CMD_DEXT; |
|
2778 |
|
2779 if (skb->ip_summed != CHECKSUM_PARTIAL) |
|
2780 return false; |
|
2781 |
|
2782 switch (skb->protocol) { |
|
2783 case cpu_to_be16(ETH_P_IP): |
|
2784 if (ip_hdr(skb)->protocol == IPPROTO_TCP) |
|
2785 cmd_len |= E1000_TXD_CMD_TCP; |
|
2786 break; |
|
2787 case cpu_to_be16(ETH_P_IPV6): |
|
2788 /* XXX not handling all IPV6 headers */ |
|
2789 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) |
|
2790 cmd_len |= E1000_TXD_CMD_TCP; |
|
2791 break; |
|
2792 default: |
|
2793 if (unlikely(net_ratelimit())) |
|
2794 e_warn(drv, "checksum_partial proto=%x!\n", |
|
2795 skb->protocol); |
|
2796 break; |
|
2797 } |
|
2798 |
|
2799 css = skb_checksum_start_offset(skb); |
|
2800 |
|
2801 i = tx_ring->next_to_use; |
|
2802 buffer_info = &tx_ring->buffer_info[i]; |
|
2803 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); |
|
2804 |
|
2805 context_desc->lower_setup.ip_config = 0; |
|
2806 context_desc->upper_setup.tcp_fields.tucss = css; |
|
2807 context_desc->upper_setup.tcp_fields.tucso = |
|
2808 css + skb->csum_offset; |
|
2809 context_desc->upper_setup.tcp_fields.tucse = 0; |
|
2810 context_desc->tcp_seg_setup.data = 0; |
|
2811 context_desc->cmd_and_length = cpu_to_le32(cmd_len); |
|
2812 |
|
2813 buffer_info->time_stamp = jiffies; |
|
2814 buffer_info->next_to_watch = i; |
|
2815 |
|
2816 if (unlikely(++i == tx_ring->count)) i = 0; |
|
2817 tx_ring->next_to_use = i; |
|
2818 |
|
2819 return true; |
|
2820 } |
|
2821 |
|
2822 #define E1000_MAX_TXD_PWR 12 |
|
2823 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR) |
|
2824 |
|
2825 static int e1000_tx_map(struct e1000_adapter *adapter, |
|
2826 struct e1000_tx_ring *tx_ring, |
|
2827 struct sk_buff *skb, unsigned int first, |
|
2828 unsigned int max_per_txd, unsigned int nr_frags, |
|
2829 unsigned int mss) |
|
2830 { |
|
2831 struct e1000_hw *hw = &adapter->hw; |
|
2832 struct pci_dev *pdev = adapter->pdev; |
|
2833 struct e1000_buffer *buffer_info; |
|
2834 unsigned int len = skb_headlen(skb); |
|
2835 unsigned int offset = 0, size, count = 0, i; |
|
2836 unsigned int f, bytecount, segs; |
|
2837 |
|
2838 i = tx_ring->next_to_use; |
|
2839 |
|
2840 while (len) { |
|
2841 buffer_info = &tx_ring->buffer_info[i]; |
|
2842 size = min(len, max_per_txd); |
|
2843 /* Workaround for Controller erratum -- |
|
2844 * descriptor for non-tso packet in a linear SKB that follows a |
|
2845 * tso gets written back prematurely before the data is fully |
|
2846 * DMA'd to the controller |
|
2847 */ |
|
2848 if (!skb->data_len && tx_ring->last_tx_tso && |
|
2849 !skb_is_gso(skb)) { |
|
2850 tx_ring->last_tx_tso = false; |
|
2851 size -= 4; |
|
2852 } |
|
2853 |
|
2854 /* Workaround for premature desc write-backs |
|
2855 * in TSO mode. Append 4-byte sentinel desc |
|
2856 */ |
|
2857 if (unlikely(mss && !nr_frags && size == len && size > 8)) |
|
2858 size -= 4; |
|
2859 /* work-around for errata 10 and it applies |
|
2860 * to all controllers in PCI-X mode |
|
2861 * The fix is to make sure that the first descriptor of a |
|
2862 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes |
|
2863 */ |
|
2864 if (unlikely((hw->bus_type == e1000_bus_type_pcix) && |
|
2865 (size > 2015) && count == 0)) |
|
2866 size = 2015; |
|
2867 |
|
2868 /* Workaround for potential 82544 hang in PCI-X. Avoid |
|
2869 * terminating buffers within evenly-aligned dwords. |
|
2870 */ |
|
2871 if (unlikely(adapter->pcix_82544 && |
|
2872 !((unsigned long)(skb->data + offset + size - 1) & 4) && |
|
2873 size > 4)) |
|
2874 size -= 4; |
|
2875 |
|
2876 buffer_info->length = size; |
|
2877 /* set time_stamp *before* dma to help avoid a possible race */ |
|
2878 buffer_info->time_stamp = jiffies; |
|
2879 buffer_info->mapped_as_page = false; |
|
2880 buffer_info->dma = dma_map_single(&pdev->dev, |
|
2881 skb->data + offset, |
|
2882 size, DMA_TO_DEVICE); |
|
2883 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) |
|
2884 goto dma_error; |
|
2885 buffer_info->next_to_watch = i; |
|
2886 |
|
2887 len -= size; |
|
2888 offset += size; |
|
2889 count++; |
|
2890 if (len) { |
|
2891 i++; |
|
2892 if (unlikely(i == tx_ring->count)) |
|
2893 i = 0; |
|
2894 } |
|
2895 } |
|
2896 |
|
2897 for (f = 0; f < nr_frags; f++) { |
|
2898 const struct skb_frag_struct *frag; |
|
2899 |
|
2900 frag = &skb_shinfo(skb)->frags[f]; |
|
2901 len = skb_frag_size(frag); |
|
2902 offset = 0; |
|
2903 |
|
2904 while (len) { |
|
2905 unsigned long bufend; |
|
2906 i++; |
|
2907 if (unlikely(i == tx_ring->count)) |
|
2908 i = 0; |
|
2909 |
|
2910 buffer_info = &tx_ring->buffer_info[i]; |
|
2911 size = min(len, max_per_txd); |
|
2912 /* Workaround for premature desc write-backs |
|
2913 * in TSO mode. Append 4-byte sentinel desc |
|
2914 */ |
|
2915 if (unlikely(mss && f == (nr_frags-1) && |
|
2916 size == len && size > 8)) |
|
2917 size -= 4; |
|
2918 /* Workaround for potential 82544 hang in PCI-X. |
|
2919 * Avoid terminating buffers within evenly-aligned |
|
2920 * dwords. |
|
2921 */ |
|
2922 bufend = (unsigned long) |
|
2923 page_to_phys(skb_frag_page(frag)); |
|
2924 bufend += offset + size - 1; |
|
2925 if (unlikely(adapter->pcix_82544 && |
|
2926 !(bufend & 4) && |
|
2927 size > 4)) |
|
2928 size -= 4; |
|
2929 |
|
2930 buffer_info->length = size; |
|
2931 buffer_info->time_stamp = jiffies; |
|
2932 buffer_info->mapped_as_page = true; |
|
2933 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, |
|
2934 offset, size, DMA_TO_DEVICE); |
|
2935 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) |
|
2936 goto dma_error; |
|
2937 buffer_info->next_to_watch = i; |
|
2938 |
|
2939 len -= size; |
|
2940 offset += size; |
|
2941 count++; |
|
2942 } |
|
2943 } |
|
2944 |
|
2945 segs = skb_shinfo(skb)->gso_segs ?: 1; |
|
2946 /* multiply data chunks by size of headers */ |
|
2947 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len; |
|
2948 |
|
2949 tx_ring->buffer_info[i].skb = skb; |
|
2950 tx_ring->buffer_info[i].segs = segs; |
|
2951 tx_ring->buffer_info[i].bytecount = bytecount; |
|
2952 tx_ring->buffer_info[first].next_to_watch = i; |
|
2953 |
|
2954 return count; |
|
2955 |
|
2956 dma_error: |
|
2957 dev_err(&pdev->dev, "TX DMA map failed\n"); |
|
2958 buffer_info->dma = 0; |
|
2959 if (count) |
|
2960 count--; |
|
2961 |
|
2962 while (count--) { |
|
2963 if (i==0) |
|
2964 i += tx_ring->count; |
|
2965 i--; |
|
2966 buffer_info = &tx_ring->buffer_info[i]; |
|
2967 e1000_unmap_and_free_tx_resource(adapter, buffer_info); |
|
2968 } |
|
2969 |
|
2970 return 0; |
|
2971 } |
|
2972 |
|
2973 static void e1000_tx_queue(struct e1000_adapter *adapter, |
|
2974 struct e1000_tx_ring *tx_ring, int tx_flags, |
|
2975 int count) |
|
2976 { |
|
2977 struct e1000_hw *hw = &adapter->hw; |
|
2978 struct e1000_tx_desc *tx_desc = NULL; |
|
2979 struct e1000_buffer *buffer_info; |
|
2980 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; |
|
2981 unsigned int i; |
|
2982 |
|
2983 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) { |
|
2984 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | |
|
2985 E1000_TXD_CMD_TSE; |
|
2986 txd_upper |= E1000_TXD_POPTS_TXSM << 8; |
|
2987 |
|
2988 if (likely(tx_flags & E1000_TX_FLAGS_IPV4)) |
|
2989 txd_upper |= E1000_TXD_POPTS_IXSM << 8; |
|
2990 } |
|
2991 |
|
2992 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) { |
|
2993 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; |
|
2994 txd_upper |= E1000_TXD_POPTS_TXSM << 8; |
|
2995 } |
|
2996 |
|
2997 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) { |
|
2998 txd_lower |= E1000_TXD_CMD_VLE; |
|
2999 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); |
|
3000 } |
|
3001 |
|
3002 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) |
|
3003 txd_lower &= ~(E1000_TXD_CMD_IFCS); |
|
3004 |
|
3005 i = tx_ring->next_to_use; |
|
3006 |
|
3007 while (count--) { |
|
3008 buffer_info = &tx_ring->buffer_info[i]; |
|
3009 tx_desc = E1000_TX_DESC(*tx_ring, i); |
|
3010 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); |
|
3011 tx_desc->lower.data = |
|
3012 cpu_to_le32(txd_lower | buffer_info->length); |
|
3013 tx_desc->upper.data = cpu_to_le32(txd_upper); |
|
3014 if (unlikely(++i == tx_ring->count)) i = 0; |
|
3015 } |
|
3016 |
|
3017 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); |
|
3018 |
|
3019 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */ |
|
3020 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) |
|
3021 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS)); |
|
3022 |
|
3023 /* Force memory writes to complete before letting h/w |
|
3024 * know there are new descriptors to fetch. (Only |
|
3025 * applicable for weak-ordered memory model archs, |
|
3026 * such as IA-64). |
|
3027 */ |
|
3028 wmb(); |
|
3029 |
|
3030 tx_ring->next_to_use = i; |
|
3031 writel(i, hw->hw_addr + tx_ring->tdt); |
|
3032 /* we need this if more than one processor can write to our tail |
|
3033 * at a time, it synchronizes IO on IA64/Altix systems |
|
3034 */ |
|
3035 mmiowb(); |
|
3036 } |
|
3037 |
|
3038 /* 82547 workaround to avoid controller hang in half-duplex environment. |
|
3039 * The workaround is to avoid queuing a large packet that would span |
|
3040 * the internal Tx FIFO ring boundary by notifying the stack to resend |
|
3041 * the packet at a later time. This gives the Tx FIFO an opportunity to |
|
3042 * flush all packets. When that occurs, we reset the Tx FIFO pointers |
|
3043 * to the beginning of the Tx FIFO. |
|
3044 */ |
|
3045 |
|
3046 #define E1000_FIFO_HDR 0x10 |
|
3047 #define E1000_82547_PAD_LEN 0x3E0 |
|
3048 |
|
3049 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, |
|
3050 struct sk_buff *skb) |
|
3051 { |
|
3052 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head; |
|
3053 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR; |
|
3054 |
|
3055 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR); |
|
3056 |
|
3057 if (adapter->link_duplex != HALF_DUPLEX) |
|
3058 goto no_fifo_stall_required; |
|
3059 |
|
3060 if (atomic_read(&adapter->tx_fifo_stall)) |
|
3061 return 1; |
|
3062 |
|
3063 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) { |
|
3064 atomic_set(&adapter->tx_fifo_stall, 1); |
|
3065 return 1; |
|
3066 } |
|
3067 |
|
3068 no_fifo_stall_required: |
|
3069 adapter->tx_fifo_head += skb_fifo_len; |
|
3070 if (adapter->tx_fifo_head >= adapter->tx_fifo_size) |
|
3071 adapter->tx_fifo_head -= adapter->tx_fifo_size; |
|
3072 return 0; |
|
3073 } |
|
3074 |
|
3075 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size) |
