devices/e1000/e1000_ethtool-2.6.13-ethercat.c
changeset 673 21c266c3f463
equal deleted inserted replaced
672:271d6033314f 673:21c266c3f463
       
     1 /*******************************************************************************
       
     2 
       
     3   
       
     4   Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
       
     5   
       
     6   This program is free software; you can redistribute it and/or modify it 
       
     7   under the terms of the GNU General Public License as published by the Free 
       
     8   Software Foundation; either version 2 of the License, or (at your option) 
       
     9   any later version.
       
    10   
       
    11   This program is distributed in the hope that it will be useful, but WITHOUT 
       
    12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
       
    13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
       
    14   more details.
       
    15   
       
    16   You should have received a copy of the GNU General Public License along with
       
    17   this program; if not, write to the Free Software Foundation, Inc., 59 
       
    18   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
       
    19   
       
    20   The full GNU General Public License is included in this distribution in the
       
    21   file called LICENSE.
       
    22   
       
    23   Contact Information:
       
    24   Linux NICS <linux.nics@intel.com>
       
    25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
       
    26 
       
    27 *******************************************************************************/
       
    28 
       
    29 /* ethtool support for e1000 */
       
    30 
       
    31 #include "e1000-2.6.13-ethercat.h"
       
    32 
       
    33 #include <asm/uaccess.h>
       
    34 
       
    35 extern char e1000_driver_name[];
       
    36 extern char e1000_driver_version[];
       
    37 
       
    38 extern int e1000_up(struct e1000_adapter *adapter);
       
    39 extern void e1000_down(struct e1000_adapter *adapter);
       
    40 extern void e1000_reset(struct e1000_adapter *adapter);
       
    41 extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
       
    42 extern int e1000_setup_rx_resources(struct e1000_adapter *adapter);
       
    43 extern int e1000_setup_tx_resources(struct e1000_adapter *adapter);
       
    44 extern void e1000_free_rx_resources(struct e1000_adapter *adapter);
       
    45 extern void e1000_free_tx_resources(struct e1000_adapter *adapter);
       
    46 extern void e1000_update_stats(struct e1000_adapter *adapter);
       
    47 
       
    48 struct e1000_stats {
       
    49 	char stat_string[ETH_GSTRING_LEN];
       
    50 	int sizeof_stat;
       
    51 	int stat_offset;
       
    52 };
       
    53 
       
    54 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
       
    55 		      offsetof(struct e1000_adapter, m)
       
    56 static const struct e1000_stats e1000_gstrings_stats[] = {
       
    57 	{ "rx_packets", E1000_STAT(net_stats.rx_packets) },
       
    58 	{ "tx_packets", E1000_STAT(net_stats.tx_packets) },
       
    59 	{ "rx_bytes", E1000_STAT(net_stats.rx_bytes) },
       
    60 	{ "tx_bytes", E1000_STAT(net_stats.tx_bytes) },
       
    61 	{ "rx_errors", E1000_STAT(net_stats.rx_errors) },
       
    62 	{ "tx_errors", E1000_STAT(net_stats.tx_errors) },
       
    63 	{ "rx_dropped", E1000_STAT(net_stats.rx_dropped) },
       
    64 	{ "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
       
    65 	{ "multicast", E1000_STAT(net_stats.multicast) },
       
    66 	{ "collisions", E1000_STAT(net_stats.collisions) },
       
    67 	{ "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
       
    68 	{ "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
       
    69 	{ "rx_crc_errors", E1000_STAT(net_stats.rx_crc_errors) },
       
    70 	{ "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
       
    71 	{ "rx_fifo_errors", E1000_STAT(net_stats.rx_fifo_errors) },
       
    72 	{ "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
       
    73 	{ "rx_missed_errors", E1000_STAT(net_stats.rx_missed_errors) },
       
    74 	{ "tx_aborted_errors", E1000_STAT(net_stats.tx_aborted_errors) },
       
    75 	{ "tx_carrier_errors", E1000_STAT(net_stats.tx_carrier_errors) },
       
    76 	{ "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
       
    77 	{ "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
       
    78 	{ "tx_window_errors", E1000_STAT(net_stats.tx_window_errors) },
       
    79 	{ "tx_abort_late_coll", E1000_STAT(stats.latecol) },
       
    80 	{ "tx_deferred_ok", E1000_STAT(stats.dc) },
       
    81 	{ "tx_single_coll_ok", E1000_STAT(stats.scc) },
       
    82 	{ "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
       
    83 	{ "rx_long_length_errors", E1000_STAT(stats.roc) },
       
    84 	{ "rx_short_length_errors", E1000_STAT(stats.ruc) },
       
    85 	{ "rx_align_errors", E1000_STAT(stats.algnerrc) },
       
    86 	{ "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
       
    87 	{ "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
       
    88 	{ "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
       
    89 	{ "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
       
    90 	{ "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
       
    91 	{ "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
       
    92 	{ "rx_long_byte_count", E1000_STAT(stats.gorcl) },
       
    93 	{ "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
       
    94 	{ "rx_csum_offload_errors", E1000_STAT(hw_csum_err) }
       
    95 };
       
    96 #define E1000_STATS_LEN	\
       
    97 	sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
       
    98 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
       
    99 	"Register test  (offline)", "Eeprom test    (offline)",
       
   100 	"Interrupt test (offline)", "Loopback test  (offline)",
       
   101 	"Link test   (on/offline)"
       
   102 };
       
   103 #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
       
   104 
       
   105 static int
       
   106 e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
       
   107 {
       
   108 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   109 	struct e1000_hw *hw = &adapter->hw;
       
   110 
       
   111 	if(hw->media_type == e1000_media_type_copper) {
       
   112 
       
   113 		ecmd->supported = (SUPPORTED_10baseT_Half |
       
   114 		                   SUPPORTED_10baseT_Full |
       
   115 		                   SUPPORTED_100baseT_Half |
       
   116 		                   SUPPORTED_100baseT_Full |
       
   117 		                   SUPPORTED_1000baseT_Full|
       
   118 		                   SUPPORTED_Autoneg |
       
   119 		                   SUPPORTED_TP);
       
   120 
       
   121 		ecmd->advertising = ADVERTISED_TP;
       
   122 
       
   123 		if(hw->autoneg == 1) {
       
   124 			ecmd->advertising |= ADVERTISED_Autoneg;
       
   125 
       
   126 			/* the e1000 autoneg seems to match ethtool nicely */
       
   127 
       
   128 			ecmd->advertising |= hw->autoneg_advertised;
       
   129 		}
       
   130 
       
   131 		ecmd->port = PORT_TP;
       
   132 		ecmd->phy_address = hw->phy_addr;
       
   133 
       
   134 		if(hw->mac_type == e1000_82543)
       
   135 			ecmd->transceiver = XCVR_EXTERNAL;
       
   136 		else
       
   137 			ecmd->transceiver = XCVR_INTERNAL;
       
   138 
       
   139 	} else {
       
   140 		ecmd->supported   = (SUPPORTED_1000baseT_Full |
       
   141 				     SUPPORTED_FIBRE |
       
   142 				     SUPPORTED_Autoneg);
       
   143 
       
   144 		ecmd->advertising = (ADVERTISED_1000baseT_Full |
       
   145 				     ADVERTISED_FIBRE |
       
   146 				     ADVERTISED_Autoneg);
       
   147 
       
   148 		ecmd->port = PORT_FIBRE;
       
   149 
       
   150 		if(hw->mac_type >= e1000_82545)
       
   151 			ecmd->transceiver = XCVR_INTERNAL;
       
   152 		else
       
   153 			ecmd->transceiver = XCVR_EXTERNAL;
       
   154 	}
       
   155 
       
   156 	if ((adapter->ecdev && ecdev_get_link(adapter->ecdev))
       
   157             || (!adapter->ecdev && netif_carrier_ok(adapter->netdev))) {
       
   158 		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
       
   159 		                                   &adapter->link_duplex);
       
   160 		ecmd->speed = adapter->link_speed;
       
   161 
       
   162 		/* unfortunatly FULL_DUPLEX != DUPLEX_FULL
       
   163 		 *          and HALF_DUPLEX != DUPLEX_HALF */
       
   164 
       
   165 		if(adapter->link_duplex == FULL_DUPLEX)
       
   166 			ecmd->duplex = DUPLEX_FULL;
       
   167 		else
       
   168 			ecmd->duplex = DUPLEX_HALF;
       
   169 	} else {
       
   170 		ecmd->speed = -1;
       
   171 		ecmd->duplex = -1;
       
   172 	}
       
   173 
       
   174 	ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
       
   175 			 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
       
   176 	return 0;
       
   177 }
       
   178 
       
   179 static int
       
   180 e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
       
   181 {
       
   182 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   183 	struct e1000_hw *hw = &adapter->hw;
       
   184 
       
   185 	if(ecmd->autoneg == AUTONEG_ENABLE) {
       
   186 		hw->autoneg = 1;
       
   187 		if(hw->media_type == e1000_media_type_fiber)
       
   188 			hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
       
   189 				     ADVERTISED_FIBRE |
       
   190 				     ADVERTISED_Autoneg;
       
   191 		else 
       
   192 			hw->autoneg_advertised = ADVERTISED_10baseT_Half |
       
   193 						  ADVERTISED_10baseT_Full |
       
   194 						  ADVERTISED_100baseT_Half |
       
   195 						  ADVERTISED_100baseT_Full |
       
   196 						  ADVERTISED_1000baseT_Full|
       
   197 						  ADVERTISED_Autoneg |
       
   198 						  ADVERTISED_TP;
       
   199 		ecmd->advertising = hw->autoneg_advertised;
       
