2327
|
1 |
/*******************************************************************************
|
|
2 |
|
|
3 |
Intel PRO/100 Linux driver
|
|
4 |
Copyright(c) 1999 - 2006 Intel Corporation.
|
|
5 |
|
|
6 |
This program is free software; you can redistribute it and/or modify it
|
|
7 |
under the terms and conditions of the GNU General Public License,
|
|
8 |
version 2, as published by the Free Software Foundation.
|
|
9 |
|
|
10 |
This program is distributed in the hope it will be useful, but WITHOUT
|
|
11 |
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
12 |
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
13 |
more details.
|
|
14 |
|
|
15 |
You should have received a copy of the GNU General Public License along with
|
|
16 |
this program; if not, write to the Free Software Foundation, Inc.,
|
|
17 |
51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
|
|
18 |
|
|
19 |
The full GNU General Public License is included in this distribution in
|
|
20 |
the file called "COPYING".
|
|
21 |
|
|
22 |
Contact Information:
|
|
23 |
Linux NICS <linux.nics@intel.com>
|
|
24 |
e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
|
|
25 |
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
|
|
26 |
|
|
27 |
*******************************************************************************/
|
|
28 |
|
|
29 |
/*
|
|
30 |
* e100.c: Intel(R) PRO/100 ethernet driver
|
|
31 |
*
|
|
32 |
* (Re)written 2003 by scott.feldman@intel.com. Based loosely on
|
|
33 |
* original e100 driver, but better described as a munging of
|
|
34 |
* e100, e1000, eepro100, tg3, 8139cp, and other drivers.
|
|
35 |
*
|
|
36 |
* References:
|
|
37 |
* Intel 8255x 10/100 Mbps Ethernet Controller Family,
|
|
38 |
* Open Source Software Developers Manual,
|
|
39 |
* http://sourceforge.net/projects/e1000
|
|
40 |
*
|
|
41 |
*
|
|
42 |
* Theory of Operation
|
|
43 |
*
|
|
44 |
* I. General
|
|
45 |
*
|
|
46 |
* The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
|
|
47 |
* controller family, which includes the 82557, 82558, 82559, 82550,
|
|
48 |
* 82551, and 82562 devices. 82558 and greater controllers
|
|
49 |
* integrate the Intel 82555 PHY. The controllers are used in
|
|
50 |
* server and client network interface cards, as well as in
|
|
51 |
* LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
|
|
52 |
* configurations. 8255x supports a 32-bit linear addressing
|
|
53 |
* mode and operates at 33Mhz PCI clock rate.
|
|
54 |
*
|
|
55 |
* II. Driver Operation
|
|
56 |
*
|
|
57 |
* Memory-mapped mode is used exclusively to access the device's
|
|
58 |
* shared-memory structure, the Control/Status Registers (CSR). All
|
|
59 |
* setup, configuration, and control of the device, including queuing
|
|
60 |
* of Tx, Rx, and configuration commands is through the CSR.
|
|
61 |
* cmd_lock serializes accesses to the CSR command register. cb_lock
|
|
62 |
* protects the shared Command Block List (CBL).
|
|
63 |
*
|
|
64 |
* 8255x is highly MII-compliant and all access to the PHY go
|
|
65 |
* through the Management Data Interface (MDI). Consequently, the
|
|
66 |
* driver leverages the mii.c library shared with other MII-compliant
|
|
67 |
* devices.
|
|
68 |
*
|
|
69 |
* Big- and Little-Endian byte order as well as 32- and 64-bit
|
|
70 |
* archs are supported. Weak-ordered memory and non-cache-coherent
|
|
71 |
* archs are supported.
|
|
72 |
*
|
|
73 |
* III. Transmit
|
|
74 |
*
|
|
75 |
* A Tx skb is mapped and hangs off of a TCB. TCBs are linked
|
|
76 |
* together in a fixed-size ring (CBL) thus forming the flexible mode
|
|
77 |
* memory structure. A TCB marked with the suspend-bit indicates
|
|
78 |
* the end of the ring. The last TCB processed suspends the
|
|
79 |
* controller, and the controller can be restarted by issue a CU
|
|
80 |
* resume command to continue from the suspend point, or a CU start
|
|
81 |
* command to start at a given position in the ring.
|
|
82 |
*
|
|
83 |
* Non-Tx commands (config, multicast setup, etc) are linked
|
|
84 |
* into the CBL ring along with Tx commands. The common structure
|
|
85 |
* used for both Tx and non-Tx commands is the Command Block (CB).