|
3076 { |
|
3077 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
3078 struct e1000_tx_ring *tx_ring = adapter->tx_ring; |
|
3079 |
|
3080 netif_stop_queue(netdev); |
|
3081 /* Herbert's original patch had: |
|
3082 * smp_mb__after_netif_stop_queue(); |
|
3083 * but since that doesn't exist yet, just open code it. |
|
3084 */ |
|
3085 smp_mb(); |
|
3086 |
|
3087 /* We need to check again in a case another CPU has just |
|
3088 * made room available. |
|
3089 */ |
|
3090 if (likely(E1000_DESC_UNUSED(tx_ring) < size)) |
|
3091 return -EBUSY; |
|
3092 |
|
3093 /* A reprieve! */ |
|
3094 netif_start_queue(netdev); |
|
3095 ++adapter->restart_queue; |
|
3096 return 0; |
|
3097 } |
|
3098 |
|
3099 static int e1000_maybe_stop_tx(struct net_device *netdev, |
|
3100 struct e1000_tx_ring *tx_ring, int size) |
|
3101 { |
|
3102 if (likely(E1000_DESC_UNUSED(tx_ring) >= size)) |
|
3103 return 0; |
|
3104 return __e1000_maybe_stop_tx(netdev, size); |
|
3105 } |
|
3106 |
|
3107 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 ) |
|
3108 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, |
|
3109 struct net_device *netdev) |
|
3110 { |
|
3111 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
3112 struct e1000_hw *hw = &adapter->hw; |
|
3113 struct e1000_tx_ring *tx_ring; |
|
3114 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD; |
|
3115 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; |
|
3116 unsigned int tx_flags = 0; |
|
3117 unsigned int len = skb_headlen(skb); |
|
3118 unsigned int nr_frags; |
|
3119 unsigned int mss; |
|
3120 int count = 0; |
|
3121 int tso; |
|
3122 unsigned int f; |
|
3123 |
|
3124 /* This goes back to the question of how to logically map a Tx queue |
|
3125 * to a flow. Right now, performance is impacted slightly negatively |
|
3126 * if using multiple Tx queues. If the stack breaks away from a |
|
3127 * single qdisc implementation, we can look at this again. |
|
3128 */ |
|
3129 tx_ring = adapter->tx_ring; |
|
3130 |
|
3131 if (unlikely(skb->len <= 0)) { |
|
3132 dev_kfree_skb_any(skb); |
|
3133 return NETDEV_TX_OK; |
|
3134 } |
|
3135 |
|
3136 /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN, |
|
3137 * packets may get corrupted during padding by HW. |
|
3138 * To WA this issue, pad all small packets manually. |
|
3139 */ |
|
3140 if (skb->len < ETH_ZLEN) { |
|
3141 if (skb_pad(skb, ETH_ZLEN - skb->len)) |
|
3142 return NETDEV_TX_OK; |
|
3143 skb->len = ETH_ZLEN; |
|
3144 skb_set_tail_pointer(skb, ETH_ZLEN); |
|
3145 } |
|
3146 |
|
3147 mss = skb_shinfo(skb)->gso_size; |
|
3148 /* The controller does a simple calculation to |
|
3149 * make sure there is enough room in the FIFO before |
|
3150 * initiating the DMA for each buffer. The calc is: |
|
3151 * 4 = ceil(buffer len/mss). To make sure we don't |
|
3152 * overrun the FIFO, adjust the max buffer len if mss |
|
3153 * drops. |
|
3154 */ |
|
3155 if (mss) { |
|
3156 u8 hdr_len; |
|
3157 max_per_txd = min(mss << 2, max_per_txd); |
|
3158 max_txd_pwr = fls(max_per_txd) - 1; |
|
3159 |
|
3160 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); |
|
3161 if (skb->data_len && hdr_len == len) { |
|
3162 switch (hw->mac_type) { |
|
3163 unsigned int pull_size; |
|
3164 case e1000_82544: |
|
3165 /* Make sure we have room to chop off 4 bytes, |
|
3166 * and that the end alignment will work out to |
|
3167 * this hardware's requirements |
|
3168 * NOTE: this is a TSO only workaround |
|
3169 * if end byte alignment not correct move us |
|
3170 * into the next dword |
|
3171 */ |
|
3172 if ((unsigned long)(skb_tail_pointer(skb) - 1) |
|
3173 & 4) |
|
3174 break; |
|
3175 /* fall through */ |
|
3176 pull_size = min((unsigned int)4, skb->data_len); |
|
3177 if (!__pskb_pull_tail(skb, pull_size)) { |
|
3178 e_err(drv, "__pskb_pull_tail " |
|
3179 "failed.\n"); |
|
3180 dev_kfree_skb_any(skb); |
|
3181 return NETDEV_TX_OK; |
|
3182 } |
|
3183 len = skb_headlen(skb); |
|
3184 break; |
|
3185 default: |
|
3186 /* do nothing */ |
|
3187 break; |
|
3188 } |
|
3189 } |
|
3190 } |
|
3191 |
|
3192 /* reserve a descriptor for the offload context */ |
|
3193 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) |
|
3194 count++; |
|
3195 count++; |
|
3196 |
|
3197 /* Controller Erratum workaround */ |
|
3198 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb)) |
|
3199 count++; |
|
3200 |
|
3201 count += TXD_USE_COUNT(len, max_txd_pwr); |
|
3202 |
|
3203 if (adapter->pcix_82544) |
|
3204 count++; |
|
3205 |
|
3206 /* work-around for errata 10 and it applies to all controllers |
|
3207 * in PCI-X mode, so add one more descriptor to the count |
|
3208 */ |
|
3209 if (unlikely((hw->bus_type == e1000_bus_type_pcix) && |
|
3210 (len > 2015))) |
|
3211 count++; |
|
3212 |
|
3213 nr_frags = skb_shinfo(skb)->nr_frags; |
|
3214 for (f = 0; f < nr_frags; f++) |
|
3215 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]), |
|
3216 max_txd_pwr); |
|
3217 if (adapter->pcix_82544) |
|
3218 count += nr_frags; |
|
3219 |
|
3220 /* need: count + 2 desc gap to keep tail from touching |
|
3221 * head, otherwise try next time |
|
3222 */ |
|
3223 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) |
|
3224 return NETDEV_TX_BUSY; |
|
3225 |
|
3226 if (unlikely((hw->mac_type == e1000_82547) && |
|
3227 (e1000_82547_fifo_workaround(adapter, skb)))) { |
|
3228 netif_stop_queue(netdev); |
|
3229 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
3230 schedule_delayed_work(&adapter->fifo_stall_task, 1); |
|
3231 return NETDEV_TX_BUSY; |
|
3232 } |
|
3233 |
|
3234 if (vlan_tx_tag_present(skb)) { |
|
3235 tx_flags |= E1000_TX_FLAGS_VLAN; |
|
3236 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT); |
|
3237 } |
|
3238 |
|
3239 first = tx_ring->next_to_use; |
|
3240 |
|
3241 tso = e1000_tso(adapter, tx_ring, skb); |
|
3242 if (tso < 0) { |
|
3243 dev_kfree_skb_any(skb); |
|
3244 return NETDEV_TX_OK; |
|
3245 } |
|
3246 |
|
3247 if (likely(tso)) { |
|
3248 if (likely(hw->mac_type != e1000_82544)) |
|
3249 tx_ring->last_tx_tso = true; |
|
3250 tx_flags |= E1000_TX_FLAGS_TSO; |
|
3251 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb))) |
|
3252 tx_flags |= E1000_TX_FLAGS_CSUM; |
|
3253 |
|
3254 if (likely(skb->protocol == htons(ETH_P_IP))) |
|
3255 tx_flags |= E1000_TX_FLAGS_IPV4; |
|
3256 |
|
3257 if (unlikely(skb->no_fcs)) |
|
3258 tx_flags |= E1000_TX_FLAGS_NO_FCS; |
|
3259 |
|
3260 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd, |
|
3261 nr_frags, mss); |
|
3262 |
|
3263 if (count) { |
|
3264 netdev_sent_queue(netdev, skb->len); |
|
3265 skb_tx_timestamp(skb); |
|
3266 |
|
3267 e1000_tx_queue(adapter, tx_ring, tx_flags, count); |
|
3268 /* Make sure there is space in the ring for the next send. */ |
|
3269 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2); |
|
3270 |
|
3271 } else { |
|
3272 dev_kfree_skb_any(skb); |
|
3273 tx_ring->buffer_info[first].time_stamp = 0; |
|
3274 tx_ring->next_to_use = first; |
|
3275 } |
|
3276 |
|
3277 return NETDEV_TX_OK; |
|
3278 } |
|
3279 |
|
3280 #define NUM_REGS 38 /* 1 based count */ |
|
3281 static void e1000_regdump(struct e1000_adapter *adapter) |
|
3282 { |
|
3283 struct e1000_hw *hw = &adapter->hw; |
|
3284 u32 regs[NUM_REGS]; |
|
3285 u32 *regs_buff = regs; |
|
3286 int i = 0; |
|
3287 |
|
3288 static const char * const reg_name[] = { |
|
3289 "CTRL", "STATUS", |
|
3290 "RCTL", "RDLEN", "RDH", "RDT", "RDTR", |
|
3291 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT", |
|
3292 "TIDV", "TXDCTL", "TADV", "TARC0", |
|
3293 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1", |
|
3294 "TXDCTL1", "TARC1", |
|
3295 "CTRL_EXT", "ERT", "RDBAL", "RDBAH", |
|
3296 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC", |
|
3297 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC" |
|
3298 }; |
|
3299 |
|
3300 regs_buff[0] = er32(CTRL); |
|
3301 regs_buff[1] = er32(STATUS); |
|
3302 |
|
3303 regs_buff[2] = er32(RCTL); |
|
3304 regs_buff[3] = er32(RDLEN); |
|
3305 regs_buff[4] = er32(RDH); |
|
3306 regs_buff[5] = er32(RDT); |
|
3307 regs_buff[6] = er32(RDTR); |
|
3308 |
|
3309 regs_buff[7] = er32(TCTL); |
|
3310 regs_buff[8] = er32(TDBAL); |
|
3311 regs_buff[9] = er32(TDBAH); |
|
3312 regs_buff[10] = er32(TDLEN); |
|
3313 regs_buff[11] = er32(TDH); |
|
3314 regs_buff[12] = er32(TDT); |
|
3315 regs_buff[13] = er32(TIDV); |
|
3316 regs_buff[14] = er32(TXDCTL); |
|
3317 regs_buff[15] = er32(TADV); |
|
3318 regs_buff[16] = er32(TARC0); |
|
3319 |
|
3320 regs_buff[17] = er32(TDBAL1); |
|
3321 regs_buff[18] = er32(TDBAH1); |
|
3322 regs_buff[19] = er32(TDLEN1); |
|
3323 regs_buff[20] = er32(TDH1); |
|
3324 regs_buff[21] = er32(TDT1); |
|
3325 regs_buff[22] = er32(TXDCTL1); |
|
3326 regs_buff[23] = er32(TARC1); |
|
3327 regs_buff[24] = er32(CTRL_EXT); |
|
3328 regs_buff[25] = er32(ERT); |
|
3329 regs_buff[26] = er32(RDBAL0); |
|
3330 regs_buff[27] = er32(RDBAH0); |
|
3331 regs_buff[28] = er32(TDFH); |
|
3332 regs_buff[29] = er32(TDFT); |
|
3333 regs_buff[30] = er32(TDFHS); |
|
3334 regs_buff[31] = er32(TDFTS); |
|
3335 regs_buff[32] = er32(TDFPC); |
|
3336 regs_buff[33] = er32(RDFH); |
|
3337 regs_buff[34] = er32(RDFT); |
|
3338 regs_buff[35] = er32(RDFHS); |
|
3339 regs_buff[36] = er32(RDFTS); |
|
3340 regs_buff[37] = er32(RDFPC); |
|
3341 |
|
3342 pr_info("Register dump\n"); |
|
3343 for (i = 0; i < NUM_REGS; i++) |
|
3344 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]); |
|
3345 } |
|
3346 |
|
3347 /* |
|
3348 * e1000_dump: Print registers, tx ring and rx ring |
|
3349 */ |
|
3350 static void e1000_dump(struct e1000_adapter *adapter) |
|
3351 { |
|
3352 /* this code doesn't handle multiple rings */ |
|
3353 struct e1000_tx_ring *tx_ring = adapter->tx_ring; |
|
3354 struct e1000_rx_ring *rx_ring = adapter->rx_ring; |
|
3355 int i; |
|
3356 |
|
3357 if (!netif_msg_hw(adapter)) |
|
3358 return; |
|
3359 |
|
3360 /* Print Registers */ |
|
3361 e1000_regdump(adapter); |
|
3362 |
|
3363 /* transmit dump */ |
|
3364 pr_info("TX Desc ring0 dump\n"); |
|
3365 |
|
3366 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended) |
|
3367 * |
|
3368 * Legacy Transmit Descriptor |
|
3369 * +--------------------------------------------------------------+ |
|
3370 * 0 | Buffer Address [63:0] (Reserved on Write Back) | |
|
3371 * +--------------------------------------------------------------+ |
|
3372 * 8 | Special | CSS | Status | CMD | CSO | Length | |
|
3373 * +--------------------------------------------------------------+ |
|
3374 * 63 48 47 36 35 32 31 24 23 16 15 0 |
|
3375 * |
|
