|
1 /******************************************************************************* |
|
2 |
|
3 Intel PRO/1000 Linux driver |
|
4 Copyright(c) 1999 - 2006 Intel Corporation. |
|
5 |
|
6 This program is free software; you can redistribute it and/or modify it |
|
7 under the terms and conditions of the GNU General Public License, |
|
8 version 2, as published by the Free Software Foundation. |
|
9 |
|
10 This program is distributed in the hope it will be useful, but WITHOUT |
|
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
|
13 more details. |
|
14 |
|
15 You should have received a copy of the GNU General Public License along with |
|
16 this program; if not, write to the Free Software Foundation, Inc., |
|
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 |
|
19 The full GNU General Public License is included in this distribution in |
|
20 the file called "COPYING". |
|
21 |
|
22 Contact Information: |
|
23 Linux NICS <linux.nics@intel.com> |
|
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
|
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
|
26 |
|
27 */ |
|
28 |
|
29 /* e1000_hw.c |
|
30 * Shared functions for accessing and configuring the MAC |
|
31 */ |
|
32 |
|
33 #include "e1000.h" |
|
34 |
|
35 static s32 e1000_check_downshift(struct e1000_hw *hw); |
|
36 static s32 e1000_check_polarity(struct e1000_hw *hw, |
|
37 e1000_rev_polarity *polarity); |
|
38 static void e1000_clear_hw_cntrs(struct e1000_hw *hw); |
|
39 static void e1000_clear_vfta(struct e1000_hw *hw); |
|
40 static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, |
|
41 bool link_up); |
|
42 static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw); |
|
43 static s32 e1000_detect_gig_phy(struct e1000_hw *hw); |
|
44 static s32 e1000_get_auto_rd_done(struct e1000_hw *hw); |
|
45 static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length, |
|
46 u16 *max_length); |
|
47 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw); |
|
48 static s32 e1000_id_led_init(struct e1000_hw *hw); |
|
49 static void e1000_init_rx_addrs(struct e1000_hw *hw); |
|
50 static s32 e1000_phy_igp_get_info(struct e1000_hw *hw, |
|
51 struct e1000_phy_info *phy_info); |
|
52 static s32 e1000_phy_m88_get_info(struct e1000_hw *hw, |
|
53 struct e1000_phy_info *phy_info); |
|
54 static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active); |
|
55 static s32 e1000_wait_autoneg(struct e1000_hw *hw); |
|
56 static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value); |
|
57 static s32 e1000_set_phy_type(struct e1000_hw *hw); |
|
58 static void e1000_phy_init_script(struct e1000_hw *hw); |
|
59 static s32 e1000_setup_copper_link(struct e1000_hw *hw); |
|
60 static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw); |
|
61 static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw); |
|
62 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw); |
|
63 static s32 e1000_config_mac_to_phy(struct e1000_hw *hw); |
|
64 static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl); |
|
65 static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl); |
|
66 static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count); |
|
67 static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw); |
|
68 static s32 e1000_phy_reset_dsp(struct e1000_hw *hw); |
|
69 static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, |
|
70 u16 words, u16 *data); |
|
71 static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset, |
|
72 u16 words, u16 *data); |
|
73 static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw); |
|
74 static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd); |
|
75 static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd); |
|
76 static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count); |
|
77 static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, |
|
78 u16 phy_data); |
|
79 static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, |
|
80 u16 *phy_data); |
|
81 static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count); |
|
82 static s32 e1000_acquire_eeprom(struct e1000_hw *hw); |
|
83 static void e1000_release_eeprom(struct e1000_hw *hw); |
|
84 static void e1000_standby_eeprom(struct e1000_hw *hw); |
|
85 static s32 e1000_set_vco_speed(struct e1000_hw *hw); |
|
86 static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw); |
|
87 static s32 e1000_set_phy_mode(struct e1000_hw *hw); |
|
88 static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, |
|
89 u16 *data); |
|
90 static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, |
|
91 u16 *data); |
|
92 |
|
93 /* IGP cable length table */ |
|
94 static const |
|
95 u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = { |
|
96 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, |
|
97 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25, |
|
98 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40, |
|
99 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60, |
|
100 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90, |
|
101 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, |
|
102 100, |
|
103 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, |
|
104 110, 110, |
|
105 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, |
|
106 120, 120 |
|
107 }; |
|
108 |
|
109 static DEFINE_SPINLOCK(e1000_eeprom_lock); |
|
110 static DEFINE_SPINLOCK(e1000_phy_lock); |
|
111 |
|
112 /** |
|
113 * e1000_set_phy_type - Set the phy type member in the hw struct. |
|
114 * @hw: Struct containing variables accessed by shared code |
|
115 */ |
|
116 static s32 e1000_set_phy_type(struct e1000_hw *hw) |
|
117 { |
|
118 if (hw->mac_type == e1000_undefined) |
|
119 return -E1000_ERR_PHY_TYPE; |
|
120 |
|
121 switch (hw->phy_id) { |
|
122 case M88E1000_E_PHY_ID: |
|
123 case M88E1000_I_PHY_ID: |
|
124 case M88E1011_I_PHY_ID: |
|
125 case M88E1111_I_PHY_ID: |
|
126 case M88E1118_E_PHY_ID: |
|
127 hw->phy_type = e1000_phy_m88; |
|
128 break; |
|
129 case IGP01E1000_I_PHY_ID: |
|
130 if (hw->mac_type == e1000_82541 || |
|
131 hw->mac_type == e1000_82541_rev_2 || |
|
132 hw->mac_type == e1000_82547 || |
|
133 hw->mac_type == e1000_82547_rev_2) |
|
134 hw->phy_type = e1000_phy_igp; |
|
135 break; |
|
136 case RTL8211B_PHY_ID: |
|
137 hw->phy_type = e1000_phy_8211; |
|
138 break; |
|
139 case RTL8201N_PHY_ID: |
|
140 hw->phy_type = e1000_phy_8201; |
|
141 break; |
|
142 default: |
|
143 /* Should never have loaded on this device */ |
|
144 hw->phy_type = e1000_phy_undefined; |
|
145 return -E1000_ERR_PHY_TYPE; |
|
146 } |
|
147 |
|
148 return E1000_SUCCESS; |
|
149 } |
|
150 |
|
151 /** |
|
152 * e1000_phy_init_script - IGP phy init script - initializes the GbE PHY |
|
153 * @hw: Struct containing variables accessed by shared code |
|
154 */ |
|
155 static void e1000_phy_init_script(struct e1000_hw *hw) |
|
156 { |
|
157 u32 ret_val; |
|
158 u16 phy_saved_data; |
|
159 |
|
160 if (hw->phy_init_script) { |
|
161 msleep(20); |
|
162 |
|
163 /* Save off the current value of register 0x2F5B to be restored |
|
164 * at the end of this routine. |
|
165 */ |
|
166 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); |
|
167 |
|
168 /* Disabled the PHY transmitter */ |
|
169 e1000_write_phy_reg(hw, 0x2F5B, 0x0003); |
|
170 msleep(20); |
|
171 |
|
172 e1000_write_phy_reg(hw, 0x0000, 0x0140); |
|
173 msleep(5); |
|
174 |
|
175 switch (hw->mac_type) { |
|
176 case e1000_82541: |
|
177 case e1000_82547: |
|
178 e1000_write_phy_reg(hw, 0x1F95, 0x0001); |
|
179 e1000_write_phy_reg(hw, 0x1F71, 0xBD21); |
|
180 e1000_write_phy_reg(hw, 0x1F79, 0x0018); |
|
181 e1000_write_phy_reg(hw, 0x1F30, 0x1600); |
|
182 e1000_write_phy_reg(hw, 0x1F31, 0x0014); |
|
183 e1000_write_phy_reg(hw, 0x1F32, 0x161C); |
|
184 e1000_write_phy_reg(hw, 0x1F94, 0x0003); |
|
185 e1000_write_phy_reg(hw, 0x1F96, 0x003F); |
|
186 e1000_write_phy_reg(hw, 0x2010, 0x0008); |
|
187 break; |
|
188 |
|
189 case e1000_82541_rev_2: |
|
190 case e1000_82547_rev_2: |
|
191 e1000_write_phy_reg(hw, 0x1F73, 0x0099); |
|
192 break; |
|
193 default: |
|
194 break; |
|
195 } |
|
196 |
|
197 e1000_write_phy_reg(hw, 0x0000, 0x3300); |
|
198 msleep(20); |
|
199 |
|
200 /* Now enable the transmitter */ |
|
201 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); |
|
202 |
|
203 if (hw->mac_type == e1000_82547) { |
|
204 u16 fused, fine, coarse; |
|
205 |
|
206 /* Move to analog registers page */ |
|
207 e1000_read_phy_reg(hw, |
|
208 IGP01E1000_ANALOG_SPARE_FUSE_STATUS, |
|
209 &fused); |
|
210 |
|
211 if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) { |
|
212 e1000_read_phy_reg(hw, |
|
213 IGP01E1000_ANALOG_FUSE_STATUS, |
|
214 &fused); |
|
215 |
|
216 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK; |
|
217 coarse = |
|
218 fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK; |
|
219 |
|
220 if (coarse > |
|
221 IGP01E1000_ANALOG_FUSE_COARSE_THRESH) { |
|
222 coarse -= |
|
223 IGP01E1000_ANALOG_FUSE_COARSE_10; |
|
224 fine -= IGP01E1000_ANALOG_FUSE_FINE_1; |
|
225 } else if (coarse == |
|
226 IGP01E1000_ANALOG_FUSE_COARSE_THRESH) |
|
227 fine -= IGP01E1000_ANALOG_FUSE_FINE_10; |
|
228 |
|
229 fused = |
|
230 (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) | |
|
231 (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) | |
|
232 (coarse & |
|
233 IGP01E1000_ANALOG_FUSE_COARSE_MASK); |
|
234 |
|
235 e1000_write_phy_reg(hw, |
|
236 IGP01E1000_ANALOG_FUSE_CONTROL, |
|
237 fused); |
|
238 e1000_write_phy_reg(hw, |
|
239 IGP01E1000_ANALOG_FUSE_BYPASS, |
|
240 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL); |
|
241 } |
|
242 } |
|
243 } |
|
244 } |
|
245 |
|
246 /** |
|
247 * e1000_set_mac_type - Set the mac type member in the hw struct. |
|
248 * @hw: Struct containing variables accessed by shared code |
|
249 */ |
|
250 s32 e1000_set_mac_type(struct e1000_hw *hw) |
|
251 { |
|
252 switch (hw->device_id) { |
|
253 case E1000_DEV_ID_82542: |
|
254 switch (hw->revision_id) { |
|
255 case E1000_82542_2_0_REV_ID: |
|
256 hw->mac_type = e1000_82542_rev2_0; |
|
257 break; |
|
258 case E1000_82542_2_1_REV_ID: |
|
259 hw->mac_type = e1000_82542_rev2_1; |
|
260 break; |
|
261 default: |
|
262 /* Invalid 82542 revision ID */ |
|
263 return -E1000_ERR_MAC_TYPE; |
|
264 } |
|
265 break; |
|
266 case E1000_DEV_ID_82543GC_FIBER: |
|
267 case E1000_DEV_ID_82543GC_COPPER: |
|
268 hw->mac_type = e1000_82543; |
|
269 break; |
|
270 case E1000_DEV_ID_82544EI_COPPER: |
|
271 case E1000_DEV_ID_82544EI_FIBER: |
|
272 case E1000_DEV_ID_82544GC_COPPER: |
|
273 case E1000_DEV_ID_82544GC_LOM: |
|
274 hw->mac_type = e1000_82544; |
|
275 break; |
|
276 case E1000_DEV_ID_82540EM: |
|
277 case E1000_DEV_ID_82540EM_LOM: |
|
278 case E1000_DEV_ID_82540EP: |
|
279 case E1000_DEV_ID_82540EP_LOM: |
|
280 case E1000_DEV_ID_82540EP_LP: |
|
281 hw->mac_type = e1000_82540; |
|
282 break; |
|
283 case E1000_DEV_ID_82545EM_COPPER: |
|
284 case E1000_DEV_ID_82545EM_FIBER: |
|
285 hw->mac_type = e1000_82545; |
|
286 break; |
|
287 case E1000_DEV_ID_82545GM_COPPER: |
|
288 case E1000_DEV_ID_82545GM_FIBER: |
|
289 case E1000_DEV_ID_82545GM_SERDES: |
|
290 hw->mac_type = e1000_82545_rev_3; |
|
291 break; |
|
292 case E1000_DEV_ID_82546EB_COPPER: |
|
293 case E1000_DEV_ID_82546EB_FIBER: |
|
294 case E1000_DEV_ID_82546EB_QUAD_COPPER: |
|
295 hw->mac_type = e1000_82546; |
|
296 break; |
|
297 case E1000_DEV_ID_82546GB_COPPER: |
|
298 case E1000_DEV_ID_82546GB_FIBER: |
|
299 case E1000_DEV_ID_82546GB_SERDES: |
|
300 case E1000_DEV_ID_82546GB_PCIE: |
|
301 case E1000_DEV_ID_82546GB_QUAD_COPPER: |
|
302 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: |
|
303 hw->mac_type = e1000_82546_rev_3; |
|
304 break; |
|
305 case E1000_DEV_ID_82541EI: |
|
306 case E1000_DEV_ID_82541EI_MOBILE: |
|
307 case E1000_DEV_ID_82541ER_LOM: |
|
308 hw->mac_type = e1000_82541; |
|
309 break; |
|
310 case E1000_DEV_ID_82541ER: |
|
311 case E1000_DEV_ID_82541GI: |
|
312 case E1000_DEV_ID_82541GI_LF: |
|
313 case E1000_DEV_ID_82541GI_MOBILE: |
|
314 hw->mac_type = e1000_82541_rev_2; |
|
315 break; |
|
316 case E1000_DEV_ID_82547EI: |
|
317 case E1000_DEV_ID_82547EI_MOBILE: |
|
318 hw->mac_type = e1000_82547; |
|
319 break; |
|
320 case E1000_DEV_ID_82547GI: |
|
321 hw->mac_type = e1000_82547_rev_2; |
|
322 break; |
|
323 case E1000_DEV_ID_INTEL_CE4100_GBE: |
|
324 hw->mac_type = e1000_ce4100; |
|
325 break; |
|
326 default: |
|
327 /* Should never have loaded on this device */ |
|
328 return -E1000_ERR_MAC_TYPE; |
|
329 } |
|
330 |
|
331 switch (hw->mac_type) { |
|
332 case e1000_82541: |
|
333 case e1000_82547: |
|
334 case e1000_82541_rev_2: |
|
335 case e1000_82547_rev_2: |
|
336 hw->asf_firmware_present = true; |
|
337 break; |
|
338 default: |
|
339 break; |
|
340 } |
|
341 |
|
342 /* The 82543 chip does not count tx_carrier_errors properly in |
|
343 * FD mode |
|
344 */ |
|
345 if (hw->mac_type == e1000_82543) |
|
346 hw->bad_tx_carr_stats_fd = true; |
|
347 |
|
348 if (hw->mac_type > e1000_82544) |
|
349 hw->has_smbus = true; |
|
350 |
|
351 return E1000_SUCCESS; |
|
352 } |
|
353 |
|
354 /** |
|
355 * e1000_set_media_type - Set media type and TBI compatibility. |
|
356 * @hw: Struct containing variables accessed by shared code |
|
357 */ |
|
358 void e1000_set_media_type(struct e1000_hw *hw) |
|
359 { |
|
360 u32 status; |
|
361 |
|
362 if (hw->mac_type != e1000_82543) { |
|
363 /* tbi_compatibility is only valid on 82543 */ |
|
364 hw->tbi_compatibility_en = false; |
|
365 } |
|
366 |
|
367 switch (hw->device_id) { |
|
368 case E1000_DEV_ID_82545GM_SERDES: |
|
369 case E1000_DEV_ID_82546GB_SERDES: |
|
370 hw->media_type = e1000_media_type_internal_serdes; |
|
371 break; |
|
372 default: |
|
373 switch (hw->mac_type) { |
|
374 case e1000_82542_rev2_0: |
|
375 case e1000_82542_rev2_1: |
|
376 hw->media_type = e1000_media_type_fiber; |
|
377 break; |
|
378 case e1000_ce4100: |
|
379 hw->media_type = e1000_media_type_copper; |
|
380 break; |
|
381 default: |
|
382 status = er32(STATUS); |
|
383 if (status & E1000_STATUS_TBIMODE) { |
|
384 hw->media_type = e1000_media_type_fiber; |
|
385 /* tbi_compatibility not valid on fiber */ |
|
386 hw->tbi_compatibility_en = false; |
|
387 } else { |
|
388 hw->media_type = e1000_media_type_copper; |
|
389 } |
|
390 break; |
|
391 } |
|
392 } |
|
393 } |
|
394 |
|
395 /** |
|
396 * e1000_reset_hw - reset the hardware completely |
|
397 * @hw: Struct containing variables accessed by shared code |
|
398 * |
|
399 * Reset the transmit and receive units; mask and clear all interrupts. |
|
400 */ |
|
401 s32 e1000_reset_hw(struct e1000_hw *hw) |
|
402 { |
|
403 u32 ctrl; |
|
404 u32 ctrl_ext; |
|
405 u32 icr; |
|
406 u32 manc; |
|
407 u32 led_ctrl; |
|
408 s32 ret_val; |
|
409 |
|
410 /* For 82542 (rev 2.0), disable MWI before issuing a device reset */ |
|
411 if (hw->mac_type == e1000_82542_rev2_0) { |
|
412 e_dbg("Disabling MWI on 82542 rev 2.0\n"); |
|
413 e1000_pci_clear_mwi(hw); |
|
414 } |
|
415 |
|
416 /* Clear interrupt mask to stop board from generating interrupts */ |
|
417 e_dbg("Masking off all interrupts\n"); |
|
418 ew32(IMC, 0xffffffff); |
|
419 |
|
420 /* Disable the Transmit and Receive units. Then delay to allow |
|
421 * any pending transactions to complete before we hit the MAC with |
|
422 * the global reset. |
|
423 */ |
|
424 ew32(RCTL, 0); |
|
425 ew32(TCTL, E1000_TCTL_PSP); |
|
426 E1000_WRITE_FLUSH(); |
|
427 |
|
428 /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */ |
|
429 hw->tbi_compatibility_on = false; |
|
430 |
|
431 /* Delay to allow any outstanding PCI transactions to complete before |
|
432 * resetting the device |
|
433 */ |
|
434 msleep(10); |
|
435 |
|
436 ctrl = er32(CTRL); |
|
437 |
|
438 /* Must reset the PHY before resetting the MAC */ |
|
439 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { |
|
440 ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST)); |
|
441 E1000_WRITE_FLUSH(); |
|
442 msleep(5); |
|
443 } |
|
444 |
|
445 /* Issue a global reset to the MAC. This will reset the chip's |
|
446 * transmit, receive, DMA, and link units. It will not effect |
|
447 * the current PCI configuration. The global reset bit is self- |
|
448 * clearing, and should clear within a microsecond. |
|
449 */ |
|
450 e_dbg("Issuing a global reset to MAC\n"); |
|
451 |
|
452 switch (hw->mac_type) { |
|
453 case e1000_82544: |
|
454 case e1000_82540: |
|
455 case e1000_82545: |
|
456 case e1000_82546: |
|
457 case e1000_82541: |
|
458 case e1000_82541_rev_2: |
|
459 /* These controllers can't ack the 64-bit write when issuing the |
|
460 * reset, so use IO-mapping as a workaround to issue the reset |
|
461 */ |
|
462 E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST)); |
|
463 break; |
|
464 case e1000_82545_rev_3: |
|
465 case e1000_82546_rev_3: |
|
466 /* Reset is performed on a shadow of the control register */ |
|
467 ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST)); |
|
468 break; |
|
469 case e1000_ce4100: |
|
470 default: |
|
471 ew32(CTRL, (ctrl | E1000_CTRL_RST)); |
|
472 break; |
|
473 } |
|
474 |
|
475 /* After MAC reset, force reload of EEPROM to restore power-on settings |
|
476 * to device. Later controllers reload the EEPROM automatically, so |
|
477 * just wait for reload to complete. |
|
478 */ |
|
479 switch (hw->mac_type) { |
|
480 case e1000_82542_rev2_0: |
|
481 case e1000_82542_rev2_1: |
|
482 case e1000_82543: |
|
483 case e1000_82544: |
|
484 /* Wait for reset to complete */ |
|
485 udelay(10); |
|
486 ctrl_ext = er32(CTRL_EXT); |
|
487 ctrl_ext |= E1000_CTRL_EXT_EE_RST; |
|
488 ew32(CTRL_EXT, ctrl_ext); |
|
489 E1000_WRITE_FLUSH(); |
|
490 /* Wait for EEPROM reload */ |
|
491 msleep(2); |
|
492 break; |
|
493 case e1000_82541: |
|
494 case e1000_82541_rev_2: |
|
495 case e1000_82547: |
|
496 case e1000_82547_rev_2: |
|
497 /* Wait for EEPROM reload */ |
|
498 msleep(20); |
|
499 break; |
|
500 default: |
|
501 /* Auto read done will delay 5ms or poll based on mac type */ |
|
502 ret_val = e1000_get_auto_rd_done(hw); |
|
503 if (ret_val) |
|
504 return ret_val; |
|
505 break; |
|
506 } |
|
507 |
|
508 /* Disable HW ARPs on ASF enabled adapters */ |
|
509 if (hw->mac_type >= e1000_82540) { |
|
510 manc = er32(MANC); |
|
511 manc &= ~(E1000_MANC_ARP_EN); |
|
512 ew32(MANC, manc); |
|
513 } |
|
514 |
|
515 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { |
|
516 e1000_phy_init_script(hw); |
|
517 |
|
518 /* Configure activity LED after PHY reset */ |
|
519 led_ctrl = er32(LEDCTL); |
|
520 led_ctrl &= IGP_ACTIVITY_LED_MASK; |
|
521 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); |
|
522 ew32(LEDCTL, led_ctrl); |
|
523 } |
|
524 |
|
525 /* Clear interrupt mask to stop board from generating interrupts */ |
|
526 e_dbg("Masking off all interrupts\n"); |
|
527 ew32(IMC, 0xffffffff); |
|
528 |
|
529 /* Clear any pending interrupt events. */ |
|
530 icr = er32(ICR); |
|
531 |
|
532 /* If MWI was previously enabled, reenable it. */ |
|
533 if (hw->mac_type == e1000_82542_rev2_0) { |
|
534 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) |
|
535 e1000_pci_set_mwi(hw); |
|
536 } |
|
537 |
|
538 return E1000_SUCCESS; |
|
539 } |
|
540 |
|
541 /** |
|
542 * e1000_init_hw - Performs basic configuration of the adapter. |
|
543 * @hw: Struct containing variables accessed by shared code |
|
544 * |
|
545 * Assumes that the controller has previously been reset and is in a |
|
546 * post-reset uninitialized state. Initializes the receive address registers, |
|
547 * multicast table, and VLAN filter table. Calls routines to setup link |
|
548 * configuration and flow control settings. Clears all on-chip counters. Leaves |
|
549 * the transmit and receive units disabled and uninitialized. |
|
550 */ |
|
551 s32 e1000_init_hw(struct e1000_hw *hw) |
|
552 { |
|
553 u32 ctrl; |
|
554 u32 i; |
|
555 s32 ret_val; |
|
556 u32 mta_size; |
|
557 u32 ctrl_ext; |
|
558 |
|
559 /* Initialize Identification LED */ |
|
560 ret_val = e1000_id_led_init(hw); |
|
561 if (ret_val) { |
|
562 e_dbg("Error Initializing Identification LED\n"); |
|
563 return ret_val; |
|
564 } |
|
565 |
|
566 /* Set the media type and TBI compatibility */ |
|
567 e1000_set_media_type(hw); |
|
568 |
|
569 /* Disabling VLAN filtering. */ |
|
570 e_dbg("Initializing the IEEE VLAN\n"); |
|
571 if (hw->mac_type < e1000_82545_rev_3) |
|
572 ew32(VET, 0); |
|
573 e1000_clear_vfta(hw); |
|
574 |
|
575 /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ |
|
576 if (hw->mac_type == e1000_82542_rev2_0) { |
|
577 e_dbg("Disabling MWI on 82542 rev 2.0\n"); |
|
578 e1000_pci_clear_mwi(hw); |
|
579 ew32(RCTL, E1000_RCTL_RST); |
|
580 E1000_WRITE_FLUSH(); |
|
581 msleep(5); |
|
582 } |
|
583 |
|
584 /* Setup the receive address. This involves initializing all of the |
|
585 * Receive Address Registers (RARs 0 - 15). |
|
586 */ |
|
587 e1000_init_rx_addrs(hw); |
|
588 |
|
589 /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */ |
|
590 if (hw->mac_type == e1000_82542_rev2_0) { |
|
591 ew32(RCTL, 0); |
|
592 E1000_WRITE_FLUSH(); |
|
593 msleep(1); |
|
594 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) |
|
595 e1000_pci_set_mwi(hw); |
|
596 } |
|
597 |
|
598 /* Zero out the Multicast HASH table */ |
|
599 e_dbg("Zeroing the MTA\n"); |
|
600 mta_size = E1000_MC_TBL_SIZE; |
|
601 for (i = 0; i < mta_size; i++) { |
|
602 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); |
|
603 /* use write flush to prevent Memory Write Block (MWB) from |
|
604 * occurring when accessing our register space |
|
605 */ |
|
606 E1000_WRITE_FLUSH(); |
|
607 } |
|
608 |
|
609 /* Set the PCI priority bit correctly in the CTRL register. This |
|
610 * determines if the adapter gives priority to receives, or if it |
|
611 * gives equal priority to transmits and receives. Valid only on |
|
612 * 82542 and 82543 silicon. |
|
613 */ |
|
614 if (hw->dma_fairness && hw->mac_type <= e1000_82543) { |
|
615 ctrl = er32(CTRL); |
|
616 ew32(CTRL, ctrl | E1000_CTRL_PRIOR); |
|
617 } |
|
618 |
|
619 switch (hw->mac_type) { |
|
620 case e1000_82545_rev_3: |
|
621 case e1000_82546_rev_3: |
|
622 break; |
|
623 default: |
|
624 /* Workaround for PCI-X problem when BIOS sets MMRBC |
|
625 * incorrectly. |
|
626 */ |
|
627 if (hw->bus_type == e1000_bus_type_pcix |
|
628 && e1000_pcix_get_mmrbc(hw) > 2048) |
|
629 e1000_pcix_set_mmrbc(hw, 2048); |
|
630 break; |
|
631 } |
|
632 |
|
633 /* Call a subroutine to configure the link and setup flow control. */ |
|
634 ret_val = e1000_setup_link(hw); |
|
635 |
|
636 /* Set the transmit descriptor write-back policy */ |
|
637 if (hw->mac_type > e1000_82544) { |
|
638 ctrl = er32(TXDCTL); |
|
639 ctrl = |
|
640 (ctrl & ~E1000_TXDCTL_WTHRESH) | |
|
641 E1000_TXDCTL_FULL_TX_DESC_WB; |
|
642 ew32(TXDCTL, ctrl); |
|
643 } |
|
644 |
|
645 /* Clear all of the statistics registers (clear on read). It is |
|
646 * important that we do this after we have tried to establish link |
|
647 * because the symbol error count will increment wildly if there |
|
648 * is no link. |
|
649 */ |
|
650 e1000_clear_hw_cntrs(hw); |
|
651 |
|
652 if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER || |
|
653 hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) { |
|
654 ctrl_ext = er32(CTRL_EXT); |
|
655 /* Relaxed ordering must be disabled to avoid a parity |
|
656 * error crash in a PCI slot. |
|
657 */ |
|
658 ctrl_ext |= E1000_CTRL_EXT_RO_DIS; |
|
659 ew32(CTRL_EXT, ctrl_ext); |
|
660 } |
|
661 |
|
662 return ret_val; |
|
663 } |
|
664 |
|
665 /** |
|
666 * e1000_adjust_serdes_amplitude - Adjust SERDES output amplitude based on EEPROM setting. |
|
667 * @hw: Struct containing variables accessed by shared code. |
|
668 */ |
|
669 static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw) |
|
670 { |
|
671 u16 eeprom_data; |
|
672 s32 ret_val; |
|
673 |
|
674 if (hw->media_type != e1000_media_type_internal_serdes) |
|
675 return E1000_SUCCESS; |
|
676 |
|
677 switch (hw->mac_type) { |
|
678 case e1000_82545_rev_3: |
|
679 case e1000_82546_rev_3: |
|
680 break; |
|
681 default: |
|
682 return E1000_SUCCESS; |
|
683 } |
|
684 |
|
685 ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, |
|
686 &eeprom_data); |
|
687 if (ret_val) { |
|
688 return ret_val; |
|
689 } |
|
690 |
|
691 if (eeprom_data != EEPROM_RESERVED_WORD) { |
|
692 /* Adjust SERDES output amplitude only. */ |
|
693 eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK; |
|
694 ret_val = |
|
695 e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data); |
|
696 if (ret_val) |
|
697 return ret_val; |
|
698 } |
|
699 |
|
700 return E1000_SUCCESS; |
|
701 } |
|
702 |
|
703 /** |
|
704 * e1000_setup_link - Configures flow control and link settings. |
|
705 * @hw: Struct containing variables accessed by shared code |
|
706 * |
|
707 * Determines which flow control settings to use. Calls the appropriate media- |
|
708 * specific link configuration function. Configures the flow control settings. |
|
709 * Assuming the adapter has a valid link partner, a valid link should be |
|
710 * established. Assumes the hardware has previously been reset and the |
|
711 * transmitter and receiver are not enabled. |
|
712 */ |
|
713 s32 e1000_setup_link(struct e1000_hw *hw) |
|
714 { |
|
715 u32 ctrl_ext; |
|
716 s32 ret_val; |
|
717 u16 eeprom_data; |
|
718 |
|