   200 	} else
       
   201 		if(e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex))
       
   202 			return -EINVAL;
       
   203 
       
   204 	/* reset the link */
       
   205 
       
   206 	if (adapter->ecdev || netif_running(adapter->netdev)) {
       
   207 		e1000_down(adapter);
       
   208 		e1000_reset(adapter);
       
   209 		e1000_up(adapter);
       
   210 	} else
       
   211 		e1000_reset(adapter);
       
   212 
       
   213 	return 0;
       
   214 }
       
   215 
       
   216 static void
       
   217 e1000_get_pauseparam(struct net_device *netdev,
       
   218                      struct ethtool_pauseparam *pause)
       
   219 {
       
   220 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   221 	struct e1000_hw *hw = &adapter->hw;
       
   222 
       
   223 	pause->autoneg = 
       
   224 		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
       
   225 	
       
   226 	if(hw->fc == e1000_fc_rx_pause)
       
   227 		pause->rx_pause = 1;
       
   228 	else if(hw->fc == e1000_fc_tx_pause)
       
   229 		pause->tx_pause = 1;
       
   230 	else if(hw->fc == e1000_fc_full) {
       
   231 		pause->rx_pause = 1;
       
   232 		pause->tx_pause = 1;
       
   233 	}
       
   234 }
       
   235 
       
   236 static int
       
   237 e1000_set_pauseparam(struct net_device *netdev,
       
   238                      struct ethtool_pauseparam *pause)
       
   239 {
       
   240 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   241 	struct e1000_hw *hw = &adapter->hw;
       
   242 	
       
   243 	adapter->fc_autoneg = pause->autoneg;
       
   244 
       
   245 	if(pause->rx_pause && pause->tx_pause)
       
   246 		hw->fc = e1000_fc_full;
       
   247 	else if(pause->rx_pause && !pause->tx_pause)
       
   248 		hw->fc = e1000_fc_rx_pause;
       
   249 	else if(!pause->rx_pause && pause->tx_pause)
       
   250 		hw->fc = e1000_fc_tx_pause;
       
   251 	else if(!pause->rx_pause && !pause->tx_pause)
       
   252 		hw->fc = e1000_fc_none;
       
   253 
       
   254 	hw->original_fc = hw->fc;
       
   255 
       
   256 	if(adapter->fc_autoneg == AUTONEG_ENABLE) {
       
   257 		if (adapter->ecdev || netif_running(adapter->netdev)) {
       
   258 			e1000_down(adapter);
       
   259 			e1000_up(adapter);
       
   260 		} else
       
   261 			e1000_reset(adapter);
       
   262 	}
       
   263 	else
       
   264 		return ((hw->media_type == e1000_media_type_fiber) ?
       
   265 			e1000_setup_link(hw) : e1000_force_mac_fc(hw));
       
   266 	
       
   267 	return 0;
       
   268 }
       
   269 
       
   270 static uint32_t
       
   271 e1000_get_rx_csum(struct net_device *netdev)
       
   272 {
       
   273 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   274 	return adapter->rx_csum;
       
   275 }
       
   276 
       
   277 static int
       
   278 e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
       
   279 {
       
   280 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   281 	adapter->rx_csum = data;
       
   282 
       
   283 	if (adapter->ecdev || netif_running(netdev)) {
       
   284 		e1000_down(adapter);
       
   285 		e1000_up(adapter);
       
   286 	} else
       
   287 		e1000_reset(adapter);
       
   288 	return 0;
       
   289 }
       
   290 	
       
   291 static uint32_t
       
   292 e1000_get_tx_csum(struct net_device *netdev)
       
   293 {
       
   294 	return (netdev->features & NETIF_F_HW_CSUM) != 0;
       
   295 }
       
   296 
       
   297 static int
       
   298 e1000_set_tx_csum(struct net_device *netdev, uint32_t data)
       
   299 {
       
   300 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   301 
       
   302 	if(adapter->hw.mac_type < e1000_82543) {
       
   303 		if (!data)
       
   304 			return -EINVAL;
       
   305 		return 0;
       
   306 	}
       
   307 
       
   308 	if (data)
       
   309 		netdev->features |= NETIF_F_HW_CSUM;
       
   310 	else
       
   311 		netdev->features &= ~NETIF_F_HW_CSUM;
       
   312 
       
   313 	return 0;
       
   314 }
       
   315 
       
   316 #ifdef NETIF_F_TSO
       
   317 static int
       
   318 e1000_set_tso(struct net_device *netdev, uint32_t data)
       
   319 {
       
   320 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   321 	if((adapter->hw.mac_type < e1000_82544) ||
       
   322 	    (adapter->hw.mac_type == e1000_82547)) 
       
   323 		return data ? -EINVAL : 0;
       
   324 
       
   325 	if (data)
       
   326 		netdev->features |= NETIF_F_TSO;
       
   327 	else
       
   328 		netdev->features &= ~NETIF_F_TSO;
       
   329 	return 0;
       
   330 } 
       
   331 #endif /* NETIF_F_TSO */
       
   332 
       
   333 static uint32_t
       
   334 e1000_get_msglevel(struct net_device *netdev)
       
   335 {
       
   336 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   337 	return adapter->msg_enable;
       
   338 }
       
   339 
       
   340 static void
       
   341 e1000_set_msglevel(struct net_device *netdev, uint32_t data)
       
   342 {
       
   343 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   344 	adapter->msg_enable = data;
       
   345 }
       
   346 
       
   347 static int 
       
   348 e1000_get_regs_len(struct net_device *netdev)
       
   349 {
       
   350 #define E1000_REGS_LEN 32
       
   351 	return E1000_REGS_LEN * sizeof(uint32_t);
       
   352 }
       
   353 
       
   354 static void
       
   355 e1000_get_regs(struct net_device *netdev,
       
   356 	       struct ethtool_regs *regs, void *p)
       
   357 {
       
   358 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   359 	struct e1000_hw *hw = &adapter->hw;
       
   360 	uint32_t *regs_buff = p;
       
   361 	uint16_t phy_data;
       
   362 
       
   363 	memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t));
       
   364 
       
   365 	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
       
   366 
       
   367 	regs_buff[0]  = E1000_READ_REG(hw, CTRL);
       
   368 	regs_buff[1]  = E1000_READ_REG(hw, STATUS);
       
   369 
       
   370 	regs_buff[2]  = E1000_READ_REG(hw, RCTL);
       
   371 	regs_buff[3]  = E1000_READ_REG(hw, RDLEN);
       
   372 	regs_buff[4]  = E1000_READ_REG(hw, RDH);
       
   373 	regs_buff[5]  = E1000_READ_REG(hw, RDT);
       
   374 	regs_buff[6]  = E1000_READ_REG(hw, RDTR);
       
   375 
       
   376 	regs_buff[7]  = E1000_READ_REG(hw, TCTL);
       
   377 	regs_buff[8]  = E1000_READ_REG(hw, TDLEN);
       
   378 	regs_buff[9]  = E1000_READ_REG(hw, TDH);
       
   379 	regs_buff[10] = E1000_READ_REG(hw, TDT);
       
   380 	regs_buff[11] = E1000_READ_REG(hw, TIDV);
       
   381 
       
   382 	regs_buff[12] = adapter->hw.phy_type;  /* PHY type (IGP=1, M88=0) */
       
   383 	if(hw->phy_type == e1000_phy_igp) {
       
   384 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
       
   385 				    IGP01E1000_PHY_AGC_A);
       
   386 		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
       
   387 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
       
   388 		regs_buff[13] = (uint32_t)phy_data; /* cable length */
       
   389 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
       
   390 				    IGP01E1000_PHY_AGC_B);
       
   391 		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
       
   392 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
       
   393 		regs_buff[14] = (uint32_t)phy_data; /* cable length */
       
   394 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
       
   395 				    IGP01E1000_PHY_AGC_C);
       
   396 		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
       
   397 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
       
   398 		regs_buff[15] = (uint32_t)phy_data; /* cable length */
       
   399 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
       
   400 				    IGP01E1000_PHY_AGC_D);
       
   401 		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
       
   402 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
       
   403 		regs_buff[16] = (uint32_t)phy_data; /* cable length */
       
   404 		regs_buff[17] = 0; /* extended 10bt distance (not needed) */
       
   405 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
       
   406 		e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
       
   407 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
       
   408 		regs_buff[18] = (uint32_t)phy_data; /* cable polarity */
       
   409 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
       
   410 				    IGP01E1000_PHY_PCS_INIT_REG);
       
   411 		e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
       
   412 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
       
   413 		regs_buff[19] = (uint32_t)phy_data; /* cable polarity */
       
   414 		regs_buff[20] = 0; /* polarity correction enabled (always) */
       
   415 		regs_buff[22] = 0; /* phy receive errors (unavailable) */
       
   416 		regs_buff[23] = regs_buff[18]; /* mdix mode */
       
   417 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
       
   418 	} else {
       
   419         	e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
       
   420 		regs_buff[13] = (uint32_t)phy_data; /* cable length */
       
   421 		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
       
   422 		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
       
   423 		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
       
   424         	e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
       
   425 		regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */
       
   426 		regs_buff[18] = regs_buff[13]; /* cable polarity */
       
   427 		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
       
   428 		regs_buff[20] = regs_buff[17]; /* polarity correction */
       
   429 		/* phy receive errors */
       
   430 		regs_buff[22] = adapter->phy_stats.receive_errors;
       