3376 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload |
|
3377 * 63 48 47 40 39 32 31 16 15 8 7 0 |
|
3378 * +----------------------------------------------------------------+ |
|
3379 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS | |
|
3380 * +----------------------------------------------------------------+ |
|
3381 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN | |
|
3382 * +----------------------------------------------------------------+ |
|
3383 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 |
|
3384 * |
|
3385 * Extended Data Descriptor (DTYP=0x1) |
|
3386 * +----------------------------------------------------------------+ |
|
3387 * 0 | Buffer Address [63:0] | |
|
3388 * +----------------------------------------------------------------+ |
|
3389 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN | |
|
3390 * +----------------------------------------------------------------+ |
|
3391 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 |
|
3392 */ |
|
3393 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n"); |
|
3394 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n"); |
|
3395 |
|
3396 if (!netif_msg_tx_done(adapter)) |
|
3397 goto rx_ring_summary; |
|
3398 |
|
3399 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { |
|
3400 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i); |
|
3401 struct e1000_buffer *buffer_info = &tx_ring->buffer_info[i]; |
|
3402 struct my_u { __le64 a; __le64 b; }; |
|
3403 struct my_u *u = (struct my_u *)tx_desc; |
|
3404 const char *type; |
|
3405 |
|
3406 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean) |
|
3407 type = "NTC/U"; |
|
3408 else if (i == tx_ring->next_to_use) |
|
3409 type = "NTU"; |
|
3410 else if (i == tx_ring->next_to_clean) |
|
3411 type = "NTC"; |
|
3412 else |
|
3413 type = ""; |
|
3414 |
|
3415 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n", |
|
3416 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i, |
|
3417 le64_to_cpu(u->a), le64_to_cpu(u->b), |
|
3418 (u64)buffer_info->dma, buffer_info->length, |
|
3419 buffer_info->next_to_watch, |
|
3420 (u64)buffer_info->time_stamp, buffer_info->skb, type); |
|
3421 } |
|
3422 |
|
3423 rx_ring_summary: |
|
3424 /* receive dump */ |
|
3425 pr_info("\nRX Desc ring dump\n"); |
|
3426 |
|
3427 /* Legacy Receive Descriptor Format |
|
3428 * |
|
3429 * +-----------------------------------------------------+ |
|
3430 * | Buffer Address [63:0] | |
|
3431 * +-----------------------------------------------------+ |
|
3432 * | VLAN Tag | Errors | Status 0 | Packet csum | Length | |
|
3433 * +-----------------------------------------------------+ |
|
3434 * 63 48 47 40 39 32 31 16 15 0 |
|
3435 */ |
|
3436 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n"); |
|
3437 |
|
3438 if (!netif_msg_rx_status(adapter)) |
|
3439 goto exit; |
|
3440 |
|
3441 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) { |
|
3442 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i); |
|
3443 struct e1000_buffer *buffer_info = &rx_ring->buffer_info[i]; |
|
3444 struct my_u { __le64 a; __le64 b; }; |
|
3445 struct my_u *u = (struct my_u *)rx_desc; |
|
3446 const char *type; |
|
3447 |
|
3448 if (i == rx_ring->next_to_use) |
|
3449 type = "NTU"; |
|
3450 else if (i == rx_ring->next_to_clean) |
|
3451 type = "NTC"; |
|
3452 else |
|
3453 type = ""; |
|
3454 |
|
3455 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n", |
|
3456 i, le64_to_cpu(u->a), le64_to_cpu(u->b), |
|
3457 (u64)buffer_info->dma, buffer_info->skb, type); |
|
3458 } /* for */ |
|
3459 |
|
3460 /* dump the descriptor caches */ |
|
3461 /* rx */ |
|
3462 pr_info("Rx descriptor cache in 64bit format\n"); |
|
3463 for (i = 0x6000; i <= 0x63FF ; i += 0x10) { |
|
3464 pr_info("R%04X: %08X|%08X %08X|%08X\n", |
|
3465 i, |
|
3466 readl(adapter->hw.hw_addr + i+4), |
|
3467 readl(adapter->hw.hw_addr + i), |
|
3468 readl(adapter->hw.hw_addr + i+12), |
|
3469 readl(adapter->hw.hw_addr + i+8)); |
|
3470 } |
|
3471 /* tx */ |
|
3472 pr_info("Tx descriptor cache in 64bit format\n"); |
|
3473 for (i = 0x7000; i <= 0x73FF ; i += 0x10) { |
|
3474 pr_info("T%04X: %08X|%08X %08X|%08X\n", |
|
3475 i, |
|
3476 readl(adapter->hw.hw_addr + i+4), |
|
3477 readl(adapter->hw.hw_addr + i), |
|
3478 readl(adapter->hw.hw_addr + i+12), |
|
3479 readl(adapter->hw.hw_addr + i+8)); |
|
3480 } |
|
3481 exit: |
|
3482 return; |
|
3483 } |
|
3484 |
|
3485 /** |
|
3486 * e1000_tx_timeout - Respond to a Tx Hang |
|
3487 * @netdev: network interface device structure |
|
3488 **/ |
|
3489 static void e1000_tx_timeout(struct net_device *netdev) |
|
3490 { |
|
3491 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
3492 |
|
3493 /* Do the reset outside of interrupt context */ |
|
3494 adapter->tx_timeout_count++; |
|
3495 schedule_work(&adapter->reset_task); |
|
3496 } |
|
3497 |
|
3498 static void e1000_reset_task(struct work_struct *work) |
|
3499 { |
|
3500 struct e1000_adapter *adapter = |
|
3501 container_of(work, struct e1000_adapter, reset_task); |
|
3502 |
|
3503 if (test_bit(__E1000_DOWN, &adapter->flags)) |
|
3504 return; |
|
3505 e_err(drv, "Reset adapter\n"); |
|
3506 e1000_reinit_safe(adapter); |
|
3507 } |
|
3508 |
|
3509 /** |
|
3510 * e1000_get_stats - Get System Network Statistics |
|
3511 * @netdev: network interface device structure |
|
3512 * |
|
3513 * Returns the address of the device statistics structure. |
|
3514 * The statistics are actually updated from the watchdog. |
|
3515 **/ |
|
3516 static struct net_device_stats *e1000_get_stats(struct net_device *netdev) |
|
3517 { |
|
3518 /* only return the current stats */ |
|
3519 return &netdev->stats; |
|
3520 } |
|
3521 |
|
3522 /** |
|
3523 * e1000_change_mtu - Change the Maximum Transfer Unit |
|
3524 * @netdev: network interface device structure |
|
3525 * @new_mtu: new value for maximum frame size |
|
3526 * |
|
3527 * Returns 0 on success, negative on failure |
|
3528 **/ |
|
3529 static int e1000_change_mtu(struct net_device *netdev, int new_mtu) |
|
3530 { |
|
3531 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
3532 struct e1000_hw *hw = &adapter->hw; |
|
3533 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; |
|
3534 |
|
3535 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) || |
|
3536 (max_frame > MAX_JUMBO_FRAME_SIZE)) { |
|
3537 e_err(probe, "Invalid MTU setting\n"); |
|
3538 return -EINVAL; |
|
3539 } |
|
3540 |
|
3541 /* Adapter-specific max frame size limits. */ |
|
3542 switch (hw->mac_type) { |
|
3543 case e1000_undefined ... e1000_82542_rev2_1: |
|
3544 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) { |
|
3545 e_err(probe, "Jumbo Frames not supported.\n"); |
|
3546 return -EINVAL; |
|
3547 } |
|
3548 break; |
|
3549 default: |
|
3550 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */ |
|
3551 break; |
|
3552 } |
|
3553 |
|
3554 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) |
|
3555 msleep(1); |
|
3556 /* e1000_down has a dependency on max_frame_size */ |
|
3557 hw->max_frame_size = max_frame; |
|
3558 if (netif_running(netdev)) |
|
3559 e1000_down(adapter); |
|
3560 |
|
3561 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN |
|
3562 * means we reserve 2 more, this pushes us to allocate from the next |
|
3563 * larger slab size. |
|
3564 * i.e. RXBUFFER_2048 --> size-4096 slab |
|
3565 * however with the new *_jumbo_rx* routines, jumbo receives will use |
|
3566 * fragmented skbs |
|
3567 */ |
|
3568 |
|
3569 if (max_frame <= E1000_RXBUFFER_2048) |
|
3570 adapter->rx_buffer_len = E1000_RXBUFFER_2048; |
|
3571 else |
|
3572 #if (PAGE_SIZE >= E1000_RXBUFFER_16384) |
|
3573 adapter->rx_buffer_len = E1000_RXBUFFER_16384; |
|
3574 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096) |
|
3575 adapter->rx_buffer_len = PAGE_SIZE; |
|
3576 #endif |
|
3577 |
|
3578 /* adjust allocation if LPE protects us, and we aren't using SBP */ |
|
3579 if (!hw->tbi_compatibility_on && |
|
3580 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) || |
|
3581 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))) |
|
3582 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; |
|
3583 |
|
3584 pr_info("%s changing MTU from %d to %d\n", |
|
3585 netdev->name, netdev->mtu, new_mtu); |
|
3586 netdev->mtu = new_mtu; |
|
3587 |
|
3588 if (netif_running(netdev)) |
|
3589 e1000_up(adapter); |
|
3590 else |
|
3591 e1000_reset(adapter); |
|
3592 |
|
3593 clear_bit(__E1000_RESETTING, &adapter->flags); |
|
3594 |
|
3595 return 0; |
|
3596 } |
|
3597 |
|
3598 /** |
|
3599 * e1000_update_stats - Update the board statistics counters |
|
3600 * @adapter: board private structure |
|
3601 **/ |
|
3602 void e1000_update_stats(struct e1000_adapter *adapter) |
|
3603 { |
|
3604 struct net_device *netdev = adapter->netdev; |
|
3605 struct e1000_hw *hw = &adapter->hw; |
|
3606 struct pci_dev *pdev = adapter->pdev; |
|
3607 unsigned long flags; |
|
3608 u16 phy_tmp; |
|
3609 |
|
3610 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF |
|
3611 |
|
3612 /* Prevent stats update while adapter is being reset, or if the pci |
|
3613 * connection is down. |
|
3614 */ |
|
3615 if (adapter->link_speed == 0) |
|
3616 return; |
|
3617 if (pci_channel_offline(pdev)) |
|
3618 return; |
|
3619 |
|
3620 spin_lock_irqsave(&adapter->stats_lock, flags); |
|
3621 |
|
3622 /* these counters are modified from e1000_tbi_adjust_stats, |
|
3623 * called from the interrupt context, so they must only |
|
3624 * be written while holding adapter->stats_lock |
|
3625 */ |
|
3626 |
|
3627 adapter->stats.crcerrs += er32(CRCERRS); |
|
3628 adapter->stats.gprc += er32(GPRC); |
|
3629 adapter->stats.gorcl += er32(GORCL); |
|
3630 adapter->stats.gorch += er32(GORCH); |
|
3631 adapter->stats.bprc += er32(BPRC); |
|
3632 adapter->stats.mprc += er32(MPRC); |
|
3633 adapter->stats.roc += er32(ROC); |
|
3634 |
|
3635 adapter->stats.prc64 += er32(PRC64); |
|
3636 adapter->stats.prc127 += er32(PRC127); |
|
3637 adapter->stats.prc255 += er32(PRC255); |
|
3638 adapter->stats.prc511 += er32(PRC511); |
|
3639 adapter->stats.prc1023 += er32(PRC1023); |
|
3640 adapter->stats.prc1522 += er32(PRC1522); |
|
3641 |
|
3642 adapter->stats.symerrs += er32(SYMERRS); |
|
3643 adapter->stats.mpc += er32(MPC); |
|
3644 adapter->stats.scc += er32(SCC); |
|
3645 adapter->stats.ecol += er32(ECOL); |
|
3646 adapter->stats.mcc += er32(MCC); |
|
3647 adapter->stats.latecol += er32(LATECOL); |
|
3648 adapter->stats.dc += er32(DC); |
|
3649 adapter->stats.sec += er32(SEC); |
|
3650 adapter->stats.rlec += er32(RLEC); |
