devices/e1000e/ethtool-3.8-orig.c
branchstable-1.5
changeset 2584 0e3d989ff233
equal deleted inserted replaced
2583:fe5687a0a322 2584:0e3d989ff233
       
     1 /*******************************************************************************
       
     2 
       
     3   Intel PRO/1000 Linux driver
       
     4   Copyright(c) 1999 - 2012 Intel Corporation.
       
     5 
       
     6   This program is free software; you can redistribute it and/or modify it
       
     7   under the terms and conditions of the GNU General Public License,
       
     8   version 2, as published by the Free Software Foundation.
       
     9 
       
    10   This program is distributed in the hope it will be useful, but WITHOUT
       
    11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
       
    13   more details.
       
    14 
       
    15   You should have received a copy of the GNU General Public License along with
       
    16   this program; if not, write to the Free Software Foundation, Inc.,
       
    17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
       
    18 
       
    19   The full GNU General Public License is included in this distribution in
       
    20   the file called "COPYING".
       
    21 
       
    22   Contact Information:
       
    23   Linux NICS <linux.nics@intel.com>
       
    24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
       
    25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
       
    26 
       
    27 *******************************************************************************/
       
    28 
       
    29 /* ethtool support for e1000 */
       
    30 
       
    31 #include <linux/netdevice.h>
       
    32 #include <linux/interrupt.h>
       
    33 #include <linux/ethtool.h>
       
    34 #include <linux/pci.h>
       
    35 #include <linux/slab.h>
       
    36 #include <linux/delay.h>
       
    37 #include <linux/vmalloc.h>
       
    38 #include <linux/pm_runtime.h>
       
    39 
       
    40 #include "e1000.h"
       
    41 
       
    42 enum {NETDEV_STATS, E1000_STATS};
       
    43 
       
    44 struct e1000_stats {
       
    45 	char stat_string[ETH_GSTRING_LEN];
       
    46 	int type;
       
    47 	int sizeof_stat;
       
    48 	int stat_offset;
       
    49 };
       
    50 
       
    51 #define E1000_STAT(str, m) { \
       
    52 		.stat_string = str, \
       
    53 		.type = E1000_STATS, \
       
    54 		.sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
       
    55 		.stat_offset = offsetof(struct e1000_adapter, m) }
       
    56 #define E1000_NETDEV_STAT(str, m) { \
       
    57 		.stat_string = str, \
       
    58 		.type = NETDEV_STATS, \
       
    59 		.sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
       
    60 		.stat_offset = offsetof(struct rtnl_link_stats64, m) }
       
    61 
       
    62 static const struct e1000_stats e1000_gstrings_stats[] = {
       
    63 	E1000_STAT("rx_packets", stats.gprc),
       
    64 	E1000_STAT("tx_packets", stats.gptc),
       
    65 	E1000_STAT("rx_bytes", stats.gorc),
       
    66 	E1000_STAT("tx_bytes", stats.gotc),
       
    67 	E1000_STAT("rx_broadcast", stats.bprc),
       
    68 	E1000_STAT("tx_broadcast", stats.bptc),
       
    69 	E1000_STAT("rx_multicast", stats.mprc),
       
    70 	E1000_STAT("tx_multicast", stats.mptc),
       
    71 	E1000_NETDEV_STAT("rx_errors", rx_errors),
       
    72 	E1000_NETDEV_STAT("tx_errors", tx_errors),
       
    73 	E1000_NETDEV_STAT("tx_dropped", tx_dropped),
       
    74 	E1000_STAT("multicast", stats.mprc),
       
    75 	E1000_STAT("collisions", stats.colc),
       
    76 	E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
       
    77 	E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
       
    78 	E1000_STAT("rx_crc_errors", stats.crcerrs),
       
    79 	E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
       
    80 	E1000_STAT("rx_no_buffer_count", stats.rnbc),
       
    81 	E1000_STAT("rx_missed_errors", stats.mpc),
       
    82 	E1000_STAT("tx_aborted_errors", stats.ecol),
       
    83 	E1000_STAT("tx_carrier_errors", stats.tncrs),
       
    84 	E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
       
    85 	E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
       
    86 	E1000_STAT("tx_window_errors", stats.latecol),
       
    87 	E1000_STAT("tx_abort_late_coll", stats.latecol),
       
    88 	E1000_STAT("tx_deferred_ok", stats.dc),
       
    89 	E1000_STAT("tx_single_coll_ok", stats.scc),
       
    90 	E1000_STAT("tx_multi_coll_ok", stats.mcc),
       
    91 	E1000_STAT("tx_timeout_count", tx_timeout_count),
       
    92 	E1000_STAT("tx_restart_queue", restart_queue),
       
    93 	E1000_STAT("rx_long_length_errors", stats.roc),
       
    94 	E1000_STAT("rx_short_length_errors", stats.ruc),
       
    95 	E1000_STAT("rx_align_errors", stats.algnerrc),
       
    96 	E1000_STAT("tx_tcp_seg_good", stats.tsctc),
       
    97 	E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
       
    98 	E1000_STAT("rx_flow_control_xon", stats.xonrxc),
       
    99 	E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
       
   100 	E1000_STAT("tx_flow_control_xon", stats.xontxc),
       
   101 	E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
       
   102 	E1000_STAT("rx_long_byte_count", stats.gorc),
       
   103 	E1000_STAT("rx_csum_offload_good", hw_csum_good),
       
   104 	E1000_STAT("rx_csum_offload_errors", hw_csum_err),
       
   105 	E1000_STAT("rx_header_split", rx_hdr_split),
       
   106 	E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
       
   107 	E1000_STAT("tx_smbus", stats.mgptc),
       
   108 	E1000_STAT("rx_smbus", stats.mgprc),
       
   109 	E1000_STAT("dropped_smbus", stats.mgpdc),
       
   110 	E1000_STAT("rx_dma_failed", rx_dma_failed),
       
   111 	E1000_STAT("tx_dma_failed", tx_dma_failed),
       
   112 	E1000_STAT("uncorr_ecc_errors", uncorr_errors),
       
   113 	E1000_STAT("corr_ecc_errors", corr_errors),
       
   114 };
       
   115 
       
   116 #define E1000_GLOBAL_STATS_LEN	ARRAY_SIZE(e1000_gstrings_stats)
       
   117 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
       
   118 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
       
   119 	"Register test  (offline)", "Eeprom test    (offline)",
       
   120 	"Interrupt test (offline)", "Loopback test  (offline)",
       
   121 	"Link test   (on/offline)"
       
   122 };
       
   123 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
       
   124 
       
   125 static int e1000_get_settings(struct net_device *netdev,
       
   126 			      struct ethtool_cmd *ecmd)
       
   127 {
       
   128 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   129 	struct e1000_hw *hw = &adapter->hw;
       
   130 	u32 speed;
       
   131 
       
   132 	if (hw->phy.media_type == e1000_media_type_copper) {
       
   133 
       
   134 		ecmd->supported = (SUPPORTED_10baseT_Half |
       
   135 				   SUPPORTED_10baseT_Full |
       
   136 				   SUPPORTED_100baseT_Half |
       
   137 				   SUPPORTED_100baseT_Full |
       
   138 				   SUPPORTED_1000baseT_Full |
       
   139 				   SUPPORTED_Autoneg |
       
   140 				   SUPPORTED_TP);
       
   141 		if (hw->phy.type == e1000_phy_ife)
       
   142 			ecmd->supported &= ~SUPPORTED_1000baseT_Full;
       
   143 		ecmd->advertising = ADVERTISED_TP;
       
   144 
       
   145 		if (hw->mac.autoneg == 1) {
       
   146 			ecmd->advertising |= ADVERTISED_Autoneg;
       
   147 			/* the e1000 autoneg seems to match ethtool nicely */
       
   148 			ecmd->advertising |= hw->phy.autoneg_advertised;
       
   149 		}
       
   150 
       
   151 		ecmd->port = PORT_TP;
       
   152 		ecmd->phy_address = hw->phy.addr;
       
   153 		ecmd->transceiver = XCVR_INTERNAL;
       
   154 
       
   155 	} else {
       
   156 		ecmd->supported   = (SUPPORTED_1000baseT_Full |
       
   157 				     SUPPORTED_FIBRE |
       
   158 				     SUPPORTED_Autoneg);
       
   159 
       
   160 		ecmd->advertising = (ADVERTISED_1000baseT_Full |
       
   161 				     ADVERTISED_FIBRE |
       
   162 				     ADVERTISED_Autoneg);
       
   163 
       
   164 		ecmd->port = PORT_FIBRE;
       
   165 		ecmd->transceiver = XCVR_EXTERNAL;
       
   166 	}
       
   167 
       
   168 	speed = -1;
       
   169 	ecmd->duplex = -1;
       
   170 
       
   171 	if (netif_running(netdev)) {
       
   172 		if (netif_carrier_ok(netdev)) {
       
   173 			speed = adapter->link_speed;
       
   174 			ecmd->duplex = adapter->link_duplex - 1;
       
   175 		}
       
   176 	} else {
       
   177 		u32 status = er32(STATUS);
       
   178 		if (status & E1000_STATUS_LU) {
       
   179 			if (status & E1000_STATUS_SPEED_1000)
       
   180 				speed = SPEED_1000;
       
   181 			else if (status & E1000_STATUS_SPEED_100)
       
   182 				speed = SPEED_100;
       
   183 			else
       
   184 				speed = SPEED_10;
       
   185 
       
   186 			if (status & E1000_STATUS_FD)
       
   187 				ecmd->duplex = DUPLEX_FULL;
       
   188 			else
       
   189 				ecmd->duplex = DUPLEX_HALF;
       
   190 		}
       
   191 	}
       
   192 
       
   193 	ethtool_cmd_speed_set(ecmd, speed);
       
   194 	ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
       
   195 			 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
       
   196 
       
   197 	/* MDI-X => 2; MDI =>1; Invalid =>0 */
       
   198 	if ((hw->phy.media_type == e1000_media_type_copper) &&
       
   199 	    netif_carrier_ok(netdev))
       
   200 		ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
       
   201 		                                      ETH_TP_MDI;
       
   202 	else
       
   203 		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
       
   204 
       
   205 	if (hw->phy.mdix == AUTO_ALL_MODES)
       
   206 		ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
       
   207 	else
       
   208 		ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
       
   209 
       
   210 	return 0;
       
   211 }
       
   212 
       
   213 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
       
   214 {
       
   215 	struct e1000_mac_info *mac = &adapter->hw.mac;
       
   216 
       
   217 	mac->autoneg = 0;
       
   218 
       
   219 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
       
   220 	 * for the switch() below to work
       
   221 	 */
       
   222 	if ((spd & 1) || (dplx & ~1))
       
   223 		goto err_inval;
       
   224 
       
   225 	/* Fiber NICs only allow 1000 gbps Full duplex */
       
   226 	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
       
   227 	    spd != SPEED_1000 &&
       
   228 	    dplx != DUPLEX_FULL) {
       
   229 		goto err_inval;
       