   431 		regs_buff[23] = regs_buff[13]; /* mdix mode */
       
   432 	}
       
   433 	regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
       
   434 	e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
       
   435 	regs_buff[24] = (uint32_t)phy_data;  /* phy local receiver status */
       
   436 	regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
       
   437 	if(hw->mac_type >= e1000_82540 &&
       
   438 	   hw->media_type == e1000_media_type_copper) {
       
   439 		regs_buff[26] = E1000_READ_REG(hw, MANC);
       
   440 	}
       
   441 }
       
   442 
       
   443 static int
       
   444 e1000_get_eeprom_len(struct net_device *netdev)
       
   445 {
       
   446 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   447 	return adapter->hw.eeprom.word_size * 2;
       
   448 }
       
   449 
       
   450 static int
       
   451 e1000_get_eeprom(struct net_device *netdev,
       
   452                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
       
   453 {
       
   454 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   455 	struct e1000_hw *hw = &adapter->hw;
       
   456 	uint16_t *eeprom_buff;
       
   457 	int first_word, last_word;
       
   458 	int ret_val = 0;
       
   459 	uint16_t i;
       
   460 
       
   461 	if(eeprom->len == 0)
       
   462 		return -EINVAL;
       
   463 
       
   464 	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
       
   465 
       
   466 	first_word = eeprom->offset >> 1;
       
   467 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
       
   468 
       
   469 	eeprom_buff = kmalloc(sizeof(uint16_t) *
       
   470 			(last_word - first_word + 1), GFP_KERNEL);
       
   471 	if(!eeprom_buff)
       
   472 		return -ENOMEM;
       
   473 
       
   474 	if(hw->eeprom.type == e1000_eeprom_spi)
       
   475 		ret_val = e1000_read_eeprom(hw, first_word,
       
   476 					    last_word - first_word + 1,
       
   477 					    eeprom_buff);
       
   478 	else {
       
   479 		for (i = 0; i < last_word - first_word + 1; i++)
       
   480 			if((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
       
   481 							&eeprom_buff[i])))
       
   482 				break;
       
   483 	}
       
   484 
       
   485 	/* Device's eeprom is always little-endian, word addressable */
       
   486 	for (i = 0; i < last_word - first_word + 1; i++)
       
   487 		le16_to_cpus(&eeprom_buff[i]);
       
   488 
       
   489 	memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1),
       
   490 			eeprom->len);
       
   491 	kfree(eeprom_buff);
       
   492 
       
   493 	return ret_val;
       
   494 }
       
   495 
       
   496 static int
       
   497 e1000_set_eeprom(struct net_device *netdev,
       
   498                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
       
   499 {
       
   500 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   501 	struct e1000_hw *hw = &adapter->hw;
       
   502 	uint16_t *eeprom_buff;
       
   503 	void *ptr;
       
   504 	int max_len, first_word, last_word, ret_val = 0;
       
   505 	uint16_t i;
       
   506 
       
   507 	if(eeprom->len == 0)
       
   508 		return -EOPNOTSUPP;
       
   509 
       
   510 	if(eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
       
   511 		return -EFAULT;
       
   512 
       
   513 	max_len = hw->eeprom.word_size * 2;
       
   514 
       
   515 	first_word = eeprom->offset >> 1;
       
   516 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
       
   517 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
       
   518 	if(!eeprom_buff)
       
   519 		return -ENOMEM;
       
   520 
       
   521 	ptr = (void *)eeprom_buff;
       
   522 
       
   523 	if(eeprom->offset & 1) {
       
   524 		/* need read/modify/write of first changed EEPROM word */
       
   525 		/* only the second byte of the word is being modified */
       
   526 		ret_val = e1000_read_eeprom(hw, first_word, 1,
       
   527 					    &eeprom_buff[0]);
       
   528 		ptr++;
       
   529 	}
       
   530 	if(((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
       
   531 		/* need read/modify/write of last changed EEPROM word */
       
   532 		/* only the first byte of the word is being modified */
       
   533 		ret_val = e1000_read_eeprom(hw, last_word, 1,
       
   534 		                  &eeprom_buff[last_word - first_word]);
       
   535 	}
       
   536 
       
   537 	/* Device's eeprom is always little-endian, word addressable */
       
   538 	for (i = 0; i < last_word - first_word + 1; i++)
       
   539 		le16_to_cpus(&eeprom_buff[i]);
       
   540 
       
   541 	memcpy(ptr, bytes, eeprom->len);
       
   542 
       
   543 	for (i = 0; i < last_word - first_word + 1; i++)
       
   544 		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
       
   545 
       
   546 	ret_val = e1000_write_eeprom(hw, first_word,
       
   547 				     last_word - first_word + 1, eeprom_buff);
       
   548 
       
   549 	/* Update the checksum over the first part of the EEPROM if needed */
       
   550 	if((ret_val == 0) && first_word <= EEPROM_CHECKSUM_REG)
       
   551 		e1000_update_eeprom_checksum(hw);
       
   552 
       
   553 	kfree(eeprom_buff);
       
   554 	return ret_val;
       
   555 }
       
   556 
       
   557 static void
       
   558 e1000_get_drvinfo(struct net_device *netdev,
       
   559                        struct ethtool_drvinfo *drvinfo)
       
   560 {
       
   561 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   562 
       
   563 	strncpy(drvinfo->driver,  e1000_driver_name, 32);
       
   564 	strncpy(drvinfo->version, e1000_driver_version, 32);
       
   565 	strncpy(drvinfo->fw_version, "N/A", 32);
       
   566 	strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
       
   567 	drvinfo->n_stats = E1000_STATS_LEN;
       
   568 	drvinfo->testinfo_len = E1000_TEST_LEN;
       
   569 	drvinfo->regdump_len = e1000_get_regs_len(netdev);
       
   570 	drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
       
   571 }
       
   572 
       
   573 static void
       
   574 e1000_get_ringparam(struct net_device *netdev,
       
   575                     struct ethtool_ringparam *ring)
       
   576 {
       
   577 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   578 	e1000_mac_type mac_type = adapter->hw.mac_type;
       
   579 	struct e1000_desc_ring *txdr = &adapter->tx_ring;
       
   580 	struct e1000_desc_ring *rxdr = &adapter->rx_ring;
       
   581 
       
   582 	ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
       
   583 		E1000_MAX_82544_RXD;
       
   584 	ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
       
   585 		E1000_MAX_82544_TXD;
       
   586 	ring->rx_mini_max_pending = 0;
       
   587 	ring->rx_jumbo_max_pending = 0;
       
   588 	ring->rx_pending = rxdr->count;
       
   589 	ring->tx_pending = txdr->count;
       
   590 	ring->rx_mini_pending = 0;
       
   591 	ring->rx_jumbo_pending = 0;
       
   592 }
       
   593 
       
   594 static int 
       
   595 e1000_set_ringparam(struct net_device *netdev,
       
   596                     struct ethtool_ringparam *ring)
       
   597 {
       
   598 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   599 	e1000_mac_type mac_type = adapter->hw.mac_type;
       
   600 	struct e1000_desc_ring *txdr = &adapter->tx_ring;
       
   601 	struct e1000_desc_ring *rxdr = &adapter->rx_ring;
       
   602 	struct e1000_desc_ring tx_old, tx_new, rx_old, rx_new;
       
   603 	int err;
       
   604 
       
   605     if (adapter->ecdev)
       
   606         return -EBUSY;
       
   607 
       
   608 	tx_old = adapter->tx_ring;
       
   609 	rx_old = adapter->rx_ring;
       
   610 
       
   611 	if((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
       
   612 		return -EINVAL;
       
   613 
       
   614 	if(netif_running(adapter->netdev))
       
   615 		e1000_down(adapter);
       
   616 
       
   617 	rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD);
       
   618 	rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ?
       
   619 		E1000_MAX_RXD : E1000_MAX_82544_RXD));
       
   620 	E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE); 
       
   621 
       
   622 	txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD);
       
   623 	txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ?
       