|
3651 adapter->stats.xonrxc += er32(XONRXC); |
|
3652 adapter->stats.xontxc += er32(XONTXC); |
|
3653 adapter->stats.xoffrxc += er32(XOFFRXC); |
|
3654 adapter->stats.xofftxc += er32(XOFFTXC); |
|
3655 adapter->stats.fcruc += er32(FCRUC); |
|
3656 adapter->stats.gptc += er32(GPTC); |
|
3657 adapter->stats.gotcl += er32(GOTCL); |
|
3658 adapter->stats.gotch += er32(GOTCH); |
|
3659 adapter->stats.rnbc += er32(RNBC); |
|
3660 adapter->stats.ruc += er32(RUC); |
|
3661 adapter->stats.rfc += er32(RFC); |
|
3662 adapter->stats.rjc += er32(RJC); |
|
3663 adapter->stats.torl += er32(TORL); |
|
3664 adapter->stats.torh += er32(TORH); |
|
3665 adapter->stats.totl += er32(TOTL); |
|
3666 adapter->stats.toth += er32(TOTH); |
|
3667 adapter->stats.tpr += er32(TPR); |
|
3668 |
|
3669 adapter->stats.ptc64 += er32(PTC64); |
|
3670 adapter->stats.ptc127 += er32(PTC127); |
|
3671 adapter->stats.ptc255 += er32(PTC255); |
|
3672 adapter->stats.ptc511 += er32(PTC511); |
|
3673 adapter->stats.ptc1023 += er32(PTC1023); |
|
3674 adapter->stats.ptc1522 += er32(PTC1522); |
|
3675 |
|
3676 adapter->stats.mptc += er32(MPTC); |
|
3677 adapter->stats.bptc += er32(BPTC); |
|
3678 |
|
3679 /* used for adaptive IFS */ |
|
3680 |
|
3681 hw->tx_packet_delta = er32(TPT); |
|
3682 adapter->stats.tpt += hw->tx_packet_delta; |
|
3683 hw->collision_delta = er32(COLC); |
|
3684 adapter->stats.colc += hw->collision_delta; |
|
3685 |
|
3686 if (hw->mac_type >= e1000_82543) { |
|
3687 adapter->stats.algnerrc += er32(ALGNERRC); |
|
3688 adapter->stats.rxerrc += er32(RXERRC); |
|
3689 adapter->stats.tncrs += er32(TNCRS); |
|
3690 adapter->stats.cexterr += er32(CEXTERR); |
|
3691 adapter->stats.tsctc += er32(TSCTC); |
|
3692 adapter->stats.tsctfc += er32(TSCTFC); |
|
3693 } |
|
3694 |
|
3695 /* Fill out the OS statistics structure */ |
|
3696 netdev->stats.multicast = adapter->stats.mprc; |
|
3697 netdev->stats.collisions = adapter->stats.colc; |
|
3698 |
|
3699 /* Rx Errors */ |
|
3700 |
|
3701 /* RLEC on some newer hardware can be incorrect so build |
|
3702 * our own version based on RUC and ROC |
|
3703 */ |
|
3704 netdev->stats.rx_errors = adapter->stats.rxerrc + |
|
3705 adapter->stats.crcerrs + adapter->stats.algnerrc + |
|
3706 adapter->stats.ruc + adapter->stats.roc + |
|
3707 adapter->stats.cexterr; |
|
3708 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc; |
|
3709 netdev->stats.rx_length_errors = adapter->stats.rlerrc; |
|
3710 netdev->stats.rx_crc_errors = adapter->stats.crcerrs; |
|
3711 netdev->stats.rx_frame_errors = adapter->stats.algnerrc; |
|
3712 netdev->stats.rx_missed_errors = adapter->stats.mpc; |
|
3713 |
|
3714 /* Tx Errors */ |
|
3715 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol; |
|
3716 netdev->stats.tx_errors = adapter->stats.txerrc; |
|
3717 netdev->stats.tx_aborted_errors = adapter->stats.ecol; |
|
3718 netdev->stats.tx_window_errors = adapter->stats.latecol; |
|
3719 netdev->stats.tx_carrier_errors = adapter->stats.tncrs; |
|
3720 if (hw->bad_tx_carr_stats_fd && |
|
3721 adapter->link_duplex == FULL_DUPLEX) { |
|
3722 netdev->stats.tx_carrier_errors = 0; |
|
3723 adapter->stats.tncrs = 0; |
|
3724 } |
|
3725 |
|
3726 /* Tx Dropped needs to be maintained elsewhere */ |
|
3727 |
|
3728 /* Phy Stats */ |
|
3729 if (hw->media_type == e1000_media_type_copper) { |
|
3730 if ((adapter->link_speed == SPEED_1000) && |
|
3731 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) { |
|
3732 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; |
|
3733 adapter->phy_stats.idle_errors += phy_tmp; |
|
3734 } |
|
3735 |
|
3736 if ((hw->mac_type <= e1000_82546) && |
|
3737 (hw->phy_type == e1000_phy_m88) && |
|
3738 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp)) |
|
3739 adapter->phy_stats.receive_errors += phy_tmp; |
|
3740 } |
|
3741 |
|
3742 /* Management Stats */ |
|
3743 if (hw->has_smbus) { |
|
3744 adapter->stats.mgptc += er32(MGTPTC); |
|
3745 adapter->stats.mgprc += er32(MGTPRC); |
|
3746 adapter->stats.mgpdc += er32(MGTPDC); |
|
3747 } |
|
3748 |
|
3749 spin_unlock_irqrestore(&adapter->stats_lock, flags); |
|
3750 } |
|
3751 |
|
3752 /** |
|
3753 * e1000_intr - Interrupt Handler |
|
3754 * @irq: interrupt number |
|
3755 * @data: pointer to a network interface device structure |
|
3756 **/ |
|
3757 static irqreturn_t e1000_intr(int irq, void *data) |
|
3758 { |
|
3759 struct net_device *netdev = data; |
|
3760 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
3761 struct e1000_hw *hw = &adapter->hw; |
|
3762 u32 icr = er32(ICR); |
|
3763 |
|
3764 if (unlikely((!icr))) |
|
3765 return IRQ_NONE; /* Not our interrupt */ |
|
3766 |
|
3767 /* we might have caused the interrupt, but the above |
|
3768 * read cleared it, and just in case the driver is |
|
3769 * down there is nothing to do so return handled |
|
3770 */ |
|
3771 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags))) |
|
3772 return IRQ_HANDLED; |
|
3773 |
|
3774 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) { |
|
3775 hw->get_link_status = 1; |
|
3776 /* guard against interrupt when we're going down */ |
|
3777 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
3778 schedule_delayed_work(&adapter->watchdog_task, 1); |
|
3779 } |
|
3780 |
|
3781 /* disable interrupts, without the synchronize_irq bit */ |
|
3782 ew32(IMC, ~0); |
|
3783 E1000_WRITE_FLUSH(); |
|
3784 |
|
3785 if (likely(napi_schedule_prep(&adapter->napi))) { |
|
3786 adapter->total_tx_bytes = 0; |
|
3787 adapter->total_tx_packets = 0; |
|
3788 adapter->total_rx_bytes = 0; |
|
3789 adapter->total_rx_packets = 0; |
|
3790 __napi_schedule(&adapter->napi); |
|
3791 } else { |
|
3792 /* this really should not happen! if it does it is basically a |
|
3793 * bug, but not a hard error, so enable ints and continue |
|
3794 */ |
|
3795 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
3796 e1000_irq_enable(adapter); |
|
3797 } |
|
3798 |
|
3799 return IRQ_HANDLED; |
|
3800 } |
|
3801 |
|
3802 /** |
|
3803 * e1000_clean - NAPI Rx polling callback |
|
3804 * @adapter: board private structure |
|
3805 **/ |
|
3806 static int e1000_clean(struct napi_struct *napi, int budget) |
|
3807 { |
|
3808 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, |
|
3809 napi); |
|
3810 int tx_clean_complete = 0, work_done = 0; |
|
3811 |
|
3812 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]); |
|
3813 |
|
3814 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget); |
|
3815 |
|
3816 if (!tx_clean_complete) |
|
3817 work_done = budget; |
|
3818 |
|
3819 /* If budget not fully consumed, exit the polling mode */ |
|
3820 if (work_done < budget) { |
|
3821 if (likely(adapter->itr_setting & 3)) |
|
3822 e1000_set_itr(adapter); |
|
3823 napi_complete(napi); |
|
3824 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
3825 e1000_irq_enable(adapter); |
|
3826 } |
|
3827 |
|
3828 return work_done; |
|
3829 } |
|
3830 |
|
3831 /** |
|
3832 * e1000_clean_tx_irq - Reclaim resources after transmit completes |
|
3833 * @adapter: board private structure |
|
3834 **/ |
|
3835 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, |
|
3836 struct e1000_tx_ring *tx_ring) |
|
3837 { |
|
3838 struct e1000_hw *hw = &adapter->hw; |
|
3839 struct net_device *netdev = adapter->netdev; |
|
3840 struct e1000_tx_desc *tx_desc, *eop_desc; |
|
3841 struct e1000_buffer *buffer_info; |
|
3842 unsigned int i, eop; |
|
3843 unsigned int count = 0; |
|
3844 unsigned int total_tx_bytes=0, total_tx_packets=0; |
|
3845 unsigned int bytes_compl = 0, pkts_compl = 0; |
|
3846 |
|
3847 i = tx_ring->next_to_clean; |
|
3848 eop = tx_ring->buffer_info[i].next_to_watch; |
|
3849 eop_desc = E1000_TX_DESC(*tx_ring, eop); |
|
3850 |
|
3851 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) && |
|
3852 (count < tx_ring->count)) { |
|
3853 bool cleaned = false; |
|
3854 rmb(); /* read buffer_info after eop_desc */ |
|
3855 for ( ; !cleaned; count++) { |
|
3856 tx_desc = E1000_TX_DESC(*tx_ring, i); |
|
3857 buffer_info = &tx_ring->buffer_info[i]; |
|
3858 cleaned = (i == eop); |
|
3859 |
|
3860 if (cleaned) { |
|
3861 total_tx_packets += buffer_info->segs; |
|
3862 total_tx_bytes += buffer_info->bytecount; |
|
3863 if (buffer_info->skb) { |
|
3864 bytes_compl += buffer_info->skb->len; |
|
3865 pkts_compl++; |
|
3866 } |
|
3867 |
|
3868 } |
|
3869 e1000_unmap_and_free_tx_resource(adapter, buffer_info); |
|
3870 tx_desc->upper.data = 0; |
|
3871 |
|
3872 if (unlikely(++i == tx_ring->count)) i = 0; |
|
3873 } |
|
3874 |
|
3875 eop = tx_ring->buffer_info[i].next_to_watch; |
|
3876 eop_desc = E1000_TX_DESC(*tx_ring, eop); |
|
3877 } |
|
3878 |
|
3879 tx_ring->next_to_clean = i; |
|
3880 |
|
3881 netdev_completed_queue(netdev, pkts_compl, bytes_compl); |
|
3882 |
|
3883 #define TX_WAKE_THRESHOLD 32 |
|
3884 if (unlikely(count && netif_carrier_ok(netdev) && |
|
3885 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) { |
|
3886 /* Make sure that anybody stopping the queue after this |
|
3887 * sees the new next_to_clean. |
|
3888 */ |
|
3889 smp_mb(); |
|
3890 |
|
3891 if (netif_queue_stopped(netdev) && |
|
3892 !(test_bit(__E1000_DOWN, &adapter->flags))) { |
|
3893 netif_wake_queue(netdev); |
|
3894 ++adapter->restart_queue; |
|
3895 } |
|
3896 } |
|
3897 |
|
3898 if (adapter->detect_tx_hung) { |
|
3899 /* Detect a transmit hang in hardware, this serializes the |
|
3900 * check with the clearing of time_stamp and movement of i |
|
3901 */ |
|
3902 adapter->detect_tx_hung = false; |
|
3903 if (tx_ring->buffer_info[eop].time_stamp && |
|
3904 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp + |
|
3905 (adapter->tx_timeout_factor * HZ)) && |
|
3906 !(er32(STATUS) & E1000_STATUS_TXOFF)) { |
|
3907 |
|
3908 /* detected Tx unit hang */ |
|
3909 e_err(drv, "Detected Tx Unit Hang\n" |
|
3910 " Tx Queue <%lu>\n" |
|
3911 " TDH <%x>\n" |
|
3912 " TDT <%x>\n" |
|
3913 " next_to_use <%x>\n" |
|
3914 " next_to_clean <%x>\n" |
|
3915 "buffer_info[next_to_clean]\n" |
|
3916 " time_stamp <%lx>\n" |
|
3917 " next_to_watch <%x>\n" |
|
3918 " jiffies <%lx>\n" |
|
3919 " next_to_watch.status <%x>\n", |
|
3920 (unsigned long)((tx_ring - adapter->tx_ring) / |
|
3921 sizeof(struct e1000_tx_ring)), |
|
3922 readl(hw->hw_addr + tx_ring->tdh), |
|
3923 readl(hw->hw_addr + tx_ring->tdt), |
|
3924 tx_ring->next_to_use, |
|
3925 tx_ring->next_to_clean, |
|
3926 tx_ring->buffer_info[eop].time_stamp, |
|
3927 eop, |
|
3928 jiffies, |
|
3929 eop_desc->upper.fields.status); |
|
3930 e1000_dump(adapter); |
|
3931 netif_stop_queue(netdev); |