   230 	}
       
   231 
       
   232 	switch (spd + dplx) {
       
   233 	case SPEED_10 + DUPLEX_HALF:
       
   234 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
       
   235 		break;
       
   236 	case SPEED_10 + DUPLEX_FULL:
       
   237 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
       
   238 		break;
       
   239 	case SPEED_100 + DUPLEX_HALF:
       
   240 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
       
   241 		break;
       
   242 	case SPEED_100 + DUPLEX_FULL:
       
   243 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
       
   244 		break;
       
   245 	case SPEED_1000 + DUPLEX_FULL:
       
   246 		mac->autoneg = 1;
       
   247 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
       
   248 		break;
       
   249 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
       
   250 	default:
       
   251 		goto err_inval;
       
   252 	}
       
   253 
       
   254 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
       
   255 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
       
   256 
       
   257 	return 0;
       
   258 
       
   259 err_inval:
       
   260 	e_err("Unsupported Speed/Duplex configuration\n");
       
   261 	return -EINVAL;
       
   262 }
       
   263 
       
   264 static int e1000_set_settings(struct net_device *netdev,
       
   265 			      struct ethtool_cmd *ecmd)
       
   266 {
       
   267 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   268 	struct e1000_hw *hw = &adapter->hw;
       
   269 
       
   270 	/* When SoL/IDER sessions are active, autoneg/speed/duplex
       
   271 	 * cannot be changed
       
   272 	 */
       
   273 	if (hw->phy.ops.check_reset_block &&
       
   274 	    hw->phy.ops.check_reset_block(hw)) {
       
   275 		e_err("Cannot change link characteristics when SoL/IDER is active.\n");
       
   276 		return -EINVAL;
       
   277 	}
       
   278 
       
   279 	/* MDI setting is only allowed when autoneg enabled because
       
   280 	 * some hardware doesn't allow MDI setting when speed or
       
   281 	 * duplex is forced.
       
   282 	 */
       
   283 	if (ecmd->eth_tp_mdix_ctrl) {
       
   284 		if (hw->phy.media_type != e1000_media_type_copper)
       
   285 			return -EOPNOTSUPP;
       
   286 
       
   287 		if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
       
   288 		    (ecmd->autoneg != AUTONEG_ENABLE)) {
       
   289 			e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
       
   290 			return -EINVAL;
       
   291 		}
       
   292 	}
       
   293 
       
   294 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
       
   295 		usleep_range(1000, 2000);
       
   296 
       
   297 	if (ecmd->autoneg == AUTONEG_ENABLE) {
       
   298 		hw->mac.autoneg = 1;
       
   299 		if (hw->phy.media_type == e1000_media_type_fiber)
       
   300 			hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
       
   301 						     ADVERTISED_FIBRE |
       
   302 						     ADVERTISED_Autoneg;
       
   303 		else
       
   304 			hw->phy.autoneg_advertised = ecmd->advertising |
       
   305 						     ADVERTISED_TP |
       
   306 						     ADVERTISED_Autoneg;
       
   307 		ecmd->advertising = hw->phy.autoneg_advertised;
       
   308 		if (adapter->fc_autoneg)
       
   309 			hw->fc.requested_mode = e1000_fc_default;
       
   310 	} else {
       
   311 		u32 speed = ethtool_cmd_speed(ecmd);
       
   312 		/* calling this overrides forced MDI setting */
       
   313 		if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
       
   314 			clear_bit(__E1000_RESETTING, &adapter->state);
       
   315 			return -EINVAL;
       
   316 		}
       
   317 	}
       
   318 
       
   319 	/* MDI-X => 2; MDI => 1; Auto => 3 */
       
   320 	if (ecmd->eth_tp_mdix_ctrl) {
       
   321 		/* fix up the value for auto (3 => 0) as zero is mapped
       
   322 		 * internally to auto
       
   323 		 */
       
   324 		if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
       
   325 			hw->phy.mdix = AUTO_ALL_MODES;
       
   326 		else
       
   327 			hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
       
   328 	}
       
   329 
       
   330 	/* reset the link */
       
   331 
       
   332 	if (netif_running(adapter->netdev)) {
       
   333 		e1000e_down(adapter);
       
   334 		e1000e_up(adapter);
       
   335 	} else
       
   336 		e1000e_reset(adapter);
       
   337 
       
   338 	clear_bit(__E1000_RESETTING, &adapter->state);
       
   339 	return 0;
       
   340 }
       
   341 
       
   342 static void e1000_get_pauseparam(struct net_device *netdev,
       
   343 				 struct ethtool_pauseparam *pause)
       
   344 {
       
   345 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   346 	struct e1000_hw *hw = &adapter->hw;
       
   347 
       
   348 	pause->autoneg =
       
   349 		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
       
   350 
       
   351 	if (hw->fc.current_mode == e1000_fc_rx_pause) {
       
   352 		pause->rx_pause = 1;
       
   353 	} else if (hw->fc.current_mode == e1000_fc_tx_pause) {
       
   354 		pause->tx_pause = 1;
       
   355 	} else if (hw->fc.current_mode == e1000_fc_full) {
       
   356 		pause->rx_pause = 1;
       
   357 		pause->tx_pause = 1;
       
   358 	}
       
   359 }
       
   360 
       
   361 static int e1000_set_pauseparam(struct net_device *netdev,
       
   362 				struct ethtool_pauseparam *pause)
       
   363 {
       
   364 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   365 	struct e1000_hw *hw = &adapter->hw;
       
   366 	int retval = 0;
       
   367 
       
   368 	adapter->fc_autoneg = pause->autoneg;
       
   369 
       
   370 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
       
   371 		usleep_range(1000, 2000);
       
   372 
       
   373 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
       
   374 		hw->fc.requested_mode = e1000_fc_default;
       
   375 		if (netif_running(adapter->netdev)) {
       
   376 			e1000e_down(adapter);
       
   377 			e1000e_up(adapter);
       
   378 		} else {
       
   379 			e1000e_reset(adapter);
       
   380 		}
       
   381 	} else {
       
   382 		if (pause->rx_pause && pause->tx_pause)
       
   383 			hw->fc.requested_mode = e1000_fc_full;
       
   384 		else if (pause->rx_pause && !pause->tx_pause)
       
   385 			hw->fc.requested_mode = e1000_fc_rx_pause;
       
   386 		else if (!pause->rx_pause && pause->tx_pause)
       
   387 			hw->fc.requested_mode = e1000_fc_tx_pause;
       
   388 		else if (!pause->rx_pause && !pause->tx_pause)
       
   389 			hw->fc.requested_mode = e1000_fc_none;
       
   390 
       
   391 		hw->fc.current_mode = hw->fc.requested_mode;
       
   392 
       
   393 		if (hw->phy.media_type == e1000_media_type_fiber) {
       
   394 			retval = hw->mac.ops.setup_link(hw);
       
   395 			/* implicit goto out */
       
   396 		} else {
       
   397 			retval = e1000e_force_mac_fc(hw);
       
   398 			if (retval)
       
   399 				goto out;
       
   400 			e1000e_set_fc_watermarks(hw);
       
   401 		}
       
   402 	}
       
   403 
       
   404 out:
       
   405 	clear_bit(__E1000_RESETTING, &adapter->state);
       
   406 	return retval;
       
   407 }
       
   408 
       
   409 static u32 e1000_get_msglevel(struct net_device *netdev)
       
   410 {
       
   411 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   412 	return adapter->msg_enable;
       
   413 }
       
   414 
       
   415 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
       
   416 {
       
   417 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   418 	adapter->msg_enable = data;
       
   419 }
       
   420 
       
   421 static int e1000_get_regs_len(struct net_device *netdev)
       
   422 {
       
   423 #define E1000_REGS_LEN 32 /* overestimate */
       
   424 	return E1000_REGS_LEN * sizeof(u32);
       
   425 }
       
   426 
       
   427 static void e1000_get_regs(struct net_device *netdev,
       
   428 			   struct ethtool_regs *regs, void *p)
       
   429 {
       
   430 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   431 	struct e1000_hw *hw = &adapter->hw;
       
   432 	u32 *regs_buff = p;
       
   433 	u16 phy_data;
       
   434 
       
   435 	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
       
   436 
       
   437 	regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
       
   438 			adapter->pdev->device;
       
   439 
       
   440 	regs_buff[0]  = er32(CTRL);
       
   441 	regs_buff[1]  = er32(STATUS);
       
   442 
       
   443 	regs_buff[2]  = er32(RCTL);
       
   444 	regs_buff[3]  = er32(RDLEN(0));
       
   445 	regs_buff[4]  = er32(RDH(0));
       
   446 	regs_buff[5]  = er32(RDT(0));
       
   447 	regs_buff[6]  = er32(RDTR);
       
   448 
       
   449 	regs_buff[7]  = er32(TCTL);
       
   450 	regs_buff[8]  = er32(TDLEN(0));
       
   451 	regs_buff[9]  = er32(TDH(0));
       
   452 	regs_buff[10] = er32(TDT(0));
       
   453 	regs_buff[11] = er32(TIDV);
       
   454 
       
   455 	regs_buff[12] = adapter->hw.phy.type;  /* PHY type (IGP=1, M88=0) */
       
   456 
       
   457 	/* ethtool doesn't use anything past this point, so all this
       
   458 	 * code is likely legacy junk for apps that may or may not exist
       
   459 	 */
       
   460 	if (hw->phy.type == e1000_phy_m88) {
       
   461 		e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
       
   462 		regs_buff[13] = (u32)phy_data; /* cable length */
       
   463 		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
       
   464 		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
       
   465 		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
       
   466 		e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
       
   467 		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
       
   468 		regs_buff[18] = regs_buff[13]; /* cable polarity */
       
   469 		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
       
   470 		regs_buff[20] = regs_buff[17]; /* polarity correction */
       
   471 		/* phy receive errors */
       
   472 		regs_buff[22] = adapter->phy_stats.receive_errors;
       
   473 		regs_buff[23] = regs_buff[13]; /* mdix mode */
       
   474 	}
       
   475 	regs_buff[21] = 0; /* was idle_errors */
       
   476 	e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
       
   477 	regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
       
   478 	regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
       
   479 }
       
   480 
       
   481 static int e1000_get_eeprom_len(struct net_device *netdev)
       
   482 {
       
   483 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   484 	return adapter->hw.nvm.word_size * 2;
       
   485 }
       
   486 
       
   487 static int e1000_get_eeprom(struct net_device *netdev,
       
   488 			    struct ethtool_eeprom *eeprom, u8 *bytes)
       
   489 {
       
   490 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   491 	struct e1000_hw *hw = &adapter->hw;
       
   492 	u16 *eeprom_buff;
       
   493 	int first_word;
       
   494 	int last_word;
       
   495 	int ret_val = 0;
       
   496 	u16 i;
       
   497 
       
   498 	if (eeprom->len == 0)
       
   499 		return -EINVAL;
       
   500 
       
   501 	eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
       
   502 
       
   503 	first_word = eeprom->offset >> 1;
       