|
|
86 |
*
|
|
87 |
* cb_to_use is the next CB to use for queuing a command; cb_to_clean
|
|
88 |
* is the next CB to check for completion; cb_to_send is the first
|
|
89 |
* CB to start on in case of a previous failure to resume. CB clean
|
|
90 |
* up happens in interrupt context in response to a CU interrupt.
|
|
91 |
* cbs_avail keeps track of number of free CB resources available.
|
|
92 |
*
|
|
93 |
* Hardware padding of short packets to minimum packet size is
|
|
94 |
* enabled. 82557 pads with 7Eh, while the later controllers pad
|
|
95 |
* with 00h.
|
|
96 |
*
|
|
97 |
* IV. Receive
|
|
98 |
*
|
|
99 |
* The Receive Frame Area (RFA) comprises a ring of Receive Frame
|
|
100 |
* Descriptors (RFD) + data buffer, thus forming the simplified mode
|
|
101 |
* memory structure. Rx skbs are allocated to contain both the RFD
|
|
102 |
* and the data buffer, but the RFD is pulled off before the skb is
|
|
103 |
* indicated. The data buffer is aligned such that encapsulated
|
|
104 |
* protocol headers are u32-aligned. Since the RFD is part of the
|
|
105 |
* mapped shared memory, and completion status is contained within
|
|
106 |
* the RFD, the RFD must be dma_sync'ed to maintain a consistent
|
|
107 |
* view from software and hardware.
|
|
108 |
*
|
|
109 |
* In order to keep updates to the RFD link field from colliding with
|
|
110 |
* hardware writes to mark packets complete, we use the feature that
|
|
111 |
* hardware will not write to a size 0 descriptor and mark the previous
|
|
112 |
* packet as end-of-list (EL). After updating the link, we remove EL
|
|
113 |
* and only then restore the size such that hardware may use the
|
|
114 |
* previous-to-end RFD.
|
|
115 |
*
|
|
116 |
* Under typical operation, the receive unit (RU) is start once,
|
|
117 |
* and the controller happily fills RFDs as frames arrive. If
|
|
118 |
* replacement RFDs cannot be allocated, or the RU goes non-active,
|
|
119 |
* the RU must be restarted. Frame arrival generates an interrupt,
|
|
120 |
* and Rx indication and re-allocation happen in the same context,
|
|
121 |
* therefore no locking is required. A software-generated interrupt
|
|
122 |
* is generated from the watchdog to recover from a failed allocation
|
|
123 |
* scenario where all Rx resources have been indicated and none re-
|
|
124 |
* placed.
|
|
125 |
*
|
|
126 |
* V. Miscellaneous
|
|
127 |
*
|
|
128 |
* VLAN offloading of tagging, stripping and filtering is not
|
|
129 |
* supported, but driver will accommodate the extra 4-byte VLAN tag
|
|
130 |
* for processing by upper layers. Tx/Rx Checksum offloading is not
|
|
131 |
* supported. Tx Scatter/Gather is not supported. Jumbo Frames is
|
|
132 |
* not supported (hardware limitation).
|
|
133 |
*
|
|
134 |
* MagicPacket(tm) WoL support is enabled/disabled via ethtool.
|
|
135 |
*
|
|
136 |
* Thanks to JC (jchapman@katalix.com) for helping with
|
|
137 |
* testing/troubleshooting the development driver.
