devices/e1000e/phy-3.8-orig.c
branchstable-1.5
changeset 2584 0e3d989ff233
equal deleted inserted replaced
2583:fe5687a0a322 2584:0e3d989ff233
       
     1 /*******************************************************************************
       
     2 
       
     3   Intel PRO/1000 Linux driver
       
     4   Copyright(c) 1999 - 2012 Intel Corporation.
       
     5 
       
     6   This program is free software; you can redistribute it and/or modify it
       
     7   under the terms and conditions of the GNU General Public License,
       
     8   version 2, as published by the Free Software Foundation.
       
     9 
       
    10   This program is distributed in the hope it will be useful, but WITHOUT
       
    11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
       
    13   more details.
       
    14 
       
    15   You should have received a copy of the GNU General Public License along with
       
    16   this program; if not, write to the Free Software Foundation, Inc.,
       
    17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
       
    18 
       
    19   The full GNU General Public License is included in this distribution in
       
    20   the file called "COPYING".
       
    21 
       
    22   Contact Information:
       
    23   Linux NICS <linux.nics@intel.com>
       
    24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
       
    25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
       
    26 
       
    27 *******************************************************************************/
       
    28 
       
    29 #include "e1000.h"
       
    30 
       
    31 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
       
    32 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
       
    33 static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
       
    34 static s32 e1000_wait_autoneg(struct e1000_hw *hw);
       
    35 static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg);
       
    36 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
       
    37 					  u16 *data, bool read, bool page_set);
       
    38 static u32 e1000_get_phy_addr_for_hv_page(u32 page);
       
    39 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
       
    40                                           u16 *data, bool read);
       
    41 
       
    42 /* Cable length tables */
       
    43 static const u16 e1000_m88_cable_length_table[] = {
       
    44 	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
       
    45 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
       
    46 		ARRAY_SIZE(e1000_m88_cable_length_table)
       
    47 
       
    48 static const u16 e1000_igp_2_cable_length_table[] = {
       
    49 	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
       
    50 	6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
       
    51 	26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
       
    52 	44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
       
    53 	66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
       
    54 	87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
       
    55 	100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
       
    56 	124};
       
    57 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
       
    58 		ARRAY_SIZE(e1000_igp_2_cable_length_table)
       
    59 
       
    60 #define BM_PHY_REG_PAGE(offset) \
       
    61 	((u16)(((offset) >> PHY_PAGE_SHIFT) & 0xFFFF))
       
    62 #define BM_PHY_REG_NUM(offset) \
       
    63 	((u16)(((offset) & MAX_PHY_REG_ADDRESS) |\
       
    64 	 (((offset) >> (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)) &\
       
    65 		~MAX_PHY_REG_ADDRESS)))
       
    66 
       
    67 #define HV_INTC_FC_PAGE_START             768
       
    68 #define I82578_ADDR_REG                   29
       
    69 #define I82577_ADDR_REG                   16
       
    70 #define I82577_CFG_REG                    22
       
    71 #define I82577_CFG_ASSERT_CRS_ON_TX       (1 << 15)
       
    72 #define I82577_CFG_ENABLE_DOWNSHIFT       (3 << 10) /* auto downshift 100/10 */
       
    73 #define I82577_CTRL_REG                   23
       
    74 
       
    75 /* 82577 specific PHY registers */
       
    76 #define I82577_PHY_CTRL_2            18
       
    77 #define I82577_PHY_STATUS_2          26
       
    78 #define I82577_PHY_DIAG_STATUS       31
       
    79 
       
    80 /* I82577 PHY Status 2 */
       
    81 #define I82577_PHY_STATUS2_REV_POLARITY   0x0400
       
    82 #define I82577_PHY_STATUS2_MDIX           0x0800
       
    83 #define I82577_PHY_STATUS2_SPEED_MASK     0x0300
       
    84 #define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200
       
    85 
       
    86 /* I82577 PHY Control 2 */
       
    87 #define I82577_PHY_CTRL2_MANUAL_MDIX      0x0200
       
    88 #define I82577_PHY_CTRL2_AUTO_MDI_MDIX    0x0400
       
    89 #define I82577_PHY_CTRL2_MDIX_CFG_MASK    0x0600
       
    90 
       
    91 /* I82577 PHY Diagnostics Status */
       
    92 #define I82577_DSTATUS_CABLE_LENGTH       0x03FC
       
    93 #define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2
       
    94 
       
    95 /* BM PHY Copper Specific Control 1 */
       
    96 #define BM_CS_CTRL1                       16
       
    97 
       
    98 #define HV_MUX_DATA_CTRL               PHY_REG(776, 16)
       
    99 #define HV_MUX_DATA_CTRL_GEN_TO_MAC    0x0400
       
   100 #define HV_MUX_DATA_CTRL_FORCE_SPEED   0x0004
       
   101 
       
   102 /**
       
   103  *  e1000e_check_reset_block_generic - Check if PHY reset is blocked
       
   104  *  @hw: pointer to the HW structure
       
   105  *
       
   106  *  Read the PHY management control register and check whether a PHY reset
       
   107  *  is blocked.  If a reset is not blocked return 0, otherwise
       
   108  *  return E1000_BLK_PHY_RESET (12).
       
   109  **/
       
   110 s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
       
   111 {
       
   112 	u32 manc;
       
   113 
       
   114 	manc = er32(MANC);
       
   115 
       
   116 	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
       
   117 	       E1000_BLK_PHY_RESET : 0;
       
   118 }
       
   119 
       
   120 /**
       
   121  *  e1000e_get_phy_id - Retrieve the PHY ID and revision
       
   122  *  @hw: pointer to the HW structure
       
   123  *
       
   124  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
       
   125  *  revision in the hardware structure.
       
   126  **/
       
   127 s32 e1000e_get_phy_id(struct e1000_hw *hw)
       
   128 {
       
   129 	struct e1000_phy_info *phy = &hw->phy;
       
   130 	s32 ret_val = 0;
       
   131 	u16 phy_id;
       
   132 	u16 retry_count = 0;
       
   133 
       
   134 	if (!phy->ops.read_reg)
       
   135 		return 0;
       
   136 
       
   137 	while (retry_count < 2) {
       
   138 		ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
       
   139 		if (ret_val)
       
   140 			return ret_val;
       
   141 
       
   142 		phy->id = (u32)(phy_id << 16);
       
   143 		udelay(20);
       
   144 		ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
       
   145 		if (ret_val)
       
   146 			return ret_val;
       
   147 
       
   148 		phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
       
   149 		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
       
   150 
       
   151 		if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
       
   152 			return 0;
       
   153 
       
   154 		retry_count++;
       
   155 	}
       
   156 
       
   157 	return 0;
       
   158 }
       
   159 
       
   160 /**
       
   161  *  e1000e_phy_reset_dsp - Reset PHY DSP
       
   162  *  @hw: pointer to the HW structure
       
   163  *
       
   164  *  Reset the digital signal processor.
       
   165  **/
       
   166 s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
       
   167 {
       
   168 	s32 ret_val;
       
   169 
       
   170 	ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
       
   171 	if (ret_val)
       
   172 		return ret_val;
       
   173 
       
   174 	return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
       
   175 }
       
   176 
       
   177 /**
       
   178  *  e1000e_read_phy_reg_mdic - Read MDI control register
       
   179  *  @hw: pointer to the HW structure
       
   180  *  @offset: register offset to be read
       
   181  *  @data: pointer to the read data
       
   182  *
       
   183  *  Reads the MDI control register in the PHY at offset and stores the
       
   184  *  information read to data.
       
   185  **/
       
   186 s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
       
   187 {
       
   188 	struct e1000_phy_info *phy = &hw->phy;
       
   189 	u32 i, mdic = 0;
       
   190 
       
   191 	if (offset > MAX_PHY_REG_ADDRESS) {
       
   192 		e_dbg("PHY Address %d is out of range\n", offset);
       
   193 		return -E1000_ERR_PARAM;
       
   194 	}
       
   195 
       
   196 	/* Set up Op-code, Phy Address, and register offset in the MDI
       
   197 	 * Control register.  The MAC will take care of interfacing with the
       
   198 	 * PHY to retrieve the desired data.
       
   199 	 */
       
   200 	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
       
   201 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
       
   202 		(E1000_MDIC_OP_READ));
       
   203 
       
   204 	ew32(MDIC, mdic);
       
   205 
       
   206 	/* Poll the ready bit to see if the MDI read completed
       
   207 	 * Increasing the time out as testing showed failures with
       
   208 	 * the lower time out
       
   209 	 */
       
   210 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
       
   211 		udelay(50);
       
   212 		mdic = er32(MDIC);
       
   213 		if (mdic & E1000_MDIC_READY)
       
   214 			break;
       
   215 	}
       
   216 	if (!(mdic & E1000_MDIC_READY)) {
       
   217 		e_dbg("MDI Read did not complete\n");
       
   218 		return -E1000_ERR_PHY;
       
   219 	}
       
   220 	if (mdic & E1000_MDIC_ERROR) {
       
   221 		e_dbg("MDI Error\n");
       
   222 		return -E1000_ERR_PHY;
       
   223 	}
       
   224 	*data = (u16) mdic;
       
   225 
       
   226 	/* Allow some time after each MDIC transaction to avoid
       
   227 	 * reading duplicate data in the next MDIC transaction.
       
   228 	 */
       
   229 	if (hw->mac.type == e1000_pch2lan)
       
   230 		udelay(100);
       
   231 
       
   232 	return 0;
       
   233 }
       
   234 
       
   235 /**
       
   236  *  e1000e_write_phy_reg_mdic - Write MDI control register
       
   237  *  @hw: pointer to the HW structure
       
   238  *  @offset: register offset to write to
       
   239  *  @data: data to write to register at offset
       
   240  *
       
   241  *  Writes data to MDI control register in the PHY at offset.
       
   242  **/
       
   243 s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
       
   244 {
       
   245 	struct e1000_phy_info *phy = &hw->phy;
       
   246 	u32 i, mdic = 0;
       
   247 
       
   248 	if (offset > MAX_PHY_REG_ADDRESS) {
       
   249 		e_dbg("PHY Address %d is out of range\n", offset);
       
   250 		return -E1000_ERR_PARAM;
       
   251 	}
       
   252 
       
   253 	/* Set up Op-code, Phy Address, and register offset in the MDI
       
   254 	 * Control register.  The MAC will take care of interfacing with the
       
   255 	 * PHY to retrieve the desired data.
       
   256 	 */
       
   257 	mdic = (((u32)data) |
       
   258 		(offset << E1000_MDIC_REG_SHIFT) |
       
   259 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
       
   260 		(E1000_MDIC_OP_WRITE));
       
   261 
       
   262 	ew32(MDIC, mdic);
       
   263 
       
   264 	/* Poll the ready bit to see if the MDI read completed
       
   265 	 * Increasing the time out as testing showed failures with
       
   266 	 * the lower time out
       
   267 	 */
       
   268 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
       
   269 		udelay(50);
       
   270 		mdic = er32(MDIC);
       
   271 		if (mdic & E1000_MDIC_READY)
       
   272 			break;
       
   273 	}
       
   274 	if (!(mdic & E1000_MDIC_READY)) {
       
   275 		e_dbg("MDI Write did not complete\n");
       
   276 		return -E1000_ERR_PHY;
       
   277 	}
       
   278 	if (mdic & E1000_MDIC_ERROR) {
       
   279 		e_dbg("MDI Error\n");
       
   280 		return -E1000_ERR_PHY;
       
   281 	}
       
   282 
       
   283 	/* Allow some time after each MDIC transaction to avoid
       
   284 	 * reading duplicate data in the next MDIC transaction.
       
   285 	 */
       
   286 	if (hw->mac.type == e1000_pch2lan)
       
   287 		udelay(100);
       
   288 
       
   289 	return 0;
       
   290 }
       
   291 
       
   292 /**
       
   293  *  e1000e_read_phy_reg_m88 - Read m88 PHY register
       
   294  *  @hw: pointer to the HW structure
       
   295  *  @offset: register offset to be read
       
   296  *  @data: pointer to the read data
       
   297  *
       
   298  *  Acquires semaphore, if necessary, then reads the PHY register at offset
       
   299  *  and storing the retrieved information in data.  Release any acquired
       
   300  *  semaphores before exiting.
       
   301  **/
       
   302 s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
       
   303 {
       
   304 	s32 ret_val;
       
   305 
       
   306 	ret_val = hw->phy.ops.acquire(hw);
       
   307 	if (ret_val)
       
   308 		return ret_val;
       
   309 
       
   310 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
       
   311 					   data);
       
   312 
       
   313 	hw->phy.ops.release(hw);
       
   314 
       
   315 	return ret_val;
       
   316 }
       
   317 
       
   318 /**
       
   319  *  e1000e_write_phy_reg_m88 - Write m88 PHY register
       
   320  *  @hw: pointer to the HW structure
       
   321  *  @offset: register offset to write to
       
   322  *  @data: data to write at register offset
       
   323  *
       
   324  *  Acquires semaphore, if necessary, then writes the data to PHY register
       
   325  *  at the offset.  Release any acquired semaphores before exiting.
       
   326  **/
       
   327 s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
       
   328 {
       
   329 	s32 ret_val;
       
   330 
       
   331 	ret_val = hw->phy.ops.acquire(hw);
       
   332 	if (ret_val)
       
   333 		return ret_val;
       
   334 
       
   335 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
       
   336 					    data);
       
   337 
       
   338 	hw->phy.ops.release(hw);
       
   339 
       
   340 	return ret_val;
       
   341 }
       
   342 
       
   343 /**
       
   344  *  e1000_set_page_igp - Set page as on IGP-like PHY(s)
       
   345  *  @hw: pointer to the HW structure
       
   346  *  @page: page to set (shifted left when necessary)
       
   347  *
       
   348  *  Sets PHY page required for PHY register access.  Assumes semaphore is
       
   349  *  already acquired.  Note, this function sets phy.addr to 1 so the caller
       
   350  *  must set it appropriately (if necessary) after this function returns.
       
   351  **/
       
   352 s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
       
   353 {
       
   354 	e_dbg("Setting page 0x%x\n", page);
       
   355 
       
   356 	hw->phy.addr = 1;
       
   357 
       
   358 	return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
       
   359 }
       
   360 
       
   361 /**
       
   362  *  __e1000e_read_phy_reg_igp - Read igp PHY register
       
   363  *  @hw: pointer to the HW structure
       
   364  *  @offset: register offset to be read
       
   365  *  @data: pointer to the read data
       
   366  *  @locked: semaphore has already been acquired or not
       
   367  *
       
   368  *  Acquires semaphore, if necessary, then reads the PHY register at offset
       
   369  *  and stores the retrieved information in data.  Release any acquired
       
   370  *  semaphores before exiting.
       
   371  **/
       
   372 static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
       
   373                                     bool locked)
       
   374 {
       
   375 	s32 ret_val = 0;
       
   376 
       
   377 	if (!locked) {
       
   378 		if (!hw->phy.ops.acquire)
       
   379 			return 0;
       
   380 
       
   381 		ret_val = hw->phy.ops.acquire(hw);
       
   382 		if (ret_val)
       
   383 			return ret_val;
       
   384 	}
       
   385 
       
   386 	if (offset > MAX_PHY_MULTI_PAGE_REG)
       
   387 		ret_val = e1000e_write_phy_reg_mdic(hw,
       
   388 						    IGP01E1000_PHY_PAGE_SELECT,
       
   389 						    (u16)offset);
       
   390 	if (!ret_val)
       
   391 		ret_val = e1000e_read_phy_reg_mdic(hw,
       
   392 						   MAX_PHY_REG_ADDRESS & offset,
       
   393 						   data);
       
   394 	if (!locked)
       
   395 		hw->phy.ops.release(hw);
       
   396 
       
   397 	return ret_val;
       
   398 }
       
   399 
       
   400 /**
       
   401  *  e1000e_read_phy_reg_igp - Read igp PHY register
       
   402  *  @hw: pointer to the HW structure
       
   403  *  @offset: register offset to be read
       
   404  *  @data: pointer to the read data
       
   405  *
       
   406  *  Acquires semaphore then reads the PHY register at offset and stores the
       
   407  *  retrieved information in data.
       
   408  *  Release the acquired semaphore before exiting.
       