   504 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
       
   505 
       
   506 	eeprom_buff = kmalloc(sizeof(u16) *
       
   507 			(last_word - first_word + 1), GFP_KERNEL);
       
   508 	if (!eeprom_buff)
       
   509 		return -ENOMEM;
       
   510 
       
   511 	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
       
   512 		ret_val = e1000_read_nvm(hw, first_word,
       
   513 					 last_word - first_word + 1,
       
   514 					 eeprom_buff);
       
   515 	} else {
       
   516 		for (i = 0; i < last_word - first_word + 1; i++) {
       
   517 			ret_val = e1000_read_nvm(hw, first_word + i, 1,
       
   518 						      &eeprom_buff[i]);
       
   519 			if (ret_val)
       
   520 				break;
       
   521 		}
       
   522 	}
       
   523 
       
   524 	if (ret_val) {
       
   525 		/* a read error occurred, throw away the result */
       
   526 		memset(eeprom_buff, 0xff, sizeof(u16) *
       
   527 		       (last_word - first_word + 1));
       
   528 	} else {
       
   529 		/* Device's eeprom is always little-endian, word addressable */
       
   530 		for (i = 0; i < last_word - first_word + 1; i++)
       
   531 			le16_to_cpus(&eeprom_buff[i]);
       
   532 	}
       
   533 
       
   534 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
       
   535 	kfree(eeprom_buff);
       
   536 
       
   537 	return ret_val;
       
   538 }
       
   539 
       
   540 static int e1000_set_eeprom(struct net_device *netdev,
       
   541 			    struct ethtool_eeprom *eeprom, u8 *bytes)
       
   542 {
       
   543 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   544 	struct e1000_hw *hw = &adapter->hw;
       
   545 	u16 *eeprom_buff;
       
   546 	void *ptr;
       
   547 	int max_len;
       
   548 	int first_word;
       
   549 	int last_word;
       
   550 	int ret_val = 0;
       
   551 	u16 i;
       
   552 
       
   553 	if (eeprom->len == 0)
       
   554 		return -EOPNOTSUPP;
       
   555 
       
   556 	if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
       
   557 		return -EFAULT;
       
   558 
       
   559 	if (adapter->flags & FLAG_READ_ONLY_NVM)
       
   560 		return -EINVAL;
       
   561 
       
   562 	max_len = hw->nvm.word_size * 2;
       
   563 
       
   564 	first_word = eeprom->offset >> 1;
       
   565 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
       
   566 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
       
   567 	if (!eeprom_buff)
       
   568 		return -ENOMEM;
       
   569 
       
   570 	ptr = (void *)eeprom_buff;
       
   571 
       
   572 	if (eeprom->offset & 1) {
       
   573 		/* need read/modify/write of first changed EEPROM word */
       
   574 		/* only the second byte of the word is being modified */
       
   575 		ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
       
   576 		ptr++;
       
   577 	}
       
   578 	if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
       
   579 		/* need read/modify/write of last changed EEPROM word */
       
   580 		/* only the first byte of the word is being modified */
       
   581 		ret_val = e1000_read_nvm(hw, last_word, 1,
       
   582 				  &eeprom_buff[last_word - first_word]);
       
   583 
       
   584 	if (ret_val)
       
   585 		goto out;
       
   586 
       
   587 	/* Device's eeprom is always little-endian, word addressable */
       
   588 	for (i = 0; i < last_word - first_word + 1; i++)
       
   589 		le16_to_cpus(&eeprom_buff[i]);
       
   590 
       
   591 	memcpy(ptr, bytes, eeprom->len);
       
   592 
       
   593 	for (i = 0; i < last_word - first_word + 1; i++)
       
   594 		cpu_to_le16s(&eeprom_buff[i]);
       
   595 
       
   596 	ret_val = e1000_write_nvm(hw, first_word,
       
   597 				  last_word - first_word + 1, eeprom_buff);
       
   598 
       
   599 	if (ret_val)
       
   600 		goto out;
       
   601 
       
   602 	/* Update the checksum over the first part of the EEPROM if needed
       
   603 	 * and flush shadow RAM for applicable controllers
       
   604 	 */
       
   605 	if ((first_word <= NVM_CHECKSUM_REG) ||
       
   606 	    (hw->mac.type == e1000_82583) ||
       
   607 	    (hw->mac.type == e1000_82574) ||
       
   608 	    (hw->mac.type == e1000_82573))
       
   609 		ret_val = e1000e_update_nvm_checksum(hw);
       
   610 
       
   611 out:
       
   612 	kfree(eeprom_buff);
       
   613 	return ret_val;
       
   614 }
       
   615 
       
   616 static void e1000_get_drvinfo(struct net_device *netdev,
       
   617 			      struct ethtool_drvinfo *drvinfo)
       
   618 {
       
   619 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   620 
       
   621 	strlcpy(drvinfo->driver,  e1000e_driver_name,
       
   622 		sizeof(drvinfo->driver));
       
   623 	strlcpy(drvinfo->version, e1000e_driver_version,
       
   624 		sizeof(drvinfo->version));
       
   625 
       
   626 	/* EEPROM image version # is reported as firmware version # for
       
   627 	 * PCI-E controllers
       
   628 	 */
       
   629 	snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
       
   630 		"%d.%d-%d",
       
   631 		(adapter->eeprom_vers & 0xF000) >> 12,
       
   632 		(adapter->eeprom_vers & 0x0FF0) >> 4,
       
   633 		(adapter->eeprom_vers & 0x000F));
       
   634 
       
   635 	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
       
   636 		sizeof(drvinfo->bus_info));
       
   637 	drvinfo->regdump_len = e1000_get_regs_len(netdev);
       
   638 	drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
       
   639 }
       
   640 
       
   641 static void e1000_get_ringparam(struct net_device *netdev,
       
   642 				struct ethtool_ringparam *ring)
       
   643 {
       
   644 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   645 
       
   646 	ring->rx_max_pending = E1000_MAX_RXD;
       
   647 	ring->tx_max_pending = E1000_MAX_TXD;
       
   648 	ring->rx_pending = adapter->rx_ring_count;
       
   649 	ring->tx_pending = adapter->tx_ring_count;
       
   650 }
       
   651 
       
   652 static int e1000_set_ringparam(struct net_device *netdev,
       
   653 			       struct ethtool_ringparam *ring)
       
   654 {
       
   655 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   656 	struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
       
   657 	int err = 0, size = sizeof(struct e1000_ring);
       
   658 	bool set_tx = false, set_rx = false;
       
   659 	u16 new_rx_count, new_tx_count;
       
   660 
       
   661 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
       
   662 		return -EINVAL;
       
   663 
       
   664 	new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
       
   665 			       E1000_MAX_RXD);
       
   666 	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
       
   667 
       
   668 	new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
       
   669 			       E1000_MAX_TXD);
       
   670 	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
       
   671 
       
   672 	if ((new_tx_count == adapter->tx_ring_count) &&
       
   673 	    (new_rx_count == adapter->rx_ring_count))
       
   674 		/* nothing to do */
       
   675 		return 0;
       
   676 
       
   677 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
       
   678 		usleep_range(1000, 2000);
       
   679 
       
   680 	if (!netif_running(adapter->netdev)) {
       
   681 		/* Set counts now and allocate resources during open() */
       
   682 		adapter->tx_ring->count = new_tx_count;
       
   683 		adapter->rx_ring->count = new_rx_count;
       
   684 		adapter->tx_ring_count = new_tx_count;
       
   685 		adapter->rx_ring_count = new_rx_count;
       
   686 		goto clear_reset;
       
   687 	}
       
   688 
       
   689 	set_tx = (new_tx_count != adapter->tx_ring_count);
       
   690 	set_rx = (new_rx_count != adapter->rx_ring_count);
       
   691 
       
   692 	/* Allocate temporary storage for ring updates */
       
   693 	if (set_tx) {
       
   694 		temp_tx = vmalloc(size);
       
   695 		if (!temp_tx) {
       
   696 			err = -ENOMEM;
       
   697 			goto free_temp;
       
   698 		}
       
   699 	}
       
   700 	if (set_rx) {
       
   701 		temp_rx = vmalloc(size);
       
   702 		if (!temp_rx) {
       
   703 			err = -ENOMEM;
       
   704 			goto free_temp;
       
   705 		}
       
   706 	}
       
   707 
       
   708 	e1000e_down(adapter);
       
   709 
       
   710 	/* We can't just free everything and then setup again, because the
       
   711 	 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
       
   712 	 * structs.  First, attempt to allocate new resources...
       
   713 	 */
       
   714 	if (set_tx) {
       
   715 		memcpy(temp_tx, adapter->tx_ring, size);
       
   716 		temp_tx->count = new_tx_count;
       
   717 		err = e1000e_setup_tx_resources(temp_tx);
       
   718 		if (err)
       
   719 			goto err_setup;
       
   720 	}
       
   721 	if (set_rx) {
       
   722 		memcpy(temp_rx, adapter->rx_ring, size);
       
   723 		temp_rx->count = new_rx_count;
       
   724 		err = e1000e_setup_rx_resources(temp_rx);
       
   725 		if (err)
       
   726 			goto err_setup_rx;
       
   727 	}
       
   728 
       
   729 	/* ...then free the old resources and copy back any new ring data */
       
   730 	if (set_tx) {
       
   731 		e1000e_free_tx_resources(adapter->tx_ring);
       
   732 		memcpy(adapter->tx_ring, temp_tx, size);
       
   733 		adapter->tx_ring_count = new_tx_count;
       
   734 	}
       
   735 	if (set_rx) {
       
   736 		e1000e_free_rx_resources(adapter->rx_ring);
       
   737 		memcpy(adapter->rx_ring, temp_rx, size);
       
   738 		adapter->rx_ring_count = new_rx_count;
       
   739 	}
       
   740 
       
   741 err_setup_rx:
       
   742 	if (err && set_tx)
       
   743 		e1000e_free_tx_resources(temp_tx);
       
   744 err_setup:
       
   745 	e1000e_up(adapter);
       
   746 free_temp:
       
   747 	vfree(temp_tx);
       
   748 	vfree(temp_rx);
       
   749 clear_reset:
       
   750 	clear_bit(__E1000_RESETTING, &adapter->state);
       
   751 	return err;
       
   752 }
       
   753 
       
   754 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
       
   755 			     int reg, int offset, u32 mask, u32 write)
       
   756 {
       
   757 	u32 pat, val;
       
   758 	static const u32 test[] = {
       
   759 		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
       
   760 	for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
       
   761 		E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
       
   762 				      (test[pat] & write));
       
   763 		val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
       
   764 		if (val != (test[pat] & write & mask)) {
       
   765 			e_err("pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
       
   766 			      reg + offset, val, (test[pat] & write & mask));
       
   767 			*data = reg;
       
   768 			return 1;
       
   769 		}
       
   770 	}
       
   771 	return 0;
       
   772 }
       
   773 
       
   774 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
       
   775 			      int reg, u32 mask, u32 write)
       
   776 {
       
   777 	u32 val;
       
   778 	__ew32(&adapter->hw, reg, write & mask);
       
   779 	val = __er32(&adapter->hw, reg);
       
   780 	if ((write & mask) != (val & mask)) {
       
   781 		e_err("set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
       
   782 		      reg, (val & mask), (write & mask));
       
   783 		*data = reg;
       
   784 		return 1;
       
   785 	}
       
   786 	return 0;
       
   787 }
       
   788 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
       
   789 	do {                                                                   \
       
   790 		if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
       
   791 			return 1;                                              \
       
   792 	} while (0)
       
   793 #define REG_PATTERN_TEST(reg, mask, write)                                     \
       
   794 	REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
       
   795 
       
   796 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
       
   797 	do {                                                                   \
       
   798 		if (reg_set_and_check(adapter, data, reg, mask, write))        \
       
   799 			return 1;                                              \
       
   800 	} while (0)
       
   801 
       
   802 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
       
   803 {
       
   804 	struct e1000_hw *hw = &adapter->hw;
       
   805 	struct e1000_mac_info *mac = &adapter->hw.mac;
       
   806 	u32 value;
       
   807 	u32 before;
       
   808 	u32 after;
       
   809 	u32 i;
       
   810 	u32 toggle;
       
   811 	u32 mask;
       
   812 	u32 wlock_mac = 0;
       
   813 
       
   814 	/* The status register is Read Only, so a write should fail.
       