719 /* Read and store word 0x0F of the EEPROM. This word contains bits |
|
720 * that determine the hardware's default PAUSE (flow control) mode, |
|
721 * a bit that determines whether the HW defaults to enabling or |
|
722 * disabling auto-negotiation, and the direction of the |
|
723 * SW defined pins. If there is no SW over-ride of the flow |
|
724 * control setting, then the variable hw->fc will |
|
725 * be initialized based on a value in the EEPROM. |
|
726 */ |
|
727 if (hw->fc == E1000_FC_DEFAULT) { |
|
728 ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, |
|
729 1, &eeprom_data); |
|
730 if (ret_val) { |
|
731 e_dbg("EEPROM Read Error\n"); |
|
732 return -E1000_ERR_EEPROM; |
|
733 } |
|
734 if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0) |
|
735 hw->fc = E1000_FC_NONE; |
|
736 else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == |
|
737 EEPROM_WORD0F_ASM_DIR) |
|
738 hw->fc = E1000_FC_TX_PAUSE; |
|
739 else |
|
740 hw->fc = E1000_FC_FULL; |
|
741 } |
|
742 |
|
743 /* We want to save off the original Flow Control configuration just |
|
744 * in case we get disconnected and then reconnected into a different |
|
745 * hub or switch with different Flow Control capabilities. |
|
746 */ |
|
747 if (hw->mac_type == e1000_82542_rev2_0) |
|
748 hw->fc &= (~E1000_FC_TX_PAUSE); |
|
749 |
|
750 if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1)) |
|
751 hw->fc &= (~E1000_FC_RX_PAUSE); |
|
752 |
|
753 hw->original_fc = hw->fc; |
|
754 |
|
755 e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc); |
|
756 |
|
757 /* Take the 4 bits from EEPROM word 0x0F that determine the initial |
|
758 * polarity value for the SW controlled pins, and setup the |
|
759 * Extended Device Control reg with that info. |
|
760 * This is needed because one of the SW controlled pins is used for |
|
761 * signal detection. So this should be done before e1000_setup_pcs_link() |
|
762 * or e1000_phy_setup() is called. |
|
763 */ |
|
764 if (hw->mac_type == e1000_82543) { |
|
765 ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, |
|
766 1, &eeprom_data); |
|
767 if (ret_val) { |
|
768 e_dbg("EEPROM Read Error\n"); |
|
769 return -E1000_ERR_EEPROM; |
|
770 } |
|
771 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) << |
|
772 SWDPIO__EXT_SHIFT); |
|
773 ew32(CTRL_EXT, ctrl_ext); |
|
774 } |
|
775 |
|
776 /* Call the necessary subroutine to configure the link. */ |
|
777 ret_val = (hw->media_type == e1000_media_type_copper) ? |
|
778 e1000_setup_copper_link(hw) : e1000_setup_fiber_serdes_link(hw); |
|
779 |
|
780 /* Initialize the flow control address, type, and PAUSE timer |
|
781 * registers to their default values. This is done even if flow |
|
782 * control is disabled, because it does not hurt anything to |
|
783 * initialize these registers. |
|
784 */ |
|
785 e_dbg("Initializing the Flow Control address, type and timer regs\n"); |
|
786 |
|
787 ew32(FCT, FLOW_CONTROL_TYPE); |
|
788 ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH); |
|
789 ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW); |
|
790 |
|
791 ew32(FCTTV, hw->fc_pause_time); |
|
792 |
|
793 /* Set the flow control receive threshold registers. Normally, |
|
794 * these registers will be set to a default threshold that may be |
|
795 * adjusted later by the driver's runtime code. However, if the |
|
796 * ability to transmit pause frames in not enabled, then these |
|
797 * registers will be set to 0. |
|
798 */ |
|
799 if (!(hw->fc & E1000_FC_TX_PAUSE)) { |
|
800 ew32(FCRTL, 0); |
|
801 ew32(FCRTH, 0); |
|
802 } else { |
|
803 /* We need to set up the Receive Threshold high and low water |
|
804 * marks as well as (optionally) enabling the transmission of |
|
805 * XON frames. |
|
806 */ |
|
807 if (hw->fc_send_xon) { |
|
808 ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE)); |
|
809 ew32(FCRTH, hw->fc_high_water); |
|
810 } else { |
|
811 ew32(FCRTL, hw->fc_low_water); |
|
812 ew32(FCRTH, hw->fc_high_water); |
|
813 } |
|
814 } |
|
815 return ret_val; |
|
816 } |
|
817 |
|
818 /** |
|
819 * e1000_setup_fiber_serdes_link - prepare fiber or serdes link |
|
820 * @hw: Struct containing variables accessed by shared code |
|
821 * |
|
822 * Manipulates Physical Coding Sublayer functions in order to configure |
|
823 * link. Assumes the hardware has been previously reset and the transmitter |
|
824 * and receiver are not enabled. |
|
825 */ |
|
826 static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw) |
|
827 { |
|
828 u32 ctrl; |
|
829 u32 status; |
|
830 u32 txcw = 0; |
|
831 u32 i; |
|
832 u32 signal = 0; |
|
833 s32 ret_val; |
|
834 |
|
835 /* On adapters with a MAC newer than 82544, SWDP 1 will be |
|
836 * set when the optics detect a signal. On older adapters, it will be |
|
837 * cleared when there is a signal. This applies to fiber media only. |
|
838 * If we're on serdes media, adjust the output amplitude to value |
|
839 * set in the EEPROM. |
|
840 */ |
|
841 ctrl = er32(CTRL); |
|
842 if (hw->media_type == e1000_media_type_fiber) |
|
843 signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; |
|
844 |
|
845 ret_val = e1000_adjust_serdes_amplitude(hw); |
|
846 if (ret_val) |
|
847 return ret_val; |
|
848 |
|
849 /* Take the link out of reset */ |
|
850 ctrl &= ~(E1000_CTRL_LRST); |
|
851 |
|
852 /* Adjust VCO speed to improve BER performance */ |
|
853 ret_val = e1000_set_vco_speed(hw); |
|
854 if (ret_val) |
|
855 return ret_val; |
|
856 |
|
857 e1000_config_collision_dist(hw); |
|
858 |
|
859 /* Check for a software override of the flow control settings, and setup |
|
860 * the device accordingly. If auto-negotiation is enabled, then |
|
861 * software will have to set the "PAUSE" bits to the correct value in |
|
862 * the Tranmsit Config Word Register (TXCW) and re-start |
|
863 * auto-negotiation. However, if auto-negotiation is disabled, then |
|
864 * software will have to manually configure the two flow control enable |
|
865 * bits in the CTRL register. |
|
866 * |
|
867 * The possible values of the "fc" parameter are: |
|
868 * 0: Flow control is completely disabled |
|
869 * 1: Rx flow control is enabled (we can receive pause frames, but |
|
870 * not send pause frames). |
|
871 * 2: Tx flow control is enabled (we can send pause frames but we do |
|
872 * not support receiving pause frames). |
|
873 * 3: Both Rx and TX flow control (symmetric) are enabled. |
|
874 */ |
|
875 switch (hw->fc) { |
|
876 case E1000_FC_NONE: |
|
877 /* Flow ctrl is completely disabled by a software over-ride */ |
|
878 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); |
|
879 break; |
|
880 case E1000_FC_RX_PAUSE: |
|
881 /* Rx Flow control is enabled and Tx Flow control is disabled by |
|
882 * a software over-ride. Since there really isn't a way to |
|
883 * advertise that we are capable of Rx Pause ONLY, we will |
|
884 * advertise that we support both symmetric and asymmetric Rx |
|
885 * PAUSE. Later, we will disable the adapter's ability to send |
|
886 * PAUSE frames. |
|
887 */ |
|
888 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); |
|
889 break; |
|
890 case E1000_FC_TX_PAUSE: |
|
891 /* Tx Flow control is enabled, and Rx Flow control is disabled, |
|
892 * by a software over-ride. |
|
893 */ |
|
894 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); |
|
895 break; |
|
896 case E1000_FC_FULL: |
|
897 /* Flow control (both Rx and Tx) is enabled by a software |
|
898 * over-ride. |
|
899 */ |
|
900 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); |
|
901 break; |
|
902 default: |
|
903 e_dbg("Flow control param set incorrectly\n"); |
|
904 return -E1000_ERR_CONFIG; |
|
905 break; |
|
906 } |
|
907 |
|
908 /* Since auto-negotiation is enabled, take the link out of reset (the |
|
909 * link will be in reset, because we previously reset the chip). This |
|
910 * will restart auto-negotiation. If auto-negotiation is successful |
|
911 * then the link-up status bit will be set and the flow control enable |
|
912 * bits (RFCE and TFCE) will be set according to their negotiated value. |
|
913 */ |
|
914 e_dbg("Auto-negotiation enabled\n"); |
|
915 |
|
916 ew32(TXCW, txcw); |
|
917 ew32(CTRL, ctrl); |
|
918 E1000_WRITE_FLUSH(); |
|
919 |
|
920 hw->txcw = txcw; |
|
921 msleep(1); |
|
922 |
|
923 /* If we have a signal (the cable is plugged in) then poll for a |
|
924 * "Link-Up" indication in the Device Status Register. Time-out if a |
|
925 * link isn't seen in 500 milliseconds seconds (Auto-negotiation should |
|
926 * complete in less than 500 milliseconds even if the other end is doing |
|
927 * it in SW). For internal serdes, we just assume a signal is present, |
|
928 * then poll. |
|
929 */ |
|
930 if (hw->media_type == e1000_media_type_internal_serdes || |
|
931 (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) { |
|
932 e_dbg("Looking for Link\n"); |
|
933 for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) { |
|
934 msleep(10); |
|
935 status = er32(STATUS); |
|
936 if (status & E1000_STATUS_LU) |
|
937 break; |
|
938 } |
|
939 if (i == (LINK_UP_TIMEOUT / 10)) { |
|
940 e_dbg("Never got a valid link from auto-neg!!!\n"); |
|
941 hw->autoneg_failed = 1; |
|
942 /* AutoNeg failed to achieve a link, so we'll call |
|
943 * e1000_check_for_link. This routine will force the |
|
944 * link up if we detect a signal. This will allow us to |
|
945 * communicate with non-autonegotiating link partners. |
|
946 */ |
|
947 ret_val = e1000_check_for_link(hw); |
|
948 if (ret_val) { |
|
949 e_dbg("Error while checking for link\n"); |
|
950 return ret_val; |
|
951 } |
|
952 hw->autoneg_failed = 0; |
|
953 } else { |
|
954 hw->autoneg_failed = 0; |
|
955 e_dbg("Valid Link Found\n"); |
|
956 } |
|
957 } else { |
|
958 e_dbg("No Signal Detected\n"); |
|
959 } |
|
960 return E1000_SUCCESS; |
|
961 } |
|
962 |
|
963 /** |
|
964 * e1000_copper_link_rtl_setup - Copper link setup for e1000_phy_rtl series. |
|
965 * @hw: Struct containing variables accessed by shared code |
|
966 * |
|
967 * Commits changes to PHY configuration by calling e1000_phy_reset(). |
|
968 */ |
|
969 static s32 e1000_copper_link_rtl_setup(struct e1000_hw *hw) |
|
970 { |
|
971 s32 ret_val; |
|
972 |
|
973 /* SW reset the PHY so all changes take effect */ |
|
974 ret_val = e1000_phy_reset(hw); |
|
975 if (ret_val) { |
|
976 e_dbg("Error Resetting the PHY\n"); |
|
977 return ret_val; |
|
978 } |
|
979 |
|
980 return E1000_SUCCESS; |
|
981 } |
|
982 |
|
983 static s32 gbe_dhg_phy_setup(struct e1000_hw *hw) |
|
984 { |
|
985 s32 ret_val; |
|
986 u32 ctrl_aux; |
|
987 |
|
988 switch (hw->phy_type) { |
|
989 case e1000_phy_8211: |
|
990 ret_val = e1000_copper_link_rtl_setup(hw); |
|
991 if (ret_val) { |
|
992 e_dbg("e1000_copper_link_rtl_setup failed!\n"); |
|
993 return ret_val; |
|
994 } |
|
995 break; |
|
996 case e1000_phy_8201: |
|
997 /* Set RMII mode */ |
|
998 ctrl_aux = er32(CTL_AUX); |
|
999 ctrl_aux |= E1000_CTL_AUX_RMII; |
|
1000 ew32(CTL_AUX, ctrl_aux); |
|
1001 E1000_WRITE_FLUSH(); |
|
1002 |
|
1003 /* Disable the J/K bits required for receive */ |
|
1004 ctrl_aux = er32(CTL_AUX); |
|
1005 ctrl_aux |= 0x4; |
|
1006 ctrl_aux &= ~0x2; |
|
1007 ew32(CTL_AUX, ctrl_aux); |
|
1008 E1000_WRITE_FLUSH(); |
|
1009 ret_val = e1000_copper_link_rtl_setup(hw); |
|
1010 |
|
1011 if (ret_val) { |
|
1012 e_dbg("e1000_copper_link_rtl_setup failed!\n"); |
|
1013 return ret_val; |
|
1014 } |
|
1015 break; |
|
1016 default: |
|
1017 e_dbg("Error Resetting the PHY\n"); |
|
1018 return E1000_ERR_PHY_TYPE; |
|
1019 } |
|
1020 |
|
1021 return E1000_SUCCESS; |
|
1022 } |
|
1023 |
|
1024 /** |
|
1025 * e1000_copper_link_preconfig - early configuration for copper |
|
1026 * @hw: Struct containing variables accessed by shared code |
|
1027 * |
|
1028 * Make sure we have a valid PHY and change PHY mode before link setup. |
|
1029 */ |
|
1030 static s32 e1000_copper_link_preconfig(struct e1000_hw *hw) |
|
1031 { |
|
1032 u32 ctrl; |
|
1033 s32 ret_val; |
|
1034 u16 phy_data; |
|
1035 |
|
1036 ctrl = er32(CTRL); |
|
1037 /* With 82543, we need to force speed and duplex on the MAC equal to |
|
1038 * what the PHY speed and duplex configuration is. In addition, we need |
|
1039 * to perform a hardware reset on the PHY to take it out of reset. |
|
1040 */ |
|
1041 if (hw->mac_type > e1000_82543) { |
|
1042 ctrl |= E1000_CTRL_SLU; |
|
1043 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
|
1044 ew32(CTRL, ctrl); |
|
1045 } else { |
|
1046 ctrl |= |
|
1047 (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU); |
|
1048 ew32(CTRL, ctrl); |
|
1049 ret_val = e1000_phy_hw_reset(hw); |
|
1050 if (ret_val) |
|
1051 return ret_val; |
|
1052 } |
|
1053 |
|
1054 /* Make sure we have a valid PHY */ |
|
1055 ret_val = e1000_detect_gig_phy(hw); |
|
1056 if (ret_val) { |
|
1057 e_dbg("Error, did not detect valid phy.\n"); |
|
1058 return ret_val; |
|
1059 } |
|
1060 e_dbg("Phy ID = %x\n", hw->phy_id); |
|
1061 |
|
1062 /* Set PHY to class A mode (if necessary) */ |
|
1063 ret_val = e1000_set_phy_mode(hw); |
|
1064 if (ret_val) |
|
1065 return ret_val; |
|
1066 |
|
1067 if ((hw->mac_type == e1000_82545_rev_3) || |
|
1068 (hw->mac_type == e1000_82546_rev_3)) { |
|
1069 ret_val = |
|
1070 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
|
1071 phy_data |= 0x00000008; |
|
1072 ret_val = |
|
1073 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); |
|
1074 } |
|
1075 |
|
1076 if (hw->mac_type <= e1000_82543 || |
|
1077 hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 || |
|
1078 hw->mac_type == e1000_82541_rev_2 |
|
1079 || hw->mac_type == e1000_82547_rev_2) |
|
1080 hw->phy_reset_disable = false; |
|
1081 |
|
1082 return E1000_SUCCESS; |
|
1083 } |
|
1084 |
|
1085 /** |
|
1086 * e1000_copper_link_igp_setup - Copper link setup for e1000_phy_igp series. |
|
1087 * @hw: Struct containing variables accessed by shared code |
|
1088 */ |
|
1089 static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw) |
|
1090 { |
|
1091 u32 led_ctrl; |
|
1092 s32 ret_val; |
|
1093 u16 phy_data; |
|
1094 |
|
1095 if (hw->phy_reset_disable) |
|
1096 return E1000_SUCCESS; |
|
1097 |
|
1098 ret_val = e1000_phy_reset(hw); |
|
1099 if (ret_val) { |
|
1100 e_dbg("Error Resetting the PHY\n"); |
|
1101 return ret_val; |
|
1102 } |
|
1103 |
|
1104 /* Wait 15ms for MAC to configure PHY from eeprom settings */ |
|
1105 msleep(15); |
|
1106 /* Configure activity LED after PHY reset */ |
|
1107 led_ctrl = er32(LEDCTL); |
|
1108 led_ctrl &= IGP_ACTIVITY_LED_MASK; |
|
1109 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); |
|
1110 ew32(LEDCTL, led_ctrl); |
|
1111 |
|
1112 /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */ |
|
1113 if (hw->phy_type == e1000_phy_igp) { |
|
1114 /* disable lplu d3 during driver init */ |
|
1115 ret_val = e1000_set_d3_lplu_state(hw, false); |
|
1116 if (ret_val) { |
|
1117 e_dbg("Error Disabling LPLU D3\n"); |
|
1118 return ret_val; |
|
1119 } |
|
1120 } |
|
1121 |
|
1122 /* Configure mdi-mdix settings */ |
|
1123 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); |
|
1124 if (ret_val) |
|
1125 return ret_val; |
|
1126 |
|
1127 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { |
|
1128 hw->dsp_config_state = e1000_dsp_config_disabled; |
|
1129 /* Force MDI for earlier revs of the IGP PHY */ |
|
1130 phy_data &= |
|
1131 ~(IGP01E1000_PSCR_AUTO_MDIX | |
|
1132 IGP01E1000_PSCR_FORCE_MDI_MDIX); |
|
1133 hw->mdix = 1; |
|
1134 |
|
1135 } else { |
|
1136 hw->dsp_config_state = e1000_dsp_config_enabled; |
|
1137 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; |
|
1138 |
|
1139 switch (hw->mdix) { |
|
1140 case 1: |
|
1141 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; |
|
1142 break; |
|
1143 case 2: |
|
1144 phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; |
|
1145 break; |
|
1146 case 0: |
|
1147 default: |
|
1148 phy_data |= IGP01E1000_PSCR_AUTO_MDIX; |
|
1149 break; |
|
1150 } |
|
1151 } |
|
1152 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); |
|
1153 if (ret_val) |
|
1154 return ret_val; |
|
1155 |
|
1156 /* set auto-master slave resolution settings */ |
|
1157 if (hw->autoneg) { |
|
1158 e1000_ms_type phy_ms_setting = hw->master_slave; |
|
1159 |
|
1160 if (hw->ffe_config_state == e1000_ffe_config_active) |
|
1161 hw->ffe_config_state = e1000_ffe_config_enabled; |
|
1162 |
|
1163 if (hw->dsp_config_state == e1000_dsp_config_activated) |
|
1164 hw->dsp_config_state = e1000_dsp_config_enabled; |
|
1165 |
|
1166 /* when autonegotiation advertisement is only 1000Mbps then we |
|
1167 * should disable SmartSpeed and enable Auto MasterSlave |
|
1168 * resolution as hardware default. |
|
1169 */ |
|
1170 if (hw->autoneg_advertised == ADVERTISE_1000_FULL) { |
|
1171 /* Disable SmartSpeed */ |
|
1172 ret_val = |
|
1173 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
1174 &phy_data); |
|
1175 if (ret_val) |
|
1176 return ret_val; |
|
1177 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
|
1178 ret_val = |
|
1179 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
1180 phy_data); |
|
1181 if (ret_val) |
|
1182 return ret_val; |
|
1183 /* Set auto Master/Slave resolution process */ |
|
1184 ret_val = |
|
1185 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); |
|
1186 if (ret_val) |
|
1187 return ret_val; |
|
1188 phy_data &= ~CR_1000T_MS_ENABLE; |
|
1189 ret_val = |
|
1190 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); |
|
1191 if (ret_val) |
|
1192 return ret_val; |
|
1193 } |
|
1194 |
|
1195 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); |
|
1196 if (ret_val) |
|
1197 return ret_val; |
|
1198 |
|
1199 /* load defaults for future use */ |
|
1200 hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ? |
|
1201 ((phy_data & CR_1000T_MS_VALUE) ? |
|
1202 e1000_ms_force_master : |
|
1203 e1000_ms_force_slave) : e1000_ms_auto; |
|
1204 |
|
1205 switch (phy_ms_setting) { |
|
1206 case e1000_ms_force_master: |
|
1207 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); |
|
1208 break; |
|
1209 case e1000_ms_force_slave: |
|
1210 phy_data |= CR_1000T_MS_ENABLE; |
|
1211 phy_data &= ~(CR_1000T_MS_VALUE); |
|
1212 break; |
|
1213 case e1000_ms_auto: |
|
1214 phy_data &= ~CR_1000T_MS_ENABLE; |
|
1215 default: |
|
1216 break; |
|
1217 } |
|
1218 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); |
|
1219 if (ret_val) |
|
1220 return ret_val; |
|
1221 } |
|
1222 |
|
1223 return E1000_SUCCESS; |
|
1224 } |
|
1225 |
|
1226 /** |
|
1227 * e1000_copper_link_mgp_setup - Copper link setup for e1000_phy_m88 series. |
|
1228 * @hw: Struct containing variables accessed by shared code |
|
1229 */ |
|
1230 static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw) |
|
1231 { |
|
1232 s32 ret_val; |
|
1233 u16 phy_data; |
|
1234 |
|
1235 if (hw->phy_reset_disable) |
|
1236 return E1000_SUCCESS; |
|
1237 |
|
1238 /* Enable CRS on TX. This must be set for half-duplex operation. */ |
|
1239 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
|
1240 if (ret_val) |
|
1241 return ret_val; |
|
1242 |
|
1243 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; |
|
1244 |
|
1245 /* Options: |
|
1246 * MDI/MDI-X = 0 (default) |
|
1247 * 0 - Auto for all speeds |
|
1248 * 1 - MDI mode |
|
1249 * 2 - MDI-X mode |
|
1250 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) |
|
1251 */ |
|
1252 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; |
|
1253 |
|
1254 switch (hw->mdix) { |
|
1255 case 1: |
|
1256 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; |
|
1257 break; |
|
1258 case 2: |
|
1259 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; |
|
1260 break; |
|
1261 case 3: |
|
1262 phy_data |= M88E1000_PSCR_AUTO_X_1000T; |
|
1263 break; |
|
1264 case 0: |
|
1265 default: |
|
1266 phy_data |= M88E1000_PSCR_AUTO_X_MODE; |
|
1267 break; |
|
1268 } |
|
1269 |
|
1270 /* Options: |
|
1271 * disable_polarity_correction = 0 (default) |
|
1272 * Automatic Correction for Reversed Cable Polarity |
|
1273 * 0 - Disabled |
|
1274 * 1 - Enabled |
|
1275 */ |
|
1276 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; |
|
1277 if (hw->disable_polarity_correction == 1) |
|
1278 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; |
|
1279 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); |
|
1280 if (ret_val) |
|
1281 return ret_val; |
|
1282 |
|
1283 if (hw->phy_revision < M88E1011_I_REV_4) { |
|
1284 /* Force TX_CLK in the Extended PHY Specific Control Register |
|
1285 * to 25MHz clock. |
|
1286 */ |
|
1287 ret_val = |
|
1288 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, |
|
1289 &phy_data); |
|
1290 if (ret_val) |
|
1291 return ret_val; |
|
1292 |
|
1293 phy_data |= M88E1000_EPSCR_TX_CLK_25; |
|
1294 |
|
1295 if ((hw->phy_revision == E1000_REVISION_2) && |
|
1296 (hw->phy_id == M88E1111_I_PHY_ID)) { |
|
1297 /* Vidalia Phy, set the downshift counter to 5x */ |
|
1298 phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK); |
|
1299 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; |
|
1300 ret_val = e1000_write_phy_reg(hw, |
|
1301 M88E1000_EXT_PHY_SPEC_CTRL, |
|
1302 phy_data); |
|
1303 if (ret_val) |
|
1304 return ret_val; |
|
1305 } else { |
|
1306 /* Configure Master and Slave downshift values */ |
|
1307 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | |
|
1308 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); |
|
1309 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | |
|
1310 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); |
|
1311 ret_val = e1000_write_phy_reg(hw, |
|
1312 M88E1000_EXT_PHY_SPEC_CTRL, |
|
1313 phy_data); |
|
1314 if (ret_val) |
|
1315 return ret_val; |
|
1316 } |
|
1317 } |
|
1318 |
|
1319 /* SW Reset the PHY so all changes take effect */ |
|
1320 ret_val = e1000_phy_reset(hw); |
|
1321 if (ret_val) { |
|
1322 e_dbg("Error Resetting the PHY\n"); |
|
1323 return ret_val; |
|
1324 } |
|
1325 |
|
1326 return E1000_SUCCESS; |
|
1327 } |
|
1328 |
|
1329 /** |
|
1330 * e1000_copper_link_autoneg - setup auto-neg |
|
1331 * @hw: Struct containing variables accessed by shared code |
|
1332 * |
|
1333 * Setup auto-negotiation and flow control advertisements, |
|
1334 * and then perform auto-negotiation. |
|
1335 */ |
|
1336 static s32 e1000_copper_link_autoneg(struct e1000_hw *hw) |
|
1337 { |
|
1338 s32 ret_val; |
|
1339 u16 phy_data; |
|
1340 |
|
1341 /* Perform some bounds checking on the hw->autoneg_advertised |
|
1342 * parameter. If this variable is zero, then set it to the default. |
|
1343 */ |
|
1344 hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT; |
|
1345 |
|
1346 /* If autoneg_advertised is zero, we assume it was not defaulted |
|
1347 * by the calling code so we set to advertise full capability. |
|
1348 */ |
|
1349 if (hw->autoneg_advertised == 0) |
|
1350 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; |
|
1351 |
|
1352 /* IFE/RTL8201N PHY only supports 10/100 */ |
|
1353 if (hw->phy_type == e1000_phy_8201) |
|
1354 hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL; |
|
1355 |
|
1356 e_dbg("Reconfiguring auto-neg advertisement params\n"); |
|
1357 ret_val = e1000_phy_setup_autoneg(hw); |
|
1358 if (ret_val) { |
|
1359 e_dbg("Error Setting up Auto-Negotiation\n"); |
|
1360 return ret_val; |
|
1361 } |
|
1362 e_dbg("Restarting Auto-Neg\n"); |
|
1363 |
|
1364 /* Restart auto-negotiation by setting the Auto Neg Enable bit and |
|
1365 * the Auto Neg Restart bit in the PHY control register. |
|
1366 */ |
|
1367 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); |
|
1368 if (ret_val) |
|
1369 return ret_val; |
|
1370 |
|
1371 phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); |
|
1372 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); |
|
1373 if (ret_val) |
|
1374 return ret_val; |
|
1375 |
|
1376 /* Does the user want to wait for Auto-Neg to complete here, or |
|
1377 * check at a later time (for example, callback routine). |
|
1378 */ |
|
1379 if (hw->wait_autoneg_complete) { |
|
1380 ret_val = e1000_wait_autoneg(hw); |
|
1381 if (ret_val) { |
|
1382 e_dbg |
|
1383 ("Error while waiting for autoneg to complete\n"); |
|
1384 return ret_val; |
|
1385 } |
|
1386 } |
|
1387 |
|
1388 hw->get_link_status = true; |
|
1389 |
|
1390 return E1000_SUCCESS; |
|
1391 } |
|
1392 |
|
1393 /** |
|
1394 * e1000_copper_link_postconfig - post link setup |
|
1395 * @hw: Struct containing variables accessed by shared code |
|
1396 * |
|
1397 * Config the MAC and the PHY after link is up. |
|
1398 * 1) Set up the MAC to the current PHY speed/duplex |
|
1399 * if we are on 82543. If we |
|
1400 * are on newer silicon, we only need to configure |
|
1401 * collision distance in the Transmit Control Register. |
|
1402 * 2) Set up flow control on the MAC to that established with |
|
1403 * the link partner. |
|
1404 * 3) Config DSP to improve Gigabit link quality for some PHY revisions. |
|
1405 */ |
|
1406 static s32 e1000_copper_link_postconfig(struct e1000_hw *hw) |
|
1407 { |
|
1408 s32 ret_val; |
|
1409 |
|
1410 if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100)) { |
|
1411 e1000_config_collision_dist(hw); |
|
1412 } else { |
|
1413 ret_val = e1000_config_mac_to_phy(hw); |
|
1414 if (ret_val) { |
|
1415 e_dbg("Error configuring MAC to PHY settings\n"); |
|
1416 return ret_val; |
|
1417 } |
|
1418 } |
|
1419 ret_val = e1000_config_fc_after_link_up(hw); |
|