   624 		E1000_MAX_TXD : E1000_MAX_82544_TXD));
       
   625 	E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE); 
       
   626 
       
   627 	if(netif_running(adapter->netdev)) {
       
   628 		/* Try to get new resources before deleting old */
       
   629 		if((err = e1000_setup_rx_resources(adapter)))
       
   630 			goto err_setup_rx;
       
   631 		if((err = e1000_setup_tx_resources(adapter)))
       
   632 			goto err_setup_tx;
       
   633 
       
   634 		/* save the new, restore the old in order to free it,
       
   635 		 * then restore the new back again */
       
   636 
       
   637 		rx_new = adapter->rx_ring;
       
   638 		tx_new = adapter->tx_ring;
       
   639 		adapter->rx_ring = rx_old;
       
   640 		adapter->tx_ring = tx_old;
       
   641 		e1000_free_rx_resources(adapter);
       
   642 		e1000_free_tx_resources(adapter);
       
   643 		adapter->rx_ring = rx_new;
       
   644 		adapter->tx_ring = tx_new;
       
   645 		if((err = e1000_up(adapter)))
       
   646 			return err;
       
   647 	}
       
   648 
       
   649 	return 0;
       
   650 err_setup_tx:
       
   651 	e1000_free_rx_resources(adapter);
       
   652 err_setup_rx:
       
   653 	adapter->rx_ring = rx_old;
       
   654 	adapter->tx_ring = tx_old;
       
   655 	e1000_up(adapter);
       
   656 	return err;
       
   657 }
       
   658 
       
   659 #define REG_PATTERN_TEST(R, M, W)                                              \
       
   660 {                                                                              \
       
   661 	uint32_t pat, value;                                                   \
       
   662 	uint32_t test[] =                                                      \
       
   663 		{0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};              \
       
   664 	for(pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) {              \
       
   665 		E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W));             \
       
   666 		value = E1000_READ_REG(&adapter->hw, R);                       \
       
   667 		if(value != (test[pat] & W & M)) {                             \
       
   668 			DPRINTK(DRV, ERR, "pattern test reg %04X failed: got " \
       
   669 			        "0x%08X expected 0x%08X\n",                    \
       
   670 			        E1000_##R, value, (test[pat] & W & M));        \
       
   671 			*data = (adapter->hw.mac_type < e1000_82543) ?         \
       
   672 				E1000_82542_##R : E1000_##R;                   \
       
   673 			return 1;                                              \
       
   674 		}                                                              \
       
   675 	}                                                                      \
       
   676 }
       
   677 
       
   678 #define REG_SET_AND_CHECK(R, M, W)                                             \
       
   679 {                                                                              \
       
   680 	uint32_t value;                                                        \
       
   681 	E1000_WRITE_REG(&adapter->hw, R, W & M);                               \
       
   682 	value = E1000_READ_REG(&adapter->hw, R);                               \
       
   683 	if((W & M) != (value & M)) {                                          \
       
   684 		DPRINTK(DRV, ERR, "set/check reg %04X test failed: got 0x%08X "\
       
   685 		        "expected 0x%08X\n", E1000_##R, (value & M), (W & M)); \
       
   686 		*data = (adapter->hw.mac_type < e1000_82543) ?                 \
       
   687 			E1000_82542_##R : E1000_##R;                           \
       
   688 		return 1;                                                      \
       
   689 	}                                                                      \
       
   690 }
       
   691 
       
   692 static int
       
   693 e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
       
   694 {
       
   695 	uint32_t value, before, after;
       
   696 	uint32_t i, toggle;
       
   697 
       
   698 	/* The status register is Read Only, so a write should fail.
       
   699 	 * Some bits that get toggled are ignored.
       
   700 	 */
       
   701         switch (adapter->hw.mac_type) {
       
   702 	case e1000_82573:
       
   703 		toggle = 0x7FFFF033;
       
   704 		break;
       
   705 	default:
       
   706 		toggle = 0xFFFFF833;
       
   707 		break;
       
   708 	}
       
   709 
       
   710 	before = E1000_READ_REG(&adapter->hw, STATUS);
       
   711 	value = (E1000_READ_REG(&adapter->hw, STATUS) & toggle);
       
   712 	E1000_WRITE_REG(&adapter->hw, STATUS, toggle);
       
   713 	after = E1000_READ_REG(&adapter->hw, STATUS) & toggle;
       
   714 	if(value != after) {
       
   715 		DPRINTK(DRV, ERR, "failed STATUS register test got: "
       
   716 		        "0x%08X expected: 0x%08X\n", after, value);
       
   717 		*data = 1;
       
   718 		return 1;
       
   719 	}
       
   720 	/* restore previous status */
       
   721 	E1000_WRITE_REG(&adapter->hw, STATUS, before);
       
   722 
       
   723 	REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
       
   724 	REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
       
   725 	REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
       
   726 	REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
       
   727 	REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
       
   728 	REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
       
   729 	REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
       
   730 	REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
       
   731 	REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
       
   732 	REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
       
   733 	REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
       
   734 	REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
       
   735 	REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
       
   736 	REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
       
   737 
       
   738 	REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
       
   739 	REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB);
       
   740 	REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
       
   741 
       
   742 	if(adapter->hw.mac_type >= e1000_82543) {
       
   743 
       
   744 		REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF);
       
   745 		REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
       
   746 		REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
       
   747 		REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
       
   748 		REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
       
   749 
       
   750 		for(i = 0; i < E1000_RAR_ENTRIES; i++) {
       
   751 			REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF,
       
   752 					 0xFFFFFFFF);
       
   753 			REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
       
   754 					 0xFFFFFFFF);
       
   755 		}
       
   756 
       
   757 	} else {
       
   758 
       
   759 		REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
       
   760 		REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
       
   761 		REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
       
   762 		REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
       
   763 
       
   764 	}
       
   765 
       
   766 	for(i = 0; i < E1000_MC_TBL_SIZE; i++)
       
   767 		REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
       
   768 
       
   769 	*data = 0;
       
   770 	return 0;
       
   771 }
       
   772 
       
   773 static int
       
   774 e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data)
       
   775 {
       
   776 	uint16_t temp;
       
   777 	uint16_t checksum = 0;
       
   778 	uint16_t i;
       
   779 
       
   780 	*data = 0;
       
   781 	/* Read and add up the contents of the EEPROM */
       
   782 	for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
       
   783 		if((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
       
   784 			*data = 1;
       
   785 			break;
       
   786 		}
       
   787 		checksum += temp;
       
   788 	}
       
   789 
       
   790 	/* If Checksum is not Correct return error else test passed */
       
   791 	if((checksum != (uint16_t) EEPROM_SUM) && !(*data))
       
   792 		*data = 2;
       
   793 
       
   794 	return *data;
       
   795 }
       
   796 
       
   797 static irqreturn_t
       
   798 e1000_test_intr(int irq,
       
   799 		void *data,
       
   800 		struct pt_regs *regs)
       
   801 {
       
   802 	struct net_device *netdev = (struct net_device *) data;
       
   803 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   804 
       
   805 	adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR);
       
   806 
       
   807 	return IRQ_HANDLED;
       
   808 }
       
   809 
       
   810 static int
       
   811 e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
       
   812 {
       
   813 	struct net_device *netdev = adapter->netdev;
       
   814  	uint32_t mask, i=0, shared_int = TRUE;
       
   815  	uint32_t irq = adapter->pdev->irq;
       
   816 
       
   817 	*data = 0;
       
   818 
       
   819 	/* Hook up test interrupt handler just for this test */
       
   820  	if(!request_irq(irq, &e1000_test_intr, 0, netdev->name, netdev)) {
       
   821  		shared_int = FALSE;
       
   822  	} else if(request_irq(irq, &e1000_test_intr, SA_SHIRQ,
       
   823 			      netdev->name, netdev)){
       
   824 		*data = 1;
       
   825 		return -1;
       
   826 	}
       
   827 
       
   828 	/* Disable all the interrupts */
       
   829 	E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
       
   830 	msec_delay(10);
       
   831 
       
   832 	/* Test each interrupt */
       
   833 	for(; i < 10; i++) {
       
   834 
       
   835 		/* Interrupt to test */
       
   836 		mask = 1 << i;
       
   837 
       
   838  		if(!shared_int) {
       
   839  			/* Disable the interrupt to be reported in
       
   840  			 * the cause register and then force the same
       
   841  			 * interrupt and see if one gets posted.  If
       
   842  			 * an interrupt was posted to the bus, the
       
   843  			 * test failed.
       
   844  			 */
       
   845  			adapter->test_icr = 0;
       
   846  			E1000_WRITE_REG(&adapter->hw, IMC, mask);
       
   847  			E1000_WRITE_REG(&adapter->hw, ICS, mask);
       
   848  			msec_delay(10);
       
   849  
       
   850  			if(adapter->test_icr & mask) {
       
   851  				*data = 3;
       
   852  				break;
       
   853  			}
       
   854 		}
       
   855 
       
   856 		/* Enable the interrupt to be reported in
       
   857 		 * the cause register and then force the same
       
   858 		 * interrupt and see if one gets posted.  If
       
   859 		 * an interrupt was not posted to the bus, the
       
   860 		 * test failed.
       
   861 		 */
       
   862 		adapter->test_icr = 0;
       
   863 		E1000_WRITE_REG(&adapter->hw, IMS, mask);
       
   864 		E1000_WRITE_REG(&adapter->hw, ICS, mask);
       
   865 		msec_delay(10);
       
   866 
       
   867 		if(!(adapter->test_icr & mask)) {
       
   868 			*data = 4;
       
   869 			break;
       
   870 		}
       
   871 
       
   872  		if(!shared_int) {
       
   873 			/* Disable the other interrupts to be reported in
       
   874 			 * the cause register and then force the other
       
   875 			 * interrupts and see if any get posted.  If
       
   876 			 * an interrupt was posted to the bus, the
       
   877 			 * test failed.
       
