devices/e1000e/82571-3.8-orig.c
branchstable-1.5
changeset 2584 0e3d989ff233
equal deleted inserted replaced
2583:fe5687a0a322 2584:0e3d989ff233
       
     1 /*******************************************************************************
       
     2 
       
     3   Intel PRO/1000 Linux driver
       
     4   Copyright(c) 1999 - 2012 Intel Corporation.
       
     5 
       
     6   This program is free software; you can redistribute it and/or modify it
       
     7   under the terms and conditions of the GNU General Public License,
       
     8   version 2, as published by the Free Software Foundation.
       
     9 
       
    10   This program is distributed in the hope it will be useful, but WITHOUT
       
    11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
       
    13   more details.
       
    14 
       
    15   You should have received a copy of the GNU General Public License along with
       
    16   this program; if not, write to the Free Software Foundation, Inc.,
       
    17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
       
    18 
       
    19   The full GNU General Public License is included in this distribution in
       
    20   the file called "COPYING".
       
    21 
       
    22   Contact Information:
       
    23   Linux NICS <linux.nics@intel.com>
       
    24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
       
    25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
       
    26 
       
    27 *******************************************************************************/
       
    28 
       
    29 /* 82571EB Gigabit Ethernet Controller
       
    30  * 82571EB Gigabit Ethernet Controller (Copper)
       
    31  * 82571EB Gigabit Ethernet Controller (Fiber)
       
    32  * 82571EB Dual Port Gigabit Mezzanine Adapter
       
    33  * 82571EB Quad Port Gigabit Mezzanine Adapter
       
    34  * 82571PT Gigabit PT Quad Port Server ExpressModule
       
    35  * 82572EI Gigabit Ethernet Controller (Copper)
       
    36  * 82572EI Gigabit Ethernet Controller (Fiber)
       
    37  * 82572EI Gigabit Ethernet Controller
       
    38  * 82573V Gigabit Ethernet Controller (Copper)
       
    39  * 82573E Gigabit Ethernet Controller (Copper)
       
    40  * 82573L Gigabit Ethernet Controller
       
    41  * 82574L Gigabit Network Connection
       
    42  * 82583V Gigabit Network Connection
       
    43  */
       
    44 
       
    45 #include "e1000.h"
       
    46 
       
    47 #define ID_LED_RESERVED_F746 0xF746
       
    48 #define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
       
    49 			      (ID_LED_OFF1_ON2  <<  8) | \
       
    50 			      (ID_LED_DEF1_DEF2 <<  4) | \
       
    51 			      (ID_LED_DEF1_DEF2))
       
    52 
       
    53 #define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
       
    54 #define AN_RETRY_COUNT          5 /* Autoneg Retry Count value */
       
    55 #define E1000_BASE1000T_STATUS          10
       
    56 #define E1000_IDLE_ERROR_COUNT_MASK     0xFF
       
    57 #define E1000_RECEIVE_ERROR_COUNTER     21
       
    58 #define E1000_RECEIVE_ERROR_MAX         0xFFFF
       
    59 
       
    60 #define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
       
    61 
       
    62 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
       
    63 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
       
    64 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
       
    65 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
       
    66 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
       
    67 				      u16 words, u16 *data);
       
    68 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
       
    69 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
       
    70 static s32 e1000_setup_link_82571(struct e1000_hw *hw);
       
    71 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
       
    72 static void e1000_clear_vfta_82571(struct e1000_hw *hw);
       
    73 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
       
    74 static s32 e1000_led_on_82574(struct e1000_hw *hw);
       
    75 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
       
    76 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
       
    77 static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
       
    78 static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
       
    79 static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
       
    80 static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active);
       
    81 static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active);
       
    82 
       
    83 /**
       
    84  *  e1000_init_phy_params_82571 - Init PHY func ptrs.
       
    85  *  @hw: pointer to the HW structure
       
    86  **/
       
    87 static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
       
    88 {
       
    89 	struct e1000_phy_info *phy = &hw->phy;
       
    90 	s32 ret_val;
       
    91 
       
    92 	if (hw->phy.media_type != e1000_media_type_copper) {
       
    93 		phy->type = e1000_phy_none;
       
    94 		return 0;
       
    95 	}
       
    96 
       
    97 	phy->addr			 = 1;
       
    98 	phy->autoneg_mask		 = AUTONEG_ADVERTISE_SPEED_DEFAULT;
       
    99 	phy->reset_delay_us		 = 100;
       
   100 
       
   101 	phy->ops.power_up		 = e1000_power_up_phy_copper;
       
   102 	phy->ops.power_down		 = e1000_power_down_phy_copper_82571;
       
   103 
       
   104 	switch (hw->mac.type) {
       
   105 	case e1000_82571:
       
   106 	case e1000_82572:
       
   107 		phy->type		 = e1000_phy_igp_2;
       
   108 		break;
       
   109 	case e1000_82573:
       
   110 		phy->type		 = e1000_phy_m88;
       
   111 		break;
       
   112 	case e1000_82574:
       
   113 	case e1000_82583:
       
   114 		phy->type		 = e1000_phy_bm;
       
   115 		phy->ops.acquire = e1000_get_hw_semaphore_82574;
       
   116 		phy->ops.release = e1000_put_hw_semaphore_82574;
       
   117 		phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574;
       
   118 		phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574;
       
   119 		break;
       
   120 	default:
       
   121 		return -E1000_ERR_PHY;
       
   122 		break;
       
   123 	}
       
   124 
       
   125 	/* This can only be done after all function pointers are setup. */
       
   126 	ret_val = e1000_get_phy_id_82571(hw);
       
   127 	if (ret_val) {
       
   128 		e_dbg("Error getting PHY ID\n");
       
   129 		return ret_val;
       
   130 	}
       
   131 
       
   132 	/* Verify phy id */
       
   133 	switch (hw->mac.type) {
       
   134 	case e1000_82571:
       
   135 	case e1000_82572:
       
   136 		if (phy->id != IGP01E1000_I_PHY_ID)
       
   137 			ret_val = -E1000_ERR_PHY;
       
   138 		break;
       
   139 	case e1000_82573:
       
   140 		if (phy->id != M88E1111_I_PHY_ID)
       
   141 			ret_val = -E1000_ERR_PHY;
       
   142 		break;
       
   143 	case e1000_82574:
       
   144 	case e1000_82583:
       
   145 		if (phy->id != BME1000_E_PHY_ID_R2)
       
   146 			ret_val = -E1000_ERR_PHY;
       
   147 		break;
       
   148 	default:
       
   149 		ret_val = -E1000_ERR_PHY;
       
   150 		break;
       
   151 	}
       
   152 
       
   153 	if (ret_val)
       
   154 		e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id);
       
   155 
       
   156 	return ret_val;
       
   157 }
       
   158 
       
   159 /**
       
   160  *  e1000_init_nvm_params_82571 - Init NVM func ptrs.
       
   161  *  @hw: pointer to the HW structure
       
   162  **/
       
   163 static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
       
   164 {
       
   165 	struct e1000_nvm_info *nvm = &hw->nvm;
       
   166 	u32 eecd = er32(EECD);
       
   167 	u16 size;
       
   168 
       
   169 	nvm->opcode_bits = 8;
       
   170 	nvm->delay_usec = 1;
       
   171 	switch (nvm->override) {
       
   172 	case e1000_nvm_override_spi_large:
       
   173 		nvm->page_size = 32;
       
   174 		nvm->address_bits = 16;
       
   175 		break;
       
   176 	case e1000_nvm_override_spi_small:
       
   177 		nvm->page_size = 8;
       
   178 		nvm->address_bits = 8;
       
   179 		break;
       
   180 	default:
       
   181 		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
       
   182 		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
       
   183 		break;
       
   184 	}
       
   185 
       
   186 	switch (hw->mac.type) {
       
   187 	case e1000_82573:
       
   188 	case e1000_82574:
       
   189 	case e1000_82583:
       
   190 		if (((eecd >> 15) & 0x3) == 0x3) {
       
   191 			nvm->type = e1000_nvm_flash_hw;
       
   192 			nvm->word_size = 2048;
       
   193 			/* Autonomous Flash update bit must be cleared due
       
   194 			 * to Flash update issue.
       
   195 			 */
       
   196 			eecd &= ~E1000_EECD_AUPDEN;
       
   197 			ew32(EECD, eecd);
       
   198 			break;
       
   199 		}
       
   200 		/* Fall Through */
       
   201 	default:
       
   202 		nvm->type = e1000_nvm_eeprom_spi;
       
   203 		size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
       
   204 				  E1000_EECD_SIZE_EX_SHIFT);
       
   205 		/* Added to a constant, "size" becomes the left-shift value
       
   206 		 * for setting word_size.
       
   207 		 */
       
   208 		size += NVM_WORD_SIZE_BASE_SHIFT;
       
   209 
       
   210 		/* EEPROM access above 16k is unsupported */
       
   211 		if (size > 14)
       
   212 			size = 14;
       
   213 		nvm->word_size	= 1 << size;
       
   214 		break;
       
   215 	}
       
   216 
       
   217 	/* Function Pointers */
       
   218 	switch (hw->mac.type) {
       
   219 	case e1000_82574:
       
   220 	case e1000_82583:
       
   221 		nvm->ops.acquire = e1000_get_hw_semaphore_82574;
       
   222 		nvm->ops.release = e1000_put_hw_semaphore_82574;
       
   223 		break;
       
   224 	default:
       
   225 		break;
       
   226 	}
       
   227 
       
   228 	return 0;
       
   229 }
       
   230 
       
   231 /**
       
   232  *  e1000_init_mac_params_82571 - Init MAC func ptrs.
       