   815 	 * Some bits that get toggled are ignored.
       
   816 	 */
       
   817 	switch (mac->type) {
       
   818 	/* there are several bits on newer hardware that are r/w */
       
   819 	case e1000_82571:
       
   820 	case e1000_82572:
       
   821 	case e1000_80003es2lan:
       
   822 		toggle = 0x7FFFF3FF;
       
   823 		break;
       
   824         default:
       
   825 		toggle = 0x7FFFF033;
       
   826 		break;
       
   827 	}
       
   828 
       
   829 	before = er32(STATUS);
       
   830 	value = (er32(STATUS) & toggle);
       
   831 	ew32(STATUS, toggle);
       
   832 	after = er32(STATUS) & toggle;
       
   833 	if (value != after) {
       
   834 		e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
       
   835 		      after, value);
       
   836 		*data = 1;
       
   837 		return 1;
       
   838 	}
       
   839 	/* restore previous status */
       
   840 	ew32(STATUS, before);
       
   841 
       
   842 	if (!(adapter->flags & FLAG_IS_ICH)) {
       
   843 		REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
       
   844 		REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
       
   845 		REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
       
   846 		REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
       
   847 	}
       
   848 
       
   849 	REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
       
   850 	REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
       
   851 	REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
       
   852 	REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
       
   853 	REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
       
   854 	REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
       
   855 	REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
       
   856 	REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
       
   857 	REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
       
   858 	REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
       
   859 
       
   860 	REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
       
   861 
       
   862 	before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
       
   863 	REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
       
   864 	REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
       
   865 
       
   866 	REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
       
   867 	REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
       
   868 	if (!(adapter->flags & FLAG_IS_ICH))
       
   869 		REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
       
   870 	REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
       
   871 	REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
       
   872 	mask = 0x8003FFFF;
       
   873 	switch (mac->type) {
       
   874 	case e1000_ich10lan:
       
   875 	case e1000_pchlan:
       
   876 	case e1000_pch2lan:
       
   877 	case e1000_pch_lpt:
       
   878 		mask |= (1 << 18);
       
   879 		break;
       
   880 	default:
       
   881 		break;
       
   882 	}
       
   883 
       
   884 	if (mac->type == e1000_pch_lpt)
       
   885 		wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
       
   886 		    E1000_FWSM_WLOCK_MAC_SHIFT;
       
   887 
       
   888 	for (i = 0; i < mac->rar_entry_count; i++) {
       
   889 		/* Cannot test write-protected SHRAL[n] registers */
       
   890 		if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
       
   891 			continue;
       
   892 
       
   893 		REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
       
   894 				       mask, 0xFFFFFFFF);
       
   895 	}
       
   896 
       
   897 	for (i = 0; i < mac->mta_reg_count; i++)
       
   898 		REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
       
   899 
       
   900 	*data = 0;
       
   901 
       
   902 	return 0;
       
   903 }
       
   904 
       
   905 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
       
   906 {
       
   907 	u16 temp;
       
   908 	u16 checksum = 0;
       
   909 	u16 i;
       
   910 
       
   911 	*data = 0;
       
   912 	/* Read and add up the contents of the EEPROM */
       
   913 	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
       
   914 		if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
       
   915 			*data = 1;
       
   916 			return *data;
       
   917 		}
       
   918 		checksum += temp;
       
   919 	}
       
   920 
       
   921 	/* If Checksum is not Correct return error else test passed */
       
   922 	if ((checksum != (u16) NVM_SUM) && !(*data))
       
   923 		*data = 2;
       
   924 
       
   925 	return *data;
       
   926 }
       
   927 
       
   928 static irqreturn_t e1000_test_intr(int irq, void *data)
       
   929 {
       
   930 	struct net_device *netdev = (struct net_device *) data;
       
   931 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
   932 	struct e1000_hw *hw = &adapter->hw;
       
   933 
       
   934 	adapter->test_icr |= er32(ICR);
       
   935 
       
   936 	return IRQ_HANDLED;
       
   937 }
       
   938 
       
   939 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
       
   940 {
       
   941 	struct net_device *netdev = adapter->netdev;
       
   942 	struct e1000_hw *hw = &adapter->hw;
       
   943 	u32 mask;
       
   944 	u32 shared_int = 1;
       
   945 	u32 irq = adapter->pdev->irq;
       
   946 	int i;
       
   947 	int ret_val = 0;
       
   948 	int int_mode = E1000E_INT_MODE_LEGACY;
       
   949 
       
   950 	*data = 0;
       
   951 
       
   952 	/* NOTE: we don't test MSI/MSI-X interrupts here, yet */
       
   953 	if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
       
   954 		int_mode = adapter->int_mode;
       
   955 		e1000e_reset_interrupt_capability(adapter);
       
   956 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
       
   957 		e1000e_set_interrupt_capability(adapter);
       
   958 	}
       
   959 	/* Hook up test interrupt handler just for this test */
       
   960 	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
       
   961 			 netdev)) {
       
   962 		shared_int = 0;
       
   963 	} else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
       
   964 		 netdev->name, netdev)) {
       
   965 		*data = 1;
       
   966 		ret_val = -1;
       
   967 		goto out;
       
   968 	}
       
   969 	e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
       
   970 
       
   971 	/* Disable all the interrupts */
       
   972 	ew32(IMC, 0xFFFFFFFF);
       
   973 	e1e_flush();
       
   974 	usleep_range(10000, 20000);
       
   975 
       
   976 	/* Test each interrupt */
       
   977 	for (i = 0; i < 10; i++) {
       
   978 		/* Interrupt to test */
       
   979 		mask = 1 << i;
       
   980 
       
   981 		if (adapter->flags & FLAG_IS_ICH) {
       
   982 			switch (mask) {
       
   983 			case E1000_ICR_RXSEQ:
       
   984 				continue;
       
   985 			case 0x00000100:
       
   986 				if (adapter->hw.mac.type == e1000_ich8lan ||
       
   987 				    adapter->hw.mac.type == e1000_ich9lan)
       
   988 					continue;
       
   989 				break;
       
   990 			default:
       
   991 				break;
       
   992 			}
       
   993 		}
       
   994 
       
   995 		if (!shared_int) {
       
   996 			/* Disable the interrupt to be reported in
       
   997 			 * the cause register and then force the same
       
   998 			 * interrupt and see if one gets posted.  If
       
   999 			 * an interrupt was posted to the bus, the
       
  1000 			 * test failed.
       
  1001 			 */
       
  1002 			adapter->test_icr = 0;
       
  1003 			ew32(IMC, mask);
       
  1004 			ew32(ICS, mask);
       
  1005 			e1e_flush();
       
  1006 			usleep_range(10000, 20000);
       
  1007 
       
  1008 			if (adapter->test_icr & mask) {
       
  1009 				*data = 3;
       
  1010 				break;
       
  1011 			}
       
  1012 		}
       
  1013 
       
  1014 		/* Enable the interrupt to be reported in
       
  1015 		 * the cause register and then force the same
       
  1016 		 * interrupt and see if one gets posted.  If
       
  1017 		 * an interrupt was not posted to the bus, the
       
  1018 		 * test failed.
       
  1019 		 */
       
  1020 		adapter->test_icr = 0;
       
  1021 		ew32(IMS, mask);
       
  1022 		ew32(ICS, mask);
       
  1023 		e1e_flush();
       
  1024 		usleep_range(10000, 20000);
       
  1025 
       
  1026 		if (!(adapter->test_icr & mask)) {
       
  1027 			*data = 4;
       
  1028 			break;
       
  1029 		}
       
  1030 
       
  1031 		if (!shared_int) {
       
  1032 			/* Disable the other interrupts to be reported in
       
  1033 			 * the cause register and then force the other
       
  1034 			 * interrupts and see if any get posted.  If
       
  1035 			 * an interrupt was posted to the bus, the
       
  1036 			 * test failed.
       
  1037 			 */
       
  1038 			adapter->test_icr = 0;
       
  1039 			ew32(IMC, ~mask & 0x00007FFF);
       
  1040 			ew32(ICS, ~mask & 0x00007FFF);
       
  1041 			e1e_flush();
       
  1042 			usleep_range(10000, 20000);
       
  1043 
       
  1044 			if (adapter->test_icr) {
       
  1045 				*data = 5;
       
  1046 				break;
       
  1047 			}
       
  1048 		}
       
  1049 	}
       
  1050 
       
  1051 	/* Disable all the interrupts */
       
  1052 	ew32(IMC, 0xFFFFFFFF);
       
  1053 	e1e_flush();
       
  1054 	usleep_range(10000, 20000);
       
  1055 
       
  1056 	/* Unhook test interrupt handler */
       
  1057 	free_irq(irq, netdev);
       
  1058 
       
  1059 out:
       
  1060 	if (int_mode == E1000E_INT_MODE_MSIX) {
       
  1061 		e1000e_reset_interrupt_capability(adapter);
       
  1062 		adapter->int_mode = int_mode;
       
  1063 		e1000e_set_interrupt_capability(adapter);
       
  1064 	}
       
  1065 
       
  1066 	return ret_val;
       
  1067 }
       
  1068 
       
  1069 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
       
  1070 {
       
  1071 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
       
  1072 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
       
  1073 	struct pci_dev *pdev = adapter->pdev;
       
  1074 	int i;
       
  1075 
       
  1076 	if (tx_ring->desc && tx_ring->buffer_info) {
       
  1077 		for (i = 0; i < tx_ring->count; i++) {
       
  1078 			if (tx_ring->buffer_info[i].dma)
       