   409  **/
       
   410 s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
       
   411 {
       
   412 	return __e1000e_read_phy_reg_igp(hw, offset, data, false);
       
   413 }
       
   414 
       
   415 /**
       
   416  *  e1000e_read_phy_reg_igp_locked - Read igp PHY register
       
   417  *  @hw: pointer to the HW structure
       
   418  *  @offset: register offset to be read
       
   419  *  @data: pointer to the read data
       
   420  *
       
   421  *  Reads the PHY register at offset and stores the retrieved information
       
   422  *  in data.  Assumes semaphore already acquired.
       
   423  **/
       
   424 s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
       
   425 {
       
   426 	return __e1000e_read_phy_reg_igp(hw, offset, data, true);
       
   427 }
       
   428 
       
   429 /**
       
   430  *  e1000e_write_phy_reg_igp - Write igp PHY register
       
   431  *  @hw: pointer to the HW structure
       
   432  *  @offset: register offset to write to
       
   433  *  @data: data to write at register offset
       
   434  *  @locked: semaphore has already been acquired or not
       
   435  *
       
   436  *  Acquires semaphore, if necessary, then writes the data to PHY register
       
   437  *  at the offset.  Release any acquired semaphores before exiting.
       
   438  **/
       
   439 static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
       
   440                                      bool locked)
       
   441 {
       
   442 	s32 ret_val = 0;
       
   443 
       
   444 	if (!locked) {
       
   445 		if (!hw->phy.ops.acquire)
       
   446 			return 0;
       
   447 
       
   448 		ret_val = hw->phy.ops.acquire(hw);
       
   449 		if (ret_val)
       
   450 			return ret_val;
       
   451 	}
       
   452 
       
   453 	if (offset > MAX_PHY_MULTI_PAGE_REG)
       
   454 		ret_val = e1000e_write_phy_reg_mdic(hw,
       
   455 						    IGP01E1000_PHY_PAGE_SELECT,
       
   456 						    (u16)offset);
       
   457 	if (!ret_val)
       
   458 		ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
       
   459 							offset,
       
   460 						    data);
       
   461 	if (!locked)
       
   462 		hw->phy.ops.release(hw);
       
   463 
       
   464 	return ret_val;
       
   465 }
       
   466 
       
   467 /**
       
   468  *  e1000e_write_phy_reg_igp - Write igp PHY register
       
   469  *  @hw: pointer to the HW structure
       
   470  *  @offset: register offset to write to
       
   471  *  @data: data to write at register offset
       
   472  *
       
   473  *  Acquires semaphore then writes the data to PHY register
       
   474  *  at the offset.  Release any acquired semaphores before exiting.
       
   475  **/
       
   476 s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
       
   477 {
       
   478 	return __e1000e_write_phy_reg_igp(hw, offset, data, false);
       
   479 }
       
   480 
       
   481 /**
       
   482  *  e1000e_write_phy_reg_igp_locked - Write igp PHY register
       
   483  *  @hw: pointer to the HW structure
       
   484  *  @offset: register offset to write to
       
   485  *  @data: data to write at register offset
       
   486  *
       
   487  *  Writes the data to PHY register at the offset.
       
   488  *  Assumes semaphore already acquired.
       
   489  **/
       
   490 s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
       
   491 {
       
   492 	return __e1000e_write_phy_reg_igp(hw, offset, data, true);
       
   493 }
       
   494 
       
   495 /**
       
   496  *  __e1000_read_kmrn_reg - Read kumeran register
       
   497  *  @hw: pointer to the HW structure
       
   498  *  @offset: register offset to be read
       
   499  *  @data: pointer to the read data
       
   500  *  @locked: semaphore has already been acquired or not
       
   501  *
       
   502  *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
       
   503  *  using the kumeran interface.  The information retrieved is stored in data.
       
   504  *  Release any acquired semaphores before exiting.
       
   505  **/
       
   506 static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
       
   507                                  bool locked)
       
   508 {
       
   509 	u32 kmrnctrlsta;
       
   510 
       
   511 	if (!locked) {
       
   512 		s32 ret_val = 0;
       
   513 
       
   514 		if (!hw->phy.ops.acquire)
       
   515 			return 0;
       
   516 
       
   517 		ret_val = hw->phy.ops.acquire(hw);
       
   518 		if (ret_val)
       
   519 			return ret_val;
       
   520 	}
       
   521 
       
   522 	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
       
   523 		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
       
   524 	ew32(KMRNCTRLSTA, kmrnctrlsta);
       
   525 	e1e_flush();
       
   526 
       
   527 	udelay(2);
       
   528 
       
   529 	kmrnctrlsta = er32(KMRNCTRLSTA);
       
   530 	*data = (u16)kmrnctrlsta;
       
   531 
       
   532 	if (!locked)
       
   533 		hw->phy.ops.release(hw);
       
   534 
       
   535 	return 0;
       
   536 }
       
   537 
       
   538 /**
       
   539  *  e1000e_read_kmrn_reg -  Read kumeran register
       
   540  *  @hw: pointer to the HW structure
       
   541  *  @offset: register offset to be read
       
   542  *  @data: pointer to the read data
       
   543  *
       
   544  *  Acquires semaphore then reads the PHY register at offset using the
       
   545  *  kumeran interface.  The information retrieved is stored in data.
       
   546  *  Release the acquired semaphore before exiting.
       
   547  **/
       
   548 s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
       
   549 {
       
   550 	return __e1000_read_kmrn_reg(hw, offset, data, false);
       
   551 }
       
   552 
       
   553 /**
       
   554  *  e1000e_read_kmrn_reg_locked -  Read kumeran register
       
   555  *  @hw: pointer to the HW structure
       
   556  *  @offset: register offset to be read
       
   557  *  @data: pointer to the read data
       
   558  *
       
   559  *  Reads the PHY register at offset using the kumeran interface.  The
       
   560  *  information retrieved is stored in data.
       
   561  *  Assumes semaphore already acquired.
       
   562  **/
       
   563 s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
       
   564 {
       
   565 	return __e1000_read_kmrn_reg(hw, offset, data, true);
       
   566 }
       
   567 
       
   568 /**
       
   569  *  __e1000_write_kmrn_reg - Write kumeran register
       
   570  *  @hw: pointer to the HW structure
       
   571  *  @offset: register offset to write to
       
   572  *  @data: data to write at register offset
       
   573  *  @locked: semaphore has already been acquired or not
       
   574  *
       
   575  *  Acquires semaphore, if necessary.  Then write the data to PHY register
       
   576  *  at the offset using the kumeran interface.  Release any acquired semaphores
       
   577  *  before exiting.
       
   578  **/
       
   579 static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
       
   580                                   bool locked)
       
   581 {
       
   582 	u32 kmrnctrlsta;
       
   583 
       
   584 	if (!locked) {
       
   585 		s32 ret_val = 0;
       
   586 
       
   587 		if (!hw->phy.ops.acquire)
       
   588 			return 0;
       
   589 
       
   590 		ret_val = hw->phy.ops.acquire(hw);
       
   591 		if (ret_val)
       
   592 			return ret_val;
       
   593 	}
       
   594 
       
   595 	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
       
   596 		       E1000_KMRNCTRLSTA_OFFSET) | data;
       
   597 	ew32(KMRNCTRLSTA, kmrnctrlsta);
       
   598 	e1e_flush();
       
   599 
       
   600 	udelay(2);
       
   601 
       
   602 	if (!locked)
       
   603 		hw->phy.ops.release(hw);
       
   604 
       
   605 	return 0;
       
   606 }
       
   607 
       
   608 /**
       
   609  *  e1000e_write_kmrn_reg -  Write kumeran register
       
   610  *  @hw: pointer to the HW structure
       
   611  *  @offset: register offset to write to
       
   612  *  @data: data to write at register offset
       
   613  *
       
   614  *  Acquires semaphore then writes the data to the PHY register at the offset
       
   615  *  using the kumeran interface.  Release the acquired semaphore before exiting.
       
   616  **/
       
   617 s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
       
   618 {
       
   619 	return __e1000_write_kmrn_reg(hw, offset, data, false);
       
   620 }
       
   621 
       
   622 /**
       
   623  *  e1000e_write_kmrn_reg_locked -  Write kumeran register
       
   624  *  @hw: pointer to the HW structure
       
   625  *  @offset: register offset to write to
       
   626  *  @data: data to write at register offset
       
   627  *
       
   628  *  Write the data to PHY register at the offset using the kumeran interface.
       
   629  *  Assumes semaphore already acquired.
       
   630  **/
       
   631 s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
       
   632 {
       
   633 	return __e1000_write_kmrn_reg(hw, offset, data, true);
       
   634 }
       
   635 
       
   636 /**
       
   637  *  e1000_set_master_slave_mode - Setup PHY for Master/slave mode
       
   638  *  @hw: pointer to the HW structure
       
   639  *
       
   640  *  Sets up Master/slave mode
       
   641  **/
       
   642 static s32 e1000_set_master_slave_mode(struct e1000_hw *hw)
       
   643 {
       
   644 	s32 ret_val;
       
   645 	u16 phy_data;
       
   646 
       
   647 	/* Resolve Master/Slave mode */
       
   648 	ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &phy_data);
       
   649 	if (ret_val)
       
   650 		return ret_val;
       
   651 
       
   652 	/* load defaults for future use */
       
   653 	hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ?
       
   654 	    ((phy_data & CR_1000T_MS_VALUE) ?
       
   655 	     e1000_ms_force_master : e1000_ms_force_slave) : e1000_ms_auto;
       
   656 
       
   657 	switch (hw->phy.ms_type) {
       
   658 	case e1000_ms_force_master:
       
   659 		phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
       
   660 		break;
       
   661 	case e1000_ms_force_slave:
       
   662 		phy_data |= CR_1000T_MS_ENABLE;
       
   663 		phy_data &= ~(CR_1000T_MS_VALUE);
       
   664 		break;
       
   665 	case e1000_ms_auto:
       
   666 		phy_data &= ~CR_1000T_MS_ENABLE;
       
   667 		/* fall-through */
       
   668 	default:
       
   669 		break;
       
   670 	}
       
   671 
       
   672 	return e1e_wphy(hw, PHY_1000T_CTRL, phy_data);
       
   673 }
       
   674 
       
   675 /**
       
   676  *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
       
   677  *  @hw: pointer to the HW structure
       
   678  *
       
   679  *  Sets up Carrier-sense on Transmit and downshift values.
       
   680  **/
       
   681 s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
       
   682 {
       
   683 	s32 ret_val;
       
   684 	u16 phy_data;
       
   685 
       
   686 	/* Enable CRS on Tx. This must be set for half-duplex operation. */
       
   687 	ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
       
   688 	if (ret_val)
       
   689 		return ret_val;
       
   690 
       
   691 	phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
       
   692 
       
   693 	/* Enable downshift */
       
   694 	phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
       
   695 
       
   696 	ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data);
       
   697 	if (ret_val)
       
   698 		return ret_val;
       
   699 
       
   700 	/* Set MDI/MDIX mode */
       
   701 	ret_val = e1e_rphy(hw, I82577_PHY_CTRL_2, &phy_data);
       
   702 	if (ret_val)
       
   703 		return ret_val;
       
   704 	phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK;
       
   705 	/* Options:
       
   706 	 *   0 - Auto (default)
       
   707 	 *   1 - MDI mode
       
   708 	 *   2 - MDI-X mode
       
   709 	 */
       
   710 	switch (hw->phy.mdix) {
       
   711 	case 1:
       
   712 		break;
       
   713 	case 2:
       
   714 		phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX;
       
   715 		break;
       
   716 	case 0:
       
   717 	default:
       
   718 		phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX;
       
   719 		break;
       
   720 	}
       
   721 	ret_val = e1e_wphy(hw, I82577_PHY_CTRL_2, phy_data);
       
   722 	if (ret_val)
       
   723 		return ret_val;
       
   724 
       
   725 	return e1000_set_master_slave_mode(hw);
       
   726 }
       
   727 
       
   728 /**
       
   729  *  e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
       
   730  *  @hw: pointer to the HW structure
       
   731  *
       
   732  *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
       
   733  *  and downshift values are set also.
       
   734  **/
       
   735 s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
       
   736 {
       
   737 	struct e1000_phy_info *phy = &hw->phy;
       
   738 	s32 ret_val;
       
   739 	u16 phy_data;
       
   740 
       
   741 	/* Enable CRS on Tx. This must be set for half-duplex operation. */
       
   742 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
       
   743 	if (ret_val)
       
   744 		return ret_val;
       
   745 
       
   746 	/* For BM PHY this bit is downshift enable */
       
   747 	if (phy->type != e1000_phy_bm)
       
   748 		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
       
   749 
       
   750 	/* Options:
       
   751 	 *   MDI/MDI-X = 0 (default)
       
   752 	 *   0 - Auto for all speeds
       
   753 	 *   1 - MDI mode
       
   754 	 *   2 - MDI-X mode
       
   755 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
       
   756 	 */
       
   757 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
       
   758 
       
   759 	switch (phy->mdix) {
       
   760 	case 1:
       
   761 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
       
   762 		break;
       
   763 	case 2:
       
   764 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
       
   765 		break;
       
   766 	case 3:
       
   767 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
       
   768 		break;
       
   769 	case 0:
       
   770 	default:
       
   771 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
       
   772 		break;
       
   773 	}
       
   774 
       
   775 	/* Options:
       
   776 	 *   disable_polarity_correction = 0 (default)
       
   777 	 *       Automatic Correction for Reversed Cable Polarity
       
   778 	 *   0 - Disabled
       
   779 	 *   1 - Enabled
       
   780 	 */
       
   781 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
       
   782 	if (phy->disable_polarity_correction)
       
   783 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
       
   784 
       
   785 	/* Enable downshift on BM (disabled by default) */
       
   786 	if (phy->type == e1000_phy_bm) {
       
   787 		/* For 82574/82583, first disable then enable downshift */
       
   788 		if (phy->id == BME1000_E_PHY_ID_R2) {
       
   789 			phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT;
       
   790 			ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL,
       
   791 					   phy_data);
       
   792 			if (ret_val)
       
   793 				return ret_val;
       
   794 			/* Commit the changes. */
       
   795 			ret_val = e1000e_commit_phy(hw);
       
   796 			if (ret_val) {
       
   797 				e_dbg("Error committing the PHY changes\n");
       
   798 				return ret_val;
       
   799 			}
       
   800 		}
       
   801 
       
   802 		phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
       
   803 	}
       
   804 
       
   805 	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
       
   806 	if (ret_val)
       
   807 		return ret_val;
       
   808 
       
   809 	if ((phy->type == e1000_phy_m88) &&
       
   810 	    (phy->revision < E1000_REVISION_4) &&
       
   811 	    (phy->id != BME1000_E_PHY_ID_R2)) {
       
   812 		/* Force TX_CLK in the Extended PHY Specific Control Register
       
   813 		 * to 25MHz clock.
       
   814 		 */
       
   815 		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
       
   816 		if (ret_val)
       
   817 			return ret_val;
       
   818 
       
   819 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
       
   820 
       
   821 		if ((phy->revision == 2) &&
       
   822 		    (phy->id == M88E1111_I_PHY_ID)) {
       
   823 			/* 82573L PHY - set the downshift counter to 5x. */
       
   824 			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
       
   825 			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
       
   826 		} else {
       
   827 			/* Configure Master and Slave downshift values */
       
   828 			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
       
   829 				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
       
   830 			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
       
   831 				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
       
   832 		}
       
   833 		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
       
   834 		if (ret_val)
       
   835 			return ret_val;
       
   836 	}
       
   837 
       
   838 	if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
       
   839 		/* Set PHY page 0, register 29 to 0x0003 */
       
   840 		ret_val = e1e_wphy(hw, 29, 0x0003);
       
   841 		if (ret_val)
       
   842 			return ret_val;
       
   843 
       
   844 		/* Set PHY page 0, register 30 to 0x0000 */
       
   845 		ret_val = e1e_wphy(hw, 30, 0x0000);
       
   846 		if (ret_val)
       
   847 			return ret_val;
       
   848 	}
       
   849 
       
   850 	/* Commit the changes. */
       
   851 	ret_val = e1000e_commit_phy(hw);
       
   852 	if (ret_val) {
       
   853 		e_dbg("Error committing the PHY changes\n");
       
   854 		return ret_val;
       
   855 	}
       
   856 
       
   857 	if (phy->type == e1000_phy_82578) {
       
   858 		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
       
   859 		if (ret_val)
       
   860 			return ret_val;
       
   861 
       
   862 		/* 82578 PHY - set the downshift count to 1x. */
       
   863 		phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
       
   864 		phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
       
   865 		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
       
   866 		if (ret_val)
       
   867 			return ret_val;
       
   868 	}
       
   869 
       
   870 	return 0;
       
   871 }
       
   872 
       
   873 /**
       
   874  *  e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
       
   875  *  @hw: pointer to the HW structure
       
   876  *
       
   877  *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
       
   878  *  igp PHY's.
       