|
|
138 |
*
|
|
139 |
* TODO:
|
|
140 |
* o several entry points race with dev->close
|
|
141 |
* o check for tx-no-resources/stop Q races with tx clean/wake Q
|
|
142 |
*
|
|
143 |
* FIXES:
|
|
144 |
* 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
|
|
145 |
* - Stratus87247: protect MDI control register manipulations
|
|
146 |
* 2009/06/01 - Andreas Mohr <andi at lisas dot de>
|
|
147 |
* - add clean lowlevel I/O emulation for cards with MII-lacking PHYs
|
|
148 |
*/
|
|
149 |
|
|
150 |
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
151 |
|
|
152 |
#include <linux/module.h>
|
|
153 |
#include <linux/moduleparam.h>
|
|
154 |
#include <linux/kernel.h>
|
|
155 |
#include <linux/types.h>
|
|
156 |
#include <linux/sched.h>
|
|
157 |
#include <linux/slab.h>
|
|
158 |
#include <linux/delay.h>
|
|
159 |
#include <linux/init.h>
|
|
160 |
#include <linux/pci.h>
|
|
161 |
#include <linux/dma-mapping.h>
|
|
162 |
#include <linux/dmapool.h>
|
|
163 |
#include <linux/netdevice.h>
|
|
164 |
#include <linux/etherdevice.h>
|
|
165 |
#include <linux/mii.h>
|
|
166 |
#include <linux/if_vlan.h>
|
|
167 |
#include <linux/skbuff.h>
|
|
168 |
#include <linux/ethtool.h>
|
|
169 |
#include <linux/string.h>
|
|
170 |
#include <linux/firmware.h>
|
|
171 |
#include <linux/rtnetlink.h>
|
|
172 |
#include <asm/unaligned.h>
|
|
173 |
|
|
174 |
|
|
175 |
#define DRV_NAME "e100"
|
|
176 |
#define DRV_EXT "-NAPI"
|
|
177 |
#define DRV_VERSION "3.5.24-k2"DRV_EXT
|
|
178 |
#define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver"
|
|
179 |
#define DRV_COPYRIGHT "Copyright(c) 1999-2006 Intel Corporation"
|
|
180 |
|
|
181 |
#define E100_WATCHDOG_PERIOD (2 * HZ)
|
|
182 |
#define E100_NAPI_WEIGHT 16
|
|
183 |
|
|
184 |
#define FIRMWARE_D101M "e100/d101m_ucode.bin"
|
|
185 |
#define FIRMWARE_D101S "e100/d101s_ucode.bin"
|
|
186 |
#define FIRMWARE_D102E "e100/d102e_ucode.bin"
|
|
187 |
|
|
188 |
MODULE_DESCRIPTION(DRV_DESCRIPTION);
|
|
189 |
MODULE_AUTHOR(DRV_COPYRIGHT);
|
|
190 |
MODULE_LICENSE("GPL");
|
|
191 |
MODULE_VERSION(DRV_VERSION);
|
|
192 |
MODULE_FIRMWARE(FIRMWARE_D101M);
|
|
193 |
MODULE_FIRMWARE(FIRMWARE_D101S);
|
|
194 |
MODULE_FIRMWARE(FIRMWARE_D102E);
|
|
195 |
|
|
196 |
static int debug = 3;
|
|
197 |
static int eeprom_bad_csum_allow = 0;
|
|
198 |
static int use_io = 0;
|
|
199 |
module_param(debug, int, 0);
|
|
200 |
module_param(eeprom_bad_csum_allow, int, 0);
|
|
201 |
module_param(use_io, int, 0);
|
|
202 |
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
|
|
203 |
MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums");
|
|
204 |
MODULE_PARM_DESC(use_io, "Force use of i/o access mode");
|
|
205 |
|
|
206 |
#define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
|
|
207 |
PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
|
|
208 |
PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
|
|
209 |
static DEFINE_PCI_DEVICE_TABLE(e100_id_table) = {
|
|
210 |
INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
|
|
211 |
INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
|
|
212 |
INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
|
|
213 |
INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
|
|
214 |
INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
|
|
215 |
INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
|
|
216 |
INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
|
|
217 |
INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
|
|
218 |
INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
|
|
219 |
INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
|
|
220 |
INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
|
|
221 |
INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
|
|
222 |
INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
|
|
223 |
INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
|
|
224 |
INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
|
|
225 |
INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
|
|
226 |
INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
|
|
227 |
INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
|
|
228 |
INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
|
|
229 |
INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
|
|
230 |
INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
|
|
231 |
INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
|
|
232 |
INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
|
|
233 |
INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
|
|
234 |
INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
|
|
235 |
INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
|
|
236 |
INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
|
|
237 |
INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
|
|
238 |
INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
|
|
239 |
INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
|
|
240 |
INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
|
|
241 |
INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
|
|
242 |
INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
|
|
243 |
INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
|
|
244 |
INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
|
|
245 |
INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7),
|
|
246 |
INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
|
|
247 |
INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
|
|
248 |
INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
|
|
249 |
INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
|
|
250 |
INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
|
|
251 |
INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
|
|
252 |
{ 0, }
|
|
253 |
};
|
|
254 |
MODULE_DEVICE_TABLE(pci, e100_id_table);
|
|
255 |
|
|
256 |
enum mac {
|
|
257 |
mac_82557_D100_A = 0,
|
|
258 |
mac_82557_D100_B = 1,
|
|
259 |
mac_82557_D100_C = 2,
|
|
260 |
mac_82558_D101_A4 = 4,
|
|
261 |
mac_82558_D101_B0 = 5,
|
|
262 |
mac_82559_D101M = 8,
|
|
263 |
mac_82559_D101S = 9,
|
|
264 |
mac_82550_D102 = 12,
|
|
265 |
mac_82550_D102_C = 13,
|
|
266 |
mac_82551_E = 14,
|
|
267 |
mac_82551_F = 15,
|
|
268 |
mac_82551_10 = 16,
|
|
269 |
mac_unknown = 0xFF,
|
|
270 |
};
|
|
271 |
|
|
272 |
enum phy {
|
|
273 |
phy_100a = 0x000003E0,
|
|
274 |
phy_100c = 0x035002A8,
|
|
275 |
phy_82555_tx = 0x015002A8,
|
|
276 |
phy_nsc_tx = 0x5C002000,
|
|
277 |
phy_82562_et = 0x033002A8,
|
|
278 |
phy_82562_em = 0x032002A8,
|
|
279 |
phy_82562_ek = 0x031002A8,
|
|
280 |
phy_82562_eh = 0x017002A8,
|
|
281 |
phy_82552_v = 0xd061004d,
|
|
282 |
phy_unknown = 0xFFFFFFFF,
|
|
283 |
};
|
|
284 |
|
|
285 |
/* CSR (Control/Status Registers) */
|
|
286 |
struct csr {
|
|
287 |
struct {
|
|
288 |
u8 status;
|
|
289 |
u8 stat_ack;
|
|
290 |
u8 cmd_lo;
|
|
291 |
u8 cmd_hi;
|
|
292 |
u32 gen_ptr;
|
|
293 |
} scb;
|
|
294 |
u32 port;
|
|
295 |
u16 flash_ctrl;
|
|
296 |
u8 eeprom_ctrl_lo;
|
|
297 |
u8 eeprom_ctrl_hi;
|
|
298 |
u32 mdi_ctrl;
|
|
299 |
u32 rx_dma_count;
|
|
300 |
};
|
|
301 |
|
|
302 |
enum scb_status {
|
|
303 |
rus_no_res = 0x08,
|
|
304 |
rus_ready = 0x10,
|
|
305 |
rus_mask = 0x3C,
|
|
306 |
};
|
|
307 |
|
|
308 |
enum ru_state {
|
|
309 |
RU_SUSPENDED = 0,
|
|
310 |
RU_RUNNING = 1,
|
|
311 |
RU_UNINITIALIZED = -1,
|
|
312 |
};
|
|
313 |
|
|
314 |