   878 			 */
       
   879 			adapter->test_icr = 0;
       
   880 			E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF);
       
   881 			E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF);
       
   882 			msec_delay(10);
       
   883 
       
   884 			if(adapter->test_icr) {
       
   885 				*data = 5;
       
   886 				break;
       
   887 			}
       
   888 		}
       
   889 	}
       
   890 
       
   891 	/* Disable all the interrupts */
       
   892 	E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
       
   893 	msec_delay(10);
       
   894 
       
   895 	/* Unhook test interrupt handler */
       
   896 	free_irq(irq, netdev);
       
   897 
       
   898 	return *data;
       
   899 }
       
   900 
       
   901 static void
       
   902 e1000_free_desc_rings(struct e1000_adapter *adapter)
       
   903 {
       
   904 	struct e1000_desc_ring *txdr = &adapter->test_tx_ring;
       
   905 	struct e1000_desc_ring *rxdr = &adapter->test_rx_ring;
       
   906 	struct pci_dev *pdev = adapter->pdev;
       
   907 	int i;
       
   908 
       
   909 	if(txdr->desc && txdr->buffer_info) {
       
   910 		for(i = 0; i < txdr->count; i++) {
       
   911 			if(txdr->buffer_info[i].dma)
       
   912 				pci_unmap_single(pdev, txdr->buffer_info[i].dma,
       
   913 						 txdr->buffer_info[i].length,
       
   914 						 PCI_DMA_TODEVICE);
       
   915 			if(txdr->buffer_info[i].skb)
       
   916 				dev_kfree_skb(txdr->buffer_info[i].skb);
       
   917 		}
       
   918 	}
       
   919 
       
   920 	if(rxdr->desc && rxdr->buffer_info) {
       
   921 		for(i = 0; i < rxdr->count; i++) {
       
   922 			if(rxdr->buffer_info[i].dma)
       
   923 				pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
       
   924 						 rxdr->buffer_info[i].length,
       
   925 						 PCI_DMA_FROMDEVICE);
       
   926 			if(rxdr->buffer_info[i].skb)
       
   927 				dev_kfree_skb(rxdr->buffer_info[i].skb);
       
   928 		}
       
   929 	}
       
   930 
       
   931 	if(txdr->desc)
       
   932 		pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
       
   933 	if(rxdr->desc)
       
   934 		pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
       
   935 
       
   936 	if(txdr->buffer_info)
       
   937 		kfree(txdr->buffer_info);
       
   938 	if(rxdr->buffer_info)
       
   939 		kfree(rxdr->buffer_info);
       
   940 
       
   941 	return;
       
   942 }
       
   943 
       
   944 static int
       
   945 e1000_setup_desc_rings(struct e1000_adapter *adapter)
       
   946 {
       
   947 	struct e1000_desc_ring *txdr = &adapter->test_tx_ring;
       
   948 	struct e1000_desc_ring *rxdr = &adapter->test_rx_ring;
       
   949 	struct pci_dev *pdev = adapter->pdev;
       
   950 	uint32_t rctl;
       
   951 	int size, i, ret_val;
       
   952 
       
   953 	/* Setup Tx descriptor ring and Tx buffers */
       
   954 
       
   955 	if(!txdr->count)
       
   956 		txdr->count = E1000_DEFAULT_TXD;   
       
   957 
       
   958 	size = txdr->count * sizeof(struct e1000_buffer);
       
   959 	if(!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
       
   960 		ret_val = 1;
       
   961 		goto err_nomem;
       
   962 	}
       
   963 	memset(txdr->buffer_info, 0, size);
       
   964 
       
   965 	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
       
   966 	E1000_ROUNDUP(txdr->size, 4096);
       
   967 	if(!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) {
       
   968 		ret_val = 2;
       
   969 		goto err_nomem;
       
   970 	}
       
   971 	memset(txdr->desc, 0, txdr->size);
       
   972 	txdr->next_to_use = txdr->next_to_clean = 0;
       
   973 
       
   974 	E1000_WRITE_REG(&adapter->hw, TDBAL,
       
   975 			((uint64_t) txdr->dma & 0x00000000FFFFFFFF));
       
   976 	E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32));
       
   977 	E1000_WRITE_REG(&adapter->hw, TDLEN,
       
   978 			txdr->count * sizeof(struct e1000_tx_desc));
       
   979 	E1000_WRITE_REG(&adapter->hw, TDH, 0);
       
   980 	E1000_WRITE_REG(&adapter->hw, TDT, 0);
       
   981 	E1000_WRITE_REG(&adapter->hw, TCTL,
       
   982 			E1000_TCTL_PSP | E1000_TCTL_EN |
       
   983 			E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
       
   984 			E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
       
   985 
       
   986 	for(i = 0; i < txdr->count; i++) {
       
   987 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
       
   988 		struct sk_buff *skb;
       
   989 		unsigned int size = 1024;
       
   990 
       
   991 		if(!(skb = alloc_skb(size, GFP_KERNEL))) {
       
   992 			ret_val = 3;
       
   993 			goto err_nomem;
       
   994 		}
       
   995 		skb_put(skb, size);
       
   996 		txdr->buffer_info[i].skb = skb;
       
   997 		txdr->buffer_info[i].length = skb->len;
       
   998 		txdr->buffer_info[i].dma =
       
   999 			pci_map_single(pdev, skb->data, skb->len,
       
  1000 				       PCI_DMA_TODEVICE);
       
  1001 		tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
       
  1002 		tx_desc->lower.data = cpu_to_le32(skb->len);
       
  1003 		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
       
  1004 						   E1000_TXD_CMD_IFCS |
       
  1005 						   E1000_TXD_CMD_RPS);
       
  1006 		tx_desc->upper.data = 0;
       
  1007 	}
       
  1008 
       
  1009 	/* Setup Rx descriptor ring and Rx buffers */
       
  1010 
       
  1011 	if(!rxdr->count)
       
  1012 		rxdr->count = E1000_DEFAULT_RXD;   
       
  1013 
       
  1014 	size = rxdr->count * sizeof(struct e1000_buffer);
       
  1015 	if(!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
       
  1016 		ret_val = 4;
       
  1017 		goto err_nomem;
       
  1018 	}
       
  1019 	memset(rxdr->buffer_info, 0, size);
       
  1020 
       
  1021 	rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
       
  1022 	if(!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
       
  1023 		ret_val = 5;
       
  1024 		goto err_nomem;
       
  1025 	}
       
  1026 	memset(rxdr->desc, 0, rxdr->size);
       
  1027 	rxdr->next_to_use = rxdr->next_to_clean = 0;
       
  1028 
       
  1029 	rctl = E1000_READ_REG(&adapter->hw, RCTL);
       
  1030 	E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
       
  1031 	E1000_WRITE_REG(&adapter->hw, RDBAL,
       
  1032 			((uint64_t) rxdr->dma & 0xFFFFFFFF));
       
  1033 	E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32));
       
  1034 	E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size);
       
  1035 	E1000_WRITE_REG(&adapter->hw, RDH, 0);
       
  1036 	E1000_WRITE_REG(&adapter->hw, RDT, 0);
       
  1037 	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
       
  1038 		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
       
  1039 		(adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
       
  1040 	E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
       
  1041 
       
  1042 	for(i = 0; i < rxdr->count; i++) {
       
  1043 		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
       
  1044 		struct sk_buff *skb;
       
  1045 
       
  1046 		if(!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
       
  1047 				GFP_KERNEL))) {
       
  1048 			ret_val = 6;
       
  1049 			goto err_nomem;
       
  1050 		}
       
  1051 		skb_reserve(skb, NET_IP_ALIGN);
       
  1052 		rxdr->buffer_info[i].skb = skb;
       
  1053 		rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
       
  1054 		rxdr->buffer_info[i].dma =
       
  1055 			pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
       
  1056 				       PCI_DMA_FROMDEVICE);
       
  1057 		rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
       
  1058 		memset(skb->data, 0x00, skb->len);
       
  1059 	}
       
  1060 
       
  1061 	return 0;
       
  1062 
       
  1063 err_nomem:
       
  1064 	e1000_free_desc_rings(adapter);
       
  1065 	return ret_val;
       
  1066 }
       
  1067 
       
  1068 static void
       
  1069 e1000_phy_disable_receiver(struct e1000_adapter *adapter)
       
  1070 {
       
  1071 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
       
  1072 	e1000_write_phy_reg(&adapter->hw, 29, 0x001F);
       
  1073 	e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC);
       
  1074 	e1000_write_phy_reg(&adapter->hw, 29, 0x001A);
       
  1075 	e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0);
       
  1076 }
       
  1077 
       
  1078 static void
       
  1079 e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
       
  1080 {
       
  1081 	uint16_t phy_reg;
       
  1082 
       
  1083 	/* Because we reset the PHY above, we need to re-force TX_CLK in the
       
  1084 	 * Extended PHY Specific Control Register to 25MHz clock.  This
       
  1085 	 * value defaults back to a 2.5MHz clock when the PHY is reset.
       
  1086 	 */
       
  1087 	e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
       
  1088 	phy_reg |= M88E1000_EPSCR_TX_CLK_25;
       
  1089 	e1000_write_phy_reg(&adapter->hw,
       
  1090 		M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
       
  1091 
       
  1092 	/* In addition, because of the s/w reset above, we need to enable
       
  1093 	 * CRS on TX.  This must be set for both full and half duplex
       
  1094 	 * operation.
       
  1095 	 */
       
  1096 	e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
       
  1097 	phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
       
  1098 	e1000_write_phy_reg(&adapter->hw,
       
  1099 		M88E1000_PHY_SPEC_CTRL, phy_reg);
       
  1100 }
       
  1101 
       
  1102 static int
       
  1103 e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
       
  1104 {
       
  1105 	uint32_t ctrl_reg;
       
  1106 	uint16_t phy_reg;
       
  1107 
       
  1108 	/* Setup the Device Control Register for PHY loopback test. */
       
  1109 
       
  1110 	ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
       
  1111 	ctrl_reg |= (E1000_CTRL_ILOS |		/* Invert Loss-Of-Signal */
       
  1112 		     E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
       
  1113 		     E1000_CTRL_FRCDPX |	/* Set the Force Duplex Bit */
       
  1114 		     E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
       
  1115 		     E1000_CTRL_FD);		/* Force Duplex to FULL */
       
  1116 
       
  1117 	E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
       
  1118 
       
  1119 	/* Read the PHY Specific Control Register (0x10) */
       
  1120 	e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
       
  1121 
       
  1122 	/* Clear Auto-Crossover bits in PHY Specific Control Register
       
  1123 	 * (bits 6:5).
       