   879  **/
       
   880 s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
       
   881 {
       
   882 	struct e1000_phy_info *phy = &hw->phy;
       
   883 	s32 ret_val;
       
   884 	u16 data;
       
   885 
       
   886 	ret_val = e1000_phy_hw_reset(hw);
       
   887 	if (ret_val) {
       
   888 		e_dbg("Error resetting the PHY.\n");
       
   889 		return ret_val;
       
   890 	}
       
   891 
       
   892 	/* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
       
   893 	 * timeout issues when LFS is enabled.
       
   894 	 */
       
   895 	msleep(100);
       
   896 
       
   897 	/* disable lplu d0 during driver init */
       
   898 	ret_val = e1000_set_d0_lplu_state(hw, false);
       
   899 	if (ret_val) {
       
   900 		e_dbg("Error Disabling LPLU D0\n");
       
   901 		return ret_val;
       
   902 	}
       
   903 	/* Configure mdi-mdix settings */
       
   904 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
       
   905 	if (ret_val)
       
   906 		return ret_val;
       
   907 
       
   908 	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
       
   909 
       
   910 	switch (phy->mdix) {
       
   911 	case 1:
       
   912 		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
       
   913 		break;
       
   914 	case 2:
       
   915 		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
       
   916 		break;
       
   917 	case 0:
       
   918 	default:
       
   919 		data |= IGP01E1000_PSCR_AUTO_MDIX;
       
   920 		break;
       
   921 	}
       
   922 	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
       
   923 	if (ret_val)
       
   924 		return ret_val;
       
   925 
       
   926 	/* set auto-master slave resolution settings */
       
   927 	if (hw->mac.autoneg) {
       
   928 		/* when autonegotiation advertisement is only 1000Mbps then we
       
   929 		 * should disable SmartSpeed and enable Auto MasterSlave
       
   930 		 * resolution as hardware default.
       
   931 		 */
       
   932 		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
       
   933 			/* Disable SmartSpeed */
       
   934 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
   935 					   &data);
       
   936 			if (ret_val)
       
   937 				return ret_val;
       
   938 
       
   939 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
       
   940 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
   941 					   data);
       
   942 			if (ret_val)
       
   943 				return ret_val;
       
   944 
       
   945 			/* Set auto Master/Slave resolution process */
       
   946 			ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
       
   947 			if (ret_val)
       
   948 				return ret_val;
       
   949 
       
   950 			data &= ~CR_1000T_MS_ENABLE;
       
   951 			ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
       
   952 			if (ret_val)
       
   953 				return ret_val;
       
   954 		}
       
   955 
       
   956 		ret_val = e1000_set_master_slave_mode(hw);
       
   957 	}
       
   958 
       
   959 	return ret_val;
       
   960 }
       
   961 
       
   962 /**
       
   963  *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
       
   964  *  @hw: pointer to the HW structure
       
   965  *
       
   966  *  Reads the MII auto-neg advertisement register and/or the 1000T control
       
   967  *  register and if the PHY is already setup for auto-negotiation, then
       
   968  *  return successful.  Otherwise, setup advertisement and flow control to
       
   969  *  the appropriate values for the wanted auto-negotiation.
       
   970  **/
       
   971 static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
       
   972 {
       
   973 	struct e1000_phy_info *phy = &hw->phy;
       
   974 	s32 ret_val;
       
   975 	u16 mii_autoneg_adv_reg;
       
   976 	u16 mii_1000t_ctrl_reg = 0;
       
   977 
       
   978 	phy->autoneg_advertised &= phy->autoneg_mask;
       
   979 
       
   980 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
       
   981 	ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
       
   982 	if (ret_val)
       
   983 		return ret_val;
       
   984 
       
   985 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
       
   986 		/* Read the MII 1000Base-T Control Register (Address 9). */
       
   987 		ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
       
   988 		if (ret_val)
       
   989 			return ret_val;
       
   990 	}
       
   991 
       
   992 	/* Need to parse both autoneg_advertised and fc and set up
       
   993 	 * the appropriate PHY registers.  First we will parse for
       
   994 	 * autoneg_advertised software override.  Since we can advertise
       
   995 	 * a plethora of combinations, we need to check each bit
       
   996 	 * individually.
       
   997 	 */
       
   998 
       
   999 	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
       
  1000 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
       
  1001 	 * the  1000Base-T Control Register (Address 9).
       
  1002 	 */
       
  1003 	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
       
  1004 				 NWAY_AR_100TX_HD_CAPS |
       
  1005 				 NWAY_AR_10T_FD_CAPS   |
       
  1006 				 NWAY_AR_10T_HD_CAPS);
       
  1007 	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
       
  1008 
       
  1009 	e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
       
  1010 
       
  1011 	/* Do we want to advertise 10 Mb Half Duplex? */
       
  1012 	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
       
  1013 		e_dbg("Advertise 10mb Half duplex\n");
       
  1014 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
       
  1015 	}
       
  1016 
       
  1017 	/* Do we want to advertise 10 Mb Full Duplex? */
       
  1018 	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
       
  1019 		e_dbg("Advertise 10mb Full duplex\n");
       
  1020 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
       
  1021 	}
       
  1022 
       
  1023 	/* Do we want to advertise 100 Mb Half Duplex? */
       
  1024 	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
       
  1025 		e_dbg("Advertise 100mb Half duplex\n");
       
  1026 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
       
  1027 	}
       
  1028 
       
  1029 	/* Do we want to advertise 100 Mb Full Duplex? */
       
  1030 	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
       
  1031 		e_dbg("Advertise 100mb Full duplex\n");
       
  1032 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
       
  1033 	}
       
  1034 
       
  1035 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
       
  1036 	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
       
  1037 		e_dbg("Advertise 1000mb Half duplex request denied!\n");
       
  1038 
       
  1039 	/* Do we want to advertise 1000 Mb Full Duplex? */
       
  1040 	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
       
  1041 		e_dbg("Advertise 1000mb Full duplex\n");
       
  1042 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
       
  1043 	}
       
  1044 
       
  1045 	/* Check for a software override of the flow control settings, and
       
  1046 	 * setup the PHY advertisement registers accordingly.  If
       
  1047 	 * auto-negotiation is enabled, then software will have to set the
       
  1048 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
       
  1049 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
       
  1050 	 * negotiation.
       
  1051 	 *
       
  1052 	 * The possible values of the "fc" parameter are:
       
  1053 	 *      0:  Flow control is completely disabled
       
  1054 	 *      1:  Rx flow control is enabled (we can receive pause frames
       
  1055 	 *          but not send pause frames).
       
  1056 	 *      2:  Tx flow control is enabled (we can send pause frames
       
  1057 	 *          but we do not support receiving pause frames).
       
  1058 	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
       
  1059 	 *  other:  No software override.  The flow control configuration
       
  1060 	 *          in the EEPROM is used.
       
  1061 	 */
       
  1062 	switch (hw->fc.current_mode) {
       
  1063 	case e1000_fc_none:
       
  1064 		/* Flow control (Rx & Tx) is completely disabled by a
       
  1065 		 * software over-ride.
       
  1066 		 */
       
  1067 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
       
  1068 		break;
       
  1069 	case e1000_fc_rx_pause:
       
  1070 		/* Rx Flow control is enabled, and Tx Flow control is
       
  1071 		 * disabled, by a software over-ride.
       
  1072 		 *
       
  1073 		 * Since there really isn't a way to advertise that we are
       
  1074 		 * capable of Rx Pause ONLY, we will advertise that we
       
  1075 		 * support both symmetric and asymmetric Rx PAUSE.  Later
       
  1076 		 * (in e1000e_config_fc_after_link_up) we will disable the
       
  1077 		 * hw's ability to send PAUSE frames.
       
  1078 		 */
       
  1079 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
       
  1080 		break;
       
  1081 	case e1000_fc_tx_pause:
       
  1082 		/* Tx Flow control is enabled, and Rx Flow control is
       
  1083 		 * disabled, by a software over-ride.
       
  1084 		 */
       
  1085 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
       
  1086 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
       
  1087 		break;
       
  1088 	case e1000_fc_full:
       
  1089 		/* Flow control (both Rx and Tx) is enabled by a software
       
  1090 		 * over-ride.
       
  1091 		 */
       
  1092 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
       
  1093 		break;
       
  1094 	default:
       
  1095 		e_dbg("Flow control param set incorrectly\n");
       
  1096 		return -E1000_ERR_CONFIG;
       
  1097 	}
       
  1098 
       
  1099 	ret_val = e1e_wphy(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
       
  1100 	if (ret_val)
       
  1101 		return ret_val;
       
  1102 
       
  1103 	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
       
  1104 
       
  1105 	if (phy->autoneg_mask & ADVERTISE_1000_FULL)
       
  1106 		ret_val = e1e_wphy(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
       
  1107 
       
  1108 	return ret_val;
       
  1109 }
       
  1110 
       
  1111 /**
       
  1112  *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
       
  1113  *  @hw: pointer to the HW structure
       
  1114  *
       
  1115  *  Performs initial bounds checking on autoneg advertisement parameter, then
       
  1116  *  configure to advertise the full capability.  Setup the PHY to autoneg
       
  1117  *  and restart the negotiation process between the link partner.  If
       
  1118  *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
       
  1119  **/
       
  1120 static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
       
  1121 {
       
  1122 	struct e1000_phy_info *phy = &hw->phy;
       
  1123 	s32 ret_val;
       
  1124 	u16 phy_ctrl;
       
  1125 
       
  1126 	/* Perform some bounds checking on the autoneg advertisement
       
  1127 	 * parameter.
       
  1128 	 */
       
  1129 	phy->autoneg_advertised &= phy->autoneg_mask;
       
  1130 
       
  1131 	/* If autoneg_advertised is zero, we assume it was not defaulted
       
  1132 	 * by the calling code so we set to advertise full capability.
       
  1133 	 */
       
  1134 	if (!phy->autoneg_advertised)
       
  1135 		phy->autoneg_advertised = phy->autoneg_mask;
       
  1136 
       
  1137 	e_dbg("Reconfiguring auto-neg advertisement params\n");
       
  1138 	ret_val = e1000_phy_setup_autoneg(hw);
       
  1139 	if (ret_val) {
       
  1140 		e_dbg("Error Setting up Auto-Negotiation\n");
       
  1141 		return ret_val;
       
  1142 	}
       
  1143 	e_dbg("Restarting Auto-Neg\n");
       
  1144 
       
  1145 	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
       
  1146 	 * the Auto Neg Restart bit in the PHY control register.
       
  1147 	 */
       
  1148 	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
       
  1149 	if (ret_val)
       
  1150 		return ret_val;
       
  1151 
       
  1152 	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
       
  1153 	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
       
  1154 	if (ret_val)
       
  1155 		return ret_val;
       
  1156 
       
  1157 	/* Does the user want to wait for Auto-Neg to complete here, or
       
  1158 	 * check at a later time (for example, callback routine).
       
  1159 	 */
       
  1160 	if (phy->autoneg_wait_to_complete) {
       
  1161 		ret_val = e1000_wait_autoneg(hw);
       
  1162 		if (ret_val) {
       
  1163 			e_dbg("Error while waiting for autoneg to complete\n");
       
  1164 			return ret_val;
       
  1165 		}
       
  1166 	}
       
  1167 
       
  1168 	hw->mac.get_link_status = true;
       
  1169 
       
  1170 	return ret_val;
       
  1171 }
       
  1172 
       
  1173 /**
       
  1174  *  e1000e_setup_copper_link - Configure copper link settings
       
  1175  *  @hw: pointer to the HW structure
       
  1176  *
       
  1177  *  Calls the appropriate function to configure the link for auto-neg or forced
       
  1178  *  speed and duplex.  Then we check for link, once link is established calls
       
  1179  *  to configure collision distance and flow control are called.  If link is
       
  1180  *  not established, we return -E1000_ERR_PHY (-2).
       
  1181  **/
       
  1182 s32 e1000e_setup_copper_link(struct e1000_hw *hw)
       
  1183 {
       
  1184 	s32 ret_val;
       
  1185 	bool link;
       
  1186 
       
  1187 	if (hw->mac.autoneg) {
       
  1188 		/* Setup autoneg and flow control advertisement and perform
       
  1189 		 * autonegotiation.
       
  1190 		 */
       
  1191 		ret_val = e1000_copper_link_autoneg(hw);
       
  1192 		if (ret_val)
       
  1193 			return ret_val;
       
  1194 	} else {
       
  1195 		/* PHY will be set to 10H, 10F, 100H or 100F
       
  1196 		 * depending on user settings.
       
  1197 		 */
       
  1198 		e_dbg("Forcing Speed and Duplex\n");
       
  1199 		ret_val = e1000_phy_force_speed_duplex(hw);
       
  1200 		if (ret_val) {
       
  1201 			e_dbg("Error Forcing Speed and Duplex\n");
       
  1202 			return ret_val;
       
  1203 		}
       
  1204 	}
       
  1205 
       
  1206 	/* Check link status. Wait up to 100 microseconds for link to become
       
  1207 	 * valid.
       
  1208 	 */
       
  1209 	ret_val = e1000e_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
       
  1210 					      &link);
       
  1211 	if (ret_val)
       
  1212 		return ret_val;
       
  1213 
       
  1214 	if (link) {
       
  1215 		e_dbg("Valid link established!!!\n");
       
  1216 		hw->mac.ops.config_collision_dist(hw);
       
  1217 		ret_val = e1000e_config_fc_after_link_up(hw);
       
  1218 	} else {
       
  1219 		e_dbg("Unable to establish link!!!\n");
       
  1220 	}
       
  1221 
       
  1222 	return ret_val;
       
  1223 }
       
  1224 
       
  1225 /**
       
  1226  *  e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
       
  1227  *  @hw: pointer to the HW structure
       
  1228  *
       
  1229  *  Calls the PHY setup function to force speed and duplex.  Clears the
       
  1230  *  auto-crossover to force MDI manually.  Waits for link and returns
       
  1231  *  successful if link up is successful, else -E1000_ERR_PHY (-2).
       
  1232  **/
       
  1233 s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
       
  1234 {
       
  1235 	struct e1000_phy_info *phy = &hw->phy;
       
  1236 	s32 ret_val;
       
  1237 	u16 phy_data;
       
  1238 	bool link;
       
  1239 
       
  1240 	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
       
  1241 	if (ret_val)
       
  1242 		return ret_val;
       
  1243 
       
  1244 	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
       
  1245 
       
  1246 	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
       
  1247 	if (ret_val)
       
  1248 		return ret_val;
       
  1249 
       
  1250 	/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
       
  1251 	 * forced whenever speed and duplex are forced.
       
  1252 	 */
       
  1253 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
       
  1254 	if (ret_val)
       
  1255 		return ret_val;
       
  1256 
       
  1257 	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
       
  1258 	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
       
  1259 
       
  1260 	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
       
  1261 	if (ret_val)
       
  1262 		return ret_val;
       
  1263 
       
  1264 	e_dbg("IGP PSCR: %X\n", phy_data);
       
  1265 
       
  1266 	udelay(1);
       
  1267 
       
  1268 	if (phy->autoneg_wait_to_complete) {
       
  1269 		e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
       
  1270 
       
  1271 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
       
  1272 						      100000, &link);
       
  1273 		if (ret_val)
       
  1274 			return ret_val;
       
  1275 
       
  1276 		if (!link)
       
  1277 			e_dbg("Link taking longer than expected.\n");
       
  1278 
       
  1279 		/* Try once more */
       
  1280 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
       
  1281 						      100000, &link);
       
  1282 	}
       
  1283 
       
  1284 	return ret_val;
       
  1285 }
       
  1286 
       
  1287 /**
       
  1288  *  e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
       
  1289  *  @hw: pointer to the HW structure
       
  1290  *
       
  1291  *  Calls the PHY setup function to force speed and duplex.  Clears the
       
  1292  *  auto-crossover to force MDI manually.  Resets the PHY to commit the
       
  1293  *  changes.  If time expires while waiting for link up, we reset the DSP.
       