   233  *  @hw: pointer to the HW structure
       
   234  **/
       
   235 static s32 e1000_init_mac_params_82571(struct e1000_hw *hw)
       
   236 {
       
   237 	struct e1000_mac_info *mac = &hw->mac;
       
   238 	u32 swsm = 0;
       
   239 	u32 swsm2 = 0;
       
   240 	bool force_clear_smbi = false;
       
   241 
       
   242 	/* Set media type and media-dependent function pointers */
       
   243 	switch (hw->adapter->pdev->device) {
       
   244 	case E1000_DEV_ID_82571EB_FIBER:
       
   245 	case E1000_DEV_ID_82572EI_FIBER:
       
   246 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
       
   247 		hw->phy.media_type = e1000_media_type_fiber;
       
   248 		mac->ops.setup_physical_interface =
       
   249 		    e1000_setup_fiber_serdes_link_82571;
       
   250 		mac->ops.check_for_link = e1000e_check_for_fiber_link;
       
   251 		mac->ops.get_link_up_info =
       
   252 		    e1000e_get_speed_and_duplex_fiber_serdes;
       
   253 		break;
       
   254 	case E1000_DEV_ID_82571EB_SERDES:
       
   255 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
       
   256 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
       
   257 	case E1000_DEV_ID_82572EI_SERDES:
       
   258 		hw->phy.media_type = e1000_media_type_internal_serdes;
       
   259 		mac->ops.setup_physical_interface =
       
   260 		    e1000_setup_fiber_serdes_link_82571;
       
   261 		mac->ops.check_for_link = e1000_check_for_serdes_link_82571;
       
   262 		mac->ops.get_link_up_info =
       
   263 		    e1000e_get_speed_and_duplex_fiber_serdes;
       
   264 		break;
       
   265 	default:
       
   266 		hw->phy.media_type = e1000_media_type_copper;
       
   267 		mac->ops.setup_physical_interface =
       
   268 		    e1000_setup_copper_link_82571;
       
   269 		mac->ops.check_for_link = e1000e_check_for_copper_link;
       
   270 		mac->ops.get_link_up_info = e1000e_get_speed_and_duplex_copper;
       
   271 		break;
       
   272 	}
       
   273 
       
   274 	/* Set mta register count */
       
   275 	mac->mta_reg_count = 128;
       
   276 	/* Set rar entry count */
       
   277 	mac->rar_entry_count = E1000_RAR_ENTRIES;
       
   278 	/* Adaptive IFS supported */
       
   279 	mac->adaptive_ifs = true;
       
   280 
       
   281 	/* MAC-specific function pointers */
       
   282 	switch (hw->mac.type) {
       
   283 	case e1000_82573:
       
   284 		mac->ops.set_lan_id = e1000_set_lan_id_single_port;
       
   285 		mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
       
   286 		mac->ops.led_on = e1000e_led_on_generic;
       
   287 		mac->ops.blink_led = e1000e_blink_led_generic;
       
   288 
       
   289 		/* FWSM register */
       
   290 		mac->has_fwsm = true;
       
   291 		/* ARC supported; valid only if manageability features are
       
   292 		 * enabled.
       
   293 		 */
       
   294 		mac->arc_subsystem_valid = !!(er32(FWSM) &
       
   295 					      E1000_FWSM_MODE_MASK);
       
   296 		break;
       
   297 	case e1000_82574:
       
   298 	case e1000_82583:
       
   299 		mac->ops.set_lan_id = e1000_set_lan_id_single_port;
       
   300 		mac->ops.check_mng_mode = e1000_check_mng_mode_82574;
       
   301 		mac->ops.led_on = e1000_led_on_82574;
       
   302 		break;
       
   303 	default:
       
   304 		mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
       
   305 		mac->ops.led_on = e1000e_led_on_generic;
       
   306 		mac->ops.blink_led = e1000e_blink_led_generic;
       
   307 
       
   308 		/* FWSM register */
       
   309 		mac->has_fwsm = true;
       
   310 		break;
       
   311 	}
       
   312 
       
   313 	/* Ensure that the inter-port SWSM.SMBI lock bit is clear before
       
   314 	 * first NVM or PHY access. This should be done for single-port
       
   315 	 * devices, and for one port only on dual-port devices so that
       
   316 	 * for those devices we can still use the SMBI lock to synchronize
       
   317 	 * inter-port accesses to the PHY & NVM.
       
   318 	 */
       
   319 	switch (hw->mac.type) {
       
   320 	case e1000_82571:
       
   321 	case e1000_82572:
       
   322 		swsm2 = er32(SWSM2);
       
   323 
       
   324 		if (!(swsm2 & E1000_SWSM2_LOCK)) {
       
   325 			/* Only do this for the first interface on this card */
       
   326 			ew32(SWSM2, swsm2 | E1000_SWSM2_LOCK);
       
   327 			force_clear_smbi = true;
       
   328 		} else {
       
   329 			force_clear_smbi = false;
       
   330 		}
       
   331 		break;
       
   332 	default:
       
   333 		force_clear_smbi = true;
       
   334 		break;
       
   335 	}
       
   336 
       
   337 	if (force_clear_smbi) {
       
   338 		/* Make sure SWSM.SMBI is clear */
       
   339 		swsm = er32(SWSM);
       
   340 		if (swsm & E1000_SWSM_SMBI) {
       
   341 			/* This bit should not be set on a first interface, and
       
   342 			 * indicates that the bootagent or EFI code has
       
   343 			 * improperly left this bit enabled
       
   344 			 */
       
   345 			e_dbg("Please update your 82571 Bootagent\n");
       
   346 		}
       
   347 		ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
       
   348 	}
       
   349 
       
   350 	/* Initialize device specific counter of SMBI acquisition timeouts. */
       
   351 	hw->dev_spec.e82571.smb_counter = 0;
       
   352 
       
   353 	return 0;
       
   354 }
       
   355 
       
   356 static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
       
   357 {
       
   358 	struct e1000_hw *hw = &adapter->hw;
       
   359 	static int global_quad_port_a; /* global port a indication */
       
   360 	struct pci_dev *pdev = adapter->pdev;
       
   361 	int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
       
   362 	s32 rc;
       
   363 
       
   364 	rc = e1000_init_mac_params_82571(hw);
       
   365 	if (rc)
       
   366 		return rc;
       
   367 
       
   368 	rc = e1000_init_nvm_params_82571(hw);
       
   369 	if (rc)
       
   370 		return rc;
       
   371 
       
   372 	rc = e1000_init_phy_params_82571(hw);
       
   373 	if (rc)
       
   374 		return rc;
       
   375 
       
   376 	/* tag quad port adapters first, it's used below */
       
   377 	switch (pdev->device) {
       
   378 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
       
   379 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
       
   380 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
       
   381 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
       
   382 		adapter->flags |= FLAG_IS_QUAD_PORT;
       
   383 		/* mark the first port */
       
   384 		if (global_quad_port_a == 0)
       
   385 			adapter->flags |= FLAG_IS_QUAD_PORT_A;
       
   386 		/* Reset for multiple quad port adapters */
       
   387 		global_quad_port_a++;
       
   388 		if (global_quad_port_a == 4)
       
   389 			global_quad_port_a = 0;
       
   390 		break;
       
   391 	default:
       
   392 		break;
       
   393 	}
       
   394 
       
   395 	switch (adapter->hw.mac.type) {
       
   396 	case e1000_82571:
       
   397 		/* these dual ports don't have WoL on port B at all */
       
   398 		if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
       
   399 		     (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
       
   400 		     (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
       
   401 		    (is_port_b))
       
   402 			adapter->flags &= ~FLAG_HAS_WOL;
       
   403 		/* quad ports only support WoL on port A */
       
   404 		if (adapter->flags & FLAG_IS_QUAD_PORT &&
       
   405 		    (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
       
   406 			adapter->flags &= ~FLAG_HAS_WOL;
       
   407 		/* Does not support WoL on any port */
       
   408 		if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
       
   409 			adapter->flags &= ~FLAG_HAS_WOL;
       
   410 		break;
       
   411 	case e1000_82573:
       
   412 		if (pdev->device == E1000_DEV_ID_82573L) {
       
   413 			adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
       
   414 			adapter->max_hw_frame_size = DEFAULT_JUMBO;
       
   415 		}
       
   416 		break;
       
   417 	default:
       
   418 		break;
       
   419 	}
       
   420 
       
   421 	return 0;
       
   422 }
       
   423 
       
   424 /**
       
   425  *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
       
   426  *  @hw: pointer to the HW structure
       
   427  *
       
   428  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
       
   429  *  revision in the hardware structure.
       
   430  **/
       
   431 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
       
   432 {
       
   433 	struct e1000_phy_info *phy = &hw->phy;
       
   434 	s32 ret_val;
       
   435 	u16 phy_id = 0;
       
   436 
       
   437 	switch (hw->mac.type) {
       
   438 	case e1000_82571:
       
   439 	case e1000_82572:
       
   440 		/* The 82571 firmware may still be configuring the PHY.
       
   441 		 * In this case, we cannot access the PHY until the
       
   442 		 * configuration is done.  So we explicitly set the
       
   443 		 * PHY ID.
       
   444 		 */
       
   445 		phy->id = IGP01E1000_I_PHY_ID;
       
   446 		break;
       
   447 	case e1000_82573:
       
   448 		return e1000e_get_phy_id(hw);
       
   449 		break;
       
   450 	case e1000_82574:
       
   451 	case e1000_82583:
       
   452 		ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
       
   453 		if (ret_val)
       
   454 			return ret_val;
       
   455 
       
   456 		phy->id = (u32)(phy_id << 16);
       
   457 		udelay(20);
       
   458 		ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
       
   459 		if (ret_val)
       
   460 			return ret_val;
       
   461 
       
   462 		phy->id |= (u32)(phy_id);
       
   463 		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
       
   464 		break;
       
   465 	default:
       
   466 		return -E1000_ERR_PHY;
       
   467 		break;
       
   468 	}
       
   469 
       
   470 	return 0;
       
   471 }
       
   472 
       
   473 /**
       
   474  *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
       
   475  *  @hw: pointer to the HW structure
       
   476  *
       
   477  *  Acquire the HW semaphore to access the PHY or NVM
       
   478  **/
       
   479 static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
       
   480 {
       
   481 	u32 swsm;
       
   482 	s32 sw_timeout = hw->nvm.word_size + 1;
       
   483 	s32 fw_timeout = hw->nvm.word_size + 1;
       
   484 	s32 i = 0;
       
   485 
       
   486 	/* If we have timedout 3 times on trying to acquire
       
   487 	 * the inter-port SMBI semaphore, there is old code
       
   488 	 * operating on the other port, and it is not
       
   489 	 * releasing SMBI. Modify the number of times that
       
   490 	 * we try for the semaphore to interwork with this
       
   491 	 * older code.
       
   492 	 */
       
   493 	if (hw->dev_spec.e82571.smb_counter > 2)
       
   494 		sw_timeout = 1;
       
   495 
       
   496 	/* Get the SW semaphore */
       
   497 	while (i < sw_timeout) {
       
   498 		swsm = er32(SWSM);
       
   499 		if (!(swsm & E1000_SWSM_SMBI))
       
   500 			break;
       
   501 
       
   502 		udelay(50);
       
   503 		i++;
       
   504 	}
       
   505 
       
   506 	if (i == sw_timeout) {
       
   507 		e_dbg("Driver can't access device - SMBI bit is set.\n");
       
   508 		hw->dev_spec.e82571.smb_counter++;
       
   509 	}
       
   510 	/* Get the FW semaphore. */
       
   511 	for (i = 0; i < fw_timeout; i++) {
       
   512 		swsm = er32(SWSM);
       
   513 		ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
       
   514 
       
   515 		/* Semaphore acquired if bit latched */
       
   516 		if (er32(SWSM) & E1000_SWSM_SWESMBI)
       
   517 			break;
       
   518 
       
   519 		udelay(50);
       
   520 	}
       
   521 
       
   522 	if (i == fw_timeout) {
       
   523 		/* Release semaphores */
       
   524 		e1000_put_hw_semaphore_82571(hw);
       
   525 		e_dbg("Driver can't access the NVM\n");
       
   526 		return -E1000_ERR_NVM;
       
   527 	}
       
   528 
       
   529 	return 0;
       
   530 }
       
   531 
       
   532 /**
       
   533  *  e1000_put_hw_semaphore_82571 - Release hardware semaphore
       
   534  *  @hw: pointer to the HW structure
       
   535  *
       
   536  *  Release hardware semaphore used to access the PHY or NVM
       
   537  **/
       
   538 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
       
   539 {
       
   540 	u32 swsm;
       
   541 
       
   542 	swsm = er32(SWSM);
       
   543 	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
       
   544 	ew32(SWSM, swsm);
       
   545 }
       
   546 /**
       
   547  *  e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
       
   548  *  @hw: pointer to the HW structure
       
   549  *
       
   550  *  Acquire the HW semaphore during reset.
       