|
3932 } |
|
3933 } |
|
3934 adapter->total_tx_bytes += total_tx_bytes; |
|
3935 adapter->total_tx_packets += total_tx_packets; |
|
3936 netdev->stats.tx_bytes += total_tx_bytes; |
|
3937 netdev->stats.tx_packets += total_tx_packets; |
|
3938 return count < tx_ring->count; |
|
3939 } |
|
3940 |
|
3941 /** |
|
3942 * e1000_rx_checksum - Receive Checksum Offload for 82543 |
|
3943 * @adapter: board private structure |
|
3944 * @status_err: receive descriptor status and error fields |
|
3945 * @csum: receive descriptor csum field |
|
3946 * @sk_buff: socket buffer with received data |
|
3947 **/ |
|
3948 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, |
|
3949 u32 csum, struct sk_buff *skb) |
|
3950 { |
|
3951 struct e1000_hw *hw = &adapter->hw; |
|
3952 u16 status = (u16)status_err; |
|
3953 u8 errors = (u8)(status_err >> 24); |
|
3954 |
|
3955 skb_checksum_none_assert(skb); |
|
3956 |
|
3957 /* 82543 or newer only */ |
|
3958 if (unlikely(hw->mac_type < e1000_82543)) return; |
|
3959 /* Ignore Checksum bit is set */ |
|
3960 if (unlikely(status & E1000_RXD_STAT_IXSM)) return; |
|
3961 /* TCP/UDP checksum error bit is set */ |
|
3962 if (unlikely(errors & E1000_RXD_ERR_TCPE)) { |
|
3963 /* let the stack verify checksum errors */ |
|
3964 adapter->hw_csum_err++; |
|
3965 return; |
|
3966 } |
|
3967 /* TCP/UDP Checksum has not been calculated */ |
|
3968 if (!(status & E1000_RXD_STAT_TCPCS)) |
|
3969 return; |
|
3970 |
|
3971 /* It must be a TCP or UDP packet with a valid checksum */ |
|
3972 if (likely(status & E1000_RXD_STAT_TCPCS)) { |
|
3973 /* TCP checksum is good */ |
|
3974 skb->ip_summed = CHECKSUM_UNNECESSARY; |
|
3975 } |
|
3976 adapter->hw_csum_good++; |
|
3977 } |
|
3978 |
|
3979 /** |
|
3980 * e1000_consume_page - helper function |
|
3981 **/ |
|
3982 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb, |
|
3983 u16 length) |
|
3984 { |
|
3985 bi->page = NULL; |
|
3986 skb->len += length; |
|
3987 skb->data_len += length; |
|
3988 skb->truesize += PAGE_SIZE; |
|
3989 } |
|
3990 |
|
3991 /** |
|
3992 * e1000_receive_skb - helper function to handle rx indications |
|
3993 * @adapter: board private structure |
|
3994 * @status: descriptor status field as written by hardware |
|
3995 * @vlan: descriptor vlan field as written by hardware (no le/be conversion) |
|
3996 * @skb: pointer to sk_buff to be indicated to stack |
|
3997 */ |
|
3998 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status, |
|
3999 __le16 vlan, struct sk_buff *skb) |
|
4000 { |
|
4001 skb->protocol = eth_type_trans(skb, adapter->netdev); |
|
4002 |
|
4003 if (status & E1000_RXD_STAT_VP) { |
|
4004 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK; |
|
4005 |
|
4006 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); |
|
4007 } |
|
4008 napi_gro_receive(&adapter->napi, skb); |
|
4009 } |
|
4010 |
|
4011 /** |
|
4012 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy |
|
4013 * @adapter: board private structure |
|
4014 * @rx_ring: ring to clean |
|
4015 * @work_done: amount of napi work completed this call |
|
4016 * @work_to_do: max amount of work allowed for this call to do |
|
4017 * |
|
4018 * the return value indicates whether actual cleaning was done, there |
|
4019 * is no guarantee that everything was cleaned |
|
4020 */ |
|
4021 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, |
|
4022 struct e1000_rx_ring *rx_ring, |
|
4023 int *work_done, int work_to_do) |
|
4024 { |
|
4025 struct e1000_hw *hw = &adapter->hw; |
|
4026 struct net_device *netdev = adapter->netdev; |
|
4027 struct pci_dev *pdev = adapter->pdev; |
|
4028 struct e1000_rx_desc *rx_desc, *next_rxd; |
|
4029 struct e1000_buffer *buffer_info, *next_buffer; |
|
4030 unsigned long irq_flags; |
|
4031 u32 length; |
|
4032 unsigned int i; |
|
4033 int cleaned_count = 0; |
|
4034 bool cleaned = false; |
|
4035 unsigned int total_rx_bytes=0, total_rx_packets=0; |
|
4036 |
|
4037 i = rx_ring->next_to_clean; |
|
4038 rx_desc = E1000_RX_DESC(*rx_ring, i); |
|
4039 buffer_info = &rx_ring->buffer_info[i]; |
|
4040 |
|
4041 while (rx_desc->status & E1000_RXD_STAT_DD) { |
|
4042 struct sk_buff *skb; |
|
4043 u8 status; |
|
4044 |
|
4045 if (*work_done >= work_to_do) |
|
4046 break; |
|
4047 (*work_done)++; |
|
4048 rmb(); /* read descriptor and rx_buffer_info after status DD */ |
|
4049 |
|
4050 status = rx_desc->status; |
|
4051 skb = buffer_info->skb; |
|
4052 buffer_info->skb = NULL; |
|
4053 |
|
4054 if (++i == rx_ring->count) i = 0; |
|
4055 next_rxd = E1000_RX_DESC(*rx_ring, i); |
|
4056 prefetch(next_rxd); |
|
4057 |
|
4058 next_buffer = &rx_ring->buffer_info[i]; |
|
4059 |
|
4060 cleaned = true; |
|
4061 cleaned_count++; |
|
4062 dma_unmap_page(&pdev->dev, buffer_info->dma, |
|
4063 buffer_info->length, DMA_FROM_DEVICE); |
|
4064 buffer_info->dma = 0; |
|
4065 |
|
4066 length = le16_to_cpu(rx_desc->length); |
|
4067 |
|
4068 /* errors is only valid for DD + EOP descriptors */ |
|
4069 if (unlikely((status & E1000_RXD_STAT_EOP) && |
|
4070 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) { |
|
4071 u8 *mapped; |
|
4072 u8 last_byte; |
|
4073 |
|
4074 mapped = page_address(buffer_info->page); |
|
4075 last_byte = *(mapped + length - 1); |
|
4076 if (TBI_ACCEPT(hw, status, rx_desc->errors, length, |
|
4077 last_byte)) { |
|
4078 spin_lock_irqsave(&adapter->stats_lock, |
|
4079 irq_flags); |
|
4080 e1000_tbi_adjust_stats(hw, &adapter->stats, |
|
4081 length, mapped); |
|
4082 spin_unlock_irqrestore(&adapter->stats_lock, |
|
4083 irq_flags); |
|
4084 length--; |
|
4085 } else { |
|
4086 if (netdev->features & NETIF_F_RXALL) |
|
4087 goto process_skb; |
|
4088 /* recycle both page and skb */ |
|
4089 buffer_info->skb = skb; |
|
4090 /* an error means any chain goes out the window |
|
4091 * too |
|
4092 */ |
|
4093 if (rx_ring->rx_skb_top) |
|
4094 dev_kfree_skb(rx_ring->rx_skb_top); |
|
4095 rx_ring->rx_skb_top = NULL; |
|
4096 goto next_desc; |
|
4097 } |
|
4098 } |
|
4099 |
|
4100 #define rxtop rx_ring->rx_skb_top |
|
4101 process_skb: |
|
4102 if (!(status & E1000_RXD_STAT_EOP)) { |
|
4103 /* this descriptor is only the beginning (or middle) */ |
|
4104 if (!rxtop) { |
|
4105 /* this is the beginning of a chain */ |
|
4106 rxtop = skb; |
|
4107 skb_fill_page_desc(rxtop, 0, buffer_info->page, |
|
4108 0, length); |
|
4109 } else { |
|
4110 /* this is the middle of a chain */ |
|
4111 skb_fill_page_desc(rxtop, |
|
4112 skb_shinfo(rxtop)->nr_frags, |
|
4113 buffer_info->page, 0, length); |
|
4114 /* re-use the skb, only consumed the page */ |
|
4115 buffer_info->skb = skb; |
|
4116 } |
|
4117 e1000_consume_page(buffer_info, rxtop, length); |
|
4118 goto next_desc; |
|
4119 } else { |
|
4120 if (rxtop) { |
|
4121 /* end of the chain */ |
|
4122 skb_fill_page_desc(rxtop, |
|
4123 skb_shinfo(rxtop)->nr_frags, |
|
4124 buffer_info->page, 0, length); |
|
4125 /* re-use the current skb, we only consumed the |
|
4126 * page |
|
4127 */ |
|
4128 buffer_info->skb = skb; |
|
4129 skb = rxtop; |
|
4130 rxtop = NULL; |
|
4131 e1000_consume_page(buffer_info, skb, length); |
|
4132 } else { |
|
4133 /* no chain, got EOP, this buf is the packet |
|
4134 * copybreak to save the put_page/alloc_page |
|
4135 */ |
|
4136 if (length <= copybreak && |
|
4137 skb_tailroom(skb) >= length) { |
|
4138 u8 *vaddr; |
|
4139 vaddr = kmap_atomic(buffer_info->page); |
|
4140 memcpy(skb_tail_pointer(skb), vaddr, |
|
4141 length); |
|
4142 kunmap_atomic(vaddr); |
|
4143 /* re-use the page, so don't erase |
|
4144 * buffer_info->page |
|
4145 */ |
|
4146 skb_put(skb, length); |
|
4147 } else { |
|
4148 skb_fill_page_desc(skb, 0, |
|
4149 buffer_info->page, 0, |
|
4150 length); |
|
4151 e1000_consume_page(buffer_info, skb, |
|
4152 length); |
|
4153 } |
|
4154 } |
|
4155 } |
|
4156 |
|
4157 /* Receive Checksum Offload XXX recompute due to CRC strip? */ |
|
4158 e1000_rx_checksum(adapter, |
|
4159 (u32)(status) | |
|
4160 ((u32)(rx_desc->errors) << 24), |
|
4161 le16_to_cpu(rx_desc->csum), skb); |
|
4162 |
|
4163 total_rx_bytes += (skb->len - 4); /* don't count FCS */ |
|
4164 if (likely(!(netdev->features & NETIF_F_RXFCS))) |
|
4165 pskb_trim(skb, skb->len - 4); |
|
4166 total_rx_packets++; |
|
4167 |
|
4168 /* eth type trans needs skb->data to point to something */ |
|
4169 if (!pskb_may_pull(skb, ETH_HLEN)) { |
|
4170 e_err(drv, "pskb_may_pull failed.\n"); |
|
4171 dev_kfree_skb(skb); |
|
4172 goto next_desc; |
|
4173 } |
|
4174 |
|
4175 e1000_receive_skb(adapter, status, rx_desc->special, skb); |
|
4176 |
|
4177 next_desc: |
|
4178 rx_desc->status = 0; |
|
4179 |
|
4180 /* return some buffers to hardware, one at a time is too slow */ |
|
4181 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { |
|
4182 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); |
|
4183 cleaned_count = 0; |
|
4184 } |
|
4185 |
|
4186 /* use prefetched values */ |
|
4187 rx_desc = next_rxd; |
|
4188 buffer_info = next_buffer; |
|
4189 } |
|
4190 rx_ring->next_to_clean = i; |
|
4191 |
|
4192 cleaned_count = E1000_DESC_UNUSED(rx_ring); |
|
4193 if (cleaned_count) |
|
4194 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); |
|
4195 |
|
4196 adapter->total_rx_packets += total_rx_packets; |
|
4197 adapter->total_rx_bytes += total_rx_bytes; |
|
4198 netdev->stats.rx_bytes += total_rx_bytes; |
|
4199 netdev->stats.rx_packets += total_rx_packets; |
|
4200 return cleaned; |
|
4201 } |
|
4202 |
|
4203 /* this should improve performance for small packets with large amounts |
|
4204 * of reassembly being done in the stack |
|
4205 */ |
|
4206 static void e1000_check_copybreak(struct net_device *netdev, |
|
4207 struct e1000_buffer *buffer_info, |
|
4208 u32 length, struct sk_buff **skb) |
|
4209 { |
|
4210 struct sk_buff *new_skb; |
|
4211 |
|
4212 if (length > copybreak) |
|
4213 return; |
|
4214 |
|
4215 new_skb = netdev_alloc_skb_ip_align(netdev, length); |
|
4216 if (!new_skb) |
|
4217 return; |
|
4218 |
|
4219 skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN, |
|
4220 (*skb)->data - NET_IP_ALIGN, |
|
4221 length + NET_IP_ALIGN); |
|
4222 /* save the skb in buffer_info as good */ |
|
4223 buffer_info->skb = *skb; |
|
4224 *skb = new_skb; |
|
4225 } |
|
4226 |
|
4227 /** |
|
4228 * e1000_clean_rx_irq - Send received data up the network stack; legacy |
|
4229 * @adapter: board private structure |
|
4230 * @rx_ring: ring to clean |
|
4231 * @work_done: amount of napi work completed this call |
|
4232 * @work_to_do: max amount of work allowed for this call to do |
|
4233 */ |
|