  1294  *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
       
  1295  *  successful completion, else return corresponding error code.
       
  1296  **/
       
  1297 s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
       
  1298 {
       
  1299 	struct e1000_phy_info *phy = &hw->phy;
       
  1300 	s32 ret_val;
       
  1301 	u16 phy_data;
       
  1302 	bool link;
       
  1303 
       
  1304 	/* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
       
  1305 	 * forced whenever speed and duplex are forced.
       
  1306 	 */
       
  1307 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
       
  1308 	if (ret_val)
       
  1309 		return ret_val;
       
  1310 
       
  1311 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
       
  1312 	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
       
  1313 	if (ret_val)
       
  1314 		return ret_val;
       
  1315 
       
  1316 	e_dbg("M88E1000 PSCR: %X\n", phy_data);
       
  1317 
       
  1318 	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
       
  1319 	if (ret_val)
       
  1320 		return ret_val;
       
  1321 
       
  1322 	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
       
  1323 
       
  1324 	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
       
  1325 	if (ret_val)
       
  1326 		return ret_val;
       
  1327 
       
  1328 	/* Reset the phy to commit changes. */
       
  1329 	ret_val = e1000e_commit_phy(hw);
       
  1330 	if (ret_val)
       
  1331 		return ret_val;
       
  1332 
       
  1333 	if (phy->autoneg_wait_to_complete) {
       
  1334 		e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
       
  1335 
       
  1336 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
       
  1337 						     100000, &link);
       
  1338 		if (ret_val)
       
  1339 			return ret_val;
       
  1340 
       
  1341 		if (!link) {
       
  1342 			if (hw->phy.type != e1000_phy_m88) {
       
  1343 				e_dbg("Link taking longer than expected.\n");
       
  1344 			} else {
       
  1345 				/* We didn't get link.
       
  1346 				 * Reset the DSP and cross our fingers.
       
  1347 				 */
       
  1348 				ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
       
  1349 						   0x001d);
       
  1350 				if (ret_val)
       
  1351 					return ret_val;
       
  1352 				ret_val = e1000e_phy_reset_dsp(hw);
       
  1353 				if (ret_val)
       
  1354 					return ret_val;
       
  1355 			}
       
  1356 		}
       
  1357 
       
  1358 		/* Try once more */
       
  1359 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
       
  1360 						     100000, &link);
       
  1361 		if (ret_val)
       
  1362 			return ret_val;
       
  1363 	}
       
  1364 
       
  1365 	if (hw->phy.type != e1000_phy_m88)
       
  1366 		return 0;
       
  1367 
       
  1368 	ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
       
  1369 	if (ret_val)
       
  1370 		return ret_val;
       
  1371 
       
  1372 	/* Resetting the phy means we need to re-force TX_CLK in the
       
  1373 	 * Extended PHY Specific Control Register to 25MHz clock from
       
  1374 	 * the reset value of 2.5MHz.
       
  1375 	 */
       
  1376 	phy_data |= M88E1000_EPSCR_TX_CLK_25;
       
  1377 	ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
       
  1378 	if (ret_val)
       
  1379 		return ret_val;
       
  1380 
       
  1381 	/* In addition, we must re-enable CRS on Tx for both half and full
       
  1382 	 * duplex.
       
  1383 	 */
       
  1384 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
       
  1385 	if (ret_val)
       
  1386 		return ret_val;
       
  1387 
       
  1388 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
       
  1389 	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
       
  1390 
       
  1391 	return ret_val;
       
  1392 }
       
  1393 
       
  1394 /**
       
  1395  *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
       
  1396  *  @hw: pointer to the HW structure
       
  1397  *
       
  1398  *  Forces the speed and duplex settings of the PHY.
       
  1399  *  This is a function pointer entry point only called by
       
  1400  *  PHY setup routines.
       
  1401  **/
       
  1402 s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
       
  1403 {
       
  1404 	struct e1000_phy_info *phy = &hw->phy;
       
  1405 	s32 ret_val;
       
  1406 	u16 data;
       
  1407 	bool link;
       
  1408 
       
  1409 	ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
       
  1410 	if (ret_val)
       
  1411 		return ret_val;
       
  1412 
       
  1413 	e1000e_phy_force_speed_duplex_setup(hw, &data);
       
  1414 
       
  1415 	ret_val = e1e_wphy(hw, PHY_CONTROL, data);
       
  1416 	if (ret_val)
       
  1417 		return ret_val;
       
  1418 
       
  1419 	/* Disable MDI-X support for 10/100 */
       
  1420 	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
       
  1421 	if (ret_val)
       
  1422 		return ret_val;
       
  1423 
       
  1424 	data &= ~IFE_PMC_AUTO_MDIX;
       
  1425 	data &= ~IFE_PMC_FORCE_MDIX;
       
  1426 
       
  1427 	ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
       
  1428 	if (ret_val)
       
  1429 		return ret_val;
       
  1430 
       
  1431 	e_dbg("IFE PMC: %X\n", data);
       
  1432 
       
  1433 	udelay(1);
       
  1434 
       
  1435 	if (phy->autoneg_wait_to_complete) {
       
  1436 		e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
       
  1437 
       
  1438 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
       
  1439 						      100000, &link);
       
  1440 		if (ret_val)
       
  1441 			return ret_val;
       
  1442 
       
  1443 		if (!link)
       
  1444 			e_dbg("Link taking longer than expected.\n");
       
  1445 
       
  1446 		/* Try once more */
       
  1447 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
       
  1448 						      100000, &link);
       
  1449 		if (ret_val)
       
  1450 			return ret_val;
       
  1451 	}
       
  1452 
       
  1453 	return 0;
       
  1454 }
       
  1455 
       
  1456 /**
       
  1457  *  e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
       
  1458  *  @hw: pointer to the HW structure
       
  1459  *  @phy_ctrl: pointer to current value of PHY_CONTROL
       
  1460  *
       
  1461  *  Forces speed and duplex on the PHY by doing the following: disable flow
       
  1462  *  control, force speed/duplex on the MAC, disable auto speed detection,
       
  1463  *  disable auto-negotiation, configure duplex, configure speed, configure
       
  1464  *  the collision distance, write configuration to CTRL register.  The
       
  1465  *  caller must write to the PHY_CONTROL register for these settings to
       
  1466  *  take affect.
       
  1467  **/
       
  1468 void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
       
  1469 {
       
  1470 	struct e1000_mac_info *mac = &hw->mac;
       
  1471 	u32 ctrl;
       
  1472 
       
  1473 	/* Turn off flow control when forcing speed/duplex */
       
  1474 	hw->fc.current_mode = e1000_fc_none;
       
  1475 
       
  1476 	/* Force speed/duplex on the mac */
       
  1477 	ctrl = er32(CTRL);
       
  1478 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
       
  1479 	ctrl &= ~E1000_CTRL_SPD_SEL;
       
  1480 
       
  1481 	/* Disable Auto Speed Detection */
       
  1482 	ctrl &= ~E1000_CTRL_ASDE;
       
  1483 
       
  1484 	/* Disable autoneg on the phy */
       
  1485 	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
       
  1486 
       
  1487 	/* Forcing Full or Half Duplex? */
       
  1488 	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
       
  1489 		ctrl &= ~E1000_CTRL_FD;
       
  1490 		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
       
  1491 		e_dbg("Half Duplex\n");
       
  1492 	} else {
       
  1493 		ctrl |= E1000_CTRL_FD;
       
  1494 		*phy_ctrl |= MII_CR_FULL_DUPLEX;
       
  1495 		e_dbg("Full Duplex\n");
       
  1496 	}
       
  1497 
       
  1498 	/* Forcing 10mb or 100mb? */
       
  1499 	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
       
  1500 		ctrl |= E1000_CTRL_SPD_100;
       
  1501 		*phy_ctrl |= MII_CR_SPEED_100;
       
  1502 		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
       
  1503 		e_dbg("Forcing 100mb\n");
       
  1504 	} else {
       
  1505 		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
       
  1506 		*phy_ctrl |= MII_CR_SPEED_10;
       
  1507 		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
       
  1508 		e_dbg("Forcing 10mb\n");
       
  1509 	}
       
  1510 
       
  1511 	hw->mac.ops.config_collision_dist(hw);
       
  1512 
       
  1513 	ew32(CTRL, ctrl);
       
  1514 }
       
  1515 
       
  1516 /**
       
  1517  *  e1000e_set_d3_lplu_state - Sets low power link up state for D3
       
  1518  *  @hw: pointer to the HW structure
       
  1519  *  @active: boolean used to enable/disable lplu
       
  1520  *
       
  1521  *  Success returns 0, Failure returns 1
       
  1522  *
       
  1523  *  The low power link up (lplu) state is set to the power management level D3
       
  1524  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
       
  1525  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
       
  1526  *  is used during Dx states where the power conservation is most important.
       
  1527  *  During driver activity, SmartSpeed should be enabled so performance is
       
  1528  *  maintained.
       
  1529  **/
       
  1530 s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
       
  1531 {
       
  1532 	struct e1000_phy_info *phy = &hw->phy;
       
  1533 	s32 ret_val;
       
  1534 	u16 data;
       
  1535 
       
  1536 	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
       
  1537 	if (ret_val)
       
  1538 		return ret_val;
       
  1539 
       
  1540 	if (!active) {
       
  1541 		data &= ~IGP02E1000_PM_D3_LPLU;
       
  1542 		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
       
  1543 		if (ret_val)
       
  1544 			return ret_val;
       
  1545 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
       
  1546 		 * during Dx states where the power conservation is most
       
  1547 		 * important.  During driver activity we should enable
       
  1548 		 * SmartSpeed, so performance is maintained.
       
  1549 		 */
       
  1550 		if (phy->smart_speed == e1000_smart_speed_on) {
       
  1551 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  1552 					   &data);
       
  1553 			if (ret_val)
       
  1554 				return ret_val;
       
  1555 
       
  1556 			data |= IGP01E1000_PSCFR_SMART_SPEED;
       
  1557 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  1558 					   data);
       
  1559 			if (ret_val)
       
  1560 				return ret_val;
       
  1561 		} else if (phy->smart_speed == e1000_smart_speed_off) {
       
  1562 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  1563 					   &data);
       
  1564 			if (ret_val)
       
  1565 				return ret_val;
       
  1566 
       
  1567 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
       
  1568 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
  1569 					   data);
       
  1570 			if (ret_val)
       
  1571 				return ret_val;
       
  1572 		}
       
  1573 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
       
  1574 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
       
  1575 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
       
  1576 		data |= IGP02E1000_PM_D3_LPLU;
       
  1577 		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
       
  1578 		if (ret_val)
       
  1579 			return ret_val;
       
  1580 
       
  1581 		/* When LPLU is enabled, we should disable SmartSpeed */
       
  1582 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
       
  1583 		if (ret_val)
       
  1584 			return ret_val;
       
  1585 
       
  1586 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
       
  1587 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
       
  1588 	}
       
  1589 
       
  1590 	return ret_val;
       
  1591 }
       
  1592 
       
  1593 /**
       
  1594  *  e1000e_check_downshift - Checks whether a downshift in speed occurred
       
  1595  *  @hw: pointer to the HW structure
       
  1596  *
       
  1597  *  Success returns 0, Failure returns 1
       
  1598  *
       
  1599  *  A downshift is detected by querying the PHY link health.
       
  1600  **/
       
  1601 s32 e1000e_check_downshift(struct e1000_hw *hw)
       
  1602 {
       
  1603 	struct e1000_phy_info *phy = &hw->phy;
       
  1604 	s32 ret_val;
       
  1605 	u16 phy_data, offset, mask;
       
  1606 
       
  1607 	switch (phy->type) {
       
  1608 	case e1000_phy_m88:
       
  1609 	case e1000_phy_gg82563:
       
  1610 	case e1000_phy_bm:
       
  1611 	case e1000_phy_82578:
       
  1612 		offset	= M88E1000_PHY_SPEC_STATUS;
       
  1613 		mask	= M88E1000_PSSR_DOWNSHIFT;
       
  1614 		break;
       
  1615 	case e1000_phy_igp_2:
       
  1616 	case e1000_phy_igp_3:
       
  1617 		offset	= IGP01E1000_PHY_LINK_HEALTH;
       
  1618 		mask	= IGP01E1000_PLHR_SS_DOWNGRADE;
       
  1619 		break;
       
  1620 	default:
       
  1621 		/* speed downshift not supported */
       
  1622 		phy->speed_downgraded = false;
       
  1623 		return 0;
       
  1624 	}
       
  1625 
       
  1626 	ret_val = e1e_rphy(hw, offset, &phy_data);
       
  1627 
       
  1628 	if (!ret_val)
       
  1629 		phy->speed_downgraded = !!(phy_data & mask);
       
  1630 
       
  1631 	return ret_val;
       
  1632 }
       
  1633 
       
  1634 /**
       
  1635  *  e1000_check_polarity_m88 - Checks the polarity.
       
  1636  *  @hw: pointer to the HW structure
       
  1637  *
       
  1638  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
       
  1639  *
       
  1640  *  Polarity is determined based on the PHY specific status register.
       
  1641  **/
       
  1642 s32 e1000_check_polarity_m88(struct e1000_hw *hw)
       
  1643 {
       
  1644 	struct e1000_phy_info *phy = &hw->phy;
       
  1645 	s32 ret_val;
       
  1646 	u16 data;
       
  1647 
       
  1648 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
       
  1649 
       
  1650 	if (!ret_val)
       
  1651 		phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
       
  1652 				      ? e1000_rev_polarity_reversed
       
  1653 				      : e1000_rev_polarity_normal;
       
  1654 
       
  1655 	return ret_val;
       
  1656 }
       
  1657 
       
  1658 /**
       
  1659  *  e1000_check_polarity_igp - Checks the polarity.
       
  1660  *  @hw: pointer to the HW structure
       
  1661  *
       
  1662  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
       
  1663  *
       
  1664  *  Polarity is determined based on the PHY port status register, and the
       
  1665  *  current speed (since there is no polarity at 100Mbps).
       
  1666  **/
       
  1667 s32 e1000_check_polarity_igp(struct e1000_hw *hw)
       
  1668 {
       
  1669 	struct e1000_phy_info *phy = &hw->phy;
       
  1670 	s32 ret_val;
       
  1671 	u16 data, offset, mask;
       
  1672 
       
  1673 	/* Polarity is determined based on the speed of
       
  1674 	 * our connection.
       
  1675 	 */
       
  1676 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
       
  1677 	if (ret_val)
       
  1678 		return ret_val;
       
  1679 
       
  1680 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
       
  1681 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
       
  1682 		offset	= IGP01E1000_PHY_PCS_INIT_REG;
       
  1683 		mask	= IGP01E1000_PHY_POLARITY_MASK;
       
  1684 	} else {
       
  1685 		/* This really only applies to 10Mbps since
       
  1686 		 * there is no polarity for 100Mbps (always 0).
       
  1687 		 */
       
  1688 		offset	= IGP01E1000_PHY_PORT_STATUS;
       
  1689 		mask	= IGP01E1000_PSSR_POLARITY_REVERSED;
       
  1690 	}
       
  1691 
       
  1692 	ret_val = e1e_rphy(hw, offset, &data);
       
  1693 
       
  1694 	if (!ret_val)
       
  1695 		phy->cable_polarity = (data & mask)
       
  1696 				      ? e1000_rev_polarity_reversed
       
  1697 				      : e1000_rev_polarity_normal;
       
  1698 
       
  1699 	return ret_val;
       
  1700 }
       
  1701 
       
  1702 /**
       
  1703  *  e1000_check_polarity_ife - Check cable polarity for IFE PHY
       
  1704  *  @hw: pointer to the HW structure
       
  1705  *
       
  1706  *  Polarity is determined on the polarity reversal feature being enabled.
       