  1079 				dma_unmap_single(&pdev->dev,
       
  1080 					tx_ring->buffer_info[i].dma,
       
  1081 					tx_ring->buffer_info[i].length,
       
  1082 					DMA_TO_DEVICE);
       
  1083 			if (tx_ring->buffer_info[i].skb)
       
  1084 				dev_kfree_skb(tx_ring->buffer_info[i].skb);
       
  1085 		}
       
  1086 	}
       
  1087 
       
  1088 	if (rx_ring->desc && rx_ring->buffer_info) {
       
  1089 		for (i = 0; i < rx_ring->count; i++) {
       
  1090 			if (rx_ring->buffer_info[i].dma)
       
  1091 				dma_unmap_single(&pdev->dev,
       
  1092 					rx_ring->buffer_info[i].dma,
       
  1093 					2048, DMA_FROM_DEVICE);
       
  1094 			if (rx_ring->buffer_info[i].skb)
       
  1095 				dev_kfree_skb(rx_ring->buffer_info[i].skb);
       
  1096 		}
       
  1097 	}
       
  1098 
       
  1099 	if (tx_ring->desc) {
       
  1100 		dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
       
  1101 				  tx_ring->dma);
       
  1102 		tx_ring->desc = NULL;
       
  1103 	}
       
  1104 	if (rx_ring->desc) {
       
  1105 		dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
       
  1106 				  rx_ring->dma);
       
  1107 		rx_ring->desc = NULL;
       
  1108 	}
       
  1109 
       
  1110 	kfree(tx_ring->buffer_info);
       
  1111 	tx_ring->buffer_info = NULL;
       
  1112 	kfree(rx_ring->buffer_info);
       
  1113 	rx_ring->buffer_info = NULL;
       
  1114 }
       
  1115 
       
  1116 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
       
  1117 {
       
  1118 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
       
  1119 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
       
  1120 	struct pci_dev *pdev = adapter->pdev;
       
  1121 	struct e1000_hw *hw = &adapter->hw;
       
  1122 	u32 rctl;
       
  1123 	int i;
       
  1124 	int ret_val;
       
  1125 
       
  1126 	/* Setup Tx descriptor ring and Tx buffers */
       
  1127 
       
  1128 	if (!tx_ring->count)
       
  1129 		tx_ring->count = E1000_DEFAULT_TXD;
       
  1130 
       
  1131 	tx_ring->buffer_info = kcalloc(tx_ring->count,
       
  1132 				       sizeof(struct e1000_buffer),
       
  1133 				       GFP_KERNEL);
       
  1134 	if (!tx_ring->buffer_info) {
       
  1135 		ret_val = 1;
       
  1136 		goto err_nomem;
       
  1137 	}
       
  1138 
       
  1139 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
       
  1140 	tx_ring->size = ALIGN(tx_ring->size, 4096);
       
  1141 	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
       
  1142 					   &tx_ring->dma, GFP_KERNEL);
       
  1143 	if (!tx_ring->desc) {
       
  1144 		ret_val = 2;
       
  1145 		goto err_nomem;
       
  1146 	}
       
  1147 	tx_ring->next_to_use = 0;
       
  1148 	tx_ring->next_to_clean = 0;
       
  1149 
       
  1150 	ew32(TDBAL(0), ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
       
  1151 	ew32(TDBAH(0), ((u64) tx_ring->dma >> 32));
       
  1152 	ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
       
  1153 	ew32(TDH(0), 0);
       
  1154 	ew32(TDT(0), 0);
       
  1155 	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
       
  1156 	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
       
  1157 	     E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
       
  1158 
       
  1159 	for (i = 0; i < tx_ring->count; i++) {
       
  1160 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
       
  1161 		struct sk_buff *skb;
       
  1162 		unsigned int skb_size = 1024;
       
  1163 
       
  1164 		skb = alloc_skb(skb_size, GFP_KERNEL);
       
  1165 		if (!skb) {
       
  1166 			ret_val = 3;
       
  1167 			goto err_nomem;
       
  1168 		}
       
  1169 		skb_put(skb, skb_size);
       
  1170 		tx_ring->buffer_info[i].skb = skb;
       
  1171 		tx_ring->buffer_info[i].length = skb->len;
       
  1172 		tx_ring->buffer_info[i].dma =
       
  1173 			dma_map_single(&pdev->dev, skb->data, skb->len,
       
  1174 				       DMA_TO_DEVICE);
       
  1175 		if (dma_mapping_error(&pdev->dev,
       
  1176 				      tx_ring->buffer_info[i].dma)) {
       
  1177 			ret_val = 4;
       
  1178 			goto err_nomem;
       
  1179 		}
       
  1180 		tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
       
  1181 		tx_desc->lower.data = cpu_to_le32(skb->len);
       
  1182 		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
       
  1183 						   E1000_TXD_CMD_IFCS |
       
  1184 						   E1000_TXD_CMD_RS);
       
  1185 		tx_desc->upper.data = 0;
       
  1186 	}
       
  1187 
       
  1188 	/* Setup Rx descriptor ring and Rx buffers */
       
  1189 
       
  1190 	if (!rx_ring->count)
       
  1191 		rx_ring->count = E1000_DEFAULT_RXD;
       
  1192 
       
  1193 	rx_ring->buffer_info = kcalloc(rx_ring->count,
       
  1194 				       sizeof(struct e1000_buffer),
       
  1195 				       GFP_KERNEL);
       
  1196 	if (!rx_ring->buffer_info) {
       
  1197 		ret_val = 5;
       
  1198 		goto err_nomem;
       
  1199 	}
       
  1200 
       
  1201 	rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
       
  1202 	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
       
  1203 					   &rx_ring->dma, GFP_KERNEL);
       
  1204 	if (!rx_ring->desc) {
       
  1205 		ret_val = 6;
       
  1206 		goto err_nomem;
       
  1207 	}
       
  1208 	rx_ring->next_to_use = 0;
       
  1209 	rx_ring->next_to_clean = 0;
       
  1210 
       
  1211 	rctl = er32(RCTL);
       
  1212 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
       
  1213 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
       
  1214 	ew32(RDBAL(0), ((u64) rx_ring->dma & 0xFFFFFFFF));
       
  1215 	ew32(RDBAH(0), ((u64) rx_ring->dma >> 32));
       
  1216 	ew32(RDLEN(0), rx_ring->size);
       
  1217 	ew32(RDH(0), 0);
       
  1218 	ew32(RDT(0), 0);
       
  1219 	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
       
  1220 		E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
       
  1221 		E1000_RCTL_SBP | E1000_RCTL_SECRC |
       
  1222 		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
       
  1223 		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
       
  1224 	ew32(RCTL, rctl);
       
  1225 
       
  1226 	for (i = 0; i < rx_ring->count; i++) {
       
  1227 		union e1000_rx_desc_extended *rx_desc;
       
  1228 		struct sk_buff *skb;
       
  1229 
       
  1230 		skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
       
  1231 		if (!skb) {
       
  1232 			ret_val = 7;
       
  1233 			goto err_nomem;
       
  1234 		}
       
  1235 		skb_reserve(skb, NET_IP_ALIGN);
       
  1236 		rx_ring->buffer_info[i].skb = skb;
       
  1237 		rx_ring->buffer_info[i].dma =
       
  1238 			dma_map_single(&pdev->dev, skb->data, 2048,
       
  1239 				       DMA_FROM_DEVICE);
       
  1240 		if (dma_mapping_error(&pdev->dev,
       
  1241 				      rx_ring->buffer_info[i].dma)) {
       
  1242 			ret_val = 8;
       
  1243 			goto err_nomem;
       
  1244 		}
       
  1245 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
       
  1246 		rx_desc->read.buffer_addr =
       
  1247 		    cpu_to_le64(rx_ring->buffer_info[i].dma);
       
  1248 		memset(skb->data, 0x00, skb->len);
       
  1249 	}
       
  1250 
       
  1251 	return 0;
       
  1252 
       
  1253 err_nomem:
       
  1254 	e1000_free_desc_rings(adapter);
       
  1255 	return ret_val;
       
  1256 }
       
  1257 
       
  1258 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
       
  1259 {
       
  1260 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
       
  1261 	e1e_wphy(&adapter->hw, 29, 0x001F);
       
  1262 	e1e_wphy(&adapter->hw, 30, 0x8FFC);
       
  1263 	e1e_wphy(&adapter->hw, 29, 0x001A);
       
  1264 	e1e_wphy(&adapter->hw, 30, 0x8FF0);
       
  1265 }
       
  1266 
       
  1267 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
       
  1268 {
       
  1269 	struct e1000_hw *hw = &adapter->hw;
       
  1270 	u32 ctrl_reg = 0;
       
  1271 	u16 phy_reg = 0;
       
  1272 	s32 ret_val = 0;
       
  1273 
       
  1274 	hw->mac.autoneg = 0;
       
  1275 
       
  1276 	if (hw->phy.type == e1000_phy_ife) {
       
  1277 		/* force 100, set loopback */
       
  1278 		e1e_wphy(hw, PHY_CONTROL, 0x6100);
       
  1279 
       
  1280 		/* Now set up the MAC to the same speed/duplex as the PHY. */
       
  1281 		ctrl_reg = er32(CTRL);
       
  1282 		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
       
  1283 		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
       
  1284 			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
       
  1285 			     E1000_CTRL_SPD_100 |/* Force Speed to 100 */
       
  1286 			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
       
  1287 
       
  1288 		ew32(CTRL, ctrl_reg);
       
  1289 		e1e_flush();
       
  1290 		udelay(500);
       
  1291 
       
  1292 		return 0;
       
  1293 	}
       
  1294 
       
  1295 	/* Specific PHY configuration for loopback */
       
  1296 	switch (hw->phy.type) {
       
  1297 	case e1000_phy_m88:
       
  1298 		/* Auto-MDI/MDIX Off */
       
  1299 		e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
       
  1300 		/* reset to update Auto-MDI/MDIX */
       
  1301 		e1e_wphy(hw, PHY_CONTROL, 0x9140);
       
  1302 		/* autoneg off */
       
  1303 		e1e_wphy(hw, PHY_CONTROL, 0x8140);
       
  1304 		break;
       
  1305 	case e1000_phy_gg82563:
       
  1306 		e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
       
  1307 		break;
       
  1308 	case e1000_phy_bm:
       
  1309 		/* Set Default MAC Interface speed to 1GB */
       
  1310 		e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
       
  1311 		phy_reg &= ~0x0007;
       
  1312 		phy_reg |= 0x006;
       
  1313 		e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
       
  1314 		/* Assert SW reset for above settings to take effect */
       
  1315 		e1000e_commit_phy(hw);
       
  1316 		mdelay(1);
       
  1317 		/* Force Full Duplex */
       
  1318 		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
       
  1319 		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
       
  1320 		/* Set Link Up (in force link) */
       
  1321 		e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
       
  1322 		e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
       
  1323 		/* Force Link */
       
  1324 		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
       
  1325 		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
       
  1326 		/* Set Early Link Enable */
       
  1327 		e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
       
  1328 		e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
       
  1329 		break;
       
  1330 	case e1000_phy_82577:
       
  1331 	case e1000_phy_82578:
       