1420 if (ret_val) { |
|
1421 e_dbg("Error Configuring Flow Control\n"); |
|
1422 return ret_val; |
|
1423 } |
|
1424 |
|
1425 /* Config DSP to improve Giga link quality */ |
|
1426 if (hw->phy_type == e1000_phy_igp) { |
|
1427 ret_val = e1000_config_dsp_after_link_change(hw, true); |
|
1428 if (ret_val) { |
|
1429 e_dbg("Error Configuring DSP after link up\n"); |
|
1430 return ret_val; |
|
1431 } |
|
1432 } |
|
1433 |
|
1434 return E1000_SUCCESS; |
|
1435 } |
|
1436 |
|
1437 /** |
|
1438 * e1000_setup_copper_link - phy/speed/duplex setting |
|
1439 * @hw: Struct containing variables accessed by shared code |
|
1440 * |
|
1441 * Detects which PHY is present and sets up the speed and duplex |
|
1442 */ |
|
1443 static s32 e1000_setup_copper_link(struct e1000_hw *hw) |
|
1444 { |
|
1445 s32 ret_val; |
|
1446 u16 i; |
|
1447 u16 phy_data; |
|
1448 |
|
1449 /* Check if it is a valid PHY and set PHY mode if necessary. */ |
|
1450 ret_val = e1000_copper_link_preconfig(hw); |
|
1451 if (ret_val) |
|
1452 return ret_val; |
|
1453 |
|
1454 if (hw->phy_type == e1000_phy_igp) { |
|
1455 ret_val = e1000_copper_link_igp_setup(hw); |
|
1456 if (ret_val) |
|
1457 return ret_val; |
|
1458 } else if (hw->phy_type == e1000_phy_m88) { |
|
1459 ret_val = e1000_copper_link_mgp_setup(hw); |
|
1460 if (ret_val) |
|
1461 return ret_val; |
|
1462 } else { |
|
1463 ret_val = gbe_dhg_phy_setup(hw); |
|
1464 if (ret_val) { |
|
1465 e_dbg("gbe_dhg_phy_setup failed!\n"); |
|
1466 return ret_val; |
|
1467 } |
|
1468 } |
|
1469 |
|
1470 if (hw->autoneg) { |
|
1471 /* Setup autoneg and flow control advertisement |
|
1472 * and perform autonegotiation |
|
1473 */ |
|
1474 ret_val = e1000_copper_link_autoneg(hw); |
|
1475 if (ret_val) |
|
1476 return ret_val; |
|
1477 } else { |
|
1478 /* PHY will be set to 10H, 10F, 100H,or 100F |
|
1479 * depending on value from forced_speed_duplex. |
|
1480 */ |
|
1481 e_dbg("Forcing speed and duplex\n"); |
|
1482 ret_val = e1000_phy_force_speed_duplex(hw); |
|
1483 if (ret_val) { |
|
1484 e_dbg("Error Forcing Speed and Duplex\n"); |
|
1485 return ret_val; |
|
1486 } |
|
1487 } |
|
1488 |
|
1489 /* Check link status. Wait up to 100 microseconds for link to become |
|
1490 * valid. |
|
1491 */ |
|
1492 for (i = 0; i < 10; i++) { |
|
1493 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
|
1494 if (ret_val) |
|
1495 return ret_val; |
|
1496 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
|
1497 if (ret_val) |
|
1498 return ret_val; |
|
1499 |
|
1500 if (phy_data & MII_SR_LINK_STATUS) { |
|
1501 /* Config the MAC and PHY after link is up */ |
|
1502 ret_val = e1000_copper_link_postconfig(hw); |
|
1503 if (ret_val) |
|
1504 return ret_val; |
|
1505 |
|
1506 e_dbg("Valid link established!!!\n"); |
|
1507 return E1000_SUCCESS; |
|
1508 } |
|
1509 udelay(10); |
|
1510 } |
|
1511 |
|
1512 e_dbg("Unable to establish link!!!\n"); |
|
1513 return E1000_SUCCESS; |
|
1514 } |
|
1515 |
|
1516 /** |
|
1517 * e1000_phy_setup_autoneg - phy settings |
|
1518 * @hw: Struct containing variables accessed by shared code |
|
1519 * |
|
1520 * Configures PHY autoneg and flow control advertisement settings |
|
1521 */ |
|
1522 s32 e1000_phy_setup_autoneg(struct e1000_hw *hw) |
|
1523 { |
|
1524 s32 ret_val; |
|
1525 u16 mii_autoneg_adv_reg; |
|
1526 u16 mii_1000t_ctrl_reg; |
|
1527 |
|
1528 /* Read the MII Auto-Neg Advertisement Register (Address 4). */ |
|
1529 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); |
|
1530 if (ret_val) |
|
1531 return ret_val; |
|
1532 |
|
1533 /* Read the MII 1000Base-T Control Register (Address 9). */ |
|
1534 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); |
|
1535 if (ret_val) |
|
1536 return ret_val; |
|
1537 else if (hw->phy_type == e1000_phy_8201) |
|
1538 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK; |
|
1539 |
|
1540 /* Need to parse both autoneg_advertised and fc and set up |
|
1541 * the appropriate PHY registers. First we will parse for |
|
1542 * autoneg_advertised software override. Since we can advertise |
|
1543 * a plethora of combinations, we need to check each bit |
|
1544 * individually. |
|
1545 */ |
|
1546 |
|
1547 /* First we clear all the 10/100 mb speed bits in the Auto-Neg |
|
1548 * Advertisement Register (Address 4) and the 1000 mb speed bits in |
|
1549 * the 1000Base-T Control Register (Address 9). |
|
1550 */ |
|
1551 mii_autoneg_adv_reg &= ~REG4_SPEED_MASK; |
|
1552 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK; |
|
1553 |
|
1554 e_dbg("autoneg_advertised %x\n", hw->autoneg_advertised); |
|
1555 |
|
1556 /* Do we want to advertise 10 Mb Half Duplex? */ |
|
1557 if (hw->autoneg_advertised & ADVERTISE_10_HALF) { |
|
1558 e_dbg("Advertise 10mb Half duplex\n"); |
|
1559 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; |
|
1560 } |
|
1561 |
|
1562 /* Do we want to advertise 10 Mb Full Duplex? */ |
|
1563 if (hw->autoneg_advertised & ADVERTISE_10_FULL) { |
|
1564 e_dbg("Advertise 10mb Full duplex\n"); |
|
1565 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; |
|
1566 } |
|
1567 |
|
1568 /* Do we want to advertise 100 Mb Half Duplex? */ |
|
1569 if (hw->autoneg_advertised & ADVERTISE_100_HALF) { |
|
1570 e_dbg("Advertise 100mb Half duplex\n"); |
|
1571 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; |
|
1572 } |
|
1573 |
|
1574 /* Do we want to advertise 100 Mb Full Duplex? */ |
|
1575 if (hw->autoneg_advertised & ADVERTISE_100_FULL) { |
|
1576 e_dbg("Advertise 100mb Full duplex\n"); |
|
1577 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; |
|
1578 } |
|
1579 |
|
1580 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ |
|
1581 if (hw->autoneg_advertised & ADVERTISE_1000_HALF) { |
|
1582 e_dbg |
|
1583 ("Advertise 1000mb Half duplex requested, request denied!\n"); |
|
1584 } |
|
1585 |
|
1586 /* Do we want to advertise 1000 Mb Full Duplex? */ |
|
1587 if (hw->autoneg_advertised & ADVERTISE_1000_FULL) { |
|
1588 e_dbg("Advertise 1000mb Full duplex\n"); |
|
1589 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; |
|
1590 } |
|
1591 |
|
1592 /* Check for a software override of the flow control settings, and |
|
1593 * setup the PHY advertisement registers accordingly. If |
|
1594 * auto-negotiation is enabled, then software will have to set the |
|
1595 * "PAUSE" bits to the correct value in the Auto-Negotiation |
|
1596 * Advertisement Register (PHY_AUTONEG_ADV) and re-start |
|
1597 * auto-negotiation. |
|
1598 * |
|
1599 * The possible values of the "fc" parameter are: |
|
1600 * 0: Flow control is completely disabled |
|
1601 * 1: Rx flow control is enabled (we can receive pause frames |
|
1602 * but not send pause frames). |
|
1603 * 2: Tx flow control is enabled (we can send pause frames |
|
1604 * but we do not support receiving pause frames). |
|
1605 * 3: Both Rx and TX flow control (symmetric) are enabled. |
|
1606 * other: No software override. The flow control configuration |
|
1607 * in the EEPROM is used. |
|
1608 */ |
|
1609 switch (hw->fc) { |
|
1610 case E1000_FC_NONE: /* 0 */ |
|
1611 /* Flow control (RX & TX) is completely disabled by a |
|
1612 * software over-ride. |
|
1613 */ |
|
1614 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); |
|
1615 break; |
|
1616 case E1000_FC_RX_PAUSE: /* 1 */ |
|
1617 /* RX Flow control is enabled, and TX Flow control is |
|
1618 * disabled, by a software over-ride. |
|
1619 */ |
|
1620 /* Since there really isn't a way to advertise that we are |
|
1621 * capable of RX Pause ONLY, we will advertise that we |
|
1622 * support both symmetric and asymmetric RX PAUSE. Later |
|
1623 * (in e1000_config_fc_after_link_up) we will disable the |
|
1624 * hw's ability to send PAUSE frames. |
|
1625 */ |
|
1626 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); |
|
1627 break; |
|
1628 case E1000_FC_TX_PAUSE: /* 2 */ |
|
1629 /* TX Flow control is enabled, and RX Flow control is |
|
1630 * disabled, by a software over-ride. |
|
1631 */ |
|
1632 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; |
|
1633 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; |
|
1634 break; |
|
1635 case E1000_FC_FULL: /* 3 */ |
|
1636 /* Flow control (both RX and TX) is enabled by a software |
|
1637 * over-ride. |
|
1638 */ |
|
1639 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); |
|
1640 break; |
|
1641 default: |
|
1642 e_dbg("Flow control param set incorrectly\n"); |
|
1643 return -E1000_ERR_CONFIG; |
|
1644 } |
|
1645 |
|
1646 ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); |
|
1647 if (ret_val) |
|
1648 return ret_val; |
|
1649 |
|
1650 e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); |
|
1651 |
|
1652 if (hw->phy_type == e1000_phy_8201) { |
|
1653 mii_1000t_ctrl_reg = 0; |
|
1654 } else { |
|
1655 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, |
|
1656 mii_1000t_ctrl_reg); |
|
1657 if (ret_val) |
|
1658 return ret_val; |
|
1659 } |
|
1660 |
|
1661 return E1000_SUCCESS; |
|
1662 } |
|
1663 |
|
1664 /** |
|
1665 * e1000_phy_force_speed_duplex - force link settings |
|
1666 * @hw: Struct containing variables accessed by shared code |
|
1667 * |
|
1668 * Force PHY speed and duplex settings to hw->forced_speed_duplex |
|
1669 */ |
|
1670 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw) |
|
1671 { |
|
1672 u32 ctrl; |
|
1673 s32 ret_val; |
|
1674 u16 mii_ctrl_reg; |
|
1675 u16 mii_status_reg; |
|
1676 u16 phy_data; |
|
1677 u16 i; |
|
1678 |
|
1679 /* Turn off Flow control if we are forcing speed and duplex. */ |
|
1680 hw->fc = E1000_FC_NONE; |
|
1681 |
|
1682 e_dbg("hw->fc = %d\n", hw->fc); |
|
1683 |
|
1684 /* Read the Device Control Register. */ |
|
1685 ctrl = er32(CTRL); |
|
1686 |
|
1687 /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */ |
|
1688 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
|
1689 ctrl &= ~(DEVICE_SPEED_MASK); |
|
1690 |
|
1691 /* Clear the Auto Speed Detect Enable bit. */ |
|
1692 ctrl &= ~E1000_CTRL_ASDE; |
|
1693 |
|
1694 /* Read the MII Control Register. */ |
|
1695 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg); |
|
1696 if (ret_val) |
|
1697 return ret_val; |
|
1698 |
|
1699 /* We need to disable autoneg in order to force link and duplex. */ |
|
1700 |
|
1701 mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN; |
|
1702 |
|
1703 /* Are we forcing Full or Half Duplex? */ |
|
1704 if (hw->forced_speed_duplex == e1000_100_full || |
|
1705 hw->forced_speed_duplex == e1000_10_full) { |
|
1706 /* We want to force full duplex so we SET the full duplex bits |
|
1707 * in the Device and MII Control Registers. |
|
1708 */ |
|
1709 ctrl |= E1000_CTRL_FD; |
|
1710 mii_ctrl_reg |= MII_CR_FULL_DUPLEX; |
|
1711 e_dbg("Full Duplex\n"); |
|
1712 } else { |
|
1713 /* We want to force half duplex so we CLEAR the full duplex bits |
|
1714 * in the Device and MII Control Registers. |
|
1715 */ |
|
1716 ctrl &= ~E1000_CTRL_FD; |
|
1717 mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX; |
|
1718 e_dbg("Half Duplex\n"); |
|
1719 } |
|
1720 |
|
1721 /* Are we forcing 100Mbps??? */ |
|
1722 if (hw->forced_speed_duplex == e1000_100_full || |
|
1723 hw->forced_speed_duplex == e1000_100_half) { |
|
1724 /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */ |
|
1725 ctrl |= E1000_CTRL_SPD_100; |
|
1726 mii_ctrl_reg |= MII_CR_SPEED_100; |
|
1727 mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10); |
|
1728 e_dbg("Forcing 100mb "); |
|
1729 } else { |
|
1730 /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */ |
|
1731 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); |
|
1732 mii_ctrl_reg |= MII_CR_SPEED_10; |
|
1733 mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); |
|
1734 e_dbg("Forcing 10mb "); |
|
1735 } |
|
1736 |
|
1737 e1000_config_collision_dist(hw); |
|
1738 |
|
1739 /* Write the configured values back to the Device Control Reg. */ |
|
1740 ew32(CTRL, ctrl); |
|
1741 |
|
1742 if (hw->phy_type == e1000_phy_m88) { |
|
1743 ret_val = |
|
1744 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
|
1745 if (ret_val) |
|
1746 return ret_val; |
|
1747 |
|
1748 /* Clear Auto-Crossover to force MDI manually. M88E1000 requires |
|
1749 * MDI forced whenever speed are duplex are forced. |
|
1750 */ |
|
1751 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; |
|
1752 ret_val = |
|
1753 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); |
|
1754 if (ret_val) |
|
1755 return ret_val; |
|
1756 |
|
1757 e_dbg("M88E1000 PSCR: %x\n", phy_data); |
|
1758 |
|
1759 /* Need to reset the PHY or these changes will be ignored */ |
|
1760 mii_ctrl_reg |= MII_CR_RESET; |
|
1761 |
|
1762 /* Disable MDI-X support for 10/100 */ |
|
1763 } else { |
|
1764 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI |
|
1765 * forced whenever speed or duplex are forced. |
|
1766 */ |
|
1767 ret_val = |
|
1768 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); |
|
1769 if (ret_val) |
|
1770 return ret_val; |
|
1771 |
|
1772 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; |
|
1773 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; |
|
1774 |
|
1775 ret_val = |
|
1776 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); |
|
1777 if (ret_val) |
|
1778 return ret_val; |
|
1779 } |
|
1780 |
|
1781 /* Write back the modified PHY MII control register. */ |
|
1782 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg); |
|
1783 if (ret_val) |
|
1784 return ret_val; |
|
1785 |
|
1786 udelay(1); |
|
1787 |
|
1788 /* The wait_autoneg_complete flag may be a little misleading here. |
|
1789 * Since we are forcing speed and duplex, Auto-Neg is not enabled. |
|
1790 * But we do want to delay for a period while forcing only so we |
|
1791 * don't generate false No Link messages. So we will wait here |
|
1792 * only if the user has set wait_autoneg_complete to 1, which is |
|
1793 * the default. |
|
1794 */ |
|
1795 if (hw->wait_autoneg_complete) { |
|
1796 /* We will wait for autoneg to complete. */ |
|
1797 e_dbg("Waiting for forced speed/duplex link.\n"); |
|
1798 mii_status_reg = 0; |
|
1799 |
|
1800 /* Wait for autoneg to complete or 4.5 seconds to expire */ |
|
1801 for (i = PHY_FORCE_TIME; i > 0; i--) { |
|
1802 /* Read the MII Status Register and wait for Auto-Neg |
|
1803 * Complete bit to be set. |
|
1804 */ |
|
1805 ret_val = |
|
1806 e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
|
1807 if (ret_val) |
|
1808 return ret_val; |
|
1809 |
|
1810 ret_val = |
|
1811 e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
|
1812 if (ret_val) |
|
1813 return ret_val; |
|
1814 |
|
1815 if (mii_status_reg & MII_SR_LINK_STATUS) |
|
1816 break; |
|
1817 msleep(100); |
|
1818 } |
|
1819 if ((i == 0) && (hw->phy_type == e1000_phy_m88)) { |
|
1820 /* We didn't get link. Reset the DSP and wait again |
|
1821 * for link. |
|
1822 */ |
|
1823 ret_val = e1000_phy_reset_dsp(hw); |
|
1824 if (ret_val) { |
|
1825 e_dbg("Error Resetting PHY DSP\n"); |
|
1826 return ret_val; |
|
1827 } |
|
1828 } |
|
1829 /* This loop will early-out if the link condition has been |
|
1830 * met |
|
1831 */ |
|
1832 for (i = PHY_FORCE_TIME; i > 0; i--) { |
|
1833 if (mii_status_reg & MII_SR_LINK_STATUS) |
|
1834 break; |
|
1835 msleep(100); |
|
1836 /* Read the MII Status Register and wait for Auto-Neg |
|
1837 * Complete bit to be set. |
|
1838 */ |
|
1839 ret_val = |
|
1840 e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
|
1841 if (ret_val) |
|
1842 return ret_val; |
|
1843 |
|
1844 ret_val = |
|
1845 e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
|
1846 if (ret_val) |
|
1847 return ret_val; |
|
1848 } |
|
1849 } |
|
1850 |
|
1851 if (hw->phy_type == e1000_phy_m88) { |
|
1852 /* Because we reset the PHY above, we need to re-force TX_CLK in |
|
1853 * the Extended PHY Specific Control Register to 25MHz clock. |
|
1854 * This value defaults back to a 2.5MHz clock when the PHY is |
|
1855 * reset. |
|
1856 */ |
|
1857 ret_val = |
|
1858 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, |
|
1859 &phy_data); |
|
1860 if (ret_val) |
|
1861 return ret_val; |
|
1862 |
|
1863 phy_data |= M88E1000_EPSCR_TX_CLK_25; |
|
1864 ret_val = |
|
1865 e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, |
|
1866 phy_data); |
|
1867 if (ret_val) |
|
1868 return ret_val; |
|
1869 |
|
1870 /* In addition, because of the s/w reset above, we need to |
|
1871 * enable CRS on Tx. This must be set for both full and half |
|
1872 * duplex operation. |
|
1873 */ |
|
1874 ret_val = |
|
1875 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
|
1876 if (ret_val) |
|
1877 return ret_val; |
|
1878 |
|
1879 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; |
|
1880 ret_val = |
|
1881 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); |
|
1882 if (ret_val) |
|
1883 return ret_val; |
|
1884 |
|
1885 if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) |
|
1886 && (!hw->autoneg) |
|
1887 && (hw->forced_speed_duplex == e1000_10_full |
|
1888 || hw->forced_speed_duplex == e1000_10_half)) { |
|
1889 ret_val = e1000_polarity_reversal_workaround(hw); |
|
1890 if (ret_val) |
|
1891 return ret_val; |
|
1892 } |
|
1893 } |
|
1894 return E1000_SUCCESS; |
|
1895 } |
|
1896 |
|
1897 /** |
|
1898 * e1000_config_collision_dist - set collision distance register |
|
1899 * @hw: Struct containing variables accessed by shared code |
|
1900 * |
|
1901 * Sets the collision distance in the Transmit Control register. |
|
1902 * Link should have been established previously. Reads the speed and duplex |
|
1903 * information from the Device Status register. |
|
1904 */ |
|
1905 void e1000_config_collision_dist(struct e1000_hw *hw) |
|
1906 { |
|
1907 u32 tctl, coll_dist; |
|
1908 |
|
1909 if (hw->mac_type < e1000_82543) |
|
1910 coll_dist = E1000_COLLISION_DISTANCE_82542; |
|
1911 else |
|
1912 coll_dist = E1000_COLLISION_DISTANCE; |
|
1913 |
|
1914 tctl = er32(TCTL); |
|
1915 |
|
1916 tctl &= ~E1000_TCTL_COLD; |
|
1917 tctl |= coll_dist << E1000_COLD_SHIFT; |
|
1918 |
|
1919 ew32(TCTL, tctl); |
|
1920 E1000_WRITE_FLUSH(); |
|
1921 } |
|
1922 |
|
1923 /** |
|
1924 * e1000_config_mac_to_phy - sync phy and mac settings |
|
1925 * @hw: Struct containing variables accessed by shared code |
|
1926 * @mii_reg: data to write to the MII control register |
|
1927 * |
|
1928 * Sets MAC speed and duplex settings to reflect the those in the PHY |
|
1929 * The contents of the PHY register containing the needed information need to |
|
1930 * be passed in. |
|
1931 */ |
|
1932 static s32 e1000_config_mac_to_phy(struct e1000_hw *hw) |
|
1933 { |
|
1934 u32 ctrl; |
|
1935 s32 ret_val; |
|
1936 u16 phy_data; |
|
1937 |
|
1938 /* 82544 or newer MAC, Auto Speed Detection takes care of |
|
1939 * MAC speed/duplex configuration. |
|
1940 */ |
|
1941 if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100)) |
|
1942 return E1000_SUCCESS; |
|
1943 |
|
1944 /* Read the Device Control Register and set the bits to Force Speed |
|
1945 * and Duplex. |
|
1946 */ |
|
1947 ctrl = er32(CTRL); |
|
1948 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
|
1949 ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS); |
|
1950 |
|
1951 switch (hw->phy_type) { |
|
1952 case e1000_phy_8201: |
|
1953 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); |
|
1954 if (ret_val) |
|
1955 return ret_val; |
|
1956 |
|
1957 if (phy_data & RTL_PHY_CTRL_FD) |
|
1958 ctrl |= E1000_CTRL_FD; |
|
1959 else |
|
1960 ctrl &= ~E1000_CTRL_FD; |
|
1961 |
|
1962 if (phy_data & RTL_PHY_CTRL_SPD_100) |
|
1963 ctrl |= E1000_CTRL_SPD_100; |
|
1964 else |
|
1965 ctrl |= E1000_CTRL_SPD_10; |
|
1966 |
|
1967 e1000_config_collision_dist(hw); |
|
1968 break; |
|
1969 default: |
|
1970 /* Set up duplex in the Device Control and Transmit Control |
|
1971 * registers depending on negotiated values. |
|
1972 */ |
|
1973 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, |
|
1974 &phy_data); |
|
1975 if (ret_val) |
|
1976 return ret_val; |
|
1977 |
|
1978 if (phy_data & M88E1000_PSSR_DPLX) |
|
1979 ctrl |= E1000_CTRL_FD; |
|
1980 else |
|
1981 ctrl &= ~E1000_CTRL_FD; |
|
1982 |
|
1983 e1000_config_collision_dist(hw); |
|
1984 |
|
1985 /* Set up speed in the Device Control register depending on |
|
1986 * negotiated values. |
|
1987 */ |
|
1988 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) |
|
1989 ctrl |= E1000_CTRL_SPD_1000; |
|
1990 else if ((phy_data & M88E1000_PSSR_SPEED) == |
|
1991 M88E1000_PSSR_100MBS) |
|
1992 ctrl |= E1000_CTRL_SPD_100; |
|
1993 } |
|
1994 |
|
1995 /* Write the configured values back to the Device Control Reg. */ |
|
1996 ew32(CTRL, ctrl); |
|
1997 return E1000_SUCCESS; |
|
1998 } |
|
1999 |
|
2000 /** |
|
2001 * e1000_force_mac_fc - force flow control settings |
|
2002 * @hw: Struct containing variables accessed by shared code |
|
2003 * |
|
2004 * Forces the MAC's flow control settings. |
|
2005 * Sets the TFCE and RFCE bits in the device control register to reflect |
|
2006 * the adapter settings. TFCE and RFCE need to be explicitly set by |
|
2007 * software when a Copper PHY is used because autonegotiation is managed |
|
2008 * by the PHY rather than the MAC. Software must also configure these |
|
2009 * bits when link is forced on a fiber connection. |
|
2010 */ |
|
2011 s32 e1000_force_mac_fc(struct e1000_hw *hw) |
|
2012 { |
|
2013 u32 ctrl; |
|
2014 |
|
2015 /* Get the current configuration of the Device Control Register */ |
|
2016 ctrl = er32(CTRL); |
|
2017 |
|
2018 /* Because we didn't get link via the internal auto-negotiation |
|
2019 * mechanism (we either forced link or we got link via PHY |
|
2020 * auto-neg), we have to manually enable/disable transmit an |
|
2021 * receive flow control. |
|
2022 * |
|
2023 * The "Case" statement below enables/disable flow control |
|
2024 * according to the "hw->fc" parameter. |
|
2025 * |
|
2026 * The possible values of the "fc" parameter are: |
|
2027 * 0: Flow control is completely disabled |
|
2028 * 1: Rx flow control is enabled (we can receive pause |
|
2029 * frames but not send pause frames). |
|
2030 * 2: Tx flow control is enabled (we can send pause frames |
|
2031 * frames but we do not receive pause frames). |
|
2032 * 3: Both Rx and TX flow control (symmetric) is enabled. |
|
2033 * other: No other values should be possible at this point. |
|
2034 */ |
|
2035 |
|
2036 switch (hw->fc) { |
|
2037 case E1000_FC_NONE: |
|
2038 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); |
|
2039 break; |
|
2040 case E1000_FC_RX_PAUSE: |
|
2041 ctrl &= (~E1000_CTRL_TFCE); |
|
2042 ctrl |= E1000_CTRL_RFCE; |
|
2043 break; |
|
2044 case E1000_FC_TX_PAUSE: |
|
2045 ctrl &= (~E1000_CTRL_RFCE); |
|
2046 ctrl |= E1000_CTRL_TFCE; |
|
2047 break; |
|
2048 case E1000_FC_FULL: |
|
2049 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); |
|
2050 break; |
|
2051 default: |
|
2052 e_dbg("Flow control param set incorrectly\n"); |
|
2053 return -E1000_ERR_CONFIG; |
|
2054 } |
|
2055 |
|
2056 /* Disable TX Flow Control for 82542 (rev 2.0) */ |
|
2057 if (hw->mac_type == e1000_82542_rev2_0) |
|
2058 ctrl &= (~E1000_CTRL_TFCE); |
|
2059 |
|
2060 ew32(CTRL, ctrl); |
|
2061 return E1000_SUCCESS; |
|
2062 } |
|
2063 |
|
2064 /** |
|
2065 * e1000_config_fc_after_link_up - configure flow control after autoneg |
|
2066 * @hw: Struct containing variables accessed by shared code |
|
2067 * |
|
2068 * Configures flow control settings after link is established |
|
2069 * Should be called immediately after a valid link has been established. |
|
2070 * Forces MAC flow control settings if link was forced. When in MII/GMII mode |
|
2071 * and autonegotiation is enabled, the MAC flow control settings will be set |
|
2072 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE |
|
2073 * and RFCE bits will be automatically set to the negotiated flow control mode. |
|
2074 */ |
|
2075 static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw) |
|
2076 { |
|
2077 s32 ret_val; |
|
2078 u16 mii_status_reg; |
|
2079 u16 mii_nway_adv_reg; |
|
2080 u16 mii_nway_lp_ability_reg; |
|
2081 u16 speed; |
|
2082 u16 duplex; |
|
2083 |
|
2084 /* Check for the case where we have fiber media and auto-neg failed |
|
2085 * so we had to force link. In this case, we need to force the |
|
2086 * configuration of the MAC to match the "fc" parameter. |
|
2087 */ |
|
2088 if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) |
|
2089 || ((hw->media_type == e1000_media_type_internal_serdes) |
|
2090 && (hw->autoneg_failed)) |
|
2091 || ((hw->media_type == e1000_media_type_copper) |
|
2092 && (!hw->autoneg))) { |
|
2093 ret_val = e1000_force_mac_fc(hw); |
|
2094 if (ret_val) { |
|
2095 e_dbg("Error forcing flow control settings\n"); |
|
2096 return ret_val; |
|
2097 } |
|
2098 } |
|
2099 |
|
2100 /* Check for the case where we have copper media and auto-neg is |
|
2101 * enabled. In this case, we need to check and see if Auto-Neg |
|
2102 * has completed, and if so, how the PHY and link partner has |
|
2103 * flow control configured. |
|
2104 */ |
|
2105 if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) { |
|
2106 /* Read the MII Status Register and check to see if AutoNeg |
|
2107 * has completed. We read this twice because this reg has |
|
2108 * some "sticky" (latched) bits. |
|
2109 */ |
|
2110 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
|
2111 if (ret_val) |
|
2112 return ret_val; |
|