  1707  **/
       
  1708 s32 e1000_check_polarity_ife(struct e1000_hw *hw)
       
  1709 {
       
  1710 	struct e1000_phy_info *phy = &hw->phy;
       
  1711 	s32 ret_val;
       
  1712 	u16 phy_data, offset, mask;
       
  1713 
       
  1714 	/* Polarity is determined based on the reversal feature being enabled.
       
  1715 	 */
       
  1716 	if (phy->polarity_correction) {
       
  1717 		offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
       
  1718 		mask = IFE_PESC_POLARITY_REVERSED;
       
  1719 	} else {
       
  1720 		offset = IFE_PHY_SPECIAL_CONTROL;
       
  1721 		mask = IFE_PSC_FORCE_POLARITY;
       
  1722 	}
       
  1723 
       
  1724 	ret_val = e1e_rphy(hw, offset, &phy_data);
       
  1725 
       
  1726 	if (!ret_val)
       
  1727 		phy->cable_polarity = (phy_data & mask)
       
  1728 		                       ? e1000_rev_polarity_reversed
       
  1729 		                       : e1000_rev_polarity_normal;
       
  1730 
       
  1731 	return ret_val;
       
  1732 }
       
  1733 
       
  1734 /**
       
  1735  *  e1000_wait_autoneg - Wait for auto-neg completion
       
  1736  *  @hw: pointer to the HW structure
       
  1737  *
       
  1738  *  Waits for auto-negotiation to complete or for the auto-negotiation time
       
  1739  *  limit to expire, which ever happens first.
       
  1740  **/
       
  1741 static s32 e1000_wait_autoneg(struct e1000_hw *hw)
       
  1742 {
       
  1743 	s32 ret_val = 0;
       
  1744 	u16 i, phy_status;
       
  1745 
       
  1746 	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
       
  1747 	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
       
  1748 		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
       
  1749 		if (ret_val)
       
  1750 			break;
       
  1751 		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
       
  1752 		if (ret_val)
       
  1753 			break;
       
  1754 		if (phy_status & MII_SR_AUTONEG_COMPLETE)
       
  1755 			break;
       
  1756 		msleep(100);
       
  1757 	}
       
  1758 
       
  1759 	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
       
  1760 	 * has completed.
       
  1761 	 */
       
  1762 	return ret_val;
       
  1763 }
       
  1764 
       
  1765 /**
       
  1766  *  e1000e_phy_has_link_generic - Polls PHY for link
       
  1767  *  @hw: pointer to the HW structure
       
  1768  *  @iterations: number of times to poll for link
       
  1769  *  @usec_interval: delay between polling attempts
       
  1770  *  @success: pointer to whether polling was successful or not
       
  1771  *
       
  1772  *  Polls the PHY status register for link, 'iterations' number of times.
       
  1773  **/
       
  1774 s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
       
  1775 			       u32 usec_interval, bool *success)
       
  1776 {
       
  1777 	s32 ret_val = 0;
       
  1778 	u16 i, phy_status;
       
  1779 
       
  1780 	for (i = 0; i < iterations; i++) {
       
  1781 		/* Some PHYs require the PHY_STATUS register to be read
       
  1782 		 * twice due to the link bit being sticky.  No harm doing
       
  1783 		 * it across the board.
       
  1784 		 */
       
  1785 		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
       
  1786 		if (ret_val)
       
  1787 			/* If the first read fails, another entity may have
       
  1788 			 * ownership of the resources, wait and try again to
       
  1789 			 * see if they have relinquished the resources yet.
       
  1790 			 */
       
  1791 			udelay(usec_interval);
       
  1792 		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
       
  1793 		if (ret_val)
       
  1794 			break;
       
  1795 		if (phy_status & MII_SR_LINK_STATUS)
       
  1796 			break;
       
  1797 		if (usec_interval >= 1000)
       
  1798 			mdelay(usec_interval/1000);
       
  1799 		else
       
  1800 			udelay(usec_interval);
       
  1801 	}
       
  1802 
       
  1803 	*success = (i < iterations);
       
  1804 
       
  1805 	return ret_val;
       
  1806 }
       
  1807 
       
  1808 /**
       
  1809  *  e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
       
  1810  *  @hw: pointer to the HW structure
       
  1811  *
       
  1812  *  Reads the PHY specific status register to retrieve the cable length
       
  1813  *  information.  The cable length is determined by averaging the minimum and
       
  1814  *  maximum values to get the "average" cable length.  The m88 PHY has four
       
  1815  *  possible cable length values, which are:
       
  1816  *	Register Value		Cable Length
       
  1817  *	0			< 50 meters
       
  1818  *	1			50 - 80 meters
       
  1819  *	2			80 - 110 meters
       
  1820  *	3			110 - 140 meters
       
  1821  *	4			> 140 meters
       
  1822  **/
       
  1823 s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
       
  1824 {
       
  1825 	struct e1000_phy_info *phy = &hw->phy;
       
  1826 	s32 ret_val;
       
  1827 	u16 phy_data, index;
       
  1828 
       
  1829 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
       
  1830 	if (ret_val)
       
  1831 		return ret_val;
       
  1832 
       
  1833 	index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
       
  1834 	        M88E1000_PSSR_CABLE_LENGTH_SHIFT;
       
  1835 
       
  1836 	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
       
  1837 		return -E1000_ERR_PHY;
       
  1838 
       
  1839 	phy->min_cable_length = e1000_m88_cable_length_table[index];
       
  1840 	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
       
  1841 
       
  1842 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
       
  1843 
       
  1844 	return 0;
       
  1845 }
       
  1846 
       
  1847 /**
       
  1848  *  e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
       
  1849  *  @hw: pointer to the HW structure
       
  1850  *
       
  1851  *  The automatic gain control (agc) normalizes the amplitude of the
       
  1852  *  received signal, adjusting for the attenuation produced by the
       
  1853  *  cable.  By reading the AGC registers, which represent the
       
  1854  *  combination of coarse and fine gain value, the value can be put
       
  1855  *  into a lookup table to obtain the approximate cable length
       
  1856  *  for each channel.
       
  1857  **/
       
  1858 s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
       
  1859 {
       
  1860 	struct e1000_phy_info *phy = &hw->phy;
       
  1861 	s32 ret_val;
       
  1862 	u16 phy_data, i, agc_value = 0;
       
  1863 	u16 cur_agc_index, max_agc_index = 0;
       
  1864 	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
       
  1865 	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
       
  1866 	       IGP02E1000_PHY_AGC_A,
       
  1867 	       IGP02E1000_PHY_AGC_B,
       
  1868 	       IGP02E1000_PHY_AGC_C,
       
  1869 	       IGP02E1000_PHY_AGC_D
       
  1870 	};
       
  1871 
       
  1872 	/* Read the AGC registers for all channels */
       
  1873 	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
       
  1874 		ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
       
  1875 		if (ret_val)
       
  1876 			return ret_val;
       
  1877 
       
  1878 		/* Getting bits 15:9, which represent the combination of
       
  1879 		 * coarse and fine gain values.  The result is a number
       
  1880 		 * that can be put into the lookup table to obtain the
       
  1881 		 * approximate cable length.
       
  1882 		 */
       
  1883 		cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
       
  1884 				IGP02E1000_AGC_LENGTH_MASK;
       
  1885 
       
  1886 		/* Array index bound check. */
       
  1887 		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
       
  1888 		    (cur_agc_index == 0))
       
  1889 			return -E1000_ERR_PHY;
       
  1890 
       
  1891 		/* Remove min & max AGC values from calculation. */
       
  1892 		if (e1000_igp_2_cable_length_table[min_agc_index] >
       
  1893 		    e1000_igp_2_cable_length_table[cur_agc_index])
       
  1894 			min_agc_index = cur_agc_index;
       
  1895 		if (e1000_igp_2_cable_length_table[max_agc_index] <
       
  1896 		    e1000_igp_2_cable_length_table[cur_agc_index])
       
  1897 			max_agc_index = cur_agc_index;
       
  1898 
       
  1899 		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
       
  1900 	}
       
  1901 
       
  1902 	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
       
  1903 		      e1000_igp_2_cable_length_table[max_agc_index]);
       
  1904 	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
       
  1905 
       
  1906 	/* Calculate cable length with the error range of +/- 10 meters. */
       
  1907 	phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
       
  1908 				 (agc_value - IGP02E1000_AGC_RANGE) : 0;
       
  1909 	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
       
  1910 
       
  1911 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
       
  1912 
       
  1913 	return 0;
       
  1914 }
       
  1915 
       
  1916 /**
       
  1917  *  e1000e_get_phy_info_m88 - Retrieve PHY information
       
  1918  *  @hw: pointer to the HW structure
       
  1919  *
       
  1920  *  Valid for only copper links.  Read the PHY status register (sticky read)
       
  1921  *  to verify that link is up.  Read the PHY special control register to
       
  1922  *  determine the polarity and 10base-T extended distance.  Read the PHY
       
  1923  *  special status register to determine MDI/MDIx and current speed.  If
       
  1924  *  speed is 1000, then determine cable length, local and remote receiver.
       
  1925  **/
       
  1926 s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
       
  1927 {
       
  1928 	struct e1000_phy_info *phy = &hw->phy;
       
  1929 	s32  ret_val;
       
  1930 	u16 phy_data;
       
  1931 	bool link;
       
  1932 
       
  1933 	if (phy->media_type != e1000_media_type_copper) {
       
  1934 		e_dbg("Phy info is only valid for copper media\n");
       
  1935 		return -E1000_ERR_CONFIG;
       
  1936 	}
       
  1937 
       
  1938 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
       
  1939 	if (ret_val)
       
  1940 		return ret_val;
       
  1941 
       
  1942 	if (!link) {
       
  1943 		e_dbg("Phy info is only valid if link is up\n");
       
  1944 		return -E1000_ERR_CONFIG;
       
  1945 	}
       
  1946 
       
  1947 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
       
  1948 	if (ret_val)
       
  1949 		return ret_val;
       
  1950 
       
  1951 	phy->polarity_correction = !!(phy_data &
       
  1952 				      M88E1000_PSCR_POLARITY_REVERSAL);
       
  1953 
       
  1954 	ret_val = e1000_check_polarity_m88(hw);
       
  1955 	if (ret_val)
       
  1956 		return ret_val;
       
  1957 
       
  1958 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
       
  1959 	if (ret_val)
       
  1960 		return ret_val;
       
  1961 
       
  1962 	phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX);
       
  1963 
       
  1964 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
       
  1965 		ret_val = e1000_get_cable_length(hw);
       
  1966 		if (ret_val)
       
  1967 			return ret_val;
       
  1968 
       
  1969 		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
       
  1970 		if (ret_val)
       
  1971 			return ret_val;
       
  1972 
       
  1973 		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
       
  1974 				? e1000_1000t_rx_status_ok
       
  1975 				: e1000_1000t_rx_status_not_ok;
       
  1976 
       
  1977 		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
       
  1978 				 ? e1000_1000t_rx_status_ok
       
  1979 				 : e1000_1000t_rx_status_not_ok;
       
  1980 	} else {
       
  1981 		/* Set values to "undefined" */
       
  1982 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
       
  1983 		phy->local_rx = e1000_1000t_rx_status_undefined;
       
  1984 		phy->remote_rx = e1000_1000t_rx_status_undefined;
       
  1985 	}
       
  1986 
       
  1987 	return ret_val;
       
  1988 }
       
  1989 
       
  1990 /**
       
  1991  *  e1000e_get_phy_info_igp - Retrieve igp PHY information
       
  1992  *  @hw: pointer to the HW structure
       
  1993  *
       
  1994  *  Read PHY status to determine if link is up.  If link is up, then
       
  1995  *  set/determine 10base-T extended distance and polarity correction.  Read
       
  1996  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
       
  1997  *  determine on the cable length, local and remote receiver.
       
  1998  **/
       
  1999 s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
       
  2000 {
       
  2001 	struct e1000_phy_info *phy = &hw->phy;
       
  2002 	s32 ret_val;
       
  2003 	u16 data;
       
  2004 	bool link;
       
  2005 
       
  2006 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
       
  2007 	if (ret_val)
       
  2008 		return ret_val;
       
  2009 
       
  2010 	if (!link) {
       
  2011 		e_dbg("Phy info is only valid if link is up\n");
       
  2012 		return -E1000_ERR_CONFIG;
       
  2013 	}
       
  2014 
       
  2015 	phy->polarity_correction = true;
       
  2016 
       
  2017 	ret_val = e1000_check_polarity_igp(hw);
       
  2018 	if (ret_val)
       
  2019 		return ret_val;
       
  2020 
       
  2021 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
       
  2022 	if (ret_val)
       
  2023 		return ret_val;
       
  2024 
       
  2025 	phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX);
       
  2026 
       
  2027 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
       
  2028 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
       
  2029 		ret_val = e1000_get_cable_length(hw);
       
  2030 		if (ret_val)
       
  2031 			return ret_val;
       
  2032 
       
  2033 		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
       
  2034 		if (ret_val)
       
  2035 			return ret_val;
       
  2036 
       
  2037 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
       
  2038 				? e1000_1000t_rx_status_ok
       
  2039 				: e1000_1000t_rx_status_not_ok;
       
  2040 
       
  2041 		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
       
  2042 				 ? e1000_1000t_rx_status_ok
       
  2043 				 : e1000_1000t_rx_status_not_ok;
       
  2044 	} else {
       
  2045 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
       
  2046 		phy->local_rx = e1000_1000t_rx_status_undefined;
       
  2047 		phy->remote_rx = e1000_1000t_rx_status_undefined;
       
  2048 	}
       
  2049 
       
  2050 	return ret_val;
       
  2051 }
       
  2052 
       
  2053 /**
       
  2054  *  e1000_get_phy_info_ife - Retrieves various IFE PHY states
       
  2055  *  @hw: pointer to the HW structure
       
  2056  *
       
  2057  *  Populates "phy" structure with various feature states.
       
  2058  **/
       
  2059 s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
       
  2060 {
       
  2061 	struct e1000_phy_info *phy = &hw->phy;
       
  2062 	s32 ret_val;
       
  2063 	u16 data;
       
  2064 	bool link;
       
  2065 
       
  2066 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
       
  2067 	if (ret_val)
       
  2068 		return ret_val;
       
  2069 
       
  2070 	if (!link) {
       
  2071 		e_dbg("Phy info is only valid if link is up\n");
       
  2072 		return -E1000_ERR_CONFIG;
       
  2073 	}
       
  2074 
       
  2075 	ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
       
  2076 	if (ret_val)
       
  2077 		return ret_val;
       
  2078 	phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);
       
  2079 
       
  2080 	if (phy->polarity_correction) {
       
  2081 		ret_val = e1000_check_polarity_ife(hw);
       
  2082 		if (ret_val)
       
  2083 			return ret_val;
       
  2084 	} else {
       
  2085 		/* Polarity is forced */
       
  2086 		phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
       
  2087 		                      ? e1000_rev_polarity_reversed
       
  2088 		                      : e1000_rev_polarity_normal;
       
  2089 	}
       
  2090 
       
  2091 	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
       
  2092 	if (ret_val)
       
  2093 		return ret_val;
       
  2094 
       
  2095 	phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);
       
  2096 
       
  2097 	/* The following parameters are undefined for 10/100 operation. */
       
  2098 	phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
       
  2099 	phy->local_rx = e1000_1000t_rx_status_undefined;
       
  2100 	phy->remote_rx = e1000_1000t_rx_status_undefined;
       
  2101 
       
  2102 	return 0;
       
  2103 }
       
  2104 
       
  2105 /**
       
  2106  *  e1000e_phy_sw_reset - PHY software reset
       
  2107  *  @hw: pointer to the HW structure
       
  2108  *
       
  2109  *  Does a software reset of the PHY by reading the PHY control register and
       
  2110  *  setting/write the control register reset bit to the PHY.
       
  2111  **/
       
  2112 s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
       
  2113 {
       
  2114 	s32 ret_val;
       
  2115 	u16 phy_ctrl;
       
  2116 
       
  2117 	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
       
  2118 	if (ret_val)
       
  2119 		return ret_val;
       
  2120 
       
  2121 	phy_ctrl |= MII_CR_RESET;
       
  2122 	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
       
  2123 	if (ret_val)
       
  2124 		return ret_val;
       
  2125 
       
  2126 	udelay(1);
       
  2127 
       
  2128 	return ret_val;
       
  2129 }
       
  2130 
       
  2131 /**
       
  2132  *  e1000e_phy_hw_reset_generic - PHY hardware reset
       
  2133  *  @hw: pointer to the HW structure
       
  2134  *
       
  2135  *  Verify the reset block is not blocking us from resetting.  Acquire
       
  2136  *  semaphore (if necessary) and read/set/write the device control reset
       
  2137  *  bit in the PHY.  Wait the appropriate delay time for the device to
       
  2138  *  reset and release the semaphore (if necessary).
       