enum scb_stat_ack {
|
|
315 |
stat_ack_not_ours = 0x00,
|
|
316 |
stat_ack_sw_gen = 0x04,
|
|
317 |
stat_ack_rnr = 0x10,
|
|
318 |
stat_ack_cu_idle = 0x20,
|
|
319 |
stat_ack_frame_rx = 0x40,
|
|
320 |
stat_ack_cu_cmd_done = 0x80,
|
|
321 |
stat_ack_not_present = 0xFF,
|
|
322 |
stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
|
|
323 |
stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
|
|
324 |
};
|
|
325 |
|
|
326 |
enum scb_cmd_hi {
|
|
327 |
irq_mask_none = 0x00,
|
|
328 |
irq_mask_all = 0x01,
|
|
329 |
irq_sw_gen = 0x02,
|
|
330 |
};
|
|
331 |
|
|
332 |
enum scb_cmd_lo {
|
|
333 |
cuc_nop = 0x00,
|
|
334 |
ruc_start = 0x01,
|
|
335 |
ruc_load_base = 0x06,
|
|
336 |
cuc_start = 0x10,
|
|
337 |
cuc_resume = 0x20,
|
|
338 |
cuc_dump_addr = 0x40,
|
|
339 |
cuc_dump_stats = 0x50,
|
|
340 |
cuc_load_base = 0x60,
|
|
341 |
cuc_dump_reset = 0x70,
|
|
342 |
};
|
|
343 |
|
|
344 |
enum cuc_dump {
|
|
345 |
cuc_dump_complete = 0x0000A005,
|
|
346 |
cuc_dump_reset_complete = 0x0000A007,
|
|
347 |
};
|
|
348 |
|
|
349 |
enum port {
|
|
350 |
software_reset = 0x0000,
|
|
351 |
selftest = 0x0001,
|
|
352 |
selective_reset = 0x0002,
|
|
353 |
};
|
|
354 |
|
|
355 |
enum eeprom_ctrl_lo {
|
|
356 |
eesk = 0x01,
|
|
357 |
eecs = 0x02,
|
|
358 |
eedi = 0x04,
|
|
359 |
eedo = 0x08,
|
|
360 |
};
|
|
361 |
|
|
362 |
enum mdi_ctrl {
|
|
363 |
mdi_write = 0x04000000,
|
|
364 |
mdi_read = 0x08000000,
|
|
365 |
mdi_ready = 0x10000000,
|
|
366 |
};
|
|
367 |
|
|
368 |
enum eeprom_op {
|
|
369 |
op_write = 0x05,
|
|
370 |
op_read = 0x06,
|
|
371 |
op_ewds = 0x10,
|
|
372 |
op_ewen = 0x13,
|
|
373 |
};
|
|
374 |
|
|
375 |
enum eeprom_offsets {
|
|
376 |
eeprom_cnfg_mdix = 0x03,
|
|
377 |
eeprom_phy_iface = 0x06,
|
|
378 |
eeprom_id = 0x0A,
|
|
379 |
eeprom_config_asf = 0x0D,
|
|
380 |
eeprom_smbus_addr = 0x90,
|
|
381 |
};
|
|
382 |
|
|
383 |
enum eeprom_cnfg_mdix {
|
|
384 |
eeprom_mdix_enabled = 0x0080,
|
|
385 |
};
|
|
386 |
|
|
387 |
enum eeprom_phy_iface {
|
|
388 |
NoSuchPhy = 0,
|
|
389 |
I82553AB,
|
|
390 |
I82553C,
|
|
391 |
I82503,
|
|
392 |
DP83840,
|
|
393 |
S80C240,
|
|
394 |
S80C24,
|
|
395 |
I82555,
|
|
396 |
DP83840A = 10,
|
|
397 |
};
|
|
398 |
|
|
399 |
enum eeprom_id {
|
|
400 |
eeprom_id_wol = 0x0020,
|
|
401 |
};
|
|
402 |
|
|
403 |
enum eeprom_config_asf {
|
|
404 |
eeprom_asf = 0x8000,
|
|
405 |
eeprom_gcl = 0x4000,
|
|
406 |
};
|
|
407 |
|
|
408 |
enum cb_status {
|
|
409 |
cb_complete = 0x8000,
|
|
410 |
cb_ok = 0x2000,
|
|
411 |
};
|
|
412 |
|
|
413 |
enum cb_command {
|
|
414 |
cb_nop = 0x0000,
|
|
415 |
cb_iaaddr = 0x0001,
|
|
416 |
cb_config = 0x0002,
|
|
417 |
cb_multi = 0x0003,
|
|
418 |
cb_tx = 0x0004,
|
|
419 |
cb_ucode = 0x0005,
|
|
420 |
cb_dump = 0x0006,
|
|
421 |
cb_tx_sf = 0x0008,
|
|
422 |
cb_cid = 0x1f00,
|
|
423 |
cb_i = 0x2000,
|
|
424 |
cb_s = 0x4000,
|
|
425 |
cb_el = 0x8000,
|
|
426 |
};
|
|
427 |
|
|
428 |
struct rfd {
|
|
429 |
__le16 status;
|
|
430 |
__le16 command;
|
|
431 |
__le32 link;
|
|
432 |
__le32 rbd;
|
|
433 |
__le16 actual_size;
|
|
434 |
__le16 size;
|
|
435 |
};
|
|
436 |
|
|
437 |
struct rx {
|
|
438 |
struct rx *next, *prev;
|
|
439 |
struct sk_buff *skb;
|
|
440 |
dma_addr_t dma_addr;
|
|
441 |
};
|
|
442 |
|
|
443 |
#if defined(__BIG_ENDIAN_BITFIELD)
|
|
444 |
#define X(a,b) b,a
|
|
445 |
#else
|
|
446 |
#define X(a,b) a,b
|
|
447 |
#endif
|
|
448 |
struct config {
|
|
449 |
/*0*/ u8 X(byte_count:6, pad0:2);
|
|
450 |
/*1*/ u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
|
|
451 |
/*2*/ u8 adaptive_ifs;
|
|
452 |
/*3*/ u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
|
|
453 |
term_write_cache_line:1), pad3:4);
|
|
454 |