2113 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
|
2114 if (ret_val) |
|
2115 return ret_val; |
|
2116 |
|
2117 if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) { |
|
2118 /* The AutoNeg process has completed, so we now need to |
|
2119 * read both the Auto Negotiation Advertisement Register |
|
2120 * (Address 4) and the Auto_Negotiation Base Page |
|
2121 * Ability Register (Address 5) to determine how flow |
|
2122 * control was negotiated. |
|
2123 */ |
|
2124 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, |
|
2125 &mii_nway_adv_reg); |
|
2126 if (ret_val) |
|
2127 return ret_val; |
|
2128 ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, |
|
2129 &mii_nway_lp_ability_reg); |
|
2130 if (ret_val) |
|
2131 return ret_val; |
|
2132 |
|
2133 /* Two bits in the Auto Negotiation Advertisement |
|
2134 * Register (Address 4) and two bits in the Auto |
|
2135 * Negotiation Base Page Ability Register (Address 5) |
|
2136 * determine flow control for both the PHY and the link |
|
2137 * partner. The following table, taken out of the IEEE |
|
2138 * 802.3ab/D6.0 dated March 25, 1999, describes these |
|
2139 * PAUSE resolution bits and how flow control is |
|
2140 * determined based upon these settings. |
|
2141 * NOTE: DC = Don't Care |
|
2142 * |
|
2143 * LOCAL DEVICE | LINK PARTNER |
|
2144 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution |
|
2145 *-------|---------|-------|---------|------------------ |
|
2146 * 0 | 0 | DC | DC | E1000_FC_NONE |
|
2147 * 0 | 1 | 0 | DC | E1000_FC_NONE |
|
2148 * 0 | 1 | 1 | 0 | E1000_FC_NONE |
|
2149 * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE |
|
2150 * 1 | 0 | 0 | DC | E1000_FC_NONE |
|
2151 * 1 | DC | 1 | DC | E1000_FC_FULL |
|
2152 * 1 | 1 | 0 | 0 | E1000_FC_NONE |
|
2153 * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE |
|
2154 * |
|
2155 */ |
|
2156 /* Are both PAUSE bits set to 1? If so, this implies |
|
2157 * Symmetric Flow Control is enabled at both ends. The |
|
2158 * ASM_DIR bits are irrelevant per the spec. |
|
2159 * |
|
2160 * For Symmetric Flow Control: |
|
2161 * |
|
2162 * LOCAL DEVICE | LINK PARTNER |
|
2163 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result |
|
2164 *-------|---------|-------|---------|------------------ |
|
2165 * 1 | DC | 1 | DC | E1000_FC_FULL |
|
2166 * |
|
2167 */ |
|
2168 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && |
|
2169 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { |
|
2170 /* Now we need to check if the user selected Rx |
|
2171 * ONLY of pause frames. In this case, we had |
|
2172 * to advertise FULL flow control because we |
|
2173 * could not advertise Rx ONLY. Hence, we must |
|
2174 * now check to see if we need to turn OFF the |
|
2175 * TRANSMISSION of PAUSE frames. |
|
2176 */ |
|
2177 if (hw->original_fc == E1000_FC_FULL) { |
|
2178 hw->fc = E1000_FC_FULL; |
|
2179 e_dbg("Flow Control = FULL.\n"); |
|
2180 } else { |
|
2181 hw->fc = E1000_FC_RX_PAUSE; |
|
2182 e_dbg |
|
2183 ("Flow Control = RX PAUSE frames only.\n"); |
|
2184 } |
|
2185 } |
|
2186 /* For receiving PAUSE frames ONLY. |
|
2187 * |
|
2188 * LOCAL DEVICE | LINK PARTNER |
|
2189 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result |
|
2190 *-------|---------|-------|---------|------------------ |
|
2191 * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE |
|
2192 * |
|
2193 */ |
|
2194 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && |
|
2195 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && |
|
2196 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && |
|
2197 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) |
|
2198 { |
|
2199 hw->fc = E1000_FC_TX_PAUSE; |
|
2200 e_dbg |
|
2201 ("Flow Control = TX PAUSE frames only.\n"); |
|
2202 } |
|
2203 /* For transmitting PAUSE frames ONLY. |
|
2204 * |
|
2205 * LOCAL DEVICE | LINK PARTNER |
|
2206 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result |
|
2207 *-------|---------|-------|---------|------------------ |
|
2208 * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE |
|
2209 * |
|
2210 */ |
|
2211 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && |
|
2212 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && |
|
2213 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && |
|
2214 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) |
|
2215 { |
|
2216 hw->fc = E1000_FC_RX_PAUSE; |
|
2217 e_dbg |
|
2218 ("Flow Control = RX PAUSE frames only.\n"); |
|
2219 } |
|
2220 /* Per the IEEE spec, at this point flow control should |
|
2221 * be disabled. However, we want to consider that we |
|
2222 * could be connected to a legacy switch that doesn't |
|
2223 * advertise desired flow control, but can be forced on |
|
2224 * the link partner. So if we advertised no flow |
|
2225 * control, that is what we will resolve to. If we |
|
2226 * advertised some kind of receive capability (Rx Pause |
|
2227 * Only or Full Flow Control) and the link partner |
|
2228 * advertised none, we will configure ourselves to |
|
2229 * enable Rx Flow Control only. We can do this safely |
|
2230 * for two reasons: If the link partner really |
|
2231 * didn't want flow control enabled, and we enable Rx, |
|
2232 * no harm done since we won't be receiving any PAUSE |
|
2233 * frames anyway. If the intent on the link partner was |
|
2234 * to have flow control enabled, then by us enabling Rx |
|
2235 * only, we can at least receive pause frames and |
|
2236 * process them. This is a good idea because in most |
|
2237 * cases, since we are predominantly a server NIC, more |
|
2238 * times than not we will be asked to delay transmission |
|
2239 * of packets than asking our link partner to pause |
|
2240 * transmission of frames. |
|
2241 */ |
|
2242 else if ((hw->original_fc == E1000_FC_NONE || |
|
2243 hw->original_fc == E1000_FC_TX_PAUSE) || |
|
2244 hw->fc_strict_ieee) { |
|
2245 hw->fc = E1000_FC_NONE; |
|
2246 e_dbg("Flow Control = NONE.\n"); |
|
2247 } else { |
|
2248 hw->fc = E1000_FC_RX_PAUSE; |
|
2249 e_dbg |
|
2250 ("Flow Control = RX PAUSE frames only.\n"); |
|
2251 } |
|
2252 |
|
2253 /* Now we need to do one last check... If we auto- |
|
2254 * negotiated to HALF DUPLEX, flow control should not be |
|
2255 * enabled per IEEE 802.3 spec. |
|
2256 */ |
|
2257 ret_val = |
|
2258 e1000_get_speed_and_duplex(hw, &speed, &duplex); |
|
2259 if (ret_val) { |
|
2260 e_dbg |
|
2261 ("Error getting link speed and duplex\n"); |
|
2262 return ret_val; |
|
2263 } |
|
2264 |
|
2265 if (duplex == HALF_DUPLEX) |
|
2266 hw->fc = E1000_FC_NONE; |
|
2267 |
|
2268 /* Now we call a subroutine to actually force the MAC |
|
2269 * controller to use the correct flow control settings. |
|
2270 */ |
|
2271 ret_val = e1000_force_mac_fc(hw); |
|
2272 if (ret_val) { |
|
2273 e_dbg |
|
2274 ("Error forcing flow control settings\n"); |
|
2275 return ret_val; |
|
2276 } |
|
2277 } else { |
|
2278 e_dbg |
|
2279 ("Copper PHY and Auto Neg has not completed.\n"); |
|
2280 } |
|
2281 } |
|
2282 return E1000_SUCCESS; |
|
2283 } |
|
2284 |
|
2285 /** |
|
2286 * e1000_check_for_serdes_link_generic - Check for link (Serdes) |
|
2287 * @hw: pointer to the HW structure |
|
2288 * |
|
2289 * Checks for link up on the hardware. If link is not up and we have |
|
2290 * a signal, then we need to force link up. |
|
2291 */ |
|
2292 static s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw) |
|
2293 { |
|
2294 u32 rxcw; |
|
2295 u32 ctrl; |
|
2296 u32 status; |
|
2297 s32 ret_val = E1000_SUCCESS; |
|
2298 |
|
2299 ctrl = er32(CTRL); |
|
2300 status = er32(STATUS); |
|
2301 rxcw = er32(RXCW); |
|
2302 |
|
2303 /* If we don't have link (auto-negotiation failed or link partner |
|
2304 * cannot auto-negotiate), and our link partner is not trying to |
|
2305 * auto-negotiate with us (we are receiving idles or data), |
|
2306 * we need to force link up. We also need to give auto-negotiation |
|
2307 * time to complete. |
|
2308 */ |
|
2309 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ |
|
2310 if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) { |
|
2311 if (hw->autoneg_failed == 0) { |
|
2312 hw->autoneg_failed = 1; |
|
2313 goto out; |
|
2314 } |
|
2315 e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n"); |
|
2316 |
|
2317 /* Disable auto-negotiation in the TXCW register */ |
|
2318 ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE)); |
|
2319 |
|
2320 /* Force link-up and also force full-duplex. */ |
|
2321 ctrl = er32(CTRL); |
|
2322 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); |
|
2323 ew32(CTRL, ctrl); |
|
2324 |
|
2325 /* Configure Flow Control after forcing link up. */ |
|
2326 ret_val = e1000_config_fc_after_link_up(hw); |
|
2327 if (ret_val) { |
|
2328 e_dbg("Error configuring flow control\n"); |
|
2329 goto out; |
|
2330 } |
|
2331 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { |
|
2332 /* If we are forcing link and we are receiving /C/ ordered |
|
2333 * sets, re-enable auto-negotiation in the TXCW register |
|
2334 * and disable forced link in the Device Control register |
|
2335 * in an attempt to auto-negotiate with our link partner. |
|
2336 */ |
|
2337 e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n"); |
|
2338 ew32(TXCW, hw->txcw); |
|
2339 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); |
|
2340 |
|
2341 hw->serdes_has_link = true; |
|
2342 } else if (!(E1000_TXCW_ANE & er32(TXCW))) { |
|
2343 /* If we force link for non-auto-negotiation switch, check |
|
2344 * link status based on MAC synchronization for internal |
|
2345 * serdes media type. |
|
2346 */ |
|
2347 /* SYNCH bit and IV bit are sticky. */ |
|
2348 udelay(10); |
|
2349 rxcw = er32(RXCW); |
|
2350 if (rxcw & E1000_RXCW_SYNCH) { |
|
2351 if (!(rxcw & E1000_RXCW_IV)) { |
|
2352 hw->serdes_has_link = true; |
|
2353 e_dbg("SERDES: Link up - forced.\n"); |
|
2354 } |
|
2355 } else { |
|
2356 hw->serdes_has_link = false; |
|
2357 e_dbg("SERDES: Link down - force failed.\n"); |
|
2358 } |
|
2359 } |
|
2360 |
|
2361 if (E1000_TXCW_ANE & er32(TXCW)) { |
|
2362 status = er32(STATUS); |
|
2363 if (status & E1000_STATUS_LU) { |
|
2364 /* SYNCH bit and IV bit are sticky, so reread rxcw. */ |
|
2365 udelay(10); |
|
2366 rxcw = er32(RXCW); |
|
2367 if (rxcw & E1000_RXCW_SYNCH) { |
|
2368 if (!(rxcw & E1000_RXCW_IV)) { |
|
2369 hw->serdes_has_link = true; |
|
2370 e_dbg("SERDES: Link up - autoneg " |
|
2371 "completed successfully.\n"); |
|
2372 } else { |
|
2373 hw->serdes_has_link = false; |
|
2374 e_dbg("SERDES: Link down - invalid" |
|
2375 "codewords detected in autoneg.\n"); |
|
2376 } |
|
2377 } else { |
|
2378 hw->serdes_has_link = false; |
|
2379 e_dbg("SERDES: Link down - no sync.\n"); |
|
2380 } |
|
2381 } else { |
|
2382 hw->serdes_has_link = false; |
|
2383 e_dbg("SERDES: Link down - autoneg failed\n"); |
|
2384 } |
|
2385 } |
|
2386 |
|
2387 out: |
|
2388 return ret_val; |
|
2389 } |
|
2390 |
|
2391 /** |
|
2392 * e1000_check_for_link |
|
2393 * @hw: Struct containing variables accessed by shared code |
|
2394 * |
|
2395 * Checks to see if the link status of the hardware has changed. |
|
2396 * Called by any function that needs to check the link status of the adapter. |
|
2397 */ |
|
2398 s32 e1000_check_for_link(struct e1000_hw *hw) |
|
2399 { |
|
2400 u32 rxcw = 0; |
|
2401 u32 ctrl; |
|
2402 u32 status; |
|
2403 u32 rctl; |
|
2404 u32 icr; |
|
2405 u32 signal = 0; |
|
2406 s32 ret_val; |
|
2407 u16 phy_data; |
|
2408 |
|
2409 ctrl = er32(CTRL); |
|
2410 status = er32(STATUS); |
|
2411 |
|
2412 /* On adapters with a MAC newer than 82544, SW Definable pin 1 will be |
|
2413 * set when the optics detect a signal. On older adapters, it will be |
|
2414 * cleared when there is a signal. This applies to fiber media only. |
|
2415 */ |
|
2416 if ((hw->media_type == e1000_media_type_fiber) || |
|
2417 (hw->media_type == e1000_media_type_internal_serdes)) { |
|
2418 rxcw = er32(RXCW); |
|
2419 |
|
2420 if (hw->media_type == e1000_media_type_fiber) { |
|
2421 signal = |
|
2422 (hw->mac_type > |
|
2423 e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; |
|
2424 if (status & E1000_STATUS_LU) |
|
2425 hw->get_link_status = false; |
|
2426 } |
|
2427 } |
|
2428 |
|
2429 /* If we have a copper PHY then we only want to go out to the PHY |
|
2430 * registers to see if Auto-Neg has completed and/or if our link |
|
2431 * status has changed. The get_link_status flag will be set if we |
|
2432 * receive a Link Status Change interrupt or we have Rx Sequence |
|
2433 * Errors. |
|
2434 */ |
|
2435 if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) { |
|
2436 /* First we want to see if the MII Status Register reports |
|
2437 * link. If so, then we want to get the current speed/duplex |
|
2438 * of the PHY. |
|
2439 * Read the register twice since the link bit is sticky. |
|
2440 */ |
|
2441 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
|
2442 if (ret_val) |
|
2443 return ret_val; |
|
2444 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
|
2445 if (ret_val) |
|
2446 return ret_val; |
|
2447 |
|
2448 if (phy_data & MII_SR_LINK_STATUS) { |
|
2449 hw->get_link_status = false; |
|
2450 /* Check if there was DownShift, must be checked |
|
2451 * immediately after link-up |
|
2452 */ |
|
2453 e1000_check_downshift(hw); |
|
2454 |
|
2455 /* If we are on 82544 or 82543 silicon and speed/duplex |
|
2456 * are forced to 10H or 10F, then we will implement the |
|
2457 * polarity reversal workaround. We disable interrupts |
|
2458 * first, and upon returning, place the devices |
|
2459 * interrupt state to its previous value except for the |
|
2460 * link status change interrupt which will |
|
2461 * happen due to the execution of this workaround. |
|
2462 */ |
|
2463 |
|
2464 if ((hw->mac_type == e1000_82544 |
|
2465 || hw->mac_type == e1000_82543) && (!hw->autoneg) |
|
2466 && (hw->forced_speed_duplex == e1000_10_full |
|
2467 || hw->forced_speed_duplex == e1000_10_half)) { |
|
2468 ew32(IMC, 0xffffffff); |
|
2469 ret_val = |
|
2470 e1000_polarity_reversal_workaround(hw); |
|
2471 icr = er32(ICR); |
|
2472 ew32(ICS, (icr & ~E1000_ICS_LSC)); |
|
2473 ew32(IMS, IMS_ENABLE_MASK); |
|
2474 } |
|
2475 |
|
2476 } else { |
|
2477 /* No link detected */ |
|
2478 e1000_config_dsp_after_link_change(hw, false); |
|
2479 return 0; |
|
2480 } |
|
2481 |
|
2482 /* If we are forcing speed/duplex, then we simply return since |
|
2483 * we have already determined whether we have link or not. |
|
2484 */ |
|
2485 if (!hw->autoneg) |
|
2486 return -E1000_ERR_CONFIG; |
|
2487 |
|
2488 /* optimize the dsp settings for the igp phy */ |
|
2489 e1000_config_dsp_after_link_change(hw, true); |
|
2490 |
|
2491 /* We have a M88E1000 PHY and Auto-Neg is enabled. If we |
|
2492 * have Si on board that is 82544 or newer, Auto |
|
2493 * Speed Detection takes care of MAC speed/duplex |
|
2494 * configuration. So we only need to configure Collision |
|
2495 * Distance in the MAC. Otherwise, we need to force |
|
2496 * speed/duplex on the MAC to the current PHY speed/duplex |
|
2497 * settings. |
|
2498 */ |
|
2499 if ((hw->mac_type >= e1000_82544) && |
|
2500 (hw->mac_type != e1000_ce4100)) |
|
2501 e1000_config_collision_dist(hw); |
|
2502 else { |
|
2503 ret_val = e1000_config_mac_to_phy(hw); |
|
2504 if (ret_val) { |
|
2505 e_dbg |
|
2506 ("Error configuring MAC to PHY settings\n"); |
|
2507 return ret_val; |
|
2508 } |
|
2509 } |
|
2510 |
|
2511 /* Configure Flow Control now that Auto-Neg has completed. |
|
2512 * First, we need to restore the desired flow control settings |
|
2513 * because we may have had to re-autoneg with a different link |
|
2514 * partner. |
|
2515 */ |
|
2516 ret_val = e1000_config_fc_after_link_up(hw); |
|
2517 if (ret_val) { |
|
2518 e_dbg("Error configuring flow control\n"); |
|
2519 return ret_val; |
|
2520 } |
|
2521 |
|
2522 /* At this point we know that we are on copper and we have |
|
2523 * auto-negotiated link. These are conditions for checking the |
|
2524 * link partner capability register. We use the link speed to |
|
2525 * determine if TBI compatibility needs to be turned on or off. |
|
2526 * If the link is not at gigabit speed, then TBI compatibility |
|
2527 * is not needed. If we are at gigabit speed, we turn on TBI |
|
2528 * compatibility. |
|
2529 */ |
|
2530 if (hw->tbi_compatibility_en) { |
|
2531 u16 speed, duplex; |
|
2532 ret_val = |
|
2533 e1000_get_speed_and_duplex(hw, &speed, &duplex); |
|
2534 if (ret_val) { |
|
2535 e_dbg |
|
2536 ("Error getting link speed and duplex\n"); |
|
2537 return ret_val; |
|
2538 } |
|
2539 if (speed != SPEED_1000) { |
|
2540 /* If link speed is not set to gigabit speed, we |
|
2541 * do not need to enable TBI compatibility. |
|
2542 */ |
|
2543 if (hw->tbi_compatibility_on) { |
|
2544 /* If we previously were in the mode, |
|
2545 * turn it off. |
|
2546 */ |
|
2547 rctl = er32(RCTL); |
|
2548 rctl &= ~E1000_RCTL_SBP; |
|
2549 ew32(RCTL, rctl); |
|
2550 hw->tbi_compatibility_on = false; |
|
2551 } |
|
2552 } else { |
|
2553 /* If TBI compatibility is was previously off, |
|
2554 * turn it on. For compatibility with a TBI link |
|
2555 * partner, we will store bad packets. Some |
|
2556 * frames have an additional byte on the end and |
|
2557 * will look like CRC errors to to the hardware. |
|
2558 */ |
|
2559 if (!hw->tbi_compatibility_on) { |
|
2560 hw->tbi_compatibility_on = true; |
|
2561 rctl = er32(RCTL); |
|
2562 rctl |= E1000_RCTL_SBP; |
|
2563 ew32(RCTL, rctl); |
|
2564 } |
|
2565 } |
|
2566 } |
|
2567 } |
|
2568 |
|
2569 if ((hw->media_type == e1000_media_type_fiber) || |
|
2570 (hw->media_type == e1000_media_type_internal_serdes)) |
|
2571 e1000_check_for_serdes_link_generic(hw); |
|
2572 |
|
2573 return E1000_SUCCESS; |
|
2574 } |
|
2575 |
|
2576 /** |
|
2577 * e1000_get_speed_and_duplex |
|
2578 * @hw: Struct containing variables accessed by shared code |
|
2579 * @speed: Speed of the connection |
|
2580 * @duplex: Duplex setting of the connection |
|
2581 * |
|
2582 * Detects the current speed and duplex settings of the hardware. |
|
2583 */ |
|
2584 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex) |
|
2585 { |
|
2586 u32 status; |
|
2587 s32 ret_val; |
|
2588 u16 phy_data; |
|
2589 |
|
2590 if (hw->mac_type >= e1000_82543) { |
|
2591 status = er32(STATUS); |
|
2592 if (status & E1000_STATUS_SPEED_1000) { |
|
2593 *speed = SPEED_1000; |
|
2594 e_dbg("1000 Mbs, "); |
|
2595 } else if (status & E1000_STATUS_SPEED_100) { |
|
2596 *speed = SPEED_100; |
|
2597 e_dbg("100 Mbs, "); |
|
2598 } else { |
|
2599 *speed = SPEED_10; |
|
2600 e_dbg("10 Mbs, "); |
|
2601 } |
|
2602 |
|
2603 if (status & E1000_STATUS_FD) { |
|
2604 *duplex = FULL_DUPLEX; |
|
2605 e_dbg("Full Duplex\n"); |
|
2606 } else { |
|
2607 *duplex = HALF_DUPLEX; |
|
2608 e_dbg(" Half Duplex\n"); |
|
2609 } |
|
2610 } else { |
|
2611 e_dbg("1000 Mbs, Full Duplex\n"); |
|
2612 *speed = SPEED_1000; |
|
2613 *duplex = FULL_DUPLEX; |
|
2614 } |
|
2615 |
|
2616 /* IGP01 PHY may advertise full duplex operation after speed downgrade |
|
2617 * even if it is operating at half duplex. Here we set the duplex |
|
2618 * settings to match the duplex in the link partner's capabilities. |
|
2619 */ |
|
2620 if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) { |
|
2621 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data); |
|
2622 if (ret_val) |
|
2623 return ret_val; |
|
2624 |
|
2625 if (!(phy_data & NWAY_ER_LP_NWAY_CAPS)) |
|
2626 *duplex = HALF_DUPLEX; |
|
2627 else { |
|
2628 ret_val = |
|
2629 e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data); |
|
2630 if (ret_val) |
|
2631 return ret_val; |
|
2632 if ((*speed == SPEED_100 |
|
2633 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) |
|
2634 || (*speed == SPEED_10 |
|
2635 && !(phy_data & NWAY_LPAR_10T_FD_CAPS))) |
|
2636 *duplex = HALF_DUPLEX; |
|
2637 } |
|
2638 } |
|
2639 |
|
2640 return E1000_SUCCESS; |
|
2641 } |
|
2642 |
|
2643 /** |
|
2644 * e1000_wait_autoneg |
|
2645 * @hw: Struct containing variables accessed by shared code |
|
2646 * |
|
2647 * Blocks until autoneg completes or times out (~4.5 seconds) |
|
2648 */ |
|
2649 static s32 e1000_wait_autoneg(struct e1000_hw *hw) |
|
2650 { |
|
2651 s32 ret_val; |
|
2652 u16 i; |
|
2653 u16 phy_data; |
|
2654 |
|
2655 e_dbg("Waiting for Auto-Neg to complete.\n"); |
|
2656 |
|
2657 /* We will wait for autoneg to complete or 4.5 seconds to expire. */ |
|
2658 for (i = PHY_AUTO_NEG_TIME; i > 0; i--) { |
|
2659 /* Read the MII Status Register and wait for Auto-Neg |
|
2660 * Complete bit to be set. |
|
2661 */ |
|
2662 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
|
2663 if (ret_val) |
|
2664 return ret_val; |
|
2665 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
|
2666 if (ret_val) |
|
2667 return ret_val; |
|
2668 if (phy_data & MII_SR_AUTONEG_COMPLETE) { |
|
2669 return E1000_SUCCESS; |
|
2670 } |
|
2671 msleep(100); |
|
2672 } |
|
2673 return E1000_SUCCESS; |
|
2674 } |
|
2675 |
|
2676 /** |
|
2677 * e1000_raise_mdi_clk - Raises the Management Data Clock |
|
2678 * @hw: Struct containing variables accessed by shared code |
|
2679 * @ctrl: Device control register's current value |
|
2680 */ |
|
2681 static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl) |
|
2682 { |
|
2683 /* Raise the clock input to the Management Data Clock (by setting the |
|
2684 * MDC bit), and then delay 10 microseconds. |
|
2685 */ |
|
2686 ew32(CTRL, (*ctrl | E1000_CTRL_MDC)); |
|
2687 E1000_WRITE_FLUSH(); |
|
2688 udelay(10); |
|
2689 } |
|
2690 |
|
2691 /** |
|
2692 * e1000_lower_mdi_clk - Lowers the Management Data Clock |
|
2693 * @hw: Struct containing variables accessed by shared code |
|
2694 * @ctrl: Device control register's current value |
|
2695 */ |
|
2696 static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl) |
|
2697 { |
|
2698 /* Lower the clock input to the Management Data Clock (by clearing the |
|
2699 * MDC bit), and then delay 10 microseconds. |
|
2700 */ |
|
2701 ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC)); |
|
2702 E1000_WRITE_FLUSH(); |
|
2703 udelay(10); |
|
2704 } |
|
2705 |
|
2706 /** |
|
2707 * e1000_shift_out_mdi_bits - Shifts data bits out to the PHY |
|
2708 * @hw: Struct containing variables accessed by shared code |
|
2709 * @data: Data to send out to the PHY |
|
2710 * @count: Number of bits to shift out |
|
2711 * |
|
2712 * Bits are shifted out in MSB to LSB order. |
|
2713 */ |
|
2714 static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count) |
|
2715 { |
|
2716 u32 ctrl; |
|
2717 u32 mask; |
|
2718 |
|
2719 /* We need to shift "count" number of bits out to the PHY. So, the value |
|
2720 * in the "data" parameter will be shifted out to the PHY one bit at a |
|
2721 * time. In order to do this, "data" must be broken down into bits. |
|
2722 */ |
|
2723 mask = 0x01; |
|
2724 mask <<= (count - 1); |
|
2725 |
|
2726 ctrl = er32(CTRL); |
|
2727 |
|
2728 /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */ |
|
2729 ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR); |
|
2730 |
|
2731 while (mask) { |
|
2732 /* A "1" is shifted out to the PHY by setting the MDIO bit to |
|
2733 * "1" and then raising and lowering the Management Data Clock. |
|
2734 * A "0" is shifted out to the PHY by setting the MDIO bit to |
|
2735 * "0" and then raising and lowering the clock. |
|
2736 */ |
|
2737 if (data & mask) |
|
2738 ctrl |= E1000_CTRL_MDIO; |
|
2739 else |
|
2740 ctrl &= ~E1000_CTRL_MDIO; |
|
2741 |
|
2742 ew32(CTRL, ctrl); |
|
2743 E1000_WRITE_FLUSH(); |
|
2744 |
|
2745 udelay(10); |
|
2746 |
|
2747 e1000_raise_mdi_clk(hw, &ctrl); |
|
2748 e1000_lower_mdi_clk(hw, &ctrl); |
|
2749 |
|
2750 mask = mask >> 1; |
|
2751 } |
|
2752 } |
|
2753 |
|
2754 /** |
|
2755 * e1000_shift_in_mdi_bits - Shifts data bits in from the PHY |
|
2756 * @hw: Struct containing variables accessed by shared code |
|
2757 * |
|
2758 * Bits are shifted in in MSB to LSB order. |
|
2759 */ |
|
2760 static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw) |
|
2761 { |
|
2762 u32 ctrl; |
|
2763 u16 data = 0; |
|
2764 u8 i; |
|
2765 |
|
2766 /* In order to read a register from the PHY, we need to shift in a total |
|
2767 * of 18 bits from the PHY. The first two bit (turnaround) times are |
|
2768 * used to avoid contention on the MDIO pin when a read operation is |
|
2769 * performed. These two bits are ignored by us and thrown away. Bits are |
|
2770 * "shifted in" by raising the input to the Management Data Clock |
|
2771 * (setting the MDC bit), and then reading the value of the MDIO bit. |
|
2772 */ |
|
2773 ctrl = er32(CTRL); |
|
2774 |
|
2775 /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as |
|
2776 * input. |
|
2777 */ |
|
2778 ctrl &= ~E1000_CTRL_MDIO_DIR; |
|
2779 ctrl &= ~E1000_CTRL_MDIO; |
|
2780 |
|
2781 ew32(CTRL, ctrl); |
|
2782 E1000_WRITE_FLUSH(); |
|
2783 |
|
2784 /* Raise and Lower the clock before reading in the data. This accounts |
|
2785 * for the turnaround bits. The first clock occurred when we clocked out |
|
2786 * the last bit of the Register Address. |
|
2787 */ |
|
2788 e1000_raise_mdi_clk(hw, &ctrl); |
|
2789 e1000_lower_mdi_clk(hw, &ctrl); |
|
2790 |
|
2791 for (data = 0, i = 0; i < 16; i++) { |
|
2792 data = data << 1; |
|
2793 e1000_raise_mdi_clk(hw, &ctrl); |
|
2794 ctrl = er32(CTRL); |