  2139  **/
       
  2140 s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
       
  2141 {
       
  2142 	struct e1000_phy_info *phy = &hw->phy;
       
  2143 	s32 ret_val;
       
  2144 	u32 ctrl;
       
  2145 
       
  2146 	if (phy->ops.check_reset_block) {
       
  2147 		ret_val = phy->ops.check_reset_block(hw);
       
  2148 		if (ret_val)
       
  2149 			return 0;
       
  2150 	}
       
  2151 
       
  2152 	ret_val = phy->ops.acquire(hw);
       
  2153 	if (ret_val)
       
  2154 		return ret_val;
       
  2155 
       
  2156 	ctrl = er32(CTRL);
       
  2157 	ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
       
  2158 	e1e_flush();
       
  2159 
       
  2160 	udelay(phy->reset_delay_us);
       
  2161 
       
  2162 	ew32(CTRL, ctrl);
       
  2163 	e1e_flush();
       
  2164 
       
  2165 	udelay(150);
       
  2166 
       
  2167 	phy->ops.release(hw);
       
  2168 
       
  2169 	return e1000_get_phy_cfg_done(hw);
       
  2170 }
       
  2171 
       
  2172 /**
       
  2173  *  e1000e_get_cfg_done - Generic configuration done
       
  2174  *  @hw: pointer to the HW structure
       
  2175  *
       
  2176  *  Generic function to wait 10 milli-seconds for configuration to complete
       
  2177  *  and return success.
       
  2178  **/
       
  2179 s32 e1000e_get_cfg_done(struct e1000_hw *hw)
       
  2180 {
       
  2181 	mdelay(10);
       
  2182 
       
  2183 	return 0;
       
  2184 }
       
  2185 
       
  2186 /**
       
  2187  *  e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
       
  2188  *  @hw: pointer to the HW structure
       
  2189  *
       
  2190  *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
       
  2191  **/
       
  2192 s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
       
  2193 {
       
  2194 	e_dbg("Running IGP 3 PHY init script\n");
       
  2195 
       
  2196 	/* PHY init IGP 3 */
       
  2197 	/* Enable rise/fall, 10-mode work in class-A */
       
  2198 	e1e_wphy(hw, 0x2F5B, 0x9018);
       
  2199 	/* Remove all caps from Replica path filter */
       
  2200 	e1e_wphy(hw, 0x2F52, 0x0000);
       
  2201 	/* Bias trimming for ADC, AFE and Driver (Default) */
       
  2202 	e1e_wphy(hw, 0x2FB1, 0x8B24);
       
  2203 	/* Increase Hybrid poly bias */
       
  2204 	e1e_wphy(hw, 0x2FB2, 0xF8F0);
       
  2205 	/* Add 4% to Tx amplitude in Gig mode */
       
  2206 	e1e_wphy(hw, 0x2010, 0x10B0);
       
  2207 	/* Disable trimming (TTT) */
       
  2208 	e1e_wphy(hw, 0x2011, 0x0000);
       
  2209 	/* Poly DC correction to 94.6% + 2% for all channels */
       
  2210 	e1e_wphy(hw, 0x20DD, 0x249A);
       
  2211 	/* ABS DC correction to 95.9% */
       
  2212 	e1e_wphy(hw, 0x20DE, 0x00D3);
       
  2213 	/* BG temp curve trim */
       
  2214 	e1e_wphy(hw, 0x28B4, 0x04CE);
       
  2215 	/* Increasing ADC OPAMP stage 1 currents to max */
       
  2216 	e1e_wphy(hw, 0x2F70, 0x29E4);
       
  2217 	/* Force 1000 ( required for enabling PHY regs configuration) */
       
  2218 	e1e_wphy(hw, 0x0000, 0x0140);
       
  2219 	/* Set upd_freq to 6 */
       
  2220 	e1e_wphy(hw, 0x1F30, 0x1606);
       
  2221 	/* Disable NPDFE */
       
  2222 	e1e_wphy(hw, 0x1F31, 0xB814);
       
  2223 	/* Disable adaptive fixed FFE (Default) */
       
  2224 	e1e_wphy(hw, 0x1F35, 0x002A);
       
  2225 	/* Enable FFE hysteresis */
       
  2226 	e1e_wphy(hw, 0x1F3E, 0x0067);
       
  2227 	/* Fixed FFE for short cable lengths */
       
  2228 	e1e_wphy(hw, 0x1F54, 0x0065);
       
  2229 	/* Fixed FFE for medium cable lengths */
       
  2230 	e1e_wphy(hw, 0x1F55, 0x002A);
       
  2231 	/* Fixed FFE for long cable lengths */
       
  2232 	e1e_wphy(hw, 0x1F56, 0x002A);
       
  2233 	/* Enable Adaptive Clip Threshold */
       
  2234 	e1e_wphy(hw, 0x1F72, 0x3FB0);
       
  2235 	/* AHT reset limit to 1 */
       
  2236 	e1e_wphy(hw, 0x1F76, 0xC0FF);
       
  2237 	/* Set AHT master delay to 127 msec */
       
  2238 	e1e_wphy(hw, 0x1F77, 0x1DEC);
       
  2239 	/* Set scan bits for AHT */
       
  2240 	e1e_wphy(hw, 0x1F78, 0xF9EF);
       
  2241 	/* Set AHT Preset bits */
       
  2242 	e1e_wphy(hw, 0x1F79, 0x0210);
       
  2243 	/* Change integ_factor of channel A to 3 */
       
  2244 	e1e_wphy(hw, 0x1895, 0x0003);
       
  2245 	/* Change prop_factor of channels BCD to 8 */
       
  2246 	e1e_wphy(hw, 0x1796, 0x0008);
       
  2247 	/* Change cg_icount + enable integbp for channels BCD */
       
  2248 	e1e_wphy(hw, 0x1798, 0xD008);
       
  2249 	/* Change cg_icount + enable integbp + change prop_factor_master
       
  2250 	 * to 8 for channel A
       
  2251 	 */
       
  2252 	e1e_wphy(hw, 0x1898, 0xD918);
       
  2253 	/* Disable AHT in Slave mode on channel A */
       
  2254 	e1e_wphy(hw, 0x187A, 0x0800);
       
  2255 	/* Enable LPLU and disable AN to 1000 in non-D0a states,
       
  2256 	 * Enable SPD+B2B
       
  2257 	 */
       
  2258 	e1e_wphy(hw, 0x0019, 0x008D);
       
  2259 	/* Enable restart AN on an1000_dis change */
       
  2260 	e1e_wphy(hw, 0x001B, 0x2080);
       
  2261 	/* Enable wh_fifo read clock in 10/100 modes */
       
  2262 	e1e_wphy(hw, 0x0014, 0x0045);
       
  2263 	/* Restart AN, Speed selection is 1000 */
       
  2264 	e1e_wphy(hw, 0x0000, 0x1340);
       
  2265 
       
  2266 	return 0;
       
  2267 }
       
  2268 
       
  2269 /* Internal function pointers */
       
  2270 
       
  2271 /**
       
  2272  *  e1000_get_phy_cfg_done - Generic PHY configuration done
       
  2273  *  @hw: pointer to the HW structure
       
  2274  *
       
  2275  *  Return success if silicon family did not implement a family specific
       
  2276  *  get_cfg_done function.
       
  2277  **/
       
  2278 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
       
  2279 {
       
  2280 	if (hw->phy.ops.get_cfg_done)
       
  2281 		return hw->phy.ops.get_cfg_done(hw);
       
  2282 
       
  2283 	return 0;
       
  2284 }
       
  2285 
       
  2286 /**
       
  2287  *  e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
       
  2288  *  @hw: pointer to the HW structure
       
  2289  *
       
  2290  *  When the silicon family has not implemented a forced speed/duplex
       
  2291  *  function for the PHY, simply return 0.
       
  2292  **/
       
  2293 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
       
  2294 {
       
  2295 	if (hw->phy.ops.force_speed_duplex)
       
  2296 		return hw->phy.ops.force_speed_duplex(hw);
       
  2297 
       
  2298 	return 0;
       
  2299 }
       
  2300 
       
  2301 /**
       
  2302  *  e1000e_get_phy_type_from_id - Get PHY type from id
       
  2303  *  @phy_id: phy_id read from the phy
       
  2304  *
       
  2305  *  Returns the phy type from the id.
       
  2306  **/
       
  2307 enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
       
  2308 {
       
  2309 	enum e1000_phy_type phy_type = e1000_phy_unknown;
       
  2310 
       
  2311 	switch (phy_id) {
       
  2312 	case M88E1000_I_PHY_ID:
       
  2313 	case M88E1000_E_PHY_ID:
       
  2314 	case M88E1111_I_PHY_ID:
       
  2315 	case M88E1011_I_PHY_ID:
       
  2316 		phy_type = e1000_phy_m88;
       
  2317 		break;
       
  2318 	case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
       
  2319 		phy_type = e1000_phy_igp_2;
       
  2320 		break;
       
  2321 	case GG82563_E_PHY_ID:
       
  2322 		phy_type = e1000_phy_gg82563;
       
  2323 		break;
       
  2324 	case IGP03E1000_E_PHY_ID:
       
  2325 		phy_type = e1000_phy_igp_3;
       
  2326 		break;
       
  2327 	case IFE_E_PHY_ID:
       
  2328 	case IFE_PLUS_E_PHY_ID:
       
  2329 	case IFE_C_E_PHY_ID:
       
  2330 		phy_type = e1000_phy_ife;
       
  2331 		break;
       
  2332 	case BME1000_E_PHY_ID:
       
  2333 	case BME1000_E_PHY_ID_R2:
       
  2334 		phy_type = e1000_phy_bm;
       
  2335 		break;
       
  2336 	case I82578_E_PHY_ID:
       
  2337 		phy_type = e1000_phy_82578;
       
  2338 		break;
       
  2339 	case I82577_E_PHY_ID:
       
  2340 		phy_type = e1000_phy_82577;
       
  2341 		break;
       
  2342 	case I82579_E_PHY_ID:
       
  2343 		phy_type = e1000_phy_82579;
       
  2344 		break;
       
  2345 	case I217_E_PHY_ID:
       
  2346 		phy_type = e1000_phy_i217;
       
  2347 		break;
       
  2348 	default:
       
  2349 		phy_type = e1000_phy_unknown;
       
  2350 		break;
       
  2351 	}
       
  2352 	return phy_type;
       
  2353 }
       
  2354 
       
  2355 /**
       
  2356  *  e1000e_determine_phy_address - Determines PHY address.
       
  2357  *  @hw: pointer to the HW structure
       
  2358  *
       
  2359  *  This uses a trial and error method to loop through possible PHY
       
  2360  *  addresses. It tests each by reading the PHY ID registers and
       
  2361  *  checking for a match.
       
  2362  **/
       
  2363 s32 e1000e_determine_phy_address(struct e1000_hw *hw)
       
  2364 {
       
  2365 	u32 phy_addr = 0;
       
  2366 	u32 i;
       
  2367 	enum e1000_phy_type phy_type = e1000_phy_unknown;
       
  2368 
       
  2369 	hw->phy.id = phy_type;
       
  2370 
       
  2371 	for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
       
  2372 		hw->phy.addr = phy_addr;
       
  2373 		i = 0;
       
  2374 
       
  2375 		do {
       
  2376 			e1000e_get_phy_id(hw);
       
  2377 			phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
       
  2378 
       
  2379 			/* If phy_type is valid, break - we found our
       
  2380 			 * PHY address
       
  2381 			 */
       
  2382 			if (phy_type  != e1000_phy_unknown)
       
  2383 				return 0;
       
  2384 
       
  2385 			usleep_range(1000, 2000);
       
  2386 			i++;
       
  2387 		} while (i < 10);
       
  2388 	}
       
  2389 
       
  2390 	return -E1000_ERR_PHY_TYPE;
       
  2391 }
       
  2392 
       
  2393 /**
       
  2394  *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
       
  2395  *  @page: page to access
       
  2396  *
       
  2397  *  Returns the phy address for the page requested.
       
  2398  **/
       
  2399 static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
       
  2400 {
       
  2401 	u32 phy_addr = 2;
       
  2402 
       
  2403 	if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
       
  2404 		phy_addr = 1;
       
  2405 
       
  2406 	return phy_addr;
       
  2407 }
       
  2408 
       
  2409 /**
       
  2410  *  e1000e_write_phy_reg_bm - Write BM PHY register
       
  2411  *  @hw: pointer to the HW structure
       
  2412  *  @offset: register offset to write to
       
  2413  *  @data: data to write at register offset
       
  2414  *
       
  2415  *  Acquires semaphore, if necessary, then writes the data to PHY register
       
  2416  *  at the offset.  Release any acquired semaphores before exiting.
       
  2417  **/
       
  2418 s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
       
  2419 {
       
  2420 	s32 ret_val;
       
  2421 	u32 page = offset >> IGP_PAGE_SHIFT;
       
  2422 
       
  2423 	ret_val = hw->phy.ops.acquire(hw);
       
  2424 	if (ret_val)
       
  2425 		return ret_val;
       
  2426 
       
  2427 	/* Page 800 works differently than the rest so it has its own func */
       
  2428 	if (page == BM_WUC_PAGE) {
       
  2429 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
       
  2430 							 false, false);
       
  2431 		goto release;
       
  2432 	}
       
  2433 
       
  2434 	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
       
  2435 
       
  2436 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
       
  2437 		u32 page_shift, page_select;
       
  2438 
       
  2439 		/* Page select is register 31 for phy address 1 and 22 for
       
  2440 		 * phy address 2 and 3. Page select is shifted only for
       
  2441 		 * phy address 1.
       
  2442 		 */
       
  2443 		if (hw->phy.addr == 1) {
       
  2444 			page_shift = IGP_PAGE_SHIFT;
       
  2445 			page_select = IGP01E1000_PHY_PAGE_SELECT;
       
  2446 		} else {
       
  2447 			page_shift = 0;
       
  2448 			page_select = BM_PHY_PAGE_SELECT;
       
  2449 		}
       
  2450 
       
  2451 		/* Page is shifted left, PHY expects (page x 32) */
       
  2452 		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
       
  2453 		                                    (page << page_shift));
       
  2454 		if (ret_val)
       
  2455 			goto release;
       
  2456 	}
       
  2457 
       
  2458 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
       
  2459 	                                    data);
       
  2460 
       
  2461 release:
       
  2462 	hw->phy.ops.release(hw);
       
  2463 	return ret_val;
       
  2464 }
       
  2465 
       
  2466 /**
       
  2467  *  e1000e_read_phy_reg_bm - Read BM PHY register
       
  2468  *  @hw: pointer to the HW structure
       
  2469  *  @offset: register offset to be read
       
  2470  *  @data: pointer to the read data
       
  2471  *
       
  2472  *  Acquires semaphore, if necessary, then reads the PHY register at offset
       
  2473  *  and storing the retrieved information in data.  Release any acquired
       
  2474  *  semaphores before exiting.
       
  2475  **/
       
  2476 s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
       
  2477 {
       
  2478 	s32 ret_val;
       
  2479 	u32 page = offset >> IGP_PAGE_SHIFT;
       
  2480 
       
  2481 	ret_val = hw->phy.ops.acquire(hw);
       
  2482 	if (ret_val)
       
  2483 		return ret_val;
       
  2484 
       
  2485 	/* Page 800 works differently than the rest so it has its own func */
       
  2486 	if (page == BM_WUC_PAGE) {
       
  2487 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
       
  2488 							 true, false);
       
  2489 		goto release;
       
  2490 	}
       
  2491 
       
  2492 	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
       
  2493 
       
  2494 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
       
  2495 		u32 page_shift, page_select;
       
  2496 
       
  2497 		/* Page select is register 31 for phy address 1 and 22 for
       
  2498 		 * phy address 2 and 3. Page select is shifted only for
       
  2499 		 * phy address 1.
       