  1124 	 */
       
  1125 	phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
       
  1126 	e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
       
  1127 
       
  1128 	/* Perform software reset on the PHY */
       
  1129 	e1000_phy_reset(&adapter->hw);
       
  1130 
       
  1131 	/* Have to setup TX_CLK and TX_CRS after software reset */
       
  1132 	e1000_phy_reset_clk_and_crs(adapter);
       
  1133 
       
  1134 	e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100);
       
  1135 
       
  1136 	/* Wait for reset to complete. */
       
  1137 	udelay(500);
       
  1138 
       
  1139 	/* Have to setup TX_CLK and TX_CRS after software reset */
       
  1140 	e1000_phy_reset_clk_and_crs(adapter);
       
  1141 
       
  1142 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
       
  1143 	e1000_phy_disable_receiver(adapter);
       
  1144 
       
  1145 	/* Set the loopback bit in the PHY control register. */
       
  1146 	e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
       
  1147 	phy_reg |= MII_CR_LOOPBACK;
       
  1148 	e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
       
  1149 
       
  1150 	/* Setup TX_CLK and TX_CRS one more time. */
       
  1151 	e1000_phy_reset_clk_and_crs(adapter);
       
  1152 
       
  1153 	/* Check Phy Configuration */
       
  1154 	e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
       
  1155 	if(phy_reg != 0x4100)
       
  1156 		 return 9;
       
  1157 
       
  1158 	e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
       
  1159 	if(phy_reg != 0x0070)
       
  1160 		return 10;
       
  1161 
       
  1162 	e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
       
  1163 	if(phy_reg != 0x001A)
       
  1164 		return 11;
       
  1165 
       
  1166 	return 0;
       
  1167 }
       
  1168 
       
  1169 static int
       
  1170 e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
       
  1171 {
       
  1172 	uint32_t ctrl_reg = 0;
       
  1173 	uint32_t stat_reg = 0;
       
  1174 
       
  1175 	adapter->hw.autoneg = FALSE;
       
  1176 
       
  1177 	if(adapter->hw.phy_type == e1000_phy_m88) {
       
  1178 		/* Auto-MDI/MDIX Off */
       
  1179 		e1000_write_phy_reg(&adapter->hw,
       
  1180 				    M88E1000_PHY_SPEC_CTRL, 0x0808);
       
  1181 		/* reset to update Auto-MDI/MDIX */
       
  1182 		e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140);
       
  1183 		/* autoneg off */
       
  1184 		e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140);
       
  1185 	}
       
  1186 	/* force 1000, set loopback */
       
  1187 	e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
       
  1188 
       
  1189 	/* Now set up the MAC to the same speed/duplex as the PHY. */
       
  1190 	ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
       
  1191 	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
       
  1192 	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
       
  1193 		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
       
  1194 		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
       
  1195 		     E1000_CTRL_FD);	 /* Force Duplex to FULL */
       
  1196 
       
  1197 	if(adapter->hw.media_type == e1000_media_type_copper &&
       
  1198 	   adapter->hw.phy_type == e1000_phy_m88) {
       
  1199 		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
       
  1200 	} else {
       
  1201 		/* Set the ILOS bit on the fiber Nic is half
       
  1202 		 * duplex link is detected. */
       
  1203 		stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
       
  1204 		if((stat_reg & E1000_STATUS_FD) == 0)
       
  1205 			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
       
  1206 	}
       
  1207 
       
  1208 	E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
       
  1209 
       
  1210 	/* Disable the receiver on the PHY so when a cable is plugged in, the
       
  1211 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
       
  1212 	 */
       
  1213 	if(adapter->hw.phy_type == e1000_phy_m88)
       
  1214 		e1000_phy_disable_receiver(adapter);
       
  1215 
       
  1216 	udelay(500);
       
  1217 
       
  1218 	return 0;
       
  1219 }
       
  1220 
       
  1221 static int
       
  1222 e1000_set_phy_loopback(struct e1000_adapter *adapter)
       
  1223 {
       
  1224 	uint16_t phy_reg = 0;
       
  1225 	uint16_t count = 0;
       
  1226 
       
  1227 	switch (adapter->hw.mac_type) {
       
  1228 	case e1000_82543:
       
  1229 		if(adapter->hw.media_type == e1000_media_type_copper) {
       
  1230 			/* Attempt to setup Loopback mode on Non-integrated PHY.
       
  1231 			 * Some PHY registers get corrupted at random, so
       
  1232 			 * attempt this 10 times.
       
  1233 			 */
       
  1234 			while(e1000_nonintegrated_phy_loopback(adapter) &&
       
  1235 			      count++ < 10);
       
  1236 			if(count < 11)
       
  1237 				return 0;
       
  1238 		}
       
  1239 		break;
       
  1240 
       
  1241 	case e1000_82544:
       
  1242 	case e1000_82540:
       
  1243 	case e1000_82545:
       
  1244 	case e1000_82545_rev_3:
       
  1245 	case e1000_82546:
       
  1246 	case e1000_82546_rev_3:
       
  1247 	case e1000_82541:
       
  1248 	case e1000_82541_rev_2:
       
  1249 	case e1000_82547:
       
  1250 	case e1000_82547_rev_2:
       
  1251 	case e1000_82573:
       
  1252 		return e1000_integrated_phy_loopback(adapter);
       
  1253 		break;
       
  1254 
       
  1255 	default:
       
  1256 		/* Default PHY loopback work is to read the MII
       
  1257 		 * control register and assert bit 14 (loopback mode).
       
  1258 		 */
       
  1259 		e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
       
  1260 		phy_reg |= MII_CR_LOOPBACK;
       
  1261 		e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
       
  1262 		return 0;
       
  1263 		break;
       
  1264 	}
       
  1265 
       
  1266 	return 8;
       
  1267 }
       
  1268 
       
  1269 static int
       
  1270 e1000_setup_loopback_test(struct e1000_adapter *adapter)
       
  1271 {
       
  1272 	uint32_t rctl;
       
  1273 
       
  1274 	if(adapter->hw.media_type == e1000_media_type_fiber ||
       
  1275 	   adapter->hw.media_type == e1000_media_type_internal_serdes) {
       
  1276 		if(adapter->hw.mac_type == e1000_82545 ||
       
  1277 		   adapter->hw.mac_type == e1000_82546 ||
       
  1278 		   adapter->hw.mac_type == e1000_82545_rev_3 ||
       
  1279 		   adapter->hw.mac_type == e1000_82546_rev_3)
       
  1280 			return e1000_set_phy_loopback(adapter);
       
  1281 		else {
       
  1282 			rctl = E1000_READ_REG(&adapter->hw, RCTL);
       
  1283 			rctl |= E1000_RCTL_LBM_TCVR;
       
  1284 			E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
       
  1285 			return 0;
       
  1286 		}
       
  1287 	} else if(adapter->hw.media_type == e1000_media_type_copper)
       
  1288 		return e1000_set_phy_loopback(adapter);
       
  1289 
       
  1290 	return 7;
       
  1291 }
       
  1292 
       
  1293 static void
       
  1294 e1000_loopback_cleanup(struct e1000_adapter *adapter)
       
  1295 {
       
  1296 	uint32_t rctl;
       
  1297 	uint16_t phy_reg;
       
  1298 
       
  1299 	rctl = E1000_READ_REG(&adapter->hw, RCTL);
       
  1300 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
       
  1301 	E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
       
  1302 
       
  1303 	if(adapter->hw.media_type == e1000_media_type_copper ||
       
  1304 	   ((adapter->hw.media_type == e1000_media_type_fiber ||
       
  1305 	     adapter->hw.media_type == e1000_media_type_internal_serdes) &&
       
  1306 	    (adapter->hw.mac_type == e1000_82545 ||
       
  1307 	     adapter->hw.mac_type == e1000_82546 ||
       
  1308 	     adapter->hw.mac_type == e1000_82545_rev_3 ||
       
  1309 	     adapter->hw.mac_type == e1000_82546_rev_3))) {
       
  1310 		adapter->hw.autoneg = TRUE;
       
  1311 		e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
       
  1312 		if(phy_reg & MII_CR_LOOPBACK) {
       
  1313 			phy_reg &= ~MII_CR_LOOPBACK;
       
  1314 			e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
       
  1315 			e1000_phy_reset(&adapter->hw);
       
  1316 		}
       
  1317 	}
       
  1318 }
       
  1319 
       
  1320 static void
       
  1321 e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
       
  1322 {
       
  1323 	memset(skb->data, 0xFF, frame_size);
       
  1324 	frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size;
       
  1325 	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
       
  1326 	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
       
  1327 	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
       
  1328 }
       
  1329 
       
  1330 static int
       
  1331 e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
       
  1332 {
       
  1333 	frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size;
       
  1334 	if(*(skb->data + 3) == 0xFF) {
       
  1335 		if((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
       
  1336 		   (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
       
  1337 			return 0;
       
  1338 		}
       
  1339 	}
       
  1340 	return 13;
       