|
2795 /* Check to see if we shifted in a "1". */ |
|
2796 if (ctrl & E1000_CTRL_MDIO) |
|
2797 data |= 1; |
|
2798 e1000_lower_mdi_clk(hw, &ctrl); |
|
2799 } |
|
2800 |
|
2801 e1000_raise_mdi_clk(hw, &ctrl); |
|
2802 e1000_lower_mdi_clk(hw, &ctrl); |
|
2803 |
|
2804 return data; |
|
2805 } |
|
2806 |
|
2807 |
|
2808 /** |
|
2809 * e1000_read_phy_reg - read a phy register |
|
2810 * @hw: Struct containing variables accessed by shared code |
|
2811 * @reg_addr: address of the PHY register to read |
|
2812 * |
|
2813 * Reads the value from a PHY register, if the value is on a specific non zero |
|
2814 * page, sets the page first. |
|
2815 */ |
|
2816 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data) |
|
2817 { |
|
2818 u32 ret_val; |
|
2819 unsigned long flags; |
|
2820 |
|
2821 spin_lock_irqsave(&e1000_phy_lock, flags); |
|
2822 |
|
2823 if ((hw->phy_type == e1000_phy_igp) && |
|
2824 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { |
|
2825 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, |
|
2826 (u16) reg_addr); |
|
2827 if (ret_val) { |
|
2828 spin_unlock_irqrestore(&e1000_phy_lock, flags); |
|
2829 return ret_val; |
|
2830 } |
|
2831 } |
|
2832 |
|
2833 ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, |
|
2834 phy_data); |
|
2835 spin_unlock_irqrestore(&e1000_phy_lock, flags); |
|
2836 |
|
2837 return ret_val; |
|
2838 } |
|
2839 |
|
2840 static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, |
|
2841 u16 *phy_data) |
|
2842 { |
|
2843 u32 i; |
|
2844 u32 mdic = 0; |
|
2845 const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1; |
|
2846 |
|
2847 if (reg_addr > MAX_PHY_REG_ADDRESS) { |
|
2848 e_dbg("PHY Address %d is out of range\n", reg_addr); |
|
2849 return -E1000_ERR_PARAM; |
|
2850 } |
|
2851 |
|
2852 if (hw->mac_type > e1000_82543) { |
|
2853 /* Set up Op-code, Phy Address, and register address in the MDI |
|
2854 * Control register. The MAC will take care of interfacing with |
|
2855 * the PHY to retrieve the desired data. |
|
2856 */ |
|
2857 if (hw->mac_type == e1000_ce4100) { |
|
2858 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) | |
|
2859 (phy_addr << E1000_MDIC_PHY_SHIFT) | |
|
2860 (INTEL_CE_GBE_MDIC_OP_READ) | |
|
2861 (INTEL_CE_GBE_MDIC_GO)); |
|
2862 |
|
2863 writel(mdic, E1000_MDIO_CMD); |
|
2864 |
|
2865 /* Poll the ready bit to see if the MDI read |
|
2866 * completed |
|
2867 */ |
|
2868 for (i = 0; i < 64; i++) { |
|
2869 udelay(50); |
|
2870 mdic = readl(E1000_MDIO_CMD); |
|
2871 if (!(mdic & INTEL_CE_GBE_MDIC_GO)) |
|
2872 break; |
|
2873 } |
|
2874 |
|
2875 if (mdic & INTEL_CE_GBE_MDIC_GO) { |
|
2876 e_dbg("MDI Read did not complete\n"); |
|
2877 return -E1000_ERR_PHY; |
|
2878 } |
|
2879 |
|
2880 mdic = readl(E1000_MDIO_STS); |
|
2881 if (mdic & INTEL_CE_GBE_MDIC_READ_ERROR) { |
|
2882 e_dbg("MDI Read Error\n"); |
|
2883 return -E1000_ERR_PHY; |
|
2884 } |
|
2885 *phy_data = (u16) mdic; |
|
2886 } else { |
|
2887 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) | |
|
2888 (phy_addr << E1000_MDIC_PHY_SHIFT) | |
|
2889 (E1000_MDIC_OP_READ)); |
|
2890 |
|
2891 ew32(MDIC, mdic); |
|
2892 |
|
2893 /* Poll the ready bit to see if the MDI read |
|
2894 * completed |
|
2895 */ |
|
2896 for (i = 0; i < 64; i++) { |
|
2897 udelay(50); |
|
2898 mdic = er32(MDIC); |
|
2899 if (mdic & E1000_MDIC_READY) |
|
2900 break; |
|
2901 } |
|
2902 if (!(mdic & E1000_MDIC_READY)) { |
|
2903 e_dbg("MDI Read did not complete\n"); |
|
2904 return -E1000_ERR_PHY; |
|
2905 } |
|
2906 if (mdic & E1000_MDIC_ERROR) { |
|
2907 e_dbg("MDI Error\n"); |
|
2908 return -E1000_ERR_PHY; |
|
2909 } |
|
2910 *phy_data = (u16) mdic; |
|
2911 } |
|
2912 } else { |
|
2913 /* We must first send a preamble through the MDIO pin to signal |
|
2914 * the beginning of an MII instruction. This is done by sending |
|
2915 * 32 consecutive "1" bits. |
|
2916 */ |
|
2917 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); |
|
2918 |
|
2919 /* Now combine the next few fields that are required for a read |
|
2920 * operation. We use this method instead of calling the |
|
2921 * e1000_shift_out_mdi_bits routine five different times. The |
|
2922 * format of a MII read instruction consists of a shift out of |
|
2923 * 14 bits and is defined as follows: |
|
2924 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr> |
|
2925 * followed by a shift in of 18 bits. This first two bits |
|
2926 * shifted in are TurnAround bits used to avoid contention on |
|
2927 * the MDIO pin when a READ operation is performed. These two |
|
2928 * bits are thrown away followed by a shift in of 16 bits which |
|
2929 * contains the desired data. |
|
2930 */ |
|
2931 mdic = ((reg_addr) | (phy_addr << 5) | |
|
2932 (PHY_OP_READ << 10) | (PHY_SOF << 12)); |
|
2933 |
|
2934 e1000_shift_out_mdi_bits(hw, mdic, 14); |
|
2935 |
|
2936 /* Now that we've shifted out the read command to the MII, we |
|
2937 * need to "shift in" the 16-bit value (18 total bits) of the |
|
2938 * requested PHY register address. |
|
2939 */ |
|
2940 *phy_data = e1000_shift_in_mdi_bits(hw); |
|
2941 } |
|
2942 return E1000_SUCCESS; |
|
2943 } |
|
2944 |
|
2945 /** |
|
2946 * e1000_write_phy_reg - write a phy register |
|
2947 * |
|
2948 * @hw: Struct containing variables accessed by shared code |
|
2949 * @reg_addr: address of the PHY register to write |
|
2950 * @data: data to write to the PHY |
|
2951 * |
|
2952 * Writes a value to a PHY register |
|
2953 */ |
|
2954 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data) |
|
2955 { |
|
2956 u32 ret_val; |
|
2957 unsigned long flags; |
|
2958 |
|
2959 spin_lock_irqsave(&e1000_phy_lock, flags); |
|
2960 |
|
2961 if ((hw->phy_type == e1000_phy_igp) && |
|
2962 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { |
|
2963 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, |
|
2964 (u16) reg_addr); |
|
2965 if (ret_val) { |
|
2966 spin_unlock_irqrestore(&e1000_phy_lock, flags); |
|
2967 return ret_val; |
|
2968 } |
|
2969 } |
|
2970 |
|
2971 ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, |
|
2972 phy_data); |
|
2973 spin_unlock_irqrestore(&e1000_phy_lock, flags); |
|
2974 |
|
2975 return ret_val; |
|
2976 } |
|
2977 |
|
2978 static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, |
|
2979 u16 phy_data) |
|
2980 { |
|
2981 u32 i; |
|
2982 u32 mdic = 0; |
|
2983 const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1; |
|
2984 |
|
2985 if (reg_addr > MAX_PHY_REG_ADDRESS) { |
|
2986 e_dbg("PHY Address %d is out of range\n", reg_addr); |
|
2987 return -E1000_ERR_PARAM; |
|
2988 } |
|
2989 |
|
2990 if (hw->mac_type > e1000_82543) { |
|
2991 /* Set up Op-code, Phy Address, register address, and data |
|
2992 * intended for the PHY register in the MDI Control register. |
|
2993 * The MAC will take care of interfacing with the PHY to send |
|
2994 * the desired data. |
|
2995 */ |
|
2996 if (hw->mac_type == e1000_ce4100) { |
|
2997 mdic = (((u32) phy_data) | |
|
2998 (reg_addr << E1000_MDIC_REG_SHIFT) | |
|
2999 (phy_addr << E1000_MDIC_PHY_SHIFT) | |
|
3000 (INTEL_CE_GBE_MDIC_OP_WRITE) | |
|
3001 (INTEL_CE_GBE_MDIC_GO)); |
|
3002 |
|
3003 writel(mdic, E1000_MDIO_CMD); |
|
3004 |
|
3005 /* Poll the ready bit to see if the MDI read |
|
3006 * completed |
|
3007 */ |
|
3008 for (i = 0; i < 640; i++) { |
|
3009 udelay(5); |
|
3010 mdic = readl(E1000_MDIO_CMD); |
|
3011 if (!(mdic & INTEL_CE_GBE_MDIC_GO)) |
|
3012 break; |
|
3013 } |
|
3014 if (mdic & INTEL_CE_GBE_MDIC_GO) { |
|
3015 e_dbg("MDI Write did not complete\n"); |
|
3016 return -E1000_ERR_PHY; |
|
3017 } |
|
3018 } else { |
|
3019 mdic = (((u32) phy_data) | |
|
3020 (reg_addr << E1000_MDIC_REG_SHIFT) | |
|
3021 (phy_addr << E1000_MDIC_PHY_SHIFT) | |
|
3022 (E1000_MDIC_OP_WRITE)); |
|
3023 |
|
3024 ew32(MDIC, mdic); |
|
3025 |
|
3026 /* Poll the ready bit to see if the MDI read |
|
3027 * completed |
|
3028 */ |
|
3029 for (i = 0; i < 641; i++) { |
|
3030 udelay(5); |
|
3031 mdic = er32(MDIC); |
|
3032 if (mdic & E1000_MDIC_READY) |
|
3033 break; |
|
3034 } |
|
3035 if (!(mdic & E1000_MDIC_READY)) { |
|
3036 e_dbg("MDI Write did not complete\n"); |
|
3037 return -E1000_ERR_PHY; |
|
3038 } |
|
3039 } |
|
3040 } else { |
|
3041 /* We'll need to use the SW defined pins to shift the write |
|
3042 * command out to the PHY. We first send a preamble to the PHY |
|
3043 * to signal the beginning of the MII instruction. This is done |
|
3044 * by sending 32 consecutive "1" bits. |
|
3045 */ |
|
3046 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); |
|
3047 |
|
3048 /* Now combine the remaining required fields that will indicate |
|
3049 * a write operation. We use this method instead of calling the |
|
3050 * e1000_shift_out_mdi_bits routine for each field in the |
|
3051 * command. The format of a MII write instruction is as follows: |
|
3052 * <Preamble><SOF><OpCode><PhyAddr><RegAddr><Turnaround><Data>. |
|
3053 */ |
|
3054 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) | |
|
3055 (PHY_OP_WRITE << 12) | (PHY_SOF << 14)); |
|
3056 mdic <<= 16; |
|
3057 mdic |= (u32) phy_data; |
|
3058 |
|
3059 e1000_shift_out_mdi_bits(hw, mdic, 32); |
|
3060 } |
|
3061 |
|
3062 return E1000_SUCCESS; |
|
3063 } |
|
3064 |
|
3065 /** |
|
3066 * e1000_phy_hw_reset - reset the phy, hardware style |
|
3067 * @hw: Struct containing variables accessed by shared code |
|
3068 * |
|
3069 * Returns the PHY to the power-on reset state |
|
3070 */ |
|
3071 s32 e1000_phy_hw_reset(struct e1000_hw *hw) |
|
3072 { |
|
3073 u32 ctrl, ctrl_ext; |
|
3074 u32 led_ctrl; |
|
3075 |
|
3076 e_dbg("Resetting Phy...\n"); |
|
3077 |
|
3078 if (hw->mac_type > e1000_82543) { |
|
3079 /* Read the device control register and assert the |
|
3080 * E1000_CTRL_PHY_RST bit. Then, take it out of reset. |
|
3081 * For e1000 hardware, we delay for 10ms between the assert |
|
3082 * and de-assert. |
|
3083 */ |
|
3084 ctrl = er32(CTRL); |
|
3085 ew32(CTRL, ctrl | E1000_CTRL_PHY_RST); |
|
3086 E1000_WRITE_FLUSH(); |
|
3087 |
|
3088 msleep(10); |
|
3089 |
|
3090 ew32(CTRL, ctrl); |
|
3091 E1000_WRITE_FLUSH(); |
|
3092 |
|
3093 } else { |
|
3094 /* Read the Extended Device Control Register, assert the |
|
3095 * PHY_RESET_DIR bit to put the PHY into reset. Then, take it |
|
3096 * out of reset. |
|
3097 */ |
|
3098 ctrl_ext = er32(CTRL_EXT); |
|
3099 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR; |
|
3100 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA; |
|
3101 ew32(CTRL_EXT, ctrl_ext); |
|
3102 E1000_WRITE_FLUSH(); |
|
3103 msleep(10); |
|
3104 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA; |
|
3105 ew32(CTRL_EXT, ctrl_ext); |
|
3106 E1000_WRITE_FLUSH(); |
|
3107 } |
|
3108 udelay(150); |
|
3109 |
|
3110 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { |
|
3111 /* Configure activity LED after PHY reset */ |
|
3112 led_ctrl = er32(LEDCTL); |
|
3113 led_ctrl &= IGP_ACTIVITY_LED_MASK; |
|
3114 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); |
|
3115 ew32(LEDCTL, led_ctrl); |
|
3116 } |
|
3117 |
|
3118 /* Wait for FW to finish PHY configuration. */ |
|
3119 return e1000_get_phy_cfg_done(hw); |
|
3120 } |
|
3121 |
|
3122 /** |
|
3123 * e1000_phy_reset - reset the phy to commit settings |
|
3124 * @hw: Struct containing variables accessed by shared code |
|
3125 * |
|
3126 * Resets the PHY |
|
3127 * Sets bit 15 of the MII Control register |
|
3128 */ |
|
3129 s32 e1000_phy_reset(struct e1000_hw *hw) |
|
3130 { |
|
3131 s32 ret_val; |
|
3132 u16 phy_data; |
|
3133 |
|
3134 switch (hw->phy_type) { |
|
3135 case e1000_phy_igp: |
|
3136 ret_val = e1000_phy_hw_reset(hw); |
|
3137 if (ret_val) |
|
3138 return ret_val; |
|
3139 break; |
|
3140 default: |
|
3141 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); |
|
3142 if (ret_val) |
|
3143 return ret_val; |
|
3144 |
|
3145 phy_data |= MII_CR_RESET; |
|
3146 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); |
|
3147 if (ret_val) |
|
3148 return ret_val; |
|
3149 |
|
3150 udelay(1); |
|
3151 break; |
|
3152 } |
|
3153 |
|
3154 if (hw->phy_type == e1000_phy_igp) |
|
3155 e1000_phy_init_script(hw); |
|
3156 |
|
3157 return E1000_SUCCESS; |
|
3158 } |
|
3159 |
|
3160 /** |
|
3161 * e1000_detect_gig_phy - check the phy type |
|
3162 * @hw: Struct containing variables accessed by shared code |
|
3163 * |
|
3164 * Probes the expected PHY address for known PHY IDs |
|
3165 */ |
|
3166 static s32 e1000_detect_gig_phy(struct e1000_hw *hw) |
|
3167 { |
|
3168 s32 phy_init_status, ret_val; |
|
3169 u16 phy_id_high, phy_id_low; |
|
3170 bool match = false; |
|
3171 |
|
3172 if (hw->phy_id != 0) |
|
3173 return E1000_SUCCESS; |
|
3174 |
|
3175 /* Read the PHY ID Registers to identify which PHY is onboard. */ |
|
3176 ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high); |
|
3177 if (ret_val) |
|
3178 return ret_val; |
|
3179 |
|
3180 hw->phy_id = (u32) (phy_id_high << 16); |
|
3181 udelay(20); |
|
3182 ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low); |
|
3183 if (ret_val) |
|
3184 return ret_val; |
|
3185 |
|
3186 hw->phy_id |= (u32) (phy_id_low & PHY_REVISION_MASK); |
|
3187 hw->phy_revision = (u32) phy_id_low & ~PHY_REVISION_MASK; |
|
3188 |
|
3189 switch (hw->mac_type) { |
|
3190 case e1000_82543: |
|
3191 if (hw->phy_id == M88E1000_E_PHY_ID) |
|
3192 match = true; |
|
3193 break; |
|
3194 case e1000_82544: |
|
3195 if (hw->phy_id == M88E1000_I_PHY_ID) |
|
3196 match = true; |
|
3197 break; |
|
3198 case e1000_82540: |
|
3199 case e1000_82545: |
|
3200 case e1000_82545_rev_3: |
|
3201 case e1000_82546: |
|
3202 case e1000_82546_rev_3: |
|
3203 if (hw->phy_id == M88E1011_I_PHY_ID) |
|
3204 match = true; |
|
3205 break; |
|
3206 case e1000_ce4100: |
|
3207 if ((hw->phy_id == RTL8211B_PHY_ID) || |
|
3208 (hw->phy_id == RTL8201N_PHY_ID) || |
|
3209 (hw->phy_id == M88E1118_E_PHY_ID)) |
|
3210 match = true; |
|
3211 break; |
|
3212 case e1000_82541: |
|
3213 case e1000_82541_rev_2: |
|
3214 case e1000_82547: |
|
3215 case e1000_82547_rev_2: |
|
3216 if (hw->phy_id == IGP01E1000_I_PHY_ID) |
|
3217 match = true; |
|
3218 break; |
|
3219 default: |
|
3220 e_dbg("Invalid MAC type %d\n", hw->mac_type); |
|
3221 return -E1000_ERR_CONFIG; |
|
3222 } |
|
3223 phy_init_status = e1000_set_phy_type(hw); |
|
3224 |
|
3225 if ((match) && (phy_init_status == E1000_SUCCESS)) { |
|
3226 e_dbg("PHY ID 0x%X detected\n", hw->phy_id); |
|
3227 return E1000_SUCCESS; |
|
3228 } |
|
3229 e_dbg("Invalid PHY ID 0x%X\n", hw->phy_id); |
|
3230 return -E1000_ERR_PHY; |
|
3231 } |
|
3232 |
|
3233 /** |
|
3234 * e1000_phy_reset_dsp - reset DSP |
|
3235 * @hw: Struct containing variables accessed by shared code |
|
3236 * |
|
3237 * Resets the PHY's DSP |
|
3238 */ |
|
3239 static s32 e1000_phy_reset_dsp(struct e1000_hw *hw) |
|
3240 { |
|
3241 s32 ret_val; |
|
3242 |
|
3243 do { |
|
3244 ret_val = e1000_write_phy_reg(hw, 29, 0x001d); |
|
3245 if (ret_val) |
|
3246 break; |
|
3247 ret_val = e1000_write_phy_reg(hw, 30, 0x00c1); |
|
3248 if (ret_val) |
|
3249 break; |
|
3250 ret_val = e1000_write_phy_reg(hw, 30, 0x0000); |
|
3251 if (ret_val) |
|
3252 break; |
|
3253 ret_val = E1000_SUCCESS; |
|
3254 } while (0); |
|
3255 |
|
3256 return ret_val; |
|
3257 } |
|
3258 |
|
3259 /** |
|
3260 * e1000_phy_igp_get_info - get igp specific registers |
|
3261 * @hw: Struct containing variables accessed by shared code |
|
3262 * @phy_info: PHY information structure |
|
3263 * |
|
3264 * Get PHY information from various PHY registers for igp PHY only. |
|
3265 */ |
|
3266 static s32 e1000_phy_igp_get_info(struct e1000_hw *hw, |
|
3267 struct e1000_phy_info *phy_info) |
|
3268 { |
|
3269 s32 ret_val; |
|
3270 u16 phy_data, min_length, max_length, average; |
|
3271 e1000_rev_polarity polarity; |
|
3272 |
|
3273 /* The downshift status is checked only once, after link is established, |
|
3274 * and it stored in the hw->speed_downgraded parameter. |
|
3275 */ |
|
3276 phy_info->downshift = (e1000_downshift) hw->speed_downgraded; |
|
3277 |
|
3278 /* IGP01E1000 does not need to support it. */ |
|
3279 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal; |
|
3280 |
|
3281 /* IGP01E1000 always correct polarity reversal */ |
|
3282 phy_info->polarity_correction = e1000_polarity_reversal_enabled; |
|
3283 |
|
3284 /* Check polarity status */ |
|
3285 ret_val = e1000_check_polarity(hw, &polarity); |
|
3286 if (ret_val) |
|
3287 return ret_val; |
|
3288 |
|
3289 phy_info->cable_polarity = polarity; |
|
3290 |
|
3291 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data); |
|
3292 if (ret_val) |
|
3293 return ret_val; |
|
3294 |
|
3295 phy_info->mdix_mode = |
|
3296 (e1000_auto_x_mode) ((phy_data & IGP01E1000_PSSR_MDIX) >> |
|
3297 IGP01E1000_PSSR_MDIX_SHIFT); |
|
3298 |
|
3299 if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) == |
|
3300 IGP01E1000_PSSR_SPEED_1000MBPS) { |
|
3301 /* Local/Remote Receiver Information are only valid @ 1000 |
|
3302 * Mbps |
|
3303 */ |
|
3304 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); |
|
3305 if (ret_val) |
|
3306 return ret_val; |
|
3307 |
|
3308 phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >> |
|
3309 SR_1000T_LOCAL_RX_STATUS_SHIFT) ? |
|
3310 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; |
|
3311 phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >> |
|
3312 SR_1000T_REMOTE_RX_STATUS_SHIFT) ? |
|
3313 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; |
|
3314 |
|
3315 /* Get cable length */ |
|
3316 ret_val = e1000_get_cable_length(hw, &min_length, &max_length); |
|
3317 if (ret_val) |
|
3318 return ret_val; |
|
3319 |
|
3320 /* Translate to old method */ |
|
3321 average = (max_length + min_length) / 2; |
|
3322 |
|
3323 if (average <= e1000_igp_cable_length_50) |
|
3324 phy_info->cable_length = e1000_cable_length_50; |
|
3325 else if (average <= e1000_igp_cable_length_80) |
|
3326 phy_info->cable_length = e1000_cable_length_50_80; |
|
3327 else if (average <= e1000_igp_cable_length_110) |
|
3328 phy_info->cable_length = e1000_cable_length_80_110; |
|
3329 else if (average <= e1000_igp_cable_length_140) |
|
3330 phy_info->cable_length = e1000_cable_length_110_140; |
|
3331 else |
|
3332 phy_info->cable_length = e1000_cable_length_140; |
|
3333 } |
|
3334 |
|
3335 return E1000_SUCCESS; |
|
3336 } |
|
3337 |
|
3338 /** |
|
3339 * e1000_phy_m88_get_info - get m88 specific registers |
|
3340 * @hw: Struct containing variables accessed by shared code |
|
3341 * @phy_info: PHY information structure |
|
3342 * |
|
3343 * Get PHY information from various PHY registers for m88 PHY only. |
|
3344 */ |
|
3345 static s32 e1000_phy_m88_get_info(struct e1000_hw *hw, |
|
3346 struct e1000_phy_info *phy_info) |
|
3347 { |
|
3348 s32 ret_val; |
|
3349 u16 phy_data; |
|
3350 e1000_rev_polarity polarity; |
|
3351 |
|
3352 /* The downshift status is checked only once, after link is established, |
|
3353 * and it stored in the hw->speed_downgraded parameter. |
|
3354 */ |
|
3355 phy_info->downshift = (e1000_downshift) hw->speed_downgraded; |
|
3356 |
|
3357 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
|
3358 if (ret_val) |
|
3359 return ret_val; |
|
3360 |
|
3361 phy_info->extended_10bt_distance = |
|
3362 ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >> |
|
3363 M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ? |
|
3364 e1000_10bt_ext_dist_enable_lower : |
|
3365 e1000_10bt_ext_dist_enable_normal; |
|
3366 |
|
3367 phy_info->polarity_correction = |
|
3368 ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >> |
|
3369 M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ? |
|
3370 e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled; |
|
3371 |
|
3372 /* Check polarity status */ |
|
3373 ret_val = e1000_check_polarity(hw, &polarity); |
|
3374 if (ret_val) |
|
3375 return ret_val; |
|
3376 phy_info->cable_polarity = polarity; |
|
3377 |
|
3378 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); |
|
3379 if (ret_val) |
|
3380 return ret_val; |
|
3381 |
|
3382 phy_info->mdix_mode = |
|
3383 (e1000_auto_x_mode) ((phy_data & M88E1000_PSSR_MDIX) >> |
|
3384 M88E1000_PSSR_MDIX_SHIFT); |
|
3385 |
|
3386 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { |
|
3387 /* Cable Length Estimation and Local/Remote Receiver Information |
|
3388 * are only valid at 1000 Mbps. |
|
3389 */ |
|
3390 phy_info->cable_length = |
|
3391 (e1000_cable_length) ((phy_data & |
|
3392 M88E1000_PSSR_CABLE_LENGTH) >> |
|
3393 M88E1000_PSSR_CABLE_LENGTH_SHIFT); |
|
3394 |
|
3395 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); |
|
3396 if (ret_val) |
|
3397 return ret_val; |
|
3398 |
|
3399 phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >> |
|
3400 SR_1000T_LOCAL_RX_STATUS_SHIFT) ? |
|
3401 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; |
|
3402 phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >> |
|
3403 SR_1000T_REMOTE_RX_STATUS_SHIFT) ? |
|
3404 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; |
|
3405 |
|
3406 } |
|
3407 |
|
3408 return E1000_SUCCESS; |
|
3409 } |
|
3410 |
|
3411 /** |
|
3412 * e1000_phy_get_info - request phy info |
|
3413 * @hw: Struct containing variables accessed by shared code |
|
3414 * @phy_info: PHY information structure |
|
3415 * |
|
3416 * Get PHY information from various PHY registers |
|
3417 */ |
|
3418 s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info) |
|
3419 { |
|
3420 s32 ret_val; |
|
3421 u16 phy_data; |
|
3422 |
|
3423 phy_info->cable_length = e1000_cable_length_undefined; |
|
3424 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined; |
|
3425 phy_info->cable_polarity = e1000_rev_polarity_undefined; |
|
3426 phy_info->downshift = e1000_downshift_undefined; |
|
3427 phy_info->polarity_correction = e1000_polarity_reversal_undefined; |
|
3428 phy_info->mdix_mode = e1000_auto_x_mode_undefined; |
|
3429 phy_info->local_rx = e1000_1000t_rx_status_undefined; |
|
3430 phy_info->remote_rx = e1000_1000t_rx_status_undefined; |
|
3431 |
|
3432 if (hw->media_type != e1000_media_type_copper) { |
|
3433 e_dbg("PHY info is only valid for copper media\n"); |
|
3434 return -E1000_ERR_CONFIG; |
|
3435 } |
|
3436 |
|
3437 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
|
3438 if (ret_val) |
|
3439 return ret_val; |
|
3440 |
|
3441 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
|
3442 if (ret_val) |
|
3443 return ret_val; |
|
3444 |
|
3445 if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) { |
|
3446 e_dbg("PHY info is only valid if link is up\n"); |
|
3447 return -E1000_ERR_CONFIG; |
|
3448 } |
|
3449 |
|
3450 if (hw->phy_type == e1000_phy_igp) |
|
3451 return e1000_phy_igp_get_info(hw, phy_info); |
|
3452 else if ((hw->phy_type == e1000_phy_8211) || |
|
3453 (hw->phy_type == e1000_phy_8201)) |
|
3454 return E1000_SUCCESS; |
|
3455 else |
|
3456 return e1000_phy_m88_get_info(hw, phy_info); |
|
3457 } |
|
3458 |
|
3459 s32 e1000_validate_mdi_setting(struct e1000_hw *hw) |
|
3460 { |
|
3461 if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) { |
|
3462 e_dbg("Invalid MDI setting detected\n"); |
|
3463 hw->mdix = 1; |
|
3464 return -E1000_ERR_CONFIG; |
|
3465 } |
|
3466 return E1000_SUCCESS; |
|
3467 } |
|
3468 |
|
3469 /** |
|
3470 * e1000_init_eeprom_params - initialize sw eeprom vars |
|
3471 * @hw: Struct containing variables accessed by shared code |
|
3472 * |
|
3473 * Sets up eeprom variables in the hw struct. Must be called after mac_type |
|
3474 * is configured. |
|
3475 */ |
|
3476 s32 e1000_init_eeprom_params(struct e1000_hw *hw) |
|
3477 { |
|
3478 struct e1000_eeprom_info *eeprom = &hw->eeprom; |
|
3479 u32 eecd = er32(EECD); |
|
3480 s32 ret_val = E1000_SUCCESS; |
|
3481 u16 eeprom_size; |
|
3482 |
|
3483 switch (hw->mac_type) { |
|
3484 case e1000_82542_rev2_0: |
|
3485 case e1000_82542_rev2_1: |
|
3486 case e1000_82543: |
|
3487 case e1000_82544: |
|
3488 eeprom->type = e1000_eeprom_microwire; |
|
3489 eeprom->word_size = 64; |
|
3490 eeprom->opcode_bits = 3; |
|
3491 eeprom->address_bits = 6; |
|
3492 eeprom->delay_usec = 50; |
|
3493 break; |
|
3494 case e1000_82540: |
|
3495 case e1000_82545: |
|
3496 case e1000_82545_rev_3: |
|
3497 case e1000_82546: |
|
3498 case e1000_82546_rev_3: |
|
3499 eeprom->type = e1000_eeprom_microwire; |
|
3500 eeprom->opcode_bits = 3; |
|
3501 eeprom->delay_usec = 50; |
|
3502 if (eecd & E1000_EECD_SIZE) { |
|
3503 eeprom->word_size = 256; |
|
3504 eeprom->address_bits = 8; |
|
3505 } else { |
|
3506 eeprom->word_size = 64; |
|
3507 eeprom->address_bits = 6; |
|
3508 } |
|
3509 break; |
|
3510 case e1000_82541: |
|
3511 case e1000_82541_rev_2: |
|
3512 case e1000_82547: |
|
3513 case e1000_82547_rev_2: |
|
3514 if (eecd & E1000_EECD_TYPE) { |
|
3515 eeprom->type = e1000_eeprom_spi; |
|
3516 eeprom->opcode_bits = 8; |
|
3517 eeprom->delay_usec = 1; |
|
3518 if (eecd & E1000_EECD_ADDR_BITS) { |
|
3519 eeprom->page_size = 32; |
|
3520 eeprom->address_bits = 16; |
|
3521 } else { |
|
3522 eeprom->page_size = 8; |
|
3523 eeprom->address_bits = 8; |
|
3524 } |
|
3525 } else { |
|
3526 eeprom->type = e1000_eeprom_microwire; |
|
3527 eeprom->opcode_bits = 3; |
|
3528 eeprom->delay_usec = 50; |
|
3529 if (eecd & E1000_EECD_ADDR_BITS) { |
|
3530 eeprom->word_size = 256; |
|
3531 eeprom->address_bits = 8; |
|
3532 } else { |
|
3533 eeprom->word_size = 64; |
|
3534 eeprom->address_bits = 6; |