4234 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, |
|
4235 struct e1000_rx_ring *rx_ring, |
|
4236 int *work_done, int work_to_do) |
|
4237 { |
|
4238 struct e1000_hw *hw = &adapter->hw; |
|
4239 struct net_device *netdev = adapter->netdev; |
|
4240 struct pci_dev *pdev = adapter->pdev; |
|
4241 struct e1000_rx_desc *rx_desc, *next_rxd; |
|
4242 struct e1000_buffer *buffer_info, *next_buffer; |
|
4243 unsigned long flags; |
|
4244 u32 length; |
|
4245 unsigned int i; |
|
4246 int cleaned_count = 0; |
|
4247 bool cleaned = false; |
|
4248 unsigned int total_rx_bytes=0, total_rx_packets=0; |
|
4249 |
|
4250 i = rx_ring->next_to_clean; |
|
4251 rx_desc = E1000_RX_DESC(*rx_ring, i); |
|
4252 buffer_info = &rx_ring->buffer_info[i]; |
|
4253 |
|
4254 while (rx_desc->status & E1000_RXD_STAT_DD) { |
|
4255 struct sk_buff *skb; |
|
4256 u8 status; |
|
4257 |
|
4258 if (*work_done >= work_to_do) |
|
4259 break; |
|
4260 (*work_done)++; |
|
4261 rmb(); /* read descriptor and rx_buffer_info after status DD */ |
|
4262 |
|
4263 status = rx_desc->status; |
|
4264 skb = buffer_info->skb; |
|
4265 buffer_info->skb = NULL; |
|
4266 |
|
4267 prefetch(skb->data - NET_IP_ALIGN); |
|
4268 |
|
4269 if (++i == rx_ring->count) i = 0; |
|
4270 next_rxd = E1000_RX_DESC(*rx_ring, i); |
|
4271 prefetch(next_rxd); |
|
4272 |
|
4273 next_buffer = &rx_ring->buffer_info[i]; |
|
4274 |
|
4275 cleaned = true; |
|
4276 cleaned_count++; |
|
4277 dma_unmap_single(&pdev->dev, buffer_info->dma, |
|
4278 buffer_info->length, DMA_FROM_DEVICE); |
|
4279 buffer_info->dma = 0; |
|
4280 |
|
4281 length = le16_to_cpu(rx_desc->length); |
|
4282 /* !EOP means multiple descriptors were used to store a single |
|
4283 * packet, if thats the case we need to toss it. In fact, we |
|
4284 * to toss every packet with the EOP bit clear and the next |
|
4285 * frame that _does_ have the EOP bit set, as it is by |
|
4286 * definition only a frame fragment |
|
4287 */ |
|
4288 if (unlikely(!(status & E1000_RXD_STAT_EOP))) |
|
4289 adapter->discarding = true; |
|
4290 |
|
4291 if (adapter->discarding) { |
|
4292 /* All receives must fit into a single buffer */ |
|
4293 e_dbg("Receive packet consumed multiple buffers\n"); |
|
4294 /* recycle */ |
|
4295 buffer_info->skb = skb; |
|
4296 if (status & E1000_RXD_STAT_EOP) |
|
4297 adapter->discarding = false; |
|
4298 goto next_desc; |
|
4299 } |
|
4300 |
|
4301 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) { |
|
4302 u8 last_byte = *(skb->data + length - 1); |
|
4303 if (TBI_ACCEPT(hw, status, rx_desc->errors, length, |
|
4304 last_byte)) { |
|
4305 spin_lock_irqsave(&adapter->stats_lock, flags); |
|
4306 e1000_tbi_adjust_stats(hw, &adapter->stats, |
|
4307 length, skb->data); |
|
4308 spin_unlock_irqrestore(&adapter->stats_lock, |
|
4309 flags); |
|
4310 length--; |
|
4311 } else { |
|
4312 if (netdev->features & NETIF_F_RXALL) |
|
4313 goto process_skb; |
|
4314 /* recycle */ |
|
4315 buffer_info->skb = skb; |
|
4316 goto next_desc; |
|
4317 } |
|
4318 } |
|
4319 |
|
4320 process_skb: |
|
4321 total_rx_bytes += (length - 4); /* don't count FCS */ |
|
4322 total_rx_packets++; |
|
4323 |
|
4324 if (likely(!(netdev->features & NETIF_F_RXFCS))) |
|
4325 /* adjust length to remove Ethernet CRC, this must be |
|
4326 * done after the TBI_ACCEPT workaround above |
|
4327 */ |
|
4328 length -= 4; |
|
4329 |
|
4330 e1000_check_copybreak(netdev, buffer_info, length, &skb); |
|
4331 |
|
4332 skb_put(skb, length); |
|
4333 |
|
4334 /* Receive Checksum Offload */ |
|
4335 e1000_rx_checksum(adapter, |
|
4336 (u32)(status) | |
|
4337 ((u32)(rx_desc->errors) << 24), |
|
4338 le16_to_cpu(rx_desc->csum), skb); |
|
4339 |
|
4340 e1000_receive_skb(adapter, status, rx_desc->special, skb); |
|
4341 |
|
4342 next_desc: |
|
4343 rx_desc->status = 0; |
|
4344 |
|
4345 /* return some buffers to hardware, one at a time is too slow */ |
|
4346 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { |
|
4347 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); |
|
4348 cleaned_count = 0; |
|
4349 } |
|
4350 |
|
4351 /* use prefetched values */ |
|
4352 rx_desc = next_rxd; |
|
4353 buffer_info = next_buffer; |
|
4354 } |
|
4355 rx_ring->next_to_clean = i; |
|
4356 |
|
4357 cleaned_count = E1000_DESC_UNUSED(rx_ring); |
|
4358 if (cleaned_count) |
|
4359 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); |
|
4360 |
|
4361 adapter->total_rx_packets += total_rx_packets; |
|
4362 adapter->total_rx_bytes += total_rx_bytes; |
|
4363 netdev->stats.rx_bytes += total_rx_bytes; |
|
4364 netdev->stats.rx_packets += total_rx_packets; |
|
4365 return cleaned; |
|
4366 } |
|
4367 |
|
4368 /** |
|
4369 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers |
|
4370 * @adapter: address of board private structure |
|
4371 * @rx_ring: pointer to receive ring structure |
|
4372 * @cleaned_count: number of buffers to allocate this pass |
|
4373 **/ |
|
4374 static void |
|
4375 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, |
|
4376 struct e1000_rx_ring *rx_ring, int cleaned_count) |
|
4377 { |
|
4378 struct net_device *netdev = adapter->netdev; |
|
4379 struct pci_dev *pdev = adapter->pdev; |
|
4380 struct e1000_rx_desc *rx_desc; |
|
4381 struct e1000_buffer *buffer_info; |
|
4382 struct sk_buff *skb; |
|
4383 unsigned int i; |
|
4384 unsigned int bufsz = 256 - 16 /*for skb_reserve */ ; |
|
4385 |
|
4386 i = rx_ring->next_to_use; |
|
4387 buffer_info = &rx_ring->buffer_info[i]; |
|
4388 |
|
4389 while (cleaned_count--) { |
|
4390 skb = buffer_info->skb; |
|
4391 if (skb) { |
|
4392 skb_trim(skb, 0); |
|
4393 goto check_page; |
|
4394 } |
|
4395 |
|
4396 skb = netdev_alloc_skb_ip_align(netdev, bufsz); |
|
4397 if (unlikely(!skb)) { |
|
4398 /* Better luck next round */ |
|
4399 adapter->alloc_rx_buff_failed++; |
|
4400 break; |
|
4401 } |
|
4402 |
|
4403 buffer_info->skb = skb; |
|
4404 buffer_info->length = adapter->rx_buffer_len; |
|
4405 check_page: |
|
4406 /* allocate a new page if necessary */ |
|
4407 if (!buffer_info->page) { |
|
4408 buffer_info->page = alloc_page(GFP_ATOMIC); |
|
4409 if (unlikely(!buffer_info->page)) { |
|
4410 adapter->alloc_rx_buff_failed++; |
|
4411 break; |
|
4412 } |
|
4413 } |
|
4414 |
|
4415 if (!buffer_info->dma) { |
|
4416 buffer_info->dma = dma_map_page(&pdev->dev, |
|
4417 buffer_info->page, 0, |
|
4418 buffer_info->length, |
|
4419 DMA_FROM_DEVICE); |
|
4420 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { |
|
4421 put_page(buffer_info->page); |
|
4422 dev_kfree_skb(skb); |
|
4423 buffer_info->page = NULL; |
|
4424 buffer_info->skb = NULL; |
|
4425 buffer_info->dma = 0; |
|
4426 adapter->alloc_rx_buff_failed++; |
|
4427 break; /* while !buffer_info->skb */ |
|
4428 } |
|
4429 } |
|
4430 |
|
4431 rx_desc = E1000_RX_DESC(*rx_ring, i); |
|
4432 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); |
|
4433 |
|
4434 if (unlikely(++i == rx_ring->count)) |
|
4435 i = 0; |
|
4436 buffer_info = &rx_ring->buffer_info[i]; |
|
4437 } |
|
4438 |
|
4439 if (likely(rx_ring->next_to_use != i)) { |
|
4440 rx_ring->next_to_use = i; |
|
4441 if (unlikely(i-- == 0)) |
|
4442 i = (rx_ring->count - 1); |
|
4443 |
|
4444 /* Force memory writes to complete before letting h/w |
|
4445 * know there are new descriptors to fetch. (Only |
|
4446 * applicable for weak-ordered memory model archs, |
|
4447 * such as IA-64). |
|
4448 */ |
|
4449 wmb(); |
|
4450 writel(i, adapter->hw.hw_addr + rx_ring->rdt); |
|
4451 } |
|
4452 } |
|
4453 |
|
4454 /** |
|
4455 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended |
|
4456 * @adapter: address of board private structure |
|
4457 **/ |
|
4458 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, |
|
4459 struct e1000_rx_ring *rx_ring, |
|
4460 int cleaned_count) |
|
4461 { |
|
4462 struct e1000_hw *hw = &adapter->hw; |
|
4463 struct net_device *netdev = adapter->netdev; |
|
4464 struct pci_dev *pdev = adapter->pdev; |
|
4465 struct e1000_rx_desc *rx_desc; |
|
4466 struct e1000_buffer *buffer_info; |
|
4467 struct sk_buff *skb; |
|
4468 unsigned int i; |
|
4469 unsigned int bufsz = adapter->rx_buffer_len; |
|
4470 |
|
4471 i = rx_ring->next_to_use; |
|
4472 buffer_info = &rx_ring->buffer_info[i]; |
|
4473 |
|
4474 while (cleaned_count--) { |
|
4475 skb = buffer_info->skb; |
|
4476 if (skb) { |
|
4477 skb_trim(skb, 0); |
|
4478 goto map_skb; |
|
4479 } |
|
4480 |
|
4481 skb = netdev_alloc_skb_ip_align(netdev, bufsz); |
|
4482 if (unlikely(!skb)) { |
|
4483 /* Better luck next round */ |
|
4484 adapter->alloc_rx_buff_failed++; |
|
4485 break; |
|
4486 } |
|
4487 |
|
4488 /* Fix for errata 23, can't cross 64kB boundary */ |
|
4489 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { |
|
4490 struct sk_buff *oldskb = skb; |
|
4491 e_err(rx_err, "skb align check failed: %u bytes at " |
|
4492 "%p\n", bufsz, skb->data); |
|
4493 /* Try again, without freeing the previous */ |
|
4494 skb = netdev_alloc_skb_ip_align(netdev, bufsz); |
|
4495 /* Failed allocation, critical failure */ |
|
4496 if (!skb) { |
|
4497 dev_kfree_skb(oldskb); |
|
4498 adapter->alloc_rx_buff_failed++; |
|
4499 break; |
|
4500 } |
|
4501 |
|
4502 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { |
|
4503 /* give up */ |
|
4504 dev_kfree_skb(skb); |
|
4505 dev_kfree_skb(oldskb); |
|
4506 adapter->alloc_rx_buff_failed++; |
|
4507 break; /* while !buffer_info->skb */ |
|
4508 } |
|
4509 |
|
4510 /* Use new allocation */ |
|
4511 dev_kfree_skb(oldskb); |
|
4512 } |
|
4513 buffer_info->skb = skb; |
|
4514 buffer_info->length = adapter->rx_buffer_len; |
|
4515 map_skb: |
|
4516 buffer_info->dma = dma_map_single(&pdev->dev, |
|
4517 skb->data, |
|
4518 buffer_info->length, |
|
4519 DMA_FROM_DEVICE); |
|
4520 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { |
|
4521 dev_kfree_skb(skb); |
|
4522 buffer_info->skb = NULL; |
|
4523 buffer_info->dma = 0; |
|
4524 adapter->alloc_rx_buff_failed++; |
|
4525 break; /* while !buffer_info->skb */ |
|
4526 } |
|
4527 |
|
4528 /* XXX if it was allocated cleanly it will never map to a |
|
4529 * boundary crossing |
|
4530 */ |
|
4531 |
|
4532 /* Fix for errata 23, can't cross 64kB boundary */ |
|
4533 if (!e1000_check_64k_bound(adapter, |
|
4534 (void *)(unsigned long)buffer_info->dma, |
|
4535 adapter->rx_buffer_len)) { |
|
4536 e_err(rx_err, "dma align check failed: %u bytes at " |
|
4537 "%p\n", adapter->rx_buffer_len, |
|
4538 (void *)(unsigned long)buffer_info->dma); |
|
4539 dev_kfree_skb(skb); |
|
4540 buffer_info->skb = NULL; |
|
4541 |
|
4542 dma_unmap_single(&pdev->dev, buffer_info->dma, |