  2500 		 */
       
  2501 		if (hw->phy.addr == 1) {
       
  2502 			page_shift = IGP_PAGE_SHIFT;
       
  2503 			page_select = IGP01E1000_PHY_PAGE_SELECT;
       
  2504 		} else {
       
  2505 			page_shift = 0;
       
  2506 			page_select = BM_PHY_PAGE_SELECT;
       
  2507 		}
       
  2508 
       
  2509 		/* Page is shifted left, PHY expects (page x 32) */
       
  2510 		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
       
  2511 		                                    (page << page_shift));
       
  2512 		if (ret_val)
       
  2513 			goto release;
       
  2514 	}
       
  2515 
       
  2516 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
       
  2517 	                                   data);
       
  2518 release:
       
  2519 	hw->phy.ops.release(hw);
       
  2520 	return ret_val;
       
  2521 }
       
  2522 
       
  2523 /**
       
  2524  *  e1000e_read_phy_reg_bm2 - Read BM PHY register
       
  2525  *  @hw: pointer to the HW structure
       
  2526  *  @offset: register offset to be read
       
  2527  *  @data: pointer to the read data
       
  2528  *
       
  2529  *  Acquires semaphore, if necessary, then reads the PHY register at offset
       
  2530  *  and storing the retrieved information in data.  Release any acquired
       
  2531  *  semaphores before exiting.
       
  2532  **/
       
  2533 s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
       
  2534 {
       
  2535 	s32 ret_val;
       
  2536 	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
       
  2537 
       
  2538 	ret_val = hw->phy.ops.acquire(hw);
       
  2539 	if (ret_val)
       
  2540 		return ret_val;
       
  2541 
       
  2542 	/* Page 800 works differently than the rest so it has its own func */
       
  2543 	if (page == BM_WUC_PAGE) {
       
  2544 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
       
  2545 							 true, false);
       
  2546 		goto release;
       
  2547 	}
       
  2548 
       
  2549 	hw->phy.addr = 1;
       
  2550 
       
  2551 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
       
  2552 
       
  2553 		/* Page is shifted left, PHY expects (page x 32) */
       
  2554 		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
       
  2555 						    page);
       
  2556 
       
  2557 		if (ret_val)
       
  2558 			goto release;
       
  2559 	}
       
  2560 
       
  2561 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
       
  2562 					   data);
       
  2563 release:
       
  2564 	hw->phy.ops.release(hw);
       
  2565 	return ret_val;
       
  2566 }
       
  2567 
       
  2568 /**
       
  2569  *  e1000e_write_phy_reg_bm2 - Write BM PHY register
       
  2570  *  @hw: pointer to the HW structure
       
  2571  *  @offset: register offset to write to
       
  2572  *  @data: data to write at register offset
       
  2573  *
       
  2574  *  Acquires semaphore, if necessary, then writes the data to PHY register
       
  2575  *  at the offset.  Release any acquired semaphores before exiting.
       
  2576  **/
       
  2577 s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
       
  2578 {
       
  2579 	s32 ret_val;
       
  2580 	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
       
  2581 
       
  2582 	ret_val = hw->phy.ops.acquire(hw);
       
  2583 	if (ret_val)
       
  2584 		return ret_val;
       
  2585 
       
  2586 	/* Page 800 works differently than the rest so it has its own func */
       
  2587 	if (page == BM_WUC_PAGE) {
       
  2588 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
       
  2589 							 false, false);
       
  2590 		goto release;
       
  2591 	}
       
  2592 
       
  2593 	hw->phy.addr = 1;
       
  2594 
       
  2595 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
       
  2596 		/* Page is shifted left, PHY expects (page x 32) */
       
  2597 		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
       
  2598 						    page);
       
  2599 
       
  2600 		if (ret_val)
       
  2601 			goto release;
       
  2602 	}
       
  2603 
       
  2604 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
       
  2605 					    data);
       
  2606 
       
  2607 release:
       
  2608 	hw->phy.ops.release(hw);
       
  2609 	return ret_val;
       
  2610 }
       
  2611 
       
  2612 /**
       
  2613  *  e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
       
  2614  *  @hw: pointer to the HW structure
       
  2615  *  @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
       
  2616  *
       
  2617  *  Assumes semaphore already acquired and phy_reg points to a valid memory
       
  2618  *  address to store contents of the BM_WUC_ENABLE_REG register.
       
  2619  **/
       
  2620 s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
       
  2621 {
       
  2622 	s32 ret_val;
       
  2623 	u16 temp;
       
  2624 
       
  2625 	/* All page select, port ctrl and wakeup registers use phy address 1 */
       
  2626 	hw->phy.addr = 1;
       
  2627 
       
  2628 	/* Select Port Control Registers page */
       
  2629 	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
       
  2630 	if (ret_val) {
       
  2631 		e_dbg("Could not set Port Control page\n");
       
  2632 		return ret_val;
       
  2633 	}
       
  2634 
       
  2635 	ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
       
  2636 	if (ret_val) {
       
  2637 		e_dbg("Could not read PHY register %d.%d\n",
       
  2638 		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
       
  2639 		return ret_val;
       
  2640 	}
       
  2641 
       
  2642 	/* Enable both PHY wakeup mode and Wakeup register page writes.
       
  2643 	 * Prevent a power state change by disabling ME and Host PHY wakeup.
       
  2644 	 */
       
  2645 	temp = *phy_reg;
       
  2646 	temp |= BM_WUC_ENABLE_BIT;
       
  2647 	temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
       
  2648 
       
  2649 	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
       
  2650 	if (ret_val) {
       
  2651 		e_dbg("Could not write PHY register %d.%d\n",
       
  2652 		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
       
  2653 		return ret_val;
       
  2654 	}
       
  2655 
       
  2656 	/* Select Host Wakeup Registers page - caller now able to write
       
  2657 	 * registers on the Wakeup registers page
       
  2658 	 */
       
  2659 	return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
       
  2660 }
       
  2661 
       
  2662 /**
       
  2663  *  e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
       
  2664  *  @hw: pointer to the HW structure
       
  2665  *  @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
       
  2666  *
       
  2667  *  Restore BM_WUC_ENABLE_REG to its original value.
       
  2668  *
       
  2669  *  Assumes semaphore already acquired and *phy_reg is the contents of the
       
  2670  *  BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
       
  2671  *  caller.
       
  2672  **/
       
  2673 s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
       
  2674 {
       
  2675 	s32 ret_val = 0;
       
  2676 
       
  2677 	/* Select Port Control Registers page */
       
  2678 	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
       
  2679 	if (ret_val) {
       
  2680 		e_dbg("Could not set Port Control page\n");
       
  2681 		return ret_val;
       
  2682 	}
       
  2683 
       
  2684 	/* Restore 769.17 to its original value */
       
  2685 	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
       
  2686 	if (ret_val)
       
  2687 		e_dbg("Could not restore PHY register %d.%d\n",
       
  2688 		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
       
  2689 
       
  2690 	return ret_val;
       
  2691 }
       
  2692 
       
  2693 /**
       
  2694  *  e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
       
  2695  *  @hw: pointer to the HW structure
       
  2696  *  @offset: register offset to be read or written
       
  2697  *  @data: pointer to the data to read or write
       
  2698  *  @read: determines if operation is read or write
       
  2699  *  @page_set: BM_WUC_PAGE already set and access enabled
       
  2700  *
       
  2701  *  Read the PHY register at offset and store the retrieved information in
       
  2702  *  data, or write data to PHY register at offset.  Note the procedure to
       
  2703  *  access the PHY wakeup registers is different than reading the other PHY
       
  2704  *  registers. It works as such:
       
  2705  *  1) Set 769.17.2 (page 769, register 17, bit 2) = 1
       
  2706  *  2) Set page to 800 for host (801 if we were manageability)
       
  2707  *  3) Write the address using the address opcode (0x11)
       
  2708  *  4) Read or write the data using the data opcode (0x12)
       
  2709  *  5) Restore 769.17.2 to its original value
       
  2710  *
       
  2711  *  Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
       
  2712  *  step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
       
  2713  *
       
  2714  *  Assumes semaphore is already acquired.  When page_set==true, assumes
       
  2715  *  the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
       
  2716  *  is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
       
  2717  **/
       
  2718 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
       
  2719 					  u16 *data, bool read, bool page_set)
       
  2720 {
       
  2721 	s32 ret_val;
       
  2722 	u16 reg = BM_PHY_REG_NUM(offset);
       
  2723 	u16 page = BM_PHY_REG_PAGE(offset);
       
  2724 	u16 phy_reg = 0;
       
  2725 
       
  2726 	/* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
       
  2727 	if ((hw->mac.type == e1000_pchlan) &&
       
  2728 	    (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
       
  2729 		e_dbg("Attempting to access page %d while gig enabled.\n",
       
  2730 		      page);
       
  2731 
       
  2732 	if (!page_set) {
       
  2733 		/* Enable access to PHY wakeup registers */
       
  2734 		ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
       
  2735 		if (ret_val) {
       
  2736 			e_dbg("Could not enable PHY wakeup reg access\n");
       
  2737 			return ret_val;
       
  2738 		}
       
  2739 	}
       
  2740 
       
  2741 	e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg);
       
  2742 
       
  2743 	/* Write the Wakeup register page offset value using opcode 0x11 */
       
  2744 	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
       
  2745 	if (ret_val) {
       
  2746 		e_dbg("Could not write address opcode to page %d\n", page);
       
  2747 		return ret_val;
       
  2748 	}
       
  2749 
       
  2750 	if (read) {
       
  2751 		/* Read the Wakeup register page value using opcode 0x12 */
       
  2752 		ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
       
  2753 		                                   data);
       
  2754 	} else {
       
  2755 		/* Write the Wakeup register page value using opcode 0x12 */
       
  2756 		ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
       
  2757 						    *data);
       
  2758 	}
       
  2759 
       
  2760 	if (ret_val) {
       
  2761 		e_dbg("Could not access PHY reg %d.%d\n", page, reg);
       
  2762 		return ret_val;
       
  2763 	}
       
  2764 
       
  2765 	if (!page_set)
       
  2766 		ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
       
  2767 
       
  2768 	return ret_val;
       
  2769 }
       
  2770 
       
  2771 /**
       
  2772  * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
       
  2773  * @hw: pointer to the HW structure
       
  2774  *
       
  2775  * In the case of a PHY power down to save power, or to turn off link during a
       
  2776  * driver unload, or wake on lan is not enabled, restore the link to previous
       
  2777  * settings.
       
  2778  **/
       
  2779 void e1000_power_up_phy_copper(struct e1000_hw *hw)
       
  2780 {
       
  2781 	u16 mii_reg = 0;
       
  2782 
       
  2783 	/* The PHY will retain its settings across a power down/up cycle */
       
  2784 	e1e_rphy(hw, PHY_CONTROL, &mii_reg);
       
  2785 	mii_reg &= ~MII_CR_POWER_DOWN;
       
  2786 	e1e_wphy(hw, PHY_CONTROL, mii_reg);
       
  2787 }
       
  2788 
       
  2789 /**
       
  2790  * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
       
  2791  * @hw: pointer to the HW structure
       
  2792  *
       
  2793  * In the case of a PHY power down to save power, or to turn off link during a
       
  2794  * driver unload, or wake on lan is not enabled, restore the link to previous
       
  2795  * settings.
       
  2796  **/
       
  2797 void e1000_power_down_phy_copper(struct e1000_hw *hw)
       
  2798 {
       
  2799 	u16 mii_reg = 0;
       
  2800 
       
  2801 	/* The PHY will retain its settings across a power down/up cycle */
       
  2802 	e1e_rphy(hw, PHY_CONTROL, &mii_reg);
       
  2803 	mii_reg |= MII_CR_POWER_DOWN;
       
  2804 	e1e_wphy(hw, PHY_CONTROL, mii_reg);
       
  2805 	usleep_range(1000, 2000);
       
  2806 }
       
  2807 
       
  2808 /**
       
  2809  *  e1000e_commit_phy - Soft PHY reset
       
  2810  *  @hw: pointer to the HW structure
       
  2811  *
       
  2812  *  Performs a soft PHY reset on those that apply. This is a function pointer
       
  2813  *  entry point called by drivers.
       
  2814  **/
       
  2815 s32 e1000e_commit_phy(struct e1000_hw *hw)
       
  2816 {
       
  2817 	if (hw->phy.ops.commit)
       
  2818 		return hw->phy.ops.commit(hw);
       
  2819 
       
  2820 	return 0;
       
  2821 }
       
  2822 
       
  2823 /**
       
  2824  *  e1000_set_d0_lplu_state - Sets low power link up state for D0
       
  2825  *  @hw: pointer to the HW structure
       
  2826  *  @active: boolean used to enable/disable lplu
       
  2827  *
       
  2828  *  Success returns 0, Failure returns 1
       
  2829  *
       
  2830  *  The low power link up (lplu) state is set to the power management level D0
       
  2831  *  and SmartSpeed is disabled when active is true, else clear lplu for D0
       
  2832  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
       
  2833  *  is used during Dx states where the power conservation is most important.
       
  2834  *  During driver activity, SmartSpeed should be enabled so performance is
       
  2835  *  maintained.  This is a function pointer entry point called by drivers.
       
  2836  **/
       
  2837 static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
       
  2838 {
       
  2839 	if (hw->phy.ops.set_d0_lplu_state)
       
  2840 		return hw->phy.ops.set_d0_lplu_state(hw, active);
       
  2841 
       
  2842 	return 0;
       
  2843 }
       
  2844 
       
  2845 /**
       
  2846  *  __e1000_read_phy_reg_hv -  Read HV PHY register
       
  2847  *  @hw: pointer to the HW structure
       
  2848  *  @offset: register offset to be read
       
  2849  *  @data: pointer to the read data
       
  2850  *  @locked: semaphore has already been acquired or not
       
  2851  *
       
  2852  *  Acquires semaphore, if necessary, then reads the PHY register at offset
       
  2853  *  and stores the retrieved information in data.  Release any acquired
       
  2854  *  semaphore before exiting.
       
  2855  **/
       
  2856 static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
       
  2857 				   bool locked, bool page_set)
       
  2858 {
       
  2859 	s32 ret_val;
       
  2860 	u16 page = BM_PHY_REG_PAGE(offset);
       
  2861 	u16 reg = BM_PHY_REG_NUM(offset);
       
  2862 	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
       
  2863 
       
  2864 	if (!locked) {
       
  2865 		ret_val = hw->phy.ops.acquire(hw);
       
  2866 		if (ret_val)
       
  2867 			return ret_val;
       
  2868 	}
       
  2869 
       
  2870 	/* Page 800 works differently than the rest so it has its own func */
       
  2871 	if (page == BM_WUC_PAGE) {
       
  2872 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
       
  2873 							 true, page_set);
       
  2874 		goto out;
       
  2875 	}
       
  2876 
       
  2877 	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
       
  2878 		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
       
  2879 		                                         data, true);
       
  2880 		goto out;
       
  2881 	}
       
  2882 
       
  2883 	if (!page_set) {
       
  2884 		if (page == HV_INTC_FC_PAGE_START)
       
  2885 			page = 0;
       
  2886 
       
  2887 		if (reg > MAX_PHY_MULTI_PAGE_REG) {
       
  2888 			/* Page is shifted left, PHY expects (page x 32) */
       
  2889 			ret_val = e1000_set_page_igp(hw,
       
  2890 						     (page << IGP_PAGE_SHIFT));
       
  2891 
       
  2892 			hw->phy.addr = phy_addr;
       
  2893 
       
  2894 			if (ret_val)
       
  2895 				goto out;
       
  2896 		}
       
  2897 	}
       
  2898 
       
  2899 	e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
       
  2900 	      page << IGP_PAGE_SHIFT, reg);
       
  2901 
       
  2902 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
       
  2903 	                                  data);
       
  2904 out:
       
  2905 	if (!locked)
       
  2906 		hw->phy.ops.release(hw);
       
  2907 
       
  2908 	return ret_val;
       
  2909 }
       
  2910 
       
  2911 /**
       
  2912  *  e1000_read_phy_reg_hv -  Read HV PHY register
       
  2913  *  @hw: pointer to the HW structure
       
  2914  *  @offset: register offset to be read
       
  2915  *  @data: pointer to the read data
       
  2916  *
       
  2917  *  Acquires semaphore then reads the PHY register at offset and stores
       
  2918  *  the retrieved information in data.  Release the acquired semaphore
       
  2919  *  before exiting.
       