   551  *
       
   552  **/
       
   553 static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
       
   554 {
       
   555 	u32 extcnf_ctrl;
       
   556 	s32 i = 0;
       
   557 
       
   558 	extcnf_ctrl = er32(EXTCNF_CTRL);
       
   559 	extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
       
   560 	do {
       
   561 		ew32(EXTCNF_CTRL, extcnf_ctrl);
       
   562 		extcnf_ctrl = er32(EXTCNF_CTRL);
       
   563 
       
   564 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
       
   565 			break;
       
   566 
       
   567 		extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
       
   568 
       
   569 		usleep_range(2000, 4000);
       
   570 		i++;
       
   571 	} while (i < MDIO_OWNERSHIP_TIMEOUT);
       
   572 
       
   573 	if (i == MDIO_OWNERSHIP_TIMEOUT) {
       
   574 		/* Release semaphores */
       
   575 		e1000_put_hw_semaphore_82573(hw);
       
   576 		e_dbg("Driver can't access the PHY\n");
       
   577 		return -E1000_ERR_PHY;
       
   578 	}
       
   579 
       
   580 	return 0;
       
   581 }
       
   582 
       
   583 /**
       
   584  *  e1000_put_hw_semaphore_82573 - Release hardware semaphore
       
   585  *  @hw: pointer to the HW structure
       
   586  *
       
   587  *  Release hardware semaphore used during reset.
       
   588  *
       
   589  **/
       
   590 static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
       
   591 {
       
   592 	u32 extcnf_ctrl;
       
   593 
       
   594 	extcnf_ctrl = er32(EXTCNF_CTRL);
       
   595 	extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
       
   596 	ew32(EXTCNF_CTRL, extcnf_ctrl);
       
   597 }
       
   598 
       
   599 static DEFINE_MUTEX(swflag_mutex);
       
   600 
       
   601 /**
       
   602  *  e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
       
   603  *  @hw: pointer to the HW structure
       
   604  *
       
   605  *  Acquire the HW semaphore to access the PHY or NVM.
       
   606  *
       
   607  **/
       
   608 static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
       
   609 {
       
   610 	s32 ret_val;
       
   611 
       
   612 	mutex_lock(&swflag_mutex);
       
   613 	ret_val = e1000_get_hw_semaphore_82573(hw);
       
   614 	if (ret_val)
       
   615 		mutex_unlock(&swflag_mutex);
       
   616 	return ret_val;
       
   617 }
       
   618 
       
   619 /**
       
   620  *  e1000_put_hw_semaphore_82574 - Release hardware semaphore
       
   621  *  @hw: pointer to the HW structure
       
   622  *
       
   623  *  Release hardware semaphore used to access the PHY or NVM
       
   624  *
       
   625  **/
       
   626 static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
       
   627 {
       
   628 	e1000_put_hw_semaphore_82573(hw);
       
   629 	mutex_unlock(&swflag_mutex);
       
   630 }
       
   631 
       
   632 /**
       
   633  *  e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
       
   634  *  @hw: pointer to the HW structure
       
   635  *  @active: true to enable LPLU, false to disable
       
   636  *
       
   637  *  Sets the LPLU D0 state according to the active flag.
       
   638  *  LPLU will not be activated unless the
       
   639  *  device autonegotiation advertisement meets standards of
       
   640  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
       
   641  *  This is a function pointer entry point only called by
       
   642  *  PHY setup routines.
       
   643  **/
       
   644 static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active)
       
   645 {
       
   646 	u32 data = er32(POEMB);
       
   647 
       
   648 	if (active)
       
   649 		data |= E1000_PHY_CTRL_D0A_LPLU;
       
   650 	else
       
   651 		data &= ~E1000_PHY_CTRL_D0A_LPLU;
       
   652 
       
   653 	ew32(POEMB, data);
       
   654 	return 0;
       
   655 }
       
   656 
       
   657 /**
       
   658  *  e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
       
   659  *  @hw: pointer to the HW structure
       
   660  *  @active: boolean used to enable/disable lplu
       
   661  *
       
   662  *  The low power link up (lplu) state is set to the power management level D3
       
   663  *  when active is true, else clear lplu for D3. LPLU
       
   664  *  is used during Dx states where the power conservation is most important.
       
   665  *  During driver activity, SmartSpeed should be enabled so performance is
       
   666  *  maintained.
       
   667  **/
       
   668 static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active)
       
   669 {
       
   670 	u32 data = er32(POEMB);
       
   671 
       
   672 	if (!active) {
       
   673 		data &= ~E1000_PHY_CTRL_NOND0A_LPLU;
       
   674 	} else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
       
   675 		   (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) ||
       
   676 		   (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) {
       
   677 		data |= E1000_PHY_CTRL_NOND0A_LPLU;
       
   678 	}
       
   679 
       
   680 	ew32(POEMB, data);
       
   681 	return 0;
       
   682 }
       
   683 
       
   684 /**
       
   685  *  e1000_acquire_nvm_82571 - Request for access to the EEPROM
       
   686  *  @hw: pointer to the HW structure
       
   687  *
       
   688  *  To gain access to the EEPROM, first we must obtain a hardware semaphore.
       
   689  *  Then for non-82573 hardware, set the EEPROM access request bit and wait
       
   690  *  for EEPROM access grant bit.  If the access grant bit is not set, release
       
   691  *  hardware semaphore.
       
   692  **/
       
   693 static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
       
   694 {
       
   695 	s32 ret_val;
       
   696 
       
   697 	ret_val = e1000_get_hw_semaphore_82571(hw);
       
   698 	if (ret_val)
       
   699 		return ret_val;
       
   700 
       
   701 	switch (hw->mac.type) {
       
   702 	case e1000_82573:
       
   703 		break;
       
   704 	default:
       
   705 		ret_val = e1000e_acquire_nvm(hw);
       
   706 		break;
       
   707 	}
       
   708 
       
   709 	if (ret_val)
       
   710 		e1000_put_hw_semaphore_82571(hw);
       
   711 
       
   712 	return ret_val;
       
   713 }
       
   714 
       
   715 /**
       
   716  *  e1000_release_nvm_82571 - Release exclusive access to EEPROM
       
   717  *  @hw: pointer to the HW structure
       
   718  *
       
   719  *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
       
   720  **/
       
   721 static void e1000_release_nvm_82571(struct e1000_hw *hw)
       
   722 {
       
   723 	e1000e_release_nvm(hw);
       
   724 	e1000_put_hw_semaphore_82571(hw);
       
   725 }
       
   726 
       
   727 /**
       
   728  *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
       
   729  *  @hw: pointer to the HW structure
       
   730  *  @offset: offset within the EEPROM to be written to
       
   731  *  @words: number of words to write
       
   732  *  @data: 16 bit word(s) to be written to the EEPROM
       
   733  *
       
   734  *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
       
   735  *
       
   736  *  If e1000e_update_nvm_checksum is not called after this function, the
       
   737  *  EEPROM will most likely contain an invalid checksum.
       
   738  **/
       
   739 static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
       
   740 				 u16 *data)
       
   741 {
       
   742 	s32 ret_val;
       
   743 
       
   744 	switch (hw->mac.type) {
       
   745 	case e1000_82573:
       
   746 	case e1000_82574:
       
   747 	case e1000_82583:
       
   748 		ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
       
   749 		break;
       
   750 	case e1000_82571:
       
   751 	case e1000_82572:
       
   752 		ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
       
   753 		break;
       
   754 	default:
       
   755 		ret_val = -E1000_ERR_NVM;
       
   756 		break;
       
   757 	}
       
   758 
       
   759 	return ret_val;
       
   760 }
       
   761 
       
   762 /**
       
   763  *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum
       
   764  *  @hw: pointer to the HW structure
       
   765  *
       
   766  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
       
   767  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
       
   768  *  value to the EEPROM.
       
   769  **/
       
   770 static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
       
   771 {
       
   772 	u32 eecd;
       
   773 	s32 ret_val;
       
   774 	u16 i;
       
   775 
       
   776 	ret_val = e1000e_update_nvm_checksum_generic(hw);
       
   777 	if (ret_val)
       
   778 		return ret_val;
       
   779 
       
   780 	/* If our nvm is an EEPROM, then we're done
       
   781 	 * otherwise, commit the checksum to the flash NVM.
       
   782 	 */
       
   783 	if (hw->nvm.type != e1000_nvm_flash_hw)
       
   784 		return 0;
       
   785 
       
   786 	/* Check for pending operations. */
       
   787 	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
       
   788 		usleep_range(1000, 2000);
       
   789 		if (!(er32(EECD) & E1000_EECD_FLUPD))
       
   790 			break;
       
   791 	}
       
   792 
       
   793 	if (i == E1000_FLASH_UPDATES)
       
   794 		return -E1000_ERR_NVM;
       
   795 
       
   796 	/* Reset the firmware if using STM opcode. */
       
   797 	if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
       
   798 		/* The enabling of and the actual reset must be done
       
   799 		 * in two write cycles.
       
   800 		 */
       
   801 		ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
       
   802 		e1e_flush();
       
   803 		ew32(HICR, E1000_HICR_FW_RESET);
       
   804 	}
       
   805 
       
   806 	/* Commit the write to flash */
       
   807 	eecd = er32(EECD) | E1000_EECD_FLUPD;
       
   808 	ew32(EECD, eecd);
       
   809 
       
   810 	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
       
   811 		usleep_range(1000, 2000);
       
   812 		if (!(er32(EECD) & E1000_EECD_FLUPD))
       
   813 			break;
       
   814 	}
       
   815 
       
   816 	if (i == E1000_FLASH_UPDATES)
       
   817 		return -E1000_ERR_NVM;
       
   818 
       
   819 	return 0;
       
   820 }
       
   821 
       
   822 /**
       
   823  *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
       
   824  *  @hw: pointer to the HW structure
       
   825  *
       
   826  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
       
   827  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
       
   828  **/
       
   829 static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
       
   830 {
       
   831 	if (hw->nvm.type == e1000_nvm_flash_hw)
       
   832 		e1000_fix_nvm_checksum_82571(hw);
       
   833 
       
   834 	return e1000e_validate_nvm_checksum_generic(hw);
       
   835 }
       
   836 
       
   837 /**
       
   838  *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
       
   839  *  @hw: pointer to the HW structure
       
   840  *  @offset: offset within the EEPROM to be written to
       
   841  *  @words: number of words to write
       
   842  *  @data: 16 bit word(s) to be written to the EEPROM
       
   843  *
       
   844  *  After checking for invalid values, poll the EEPROM to ensure the previous
       
   845  *  command has completed before trying to write the next word.  After write
       
   846  *  poll for completion.
       