|
3535 } |
|
3536 } |
|
3537 break; |
|
3538 default: |
|
3539 break; |
|
3540 } |
|
3541 |
|
3542 if (eeprom->type == e1000_eeprom_spi) { |
|
3543 /* eeprom_size will be an enum [0..8] that maps to eeprom sizes |
|
3544 * 128B to 32KB (incremented by powers of 2). |
|
3545 */ |
|
3546 /* Set to default value for initial eeprom read. */ |
|
3547 eeprom->word_size = 64; |
|
3548 ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size); |
|
3549 if (ret_val) |
|
3550 return ret_val; |
|
3551 eeprom_size = |
|
3552 (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT; |
|
3553 /* 256B eeprom size was not supported in earlier hardware, so we |
|
3554 * bump eeprom_size up one to ensure that "1" (which maps to |
|
3555 * 256B) is never the result used in the shifting logic below. |
|
3556 */ |
|
3557 if (eeprom_size) |
|
3558 eeprom_size++; |
|
3559 |
|
3560 eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT); |
|
3561 } |
|
3562 return ret_val; |
|
3563 } |
|
3564 |
|
3565 /** |
|
3566 * e1000_raise_ee_clk - Raises the EEPROM's clock input. |
|
3567 * @hw: Struct containing variables accessed by shared code |
|
3568 * @eecd: EECD's current value |
|
3569 */ |
|
3570 static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd) |
|
3571 { |
|
3572 /* Raise the clock input to the EEPROM (by setting the SK bit), and then |
|
3573 * wait <delay> microseconds. |
|
3574 */ |
|
3575 *eecd = *eecd | E1000_EECD_SK; |
|
3576 ew32(EECD, *eecd); |
|
3577 E1000_WRITE_FLUSH(); |
|
3578 udelay(hw->eeprom.delay_usec); |
|
3579 } |
|
3580 |
|
3581 /** |
|
3582 * e1000_lower_ee_clk - Lowers the EEPROM's clock input. |
|
3583 * @hw: Struct containing variables accessed by shared code |
|
3584 * @eecd: EECD's current value |
|
3585 */ |
|
3586 static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd) |
|
3587 { |
|
3588 /* Lower the clock input to the EEPROM (by clearing the SK bit), and |
|
3589 * then wait 50 microseconds. |
|
3590 */ |
|
3591 *eecd = *eecd & ~E1000_EECD_SK; |
|
3592 ew32(EECD, *eecd); |
|
3593 E1000_WRITE_FLUSH(); |
|
3594 udelay(hw->eeprom.delay_usec); |
|
3595 } |
|
3596 |
|
3597 /** |
|
3598 * e1000_shift_out_ee_bits - Shift data bits out to the EEPROM. |
|
3599 * @hw: Struct containing variables accessed by shared code |
|
3600 * @data: data to send to the EEPROM |
|
3601 * @count: number of bits to shift out |
|
3602 */ |
|
3603 static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count) |
|
3604 { |
|
3605 struct e1000_eeprom_info *eeprom = &hw->eeprom; |
|
3606 u32 eecd; |
|
3607 u32 mask; |
|
3608 |
|
3609 /* We need to shift "count" bits out to the EEPROM. So, value in the |
|
3610 * "data" parameter will be shifted out to the EEPROM one bit at a time. |
|
3611 * In order to do this, "data" must be broken down into bits. |
|
3612 */ |
|
3613 mask = 0x01 << (count - 1); |
|
3614 eecd = er32(EECD); |
|
3615 if (eeprom->type == e1000_eeprom_microwire) { |
|
3616 eecd &= ~E1000_EECD_DO; |
|
3617 } else if (eeprom->type == e1000_eeprom_spi) { |
|
3618 eecd |= E1000_EECD_DO; |
|
3619 } |
|
3620 do { |
|
3621 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a |
|
3622 * "1", and then raising and then lowering the clock (the SK bit |
|
3623 * controls the clock input to the EEPROM). A "0" is shifted |
|
3624 * out to the EEPROM by setting "DI" to "0" and then raising and |
|
3625 * then lowering the clock. |
|
3626 */ |
|
3627 eecd &= ~E1000_EECD_DI; |
|
3628 |
|
3629 if (data & mask) |
|
3630 eecd |= E1000_EECD_DI; |
|
3631 |
|
3632 ew32(EECD, eecd); |
|
3633 E1000_WRITE_FLUSH(); |
|
3634 |
|
3635 udelay(eeprom->delay_usec); |
|
3636 |
|
3637 e1000_raise_ee_clk(hw, &eecd); |
|
3638 e1000_lower_ee_clk(hw, &eecd); |
|
3639 |
|
3640 mask = mask >> 1; |
|
3641 |
|
3642 } while (mask); |
|
3643 |
|
3644 /* We leave the "DI" bit set to "0" when we leave this routine. */ |
|
3645 eecd &= ~E1000_EECD_DI; |
|
3646 ew32(EECD, eecd); |
|
3647 } |
|
3648 |
|
3649 /** |
|
3650 * e1000_shift_in_ee_bits - Shift data bits in from the EEPROM |
|
3651 * @hw: Struct containing variables accessed by shared code |
|
3652 * @count: number of bits to shift in |
|
3653 */ |
|
3654 static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count) |
|
3655 { |
|
3656 u32 eecd; |
|
3657 u32 i; |
|
3658 u16 data; |
|
3659 |
|
3660 /* In order to read a register from the EEPROM, we need to shift 'count' |
|
3661 * bits in from the EEPROM. Bits are "shifted in" by raising the clock |
|
3662 * input to the EEPROM (setting the SK bit), and then reading the value |
|
3663 * of the "DO" bit. During this "shifting in" process the "DI" bit |
|
3664 * should always be clear. |
|
3665 */ |
|
3666 |
|
3667 eecd = er32(EECD); |
|
3668 |
|
3669 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); |
|
3670 data = 0; |
|
3671 |
|
3672 for (i = 0; i < count; i++) { |
|
3673 data = data << 1; |
|
3674 e1000_raise_ee_clk(hw, &eecd); |
|
3675 |
|
3676 eecd = er32(EECD); |
|
3677 |
|
3678 eecd &= ~(E1000_EECD_DI); |
|
3679 if (eecd & E1000_EECD_DO) |
|
3680 data |= 1; |
|
3681 |
|
3682 e1000_lower_ee_clk(hw, &eecd); |
|
3683 } |
|
3684 |
|
3685 return data; |
|
3686 } |
|
3687 |
|
3688 /** |
|
3689 * e1000_acquire_eeprom - Prepares EEPROM for access |
|
3690 * @hw: Struct containing variables accessed by shared code |
|
3691 * |
|
3692 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This |
|
3693 * function should be called before issuing a command to the EEPROM. |
|
3694 */ |
|
3695 static s32 e1000_acquire_eeprom(struct e1000_hw *hw) |
|
3696 { |
|
3697 struct e1000_eeprom_info *eeprom = &hw->eeprom; |
|
3698 u32 eecd, i = 0; |
|
3699 |
|
3700 eecd = er32(EECD); |
|
3701 |
|
3702 /* Request EEPROM Access */ |
|
3703 if (hw->mac_type > e1000_82544) { |
|
3704 eecd |= E1000_EECD_REQ; |
|
3705 ew32(EECD, eecd); |
|
3706 eecd = er32(EECD); |
|
3707 while ((!(eecd & E1000_EECD_GNT)) && |
|
3708 (i < E1000_EEPROM_GRANT_ATTEMPTS)) { |
|
3709 i++; |
|
3710 udelay(5); |
|
3711 eecd = er32(EECD); |
|
3712 } |
|
3713 if (!(eecd & E1000_EECD_GNT)) { |
|
3714 eecd &= ~E1000_EECD_REQ; |
|
3715 ew32(EECD, eecd); |
|
3716 e_dbg("Could not acquire EEPROM grant\n"); |
|
3717 return -E1000_ERR_EEPROM; |
|
3718 } |
|
3719 } |
|
3720 |
|
3721 /* Setup EEPROM for Read/Write */ |
|
3722 |
|
3723 if (eeprom->type == e1000_eeprom_microwire) { |
|
3724 /* Clear SK and DI */ |
|
3725 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK); |
|
3726 ew32(EECD, eecd); |
|
3727 |
|
3728 /* Set CS */ |
|
3729 eecd |= E1000_EECD_CS; |
|
3730 ew32(EECD, eecd); |
|
3731 } else if (eeprom->type == e1000_eeprom_spi) { |
|
3732 /* Clear SK and CS */ |
|
3733 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); |
|
3734 ew32(EECD, eecd); |
|
3735 E1000_WRITE_FLUSH(); |
|
3736 udelay(1); |
|
3737 } |
|
3738 |
|
3739 return E1000_SUCCESS; |
|
3740 } |
|
3741 |
|
3742 /** |
|
3743 * e1000_standby_eeprom - Returns EEPROM to a "standby" state |
|
3744 * @hw: Struct containing variables accessed by shared code |
|
3745 */ |
|
3746 static void e1000_standby_eeprom(struct e1000_hw *hw) |
|
3747 { |
|
3748 struct e1000_eeprom_info *eeprom = &hw->eeprom; |
|
3749 u32 eecd; |
|
3750 |
|
3751 eecd = er32(EECD); |
|
3752 |
|
3753 if (eeprom->type == e1000_eeprom_microwire) { |
|
3754 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); |
|
3755 ew32(EECD, eecd); |
|
3756 E1000_WRITE_FLUSH(); |
|
3757 udelay(eeprom->delay_usec); |
|
3758 |
|
3759 /* Clock high */ |
|
3760 eecd |= E1000_EECD_SK; |
|
3761 ew32(EECD, eecd); |
|
3762 E1000_WRITE_FLUSH(); |
|
3763 udelay(eeprom->delay_usec); |
|
3764 |
|
3765 /* Select EEPROM */ |
|
3766 eecd |= E1000_EECD_CS; |
|
3767 ew32(EECD, eecd); |
|
3768 E1000_WRITE_FLUSH(); |
|
3769 udelay(eeprom->delay_usec); |
|
3770 |
|
3771 /* Clock low */ |
|
3772 eecd &= ~E1000_EECD_SK; |
|
3773 ew32(EECD, eecd); |
|
3774 E1000_WRITE_FLUSH(); |
|
3775 udelay(eeprom->delay_usec); |
|
3776 } else if (eeprom->type == e1000_eeprom_spi) { |
|
3777 /* Toggle CS to flush commands */ |
|
3778 eecd |= E1000_EECD_CS; |
|
3779 ew32(EECD, eecd); |
|
3780 E1000_WRITE_FLUSH(); |
|
3781 udelay(eeprom->delay_usec); |
|
3782 eecd &= ~E1000_EECD_CS; |
|
3783 ew32(EECD, eecd); |
|
3784 E1000_WRITE_FLUSH(); |
|
3785 udelay(eeprom->delay_usec); |
|
3786 } |
|
3787 } |
|
3788 |
|
3789 /** |
|
3790 * e1000_release_eeprom - drop chip select |
|
3791 * @hw: Struct containing variables accessed by shared code |
|
3792 * |
|
3793 * Terminates a command by inverting the EEPROM's chip select pin |
|
3794 */ |
|
3795 static void e1000_release_eeprom(struct e1000_hw *hw) |
|
3796 { |
|
3797 u32 eecd; |
|
3798 |
|
3799 eecd = er32(EECD); |
|
3800 |
|
3801 if (hw->eeprom.type == e1000_eeprom_spi) { |
|
3802 eecd |= E1000_EECD_CS; /* Pull CS high */ |
|
3803 eecd &= ~E1000_EECD_SK; /* Lower SCK */ |
|
3804 |
|
3805 ew32(EECD, eecd); |
|
3806 E1000_WRITE_FLUSH(); |
|
3807 |
|
3808 udelay(hw->eeprom.delay_usec); |
|
3809 } else if (hw->eeprom.type == e1000_eeprom_microwire) { |
|
3810 /* cleanup eeprom */ |
|
3811 |
|
3812 /* CS on Microwire is active-high */ |
|
3813 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); |
|
3814 |
|
3815 ew32(EECD, eecd); |
|
3816 |
|
3817 /* Rising edge of clock */ |
|
3818 eecd |= E1000_EECD_SK; |
|
3819 ew32(EECD, eecd); |
|
3820 E1000_WRITE_FLUSH(); |
|
3821 udelay(hw->eeprom.delay_usec); |
|
3822 |
|
3823 /* Falling edge of clock */ |
|
3824 eecd &= ~E1000_EECD_SK; |
|
3825 ew32(EECD, eecd); |
|
3826 E1000_WRITE_FLUSH(); |
|
3827 udelay(hw->eeprom.delay_usec); |
|
3828 } |
|
3829 |
|
3830 /* Stop requesting EEPROM access */ |
|
3831 if (hw->mac_type > e1000_82544) { |
|
3832 eecd &= ~E1000_EECD_REQ; |
|
3833 ew32(EECD, eecd); |
|
3834 } |
|
3835 } |
|
3836 |
|
3837 /** |
|
3838 * e1000_spi_eeprom_ready - Reads a 16 bit word from the EEPROM. |
|
3839 * @hw: Struct containing variables accessed by shared code |
|
3840 */ |
|
3841 static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw) |
|
3842 { |
|
3843 u16 retry_count = 0; |
|
3844 u8 spi_stat_reg; |
|
3845 |
|
3846 /* Read "Status Register" repeatedly until the LSB is cleared. The |
|
3847 * EEPROM will signal that the command has been completed by clearing |
|
3848 * bit 0 of the internal status register. If it's not cleared within |
|
3849 * 5 milliseconds, then error out. |
|
3850 */ |
|
3851 retry_count = 0; |
|
3852 do { |
|
3853 e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI, |
|
3854 hw->eeprom.opcode_bits); |
|
3855 spi_stat_reg = (u8) e1000_shift_in_ee_bits(hw, 8); |
|
3856 if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI)) |
|
3857 break; |
|
3858 |
|
3859 udelay(5); |
|
3860 retry_count += 5; |
|
3861 |
|
3862 e1000_standby_eeprom(hw); |
|
3863 } while (retry_count < EEPROM_MAX_RETRY_SPI); |
|
3864 |
|
3865 /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and |
|
3866 * only 0-5mSec on 5V devices) |
|
3867 */ |
|
3868 if (retry_count >= EEPROM_MAX_RETRY_SPI) { |
|
3869 e_dbg("SPI EEPROM Status error\n"); |
|
3870 return -E1000_ERR_EEPROM; |
|
3871 } |
|
3872 |
|
3873 return E1000_SUCCESS; |
|
3874 } |
|
3875 |
|
3876 /** |
|
3877 * e1000_read_eeprom - Reads a 16 bit word from the EEPROM. |
|
3878 * @hw: Struct containing variables accessed by shared code |
|
3879 * @offset: offset of word in the EEPROM to read |
|
3880 * @data: word read from the EEPROM |
|
3881 * @words: number of words to read |
|
3882 */ |
|
3883 s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) |
|
3884 { |
|
3885 s32 ret; |
|
3886 spin_lock(&e1000_eeprom_lock); |
|
3887 ret = e1000_do_read_eeprom(hw, offset, words, data); |
|
3888 spin_unlock(&e1000_eeprom_lock); |
|
3889 return ret; |
|
3890 } |
|
3891 |
|
3892 static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, |
|
3893 u16 *data) |
|
3894 { |
|
3895 struct e1000_eeprom_info *eeprom = &hw->eeprom; |
|
3896 u32 i = 0; |
|
3897 |
|
3898 if (hw->mac_type == e1000_ce4100) { |
|
3899 GBE_CONFIG_FLASH_READ(GBE_CONFIG_BASE_VIRT, offset, words, |
|
3900 data); |
|
3901 return E1000_SUCCESS; |
|
3902 } |
|
3903 |
|
3904 /* If eeprom is not yet detected, do so now */ |
|
3905 if (eeprom->word_size == 0) |
|
3906 e1000_init_eeprom_params(hw); |
|
3907 |
|
3908 /* A check for invalid values: offset too large, too many words, and |
|
3909 * not enough words. |
|
3910 */ |
|
3911 if ((offset >= eeprom->word_size) |
|
3912 || (words > eeprom->word_size - offset) || (words == 0)) { |
|
3913 e_dbg("\"words\" parameter out of bounds. Words = %d," |
|
3914 "size = %d\n", offset, eeprom->word_size); |
|
3915 return -E1000_ERR_EEPROM; |
|
3916 } |
|
3917 |
|
3918 /* EEPROM's that don't use EERD to read require us to bit-bang the SPI |
|
3919 * directly. In this case, we need to acquire the EEPROM so that |
|
3920 * FW or other port software does not interrupt. |
|
3921 */ |
|
3922 /* Prepare the EEPROM for bit-bang reading */ |
|
3923 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) |
|
3924 return -E1000_ERR_EEPROM; |
|
3925 |
|
3926 /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have |
|
3927 * acquired the EEPROM at this point, so any returns should release it |
|
3928 */ |
|
3929 if (eeprom->type == e1000_eeprom_spi) { |
|
3930 u16 word_in; |
|
3931 u8 read_opcode = EEPROM_READ_OPCODE_SPI; |
|
3932 |
|
3933 if (e1000_spi_eeprom_ready(hw)) { |
|
3934 e1000_release_eeprom(hw); |
|
3935 return -E1000_ERR_EEPROM; |
|
3936 } |
|
3937 |
|
3938 e1000_standby_eeprom(hw); |
|
3939 |
|
3940 /* Some SPI eeproms use the 8th address bit embedded in the |
|
3941 * opcode |
|
3942 */ |
|
3943 if ((eeprom->address_bits == 8) && (offset >= 128)) |
|
3944 read_opcode |= EEPROM_A8_OPCODE_SPI; |
|
3945 |
|
3946 /* Send the READ command (opcode + addr) */ |
|
3947 e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits); |
|
3948 e1000_shift_out_ee_bits(hw, (u16) (offset * 2), |
|
3949 eeprom->address_bits); |
|
3950 |
|
3951 /* Read the data. The address of the eeprom internally |
|
3952 * increments with each byte (spi) being read, saving on the |
|
3953 * overhead of eeprom setup and tear-down. The address counter |
|
3954 * will roll over if reading beyond the size of the eeprom, thus |
|
3955 * allowing the entire memory to be read starting from any |
|
3956 * offset. |
|
3957 */ |
|
3958 for (i = 0; i < words; i++) { |
|
3959 word_in = e1000_shift_in_ee_bits(hw, 16); |
|
3960 data[i] = (word_in >> 8) | (word_in << 8); |
|
3961 } |
|
3962 } else if (eeprom->type == e1000_eeprom_microwire) { |
|
3963 for (i = 0; i < words; i++) { |
|
3964 /* Send the READ command (opcode + addr) */ |
|
3965 e1000_shift_out_ee_bits(hw, |
|
3966 EEPROM_READ_OPCODE_MICROWIRE, |
|
3967 eeprom->opcode_bits); |
|
3968 e1000_shift_out_ee_bits(hw, (u16) (offset + i), |
|
3969 eeprom->address_bits); |
|
3970 |
|
3971 /* Read the data. For microwire, each word requires the |
|
3972 * overhead of eeprom setup and tear-down. |
|
3973 */ |
|
3974 data[i] = e1000_shift_in_ee_bits(hw, 16); |
|
3975 e1000_standby_eeprom(hw); |
|
3976 } |
|
3977 } |
|
3978 |
|
3979 /* End this read operation */ |
|
3980 e1000_release_eeprom(hw); |
|
3981 |
|
3982 return E1000_SUCCESS; |
|
3983 } |
|
3984 |
|
3985 /** |
|
3986 * e1000_validate_eeprom_checksum - Verifies that the EEPROM has a valid checksum |
|
3987 * @hw: Struct containing variables accessed by shared code |
|
3988 * |
|
3989 * Reads the first 64 16 bit words of the EEPROM and sums the values read. |
|
3990 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is |
|
3991 * valid. |
|
3992 */ |
|
3993 s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw) |
|
3994 { |
|
3995 u16 checksum = 0; |
|
3996 u16 i, eeprom_data; |
|
3997 |
|
3998 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { |
|
3999 if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { |
|
4000 e_dbg("EEPROM Read Error\n"); |
|
4001 return -E1000_ERR_EEPROM; |
|
4002 } |
|
4003 checksum += eeprom_data; |
|
4004 } |
|
4005 |
|
4006 #ifdef CONFIG_PARISC |
|
4007 /* This is a signature and not a checksum on HP c8000 */ |
|
4008 if ((hw->subsystem_vendor_id == 0x103C) && (eeprom_data == 0x16d6)) |
|
4009 return E1000_SUCCESS; |
|
4010 |
|
4011 #endif |
|
4012 if (checksum == (u16) EEPROM_SUM) |
|
4013 return E1000_SUCCESS; |
|
4014 else { |
|
4015 e_dbg("EEPROM Checksum Invalid\n"); |
|
4016 return -E1000_ERR_EEPROM; |
|
4017 } |
|
4018 } |
|
4019 |
|
4020 /** |
|
4021 * e1000_update_eeprom_checksum - Calculates/writes the EEPROM checksum |
|
4022 * @hw: Struct containing variables accessed by shared code |
|
4023 * |
|
4024 * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA. |
|
4025 * Writes the difference to word offset 63 of the EEPROM. |
|
4026 */ |
|
4027 s32 e1000_update_eeprom_checksum(struct e1000_hw *hw) |
|
4028 { |
|
4029 u16 checksum = 0; |
|
4030 u16 i, eeprom_data; |
|
4031 |
|
4032 for (i = 0; i < EEPROM_CHECKSUM_REG; i++) { |
|
4033 if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { |
|
4034 e_dbg("EEPROM Read Error\n"); |
|
4035 return -E1000_ERR_EEPROM; |
|
4036 } |
|
4037 checksum += eeprom_data; |
|
4038 } |
|
4039 checksum = (u16) EEPROM_SUM - checksum; |
|
4040 if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) { |
|
4041 e_dbg("EEPROM Write Error\n"); |
|
4042 return -E1000_ERR_EEPROM; |
|
4043 } |
|
4044 return E1000_SUCCESS; |
|
4045 } |
|
4046 |
|
4047 /** |
|
4048 * e1000_write_eeprom - write words to the different EEPROM types. |
|
4049 * @hw: Struct containing variables accessed by shared code |
|
4050 * @offset: offset within the EEPROM to be written to |
|
4051 * @words: number of words to write |
|
4052 * @data: 16 bit word to be written to the EEPROM |
|
4053 * |
|
4054 * If e1000_update_eeprom_checksum is not called after this function, the |
|
4055 * EEPROM will most likely contain an invalid checksum. |
|
4056 */ |
|
4057 s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) |
|
4058 { |
|
4059 s32 ret; |
|
4060 spin_lock(&e1000_eeprom_lock); |
|
4061 ret = e1000_do_write_eeprom(hw, offset, words, data); |
|
4062 spin_unlock(&e1000_eeprom_lock); |
|
4063 return ret; |
|
4064 } |
|
4065 |
|
4066 static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, |
|
4067 u16 *data) |
|
4068 { |
|
4069 struct e1000_eeprom_info *eeprom = &hw->eeprom; |
|
4070 s32 status = 0; |
|
4071 |
|
4072 if (hw->mac_type == e1000_ce4100) { |
|
4073 GBE_CONFIG_FLASH_WRITE(GBE_CONFIG_BASE_VIRT, offset, words, |
|
4074 data); |
|
4075 return E1000_SUCCESS; |
|
4076 } |
|
4077 |
|
4078 /* If eeprom is not yet detected, do so now */ |
|
4079 if (eeprom->word_size == 0) |
|
4080 e1000_init_eeprom_params(hw); |
|
4081 |
|
4082 /* A check for invalid values: offset too large, too many words, and |
|
4083 * not enough words. |
|
4084 */ |
|
4085 if ((offset >= eeprom->word_size) |
|
4086 || (words > eeprom->word_size - offset) || (words == 0)) { |
|
4087 e_dbg("\"words\" parameter out of bounds\n"); |
|
4088 return -E1000_ERR_EEPROM; |
|
4089 } |
|
4090 |
|
4091 /* Prepare the EEPROM for writing */ |
|
4092 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) |
|
4093 return -E1000_ERR_EEPROM; |
|
4094 |
|
4095 if (eeprom->type == e1000_eeprom_microwire) { |
|
4096 status = e1000_write_eeprom_microwire(hw, offset, words, data); |
|
4097 } else { |
|
4098 status = e1000_write_eeprom_spi(hw, offset, words, data); |
|
4099 msleep(10); |
|
4100 } |
|
4101 |
|
4102 /* Done with writing */ |
|
4103 e1000_release_eeprom(hw); |
|
4104 |
|
4105 return status; |
|
4106 } |
|
4107 |
|
4108 /** |
|
4109 * e1000_write_eeprom_spi - Writes a 16 bit word to a given offset in an SPI EEPROM. |
|
4110 * @hw: Struct containing variables accessed by shared code |
|
4111 * @offset: offset within the EEPROM to be written to |
|
4112 * @words: number of words to write |
|
4113 * @data: pointer to array of 8 bit words to be written to the EEPROM |
|
4114 */ |
|
4115 static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words, |
|
4116 u16 *data) |
|
4117 { |
|
4118 struct e1000_eeprom_info *eeprom = &hw->eeprom; |
|
4119 u16 widx = 0; |
|
4120 |
|
4121 while (widx < words) { |
|
4122 u8 write_opcode = EEPROM_WRITE_OPCODE_SPI; |
|
4123 |
|
4124 if (e1000_spi_eeprom_ready(hw)) |
|
4125 return -E1000_ERR_EEPROM; |
|
4126 |
|
4127 e1000_standby_eeprom(hw); |
|
4128 |
|
4129 /* Send the WRITE ENABLE command (8 bit opcode ) */ |
|
4130 e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI, |
|
4131 eeprom->opcode_bits); |
|
4132 |
|
4133 e1000_standby_eeprom(hw); |
|
4134 |
|
4135 /* Some SPI eeproms use the 8th address bit embedded in the |
|
4136 * opcode |
|
4137 */ |
|
4138 if ((eeprom->address_bits == 8) && (offset >= 128)) |
|
4139 write_opcode |= EEPROM_A8_OPCODE_SPI; |
|
4140 |
|
4141 /* Send the Write command (8-bit opcode + addr) */ |
|
4142 e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits); |
|
4143 |
|
4144 e1000_shift_out_ee_bits(hw, (u16) ((offset + widx) * 2), |
|
4145 eeprom->address_bits); |
|
4146 |
|
4147 /* Send the data */ |
|
4148 |
|
4149 /* Loop to allow for up to whole page write (32 bytes) of |
|
4150 * eeprom |
|
4151 */ |
|
4152 while (widx < words) { |
|
4153 u16 word_out = data[widx]; |
|
4154 word_out = (word_out >> 8) | (word_out << 8); |
|
4155 e1000_shift_out_ee_bits(hw, word_out, 16); |
|
4156 widx++; |
|
4157 |
|
4158 /* Some larger eeprom sizes are capable of a 32-byte |
|
4159 * PAGE WRITE operation, while the smaller eeproms are |
|
4160 * capable of an 8-byte PAGE WRITE operation. Break the |
|
4161 * inner loop to pass new address |
|
4162 */ |
|
4163 if ((((offset + widx) * 2) % eeprom->page_size) == 0) { |
|
4164 e1000_standby_eeprom(hw); |
|
4165 break; |
|
4166 } |
|
4167 } |
|
4168 } |
|
4169 |
|
4170 return E1000_SUCCESS; |
|
4171 } |
|
4172 |
|
4173 /** |
|
4174 * e1000_write_eeprom_microwire - Writes a 16 bit word to a given offset in a Microwire EEPROM. |
|
4175 * @hw: Struct containing variables accessed by shared code |
|
4176 * @offset: offset within the EEPROM to be written to |
|
4177 * @words: number of words to write |
|
4178 * @data: pointer to array of 8 bit words to be written to the EEPROM |
|
4179 */ |
|
4180 static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset, |
|
4181 u16 words, u16 *data) |
|
4182 { |
|
4183 struct e1000_eeprom_info *eeprom = &hw->eeprom; |
|
4184 u32 eecd; |
|
4185 u16 words_written = 0; |
|
4186 u16 i = 0; |
|
4187 |
|
4188 /* Send the write enable command to the EEPROM (3-bit opcode plus |
|
4189 * 6/8-bit dummy address beginning with 11). It's less work to include |
|
4190 * the 11 of the dummy address as part of the opcode than it is to shift |
|
4191 * it over the correct number of bits for the address. This puts the |
|
4192 * EEPROM into write/erase mode. |
|
4193 */ |
|
4194 e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE, |
|
4195 (u16) (eeprom->opcode_bits + 2)); |
|
4196 |
|
4197 e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2)); |
|
4198 |
|
4199 /* Prepare the EEPROM */ |
|
4200 e1000_standby_eeprom(hw); |
|
4201 |
|
4202 while (words_written < words) { |
|
4203 /* Send the Write command (3-bit opcode + addr) */ |
|
4204 e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE, |
|
4205 eeprom->opcode_bits); |
|
4206 |
|
4207 e1000_shift_out_ee_bits(hw, (u16) (offset + words_written), |
|
4208 eeprom->address_bits); |
|
4209 |
|
4210 /* Send the data */ |
|
4211 e1000_shift_out_ee_bits(hw, data[words_written], 16); |
|
4212 |
|
4213 /* Toggle the CS line. This in effect tells the EEPROM to |
|
4214 * execute the previous command. |
|
4215 */ |
|
4216 e1000_standby_eeprom(hw); |
|
4217 |
|
4218 /* Read DO repeatedly until it is high (equal to '1'). The |
|
4219 * EEPROM will signal that the command has been completed by |
|
4220 * raising the DO signal. If DO does not go high in 10 |
|
4221 * milliseconds, then error out. |
|
4222 */ |
|
4223 for (i = 0; i < 200; i++) { |
|
4224 eecd = er32(EECD); |
|
4225 if (eecd & E1000_EECD_DO) |
|
4226 break; |
|
4227 udelay(50); |
|
4228 } |
|
4229 if (i == 200) { |
|
4230 e_dbg("EEPROM Write did not complete\n"); |
|
4231 return -E1000_ERR_EEPROM; |
|
4232 } |
|
4233 |
|
4234 /* Recover from write */ |
|
4235 e1000_standby_eeprom(hw); |
|
4236 |
|
4237 words_written++; |
|
4238 } |
|
4239 |
|
4240 /* Send the write disable command to the EEPROM (3-bit opcode plus |
|
4241 * 6/8-bit dummy address beginning with 10). It's less work to include |
|
4242 * the 10 of the dummy address as part of the opcode than it is to shift |
|
4243 * it over the correct number of bits for the address. This takes the |
|
4244 * EEPROM out of write/erase mode. |
|
4245 */ |
|
4246 e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE, |
|
4247 (u16) (eeprom->opcode_bits + 2)); |
|
4248 |
|
4249 e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2)); |
|
4250 |
|
4251 return E1000_SUCCESS; |
|
4252 } |
|
4253 |
|
4254 /** |
|
4255 * e1000_read_mac_addr - read the adapters MAC from eeprom |
|
4256 * @hw: Struct containing variables accessed by shared code |
|
4257 * |
|
4258 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the |
|
4259 * second function of dual function devices |
|
4260 */ |
|
4261 s32 e1000_read_mac_addr(struct e1000_hw *hw) |
|
4262 { |
|
4263 u16 offset; |
|
4264 u16 eeprom_data, i; |
|
4265 |
|
4266 for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) { |