  1341 }
       
  1342 
       
  1343 static int
       
  1344 e1000_run_loopback_test(struct e1000_adapter *adapter)
       
  1345 {
       
  1346 	struct e1000_desc_ring *txdr = &adapter->test_tx_ring;
       
  1347 	struct e1000_desc_ring *rxdr = &adapter->test_rx_ring;
       
  1348 	struct pci_dev *pdev = adapter->pdev;
       
  1349 	int i, j, k, l, lc, good_cnt, ret_val=0;
       
  1350 	unsigned long time;
       
  1351 
       
  1352 	E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
       
  1353 
       
  1354 	/* Calculate the loop count based on the largest descriptor ring 
       
  1355 	 * The idea is to wrap the largest ring a number of times using 64
       
  1356 	 * send/receive pairs during each loop
       
  1357 	 */
       
  1358 
       
  1359 	if(rxdr->count <= txdr->count)
       
  1360 		lc = ((txdr->count / 64) * 2) + 1;
       
  1361 	else
       
  1362 		lc = ((rxdr->count / 64) * 2) + 1;
       
  1363 
       
  1364 	k = l = 0;
       
  1365 	for(j = 0; j <= lc; j++) { /* loop count loop */
       
  1366 		for(i = 0; i < 64; i++) { /* send the packets */
       
  1367 			e1000_create_lbtest_frame(txdr->buffer_info[i].skb, 
       
  1368 					1024);
       
  1369 			pci_dma_sync_single_for_device(pdev, 
       
  1370 					txdr->buffer_info[k].dma,
       
  1371 				    	txdr->buffer_info[k].length,
       
  1372 				    	PCI_DMA_TODEVICE);
       
  1373 			if(unlikely(++k == txdr->count)) k = 0;
       
  1374 		}
       
  1375 		E1000_WRITE_REG(&adapter->hw, TDT, k);
       
  1376 		msec_delay(200);
       
  1377 		time = jiffies; /* set the start time for the receive */
       
  1378 		good_cnt = 0;
       
  1379 		do { /* receive the sent packets */
       
  1380 			pci_dma_sync_single_for_cpu(pdev, 
       
  1381 					rxdr->buffer_info[l].dma,
       
  1382 				    	rxdr->buffer_info[l].length,
       
  1383 				    	PCI_DMA_FROMDEVICE);
       
  1384 	
       
  1385 			ret_val = e1000_check_lbtest_frame(
       
  1386 					rxdr->buffer_info[l].skb,
       
  1387 				   	1024);
       
  1388 			if(!ret_val)
       
  1389 				good_cnt++;
       
  1390 			if(unlikely(++l == rxdr->count)) l = 0;
       
  1391 			/* time + 20 msecs (200 msecs on 2.4) is more than 
       
  1392 			 * enough time to complete the receives, if it's 
       
  1393 			 * exceeded, break and error off
       
  1394 			 */
       
  1395 		} while (good_cnt < 64 && jiffies < (time + 20));
       
  1396 		if(good_cnt != 64) {
       
  1397 			ret_val = 13; /* ret_val is the same as mis-compare */
       
  1398 			break; 
       
  1399 		}
       
  1400 		if(jiffies >= (time + 2)) {
       
  1401 			ret_val = 14; /* error code for time out error */
       
  1402 			break;
       
  1403 		}
       
  1404 	} /* end loop count loop */
       
  1405 	return ret_val;
       
  1406 }
       
  1407 
       
  1408 static int
       
  1409 e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data)
       
  1410 {
       
  1411 	if((*data = e1000_setup_desc_rings(adapter))) goto err_loopback;
       
  1412 	if((*data = e1000_setup_loopback_test(adapter))) goto err_loopback;
       
  1413 	*data = e1000_run_loopback_test(adapter);
       
  1414 	e1000_loopback_cleanup(adapter);
       
  1415 	e1000_free_desc_rings(adapter);
       
  1416 err_loopback:
       
  1417 	return *data;
       
  1418 }
       
  1419 
       
  1420 static int
       
  1421 e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
       
  1422 {
       
  1423 	*data = 0;
       
  1424 	if (adapter->hw.media_type == e1000_media_type_internal_serdes) {
       
  1425 		int i = 0;
       
  1426 		adapter->hw.serdes_link_down = TRUE;
       
  1427 
       
  1428 		/* On some blade server designs, link establishment
       
  1429 		 * could take as long as 2-3 minutes */
       
  1430 		do {
       
  1431 			e1000_check_for_link(&adapter->hw);
       
  1432 			if (adapter->hw.serdes_link_down == FALSE)
       
  1433 				return *data;
       
  1434 			msec_delay(20);
       
  1435 		} while (i++ < 3750);
       
  1436 
       
  1437 		*data = 1;
       
  1438 	} else {
       
  1439 		e1000_check_for_link(&adapter->hw);
       
  1440 		if(adapter->hw.autoneg)  /* if auto_neg is set wait for it */
       
  1441 			msec_delay(4000);
       
  1442 
       
  1443 		if(!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
       
  1444 			*data = 1;
       
  1445 		}
       
  1446 	}
       
  1447 	return *data;
       
  1448 }
       
  1449 
       
  1450 static int 
       
  1451 e1000_diag_test_count(struct net_device *netdev)
       
  1452 {
       
  1453 	return E1000_TEST_LEN;
       
  1454 }
       
  1455 
       
  1456 static void
       
  1457 e1000_diag_test(struct net_device *netdev,
       
  1458 		   struct ethtool_test *eth_test, uint64_t *data)
       
  1459 {
       
  1460 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1461 	boolean_t if_running = adapter->ecdev || netif_running(netdev);
       
  1462 
       
  1463 	if(eth_test->flags == ETH_TEST_FL_OFFLINE) {
       
  1464 		/* Offline tests */
       
  1465 
       
  1466 		/* save speed, duplex, autoneg settings */
       
  1467 		uint16_t autoneg_advertised = adapter->hw.autoneg_advertised;
       
  1468 		uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex;
       
  1469 		uint8_t autoneg = adapter->hw.autoneg;
       
  1470 
       
  1471 		/* Link test performed before hardware reset so autoneg doesn't
       
  1472 		 * interfere with test result */
       
  1473 		if(e1000_link_test(adapter, &data[4]))
       
  1474 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  1475 
       
  1476 		if(if_running)
       
  1477 			e1000_down(adapter);
       
  1478 		else
       
  1479 			e1000_reset(adapter);
       
  1480 
       
  1481 		if(e1000_reg_test(adapter, &data[0]))
       
  1482 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  1483 
       
  1484 		e1000_reset(adapter);
       
  1485 		if(e1000_eeprom_test(adapter, &data[1]))
       
  1486 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  1487 
       
  1488 		e1000_reset(adapter);
       
  1489 		if(e1000_intr_test(adapter, &data[2]))
       
  1490 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  1491 
       
  1492 		e1000_reset(adapter);
       
  1493 		if(e1000_loopback_test(adapter, &data[3]))
       
  1494 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  1495 
       
  1496 		/* restore speed, duplex, autoneg settings */
       
  1497 		adapter->hw.autoneg_advertised = autoneg_advertised;
       
  1498 		adapter->hw.forced_speed_duplex = forced_speed_duplex;
       
  1499 		adapter->hw.autoneg = autoneg;
       
  1500 
       
  1501 		e1000_reset(adapter);
       
  1502 		if(if_running)
       
  1503 			e1000_up(adapter);
       
  1504 	} else {
       
  1505 		/* Online tests */
       
  1506 		if(e1000_link_test(adapter, &data[4]))
       
  1507 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  1508 
       
  1509 		/* Offline tests aren't run; pass by default */
       
  1510 		data[0] = 0;
       
  1511 		data[1] = 0;
       
  1512 		data[2] = 0;
       
  1513 		data[3] = 0;
       
  1514 	}
       
  1515 }
       
  1516 
       
  1517 static void
       
  1518 e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
       
  1519 {
       
  1520 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1521 	struct e1000_hw *hw = &adapter->hw;
       
  1522 
       
  1523 	switch(adapter->hw.device_id) {
       
  1524 	case E1000_DEV_ID_82542:
       
  1525 	case E1000_DEV_ID_82543GC_FIBER:
       
  1526 	case E1000_DEV_ID_82543GC_COPPER:
       
  1527 	case E1000_DEV_ID_82544EI_FIBER:
       
  1528 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
       
  1529 	case E1000_DEV_ID_82545EM_FIBER:
       
  1530 	case E1000_DEV_ID_82545EM_COPPER:
       
  1531 		wol->supported = 0;
       
  1532 		wol->wolopts   = 0;
       
  1533 		return;
       
  1534 
       
  1535 	case E1000_DEV_ID_82546EB_FIBER:
       
  1536 	case E1000_DEV_ID_82546GB_FIBER:
       
  1537 		/* Wake events only supported on port A for dual fiber */
       
  1538 		if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
       
  1539 			wol->supported = 0;
       
  1540 			wol->wolopts   = 0;
       
  1541 			return;
       
  1542 		}
       
  1543 		/* Fall Through */
       
  1544 
       
  1545 	default:
       
  1546 		wol->supported = WAKE_UCAST | WAKE_MCAST |
       
  1547 				 WAKE_BCAST | WAKE_MAGIC;
       
  1548 
       
  1549 		wol->wolopts = 0;
       
  1550 		if(adapter->wol & E1000_WUFC_EX)
       
  1551 			wol->wolopts |= WAKE_UCAST;
       