   847  *
       
   848  *  If e1000e_update_nvm_checksum is not called after this function, the
       
   849  *  EEPROM will most likely contain an invalid checksum.
       
   850  **/
       
   851 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
       
   852 				      u16 words, u16 *data)
       
   853 {
       
   854 	struct e1000_nvm_info *nvm = &hw->nvm;
       
   855 	u32 i, eewr = 0;
       
   856 	s32 ret_val = 0;
       
   857 
       
   858 	/* A check for invalid values:  offset too large, too many words,
       
   859 	 * and not enough words.
       
   860 	 */
       
   861 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
       
   862 	    (words == 0)) {
       
   863 		e_dbg("nvm parameter(s) out of bounds\n");
       
   864 		return -E1000_ERR_NVM;
       
   865 	}
       
   866 
       
   867 	for (i = 0; i < words; i++) {
       
   868 		eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
       
   869 		       ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
       
   870 		       E1000_NVM_RW_REG_START;
       
   871 
       
   872 		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
       
   873 		if (ret_val)
       
   874 			break;
       
   875 
       
   876 		ew32(EEWR, eewr);
       
   877 
       
   878 		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
       
   879 		if (ret_val)
       
   880 			break;
       
   881 	}
       
   882 
       
   883 	return ret_val;
       
   884 }
       
   885 
       
   886 /**
       
   887  *  e1000_get_cfg_done_82571 - Poll for configuration done
       
   888  *  @hw: pointer to the HW structure
       
   889  *
       
   890  *  Reads the management control register for the config done bit to be set.
       
   891  **/
       
   892 static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
       
   893 {
       
   894 	s32 timeout = PHY_CFG_TIMEOUT;
       
   895 
       
   896 	while (timeout) {
       
   897 		if (er32(EEMNGCTL) &
       
   898 		    E1000_NVM_CFG_DONE_PORT_0)
       
   899 			break;
       
   900 		usleep_range(1000, 2000);
       
   901 		timeout--;
       
   902 	}
       
   903 	if (!timeout) {
       
   904 		e_dbg("MNG configuration cycle has not completed.\n");
       
   905 		return -E1000_ERR_RESET;
       
   906 	}
       
   907 
       
   908 	return 0;
       
   909 }
       
   910 
       
   911 /**
       
   912  *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
       
   913  *  @hw: pointer to the HW structure
       
   914  *  @active: true to enable LPLU, false to disable
       
   915  *
       
   916  *  Sets the LPLU D0 state according to the active flag.  When activating LPLU
       
   917  *  this function also disables smart speed and vice versa.  LPLU will not be
       
   918  *  activated unless the device autonegotiation advertisement meets standards
       
   919  *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
       
   920  *  pointer entry point only called by PHY setup routines.
       
   921  **/
       
   922 static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
       
   923 {
       
   924 	struct e1000_phy_info *phy = &hw->phy;
       
   925 	s32 ret_val;
       
   926 	u16 data;
       
   927 
       
   928 	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
       
   929 	if (ret_val)
       
   930 		return ret_val;
       
   931 
       
   932 	if (active) {
       
   933 		data |= IGP02E1000_PM_D0_LPLU;
       
   934 		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
       
   935 		if (ret_val)
       
   936 			return ret_val;
       
   937 
       
   938 		/* When LPLU is enabled, we should disable SmartSpeed */
       
   939 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
       
   940 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
       
   941 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
       
   942 		if (ret_val)
       
   943 			return ret_val;
       
   944 	} else {
       
   945 		data &= ~IGP02E1000_PM_D0_LPLU;
       
   946 		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
       
   947 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
       
   948 		 * during Dx states where the power conservation is most
       
   949 		 * important.  During driver activity we should enable
       
   950 		 * SmartSpeed, so performance is maintained.
       
   951 		 */
       
   952 		if (phy->smart_speed == e1000_smart_speed_on) {
       
   953 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
   954 					   &data);
       
   955 			if (ret_val)
       
   956 				return ret_val;
       
   957 
       
   958 			data |= IGP01E1000_PSCFR_SMART_SPEED;
       
   959 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
   960 					   data);
       
   961 			if (ret_val)
       
   962 				return ret_val;
       
   963 		} else if (phy->smart_speed == e1000_smart_speed_off) {
       
   964 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
   965 					   &data);
       
   966 			if (ret_val)
       
   967 				return ret_val;
       
   968 
       
   969 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
       
   970 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
       
   971 					   data);
       
   972 			if (ret_val)
       
   973 				return ret_val;
       
   974 		}
       
   975 	}
       
   976 
       
   977 	return 0;
       
   978 }
       
   979 
       
   980 /**
       
   981  *  e1000_reset_hw_82571 - Reset hardware
       
   982  *  @hw: pointer to the HW structure
       
   983  *
       
   984  *  This resets the hardware into a known state.
       
   985  **/
       
   986 static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
       
   987 {
       
   988 	u32 ctrl, ctrl_ext, eecd, tctl;
       
   989 	s32 ret_val;
       
   990 
       
   991 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
       
   992 	 * on the last TLP read/write transaction when MAC is reset.
       
   993 	 */
       
   994 	ret_val = e1000e_disable_pcie_master(hw);
       
   995 	if (ret_val)
       
   996 		e_dbg("PCI-E Master disable polling has failed.\n");
       
   997 
       
   998 	e_dbg("Masking off all interrupts\n");
       
   999 	ew32(IMC, 0xffffffff);
       
  1000 
       
  1001 	ew32(RCTL, 0);
       
  1002 	tctl = er32(TCTL);
       
  1003 	tctl &= ~E1000_TCTL_EN;
       
  1004 	ew32(TCTL, tctl);
       
  1005 	e1e_flush();
       
  1006 
       
  1007 	usleep_range(10000, 20000);
       
  1008 
       
  1009 	/* Must acquire the MDIO ownership before MAC reset.
       
  1010 	 * Ownership defaults to firmware after a reset.
       
  1011 	 */
       
  1012 	switch (hw->mac.type) {
       
  1013 	case e1000_82573:
       
  1014 		ret_val = e1000_get_hw_semaphore_82573(hw);
       
  1015 		break;
       
  1016 	case e1000_82574:
       
  1017 	case e1000_82583:
       
  1018 		ret_val = e1000_get_hw_semaphore_82574(hw);
       
  1019 		break;
       
  1020 	default:
       
  1021 		break;
       
  1022 	}
       
  1023 	if (ret_val)
       
  1024 		e_dbg("Cannot acquire MDIO ownership\n");
       
  1025 
       
  1026 	ctrl = er32(CTRL);
       
  1027 
       
  1028 	e_dbg("Issuing a global reset to MAC\n");
       
  1029 	ew32(CTRL, ctrl | E1000_CTRL_RST);
       
  1030 
       
  1031 	/* Must release MDIO ownership and mutex after MAC reset. */
       
  1032 	switch (hw->mac.type) {
       
  1033 	case e1000_82574:
       
  1034 	case e1000_82583:
       
  1035 		e1000_put_hw_semaphore_82574(hw);
       
  1036 		break;
       
  1037 	default:
       
  1038 		break;
       
  1039 	}
       
  1040 
       
  1041 	if (hw->nvm.type == e1000_nvm_flash_hw) {
       
  1042 		udelay(10);
       
  1043 		ctrl_ext = er32(CTRL_EXT);
       
  1044 		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
       
  1045 		ew32(CTRL_EXT, ctrl_ext);
       
  1046 		e1e_flush();
       
  1047 	}
       
  1048 
       
  1049 	ret_val = e1000e_get_auto_rd_done(hw);
       
  1050 	if (ret_val)
       
  1051 		/* We don't want to continue accessing MAC registers. */
       
  1052 		return ret_val;
       
  1053 
       
  1054 	/* Phy configuration from NVM just starts after EECD_AUTO_RD is set.
       
  1055 	 * Need to wait for Phy configuration completion before accessing
       
  1056 	 * NVM and Phy.
       
  1057 	 */
       
  1058 
       
  1059 	switch (hw->mac.type) {
       
  1060 	case e1000_82571:
       
  1061 	case e1000_82572:
       
  1062 		/* REQ and GNT bits need to be cleared when using AUTO_RD
       
  1063 		 * to access the EEPROM.
       
  1064 		 */
       
  1065 		eecd = er32(EECD);
       
  1066 		eecd &= ~(E1000_EECD_REQ | E1000_EECD_GNT);
       
  1067 		ew32(EECD, eecd);
       
  1068 		break;
       
  1069 	case e1000_82573:
       
  1070 	case e1000_82574:
       
  1071 	case e1000_82583:
       
  1072 		msleep(25);
       
  1073 		break;
       
  1074 	default:
       
  1075 		break;
       
  1076 	}
       
  1077 
       
  1078 	/* Clear any pending interrupt events. */
       
  1079 	ew32(IMC, 0xffffffff);
       
  1080 	er32(ICR);
       
  1081 
       
  1082 	if (hw->mac.type == e1000_82571) {
       
  1083 		/* Install any alternate MAC address into RAR0 */
       
  1084 		ret_val = e1000_check_alt_mac_addr_generic(hw);
       
  1085 		if (ret_val)
       
  1086 			return ret_val;
       
  1087 
       
  1088 		e1000e_set_laa_state_82571(hw, true);
       
  1089 	}
       
  1090 
       
  1091 	/* Reinitialize the 82571 serdes link state machine */
       
  1092 	if (hw->phy.media_type == e1000_media_type_internal_serdes)
       
  1093 		hw->mac.serdes_link_state = e1000_serdes_link_down;
       
  1094 
       
  1095 	return 0;
       
  1096 }
       
  1097 
       
  1098 /**
       
  1099  *  e1000_init_hw_82571 - Initialize hardware
       
  1100  *  @hw: pointer to the HW structure
       
  1101  *
       
  1102  *  This inits the hardware readying it for operation.
       
  1103  **/
       
  1104 static s32 e1000_init_hw_82571(struct e1000_hw *hw)
       
  1105 {
       
  1106 	struct e1000_mac_info *mac = &hw->mac;
       
  1107 	u32 reg_data;
       
  1108 	s32 ret_val;
       
  1109 	u16 i, rar_count = mac->rar_entry_count;
       
  1110 
       
  1111 	e1000_initialize_hw_bits_82571(hw);
       
  1112 
       
  1113 	/* Initialize identification LED */
       
  1114 	ret_val = mac->ops.id_led_init(hw);
       
  1115 	if (ret_val)
       
  1116 		e_dbg("Error initializing identification LED\n");
       
  1117 		/* This is not fatal and we should not stop init due to this */
       
  1118 
       
  1119 	/* Disabling VLAN filtering */
       
  1120 	e_dbg("Initializing the IEEE VLAN\n");
       
  1121 	mac->ops.clear_vfta(hw);
       
  1122 
       
  1123 	/* Setup the receive address.
       