|
4267 offset = i >> 1; |
|
4268 if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) { |
|
4269 e_dbg("EEPROM Read Error\n"); |
|
4270 return -E1000_ERR_EEPROM; |
|
4271 } |
|
4272 hw->perm_mac_addr[i] = (u8) (eeprom_data & 0x00FF); |
|
4273 hw->perm_mac_addr[i + 1] = (u8) (eeprom_data >> 8); |
|
4274 } |
|
4275 |
|
4276 switch (hw->mac_type) { |
|
4277 default: |
|
4278 break; |
|
4279 case e1000_82546: |
|
4280 case e1000_82546_rev_3: |
|
4281 if (er32(STATUS) & E1000_STATUS_FUNC_1) |
|
4282 hw->perm_mac_addr[5] ^= 0x01; |
|
4283 break; |
|
4284 } |
|
4285 |
|
4286 for (i = 0; i < NODE_ADDRESS_SIZE; i++) |
|
4287 hw->mac_addr[i] = hw->perm_mac_addr[i]; |
|
4288 return E1000_SUCCESS; |
|
4289 } |
|
4290 |
|
4291 /** |
|
4292 * e1000_init_rx_addrs - Initializes receive address filters. |
|
4293 * @hw: Struct containing variables accessed by shared code |
|
4294 * |
|
4295 * Places the MAC address in receive address register 0 and clears the rest |
|
4296 * of the receive address registers. Clears the multicast table. Assumes |
|
4297 * the receiver is in reset when the routine is called. |
|
4298 */ |
|
4299 static void e1000_init_rx_addrs(struct e1000_hw *hw) |
|
4300 { |
|
4301 u32 i; |
|
4302 u32 rar_num; |
|
4303 |
|
4304 /* Setup the receive address. */ |
|
4305 e_dbg("Programming MAC Address into RAR[0]\n"); |
|
4306 |
|
4307 e1000_rar_set(hw, hw->mac_addr, 0); |
|
4308 |
|
4309 rar_num = E1000_RAR_ENTRIES; |
|
4310 |
|
4311 /* Zero out the other 15 receive addresses. */ |
|
4312 e_dbg("Clearing RAR[1-15]\n"); |
|
4313 for (i = 1; i < rar_num; i++) { |
|
4314 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); |
|
4315 E1000_WRITE_FLUSH(); |
|
4316 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); |
|
4317 E1000_WRITE_FLUSH(); |
|
4318 } |
|
4319 } |
|
4320 |
|
4321 /** |
|
4322 * e1000_hash_mc_addr - Hashes an address to determine its location in the multicast table |
|
4323 * @hw: Struct containing variables accessed by shared code |
|
4324 * @mc_addr: the multicast address to hash |
|
4325 */ |
|
4326 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) |
|
4327 { |
|
4328 u32 hash_value = 0; |
|
4329 |
|
4330 /* The portion of the address that is used for the hash table is |
|
4331 * determined by the mc_filter_type setting. |
|
4332 */ |
|
4333 switch (hw->mc_filter_type) { |
|
4334 /* [0] [1] [2] [3] [4] [5] |
|
4335 * 01 AA 00 12 34 56 |
|
4336 * LSB MSB |
|
4337 */ |
|
4338 case 0: |
|
4339 /* [47:36] i.e. 0x563 for above example address */ |
|
4340 hash_value = ((mc_addr[4] >> 4) | (((u16) mc_addr[5]) << 4)); |
|
4341 break; |
|
4342 case 1: |
|
4343 /* [46:35] i.e. 0xAC6 for above example address */ |
|
4344 hash_value = ((mc_addr[4] >> 3) | (((u16) mc_addr[5]) << 5)); |
|
4345 break; |
|
4346 case 2: |
|
4347 /* [45:34] i.e. 0x5D8 for above example address */ |
|
4348 hash_value = ((mc_addr[4] >> 2) | (((u16) mc_addr[5]) << 6)); |
|
4349 break; |
|
4350 case 3: |
|
4351 /* [43:32] i.e. 0x634 for above example address */ |
|
4352 hash_value = ((mc_addr[4]) | (((u16) mc_addr[5]) << 8)); |
|
4353 break; |
|
4354 } |
|
4355 |
|
4356 hash_value &= 0xFFF; |
|
4357 return hash_value; |
|
4358 } |
|
4359 |
|
4360 /** |
|
4361 * e1000_rar_set - Puts an ethernet address into a receive address register. |
|
4362 * @hw: Struct containing variables accessed by shared code |
|
4363 * @addr: Address to put into receive address register |
|
4364 * @index: Receive address register to write |
|
4365 */ |
|
4366 void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) |
|
4367 { |
|
4368 u32 rar_low, rar_high; |
|
4369 |
|
4370 /* HW expects these in little endian so we reverse the byte order |
|
4371 * from network order (big endian) to little endian |
|
4372 */ |
|
4373 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) | |
|
4374 ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); |
|
4375 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); |
|
4376 |
|
4377 /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx |
|
4378 * unit hang. |
|
4379 * |
|
4380 * Description: |
|
4381 * If there are any Rx frames queued up or otherwise present in the HW |
|
4382 * before RSS is enabled, and then we enable RSS, the HW Rx unit will |
|
4383 * hang. To work around this issue, we have to disable receives and |
|
4384 * flush out all Rx frames before we enable RSS. To do so, we modify we |
|
4385 * redirect all Rx traffic to manageability and then reset the HW. |
|
4386 * This flushes away Rx frames, and (since the redirections to |
|
4387 * manageability persists across resets) keeps new ones from coming in |
|
4388 * while we work. Then, we clear the Address Valid AV bit for all MAC |
|
4389 * addresses and undo the re-direction to manageability. |
|
4390 * Now, frames are coming in again, but the MAC won't accept them, so |
|
4391 * far so good. We now proceed to initialize RSS (if necessary) and |
|
4392 * configure the Rx unit. Last, we re-enable the AV bits and continue |
|
4393 * on our merry way. |
|
4394 */ |
|
4395 switch (hw->mac_type) { |
|
4396 default: |
|
4397 /* Indicate to hardware the Address is Valid. */ |
|
4398 rar_high |= E1000_RAH_AV; |
|
4399 break; |
|
4400 } |
|
4401 |
|
4402 E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low); |
|
4403 E1000_WRITE_FLUSH(); |
|
4404 E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high); |
|
4405 E1000_WRITE_FLUSH(); |
|
4406 } |
|
4407 |
|
4408 /** |
|
4409 * e1000_write_vfta - Writes a value to the specified offset in the VLAN filter table. |
|
4410 * @hw: Struct containing variables accessed by shared code |
|
4411 * @offset: Offset in VLAN filer table to write |
|
4412 * @value: Value to write into VLAN filter table |
|
4413 */ |
|
4414 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) |
|
4415 { |
|
4416 u32 temp; |
|
4417 |
|
4418 if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) { |
|
4419 temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1)); |
|
4420 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); |
|
4421 E1000_WRITE_FLUSH(); |
|
4422 E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp); |
|
4423 E1000_WRITE_FLUSH(); |
|
4424 } else { |
|
4425 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); |
|
4426 E1000_WRITE_FLUSH(); |
|
4427 } |
|
4428 } |
|
4429 |
|
4430 /** |
|
4431 * e1000_clear_vfta - Clears the VLAN filer table |
|
4432 * @hw: Struct containing variables accessed by shared code |
|
4433 */ |
|
4434 static void e1000_clear_vfta(struct e1000_hw *hw) |
|
4435 { |
|
4436 u32 offset; |
|
4437 u32 vfta_value = 0; |
|
4438 u32 vfta_offset = 0; |
|
4439 u32 vfta_bit_in_reg = 0; |
|
4440 |
|
4441 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { |
|
4442 /* If the offset we want to clear is the same offset of the |
|
4443 * manageability VLAN ID, then clear all bits except that of the |
|
4444 * manageability unit |
|
4445 */ |
|
4446 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; |
|
4447 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value); |
|
4448 E1000_WRITE_FLUSH(); |
|
4449 } |
|
4450 } |
|
4451 |
|
4452 static s32 e1000_id_led_init(struct e1000_hw *hw) |
|
4453 { |
|
4454 u32 ledctl; |
|
4455 const u32 ledctl_mask = 0x000000FF; |
|
4456 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; |
|
4457 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; |
|
4458 u16 eeprom_data, i, temp; |
|
4459 const u16 led_mask = 0x0F; |
|
4460 |
|
4461 if (hw->mac_type < e1000_82540) { |
|
4462 /* Nothing to do */ |
|
4463 return E1000_SUCCESS; |
|
4464 } |
|
4465 |
|
4466 ledctl = er32(LEDCTL); |
|
4467 hw->ledctl_default = ledctl; |
|
4468 hw->ledctl_mode1 = hw->ledctl_default; |
|
4469 hw->ledctl_mode2 = hw->ledctl_default; |
|
4470 |
|
4471 if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) { |
|
4472 e_dbg("EEPROM Read Error\n"); |
|
4473 return -E1000_ERR_EEPROM; |
|
4474 } |
|
4475 |
|
4476 if ((eeprom_data == ID_LED_RESERVED_0000) || |
|
4477 (eeprom_data == ID_LED_RESERVED_FFFF)) { |
|
4478 eeprom_data = ID_LED_DEFAULT; |
|
4479 } |
|
4480 |
|
4481 for (i = 0; i < 4; i++) { |
|
4482 temp = (eeprom_data >> (i << 2)) & led_mask; |
|
4483 switch (temp) { |
|
4484 case ID_LED_ON1_DEF2: |
|
4485 case ID_LED_ON1_ON2: |
|
4486 case ID_LED_ON1_OFF2: |
|
4487 hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); |
|
4488 hw->ledctl_mode1 |= ledctl_on << (i << 3); |
|
4489 break; |
|
4490 case ID_LED_OFF1_DEF2: |
|
4491 case ID_LED_OFF1_ON2: |
|
4492 case ID_LED_OFF1_OFF2: |
|
4493 hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); |
|
4494 hw->ledctl_mode1 |= ledctl_off << (i << 3); |
|
4495 break; |
|
4496 default: |
|
4497 /* Do nothing */ |
|
4498 break; |
|
4499 } |
|
4500 switch (temp) { |
|
4501 case ID_LED_DEF1_ON2: |
|
4502 case ID_LED_ON1_ON2: |
|
4503 case ID_LED_OFF1_ON2: |
|
4504 hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); |
|
4505 hw->ledctl_mode2 |= ledctl_on << (i << 3); |
|
4506 break; |
|
4507 case ID_LED_DEF1_OFF2: |
|
4508 case ID_LED_ON1_OFF2: |
|
4509 case ID_LED_OFF1_OFF2: |
|
4510 hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); |
|
4511 hw->ledctl_mode2 |= ledctl_off << (i << 3); |
|
4512 break; |
|
4513 default: |
|
4514 /* Do nothing */ |
|
4515 break; |
|
4516 } |
|
4517 } |
|
4518 return E1000_SUCCESS; |
|
4519 } |
|
4520 |
|
4521 /** |
|
4522 * e1000_setup_led |
|
4523 * @hw: Struct containing variables accessed by shared code |
|
4524 * |
|
4525 * Prepares SW controlable LED for use and saves the current state of the LED. |
|
4526 */ |
|
4527 s32 e1000_setup_led(struct e1000_hw *hw) |
|
4528 { |
|
4529 u32 ledctl; |
|
4530 s32 ret_val = E1000_SUCCESS; |
|
4531 |
|
4532 switch (hw->mac_type) { |
|
4533 case e1000_82542_rev2_0: |
|
4534 case e1000_82542_rev2_1: |
|
4535 case e1000_82543: |
|
4536 case e1000_82544: |
|
4537 /* No setup necessary */ |
|
4538 break; |
|
4539 case e1000_82541: |
|
4540 case e1000_82547: |
|
4541 case e1000_82541_rev_2: |
|
4542 case e1000_82547_rev_2: |
|
4543 /* Turn off PHY Smart Power Down (if enabled) */ |
|
4544 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, |
|
4545 &hw->phy_spd_default); |
|
4546 if (ret_val) |
|
4547 return ret_val; |
|
4548 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, |
|
4549 (u16) (hw->phy_spd_default & |
|
4550 ~IGP01E1000_GMII_SPD)); |
|
4551 if (ret_val) |
|
4552 return ret_val; |
|
4553 /* Fall Through */ |
|
4554 default: |
|
4555 if (hw->media_type == e1000_media_type_fiber) { |
|
4556 ledctl = er32(LEDCTL); |
|
4557 /* Save current LEDCTL settings */ |
|
4558 hw->ledctl_default = ledctl; |
|
4559 /* Turn off LED0 */ |
|
4560 ledctl &= ~(E1000_LEDCTL_LED0_IVRT | |
|
4561 E1000_LEDCTL_LED0_BLINK | |
|
4562 E1000_LEDCTL_LED0_MODE_MASK); |
|
4563 ledctl |= (E1000_LEDCTL_MODE_LED_OFF << |
|
4564 E1000_LEDCTL_LED0_MODE_SHIFT); |
|
4565 ew32(LEDCTL, ledctl); |
|
4566 } else if (hw->media_type == e1000_media_type_copper) |
|
4567 ew32(LEDCTL, hw->ledctl_mode1); |
|
4568 break; |
|
4569 } |
|
4570 |
|
4571 return E1000_SUCCESS; |
|
4572 } |
|
4573 |
|
4574 /** |
|
4575 * e1000_cleanup_led - Restores the saved state of the SW controlable LED. |
|
4576 * @hw: Struct containing variables accessed by shared code |
|
4577 */ |
|
4578 s32 e1000_cleanup_led(struct e1000_hw *hw) |
|
4579 { |
|
4580 s32 ret_val = E1000_SUCCESS; |
|
4581 |
|
4582 switch (hw->mac_type) { |
|
4583 case e1000_82542_rev2_0: |
|
4584 case e1000_82542_rev2_1: |
|
4585 case e1000_82543: |
|
4586 case e1000_82544: |
|
4587 /* No cleanup necessary */ |
|
4588 break; |
|
4589 case e1000_82541: |
|
4590 case e1000_82547: |
|
4591 case e1000_82541_rev_2: |
|
4592 case e1000_82547_rev_2: |
|
4593 /* Turn on PHY Smart Power Down (if previously enabled) */ |
|
4594 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, |
|
4595 hw->phy_spd_default); |
|
4596 if (ret_val) |
|
4597 return ret_val; |
|
4598 /* Fall Through */ |
|
4599 default: |
|
4600 /* Restore LEDCTL settings */ |
|
4601 ew32(LEDCTL, hw->ledctl_default); |
|
4602 break; |
|
4603 } |
|
4604 |
|
4605 return E1000_SUCCESS; |
|
4606 } |
|
4607 |
|
4608 /** |
|
4609 * e1000_led_on - Turns on the software controllable LED |
|
4610 * @hw: Struct containing variables accessed by shared code |
|
4611 */ |
|
4612 s32 e1000_led_on(struct e1000_hw *hw) |
|
4613 { |
|
4614 u32 ctrl = er32(CTRL); |
|
4615 |
|
4616 switch (hw->mac_type) { |
|
4617 case e1000_82542_rev2_0: |
|
4618 case e1000_82542_rev2_1: |
|
4619 case e1000_82543: |
|
4620 /* Set SW Defineable Pin 0 to turn on the LED */ |
|
4621 ctrl |= E1000_CTRL_SWDPIN0; |
|
4622 ctrl |= E1000_CTRL_SWDPIO0; |
|
4623 break; |
|
4624 case e1000_82544: |
|
4625 if (hw->media_type == e1000_media_type_fiber) { |
|
4626 /* Set SW Defineable Pin 0 to turn on the LED */ |
|
4627 ctrl |= E1000_CTRL_SWDPIN0; |
|
4628 ctrl |= E1000_CTRL_SWDPIO0; |
|
4629 } else { |
|
4630 /* Clear SW Defineable Pin 0 to turn on the LED */ |
|
4631 ctrl &= ~E1000_CTRL_SWDPIN0; |
|
4632 ctrl |= E1000_CTRL_SWDPIO0; |
|
4633 } |
|
4634 break; |
|
4635 default: |
|
4636 if (hw->media_type == e1000_media_type_fiber) { |
|
4637 /* Clear SW Defineable Pin 0 to turn on the LED */ |
|
4638 ctrl &= ~E1000_CTRL_SWDPIN0; |
|
4639 ctrl |= E1000_CTRL_SWDPIO0; |
|
4640 } else if (hw->media_type == e1000_media_type_copper) { |
|
4641 ew32(LEDCTL, hw->ledctl_mode2); |
|
4642 return E1000_SUCCESS; |
|
4643 } |
|
4644 break; |
|
4645 } |
|
4646 |
|
4647 ew32(CTRL, ctrl); |
|
4648 |
|
4649 return E1000_SUCCESS; |
|
4650 } |
|
4651 |
|
4652 /** |
|
4653 * e1000_led_off - Turns off the software controllable LED |
|
4654 * @hw: Struct containing variables accessed by shared code |
|
4655 */ |
|
4656 s32 e1000_led_off(struct e1000_hw *hw) |
|
4657 { |
|
4658 u32 ctrl = er32(CTRL); |
|
4659 |
|
4660 switch (hw->mac_type) { |
|
4661 case e1000_82542_rev2_0: |
|
4662 case e1000_82542_rev2_1: |
|
4663 case e1000_82543: |
|
4664 /* Clear SW Defineable Pin 0 to turn off the LED */ |
|
4665 ctrl &= ~E1000_CTRL_SWDPIN0; |
|
4666 ctrl |= E1000_CTRL_SWDPIO0; |
|
4667 break; |
|
4668 case e1000_82544: |
|
4669 if (hw->media_type == e1000_media_type_fiber) { |
|
4670 /* Clear SW Defineable Pin 0 to turn off the LED */ |
|
4671 ctrl &= ~E1000_CTRL_SWDPIN0; |
|
4672 ctrl |= E1000_CTRL_SWDPIO0; |
|
4673 } else { |
|
4674 /* Set SW Defineable Pin 0 to turn off the LED */ |
|
4675 ctrl |= E1000_CTRL_SWDPIN0; |
|
4676 ctrl |= E1000_CTRL_SWDPIO0; |
|
4677 } |
|
4678 break; |
|
4679 default: |
|
4680 if (hw->media_type == e1000_media_type_fiber) { |
|
4681 /* Set SW Defineable Pin 0 to turn off the LED */ |
|
4682 ctrl |= E1000_CTRL_SWDPIN0; |
|
4683 ctrl |= E1000_CTRL_SWDPIO0; |
|
4684 } else if (hw->media_type == e1000_media_type_copper) { |
|
4685 ew32(LEDCTL, hw->ledctl_mode1); |
|
4686 return E1000_SUCCESS; |
|
4687 } |
|
4688 break; |
|
4689 } |
|
4690 |
|
4691 ew32(CTRL, ctrl); |
|
4692 |
|
4693 return E1000_SUCCESS; |
|
4694 } |
|
4695 |
|
4696 /** |
|
4697 * e1000_clear_hw_cntrs - Clears all hardware statistics counters. |
|
4698 * @hw: Struct containing variables accessed by shared code |
|
4699 */ |
|
4700 static void e1000_clear_hw_cntrs(struct e1000_hw *hw) |
|
4701 { |
|
4702 volatile u32 temp; |
|
4703 |
|
4704 temp = er32(CRCERRS); |
|
4705 temp = er32(SYMERRS); |
|
4706 temp = er32(MPC); |
|
4707 temp = er32(SCC); |
|
4708 temp = er32(ECOL); |
|
4709 temp = er32(MCC); |
|
4710 temp = er32(LATECOL); |
|
4711 temp = er32(COLC); |
|
4712 temp = er32(DC); |
|
4713 temp = er32(SEC); |
|
4714 temp = er32(RLEC); |
|
4715 temp = er32(XONRXC); |
|
4716 temp = er32(XONTXC); |
|
4717 temp = er32(XOFFRXC); |
|
4718 temp = er32(XOFFTXC); |
|
4719 temp = er32(FCRUC); |
|
4720 |
|
4721 temp = er32(PRC64); |
|
4722 temp = er32(PRC127); |
|
4723 temp = er32(PRC255); |
|
4724 temp = er32(PRC511); |
|
4725 temp = er32(PRC1023); |
|
4726 temp = er32(PRC1522); |
|
4727 |
|
4728 temp = er32(GPRC); |
|
4729 temp = er32(BPRC); |
|
4730 temp = er32(MPRC); |
|
4731 temp = er32(GPTC); |
|
4732 temp = er32(GORCL); |
|
4733 temp = er32(GORCH); |
|
4734 temp = er32(GOTCL); |
|
4735 temp = er32(GOTCH); |
|
4736 temp = er32(RNBC); |
|
4737 temp = er32(RUC); |
|
4738 temp = er32(RFC); |
|
4739 temp = er32(ROC); |
|
4740 temp = er32(RJC); |
|
4741 temp = er32(TORL); |
|
4742 temp = er32(TORH); |
|
4743 temp = er32(TOTL); |
|
4744 temp = er32(TOTH); |
|
4745 temp = er32(TPR); |
|
4746 temp = er32(TPT); |
|
4747 |
|
4748 temp = er32(PTC64); |
|
4749 temp = er32(PTC127); |
|
4750 temp = er32(PTC255); |
|
4751 temp = er32(PTC511); |
|
4752 temp = er32(PTC1023); |
|
4753 temp = er32(PTC1522); |
|
4754 |
|
4755 temp = er32(MPTC); |
|
4756 temp = er32(BPTC); |
|
4757 |
|
4758 if (hw->mac_type < e1000_82543) |
|
4759 return; |
|
4760 |
|
4761 temp = er32(ALGNERRC); |
|
4762 temp = er32(RXERRC); |
|
4763 temp = er32(TNCRS); |
|
4764 temp = er32(CEXTERR); |
|
4765 temp = er32(TSCTC); |
|
4766 temp = er32(TSCTFC); |
|
4767 |
|
4768 if (hw->mac_type <= e1000_82544) |
|
4769 return; |
|
4770 |
|
4771 temp = er32(MGTPRC); |
|
4772 temp = er32(MGTPDC); |
|
4773 temp = er32(MGTPTC); |
|
4774 } |
|
4775 |
|
4776 /** |
|
4777 * e1000_reset_adaptive - Resets Adaptive IFS to its default state. |
|
4778 * @hw: Struct containing variables accessed by shared code |
|
4779 * |
|
4780 * Call this after e1000_init_hw. You may override the IFS defaults by setting |
|
4781 * hw->ifs_params_forced to true. However, you must initialize hw-> |
|
4782 * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio |
|
4783 * before calling this function. |
|
4784 */ |
|
4785 void e1000_reset_adaptive(struct e1000_hw *hw) |
|
4786 { |
|
4787 if (hw->adaptive_ifs) { |
|
4788 if (!hw->ifs_params_forced) { |
|
4789 hw->current_ifs_val = 0; |
|
4790 hw->ifs_min_val = IFS_MIN; |
|
4791 hw->ifs_max_val = IFS_MAX; |
|
4792 hw->ifs_step_size = IFS_STEP; |
|
4793 hw->ifs_ratio = IFS_RATIO; |
|
4794 } |
|
4795 hw->in_ifs_mode = false; |
|
4796 ew32(AIT, 0); |
|
4797 } else { |
|
4798 e_dbg("Not in Adaptive IFS mode!\n"); |
|
4799 } |
|
4800 } |
|
4801 |
|
4802 /** |
|
4803 * e1000_update_adaptive - update adaptive IFS |
|
4804 * @hw: Struct containing variables accessed by shared code |
|
4805 * @tx_packets: Number of transmits since last callback |
|
4806 * @total_collisions: Number of collisions since last callback |
|
4807 * |
|
4808 * Called during the callback/watchdog routine to update IFS value based on |
|
4809 * the ratio of transmits to collisions. |
|
4810 */ |
|
4811 void e1000_update_adaptive(struct e1000_hw *hw) |
|
4812 { |
|
4813 if (hw->adaptive_ifs) { |
|
4814 if ((hw->collision_delta *hw->ifs_ratio) > hw->tx_packet_delta) { |
|
4815 if (hw->tx_packet_delta > MIN_NUM_XMITS) { |
|
4816 hw->in_ifs_mode = true; |
|
4817 if (hw->current_ifs_val < hw->ifs_max_val) { |
|
4818 if (hw->current_ifs_val == 0) |
|
4819 hw->current_ifs_val = |
|
4820 hw->ifs_min_val; |
|
4821 else |
|
4822 hw->current_ifs_val += |
|
4823 hw->ifs_step_size; |
|
4824 ew32(AIT, hw->current_ifs_val); |
|
4825 } |
|
4826 } |
|
4827 } else { |
|
4828 if (hw->in_ifs_mode |
|
4829 && (hw->tx_packet_delta <= MIN_NUM_XMITS)) { |
|
4830 hw->current_ifs_val = 0; |
|
4831 hw->in_ifs_mode = false; |
|
4832 ew32(AIT, 0); |
|
4833 } |
|
4834 } |
|
4835 } else { |
|
4836 e_dbg("Not in Adaptive IFS mode!\n"); |
|
4837 } |
|
4838 } |
|
4839 |
|
4840 /** |
|
4841 * e1000_tbi_adjust_stats |
|
4842 * @hw: Struct containing variables accessed by shared code |
|
4843 * @frame_len: The length of the frame in question |
|
4844 * @mac_addr: The Ethernet destination address of the frame in question |
|
4845 * |
|
4846 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT |
|
4847 */ |
|
4848 void e1000_tbi_adjust_stats(struct e1000_hw *hw, struct e1000_hw_stats *stats, |
|
4849 u32 frame_len, u8 *mac_addr) |
|
4850 { |
|
4851 u64 carry_bit; |
|
4852 |
|
4853 /* First adjust the frame length. */ |
|
4854 frame_len--; |
|
4855 /* We need to adjust the statistics counters, since the hardware |
|
4856 * counters overcount this packet as a CRC error and undercount |
|
4857 * the packet as a good packet |
|
4858 */ |
|
4859 /* This packet should not be counted as a CRC error. */ |
|
4860 stats->crcerrs--; |
|
4861 /* This packet does count as a Good Packet Received. */ |
|
4862 stats->gprc++; |
|
4863 |
|
4864 /* Adjust the Good Octets received counters */ |
|
4865 carry_bit = 0x80000000 & stats->gorcl; |
|
4866 stats->gorcl += frame_len; |
|
4867 /* If the high bit of Gorcl (the low 32 bits of the Good Octets |
|
4868 * Received Count) was one before the addition, |
|
4869 * AND it is zero after, then we lost the carry out, |
|
4870 * need to add one to Gorch (Good Octets Received Count High). |
|
4871 * This could be simplified if all environments supported |
|
4872 * 64-bit integers. |
|
4873 */ |
|
4874 if (carry_bit && ((stats->gorcl & 0x80000000) == 0)) |
|
4875 stats->gorch++; |
|
4876 /* Is this a broadcast or multicast? Check broadcast first, |
|
4877 * since the test for a multicast frame will test positive on |
|
4878 * a broadcast frame. |
|
4879 */ |
|
4880 if (is_broadcast_ether_addr(mac_addr)) |
|
4881 /* Broadcast packet */ |
|
4882 stats->bprc++; |
|
4883 else if (is_multicast_ether_addr(mac_addr)) |
|
4884 /* Multicast packet */ |
|
4885 stats->mprc++; |
|
4886 |
|
4887 if (frame_len == hw->max_frame_size) { |
|
4888 /* In this case, the hardware has overcounted the number of |
|
4889 * oversize frames. |
|
4890 */ |
|
4891 if (stats->roc > 0) |
|
4892 stats->roc--; |
|
4893 } |
|
4894 |
|
4895 /* Adjust the bin counters when the extra byte put the frame in the |
|
4896 * wrong bin. Remember that the frame_len was adjusted above. |
|
4897 */ |
|
4898 if (frame_len == 64) { |
|
4899 stats->prc64++; |
|
4900 stats->prc127--; |
|
4901 } else if (frame_len == 127) { |
|
4902 stats->prc127++; |
|
4903 stats->prc255--; |
|
4904 } else if (frame_len == 255) { |
|
4905 stats->prc255++; |
|
4906 stats->prc511--; |
|
4907 } else if (frame_len == 511) { |
|
4908 stats->prc511++; |
|
4909 stats->prc1023--; |
|
4910 } else if (frame_len == 1023) { |
|
4911 stats->prc1023++; |
|
4912 stats->prc1522--; |
|
4913 } else if (frame_len == 1522) { |
|
4914 stats->prc1522++; |
|
4915 } |
|
4916 } |
|
4917 |
|
4918 /** |
|
4919 * e1000_get_bus_info |
|
4920 * @hw: Struct containing variables accessed by shared code |
|
4921 * |
|
4922 * Gets the current PCI bus type, speed, and width of the hardware |
|
4923 */ |
|
4924 void e1000_get_bus_info(struct e1000_hw *hw) |
|
4925 { |
|
4926 u32 status; |
|
4927 |
|
4928 switch (hw->mac_type) { |
|
4929 case e1000_82542_rev2_0: |
|
4930 case e1000_82542_rev2_1: |
|
4931 hw->bus_type = e1000_bus_type_pci; |
|
4932 hw->bus_speed = e1000_bus_speed_unknown; |
|
4933 hw->bus_width = e1000_bus_width_unknown; |
|
4934 break; |
|
4935 default: |
|
4936 status = er32(STATUS); |
|
4937 hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ? |
|
4938 e1000_bus_type_pcix : e1000_bus_type_pci; |
|
4939 |
|
4940 if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) { |
|
4941 hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ? |
|
4942 e1000_bus_speed_66 : e1000_bus_speed_120; |
|
4943 } else if (hw->bus_type == e1000_bus_type_pci) { |
|
4944 hw->bus_speed = (status & E1000_STATUS_PCI66) ? |
|
4945 e1000_bus_speed_66 : e1000_bus_speed_33; |
|
4946 } else { |
|
4947 switch (status & E1000_STATUS_PCIX_SPEED) { |
|
4948 case E1000_STATUS_PCIX_SPEED_66: |
|
4949 hw->bus_speed = e1000_bus_speed_66; |
|
4950 break; |
|
4951 case E1000_STATUS_PCIX_SPEED_100: |
|
4952 hw->bus_speed = e1000_bus_speed_100; |
|
4953 break; |
|
4954 case E1000_STATUS_PCIX_SPEED_133: |
|
4955 hw->bus_speed = e1000_bus_speed_133; |
|
4956 break; |
|
4957 default: |
|
4958 hw->bus_speed = e1000_bus_speed_reserved; |
|
4959 break; |
|
4960 } |
|
4961 } |
|
4962 hw->bus_width = (status & E1000_STATUS_BUS64) ? |
|
4963 e1000_bus_width_64 : e1000_bus_width_32; |
|
4964 break; |
|
4965 } |
|
4966 } |
|
4967 |
|
4968 /** |
|
4969 * e1000_write_reg_io |
|
4970 * @hw: Struct containing variables accessed by shared code |
|
4971 * @offset: offset to write to |
|
4972 * @value: value to write |
|
4973 * |
|
4974 * Writes a value to one of the devices registers using port I/O (as opposed to |
|
4975 * memory mapped I/O). Only 82544 and newer devices support port I/O. |
|
4976 */ |
|
4977 static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value) |
|
4978 { |
|
4979 unsigned long io_addr = hw->io_base; |
|
4980 unsigned long io_data = hw->io_base + 4; |
|
4981 |
|
4982 e1000_io_write(hw, io_addr, offset); |
|
4983 e1000_io_write(hw, io_data, value); |
|
4984 } |
|
4985 |
|
4986 /** |
|
4987 * e1000_get_cable_length - Estimates the cable length. |
|
4988 * @hw: Struct containing variables accessed by shared code |
|
4989 * @min_length: The estimated minimum length |
|
4990 * @max_length: The estimated maximum length |
|
4991 * |
|
4992 * returns: - E1000_ERR_XXX |
|
4993 * E1000_SUCCESS |
|
4994 * |
|
4995 * This function always returns a ranged length (minimum & maximum). |
|
4996 * So for M88 phy's, this function interprets the one value returned from the |
|
4997 * register to the minimum and maximum range. |
|
4998 * For IGP phy's, the function calculates the range by the AGC registers. |
|
4999 */ |