/*4*/ u8 X(rx_dma_max_count:7, pad4:1);
|
|
455 |
/*5*/ u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
|
|
456 |
/*6*/ u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
|
|
457 |
tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
|
|
458 |
rx_discard_overruns:1), rx_save_bad_frames:1);
|
|
459 |
/*7*/ u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
|
|
460 |
pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
|
|
461 |
tx_dynamic_tbd:1);
|
|
462 |
/*8*/ u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
|
|
463 |
/*9*/ u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
|
|
464 |
link_status_wake:1), arp_wake:1), mcmatch_wake:1);
|
|
465 |
/*10*/ u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
|
|
466 |
loopback:2);
|
|
467 |
/*11*/ u8 X(linear_priority:3, pad11:5);
|
|
468 |
/*12*/ u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
|
|
469 |
/*13*/ u8 ip_addr_lo;
|
|
470 |
/*14*/ u8 ip_addr_hi;
|
|
471 |
/*15*/ u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
|
|
472 |
wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
|
|
473 |
pad15_2:1), crs_or_cdt:1);
|
|
474 |
/*16*/ u8 fc_delay_lo;
|
|
475 |
/*17*/ u8 fc_delay_hi;
|
|
476 |
/*18*/ u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
|
|
477 |
rx_long_ok:1), fc_priority_threshold:3), pad18:1);
|
|
478 |
/*19*/ u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
|
|
479 |
fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
|
|
480 |
full_duplex_force:1), full_duplex_pin:1);
|
|
481 |
/*20*/ u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
|
|
482 |
/*21*/ u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
|
|
483 |
/*22*/ u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
|
|
484 |
u8 pad_d102[9];
|
|
485 |
};
|
|
486 |
|
|
487 |
#define E100_MAX_MULTICAST_ADDRS 64
|
|
488 |
struct multi {
|
|
489 |
__le16 count;
|
|
490 |
u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
|
|
491 |
};
|
|
492 |
|
|
493 |
/* Important: keep total struct u32-aligned */
|
|
494 |
#define UCODE_SIZE 134
|
|
495 |
struct cb {
|
|
496 |
__le16 status;
|
|
497 |
__le16 command;
|
|
498 |
__le32 link;
|
|
499 |
union {
|
|
500 |
u8 iaaddr[ETH_ALEN];
|
|
501 |
__le32 ucode[UCODE_SIZE];
|
|
502 |
struct config config;
|
|
503 |
struct multi multi;
|
|
504 |
struct {
|
|
505 |
u32 tbd_array;
|
|
506 |
u16 tcb_byte_count;
|
|
507 |
u8 threshold;
|
|
508 |
u8 tbd_count;
|
|
509 |
struct {
|
|
510 |
__le32 buf_addr;
|
|
511 |
__le16 size;
|
|
512 |
u16 eol;
|
|
513 |
} tbd;
|
|
514 |
} tcb;
|
|
515 |
__le32 dump_buffer_addr;
|
|
516 |
} u;
|
|
517 |
struct cb *next, *prev;
|
|
518 |
dma_addr_t dma_addr;
|
|
519 |
struct sk_buff *skb;
|
|
520 |
};
|
|
521 |
|
|
522 |
enum loopback {
|
|
523 |
lb_none = 0, lb_mac = 1, lb_phy = 3,
|
|
524 |
};
|
|
525 |
|
|
526 |
struct stats {
|
|
527 |
__le32 tx_good_frames, tx_max_collisions, tx_late_collisions,
|
|
528 |
tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
|
|
529 |
tx_multiple_collisions, tx_total_collisions;
|
|
530 |
__le32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
|
|
531 |
rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
|
|
532 |
rx_short_frame_errors;
|
|
533 |
__le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
|
|
534 |
__le16 xmt_tco_frames, rcv_tco_frames;
|
|
535 |
__le32 complete;
|
|
536 |
};
|
|
537 |
|
|
538 |
struct mem {
|
|
539 |
struct {
|
|
540 |
u32 signature;
|
|
541 |
u32 result;
|
|
542 |
} selftest;
|
|
543 |
struct stats stats;
|
|
544 |
u8 dump_buf[596];
|
|
545 |
};
|
|
546 |
|
|
547 |
struct param_range {
|
|
548 |
u32 min;
|
|
549 |
u32 max;
|
|
550 |
u32 count;
|
|
551 |
};
|
|
552 |
|
|