  1124 	 * If, however, a locally administered address was assigned to the
       
  1125 	 * 82571, we must reserve a RAR for it to work around an issue where
       
  1126 	 * resetting one port will reload the MAC on the other port.
       
  1127 	 */
       
  1128 	if (e1000e_get_laa_state_82571(hw))
       
  1129 		rar_count--;
       
  1130 	e1000e_init_rx_addrs(hw, rar_count);
       
  1131 
       
  1132 	/* Zero out the Multicast HASH table */
       
  1133 	e_dbg("Zeroing the MTA\n");
       
  1134 	for (i = 0; i < mac->mta_reg_count; i++)
       
  1135 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
       
  1136 
       
  1137 	/* Setup link and flow control */
       
  1138 	ret_val = mac->ops.setup_link(hw);
       
  1139 
       
  1140 	/* Set the transmit descriptor write-back policy */
       
  1141 	reg_data = er32(TXDCTL(0));
       
  1142 	reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
       
  1143 		   E1000_TXDCTL_FULL_TX_DESC_WB |
       
  1144 		   E1000_TXDCTL_COUNT_DESC;
       
  1145 	ew32(TXDCTL(0), reg_data);
       
  1146 
       
  1147 	/* ...for both queues. */
       
  1148 	switch (mac->type) {
       
  1149 	case e1000_82573:
       
  1150 		e1000e_enable_tx_pkt_filtering(hw);
       
  1151 		/* fall through */
       
  1152 	case e1000_82574:
       
  1153 	case e1000_82583:
       
  1154 		reg_data = er32(GCR);
       
  1155 		reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
       
  1156 		ew32(GCR, reg_data);
       
  1157 		break;
       
  1158 	default:
       
  1159 		reg_data = er32(TXDCTL(1));
       
  1160 		reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
       
  1161 			   E1000_TXDCTL_FULL_TX_DESC_WB |
       
  1162 			   E1000_TXDCTL_COUNT_DESC;
       
  1163 		ew32(TXDCTL(1), reg_data);
       
  1164 		break;
       
  1165 	}
       
  1166 
       
  1167 	/* Clear all of the statistics registers (clear on read).  It is
       
  1168 	 * important that we do this after we have tried to establish link
       
  1169 	 * because the symbol error count will increment wildly if there
       
  1170 	 * is no link.
       
  1171 	 */
       
  1172 	e1000_clear_hw_cntrs_82571(hw);
       
  1173 
       
  1174 	return ret_val;
       
  1175 }
       
  1176 
       
  1177 /**
       
  1178  *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
       
  1179  *  @hw: pointer to the HW structure
       
  1180  *
       
  1181  *  Initializes required hardware-dependent bits needed for normal operation.
       
  1182  **/
       
  1183 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
       
  1184 {
       
  1185 	u32 reg;
       
  1186 
       
  1187 	/* Transmit Descriptor Control 0 */
       
  1188 	reg = er32(TXDCTL(0));
       
  1189 	reg |= (1 << 22);
       
  1190 	ew32(TXDCTL(0), reg);
       
  1191 
       
  1192 	/* Transmit Descriptor Control 1 */
       
  1193 	reg = er32(TXDCTL(1));
       
  1194 	reg |= (1 << 22);
       
  1195 	ew32(TXDCTL(1), reg);
       
  1196 
       
  1197 	/* Transmit Arbitration Control 0 */
       
  1198 	reg = er32(TARC(0));
       
  1199 	reg &= ~(0xF << 27); /* 30:27 */
       
  1200 	switch (hw->mac.type) {
       
  1201 	case e1000_82571:
       
  1202 	case e1000_82572:
       
  1203 		reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
       
  1204 		break;
       
  1205 	case e1000_82574:
       
  1206 	case e1000_82583:
       
  1207 		reg |= (1 << 26);
       
  1208 		break;
       
  1209 	default:
       
  1210 		break;
       
  1211 	}
       
  1212 	ew32(TARC(0), reg);
       
  1213 
       
  1214 	/* Transmit Arbitration Control 1 */
       
  1215 	reg = er32(TARC(1));
       
  1216 	switch (hw->mac.type) {
       
  1217 	case e1000_82571:
       
  1218 	case e1000_82572:
       
  1219 		reg &= ~((1 << 29) | (1 << 30));
       
  1220 		reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
       
  1221 		if (er32(TCTL) & E1000_TCTL_MULR)
       
  1222 			reg &= ~(1 << 28);
       
  1223 		else
       
  1224 			reg |= (1 << 28);
       
  1225 		ew32(TARC(1), reg);
       
  1226 		break;
       
  1227 	default:
       
  1228 		break;
       
  1229 	}
       
  1230 
       
  1231 	/* Device Control */
       
  1232 	switch (hw->mac.type) {
       
  1233 	case e1000_82573:
       
  1234 	case e1000_82574:
       
  1235 	case e1000_82583:
       
  1236 		reg = er32(CTRL);
       
  1237 		reg &= ~(1 << 29);
       
  1238 		ew32(CTRL, reg);
       
  1239 		break;
       
  1240 	default:
       
  1241 		break;
       
  1242 	}
       
  1243 
       
  1244 	/* Extended Device Control */
       
  1245 	switch (hw->mac.type) {
       
  1246 	case e1000_82573:
       
  1247 	case e1000_82574:
       
  1248 	case e1000_82583:
       
  1249 		reg = er32(CTRL_EXT);
       
  1250 		reg &= ~(1 << 23);
       
  1251 		reg |= (1 << 22);
       
  1252 		ew32(CTRL_EXT, reg);
       
  1253 		break;
       
  1254 	default:
       
  1255 		break;
       
  1256 	}
       
  1257 
       
  1258 	if (hw->mac.type == e1000_82571) {
       
  1259 		reg = er32(PBA_ECC);
       
  1260 		reg |= E1000_PBA_ECC_CORR_EN;
       
  1261 		ew32(PBA_ECC, reg);
       
  1262 	}
       
  1263 
       
  1264 	/* Workaround for hardware errata.
       
  1265 	 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
       
  1266 	 */
       
  1267 	if ((hw->mac.type == e1000_82571) || (hw->mac.type == e1000_82572)) {
       
  1268 		reg = er32(CTRL_EXT);
       
  1269 		reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
       
  1270 		ew32(CTRL_EXT, reg);
       
  1271 	}
       
  1272 
       
  1273 	/* Disable IPv6 extension header parsing because some malformed
       
  1274 	 * IPv6 headers can hang the Rx.
       
  1275 	 */
       
  1276 	if (hw->mac.type <= e1000_82573) {
       
  1277 		reg = er32(RFCTL);
       
  1278 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
       
  1279 		ew32(RFCTL, reg);
       
  1280 	}
       
  1281 
       
  1282 	/* PCI-Ex Control Registers */
       
  1283 	switch (hw->mac.type) {
       
  1284 	case e1000_82574:
       
  1285 	case e1000_82583:
       
  1286 		reg = er32(GCR);
       
  1287 		reg |= (1 << 22);
       
  1288 		ew32(GCR, reg);
       
  1289 
       
  1290 		/* Workaround for hardware errata.
       
  1291 		 * apply workaround for hardware errata documented in errata
       
  1292 		 * docs Fixes issue where some error prone or unreliable PCIe
       
  1293 		 * completions are occurring, particularly with ASPM enabled.
       
  1294 		 * Without fix, issue can cause Tx timeouts.
       
  1295 		 */
       
  1296 		reg = er32(GCR2);
       
  1297 		reg |= 1;
       
  1298 		ew32(GCR2, reg);
       
  1299 		break;
       
  1300 	default:
       
  1301 		break;
       
  1302 	}
       
  1303 }
       
  1304 
       
  1305 /**
       
  1306  *  e1000_clear_vfta_82571 - Clear VLAN filter table
       
  1307  *  @hw: pointer to the HW structure
       
  1308  *
       
  1309  *  Clears the register array which contains the VLAN filter table by
       
  1310  *  setting all the values to 0.
       
  1311  **/
       
  1312 static void e1000_clear_vfta_82571(struct e1000_hw *hw)
       
  1313 {
       
  1314 	u32 offset;
       
  1315 	u32 vfta_value = 0;
       
  1316 	u32 vfta_offset = 0;
       
  1317 	u32 vfta_bit_in_reg = 0;
       
  1318 
       
  1319 	switch (hw->mac.type) {
       
  1320 	case e1000_82573:
       
  1321 	case e1000_82574:
       
  1322 	case e1000_82583:
       
  1323 		if (hw->mng_cookie.vlan_id != 0) {
       
  1324 			/* The VFTA is a 4096b bit-field, each identifying
       
  1325 			 * a single VLAN ID.  The following operations
       
  1326 			 * determine which 32b entry (i.e. offset) into the
       
  1327 			 * array we want to set the VLAN ID (i.e. bit) of
       
  1328 			 * the manageability unit.
       
  1329 			 */
       
  1330 			vfta_offset = (hw->mng_cookie.vlan_id >>
       
  1331 				       E1000_VFTA_ENTRY_SHIFT) &
       
  1332 				      E1000_VFTA_ENTRY_MASK;
       
  1333 			vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
       
  1334 					       E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
       
  1335 		}
       
  1336 		break;
       
  1337 	default:
       
  1338 		break;
       
  1339 	}
       
  1340 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
       
  1341 		/* If the offset we want to clear is the same offset of the
       
  1342 		 * manageability VLAN ID, then clear all bits except that of
       
  1343 		 * the manageability unit.
       
  1344 		 */
       
  1345 		vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
       
  1346 		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
       
  1347 		e1e_flush();
       
  1348 	}
       
  1349 }
       
  1350 
       
  1351 /**
       
  1352  *  e1000_check_mng_mode_82574 - Check manageability is enabled
       
  1353  *  @hw: pointer to the HW structure
       
  1354  *
       
  1355  *  Reads the NVM Initialization Control Word 2 and returns true
       
  1356  *  (>0) if any manageability is enabled, else false (0).
       
  1357  **/
       
  1358 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
       
  1359 {
       
  1360 	u16 data;
       
  1361 
       
  1362 	e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
       
  1363 	return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
       
  1364 }
       
  1365 
       
  1366 /**
       
  1367  *  e1000_led_on_82574 - Turn LED on
       
  1368  *  @hw: pointer to the HW structure
       
  1369  *
       
  1370  *  Turn LED on.
       
  1371  **/
       
  1372 static s32 e1000_led_on_82574(struct e1000_hw *hw)
       
  1373 {
       
  1374 	u32 ctrl;
       
  1375 	u32 i;
       
  1376 
       
  1377 	ctrl = hw->mac.ledctl_mode2;
       
  1378 	if (!(E1000_STATUS_LU & er32(STATUS))) {
       
  1379 		/* If no link, then turn LED on by setting the invert bit
       
  1380 		 * for each LED that's "on" (0x0E) in ledctl_mode2.
       