|
5000 static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length, |
|
5001 u16 *max_length) |
|
5002 { |
|
5003 s32 ret_val; |
|
5004 u16 agc_value = 0; |
|
5005 u16 i, phy_data; |
|
5006 u16 cable_length; |
|
5007 |
|
5008 *min_length = *max_length = 0; |
|
5009 |
|
5010 /* Use old method for Phy older than IGP */ |
|
5011 if (hw->phy_type == e1000_phy_m88) { |
|
5012 |
|
5013 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, |
|
5014 &phy_data); |
|
5015 if (ret_val) |
|
5016 return ret_val; |
|
5017 cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> |
|
5018 M88E1000_PSSR_CABLE_LENGTH_SHIFT; |
|
5019 |
|
5020 /* Convert the enum value to ranged values */ |
|
5021 switch (cable_length) { |
|
5022 case e1000_cable_length_50: |
|
5023 *min_length = 0; |
|
5024 *max_length = e1000_igp_cable_length_50; |
|
5025 break; |
|
5026 case e1000_cable_length_50_80: |
|
5027 *min_length = e1000_igp_cable_length_50; |
|
5028 *max_length = e1000_igp_cable_length_80; |
|
5029 break; |
|
5030 case e1000_cable_length_80_110: |
|
5031 *min_length = e1000_igp_cable_length_80; |
|
5032 *max_length = e1000_igp_cable_length_110; |
|
5033 break; |
|
5034 case e1000_cable_length_110_140: |
|
5035 *min_length = e1000_igp_cable_length_110; |
|
5036 *max_length = e1000_igp_cable_length_140; |
|
5037 break; |
|
5038 case e1000_cable_length_140: |
|
5039 *min_length = e1000_igp_cable_length_140; |
|
5040 *max_length = e1000_igp_cable_length_170; |
|
5041 break; |
|
5042 default: |
|
5043 return -E1000_ERR_PHY; |
|
5044 break; |
|
5045 } |
|
5046 } else if (hw->phy_type == e1000_phy_igp) { /* For IGP PHY */ |
|
5047 u16 cur_agc_value; |
|
5048 u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE; |
|
5049 static const u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = { |
|
5050 IGP01E1000_PHY_AGC_A, |
|
5051 IGP01E1000_PHY_AGC_B, |
|
5052 IGP01E1000_PHY_AGC_C, |
|
5053 IGP01E1000_PHY_AGC_D |
|
5054 }; |
|
5055 /* Read the AGC registers for all channels */ |
|
5056 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { |
|
5057 |
|
5058 ret_val = |
|
5059 e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data); |
|
5060 if (ret_val) |
|
5061 return ret_val; |
|
5062 |
|
5063 cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT; |
|
5064 |
|
5065 /* Value bound check. */ |
|
5066 if ((cur_agc_value >= |
|
5067 IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) |
|
5068 || (cur_agc_value == 0)) |
|
5069 return -E1000_ERR_PHY; |
|
5070 |
|
5071 agc_value += cur_agc_value; |
|
5072 |
|
5073 /* Update minimal AGC value. */ |
|
5074 if (min_agc_value > cur_agc_value) |
|
5075 min_agc_value = cur_agc_value; |
|
5076 } |
|
5077 |
|
5078 /* Remove the minimal AGC result for length < 50m */ |
|
5079 if (agc_value < |
|
5080 IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) { |
|
5081 agc_value -= min_agc_value; |
|
5082 |
|
5083 /* Get the average length of the remaining 3 channels */ |
|
5084 agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1); |
|
5085 } else { |
|
5086 /* Get the average length of all the 4 channels. */ |
|
5087 agc_value /= IGP01E1000_PHY_CHANNEL_NUM; |
|
5088 } |
|
5089 |
|
5090 /* Set the range of the calculated length. */ |
|
5091 *min_length = ((e1000_igp_cable_length_table[agc_value] - |
|
5092 IGP01E1000_AGC_RANGE) > 0) ? |
|
5093 (e1000_igp_cable_length_table[agc_value] - |
|
5094 IGP01E1000_AGC_RANGE) : 0; |
|
5095 *max_length = e1000_igp_cable_length_table[agc_value] + |
|
5096 IGP01E1000_AGC_RANGE; |
|
5097 } |
|
5098 |
|
5099 return E1000_SUCCESS; |
|
5100 } |
|
5101 |
|
5102 /** |
|
5103 * e1000_check_polarity - Check the cable polarity |
|
5104 * @hw: Struct containing variables accessed by shared code |
|
5105 * @polarity: output parameter : 0 - Polarity is not reversed |
|
5106 * 1 - Polarity is reversed. |
|
5107 * |
|
5108 * returns: - E1000_ERR_XXX |
|
5109 * E1000_SUCCESS |
|
5110 * |
|
5111 * For phy's older than IGP, this function simply reads the polarity bit in the |
|
5112 * Phy Status register. For IGP phy's, this bit is valid only if link speed is |
|
5113 * 10 Mbps. If the link speed is 100 Mbps there is no polarity so this bit will |
|
5114 * return 0. If the link speed is 1000 Mbps the polarity status is in the |
|
5115 * IGP01E1000_PHY_PCS_INIT_REG. |
|
5116 */ |
|
5117 static s32 e1000_check_polarity(struct e1000_hw *hw, |
|
5118 e1000_rev_polarity *polarity) |
|
5119 { |
|
5120 s32 ret_val; |
|
5121 u16 phy_data; |
|
5122 |
|
5123 if (hw->phy_type == e1000_phy_m88) { |
|
5124 /* return the Polarity bit in the Status register. */ |
|
5125 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, |
|
5126 &phy_data); |
|
5127 if (ret_val) |
|
5128 return ret_val; |
|
5129 *polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >> |
|
5130 M88E1000_PSSR_REV_POLARITY_SHIFT) ? |
|
5131 e1000_rev_polarity_reversed : e1000_rev_polarity_normal; |
|
5132 |
|
5133 } else if (hw->phy_type == e1000_phy_igp) { |
|
5134 /* Read the Status register to check the speed */ |
|
5135 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, |
|
5136 &phy_data); |
|
5137 if (ret_val) |
|
5138 return ret_val; |
|
5139 |
|
5140 /* If speed is 1000 Mbps, must read the |
|
5141 * IGP01E1000_PHY_PCS_INIT_REG to find the polarity status |
|
5142 */ |
|
5143 if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) == |
|
5144 IGP01E1000_PSSR_SPEED_1000MBPS) { |
|
5145 |
|
5146 /* Read the GIG initialization PCS register (0x00B4) */ |
|
5147 ret_val = |
|
5148 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG, |
|
5149 &phy_data); |
|
5150 if (ret_val) |
|
5151 return ret_val; |
|
5152 |
|
5153 /* Check the polarity bits */ |
|
5154 *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ? |
|
5155 e1000_rev_polarity_reversed : |
|
5156 e1000_rev_polarity_normal; |
|
5157 } else { |
|
5158 /* For 10 Mbps, read the polarity bit in the status |
|
5159 * register. (for 100 Mbps this bit is always 0) |
|
5160 */ |
|
5161 *polarity = |
|
5162 (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ? |
|
5163 e1000_rev_polarity_reversed : |
|
5164 e1000_rev_polarity_normal; |
|
5165 } |
|
5166 } |
|
5167 return E1000_SUCCESS; |
|
5168 } |
|
5169 |
|
5170 /** |
|
5171 * e1000_check_downshift - Check if Downshift occurred |
|
5172 * @hw: Struct containing variables accessed by shared code |
|
5173 * @downshift: output parameter : 0 - No Downshift occurred. |
|
5174 * 1 - Downshift occurred. |
|
5175 * |
|
5176 * returns: - E1000_ERR_XXX |
|
5177 * E1000_SUCCESS |
|
5178 * |
|
5179 * For phy's older than IGP, this function reads the Downshift bit in the Phy |
|
5180 * Specific Status register. For IGP phy's, it reads the Downgrade bit in the |
|
5181 * Link Health register. In IGP this bit is latched high, so the driver must |
|
5182 * read it immediately after link is established. |
|
5183 */ |
|
5184 static s32 e1000_check_downshift(struct e1000_hw *hw) |
|
5185 { |
|
5186 s32 ret_val; |
|
5187 u16 phy_data; |
|
5188 |
|
5189 if (hw->phy_type == e1000_phy_igp) { |
|
5190 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH, |
|
5191 &phy_data); |
|
5192 if (ret_val) |
|
5193 return ret_val; |
|
5194 |
|
5195 hw->speed_downgraded = |
|
5196 (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0; |
|
5197 } else if (hw->phy_type == e1000_phy_m88) { |
|
5198 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, |
|
5199 &phy_data); |
|
5200 if (ret_val) |
|
5201 return ret_val; |
|
5202 |
|
5203 hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >> |
|
5204 M88E1000_PSSR_DOWNSHIFT_SHIFT; |
|
5205 } |
|
5206 |
|
5207 return E1000_SUCCESS; |
|
5208 } |
|
5209 |
|
5210 static const u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = { |
|
5211 IGP01E1000_PHY_AGC_PARAM_A, |
|
5212 IGP01E1000_PHY_AGC_PARAM_B, |
|
5213 IGP01E1000_PHY_AGC_PARAM_C, |
|
5214 IGP01E1000_PHY_AGC_PARAM_D |
|
5215 }; |
|
5216 |
|
5217 static s32 e1000_1000Mb_check_cable_length(struct e1000_hw *hw) |
|
5218 { |
|
5219 u16 min_length, max_length; |
|
5220 u16 phy_data, i; |
|
5221 s32 ret_val; |
|
5222 |
|
5223 ret_val = e1000_get_cable_length(hw, &min_length, &max_length); |
|
5224 if (ret_val) |
|
5225 return ret_val; |
|
5226 |
|
5227 if (hw->dsp_config_state != e1000_dsp_config_enabled) |
|
5228 return 0; |
|
5229 |
|
5230 if (min_length >= e1000_igp_cable_length_50) { |
|
5231 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { |
|
5232 ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], |
|
5233 &phy_data); |
|
5234 if (ret_val) |
|
5235 return ret_val; |
|
5236 |
|
5237 phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; |
|
5238 |
|
5239 ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i], |
|
5240 phy_data); |
|
5241 if (ret_val) |
|
5242 return ret_val; |
|
5243 } |
|
5244 hw->dsp_config_state = e1000_dsp_config_activated; |
|
5245 } else { |
|
5246 u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20; |
|
5247 u32 idle_errs = 0; |
|
5248 |
|
5249 /* clear previous idle error counts */ |
|
5250 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); |
|
5251 if (ret_val) |
|
5252 return ret_val; |
|
5253 |
|
5254 for (i = 0; i < ffe_idle_err_timeout; i++) { |
|
5255 udelay(1000); |
|
5256 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, |
|
5257 &phy_data); |
|
5258 if (ret_val) |
|
5259 return ret_val; |
|
5260 |
|
5261 idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT); |
|
5262 if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) { |
|
5263 hw->ffe_config_state = e1000_ffe_config_active; |
|
5264 |
|
5265 ret_val = e1000_write_phy_reg(hw, |
|
5266 IGP01E1000_PHY_DSP_FFE, |
|
5267 IGP01E1000_PHY_DSP_FFE_CM_CP); |
|
5268 if (ret_val) |
|
5269 return ret_val; |
|
5270 break; |
|
5271 } |
|
5272 |
|
5273 if (idle_errs) |
|
5274 ffe_idle_err_timeout = |
|
5275 FFE_IDLE_ERR_COUNT_TIMEOUT_100; |
|
5276 } |
|
5277 } |
|
5278 |
|
5279 return 0; |
|
5280 } |
|
5281 |
|
5282 /** |
|
5283 * e1000_config_dsp_after_link_change |
|
5284 * @hw: Struct containing variables accessed by shared code |
|
5285 * @link_up: was link up at the time this was called |
|
5286 * |
|
5287 * returns: - E1000_ERR_PHY if fail to read/write the PHY |
|
5288 * E1000_SUCCESS at any other case. |
|
5289 * |
|
5290 * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a |
|
5291 * gigabit link is achieved to improve link quality. |
|
5292 */ |
|
5293 |
|
5294 static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up) |
|
5295 { |
|
5296 s32 ret_val; |
|
5297 u16 phy_data, phy_saved_data, speed, duplex, i; |
|
5298 |
|
5299 if (hw->phy_type != e1000_phy_igp) |
|
5300 return E1000_SUCCESS; |
|
5301 |
|
5302 if (link_up) { |
|
5303 ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex); |
|
5304 if (ret_val) { |
|
5305 e_dbg("Error getting link speed and duplex\n"); |
|
5306 return ret_val; |
|
5307 } |
|
5308 |
|
5309 if (speed == SPEED_1000) { |
|
5310 ret_val = e1000_1000Mb_check_cable_length(hw); |
|
5311 if (ret_val) |
|
5312 return ret_val; |
|
5313 } |
|
5314 } else { |
|
5315 if (hw->dsp_config_state == e1000_dsp_config_activated) { |
|
5316 /* Save off the current value of register 0x2F5B to be |
|
5317 * restored at the end of the routines. |
|
5318 */ |
|
5319 ret_val = |
|
5320 e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); |
|
5321 |
|
5322 if (ret_val) |
|
5323 return ret_val; |
|
5324 |
|
5325 /* Disable the PHY transmitter */ |
|
5326 ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003); |
|
5327 |
|
5328 if (ret_val) |
|
5329 return ret_val; |
|
5330 |
|
5331 msleep(20); |
|
5332 |
|
5333 ret_val = e1000_write_phy_reg(hw, 0x0000, |
|
5334 IGP01E1000_IEEE_FORCE_GIGA); |
|
5335 if (ret_val) |
|
5336 return ret_val; |
|
5337 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { |
|
5338 ret_val = |
|
5339 e1000_read_phy_reg(hw, dsp_reg_array[i], |
|
5340 &phy_data); |
|
5341 if (ret_val) |
|
5342 return ret_val; |
|
5343 |
|
5344 phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; |
|
5345 phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS; |
|
5346 |
|
5347 ret_val = |
|
5348 e1000_write_phy_reg(hw, dsp_reg_array[i], |
|
5349 phy_data); |
|
5350 if (ret_val) |
|
5351 return ret_val; |
|
5352 } |
|
5353 |
|
5354 ret_val = e1000_write_phy_reg(hw, 0x0000, |
|
5355 IGP01E1000_IEEE_RESTART_AUTONEG); |
|
5356 if (ret_val) |
|
5357 return ret_val; |
|
5358 |
|
5359 msleep(20); |
|
5360 |
|
5361 /* Now enable the transmitter */ |
|
5362 ret_val = |
|
5363 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); |
|
5364 |
|
5365 if (ret_val) |
|
5366 return ret_val; |
|
5367 |
|
5368 hw->dsp_config_state = e1000_dsp_config_enabled; |
|
5369 } |
|
5370 |
|
5371 if (hw->ffe_config_state == e1000_ffe_config_active) { |
|
5372 /* Save off the current value of register 0x2F5B to be |
|
5373 * restored at the end of the routines. |
|
5374 */ |
|
5375 ret_val = |
|
5376 e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); |
|
5377 |
|
5378 if (ret_val) |
|
5379 return ret_val; |
|
5380 |
|
5381 /* Disable the PHY transmitter */ |
|
5382 ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003); |
|
5383 |
|
5384 if (ret_val) |
|
5385 return ret_val; |
|
5386 |
|
5387 msleep(20); |
|
5388 |
|
5389 ret_val = e1000_write_phy_reg(hw, 0x0000, |
|
5390 IGP01E1000_IEEE_FORCE_GIGA); |
|
5391 if (ret_val) |
|
5392 return ret_val; |
|
5393 ret_val = |
|
5394 e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE, |
|
5395 IGP01E1000_PHY_DSP_FFE_DEFAULT); |
|
5396 if (ret_val) |
|
5397 return ret_val; |
|
5398 |
|
5399 ret_val = e1000_write_phy_reg(hw, 0x0000, |
|
5400 IGP01E1000_IEEE_RESTART_AUTONEG); |
|
5401 if (ret_val) |
|
5402 return ret_val; |
|
5403 |
|
5404 msleep(20); |
|
5405 |
|
5406 /* Now enable the transmitter */ |
|
5407 ret_val = |
|
5408 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); |
|
5409 |
|
5410 if (ret_val) |
|
5411 return ret_val; |
|
5412 |
|
5413 hw->ffe_config_state = e1000_ffe_config_enabled; |
|
5414 } |
|
5415 } |
|
5416 return E1000_SUCCESS; |
|
5417 } |
|
5418 |
|
5419 /** |
|
5420 * e1000_set_phy_mode - Set PHY to class A mode |
|
5421 * @hw: Struct containing variables accessed by shared code |
|
5422 * |
|
5423 * Assumes the following operations will follow to enable the new class mode. |
|
5424 * 1. Do a PHY soft reset |
|
5425 * 2. Restart auto-negotiation or force link. |
|
5426 */ |
|
5427 static s32 e1000_set_phy_mode(struct e1000_hw *hw) |
|
5428 { |
|
5429 s32 ret_val; |
|
5430 u16 eeprom_data; |
|
5431 |
|
5432 if ((hw->mac_type == e1000_82545_rev_3) && |
|
5433 (hw->media_type == e1000_media_type_copper)) { |
|
5434 ret_val = |
|
5435 e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, |
|
5436 &eeprom_data); |
|
5437 if (ret_val) { |
|
5438 return ret_val; |
|
5439 } |
|
5440 |
|
5441 if ((eeprom_data != EEPROM_RESERVED_WORD) && |
|
5442 (eeprom_data & EEPROM_PHY_CLASS_A)) { |
|
5443 ret_val = |
|
5444 e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, |
|
5445 0x000B); |
|
5446 if (ret_val) |
|
5447 return ret_val; |
|
5448 ret_val = |
|
5449 e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, |
|
5450 0x8104); |
|
5451 if (ret_val) |
|
5452 return ret_val; |
|
5453 |
|
5454 hw->phy_reset_disable = false; |
|
5455 } |
|
5456 } |
|
5457 |
|
5458 return E1000_SUCCESS; |
|
5459 } |
|
5460 |
|
5461 /** |
|
5462 * e1000_set_d3_lplu_state - set d3 link power state |
|
5463 * @hw: Struct containing variables accessed by shared code |
|
5464 * @active: true to enable lplu false to disable lplu. |
|
5465 * |
|
5466 * This function sets the lplu state according to the active flag. When |
|
5467 * activating lplu this function also disables smart speed and vise versa. |
|
5468 * lplu will not be activated unless the device autonegotiation advertisement |
|
5469 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. |
|
5470 * |
|
5471 * returns: - E1000_ERR_PHY if fail to read/write the PHY |
|
5472 * E1000_SUCCESS at any other case. |
|
5473 */ |
|
5474 static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) |
|
5475 { |
|
5476 s32 ret_val; |
|
5477 u16 phy_data; |
|
5478 |
|
5479 if (hw->phy_type != e1000_phy_igp) |
|
5480 return E1000_SUCCESS; |
|
5481 |
|
5482 /* During driver activity LPLU should not be used or it will attain link |
|
5483 * from the lowest speeds starting from 10Mbps. The capability is used |
|
5484 * for Dx transitions and states |
|
5485 */ |
|
5486 if (hw->mac_type == e1000_82541_rev_2 |
|
5487 || hw->mac_type == e1000_82547_rev_2) { |
|
5488 ret_val = |
|
5489 e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data); |
|
5490 if (ret_val) |
|
5491 return ret_val; |
|
5492 } |
|
5493 |
|
5494 if (!active) { |
|
5495 if (hw->mac_type == e1000_82541_rev_2 || |
|
5496 hw->mac_type == e1000_82547_rev_2) { |
|
5497 phy_data &= ~IGP01E1000_GMII_FLEX_SPD; |
|
5498 ret_val = |
|
5499 e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, |
|
5500 phy_data); |
|
5501 if (ret_val) |
|
5502 return ret_val; |
|
5503 } |
|
5504 |
|
5505 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used |
|
5506 * during Dx states where the power conservation is most |
|
5507 * important. During driver activity we should enable |
|
5508 * SmartSpeed, so performance is maintained. |
|
5509 */ |
|
5510 if (hw->smart_speed == e1000_smart_speed_on) { |
|
5511 ret_val = |
|
5512 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
5513 &phy_data); |
|
5514 if (ret_val) |
|
5515 return ret_val; |
|
5516 |
|
5517 phy_data |= IGP01E1000_PSCFR_SMART_SPEED; |
|
5518 ret_val = |
|
5519 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
5520 phy_data); |
|
5521 if (ret_val) |
|
5522 return ret_val; |
|
5523 } else if (hw->smart_speed == e1000_smart_speed_off) { |
|
5524 ret_val = |
|
5525 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
5526 &phy_data); |
|
5527 if (ret_val) |
|
5528 return ret_val; |
|
5529 |
|
5530 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
|
5531 ret_val = |
|
5532 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
5533 phy_data); |
|
5534 if (ret_val) |
|
5535 return ret_val; |
|
5536 } |
|
5537 } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) |
|
5538 || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) |
|
5539 || (hw->autoneg_advertised == |
|
5540 AUTONEG_ADVERTISE_10_100_ALL)) { |
|
5541 |
|
5542 if (hw->mac_type == e1000_82541_rev_2 || |
|
5543 hw->mac_type == e1000_82547_rev_2) { |
|
5544 phy_data |= IGP01E1000_GMII_FLEX_SPD; |
|
5545 ret_val = |
|
5546 e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, |
|
5547 phy_data); |
|
5548 if (ret_val) |
|
5549 return ret_val; |
|
5550 } |
|
5551 |
|
5552 /* When LPLU is enabled we should disable SmartSpeed */ |
|
5553 ret_val = |
|
5554 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
5555 &phy_data); |
|
5556 if (ret_val) |
|
5557 return ret_val; |
|
5558 |
|
5559 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
|
5560 ret_val = |
|
5561 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, |
|
5562 phy_data); |
|
5563 if (ret_val) |
|
5564 return ret_val; |
|
5565 |
|
5566 } |
|
5567 return E1000_SUCCESS; |
|
5568 } |
|
5569 |
|
5570 /** |
|
5571 * e1000_set_vco_speed |
|
5572 * @hw: Struct containing variables accessed by shared code |
|
5573 * |
|
5574 * Change VCO speed register to improve Bit Error Rate performance of SERDES. |
|
5575 */ |
|
5576 static s32 e1000_set_vco_speed(struct e1000_hw *hw) |
|
5577 { |
|
5578 s32 ret_val; |
|
5579 u16 default_page = 0; |
|
5580 u16 phy_data; |
|
5581 |
|
5582 switch (hw->mac_type) { |
|
5583 case e1000_82545_rev_3: |
|
5584 case e1000_82546_rev_3: |
|
5585 break; |
|
5586 default: |
|
5587 return E1000_SUCCESS; |
|
5588 } |
|
5589 |
|
5590 /* Set PHY register 30, page 5, bit 8 to 0 */ |
|
5591 |
|
5592 ret_val = |
|
5593 e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page); |
|
5594 if (ret_val) |
|
5595 return ret_val; |
|
5596 |
|
5597 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005); |
|
5598 if (ret_val) |
|
5599 return ret_val; |
|
5600 |
|
5601 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); |
|
5602 if (ret_val) |
|
5603 return ret_val; |
|
5604 |
|
5605 phy_data &= ~M88E1000_PHY_VCO_REG_BIT8; |
|
5606 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); |
|
5607 if (ret_val) |
|
5608 return ret_val; |
|
5609 |
|
5610 /* Set PHY register 30, page 4, bit 11 to 1 */ |
|
5611 |
|
5612 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004); |
|
5613 if (ret_val) |
|
5614 return ret_val; |
|
5615 |
|
5616 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); |
|
5617 if (ret_val) |
|
5618 return ret_val; |
|
5619 |
|
5620 phy_data |= M88E1000_PHY_VCO_REG_BIT11; |
|
5621 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); |
|
5622 if (ret_val) |
|
5623 return ret_val; |
|
5624 |
|
5625 ret_val = |
|
5626 e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page); |
|
5627 if (ret_val) |
|
5628 return ret_val; |
|
5629 |
|
5630 return E1000_SUCCESS; |
|
5631 } |
|
5632 |
|
5633 |
|
5634 /** |
|
5635 * e1000_enable_mng_pass_thru - check for bmc pass through |
|
5636 * @hw: Struct containing variables accessed by shared code |
|
5637 * |
|
5638 * Verifies the hardware needs to allow ARPs to be processed by the host |
|
5639 * returns: - true/false |
|
5640 */ |
|
5641 u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw) |
|
5642 { |
|
5643 u32 manc; |
|
5644 |
|
5645 if (hw->asf_firmware_present) { |
|
5646 manc = er32(MANC); |
|
5647 |
|
5648 if (!(manc & E1000_MANC_RCV_TCO_EN) || |
|
5649 !(manc & E1000_MANC_EN_MAC_ADDR_FILTER)) |
|
5650 return false; |
|
5651 if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN)) |
|
5652 return true; |
|
5653 } |
|
5654 return false; |
|
5655 } |
|
5656 |
|
5657 static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw) |
|
5658 { |
|
5659 s32 ret_val; |
|
5660 u16 mii_status_reg; |
|
5661 u16 i; |
|
5662 |
|
5663 /* Polarity reversal workaround for forced 10F/10H links. */ |
|
5664 |
|
5665 /* Disable the transmitter on the PHY */ |
|
5666 |
|
5667 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); |
|
5668 if (ret_val) |
|
5669 return ret_val; |
|
5670 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF); |
|
5671 if (ret_val) |
|
5672 return ret_val; |
|
5673 |
|
5674 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); |
|
5675 if (ret_val) |
|
5676 return ret_val; |
|
5677 |
|
5678 /* This loop will early-out if the NO link condition has been met. */ |
|
5679 for (i = PHY_FORCE_TIME; i > 0; i--) { |
|
5680 /* Read the MII Status Register and wait for Link Status bit |
|
5681 * to be clear. |
|
5682 */ |
|
5683 |
|
5684 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
|
5685 if (ret_val) |
|
5686 return ret_val; |
|
5687 |
|
5688 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
|
5689 if (ret_val) |
|
5690 return ret_val; |
|
5691 |
|
5692 if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) |
|
5693 break; |
|
5694 msleep(100); |
|
5695 } |
|
5696 |
|
5697 /* Recommended delay time after link has been lost */ |
|
5698 msleep(1000); |
|
5699 |
|
5700 /* Now we will re-enable th transmitter on the PHY */ |
|
5701 |
|
5702 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); |
|
5703 if (ret_val) |
|
5704 return ret_val; |
|
5705 msleep(50); |
|
5706 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0); |
|
5707 if (ret_val) |
|
5708 return ret_val; |
|
5709 msleep(50); |
|
5710 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00); |
|
5711 if (ret_val) |
|
5712 return ret_val; |
|
5713 msleep(50); |
|
5714 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000); |
|
5715 if (ret_val) |
|
5716 return ret_val; |
|
5717 |
|
5718 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); |
|
5719 if (ret_val) |
|
5720 return ret_val; |
|
5721 |
|
5722 /* This loop will early-out if the link condition has been met. */ |
|
5723 for (i = PHY_FORCE_TIME; i > 0; i--) { |
|
5724 /* Read the MII Status Register and wait for Link Status bit |
|
5725 * to be set. |
|
5726 */ |
|
5727 |
|
5728 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
|
5729 if (ret_val) |
|
5730 return ret_val; |
|
5731 |
|
5732 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); |
|
5733 if (ret_val) |
|
5734 return ret_val; |
|
5735 |
|
5736 if (mii_status_reg & MII_SR_LINK_STATUS) |
|
5737 break; |
|
5738 msleep(100); |
|
5739 } |
|
5740 return E1000_SUCCESS; |
|
5741 } |
|
5742 |
|
5743 /** |
|
5744 * e1000_get_auto_rd_done |
|
5745 * @hw: Struct containing variables accessed by shared code |
|
5746 * |
|
5747 * Check for EEPROM Auto Read bit done. |
|
5748 * returns: - E1000_ERR_RESET if fail to reset MAC |
|
5749 * E1000_SUCCESS at any other case. |
|
5750 */ |
|
5751 static s32 e1000_get_auto_rd_done(struct e1000_hw *hw) |
|
5752 { |
|
5753 msleep(5); |
|
5754 return E1000_SUCCESS; |
|
5755 } |
|
5756 |
|
5757 /** |
|
5758 * e1000_get_phy_cfg_done |
|
5759 * @hw: Struct containing variables accessed by shared code |
|
5760 * |
|
5761 * Checks if the PHY configuration is done |
|
5762 * returns: - E1000_ERR_RESET if fail to reset MAC |
|
5763 * E1000_SUCCESS at any other case. |
|
5764 */ |
|
5765 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw) |
|
5766 { |
|
5767 msleep(10); |
|
5768 return E1000_SUCCESS; |
|
5769 } |