553 |
struct params {
|
|
554 |
struct param_range rfds;
|
|
555 |
struct param_range cbs;
|
|
556 |
};
|
|
557 |
|
|
558 |
struct nic {
|
|
559 |
/* Begin: frequently used values: keep adjacent for cache effect */
|
|
560 |
u32 msg_enable ____cacheline_aligned;
|
|
561 |
struct net_device *netdev;
|
|
562 |
struct pci_dev *pdev;
|
|
563 |
u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data);
|
|
564 |
|
|
565 |
struct rx *rxs ____cacheline_aligned;
|
|
566 |
struct rx *rx_to_use;
|
|
567 |
struct rx *rx_to_clean;
|
|
568 |
struct rfd blank_rfd;
|
|
569 |
enum ru_state ru_running;
|
|
570 |
|
|
571 |
spinlock_t cb_lock ____cacheline_aligned;
|
|
572 |
spinlock_t cmd_lock;
|
|
573 |
struct csr __iomem *csr;
|
|
574 |
enum scb_cmd_lo cuc_cmd;
|
|
575 |
unsigned int cbs_avail;
|
|
576 |
struct napi_struct napi;
|
|
577 |
struct cb *cbs;
|
|
578 |
struct cb *cb_to_use;
|
|
579 |
struct cb *cb_to_send;
|
|
580 |
struct cb *cb_to_clean;
|
|
581 |
__le16 tx_command;
|
|
582 |
/* End: frequently used values: keep adjacent for cache effect */
|
|
583 |
|
|
584 |
enum {
|
|
585 |
ich = (1 << 0),
|
|
586 |
promiscuous = (1 << 1),
|
|
587 |
multicast_all = (1 << 2),
|
|
588 |
wol_magic = (1 << 3),
|
|
589 |
ich_10h_workaround = (1 << 4),
|
|
590 |
} flags ____cacheline_aligned;
|
|
591 |
|
|
592 |
enum mac mac;
|
|
593 |
enum phy phy;
|
|
594 |
struct params params;
|
|
595 |
struct timer_list watchdog;
|
|
596 |
struct timer_list blink_timer;
|
|
597 |
struct mii_if_info mii;
|
|
598 |
struct work_struct tx_timeout_task;
|
|
599 |
enum loopback loopback;
|
|
600 |
|
|
601 |
struct mem *mem;
|
|
602 |
dma_addr_t dma_addr;
|
|
603 |
|
|
604 |
struct pci_pool *cbs_pool;
|
|
605 |
dma_addr_t cbs_dma_addr;
|
|
606 |
u8 adaptive_ifs;
|
|
607 |
u8 tx_threshold;
|
|
608 |
u32 tx_frames;
|
|
609 |
u32 tx_collisions;
|
|
610 |
u32 tx_deferred;
|
|
611 |
u32 tx_single_collisions;
|
|
612 |
u32 tx_multiple_collisions;
|
|
613 |
u32 tx_fc_pause;
|
|
614 |
u32 tx_tco_frames;
|
|
615 |
|
|
616 |
u32 rx_fc_pause;
|
|
617 |
u32 rx_fc_unsupported;
|
|
618 |
u32 rx_tco_frames;
|
|
619 |
u32 rx_over_length_errors;
|
|
620 |
|
|
621 |
u16 leds;
|
|
622 |
u16 eeprom_wc;
|
|
623 |
__le16 eeprom[256];
|
|
624 |
spinlock_t mdio_lock;
|
|
625 |
const struct firmware *fw;
|
|
626 |
};
|
|
627 |
|
|
628 |
static inline void e100_write_flush(struct nic *nic)
|
|
629 |
{
|
|
630 |
/* Flush previous PCI writes through intermediate bridges
|
|
631 |
* by doing a benign read */
|
|
632 |
(void)ioread8(&nic->csr->scb.status);
|
|
633 |
}
|
|
634 |
|
|
635 |
static void e100_enable_irq(struct nic *nic)
|
|
636 |
{
|
|
637 |
unsigned long flags;
|
|
638 |
|
|
639 |
spin_lock_irqsave(&nic->cmd_lock, flags);
|
|
640 |
iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi);
|
|
641 |
e100_write_flush(nic);
|
|
642 |
spin_unlock_irqrestore(&nic->cmd_lock, flags);
|
|
643 |
}
|
|
644 |
|
|
645 |
static void e100_disable_irq(struct nic *nic)
|
|
646 |
{
|
|
647 |
unsigned long flags;
|
|
648 |
|
|
649 |
spin_lock_irqsave(&nic->cmd_lock, flags);
|
|
650 |
iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi);
|
|
651 |
e100_write_flush(nic);
|
|
652 |
spin_unlock_irqrestore(&nic->cmd_lock, flags);
|
|
653 |
}
|
|
654 |
|
|
655 |
static void e100_hw_reset(struct nic *nic)
|
|
656 |
{
|
|
657 |
/* Put CU and RU into idle with a selective reset to get
|
|
658 |
* device off of PCI bus */
|
|
659 |
iowrite32(selective_reset, &nic->csr->port);
|
|
660 |
e100_write_flush(nic); udelay(20);
|
|
661 |
|
|
662 |
/* Now fully reset device */
|
|
663 |
iowrite32(software_reset, &nic->csr->port);
|
|
664 |
e100_write_flush(nic); udelay(20);
|
|