  1381 		 */
       
  1382 		for (i = 0; i < 4; i++)
       
  1383 			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
       
  1384 			    E1000_LEDCTL_MODE_LED_ON)
       
  1385 				ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
       
  1386 	}
       
  1387 	ew32(LEDCTL, ctrl);
       
  1388 
       
  1389 	return 0;
       
  1390 }
       
  1391 
       
  1392 /**
       
  1393  *  e1000_check_phy_82574 - check 82574 phy hung state
       
  1394  *  @hw: pointer to the HW structure
       
  1395  *
       
  1396  *  Returns whether phy is hung or not
       
  1397  **/
       
  1398 bool e1000_check_phy_82574(struct e1000_hw *hw)
       
  1399 {
       
  1400 	u16 status_1kbt = 0;
       
  1401 	u16 receive_errors = 0;
       
  1402 	s32 ret_val = 0;
       
  1403 
       
  1404 	/* Read PHY Receive Error counter first, if its is max - all F's then
       
  1405 	 * read the Base1000T status register If both are max then PHY is hung.
       
  1406 	 */
       
  1407 	ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors);
       
  1408 	if (ret_val)
       
  1409 		return false;
       
  1410 	if (receive_errors == E1000_RECEIVE_ERROR_MAX)  {
       
  1411 		ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt);
       
  1412 		if (ret_val)
       
  1413 			return false;
       
  1414 		if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
       
  1415 		    E1000_IDLE_ERROR_COUNT_MASK)
       
  1416 			return true;
       
  1417 	}
       
  1418 
       
  1419 	return false;
       
  1420 }
       
  1421 
       
  1422 /**
       
  1423  *  e1000_setup_link_82571 - Setup flow control and link settings
       
  1424  *  @hw: pointer to the HW structure
       
  1425  *
       
  1426  *  Determines which flow control settings to use, then configures flow
       
  1427  *  control.  Calls the appropriate media-specific link configuration
       
  1428  *  function.  Assuming the adapter has a valid link partner, a valid link
       
  1429  *  should be established.  Assumes the hardware has previously been reset
       
  1430  *  and the transmitter and receiver are not enabled.
       
  1431  **/
       
  1432 static s32 e1000_setup_link_82571(struct e1000_hw *hw)
       
  1433 {
       
  1434 	/* 82573 does not have a word in the NVM to determine
       
  1435 	 * the default flow control setting, so we explicitly
       
  1436 	 * set it to full.
       
  1437 	 */
       
  1438 	switch (hw->mac.type) {
       
  1439 	case e1000_82573:
       
  1440 	case e1000_82574:
       
  1441 	case e1000_82583:
       
  1442 		if (hw->fc.requested_mode == e1000_fc_default)
       
  1443 			hw->fc.requested_mode = e1000_fc_full;
       
  1444 		break;
       
  1445 	default:
       
  1446 		break;
       
  1447 	}
       
  1448 
       
  1449 	return e1000e_setup_link_generic(hw);
       
  1450 }
       
  1451 
       
  1452 /**
       
  1453  *  e1000_setup_copper_link_82571 - Configure copper link settings
       
  1454  *  @hw: pointer to the HW structure
       
  1455  *
       
  1456  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
       
  1457  *  for link, once link is established calls to configure collision distance
       
  1458  *  and flow control are called.
       
  1459  **/
       
  1460 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
       
  1461 {
       
  1462 	u32 ctrl;
       
  1463 	s32 ret_val;
       
  1464 
       
  1465 	ctrl = er32(CTRL);
       
  1466 	ctrl |= E1000_CTRL_SLU;
       
  1467 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
       
  1468 	ew32(CTRL, ctrl);
       
  1469 
       
  1470 	switch (hw->phy.type) {
       
  1471 	case e1000_phy_m88:
       
  1472 	case e1000_phy_bm:
       
  1473 		ret_val = e1000e_copper_link_setup_m88(hw);
       
  1474 		break;
       
  1475 	case e1000_phy_igp_2:
       
  1476 		ret_val = e1000e_copper_link_setup_igp(hw);
       
  1477 		break;
       
  1478 	default:
       
  1479 		return -E1000_ERR_PHY;
       
  1480 		break;
       
  1481 	}
       
  1482 
       
  1483 	if (ret_val)
       
  1484 		return ret_val;
       
  1485 
       
  1486 	return e1000e_setup_copper_link(hw);
       
  1487 }
       
  1488 
       
  1489 /**
       
  1490  *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
       
  1491  *  @hw: pointer to the HW structure
       
  1492  *
       
  1493  *  Configures collision distance and flow control for fiber and serdes links.
       
  1494  *  Upon successful setup, poll for link.
       
  1495  **/
       
  1496 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
       
  1497 {
       
  1498 	switch (hw->mac.type) {
       
  1499 	case e1000_82571:
       
  1500 	case e1000_82572:
       
  1501 		/* If SerDes loopback mode is entered, there is no form
       
  1502 		 * of reset to take the adapter out of that mode.  So we
       
  1503 		 * have to explicitly take the adapter out of loopback
       
  1504 		 * mode.  This prevents drivers from twiddling their thumbs
       
  1505 		 * if another tool failed to take it out of loopback mode.
       
  1506 		 */
       
  1507 		ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
       
  1508 		break;
       
  1509 	default:
       
  1510 		break;
       
  1511 	}
       
  1512 
       
  1513 	return e1000e_setup_fiber_serdes_link(hw);
       
  1514 }
       
  1515 
       
  1516 /**
       
  1517  *  e1000_check_for_serdes_link_82571 - Check for link (Serdes)
       
  1518  *  @hw: pointer to the HW structure
       
  1519  *
       
  1520  *  Reports the link state as up or down.
       
  1521  *
       
  1522  *  If autonegotiation is supported by the link partner, the link state is
       
  1523  *  determined by the result of autonegotiation. This is the most likely case.
       
  1524  *  If autonegotiation is not supported by the link partner, and the link
       
  1525  *  has a valid signal, force the link up.
       
  1526  *
       
  1527  *  The link state is represented internally here by 4 states:
       
  1528  *
       
  1529  *  1) down
       
  1530  *  2) autoneg_progress
       
  1531  *  3) autoneg_complete (the link successfully autonegotiated)
       
  1532  *  4) forced_up (the link has been forced up, it did not autonegotiate)
       
  1533  *
       
  1534  **/
       
  1535 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
       
  1536 {
       
  1537 	struct e1000_mac_info *mac = &hw->mac;
       
  1538 	u32 rxcw;
       
  1539 	u32 ctrl;
       
  1540 	u32 status;
       
  1541 	u32 txcw;
       
  1542 	u32 i;
       
  1543 	s32 ret_val = 0;
       
  1544 
       
  1545 	ctrl = er32(CTRL);
       
  1546 	status = er32(STATUS);
       
  1547 	rxcw = er32(RXCW);
       
  1548 	/* SYNCH bit and IV bit are sticky */
       
  1549 	udelay(10);
       
  1550 	rxcw = er32(RXCW);
       
  1551 
       
  1552 	if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
       
  1553 
       
  1554 		/* Receiver is synchronized with no invalid bits.  */
       
  1555 		switch (mac->serdes_link_state) {
       
  1556 		case e1000_serdes_link_autoneg_complete:
       
  1557 			if (!(status & E1000_STATUS_LU)) {
       
  1558 				/* We have lost link, retry autoneg before
       
  1559 				 * reporting link failure
       
  1560 				 */
       
  1561 				mac->serdes_link_state =
       
  1562 				    e1000_serdes_link_autoneg_progress;
       
  1563 				mac->serdes_has_link = false;
       
  1564 				e_dbg("AN_UP     -> AN_PROG\n");
       
  1565 			} else {
       
  1566 				mac->serdes_has_link = true;
       
  1567 			}
       
  1568 			break;
       
  1569 
       
  1570 		case e1000_serdes_link_forced_up:
       
  1571 			/* If we are receiving /C/ ordered sets, re-enable
       
  1572 			 * auto-negotiation in the TXCW register and disable
       
  1573 			 * forced link in the Device Control register in an
       
  1574 			 * attempt to auto-negotiate with our link partner.
       
  1575 			 */
       
  1576 			if (rxcw & E1000_RXCW_C) {
       
  1577 				/* Enable autoneg, and unforce link up */
       
  1578 				ew32(TXCW, mac->txcw);
       
  1579 				ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
       
  1580 				mac->serdes_link_state =
       
  1581 				    e1000_serdes_link_autoneg_progress;
       
  1582 				mac->serdes_has_link = false;
       
  1583 				e_dbg("FORCED_UP -> AN_PROG\n");
       
  1584 			} else {
       
  1585 				mac->serdes_has_link = true;
       
  1586 			}
       
  1587 			break;
       
  1588 
       
  1589 		case e1000_serdes_link_autoneg_progress:
       
  1590 			if (rxcw & E1000_RXCW_C) {
       
  1591 				/* We received /C/ ordered sets, meaning the
       
  1592 				 * link partner has autonegotiated, and we can
       
  1593 				 * trust the Link Up (LU) status bit.
       
  1594 				 */
       
  1595 				if (status & E1000_STATUS_LU) {
       
  1596 					mac->serdes_link_state =
       
  1597 					    e1000_serdes_link_autoneg_complete;
       
  1598 					e_dbg("AN_PROG   -> AN_UP\n");
       
  1599 					mac->serdes_has_link = true;
       
  1600 				} else {
       
  1601 					/* Autoneg completed, but failed. */
       
  1602 					mac->serdes_link_state =
       
  1603 					    e1000_serdes_link_down;
       
  1604 					e_dbg("AN_PROG   -> DOWN\n");
       
  1605 				}
       
  1606 			} else {
       
  1607 				/* The link partner did not autoneg.
       
  1608 				 * Force link up and full duplex, and change
       
  1609 				 * state to forced.
       
  1610 				 */
       
  1611 				ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
       
  1612 				ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
       
  1613 				ew32(CTRL, ctrl);
       
  1614 
       
  1615 				/* Configure Flow Control after link up. */
       
  1616 				ret_val = e1000e_config_fc_after_link_up(hw);
       
  1617 				if (ret_val) {
       
  1618 					e_dbg("Error config flow control\n");
       
  1619 					break;
       
  1620 				}
       
  1621 				mac->serdes_link_state =
       
  1622 				    e1000_serdes_link_forced_up;
       
  1623 				mac->serdes_has_link = true;
       
  1624 				e_dbg("AN_PROG   -> FORCED_UP\n");
       
  1625 			}
       
  1626 			break;
       
  1627 
       
  1628 		case e1000_serdes_link_down:
       
  1629 		default:
       
  1630 			/* The link was down but the receiver has now gained
       
  1631 			 * valid sync, so lets see if we can bring the link
       
  1632 			 * up.
       