|
4543 adapter->rx_buffer_len, |
|
4544 DMA_FROM_DEVICE); |
|
4545 buffer_info->dma = 0; |
|
4546 |
|
4547 adapter->alloc_rx_buff_failed++; |
|
4548 break; /* while !buffer_info->skb */ |
|
4549 } |
|
4550 rx_desc = E1000_RX_DESC(*rx_ring, i); |
|
4551 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); |
|
4552 |
|
4553 if (unlikely(++i == rx_ring->count)) |
|
4554 i = 0; |
|
4555 buffer_info = &rx_ring->buffer_info[i]; |
|
4556 } |
|
4557 |
|
4558 if (likely(rx_ring->next_to_use != i)) { |
|
4559 rx_ring->next_to_use = i; |
|
4560 if (unlikely(i-- == 0)) |
|
4561 i = (rx_ring->count - 1); |
|
4562 |
|
4563 /* Force memory writes to complete before letting h/w |
|
4564 * know there are new descriptors to fetch. (Only |
|
4565 * applicable for weak-ordered memory model archs, |
|
4566 * such as IA-64). |
|
4567 */ |
|
4568 wmb(); |
|
4569 writel(i, hw->hw_addr + rx_ring->rdt); |
|
4570 } |
|
4571 } |
|
4572 |
|
4573 /** |
|
4574 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers. |
|
4575 * @adapter: |
|
4576 **/ |
|
4577 static void e1000_smartspeed(struct e1000_adapter *adapter) |
|
4578 { |
|
4579 struct e1000_hw *hw = &adapter->hw; |
|
4580 u16 phy_status; |
|
4581 u16 phy_ctrl; |
|
4582 |
|
4583 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg || |
|
4584 !(hw->autoneg_advertised & ADVERTISE_1000_FULL)) |
|
4585 return; |
|
4586 |
|
4587 if (adapter->smartspeed == 0) { |
|
4588 /* If Master/Slave config fault is asserted twice, |
|
4589 * we assume back-to-back |
|
4590 */ |
|
4591 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); |
|
4592 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return; |
|
4593 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); |
|
4594 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return; |
|
4595 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); |
|
4596 if (phy_ctrl & CR_1000T_MS_ENABLE) { |
|
4597 phy_ctrl &= ~CR_1000T_MS_ENABLE; |
|
4598 e1000_write_phy_reg(hw, PHY_1000T_CTRL, |
|
4599 phy_ctrl); |
|
4600 adapter->smartspeed++; |
|
4601 if (!e1000_phy_setup_autoneg(hw) && |
|
4602 !e1000_read_phy_reg(hw, PHY_CTRL, |
|
4603 &phy_ctrl)) { |
|
4604 phy_ctrl |= (MII_CR_AUTO_NEG_EN | |
|
4605 MII_CR_RESTART_AUTO_NEG); |
|
4606 e1000_write_phy_reg(hw, PHY_CTRL, |
|
4607 phy_ctrl); |
|
4608 } |
|
4609 } |
|
4610 return; |
|
4611 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) { |
|
4612 /* If still no link, perhaps using 2/3 pair cable */ |
|
4613 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); |
|
4614 phy_ctrl |= CR_1000T_MS_ENABLE; |
|
4615 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl); |
|
4616 if (!e1000_phy_setup_autoneg(hw) && |
|
4617 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) { |
|
4618 phy_ctrl |= (MII_CR_AUTO_NEG_EN | |
|
4619 MII_CR_RESTART_AUTO_NEG); |
|
4620 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl); |
|
4621 } |
|
4622 } |
|
4623 /* Restart process after E1000_SMARTSPEED_MAX iterations */ |
|
4624 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX) |
|
4625 adapter->smartspeed = 0; |
|
4626 } |
|
4627 |
|
4628 /** |
|
4629 * e1000_ioctl - |
|
4630 * @netdev: |
|
4631 * @ifreq: |
|
4632 * @cmd: |
|
4633 **/ |
|
4634 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) |
|
4635 { |
|
4636 switch (cmd) { |
|
4637 case SIOCGMIIPHY: |
|
4638 case SIOCGMIIREG: |
|
4639 case SIOCSMIIREG: |
|
4640 return e1000_mii_ioctl(netdev, ifr, cmd); |
|
4641 default: |
|
4642 return -EOPNOTSUPP; |
|
4643 } |
|
4644 } |
|
4645 |
|
4646 /** |
|
4647 * e1000_mii_ioctl - |
|
4648 * @netdev: |
|
4649 * @ifreq: |
|
4650 * @cmd: |
|
4651 **/ |
|
4652 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, |
|
4653 int cmd) |
|
4654 { |
|
4655 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4656 struct e1000_hw *hw = &adapter->hw; |
|
4657 struct mii_ioctl_data *data = if_mii(ifr); |
|
4658 int retval; |
|
4659 u16 mii_reg; |
|
4660 unsigned long flags; |
|
4661 |
|
4662 if (hw->media_type != e1000_media_type_copper) |
|
4663 return -EOPNOTSUPP; |
|
4664 |
|
4665 switch (cmd) { |
|
4666 case SIOCGMIIPHY: |
|
4667 data->phy_id = hw->phy_addr; |
|
4668 break; |
|
4669 case SIOCGMIIREG: |
|
4670 spin_lock_irqsave(&adapter->stats_lock, flags); |
|
4671 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F, |
|
4672 &data->val_out)) { |
|
4673 spin_unlock_irqrestore(&adapter->stats_lock, flags); |
|
4674 return -EIO; |
|
4675 } |
|
4676 spin_unlock_irqrestore(&adapter->stats_lock, flags); |
|
4677 break; |
|
4678 case SIOCSMIIREG: |
|
4679 if (data->reg_num & ~(0x1F)) |
|
4680 return -EFAULT; |
|
4681 mii_reg = data->val_in; |
|
4682 spin_lock_irqsave(&adapter->stats_lock, flags); |
|
4683 if (e1000_write_phy_reg(hw, data->reg_num, |
|
4684 mii_reg)) { |
|
4685 spin_unlock_irqrestore(&adapter->stats_lock, flags); |
|
4686 return -EIO; |
|
4687 } |
|
4688 spin_unlock_irqrestore(&adapter->stats_lock, flags); |
|
4689 if (hw->media_type == e1000_media_type_copper) { |
|
4690 switch (data->reg_num) { |
|
4691 case PHY_CTRL: |
|
4692 if (mii_reg & MII_CR_POWER_DOWN) |
|
4693 break; |
|
4694 if (mii_reg & MII_CR_AUTO_NEG_EN) { |
|
4695 hw->autoneg = 1; |
|
4696 hw->autoneg_advertised = 0x2F; |
|
4697 } else { |
|
4698 u32 speed; |
|
4699 if (mii_reg & 0x40) |
|
4700 speed = SPEED_1000; |
|
4701 else if (mii_reg & 0x2000) |
|
4702 speed = SPEED_100; |
|
4703 else |
|
4704 speed = SPEED_10; |
|
4705 retval = e1000_set_spd_dplx( |
|
4706 adapter, speed, |
|
4707 ((mii_reg & 0x100) |
|
4708 ? DUPLEX_FULL : |
|
4709 DUPLEX_HALF)); |
|
4710 if (retval) |
|
4711 return retval; |
|
4712 } |
|
4713 if (netif_running(adapter->netdev)) |
|
4714 e1000_reinit_locked(adapter); |
|
4715 else |
|
4716 e1000_reset(adapter); |
|
4717 break; |
|
4718 case M88E1000_PHY_SPEC_CTRL: |
|
4719 case M88E1000_EXT_PHY_SPEC_CTRL: |
|
4720 if (e1000_phy_reset(hw)) |
|
4721 return -EIO; |
|
4722 break; |
|
4723 } |
|
4724 } else { |
|
4725 switch (data->reg_num) { |
|
4726 case PHY_CTRL: |
|
4727 if (mii_reg & MII_CR_POWER_DOWN) |
|
4728 break; |
|
4729 if (netif_running(adapter->netdev)) |
|
4730 e1000_reinit_locked(adapter); |
|
4731 else |
|
4732 e1000_reset(adapter); |
|
4733 break; |
|
4734 } |
|
4735 } |
|
4736 break; |
|
4737 default: |
|
4738 return -EOPNOTSUPP; |
|
4739 } |
|
4740 return E1000_SUCCESS; |
|
4741 } |
|
4742 |
|
4743 void e1000_pci_set_mwi(struct e1000_hw *hw) |
|
4744 { |
|
4745 struct e1000_adapter *adapter = hw->back; |
|
4746 int ret_val = pci_set_mwi(adapter->pdev); |
|
4747 |
|
4748 if (ret_val) |
|
4749 e_err(probe, "Error in setting MWI\n"); |
|
4750 } |
|
4751 |
|
4752 void e1000_pci_clear_mwi(struct e1000_hw *hw) |
|
4753 { |
|
4754 struct e1000_adapter *adapter = hw->back; |
|
4755 |
|
4756 pci_clear_mwi(adapter->pdev); |
|
4757 } |
|
4758 |
|
4759 int e1000_pcix_get_mmrbc(struct e1000_hw *hw) |
|
4760 { |
|
4761 struct e1000_adapter *adapter = hw->back; |
|
4762 return pcix_get_mmrbc(adapter->pdev); |
|
4763 } |
|
4764 |
|
4765 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc) |
|
4766 { |
|
4767 struct e1000_adapter *adapter = hw->back; |
|
4768 pcix_set_mmrbc(adapter->pdev, mmrbc); |
|
4769 } |
|
4770 |
|
4771 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value) |
|
4772 { |
|
4773 outl(value, port); |
|
4774 } |
|
4775 |
|
4776 static bool e1000_vlan_used(struct e1000_adapter *adapter) |
|
4777 { |
|
4778 u16 vid; |
|
4779 |
|
4780 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) |
|
4781 return true; |
|
4782 return false; |
|
4783 } |
|
4784 |
|
4785 static void __e1000_vlan_mode(struct e1000_adapter *adapter, |
|
4786 netdev_features_t features) |
|
4787 { |
|
4788 struct e1000_hw *hw = &adapter->hw; |
|
4789 u32 ctrl; |
|
4790 |
|
4791 ctrl = er32(CTRL); |
|
4792 if (features & NETIF_F_HW_VLAN_CTAG_RX) { |
|
4793 /* enable VLAN tag insert/strip */ |
|
4794 ctrl |= E1000_CTRL_VME; |
|
4795 } else { |
|
4796 /* disable VLAN tag insert/strip */ |
|
4797 ctrl &= ~E1000_CTRL_VME; |
|
4798 } |
|
4799 ew32(CTRL, ctrl); |
|
4800 } |
|
4801 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter, |
|
4802 bool filter_on) |
|
4803 { |
|
4804 struct e1000_hw *hw = &adapter->hw; |
|
4805 u32 rctl; |
|
4806 |
|
4807 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
4808 e1000_irq_disable(adapter); |
|
4809 |
|
4810 __e1000_vlan_mode(adapter, adapter->netdev->features); |
|
4811 if (filter_on) { |
|
4812 /* enable VLAN receive filtering */ |
|
4813 rctl = er32(RCTL); |
|
4814 rctl &= ~E1000_RCTL_CFIEN; |
|
4815 if (!(adapter->netdev->flags & IFF_PROMISC)) |
|
4816 rctl |= E1000_RCTL_VFE; |
|
4817 ew32(RCTL, rctl); |
|
4818 e1000_update_mng_vlan(adapter); |
|
4819 } else { |
|
4820 /* disable VLAN receive filtering */ |
|
4821 rctl = er32(RCTL); |
|
4822 rctl &= ~E1000_RCTL_VFE; |
|
4823 ew32(RCTL, rctl); |
|
4824 } |
|
4825 |
|
4826 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
4827 e1000_irq_enable(adapter); |
|
4828 } |
|
4829 |
|
4830 static void e1000_vlan_mode(struct net_device *netdev, |
|
4831 netdev_features_t features) |
|
4832 { |
|
4833 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4834 |
|
4835 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
4836 e1000_irq_disable(adapter); |
|
4837 |
|
4838 __e1000_vlan_mode(adapter, features); |
|
4839 |
|
4840 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
4841 e1000_irq_enable(adapter); |
|
4842 } |
|
4843 |
|
4844 static int e1000_vlan_rx_add_vid(struct net_device *netdev, |
|
4845 __be16 proto, u16 vid) |
|
4846 { |
|
4847 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4848 struct e1000_hw *hw = &adapter->hw; |
|
4849 u32 vfta, index; |
|
4850 |
|
4851 if ((hw->mng_cookie.status & |
|
4852 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && |
|
4853 (vid == adapter->mng_vlan_id)) |
|
4854 return 0; |
|
4855 |
|
4856 if (!e1000_vlan_used(adapter)) |
|
4857 e1000_vlan_filter_on_off(adapter, true); |
|
4858 |
|
4859 /* add VID to filter table */ |
|
4860 index = (vid >> 5) & 0x7F; |
|
4861 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); |
|
4862 vfta |= (1 << (vid & 0x1F)); |
|
4863 e1000_write_vfta(hw, index, vfta); |
|
4864 |
|
4865 set_bit(vid, adapter->active_vlans); |
|
4866 |
|
4867 return 0; |
|
4868 } |
|
4869 |
|
4870 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, |
|
4871 __be16 proto, u16 vid) |
|
4872 { |
|
4873 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4874 struct e1000_hw *hw = &adapter->hw; |
|
4875 u32 vfta, index; |
|
4876 |
|