  1332 		/* Workaround: K1 must be disabled for stable 1Gbps operation */
       
  1333 		ret_val = hw->phy.ops.acquire(hw);
       
  1334 		if (ret_val) {
       
  1335 			e_err("Cannot setup 1Gbps loopback.\n");
       
  1336 			return ret_val;
       
  1337 		}
       
  1338 		e1000_configure_k1_ich8lan(hw, false);
       
  1339 		hw->phy.ops.release(hw);
       
  1340 		break;
       
  1341 	case e1000_phy_82579:
       
  1342 		/* Disable PHY energy detect power down */
       
  1343 		e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
       
  1344 		e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3));
       
  1345 		/* Disable full chip energy detect */
       
  1346 		e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
       
  1347 		e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
       
  1348 		/* Enable loopback on the PHY */
       
  1349 #define I82577_PHY_LBK_CTRL          19
       
  1350 		e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
       
  1351 		break;
       
  1352 	default:
       
  1353 		break;
       
  1354 	}
       
  1355 
       
  1356 	/* force 1000, set loopback */
       
  1357 	e1e_wphy(hw, PHY_CONTROL, 0x4140);
       
  1358 	mdelay(250);
       
  1359 
       
  1360 	/* Now set up the MAC to the same speed/duplex as the PHY. */
       
  1361 	ctrl_reg = er32(CTRL);
       
  1362 	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
       
  1363 	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
       
  1364 		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
       
  1365 		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
       
  1366 		     E1000_CTRL_FD);	 /* Force Duplex to FULL */
       
  1367 
       
  1368 	if (adapter->flags & FLAG_IS_ICH)
       
  1369 		ctrl_reg |= E1000_CTRL_SLU;	/* Set Link Up */
       
  1370 
       
  1371 	if (hw->phy.media_type == e1000_media_type_copper &&
       
  1372 	    hw->phy.type == e1000_phy_m88) {
       
  1373 		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
       
  1374 	} else {
       
  1375 		/* Set the ILOS bit on the fiber Nic if half duplex link is
       
  1376 		 * detected.
       
  1377 		 */
       
  1378 		if ((er32(STATUS) & E1000_STATUS_FD) == 0)
       
  1379 			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
       
  1380 	}
       
  1381 
       
  1382 	ew32(CTRL, ctrl_reg);
       
  1383 
       
  1384 	/* Disable the receiver on the PHY so when a cable is plugged in, the
       
  1385 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
       
  1386 	 */
       
  1387 	if (hw->phy.type == e1000_phy_m88)
       
  1388 		e1000_phy_disable_receiver(adapter);
       
  1389 
       
  1390 	udelay(500);
       
  1391 
       
  1392 	return 0;
       
  1393 }
       
  1394 
       
  1395 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
       
  1396 {
       
  1397 	struct e1000_hw *hw = &adapter->hw;
       
  1398 	u32 ctrl = er32(CTRL);
       
  1399 	int link = 0;
       
  1400 
       
  1401 	/* special requirements for 82571/82572 fiber adapters */
       
  1402 
       
  1403 	/* jump through hoops to make sure link is up because serdes
       
  1404 	 * link is hardwired up
       
  1405 	 */
       
  1406 	ctrl |= E1000_CTRL_SLU;
       
  1407 	ew32(CTRL, ctrl);
       
  1408 
       
  1409 	/* disable autoneg */
       
  1410 	ctrl = er32(TXCW);
       
  1411 	ctrl &= ~(1 << 31);
       
  1412 	ew32(TXCW, ctrl);
       
  1413 
       
  1414 	link = (er32(STATUS) & E1000_STATUS_LU);
       
  1415 
       
  1416 	if (!link) {
       
  1417 		/* set invert loss of signal */
       
  1418 		ctrl = er32(CTRL);
       
  1419 		ctrl |= E1000_CTRL_ILOS;
       
  1420 		ew32(CTRL, ctrl);
       
  1421 	}
       
  1422 
       
  1423 	/* special write to serdes control register to enable SerDes analog
       
  1424 	 * loopback
       
  1425 	 */
       
  1426 #define E1000_SERDES_LB_ON 0x410
       
  1427 	ew32(SCTL, E1000_SERDES_LB_ON);
       
  1428 	e1e_flush();
       
  1429 	usleep_range(10000, 20000);
       
  1430 
       
  1431 	return 0;
       
  1432 }
       
  1433 
       
  1434 /* only call this for fiber/serdes connections to es2lan */
       
  1435 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
       
  1436 {
       
  1437 	struct e1000_hw *hw = &adapter->hw;
       
  1438 	u32 ctrlext = er32(CTRL_EXT);
       
  1439 	u32 ctrl = er32(CTRL);
       
  1440 
       
  1441 	/* save CTRL_EXT to restore later, reuse an empty variable (unused
       
  1442 	 * on mac_type 80003es2lan)
       
  1443 	 */
       
  1444 	adapter->tx_fifo_head = ctrlext;
       
  1445 
       
  1446 	/* clear the serdes mode bits, putting the device into mac loopback */
       
  1447 	ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
       
  1448 	ew32(CTRL_EXT, ctrlext);
       
  1449 
       
  1450 	/* force speed to 1000/FD, link up */
       
  1451 	ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
       
  1452 	ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
       
  1453 		 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
       
  1454 	ew32(CTRL, ctrl);
       
  1455 
       
  1456 	/* set mac loopback */
       
  1457 	ctrl = er32(RCTL);
       
  1458 	ctrl |= E1000_RCTL_LBM_MAC;
       
  1459 	ew32(RCTL, ctrl);
       
  1460 
       
  1461 	/* set testing mode parameters (no need to reset later) */
       
  1462 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
       
  1463 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
       
  1464 	ew32(KMRNCTRLSTA,
       
  1465 	     (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
       
  1466 
       
  1467 	return 0;
       
  1468 }
       
  1469 
       
  1470 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
       
  1471 {
       
  1472 	struct e1000_hw *hw = &adapter->hw;
       
  1473 	u32 rctl;
       
  1474 
       
  1475 	if (hw->phy.media_type == e1000_media_type_fiber ||
       
  1476 	    hw->phy.media_type == e1000_media_type_internal_serdes) {
       
  1477 		switch (hw->mac.type) {
       
  1478 		case e1000_80003es2lan:
       
  1479 			return e1000_set_es2lan_mac_loopback(adapter);
       
  1480 			break;
       
  1481 		case e1000_82571:
       
  1482 		case e1000_82572:
       
  1483 			return e1000_set_82571_fiber_loopback(adapter);
       
  1484 			break;
       
  1485 		default:
       
  1486 			rctl = er32(RCTL);
       
  1487 			rctl |= E1000_RCTL_LBM_TCVR;
       
  1488 			ew32(RCTL, rctl);
       
  1489 			return 0;
       
  1490 		}
       
  1491 	} else if (hw->phy.media_type == e1000_media_type_copper) {
       
  1492 		return e1000_integrated_phy_loopback(adapter);
       
  1493 	}
       
  1494 
       
  1495 	return 7;
       
  1496 }
       
  1497 
       
  1498 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
       
  1499 {
       
  1500 	struct e1000_hw *hw = &adapter->hw;
       
  1501 	u32 rctl;
       
  1502 	u16 phy_reg;
       
  1503 
       
  1504 	rctl = er32(RCTL);
       
  1505 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
       
  1506 	ew32(RCTL, rctl);
       
  1507 
       
  1508 	switch (hw->mac.type) {
       
  1509 	case e1000_80003es2lan:
       
  1510 		if (hw->phy.media_type == e1000_media_type_fiber ||
       
  1511 		    hw->phy.media_type == e1000_media_type_internal_serdes) {
       
  1512 			/* restore CTRL_EXT, stealing space from tx_fifo_head */
       
  1513 			ew32(CTRL_EXT, adapter->tx_fifo_head);
       
  1514 			adapter->tx_fifo_head = 0;
       
  1515 		}
       
  1516 		/* fall through */
       
  1517 	case e1000_82571:
       
  1518 	case e1000_82572:
       
  1519 		if (hw->phy.media_type == e1000_media_type_fiber ||
       
  1520 		    hw->phy.media_type == e1000_media_type_internal_serdes) {
       
  1521 #define E1000_SERDES_LB_OFF 0x400
       
  1522 			ew32(SCTL, E1000_SERDES_LB_OFF);
       
  1523 			e1e_flush();
       
  1524 			usleep_range(10000, 20000);
       
  1525 			break;
       
  1526 		}
       
  1527 		/* Fall Through */
       
  1528 	default:
       
  1529 		hw->mac.autoneg = 1;
       
  1530 		if (hw->phy.type == e1000_phy_gg82563)
       
  1531 			e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
       
  1532 		e1e_rphy(hw, PHY_CONTROL, &phy_reg);
       
  1533 		if (phy_reg & MII_CR_LOOPBACK) {
       
  1534 			phy_reg &= ~MII_CR_LOOPBACK;
       
  1535 			e1e_wphy(hw, PHY_CONTROL, phy_reg);
       
  1536 			e1000e_commit_phy(hw);
       
  1537 		}
       
  1538 		break;
       
  1539 	}
       
  1540 }
       
  1541 
       
  1542 static void e1000_create_lbtest_frame(struct sk_buff *skb,
       
  1543 				      unsigned int frame_size)
       
  1544 {
       
  1545 	memset(skb->data, 0xFF, frame_size);
       
  1546 	frame_size &= ~1;
       
  1547 	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
       
  1548 	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
       
  1549 	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
       
  1550 }
       
  1551 
       
  1552 static int e1000_check_lbtest_frame(struct sk_buff *skb,
       
  1553 				    unsigned int frame_size)
       
  1554 {
       
  1555 	frame_size &= ~1;
       
  1556 	if (*(skb->data + 3) == 0xFF)
       
  1557 		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
       
  1558 		   (*(skb->data + frame_size / 2 + 12) == 0xAF))
       
  1559 			return 0;
       
  1560 	return 13;
       
  1561 }
       
  1562 
       
  1563 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
       
  1564 {
       
  1565 	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
       
  1566 	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
       
  1567 	struct pci_dev *pdev = adapter->pdev;
       
  1568 	struct e1000_hw *hw = &adapter->hw;
       
  1569 	int i, j, k, l;
       
  1570 	int lc;
       
  1571 	int good_cnt;
       
  1572 	int ret_val = 0;
       
  1573 	unsigned long time;
       
  1574 
       
  1575 	ew32(RDT(0), rx_ring->count - 1);
       
  1576 
       
  1577 	/* Calculate the loop count based on the largest descriptor ring
       
  1578 	 * The idea is to wrap the largest ring a number of times using 64
       
  1579 	 * send/receive pairs during each loop
       
  1580 	 */
       
  1581 
       
  1582 	if (rx_ring->count <= tx_ring->count)
       
  1583 		lc = ((tx_ring->count / 64) * 2) + 1;
       
  1584 	else
       
  1585 		lc = ((rx_ring->count / 64) * 2) + 1;
       
  1586 
       
  1587 	k = 0;
       