  1633 			 */
       
  1634 			ew32(TXCW, mac->txcw);
       
  1635 			ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
       
  1636 			mac->serdes_link_state =
       
  1637 			    e1000_serdes_link_autoneg_progress;
       
  1638 			mac->serdes_has_link = false;
       
  1639 			e_dbg("DOWN      -> AN_PROG\n");
       
  1640 			break;
       
  1641 		}
       
  1642 	} else {
       
  1643 		if (!(rxcw & E1000_RXCW_SYNCH)) {
       
  1644 			mac->serdes_has_link = false;
       
  1645 			mac->serdes_link_state = e1000_serdes_link_down;
       
  1646 			e_dbg("ANYSTATE  -> DOWN\n");
       
  1647 		} else {
       
  1648 			/* Check several times, if SYNCH bit and CONFIG
       
  1649 			 * bit both are consistently 1 then simply ignore
       
  1650 			 * the IV bit and restart Autoneg
       
  1651 			 */
       
  1652 			for (i = 0; i < AN_RETRY_COUNT; i++) {
       
  1653 				udelay(10);
       
  1654 				rxcw = er32(RXCW);
       
  1655 				if ((rxcw & E1000_RXCW_SYNCH) &&
       
  1656 				    (rxcw & E1000_RXCW_C))
       
  1657 					continue;
       
  1658 
       
  1659 				if (rxcw & E1000_RXCW_IV) {
       
  1660 					mac->serdes_has_link = false;
       
  1661 					mac->serdes_link_state =
       
  1662 					    e1000_serdes_link_down;
       
  1663 					e_dbg("ANYSTATE  -> DOWN\n");
       
  1664 					break;
       
  1665 				}
       
  1666 			}
       
  1667 
       
  1668 			if (i == AN_RETRY_COUNT) {
       
  1669 				txcw = er32(TXCW);
       
  1670 				txcw |= E1000_TXCW_ANE;
       
  1671 				ew32(TXCW, txcw);
       
  1672 				mac->serdes_link_state =
       
  1673 				    e1000_serdes_link_autoneg_progress;
       
  1674 				mac->serdes_has_link = false;
       
  1675 				e_dbg("ANYSTATE  -> AN_PROG\n");
       
  1676 			}
       
  1677 		}
       
  1678 	}
       
  1679 
       
  1680 	return ret_val;
       
  1681 }
       
  1682 
       
  1683 /**
       
  1684  *  e1000_valid_led_default_82571 - Verify a valid default LED config
       
  1685  *  @hw: pointer to the HW structure
       
  1686  *  @data: pointer to the NVM (EEPROM)
       
  1687  *
       
  1688  *  Read the EEPROM for the current default LED configuration.  If the
       
  1689  *  LED configuration is not valid, set to a valid LED configuration.
       
  1690  **/
       
  1691 static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
       
  1692 {
       
  1693 	s32 ret_val;
       
  1694 
       
  1695 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
       
  1696 	if (ret_val) {
       
  1697 		e_dbg("NVM Read Error\n");
       
  1698 		return ret_val;
       
  1699 	}
       
  1700 
       
  1701 	switch (hw->mac.type) {
       
  1702 	case e1000_82573:
       
  1703 	case e1000_82574:
       
  1704 	case e1000_82583:
       
  1705 		if (*data == ID_LED_RESERVED_F746)
       
  1706 			*data = ID_LED_DEFAULT_82573;
       
  1707 		break;
       
  1708 	default:
       
  1709 		if (*data == ID_LED_RESERVED_0000 ||
       
  1710 		    *data == ID_LED_RESERVED_FFFF)
       
  1711 			*data = ID_LED_DEFAULT;
       
  1712 		break;
       
  1713 	}
       
  1714 
       
  1715 	return 0;
       
  1716 }
       
  1717 
       
  1718 /**
       
  1719  *  e1000e_get_laa_state_82571 - Get locally administered address state
       
  1720  *  @hw: pointer to the HW structure
       
  1721  *
       
  1722  *  Retrieve and return the current locally administered address state.
       
  1723  **/
       
  1724 bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
       
  1725 {
       
  1726 	if (hw->mac.type != e1000_82571)
       
  1727 		return false;
       
  1728 
       
  1729 	return hw->dev_spec.e82571.laa_is_present;
       
  1730 }
       
  1731 
       
  1732 /**
       
  1733  *  e1000e_set_laa_state_82571 - Set locally administered address state
       
  1734  *  @hw: pointer to the HW structure
       
  1735  *  @state: enable/disable locally administered address
       
  1736  *
       
  1737  *  Enable/Disable the current locally administered address state.
       
  1738  **/
       
  1739 void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
       
  1740 {
       
  1741 	if (hw->mac.type != e1000_82571)
       
  1742 		return;
       
  1743 
       
  1744 	hw->dev_spec.e82571.laa_is_present = state;
       
  1745 
       
  1746 	/* If workaround is activated... */
       
  1747 	if (state)
       
  1748 		/* Hold a copy of the LAA in RAR[14] This is done so that
       
  1749 		 * between the time RAR[0] gets clobbered and the time it
       
  1750 		 * gets fixed, the actual LAA is in one of the RARs and no
       
  1751 		 * incoming packets directed to this port are dropped.
       
  1752 		 * Eventually the LAA will be in RAR[0] and RAR[14].
       
  1753 		 */
       
  1754 		hw->mac.ops.rar_set(hw, hw->mac.addr,
       
  1755 				    hw->mac.rar_entry_count - 1);
       
  1756 }
       
  1757 
       
  1758 /**
       
  1759  *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
       
  1760  *  @hw: pointer to the HW structure
       
  1761  *
       
  1762  *  Verifies that the EEPROM has completed the update.  After updating the
       
  1763  *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
       
  1764  *  the checksum fix is not implemented, we need to set the bit and update
       
  1765  *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
       
  1766  *  we need to return bad checksum.
       
  1767  **/
       
  1768 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
       
  1769 {
       
  1770 	struct e1000_nvm_info *nvm = &hw->nvm;
       
  1771 	s32 ret_val;
       
  1772 	u16 data;
       
  1773 
       
  1774 	if (nvm->type != e1000_nvm_flash_hw)
       
  1775 		return 0;
       
  1776 
       
  1777 	/* Check bit 4 of word 10h.  If it is 0, firmware is done updating
       
  1778 	 * 10h-12h.  Checksum may need to be fixed.
       
  1779 	 */
       
  1780 	ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
       
  1781 	if (ret_val)
       
  1782 		return ret_val;
       
  1783 
       
  1784 	if (!(data & 0x10)) {
       
  1785 		/* Read 0x23 and check bit 15.  This bit is a 1
       
  1786 		 * when the checksum has already been fixed.  If
       
  1787 		 * the checksum is still wrong and this bit is a
       
  1788 		 * 1, we need to return bad checksum.  Otherwise,
       
  1789 		 * we need to set this bit to a 1 and update the
       
  1790 		 * checksum.
       
  1791 		 */
       
  1792 		ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
       
  1793 		if (ret_val)
       
  1794 			return ret_val;
       
  1795 
       
  1796 		if (!(data & 0x8000)) {
       
  1797 			data |= 0x8000;
       
  1798 			ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
       
  1799 			if (ret_val)
       
  1800 				return ret_val;
       
  1801 			ret_val = e1000e_update_nvm_checksum(hw);
       
  1802 		}
       
  1803 	}
       
  1804 
       
  1805 	return 0;
       
  1806 }
       
  1807 
       
  1808 /**
       
  1809  *  e1000_read_mac_addr_82571 - Read device MAC address
       
  1810  *  @hw: pointer to the HW structure
       
  1811  **/
       
  1812 static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
       
  1813 {
       
  1814 	if (hw->mac.type == e1000_82571) {
       
  1815 		s32 ret_val = 0;
       
  1816 
       
  1817 		/* If there's an alternate MAC address place it in RAR0
       
  1818 		 * so that it will override the Si installed default perm
       
  1819 		 * address.
       
  1820 		 */
       
  1821 		ret_val = e1000_check_alt_mac_addr_generic(hw);
       
  1822 		if (ret_val)
       
  1823 			return ret_val;
       
  1824 	}
       
  1825 
       
  1826 	return e1000_read_mac_addr_generic(hw);
       
  1827 }
       
  1828 
       
  1829 /**
       
  1830  * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
       
  1831  * @hw: pointer to the HW structure
       
  1832  *
       
  1833  * In the case of a PHY power down to save power, or to turn off link during a
       
  1834  * driver unload, or wake on lan is not enabled, remove the link.
       
  1835  **/
       
  1836 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
       
  1837 {
       
  1838 	struct e1000_phy_info *phy = &hw->phy;
       
  1839 	struct e1000_mac_info *mac = &hw->mac;
       
  1840 
       
  1841 	if (!phy->ops.check_reset_block)
       
  1842 		return;
       
  1843 
       
  1844 	/* If the management interface is not enabled, then power down */
       
  1845 	if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
       
  1846 		e1000_power_down_phy_copper(hw);
       
  1847 }
       
  1848 
       
  1849 /**
       
  1850  *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
       
  1851  *  @hw: pointer to the HW structure
       
  1852  *
       
  1853  *  Clears the hardware counters by reading the counter registers.
       
  1854  **/
       
  1855 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
       
  1856 {
       
  1857 	e1000e_clear_hw_cntrs_base(hw);
       
  1858 
       
  1859 	er32(PRC64);
       
  1860 	er32(PRC127);
       
  1861 	er32(PRC255);
       
  1862 	er32(PRC511);
       
  1863 	er32(PRC1023);
       
  1864 	er32(PRC1522);
       
  1865 	er32(PTC64);
       
  1866 	er32(PTC127);
       
  1867 	er32(PTC255);
       
  1868 	er32(PTC511);
       
  1869 	er32(PTC1023);
       
  1870 	er32(PTC1522);
       
  1871 
       
  1872 	er32(ALGNERRC);
       
  1873 	er32(RXERRC);
       
  1874 	er32(TNCRS);
       
  1875 	er32(CEXTERR);
       
  1876 	er32(TSCTC);
       
  1877 	er32(TSCTFC);
       
  1878 
       
  1879 	er32(MGTPRC);
       
  1880 	er32(MGTPDC);
       
  1881 	er32(MGTPTC);
       
  1882 
       
  1883 	er32(IAC);
       
  1884 	er32(ICRXOC);
       
  1885 
       
  1886 	er32(ICRXPTC);
       
  1887 	er32(ICRXATC);
       
  1888 	er32(ICTXPTC);
       
  1889 	er32(ICTXATC);
       
  1890 	er32(ICTXQEC);
       
  1891 	er32(ICTXQMTC);
       
  1892 	er32(ICRXDMTC);
       
  1893 }
       
  1894 
       
  1895 static const struct e1000_mac_operations e82571_mac_ops = {
       
  1896 	/* .check_mng_mode: mac type dependent */
       
  1897 	/* .check_for_link: media type dependent */
       
  1898 	.id_led_init		= e1000e_id_led_init_generic,
       
  1899 	.cleanup_led		= e1000e_cleanup_led_generic,
       
  1900 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_82571,
       
  1901 	.get_bus_info		= e1000e_get_bus_info_pcie,
       
  1902 	.set_lan_id		= e1000_set_lan_id_multi_port_pcie,
       
  1903 	/* .get_link_up_info: media type dependent */
       
  1904 	/* .led_on: mac type dependent */
       
  1905 	.led_off		= e1000e_led_off_generic,
       
  1906 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
       
  1907 	.write_vfta		= e1000_write_vfta_generic,
       
  1908 	.clear_vfta		= e1000_clear_vfta_82571,
       
  1909 	.reset_hw		= e1000_reset_hw_82571,
       
  1910 	.init_hw		= e1000_init_hw_82571,
       
  1911 	.setup_link		= e1000_setup_link_82571,
       
  1912 	/* .setup_physical_interface: media type dependent */
       
  1913 	.setup_led		= e1000e_setup_led_generic,
       
  1914 	.config_collision_dist	= e1000e_config_collision_dist_generic,
       
  1915 	.read_mac_addr		= e1000_read_mac_addr_82571,
       
  1916 	.rar_set		= e1000e_rar_set_generic,
       
  1917 };
       