4877 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
4878 e1000_irq_disable(adapter); |
|
4879 if (!test_bit(__E1000_DOWN, &adapter->flags)) |
|
4880 e1000_irq_enable(adapter); |
|
4881 |
|
4882 /* remove VID from filter table */ |
|
4883 index = (vid >> 5) & 0x7F; |
|
4884 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); |
|
4885 vfta &= ~(1 << (vid & 0x1F)); |
|
4886 e1000_write_vfta(hw, index, vfta); |
|
4887 |
|
4888 clear_bit(vid, adapter->active_vlans); |
|
4889 |
|
4890 if (!e1000_vlan_used(adapter)) |
|
4891 e1000_vlan_filter_on_off(adapter, false); |
|
4892 |
|
4893 return 0; |
|
4894 } |
|
4895 |
|
4896 static void e1000_restore_vlan(struct e1000_adapter *adapter) |
|
4897 { |
|
4898 u16 vid; |
|
4899 |
|
4900 if (!e1000_vlan_used(adapter)) |
|
4901 return; |
|
4902 |
|
4903 e1000_vlan_filter_on_off(adapter, true); |
|
4904 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) |
|
4905 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid); |
|
4906 } |
|
4907 |
|
4908 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx) |
|
4909 { |
|
4910 struct e1000_hw *hw = &adapter->hw; |
|
4911 |
|
4912 hw->autoneg = 0; |
|
4913 |
|
4914 /* Make sure dplx is at most 1 bit and lsb of speed is not set |
|
4915 * for the switch() below to work |
|
4916 */ |
|
4917 if ((spd & 1) || (dplx & ~1)) |
|
4918 goto err_inval; |
|
4919 |
|
4920 /* Fiber NICs only allow 1000 gbps Full duplex */ |
|
4921 if ((hw->media_type == e1000_media_type_fiber) && |
|
4922 spd != SPEED_1000 && |
|
4923 dplx != DUPLEX_FULL) |
|
4924 goto err_inval; |
|
4925 |
|
4926 switch (spd + dplx) { |
|
4927 case SPEED_10 + DUPLEX_HALF: |
|
4928 hw->forced_speed_duplex = e1000_10_half; |
|
4929 break; |
|
4930 case SPEED_10 + DUPLEX_FULL: |
|
4931 hw->forced_speed_duplex = e1000_10_full; |
|
4932 break; |
|
4933 case SPEED_100 + DUPLEX_HALF: |
|
4934 hw->forced_speed_duplex = e1000_100_half; |
|
4935 break; |
|
4936 case SPEED_100 + DUPLEX_FULL: |
|
4937 hw->forced_speed_duplex = e1000_100_full; |
|
4938 break; |
|
4939 case SPEED_1000 + DUPLEX_FULL: |
|
4940 hw->autoneg = 1; |
|
4941 hw->autoneg_advertised = ADVERTISE_1000_FULL; |
|
4942 break; |
|
4943 case SPEED_1000 + DUPLEX_HALF: /* not supported */ |
|
4944 default: |
|
4945 goto err_inval; |
|
4946 } |
|
4947 |
|
4948 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ |
|
4949 hw->mdix = AUTO_ALL_MODES; |
|
4950 |
|
4951 return 0; |
|
4952 |
|
4953 err_inval: |
|
4954 e_err(probe, "Unsupported Speed/Duplex configuration\n"); |
|
4955 return -EINVAL; |
|
4956 } |
|
4957 |
|
4958 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake) |
|
4959 { |
|
4960 struct net_device *netdev = pci_get_drvdata(pdev); |
|
4961 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
4962 struct e1000_hw *hw = &adapter->hw; |
|
4963 u32 ctrl, ctrl_ext, rctl, status; |
|
4964 u32 wufc = adapter->wol; |
|
4965 #ifdef CONFIG_PM |
|
4966 int retval = 0; |
|
4967 #endif |
|
4968 |
|
4969 netif_device_detach(netdev); |
|
4970 |
|
4971 if (netif_running(netdev)) { |
|
4972 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); |
|
4973 e1000_down(adapter); |
|
4974 } |
|
4975 |
|
4976 #ifdef CONFIG_PM |
|
4977 retval = pci_save_state(pdev); |
|
4978 if (retval) |
|
4979 return retval; |
|
4980 #endif |
|
4981 |
|
4982 status = er32(STATUS); |
|
4983 if (status & E1000_STATUS_LU) |
|
4984 wufc &= ~E1000_WUFC_LNKC; |
|
4985 |
|
4986 if (wufc) { |
|
4987 e1000_setup_rctl(adapter); |
|
4988 e1000_set_rx_mode(netdev); |
|
4989 |
|
4990 rctl = er32(RCTL); |
|
4991 |
|
4992 /* turn on all-multi mode if wake on multicast is enabled */ |
|
4993 if (wufc & E1000_WUFC_MC) |
|
4994 rctl |= E1000_RCTL_MPE; |
|
4995 |
|
4996 /* enable receives in the hardware */ |
|
4997 ew32(RCTL, rctl | E1000_RCTL_EN); |
|
4998 |
|
4999 if (hw->mac_type >= e1000_82540) { |
|
5000 ctrl = er32(CTRL); |
|
5001 /* advertise wake from D3Cold */ |
|
5002 #define E1000_CTRL_ADVD3WUC 0x00100000 |
|
5003 /* phy power management enable */ |
|
5004 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 |
|
5005 ctrl |= E1000_CTRL_ADVD3WUC | |
|
5006 E1000_CTRL_EN_PHY_PWR_MGMT; |
|
5007 ew32(CTRL, ctrl); |
|
5008 } |
|
5009 |
|
5010 if (hw->media_type == e1000_media_type_fiber || |
|
5011 hw->media_type == e1000_media_type_internal_serdes) { |
|
5012 /* keep the laser running in D3 */ |
|
5013 ctrl_ext = er32(CTRL_EXT); |
|
5014 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA; |
|
5015 ew32(CTRL_EXT, ctrl_ext); |
|
5016 } |
|
5017 |
|
5018 ew32(WUC, E1000_WUC_PME_EN); |
|
5019 ew32(WUFC, wufc); |
|
5020 } else { |
|
5021 ew32(WUC, 0); |
|
5022 ew32(WUFC, 0); |
|
5023 } |
|
5024 |
|
5025 e1000_release_manageability(adapter); |
|
5026 |
|
5027 *enable_wake = !!wufc; |
|
5028 |
|
5029 /* make sure adapter isn't asleep if manageability is enabled */ |
|
5030 if (adapter->en_mng_pt) |
|
5031 *enable_wake = true; |
|
5032 |
|
5033 if (netif_running(netdev)) |
|
5034 e1000_free_irq(adapter); |
|
5035 |
|
5036 pci_disable_device(pdev); |
|
5037 |
|
5038 return 0; |
|
5039 } |
|
5040 |
|
5041 #ifdef CONFIG_PM |
|
5042 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state) |
|
5043 { |
|
5044 int retval; |
|
5045 bool wake; |
|
5046 |
|
5047 retval = __e1000_shutdown(pdev, &wake); |
|
5048 if (retval) |
|
5049 return retval; |
|
5050 |
|
5051 if (wake) { |
|
5052 pci_prepare_to_sleep(pdev); |
|
5053 } else { |
|
5054 pci_wake_from_d3(pdev, false); |
|
5055 pci_set_power_state(pdev, PCI_D3hot); |
|
5056 } |
|
5057 |
|
5058 return 0; |
|
5059 } |
|
5060 |
|
5061 static int e1000_resume(struct pci_dev *pdev) |
|
5062 { |
|
5063 struct net_device *netdev = pci_get_drvdata(pdev); |
|
5064 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
5065 struct e1000_hw *hw = &adapter->hw; |
|
5066 u32 err; |
|
5067 |
|
5068 pci_set_power_state(pdev, PCI_D0); |
|
5069 pci_restore_state(pdev); |
|
5070 pci_save_state(pdev); |
|
5071 |
|
5072 if (adapter->need_ioport) |
|
5073 err = pci_enable_device(pdev); |
|
5074 else |
|
5075 err = pci_enable_device_mem(pdev); |
|
5076 if (err) { |
|
5077 pr_err("Cannot enable PCI device from suspend\n"); |
|
5078 return err; |
|
5079 } |
|
5080 pci_set_master(pdev); |
|
5081 |
|
5082 pci_enable_wake(pdev, PCI_D3hot, 0); |
|
5083 pci_enable_wake(pdev, PCI_D3cold, 0); |
|
5084 |
|
5085 if (netif_running(netdev)) { |
|
5086 err = e1000_request_irq(adapter); |
|
5087 if (err) |
|
5088 return err; |
|
5089 } |
|
5090 |
|
5091 e1000_power_up_phy(adapter); |
|
5092 e1000_reset(adapter); |
|
5093 ew32(WUS, ~0); |
|
5094 |
|
5095 e1000_init_manageability(adapter); |
|
5096 |
|
5097 if (netif_running(netdev)) |
|
5098 e1000_up(adapter); |
|
5099 |
|
5100 netif_device_attach(netdev); |
|
5101 |
|
5102 return 0; |
|
5103 } |
|
5104 #endif |
|
5105 |
|
5106 static void e1000_shutdown(struct pci_dev *pdev) |
|
5107 { |
|
5108 bool wake; |
|
5109 |
|
5110 __e1000_shutdown(pdev, &wake); |
|
5111 |
|
5112 if (system_state == SYSTEM_POWER_OFF) { |
|
5113 pci_wake_from_d3(pdev, wake); |
|
5114 pci_set_power_state(pdev, PCI_D3hot); |
|
5115 } |
|
5116 } |
|
5117 |
|
5118 #ifdef CONFIG_NET_POLL_CONTROLLER |
|
5119 /* Polling 'interrupt' - used by things like netconsole to send skbs |
|
5120 * without having to re-enable interrupts. It's not called while |
|
5121 * the interrupt routine is executing. |
|
5122 */ |
|
5123 static void e1000_netpoll(struct net_device *netdev) |
|
5124 { |
|
5125 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
5126 |
|
5127 disable_irq(adapter->pdev->irq); |
|
5128 e1000_intr(adapter->pdev->irq, netdev); |
|
5129 enable_irq(adapter->pdev->irq); |
|
5130 } |
|
5131 #endif |
|
5132 |
|
5133 /** |
|
5134 * e1000_io_error_detected - called when PCI error is detected |
|
5135 * @pdev: Pointer to PCI device |
|
5136 * @state: The current pci connection state |
|
5137 * |
|
5138 * This function is called after a PCI bus error affecting |
|
5139 * this device has been detected. |
|
5140 */ |
|
5141 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, |
|
5142 pci_channel_state_t state) |
|
5143 { |
|
5144 struct net_device *netdev = pci_get_drvdata(pdev); |
|
5145 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
5146 |
|
5147 netif_device_detach(netdev); |
|
5148 |
|
5149 if (state == pci_channel_io_perm_failure) |
|
5150 return PCI_ERS_RESULT_DISCONNECT; |
|
5151 |
|
5152 if (netif_running(netdev)) |
|
5153 e1000_down(adapter); |
|
5154 pci_disable_device(pdev); |
|
5155 |
|
5156 /* Request a slot slot reset. */ |
|
5157 return PCI_ERS_RESULT_NEED_RESET; |
|
5158 } |
|
5159 |
|
5160 /** |
|
5161 * e1000_io_slot_reset - called after the pci bus has been reset. |
|
5162 * @pdev: Pointer to PCI device |
|
5163 * |
|
5164 * Restart the card from scratch, as if from a cold-boot. Implementation |
|
5165 * resembles the first-half of the e1000_resume routine. |
|
5166 */ |
|
5167 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) |
|
5168 { |
|
5169 struct net_device *netdev = pci_get_drvdata(pdev); |
|
5170 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
5171 struct e1000_hw *hw = &adapter->hw; |
|
5172 int err; |
|
5173 |
|
5174 if (adapter->need_ioport) |
|
5175 err = pci_enable_device(pdev); |
|
5176 else |
|
5177 err = pci_enable_device_mem(pdev); |
|
5178 if (err) { |
|
5179 pr_err("Cannot re-enable PCI device after reset.\n"); |
|
5180 return PCI_ERS_RESULT_DISCONNECT; |
|
5181 } |
|
5182 pci_set_master(pdev); |
|
5183 |
|
5184 pci_enable_wake(pdev, PCI_D3hot, 0); |
|
5185 pci_enable_wake(pdev, PCI_D3cold, 0); |
|
5186 |
|
5187 e1000_reset(adapter); |
|
5188 ew32(WUS, ~0); |
|
5189 |
|
5190 return PCI_ERS_RESULT_RECOVERED; |
|
5191 } |
|
5192 |
|
5193 /** |
|
5194 * e1000_io_resume - called when traffic can start flowing again. |
|
5195 * @pdev: Pointer to PCI device |
|
5196 * |
|
5197 * This callback is called when the error recovery driver tells us that |
|
5198 * its OK to resume normal operation. Implementation resembles the |
|
5199 * second-half of the e1000_resume routine. |
|
5200 */ |
|
5201 static void e1000_io_resume(struct pci_dev *pdev) |
|
5202 { |
|
5203 struct net_device *netdev = pci_get_drvdata(pdev); |
|
5204 struct e1000_adapter *adapter = netdev_priv(netdev); |
|
5205 |
|
5206 e1000_init_manageability(adapter); |
|
5207 |
|
5208 if (netif_running(netdev)) { |
|
5209 if (e1000_up(adapter)) { |
|
5210 pr_info("can't bring device back up after reset\n"); |
|
5211 return; |
|
5212 } |
|
5213 } |
|
5214 |
|
5215 netif_device_attach(netdev); |
|
5216 } |
|
5217 |
|
5218 /* e1000_main.c */ |