  1552 		if(adapter->wol & E1000_WUFC_MC)
       
  1553 			wol->wolopts |= WAKE_MCAST;
       
  1554 		if(adapter->wol & E1000_WUFC_BC)
       
  1555 			wol->wolopts |= WAKE_BCAST;
       
  1556 		if(adapter->wol & E1000_WUFC_MAG)
       
  1557 			wol->wolopts |= WAKE_MAGIC;
       
  1558 		return;
       
  1559 	}
       
  1560 }
       
  1561 
       
  1562 static int
       
  1563 e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
       
  1564 {
       
  1565 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1566 	struct e1000_hw *hw = &adapter->hw;
       
  1567 
       
  1568 	switch(adapter->hw.device_id) {
       
  1569 	case E1000_DEV_ID_82542:
       
  1570 	case E1000_DEV_ID_82543GC_FIBER:
       
  1571 	case E1000_DEV_ID_82543GC_COPPER:
       
  1572 	case E1000_DEV_ID_82544EI_FIBER:
       
  1573 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
       
  1574 	case E1000_DEV_ID_82545EM_FIBER:
       
  1575 	case E1000_DEV_ID_82545EM_COPPER:
       
  1576 		return wol->wolopts ? -EOPNOTSUPP : 0;
       
  1577 
       
  1578 	case E1000_DEV_ID_82546EB_FIBER:
       
  1579 	case E1000_DEV_ID_82546GB_FIBER:
       
  1580 		/* Wake events only supported on port A for dual fiber */
       
  1581 		if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
       
  1582 			return wol->wolopts ? -EOPNOTSUPP : 0;
       
  1583 		/* Fall Through */
       
  1584 
       
  1585 	default:
       
  1586 		if(wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
       
  1587 			return -EOPNOTSUPP;
       
  1588 
       
  1589 		adapter->wol = 0;
       
  1590 
       
  1591 		if(wol->wolopts & WAKE_UCAST)
       
  1592 			adapter->wol |= E1000_WUFC_EX;
       
  1593 		if(wol->wolopts & WAKE_MCAST)
       
  1594 			adapter->wol |= E1000_WUFC_MC;
       
  1595 		if(wol->wolopts & WAKE_BCAST)
       
  1596 			adapter->wol |= E1000_WUFC_BC;
       
  1597 		if(wol->wolopts & WAKE_MAGIC)
       
  1598 			adapter->wol |= E1000_WUFC_MAG;
       
  1599 	}
       
  1600 
       
  1601 	return 0;
       
  1602 }
       
  1603 
       
  1604 /* toggle LED 4 times per second = 2 "blinks" per second */
       
  1605 #define E1000_ID_INTERVAL	(HZ/4)
       
  1606 
       
  1607 /* bit defines for adapter->led_status */
       
  1608 #define E1000_LED_ON		0
       
  1609 
       
  1610 static void
       
  1611 e1000_led_blink_callback(unsigned long data)
       
  1612 {
       
  1613 	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
       
  1614 
       
  1615 	if(test_and_change_bit(E1000_LED_ON, &adapter->led_status))
       
  1616 		e1000_led_off(&adapter->hw);
       
  1617 	else
       
  1618 		e1000_led_on(&adapter->hw);
       
  1619 
       
  1620 	mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
       
  1621 }
       
  1622 
       
  1623 static int
       
  1624 e1000_phys_id(struct net_device *netdev, uint32_t data)
       
  1625 {
       
  1626 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1627 
       
  1628 	if(!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ))
       
  1629 		data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ);
       
  1630 
       
  1631 	if(adapter->hw.mac_type < e1000_82573) {
       
  1632 		if(!adapter->blink_timer.function) {
       
  1633 			init_timer(&adapter->blink_timer);
       
  1634 			adapter->blink_timer.function = e1000_led_blink_callback;
       
  1635 			adapter->blink_timer.data = (unsigned long) adapter;
       
  1636 		}
       
  1637 		e1000_setup_led(&adapter->hw);
       
  1638 		mod_timer(&adapter->blink_timer, jiffies);
       
  1639 		msleep_interruptible(data * 1000);
       
  1640 		del_timer_sync(&adapter->blink_timer);
       
  1641 	}
       
  1642 	else {
       
  1643 		E1000_WRITE_REG(&adapter->hw, LEDCTL, (E1000_LEDCTL_LED2_BLINK_RATE |
       
  1644 			E1000_LEDCTL_LED1_BLINK | E1000_LEDCTL_LED2_BLINK | 
       
  1645 			(E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
       
  1646 			(E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED1_MODE_SHIFT) |
       
  1647 			(E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED0_MODE_SHIFT)));
       
  1648 		msleep_interruptible(data * 1000);
       
  1649 	}
       
  1650 
       
  1651 	e1000_led_off(&adapter->hw);
       
  1652 	clear_bit(E1000_LED_ON, &adapter->led_status);
       
  1653 	e1000_cleanup_led(&adapter->hw);
       
  1654 
       
  1655 	return 0;
       
  1656 }
       
  1657 
       
  1658 static int
       
  1659 e1000_nway_reset(struct net_device *netdev)
       
  1660 {
       
  1661 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1662 	if (adapter->ecdev || netif_running(netdev)) {
       
  1663 		e1000_down(adapter);
       
  1664 		e1000_up(adapter);
       
  1665 	}
       
  1666 	return 0;
       
  1667 }
       
  1668 
       
  1669 static int 
       
  1670 e1000_get_stats_count(struct net_device *netdev)
       
  1671 {
       
  1672 	return E1000_STATS_LEN;
       
  1673 }
       
  1674 
       
  1675 static void 
       
  1676 e1000_get_ethtool_stats(struct net_device *netdev, 
       
  1677 		struct ethtool_stats *stats, uint64_t *data)
       
  1678 {
       
  1679 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1680 	int i;
       
  1681 
       
  1682 	e1000_update_stats(adapter);
       
  1683 	for(i = 0; i < E1000_STATS_LEN; i++) {
       
  1684 		char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;	
       
  1685 		data[i] = (e1000_gstrings_stats[i].sizeof_stat == 
       
  1686 			sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
       
  1687 	}
       
  1688 }
       
  1689 
       
  1690 static void 
       
  1691 e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
       
  1692 {
       
  1693 	int i;
       
  1694 
       
  1695 	switch(stringset) {
       
  1696 	case ETH_SS_TEST:
       
  1697 		memcpy(data, *e1000_gstrings_test, 
       
  1698 			E1000_TEST_LEN*ETH_GSTRING_LEN);
       
  1699 		break;
       
  1700 	case ETH_SS_STATS:
       
  1701 		for (i=0; i < E1000_STATS_LEN; i++) {
       
  1702 			memcpy(data + i * ETH_GSTRING_LEN, 
       
  1703 			e1000_gstrings_stats[i].stat_string,
       
  1704 			ETH_GSTRING_LEN);
       
  1705 		}
       
  1706 		break;
       
  1707 	}
       
  1708 }
       
  1709 
       
  1710 struct ethtool_ops e1000_ethtool_ops = {
       
  1711 	.get_settings           = e1000_get_settings,
       
  1712 	.set_settings           = e1000_set_settings,
       
  1713 	.get_drvinfo            = e1000_get_drvinfo,
       
  1714 	.get_regs_len           = e1000_get_regs_len,
       
  1715 	.get_regs               = e1000_get_regs,
       
  1716 	.get_wol                = e1000_get_wol,
       
  1717 	.set_wol                = e1000_set_wol,
       
  1718 	.get_msglevel	        = e1000_get_msglevel,
       
  1719 	.set_msglevel	        = e1000_set_msglevel,
       
  1720 	.nway_reset             = e1000_nway_reset,
       
  1721 	.get_link               = ethtool_op_get_link,
       
  1722 	.get_eeprom_len         = e1000_get_eeprom_len,
       
  1723 	.get_eeprom             = e1000_get_eeprom,
       
  1724 	.set_eeprom             = e1000_set_eeprom,
       
  1725 	.get_ringparam          = e1000_get_ringparam,
       
  1726 	.set_ringparam          = e1000_set_ringparam,
       
  1727 	.get_pauseparam		= e1000_get_pauseparam,
       
  1728 	.set_pauseparam		= e1000_set_pauseparam,
       
  1729 	.get_rx_csum		= e1000_get_rx_csum,
       
  1730 	.set_rx_csum		= e1000_set_rx_csum,
       
  1731 	.get_tx_csum		= e1000_get_tx_csum,
       
  1732 	.set_tx_csum		= e1000_set_tx_csum,
       
  1733 	.get_sg			= ethtool_op_get_sg,
       
  1734 	.set_sg			= ethtool_op_set_sg,
       
  1735 #ifdef NETIF_F_TSO
       
  1736 	.get_tso		= ethtool_op_get_tso,
       
  1737 	.set_tso		= e1000_set_tso,
       
  1738 #endif
       
  1739 	.self_test_count        = e1000_diag_test_count,
       
  1740 	.self_test              = e1000_diag_test,
       
  1741 	.get_strings            = e1000_get_strings,
       
  1742 	.phys_id                = e1000_phys_id,
       
  1743 	.get_stats_count        = e1000_get_stats_count,
       
  1744 	.get_ethtool_stats      = e1000_get_ethtool_stats,
       
  1745 };
       
  1746 
       
  1747 void e1000_set_ethtool_ops(struct net_device *netdev)
       
  1748 {
       
  1749 	SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
       
  1750 }