  1588 	l = 0;
       
  1589 	for (j = 0; j <= lc; j++) { /* loop count loop */
       
  1590 		for (i = 0; i < 64; i++) { /* send the packets */
       
  1591 			e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
       
  1592 						  1024);
       
  1593 			dma_sync_single_for_device(&pdev->dev,
       
  1594 					tx_ring->buffer_info[k].dma,
       
  1595 					tx_ring->buffer_info[k].length,
       
  1596 					DMA_TO_DEVICE);
       
  1597 			k++;
       
  1598 			if (k == tx_ring->count)
       
  1599 				k = 0;
       
  1600 		}
       
  1601 		ew32(TDT(0), k);
       
  1602 		e1e_flush();
       
  1603 		msleep(200);
       
  1604 		time = jiffies; /* set the start time for the receive */
       
  1605 		good_cnt = 0;
       
  1606 		do { /* receive the sent packets */
       
  1607 			dma_sync_single_for_cpu(&pdev->dev,
       
  1608 					rx_ring->buffer_info[l].dma, 2048,
       
  1609 					DMA_FROM_DEVICE);
       
  1610 
       
  1611 			ret_val = e1000_check_lbtest_frame(
       
  1612 					rx_ring->buffer_info[l].skb, 1024);
       
  1613 			if (!ret_val)
       
  1614 				good_cnt++;
       
  1615 			l++;
       
  1616 			if (l == rx_ring->count)
       
  1617 				l = 0;
       
  1618 			/* time + 20 msecs (200 msecs on 2.4) is more than
       
  1619 			 * enough time to complete the receives, if it's
       
  1620 			 * exceeded, break and error off
       
  1621 			 */
       
  1622 		} while ((good_cnt < 64) && !time_after(jiffies, time + 20));
       
  1623 		if (good_cnt != 64) {
       
  1624 			ret_val = 13; /* ret_val is the same as mis-compare */
       
  1625 			break;
       
  1626 		}
       
  1627 		if (jiffies >= (time + 20)) {
       
  1628 			ret_val = 14; /* error code for time out error */
       
  1629 			break;
       
  1630 		}
       
  1631 	} /* end loop count loop */
       
  1632 	return ret_val;
       
  1633 }
       
  1634 
       
  1635 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
       
  1636 {
       
  1637 	struct e1000_hw *hw = &adapter->hw;
       
  1638 
       
  1639 	/* PHY loopback cannot be performed if SoL/IDER sessions are active */
       
  1640 	if (hw->phy.ops.check_reset_block &&
       
  1641 	    hw->phy.ops.check_reset_block(hw)) {
       
  1642 		e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
       
  1643 		*data = 0;
       
  1644 		goto out;
       
  1645 	}
       
  1646 
       
  1647 	*data = e1000_setup_desc_rings(adapter);
       
  1648 	if (*data)
       
  1649 		goto out;
       
  1650 
       
  1651 	*data = e1000_setup_loopback_test(adapter);
       
  1652 	if (*data)
       
  1653 		goto err_loopback;
       
  1654 
       
  1655 	*data = e1000_run_loopback_test(adapter);
       
  1656 	e1000_loopback_cleanup(adapter);
       
  1657 
       
  1658 err_loopback:
       
  1659 	e1000_free_desc_rings(adapter);
       
  1660 out:
       
  1661 	return *data;
       
  1662 }
       
  1663 
       
  1664 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
       
  1665 {
       
  1666 	struct e1000_hw *hw = &adapter->hw;
       
  1667 
       
  1668 	*data = 0;
       
  1669 	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
       
  1670 		int i = 0;
       
  1671 		hw->mac.serdes_has_link = false;
       
  1672 
       
  1673 		/* On some blade server designs, link establishment
       
  1674 		 * could take as long as 2-3 minutes
       
  1675 		 */
       
  1676 		do {
       
  1677 			hw->mac.ops.check_for_link(hw);
       
  1678 			if (hw->mac.serdes_has_link)
       
  1679 				return *data;
       
  1680 			msleep(20);
       
  1681 		} while (i++ < 3750);
       
  1682 
       
  1683 		*data = 1;
       
  1684 	} else {
       
  1685 		hw->mac.ops.check_for_link(hw);
       
  1686 		if (hw->mac.autoneg)
       
  1687 			/* On some Phy/switch combinations, link establishment
       
  1688 			 * can take a few seconds more than expected.
       
  1689 			 */
       
  1690 			msleep(5000);
       
  1691 
       
  1692 		if (!(er32(STATUS) & E1000_STATUS_LU))
       
  1693 			*data = 1;
       
  1694 	}
       
  1695 	return *data;
       
  1696 }
       
  1697 
       
  1698 static int e1000e_get_sset_count(struct net_device *netdev, int sset)
       
  1699 {
       
  1700 	switch (sset) {
       
  1701 	case ETH_SS_TEST:
       
  1702 		return E1000_TEST_LEN;
       
  1703 	case ETH_SS_STATS:
       
  1704 		return E1000_STATS_LEN;
       
  1705 	default:
       
  1706 		return -EOPNOTSUPP;
       
  1707 	}
       
  1708 }
       
  1709 
       
  1710 static void e1000_diag_test(struct net_device *netdev,
       
  1711 			    struct ethtool_test *eth_test, u64 *data)
       
  1712 {
       
  1713 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1714 	u16 autoneg_advertised;
       
  1715 	u8 forced_speed_duplex;
       
  1716 	u8 autoneg;
       
  1717 	bool if_running = netif_running(netdev);
       
  1718 
       
  1719 	set_bit(__E1000_TESTING, &adapter->state);
       
  1720 
       
  1721 	if (!if_running) {
       
  1722 		/* Get control of and reset hardware */
       
  1723 		if (adapter->flags & FLAG_HAS_AMT)
       
  1724 			e1000e_get_hw_control(adapter);
       
  1725 
       
  1726 		e1000e_power_up_phy(adapter);
       
  1727 
       
  1728 		adapter->hw.phy.autoneg_wait_to_complete = 1;
       
  1729 		e1000e_reset(adapter);
       
  1730 		adapter->hw.phy.autoneg_wait_to_complete = 0;
       
  1731 	}
       
  1732 
       
  1733 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
       
  1734 		/* Offline tests */
       
  1735 
       
  1736 		/* save speed, duplex, autoneg settings */
       
  1737 		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
       
  1738 		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
       
  1739 		autoneg = adapter->hw.mac.autoneg;
       
  1740 
       
  1741 		e_info("offline testing starting\n");
       
  1742 
       
  1743 		if (if_running)
       
  1744 			/* indicate we're in test mode */
       
  1745 			dev_close(netdev);
       
  1746 
       
  1747 		if (e1000_reg_test(adapter, &data[0]))
       
  1748 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  1749 
       
  1750 		e1000e_reset(adapter);
       
  1751 		if (e1000_eeprom_test(adapter, &data[1]))
       
  1752 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  1753 
       
  1754 		e1000e_reset(adapter);
       
  1755 		if (e1000_intr_test(adapter, &data[2]))
       
  1756 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  1757 
       
  1758 		e1000e_reset(adapter);
       
  1759 		if (e1000_loopback_test(adapter, &data[3]))
       
  1760 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  1761 
       
  1762 		/* force this routine to wait until autoneg complete/timeout */
       
  1763 		adapter->hw.phy.autoneg_wait_to_complete = 1;
       
  1764 		e1000e_reset(adapter);
       
  1765 		adapter->hw.phy.autoneg_wait_to_complete = 0;
       
  1766 
       
  1767 		if (e1000_link_test(adapter, &data[4]))
       
  1768 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  1769 
       
  1770 		/* restore speed, duplex, autoneg settings */
       
  1771 		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
       
  1772 		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
       
  1773 		adapter->hw.mac.autoneg = autoneg;
       
  1774 		e1000e_reset(adapter);
       
  1775 
       
  1776 		clear_bit(__E1000_TESTING, &adapter->state);
       
  1777 		if (if_running)
       
  1778 			dev_open(netdev);
       
  1779 	} else {
       
  1780 		/* Online tests */
       
  1781 
       
  1782 		e_info("online testing starting\n");
       
  1783 
       
  1784 		/* register, eeprom, intr and loopback tests not run online */
       
  1785 		data[0] = 0;
       
  1786 		data[1] = 0;
       
  1787 		data[2] = 0;
       
  1788 		data[3] = 0;
       
  1789 
       
  1790 		if (e1000_link_test(adapter, &data[4]))
       
  1791 			eth_test->flags |= ETH_TEST_FL_FAILED;
       
  1792 
       
  1793 		clear_bit(__E1000_TESTING, &adapter->state);
       
  1794 	}
       
  1795 
       
  1796 	if (!if_running) {
       
  1797 		e1000e_reset(adapter);
       
  1798 
       
  1799 		if (adapter->flags & FLAG_HAS_AMT)
       
  1800 			e1000e_release_hw_control(adapter);
       
  1801 	}
       
  1802 
       
  1803 	msleep_interruptible(4 * 1000);
       
  1804 }
       
  1805 
       
  1806 static void e1000_get_wol(struct net_device *netdev,
       
  1807 			  struct ethtool_wolinfo *wol)
       
  1808 {
       
  1809 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1810 
       
  1811 	wol->supported = 0;
       
  1812 	wol->wolopts = 0;
       
  1813 
       
  1814 	if (!(adapter->flags & FLAG_HAS_WOL) ||
       
  1815 	    !device_can_wakeup(&adapter->pdev->dev))
       
  1816 		return;
       
  1817 
       
  1818 	wol->supported = WAKE_UCAST | WAKE_MCAST |
       
  1819 	    WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
       
  1820 
       
  1821 	/* apply any specific unsupported masks here */
       
  1822 	if (adapter->flags & FLAG_NO_WAKE_UCAST) {
       
  1823 		wol->supported &= ~WAKE_UCAST;
       
  1824 
       
  1825 		if (adapter->wol & E1000_WUFC_EX)
       
  1826 			e_err("Interface does not support directed (unicast) frame wake-up packets\n");
       
  1827 	}
       
  1828 
       
  1829 	if (adapter->wol & E1000_WUFC_EX)
       
  1830 		wol->wolopts |= WAKE_UCAST;
       
  1831 	if (adapter->wol & E1000_WUFC_MC)
       
  1832 		wol->wolopts |= WAKE_MCAST;
       
  1833 	if (adapter->wol & E1000_WUFC_BC)
       
  1834 		wol->wolopts |= WAKE_BCAST;
       
  1835 	if (adapter->wol & E1000_WUFC_MAG)
       
  1836 		wol->wolopts |= WAKE_MAGIC;
       
  1837 	if (adapter->wol & E1000_WUFC_LNKC)
       
  1838 		wol->wolopts |= WAKE_PHY;
       
  1839 }
       
  1840 
       
  1841 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
       
  1842 {
       
  1843 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1844 
       
  1845 	if (!(adapter->flags & FLAG_HAS_WOL) ||
       
  1846 	    !device_can_wakeup(&adapter->pdev->dev) ||
       
  1847 	    (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
       
  1848 			      WAKE_MAGIC | WAKE_PHY)))
       
  1849 		return -EOPNOTSUPP;
       