  2920  **/
       
  2921 s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
       
  2922 {
       
  2923 	return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
       
  2924 }
       
  2925 
       
  2926 /**
       
  2927  *  e1000_read_phy_reg_hv_locked -  Read HV PHY register
       
  2928  *  @hw: pointer to the HW structure
       
  2929  *  @offset: register offset to be read
       
  2930  *  @data: pointer to the read data
       
  2931  *
       
  2932  *  Reads the PHY register at offset and stores the retrieved information
       
  2933  *  in data.  Assumes semaphore already acquired.
       
  2934  **/
       
  2935 s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
       
  2936 {
       
  2937 	return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
       
  2938 }
       
  2939 
       
  2940 /**
       
  2941  *  e1000_read_phy_reg_page_hv - Read HV PHY register
       
  2942  *  @hw: pointer to the HW structure
       
  2943  *  @offset: register offset to write to
       
  2944  *  @data: data to write at register offset
       
  2945  *
       
  2946  *  Reads the PHY register at offset and stores the retrieved information
       
  2947  *  in data.  Assumes semaphore already acquired and page already set.
       
  2948  **/
       
  2949 s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
       
  2950 {
       
  2951 	return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
       
  2952 }
       
  2953 
       
  2954 /**
       
  2955  *  __e1000_write_phy_reg_hv - Write HV PHY register
       
  2956  *  @hw: pointer to the HW structure
       
  2957  *  @offset: register offset to write to
       
  2958  *  @data: data to write at register offset
       
  2959  *  @locked: semaphore has already been acquired or not
       
  2960  *
       
  2961  *  Acquires semaphore, if necessary, then writes the data to PHY register
       
  2962  *  at the offset.  Release any acquired semaphores before exiting.
       
  2963  **/
       
  2964 static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
       
  2965 				    bool locked, bool page_set)
       
  2966 {
       
  2967 	s32 ret_val;
       
  2968 	u16 page = BM_PHY_REG_PAGE(offset);
       
  2969 	u16 reg = BM_PHY_REG_NUM(offset);
       
  2970 	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
       
  2971 
       
  2972 	if (!locked) {
       
  2973 		ret_val = hw->phy.ops.acquire(hw);
       
  2974 		if (ret_val)
       
  2975 			return ret_val;
       
  2976 	}
       
  2977 
       
  2978 	/* Page 800 works differently than the rest so it has its own func */
       
  2979 	if (page == BM_WUC_PAGE) {
       
  2980 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
       
  2981 							 false, page_set);
       
  2982 		goto out;
       
  2983 	}
       
  2984 
       
  2985 	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
       
  2986 		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
       
  2987 		                                         &data, false);
       
  2988 		goto out;
       
  2989 	}
       
  2990 
       
  2991 	if (!page_set) {
       
  2992 		if (page == HV_INTC_FC_PAGE_START)
       
  2993 			page = 0;
       
  2994 
       
  2995 		/* Workaround MDIO accesses being disabled after entering IEEE
       
  2996 		 * Power Down (when bit 11 of the PHY Control register is set)
       
  2997 		 */
       
  2998 		if ((hw->phy.type == e1000_phy_82578) &&
       
  2999 		    (hw->phy.revision >= 1) &&
       
  3000 		    (hw->phy.addr == 2) &&
       
  3001 		    !(MAX_PHY_REG_ADDRESS & reg) && (data & (1 << 11))) {
       
  3002 			u16 data2 = 0x7EFF;
       
  3003 			ret_val = e1000_access_phy_debug_regs_hv(hw,
       
  3004 								 (1 << 6) | 0x3,
       
  3005 								 &data2, false);
       
  3006 			if (ret_val)
       
  3007 				goto out;
       
  3008 		}
       
  3009 
       
  3010 		if (reg > MAX_PHY_MULTI_PAGE_REG) {
       
  3011 			/* Page is shifted left, PHY expects (page x 32) */
       
  3012 			ret_val = e1000_set_page_igp(hw,
       
  3013 						     (page << IGP_PAGE_SHIFT));
       
  3014 
       
  3015 			hw->phy.addr = phy_addr;
       
  3016 
       
  3017 			if (ret_val)
       
  3018 				goto out;
       
  3019 		}
       
  3020 	}
       
  3021 
       
  3022 	e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
       
  3023 	      page << IGP_PAGE_SHIFT, reg);
       
  3024 
       
  3025 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
       
  3026 	                                  data);
       
  3027 
       
  3028 out:
       
  3029 	if (!locked)
       
  3030 		hw->phy.ops.release(hw);
       
  3031 
       
  3032 	return ret_val;
       
  3033 }
       
  3034 
       
  3035 /**
       
  3036  *  e1000_write_phy_reg_hv - Write HV PHY register
       
  3037  *  @hw: pointer to the HW structure
       
  3038  *  @offset: register offset to write to
       
  3039  *  @data: data to write at register offset
       
  3040  *
       
  3041  *  Acquires semaphore then writes the data to PHY register at the offset.
       
  3042  *  Release the acquired semaphores before exiting.
       
  3043  **/
       
  3044 s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
       
  3045 {
       
  3046 	return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
       
  3047 }
       
  3048 
       
  3049 /**
       
  3050  *  e1000_write_phy_reg_hv_locked - Write HV PHY register
       
  3051  *  @hw: pointer to the HW structure
       
  3052  *  @offset: register offset to write to
       
  3053  *  @data: data to write at register offset
       
  3054  *
       
  3055  *  Writes the data to PHY register at the offset.  Assumes semaphore
       
  3056  *  already acquired.
       
  3057  **/
       
  3058 s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
       
  3059 {
       
  3060 	return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
       
  3061 }
       
  3062 
       
  3063 /**
       
  3064  *  e1000_write_phy_reg_page_hv - Write HV PHY register
       
  3065  *  @hw: pointer to the HW structure
       
  3066  *  @offset: register offset to write to
       
  3067  *  @data: data to write at register offset
       
  3068  *
       
  3069  *  Writes the data to PHY register at the offset.  Assumes semaphore
       
  3070  *  already acquired and page already set.
       
  3071  **/
       
  3072 s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
       
  3073 {
       
  3074 	return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
       
  3075 }
       
  3076 
       
  3077 /**
       
  3078  *  e1000_get_phy_addr_for_hv_page - Get PHY address based on page
       
  3079  *  @page: page to be accessed
       
  3080  **/
       
  3081 static u32 e1000_get_phy_addr_for_hv_page(u32 page)
       
  3082 {
       
  3083 	u32 phy_addr = 2;
       
  3084 
       
  3085 	if (page >= HV_INTC_FC_PAGE_START)
       
  3086 		phy_addr = 1;
       
  3087 
       
  3088 	return phy_addr;
       
  3089 }
       
  3090 
       
  3091 /**
       
  3092  *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
       
  3093  *  @hw: pointer to the HW structure
       
  3094  *  @offset: register offset to be read or written
       
  3095  *  @data: pointer to the data to be read or written
       
  3096  *  @read: determines if operation is read or write
       
  3097  *
       
  3098  *  Reads the PHY register at offset and stores the retreived information
       
  3099  *  in data.  Assumes semaphore already acquired.  Note that the procedure
       
  3100  *  to access these regs uses the address port and data port to read/write.
       
  3101  *  These accesses done with PHY address 2 and without using pages.
       
  3102  **/
       
  3103 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
       
  3104                                           u16 *data, bool read)
       
  3105 {
       
  3106 	s32 ret_val;
       
  3107 	u32 addr_reg = 0;
       
  3108 	u32 data_reg = 0;
       
  3109 
       
  3110 	/* This takes care of the difference with desktop vs mobile phy */
       
  3111 	addr_reg = (hw->phy.type == e1000_phy_82578) ?
       
  3112 	           I82578_ADDR_REG : I82577_ADDR_REG;
       
  3113 	data_reg = addr_reg + 1;
       
  3114 
       
  3115 	/* All operations in this function are phy address 2 */
       
  3116 	hw->phy.addr = 2;
       
  3117 
       
  3118 	/* masking with 0x3F to remove the page from offset */
       
  3119 	ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
       
  3120 	if (ret_val) {
       
  3121 		e_dbg("Could not write the Address Offset port register\n");
       
  3122 		return ret_val;
       
  3123 	}
       
  3124 
       
  3125 	/* Read or write the data value next */
       
  3126 	if (read)
       
  3127 		ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
       
  3128 	else
       
  3129 		ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
       
  3130 
       
  3131 	if (ret_val)
       
  3132 		e_dbg("Could not access the Data port register\n");
       
  3133 
       
  3134 	return ret_val;
       
  3135 }
       
  3136 
       
  3137 /**
       
  3138  *  e1000_link_stall_workaround_hv - Si workaround
       
  3139  *  @hw: pointer to the HW structure
       
  3140  *
       
  3141  *  This function works around a Si bug where the link partner can get
       
  3142  *  a link up indication before the PHY does.  If small packets are sent
       
  3143  *  by the link partner they can be placed in the packet buffer without
       
  3144  *  being properly accounted for by the PHY and will stall preventing
       
  3145  *  further packets from being received.  The workaround is to clear the
       
  3146  *  packet buffer after the PHY detects link up.
       
  3147  **/
       
  3148 s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
       
  3149 {
       
  3150 	s32 ret_val = 0;
       
  3151 	u16 data;
       
  3152 
       
  3153 	if (hw->phy.type != e1000_phy_82578)
       
  3154 		return 0;
       
  3155 
       
  3156 	/* Do not apply workaround if in PHY loopback bit 14 set */
       
  3157 	e1e_rphy(hw, PHY_CONTROL, &data);
       
  3158 	if (data & PHY_CONTROL_LB)
       
  3159 		return 0;
       
  3160 
       
  3161 	/* check if link is up and at 1Gbps */
       
  3162 	ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
       
  3163 	if (ret_val)
       
  3164 		return ret_val;
       
  3165 
       
  3166 	data &= BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
       
  3167 		BM_CS_STATUS_SPEED_MASK;
       
  3168 
       
  3169 	if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
       
  3170 		     BM_CS_STATUS_SPEED_1000))
       
  3171 		return 0;
       
  3172 
       
  3173 	msleep(200);
       
  3174 
       
  3175 	/* flush the packets in the fifo buffer */
       
  3176 	ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC |
       
  3177 			   HV_MUX_DATA_CTRL_FORCE_SPEED);
       
  3178 	if (ret_val)
       
  3179 		return ret_val;
       
  3180 
       
  3181 	return e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
       
  3182 }
       
  3183 
       
  3184 /**
       
  3185  *  e1000_check_polarity_82577 - Checks the polarity.
       
  3186  *  @hw: pointer to the HW structure
       
  3187  *
       
  3188  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
       
  3189  *
       
  3190  *  Polarity is determined based on the PHY specific status register.
       
  3191  **/
       
  3192 s32 e1000_check_polarity_82577(struct e1000_hw *hw)
       
  3193 {
       
  3194 	struct e1000_phy_info *phy = &hw->phy;
       
  3195 	s32 ret_val;
       
  3196 	u16 data;
       
  3197 
       
  3198 	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
       
  3199 
       
  3200 	if (!ret_val)
       
  3201 		phy->cable_polarity = (data & I82577_PHY_STATUS2_REV_POLARITY)
       
  3202 		                      ? e1000_rev_polarity_reversed
       
  3203 		                      : e1000_rev_polarity_normal;
       
  3204 
       
  3205 	return ret_val;
       
  3206 }
       
  3207 
       
  3208 /**
       
  3209  *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
       
  3210  *  @hw: pointer to the HW structure
       
  3211  *
       
  3212  *  Calls the PHY setup function to force speed and duplex.
       
  3213  **/
       
  3214 s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
       
  3215 {
       
  3216 	struct e1000_phy_info *phy = &hw->phy;
       
  3217 	s32 ret_val;
       
  3218 	u16 phy_data;
       
  3219 	bool link;
       
  3220 
       
  3221 	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
       
  3222 	if (ret_val)
       
  3223 		return ret_val;
       
  3224 
       
  3225 	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
       
  3226 
       
  3227 	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
       
  3228 	if (ret_val)
       
  3229 		return ret_val;
       
  3230 
       
  3231 	udelay(1);
       
  3232 
       
  3233 	if (phy->autoneg_wait_to_complete) {
       
  3234 		e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
       
  3235 
       
  3236 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
       
  3237 						      100000, &link);
       
  3238 		if (ret_val)
       
  3239 			return ret_val;
       
  3240 
       
  3241 		if (!link)
       
  3242 			e_dbg("Link taking longer than expected.\n");
       
  3243 
       
  3244 		/* Try once more */
       
  3245 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
       
  3246 						      100000, &link);
       
  3247 	}
       
  3248 
       
  3249 	return ret_val;
       
  3250 }
       
  3251 
       
  3252 /**
       
  3253  *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information
       
  3254  *  @hw: pointer to the HW structure
       
  3255  *
       
  3256  *  Read PHY status to determine if link is up.  If link is up, then
       
  3257  *  set/determine 10base-T extended distance and polarity correction.  Read
       
  3258  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
       
  3259  *  determine on the cable length, local and remote receiver.
       
  3260  **/
       
  3261 s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
       
  3262 {
       
  3263 	struct e1000_phy_info *phy = &hw->phy;
       
  3264 	s32 ret_val;
       
  3265 	u16 data;
       
  3266 	bool link;
       
  3267 
       
  3268 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
       
  3269 	if (ret_val)
       
  3270 		return ret_val;
       
  3271 
       
  3272 	if (!link) {
       
  3273 		e_dbg("Phy info is only valid if link is up\n");
       
  3274 		return -E1000_ERR_CONFIG;
       
  3275 	}
       
  3276 
       
  3277 	phy->polarity_correction = true;
       
  3278 
       
  3279 	ret_val = e1000_check_polarity_82577(hw);
       
  3280 	if (ret_val)
       
  3281 		return ret_val;
       
  3282 
       
  3283 	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
       
  3284 	if (ret_val)
       
  3285 		return ret_val;
       
  3286 
       
  3287 	phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);
       
  3288 
       
  3289 	if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
       
  3290 	    I82577_PHY_STATUS2_SPEED_1000MBPS) {
       
  3291 		ret_val = hw->phy.ops.get_cable_length(hw);
       
  3292 		if (ret_val)
       
  3293 			return ret_val;
       
  3294 
       
  3295 		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
       
  3296 		if (ret_val)
       
  3297 			return ret_val;
       
  3298 
       
  3299 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
       
  3300 		                ? e1000_1000t_rx_status_ok
       
  3301 		                : e1000_1000t_rx_status_not_ok;
       
  3302 
       
  3303 		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
       
  3304 		                 ? e1000_1000t_rx_status_ok
       
  3305 		                 : e1000_1000t_rx_status_not_ok;
       
  3306 	} else {
       
  3307 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
       
  3308 		phy->local_rx = e1000_1000t_rx_status_undefined;
       
  3309 		phy->remote_rx = e1000_1000t_rx_status_undefined;
       
  3310 	}
       
  3311 
       
  3312 	return 0;
       
  3313 }
       
  3314 
       
  3315 /**
       
  3316  *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
       
  3317  *  @hw: pointer to the HW structure
       
  3318  *
       
  3319  * Reads the diagnostic status register and verifies result is valid before
       
  3320  * placing it in the phy_cable_length field.
       
  3321  **/
       
  3322 s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
       
  3323 {
       
  3324 	struct e1000_phy_info *phy = &hw->phy;
       
  3325 	s32 ret_val;
       
  3326 	u16 phy_data, length;
       
  3327 
       
  3328 	ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
       
  3329 	if (ret_val)
       
  3330 		return ret_val;
       
  3331 
       
  3332 	length = (phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
       
  3333 	         I82577_DSTATUS_CABLE_LENGTH_SHIFT;
       
  3334 
       
  3335 	if (length == E1000_CABLE_LENGTH_UNDEFINED)
       
  3336 		ret_val = -E1000_ERR_PHY;
       
  3337 
       
  3338 	phy->cable_length = length;
       
  3339 
       
  3340 	return 0;
       
  3341 }