  1918 
       
  1919 static const struct e1000_phy_operations e82_phy_ops_igp = {
       
  1920 	.acquire		= e1000_get_hw_semaphore_82571,
       
  1921 	.check_polarity		= e1000_check_polarity_igp,
       
  1922 	.check_reset_block	= e1000e_check_reset_block_generic,
       
  1923 	.commit			= NULL,
       
  1924 	.force_speed_duplex	= e1000e_phy_force_speed_duplex_igp,
       
  1925 	.get_cfg_done		= e1000_get_cfg_done_82571,
       
  1926 	.get_cable_length	= e1000e_get_cable_length_igp_2,
       
  1927 	.get_info		= e1000e_get_phy_info_igp,
       
  1928 	.read_reg		= e1000e_read_phy_reg_igp,
       
  1929 	.release		= e1000_put_hw_semaphore_82571,
       
  1930 	.reset			= e1000e_phy_hw_reset_generic,
       
  1931 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
       
  1932 	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
       
  1933 	.write_reg		= e1000e_write_phy_reg_igp,
       
  1934 	.cfg_on_link_up      	= NULL,
       
  1935 };
       
  1936 
       
  1937 static const struct e1000_phy_operations e82_phy_ops_m88 = {
       
  1938 	.acquire		= e1000_get_hw_semaphore_82571,
       
  1939 	.check_polarity		= e1000_check_polarity_m88,
       
  1940 	.check_reset_block	= e1000e_check_reset_block_generic,
       
  1941 	.commit			= e1000e_phy_sw_reset,
       
  1942 	.force_speed_duplex	= e1000e_phy_force_speed_duplex_m88,
       
  1943 	.get_cfg_done		= e1000e_get_cfg_done,
       
  1944 	.get_cable_length	= e1000e_get_cable_length_m88,
       
  1945 	.get_info		= e1000e_get_phy_info_m88,
       
  1946 	.read_reg		= e1000e_read_phy_reg_m88,
       
  1947 	.release		= e1000_put_hw_semaphore_82571,
       
  1948 	.reset			= e1000e_phy_hw_reset_generic,
       
  1949 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
       
  1950 	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
       
  1951 	.write_reg		= e1000e_write_phy_reg_m88,
       
  1952 	.cfg_on_link_up      	= NULL,
       
  1953 };
       
  1954 
       
  1955 static const struct e1000_phy_operations e82_phy_ops_bm = {
       
  1956 	.acquire		= e1000_get_hw_semaphore_82571,
       
  1957 	.check_polarity		= e1000_check_polarity_m88,
       
  1958 	.check_reset_block	= e1000e_check_reset_block_generic,
       
  1959 	.commit			= e1000e_phy_sw_reset,
       
  1960 	.force_speed_duplex	= e1000e_phy_force_speed_duplex_m88,
       
  1961 	.get_cfg_done		= e1000e_get_cfg_done,
       
  1962 	.get_cable_length	= e1000e_get_cable_length_m88,
       
  1963 	.get_info		= e1000e_get_phy_info_m88,
       
  1964 	.read_reg		= e1000e_read_phy_reg_bm2,
       
  1965 	.release		= e1000_put_hw_semaphore_82571,
       
  1966 	.reset			= e1000e_phy_hw_reset_generic,
       
  1967 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
       
  1968 	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
       
  1969 	.write_reg		= e1000e_write_phy_reg_bm2,
       
  1970 	.cfg_on_link_up      	= NULL,
       
  1971 };
       
  1972 
       
  1973 static const struct e1000_nvm_operations e82571_nvm_ops = {
       
  1974 	.acquire		= e1000_acquire_nvm_82571,
       
  1975 	.read			= e1000e_read_nvm_eerd,
       
  1976 	.release		= e1000_release_nvm_82571,
       
  1977 	.reload			= e1000e_reload_nvm_generic,
       
  1978 	.update			= e1000_update_nvm_checksum_82571,
       
  1979 	.valid_led_default	= e1000_valid_led_default_82571,
       
  1980 	.validate		= e1000_validate_nvm_checksum_82571,
       
  1981 	.write			= e1000_write_nvm_82571,
       
  1982 };
       
  1983 
       
  1984 const struct e1000_info e1000_82571_info = {
       
  1985 	.mac			= e1000_82571,
       
  1986 	.flags			= FLAG_HAS_HW_VLAN_FILTER
       
  1987 				  | FLAG_HAS_JUMBO_FRAMES
       
  1988 				  | FLAG_HAS_WOL
       
  1989 				  | FLAG_APME_IN_CTRL3
       
  1990 				  | FLAG_HAS_CTRLEXT_ON_LOAD
       
  1991 				  | FLAG_HAS_SMART_POWER_DOWN
       
  1992 				  | FLAG_RESET_OVERWRITES_LAA /* errata */
       
  1993 				  | FLAG_TARC_SPEED_MODE_BIT /* errata */
       
  1994 				  | FLAG_APME_CHECK_PORT_B,
       
  1995 	.flags2			= FLAG2_DISABLE_ASPM_L1 /* errata 13 */
       
  1996 				  | FLAG2_DMA_BURST,
       
  1997 	.pba			= 38,
       
  1998 	.max_hw_frame_size	= DEFAULT_JUMBO,
       
  1999 	.get_variants		= e1000_get_variants_82571,
       
  2000 	.mac_ops		= &e82571_mac_ops,
       
  2001 	.phy_ops		= &e82_phy_ops_igp,
       
  2002 	.nvm_ops		= &e82571_nvm_ops,
       
  2003 };
       
  2004 
       
  2005 const struct e1000_info e1000_82572_info = {
       
  2006 	.mac			= e1000_82572,
       
  2007 	.flags			= FLAG_HAS_HW_VLAN_FILTER
       
  2008 				  | FLAG_HAS_JUMBO_FRAMES
       
  2009 				  | FLAG_HAS_WOL
       
  2010 				  | FLAG_APME_IN_CTRL3
       
  2011 				  | FLAG_HAS_CTRLEXT_ON_LOAD
       
  2012 				  | FLAG_TARC_SPEED_MODE_BIT, /* errata */
       
  2013 	.flags2			= FLAG2_DISABLE_ASPM_L1 /* errata 13 */
       
  2014 				  | FLAG2_DMA_BURST,
       
  2015 	.pba			= 38,
       
  2016 	.max_hw_frame_size	= DEFAULT_JUMBO,
       
  2017 	.get_variants		= e1000_get_variants_82571,
       
  2018 	.mac_ops		= &e82571_mac_ops,
       
  2019 	.phy_ops		= &e82_phy_ops_igp,
       
  2020 	.nvm_ops		= &e82571_nvm_ops,
       
  2021 };
       
  2022 
       
  2023 const struct e1000_info e1000_82573_info = {
       
  2024 	.mac			= e1000_82573,
       
  2025 	.flags			= FLAG_HAS_HW_VLAN_FILTER
       
  2026 				  | FLAG_HAS_WOL
       
  2027 				  | FLAG_APME_IN_CTRL3
       
  2028 				  | FLAG_HAS_SMART_POWER_DOWN
       
  2029 				  | FLAG_HAS_AMT
       
  2030 				  | FLAG_HAS_SWSM_ON_LOAD,
       
  2031 	.flags2			= FLAG2_DISABLE_ASPM_L1
       
  2032 				  | FLAG2_DISABLE_ASPM_L0S,
       
  2033 	.pba			= 20,
       
  2034 	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
       
  2035 	.get_variants		= e1000_get_variants_82571,
       
  2036 	.mac_ops		= &e82571_mac_ops,
       
  2037 	.phy_ops		= &e82_phy_ops_m88,
       
  2038 	.nvm_ops		= &e82571_nvm_ops,
       
  2039 };
       
  2040 
       
  2041 const struct e1000_info e1000_82574_info = {
       
  2042 	.mac			= e1000_82574,
       
  2043 	.flags			= FLAG_HAS_HW_VLAN_FILTER
       
  2044 				  | FLAG_HAS_MSIX
       
  2045 				  | FLAG_HAS_JUMBO_FRAMES
       
  2046 				  | FLAG_HAS_WOL
       
  2047 				  | FLAG_APME_IN_CTRL3
       
  2048 				  | FLAG_HAS_SMART_POWER_DOWN
       
  2049 				  | FLAG_HAS_AMT
       
  2050 				  | FLAG_HAS_CTRLEXT_ON_LOAD,
       
  2051 	.flags2			 = FLAG2_CHECK_PHY_HANG
       
  2052 				  | FLAG2_DISABLE_ASPM_L0S
       
  2053 				  | FLAG2_DISABLE_ASPM_L1
       
  2054 				  | FLAG2_NO_DISABLE_RX
       
  2055 				  | FLAG2_DMA_BURST,
       
  2056 	.pba			= 32,
       
  2057 	.max_hw_frame_size	= DEFAULT_JUMBO,
       
  2058 	.get_variants		= e1000_get_variants_82571,
       
  2059 	.mac_ops		= &e82571_mac_ops,
       
  2060 	.phy_ops		= &e82_phy_ops_bm,
       
  2061 	.nvm_ops		= &e82571_nvm_ops,
       
  2062 };
       
  2063 
       
  2064 const struct e1000_info e1000_82583_info = {
       
  2065 	.mac			= e1000_82583,
       
  2066 	.flags			= FLAG_HAS_HW_VLAN_FILTER
       
  2067 				  | FLAG_HAS_WOL
       
  2068 				  | FLAG_APME_IN_CTRL3
       
  2069 				  | FLAG_HAS_SMART_POWER_DOWN
       
  2070 				  | FLAG_HAS_AMT
       
  2071 				  | FLAG_HAS_JUMBO_FRAMES
       
  2072 				  | FLAG_HAS_CTRLEXT_ON_LOAD,
       
  2073 	.flags2			= FLAG2_DISABLE_ASPM_L0S
       
  2074 				  | FLAG2_NO_DISABLE_RX,
       
  2075 	.pba			= 32,
       
  2076 	.max_hw_frame_size	= DEFAULT_JUMBO,
       
  2077 	.get_variants		= e1000_get_variants_82571,
       
  2078 	.mac_ops		= &e82571_mac_ops,
       
  2079 	.phy_ops		= &e82_phy_ops_bm,
       
  2080 	.nvm_ops		= &e82571_nvm_ops,
       
  2081 };
       
  2082