  1850 
       
  1851 	/* these settings will always override what we currently have */
       
  1852 	adapter->wol = 0;
       
  1853 
       
  1854 	if (wol->wolopts & WAKE_UCAST)
       
  1855 		adapter->wol |= E1000_WUFC_EX;
       
  1856 	if (wol->wolopts & WAKE_MCAST)
       
  1857 		adapter->wol |= E1000_WUFC_MC;
       
  1858 	if (wol->wolopts & WAKE_BCAST)
       
  1859 		adapter->wol |= E1000_WUFC_BC;
       
  1860 	if (wol->wolopts & WAKE_MAGIC)
       
  1861 		adapter->wol |= E1000_WUFC_MAG;
       
  1862 	if (wol->wolopts & WAKE_PHY)
       
  1863 		adapter->wol |= E1000_WUFC_LNKC;
       
  1864 
       
  1865 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
       
  1866 
       
  1867 	return 0;
       
  1868 }
       
  1869 
       
  1870 static int e1000_set_phys_id(struct net_device *netdev,
       
  1871 			     enum ethtool_phys_id_state state)
       
  1872 {
       
  1873 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1874 	struct e1000_hw *hw = &adapter->hw;
       
  1875 
       
  1876 	switch (state) {
       
  1877 	case ETHTOOL_ID_ACTIVE:
       
  1878 		if (!hw->mac.ops.blink_led)
       
  1879 			return 2;	/* cycle on/off twice per second */
       
  1880 
       
  1881 		hw->mac.ops.blink_led(hw);
       
  1882 		break;
       
  1883 
       
  1884 	case ETHTOOL_ID_INACTIVE:
       
  1885 		if (hw->phy.type == e1000_phy_ife)
       
  1886 			e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
       
  1887 		hw->mac.ops.led_off(hw);
       
  1888 		hw->mac.ops.cleanup_led(hw);
       
  1889 		break;
       
  1890 
       
  1891 	case ETHTOOL_ID_ON:
       
  1892 		hw->mac.ops.led_on(hw);
       
  1893 		break;
       
  1894 
       
  1895 	case ETHTOOL_ID_OFF:
       
  1896 		hw->mac.ops.led_off(hw);
       
  1897 		break;
       
  1898 	}
       
  1899 	return 0;
       
  1900 }
       
  1901 
       
  1902 static int e1000_get_coalesce(struct net_device *netdev,
       
  1903 			      struct ethtool_coalesce *ec)
       
  1904 {
       
  1905 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1906 
       
  1907 	if (adapter->itr_setting <= 4)
       
  1908 		ec->rx_coalesce_usecs = adapter->itr_setting;
       
  1909 	else
       
  1910 		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
       
  1911 
       
  1912 	return 0;
       
  1913 }
       
  1914 
       
  1915 static int e1000_set_coalesce(struct net_device *netdev,
       
  1916 			      struct ethtool_coalesce *ec)
       
  1917 {
       
  1918 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1919 
       
  1920 	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
       
  1921 	    ((ec->rx_coalesce_usecs > 4) &&
       
  1922 	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
       
  1923 	    (ec->rx_coalesce_usecs == 2))
       
  1924 		return -EINVAL;
       
  1925 
       
  1926 	if (ec->rx_coalesce_usecs == 4) {
       
  1927 		adapter->itr_setting = 4;
       
  1928 		adapter->itr = adapter->itr_setting;
       
  1929 	} else if (ec->rx_coalesce_usecs <= 3) {
       
  1930 		adapter->itr = 20000;
       
  1931 		adapter->itr_setting = ec->rx_coalesce_usecs;
       
  1932 	} else {
       
  1933 		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
       
  1934 		adapter->itr_setting = adapter->itr & ~3;
       
  1935 	}
       
  1936 
       
  1937 	if (adapter->itr_setting != 0)
       
  1938 		e1000e_write_itr(adapter, adapter->itr);
       
  1939 	else
       
  1940 		e1000e_write_itr(adapter, 0);
       
  1941 
       
  1942 	return 0;
       
  1943 }
       
  1944 
       
  1945 static int e1000_nway_reset(struct net_device *netdev)
       
  1946 {
       
  1947 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1948 
       
  1949 	if (!netif_running(netdev))
       
  1950 		return -EAGAIN;
       
  1951 
       
  1952 	if (!adapter->hw.mac.autoneg)
       
  1953 		return -EINVAL;
       
  1954 
       
  1955 	e1000e_reinit_locked(adapter);
       
  1956 
       
  1957 	return 0;
       
  1958 }
       
  1959 
       
  1960 static void e1000_get_ethtool_stats(struct net_device *netdev,
       
  1961 				    struct ethtool_stats *stats,
       
  1962 				    u64 *data)
       
  1963 {
       
  1964 	struct e1000_adapter *adapter = netdev_priv(netdev);
       
  1965 	struct rtnl_link_stats64 net_stats;
       
  1966 	int i;
       
  1967 	char *p = NULL;
       
  1968 
       
  1969 	e1000e_get_stats64(netdev, &net_stats);
       
  1970 	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
       
  1971 		switch (e1000_gstrings_stats[i].type) {
       
  1972 		case NETDEV_STATS:
       
  1973 			p = (char *) &net_stats +
       
  1974 					e1000_gstrings_stats[i].stat_offset;
       
  1975 			break;
       
  1976 		case E1000_STATS:
       
  1977 			p = (char *) adapter +
       
  1978 					e1000_gstrings_stats[i].stat_offset;
       
  1979 			break;
       
  1980 		default:
       
  1981 			data[i] = 0;
       
  1982 			continue;
       
  1983 		}
       
  1984 
       
  1985 		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
       
  1986 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
       
  1987 	}
       
  1988 }
       
  1989 
       
  1990 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
       
  1991 			      u8 *data)
       
  1992 {
       
  1993 	u8 *p = data;
       
  1994 	int i;
       
  1995 
       
  1996 	switch (stringset) {
       
  1997 	case ETH_SS_TEST:
       
  1998 		memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
       
  1999 		break;
       
  2000 	case ETH_SS_STATS:
       
  2001 		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
       
  2002 			memcpy(p, e1000_gstrings_stats[i].stat_string,
       
  2003 			       ETH_GSTRING_LEN);
       
  2004 			p += ETH_GSTRING_LEN;
       
  2005 		}
       
  2006 		break;
       
  2007 	}
       
  2008 }
       
  2009 
       
  2010 static int e1000_get_rxnfc(struct net_device *netdev,
       
  2011 			   struct ethtool_rxnfc *info, u32 *rule_locs)
       
  2012 {
       
  2013 	info->data = 0;
       
  2014 
       
  2015 	switch (info->cmd) {
       
  2016 	case ETHTOOL_GRXFH: {
       
  2017 		struct e1000_adapter *adapter = netdev_priv(netdev);
       
  2018 		struct e1000_hw *hw = &adapter->hw;
       
  2019 		u32 mrqc = er32(MRQC);
       
  2020 
       
  2021 		if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
       
  2022 			return 0;
       
  2023 
       
  2024 		switch (info->flow_type) {
       
  2025 		case TCP_V4_FLOW:
       
  2026 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
       
  2027 				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
       
  2028 			/* fall through */
       
  2029 		case UDP_V4_FLOW:
       
  2030 		case SCTP_V4_FLOW:
       
  2031 		case AH_ESP_V4_FLOW:
       
  2032 		case IPV4_FLOW:
       
  2033 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
       
  2034 				info->data |= RXH_IP_SRC | RXH_IP_DST;
       
  2035 			break;
       
  2036 		case TCP_V6_FLOW:
       
  2037 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
       
  2038 				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
       
  2039 			/* fall through */
       
  2040 		case UDP_V6_FLOW:
       
  2041 		case SCTP_V6_FLOW:
       
  2042 		case AH_ESP_V6_FLOW:
       
  2043 		case IPV6_FLOW:
       
  2044 			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
       
  2045 				info->data |= RXH_IP_SRC | RXH_IP_DST;
       
  2046 			break;
       
  2047 		default:
       
  2048 			break;
       
  2049 		}
       
  2050 		return 0;
       
  2051 	}
       
  2052 	default:
       
  2053 		return -EOPNOTSUPP;
       
  2054 	}
       
  2055 }
       
  2056 
       
  2057 static int e1000e_ethtool_begin(struct net_device *netdev)
       
  2058 {
       
  2059 	return pm_runtime_get_sync(netdev->dev.parent);
       
  2060 }
       
  2061 
       
  2062 static void e1000e_ethtool_complete(struct net_device *netdev)
       
  2063 {
       
  2064 	pm_runtime_put_sync(netdev->dev.parent);
       
  2065 }
       
  2066 
       
  2067 static const struct ethtool_ops e1000_ethtool_ops = {
       
  2068 	.begin			= e1000e_ethtool_begin,
       
  2069 	.complete		= e1000e_ethtool_complete,
       
  2070 	.get_settings		= e1000_get_settings,
       
  2071 	.set_settings		= e1000_set_settings,
       
  2072 	.get_drvinfo		= e1000_get_drvinfo,
       
  2073 	.get_regs_len		= e1000_get_regs_len,
       
  2074 	.get_regs		= e1000_get_regs,
       
  2075 	.get_wol		= e1000_get_wol,
       
  2076 	.set_wol		= e1000_set_wol,
       
  2077 	.get_msglevel		= e1000_get_msglevel,
       
  2078 	.set_msglevel		= e1000_set_msglevel,
       
  2079 	.nway_reset		= e1000_nway_reset,
       
  2080 	.get_link		= ethtool_op_get_link,
       
  2081 	.get_eeprom_len		= e1000_get_eeprom_len,
       
  2082 	.get_eeprom		= e1000_get_eeprom,
       
  2083 	.set_eeprom		= e1000_set_eeprom,
       
  2084 	.get_ringparam		= e1000_get_ringparam,
       
  2085 	.set_ringparam		= e1000_set_ringparam,
       
  2086 	.get_pauseparam		= e1000_get_pauseparam,
       
  2087 	.set_pauseparam		= e1000_set_pauseparam,
       
  2088 	.self_test		= e1000_diag_test,
       
  2089 	.get_strings		= e1000_get_strings,
       
  2090 	.set_phys_id		= e1000_set_phys_id,
       
  2091 	.get_ethtool_stats	= e1000_get_ethtool_stats,
       
  2092 	.get_sset_count		= e1000e_get_sset_count,
       
  2093 	.get_coalesce		= e1000_get_coalesce,
       
  2094 	.set_coalesce		= e1000_set_coalesce,
       
  2095 	.get_rxnfc		= e1000_get_rxnfc,
       
  2096 	.get_ts_info		= ethtool_op_get_ts_info,
       
  2097 };
       
  2098 
       
  2099 void e1000e_set_ethtool_ops(struct net_device *netdev)
       
  2100 {
       
  2101 	SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
       
  2102 }