665 |
|
|
666 |
/* Mask off our interrupt line - it's unmasked after reset */
|
|
667 |
e100_disable_irq(nic);
|
|
668 |
}
|
|
669 |
|
|
670 |
static int e100_self_test(struct nic *nic)
|
|
671 |
{
|
|
672 |
u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
|
|
673 |
|
|
674 |
/* Passing the self-test is a pretty good indication
|
|
675 |
* that the device can DMA to/from host memory */
|
|
676 |
|
|
677 |
nic->mem->selftest.signature = 0;
|
|
678 |
nic->mem->selftest.result = 0xFFFFFFFF;
|
|
679 |
|
|
680 |
iowrite32(selftest | dma_addr, &nic->csr->port);
|
|
681 |
e100_write_flush(nic);
|
|
682 |
/* Wait 10 msec for self-test to complete */
|
|
683 |
msleep(10);
|
|
684 |
|
|
685 |
/* Interrupts are enabled after self-test */
|
|
686 |
e100_disable_irq(nic);
|
|
687 |
|
|
688 |
/* Check results of self-test */
|
|
689 |
if (nic->mem->selftest.result != 0) {
|
|
690 |
netif_err(nic, hw, nic->netdev,
|
|
691 |
"Self-test failed: result=0x%08X\n",
|
|
692 |
nic->mem->selftest.result);
|
|
693 |
return -ETIMEDOUT;
|
|
694 |
}
|
|
695 |
if (nic->mem->selftest.signature == 0) {
|
|
696 |
netif_err(nic, hw, nic->netdev, "Self-test failed: timed out\n");
|
|
697 |
return -ETIMEDOUT;
|
|
698 |
}
|
|
699 |
|
|
700 |
return 0;
|
|
701 |
}
|
|
702 |
|
|
703 |
static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data)
|
|
704 |
{
|
|
705 |
u32 cmd_addr_data[3];
|
|
706 |
u8 ctrl;
|
|
707 |
int i, j;
|
|
708 |
|
|
709 |
/* Three cmds: write/erase enable, write data, write/erase disable */
|
|
710 |
cmd_addr_data[0] = op_ewen << (addr_len - 2);
|
|
711 |
cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
|
|
712 |
le16_to_cpu(data);
|
|
713 |
cmd_addr_data[2] = op_ewds << (addr_len - 2);
|
|
714 |
|
|
715 |
/* Bit-bang cmds to write word to eeprom */
|
|
716 |
for (j = 0; j < 3; j++) {
|
|
717 |
|
|
718 |
/* Chip select */
|
|
719 |
iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
|
|
720 |
e100_write_flush(nic); udelay(4);
|
|
721 |
|
|
722 |
for (i = 31; i >= 0; i--) {
|
|
723 |
ctrl = (cmd_addr_data[j] & (1 << i)) ?
|
|
724 |
eecs | eedi : eecs;
|
|
725 |
iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
|
|
726 |
e100_write_flush(nic); udelay(4);
|
|
727 |
|
|
728 |
iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
|
|
729 |
e100_write_flush(nic); udelay(4);
|
|
730 |
}
|
|
731 |
/* Wait 10 msec for cmd to complete */
|
|
732 |
msleep(10);
|
|
733 |
|
|
734 |
/* Chip deselect */
|
|
735 |
iowrite8(0, &nic->csr->eeprom_ctrl_lo);
|
|
736 |
e100_write_flush(nic); udelay(4);
|
|
737 |
}
|
|
738 |
};
|
|
739 |
|
|
740 |
/* General technique stolen from the eepro100 driver - very clever */
|
|
741 |
static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
|
|
742 |
{
|
|
743 |
u32 cmd_addr_data;
|
|
744 |
u16 data = 0;
|
|
745 |
u8 ctrl;
|
|
746 |
int i;
|
|
747 |
|
|
748 |
cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
|
|
749 |
|
|
750 |
/* Chip select */
|
|
751 |
iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
|
|
752 |
e100_write_flush(nic); udelay(4);
|
|
753 |
|
|
754 |
/* Bit-bang to read word from eeprom */
|
|
755 |
for (i = 31; i >= 0; i--) {
|
|
756 |
ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
|
|
757 |
iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
|
|
758 |
e100_write_flush(nic); udelay(4);
|
|
759 |
|
|
760 |
iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
|
|
761 |
e100_write_flush(nic); udelay(4);
|
|
762 |
|
|
763 |
/* Eeprom drives a dummy zero to EEDO after receiving
|
|
764 |
* complete address. Use this to adjust addr_len. */
|
|
765 |
ctrl = ioread8(&nic->csr->eeprom_ctrl_lo);
|
|
766 |
if (!(ctrl & eedo) && i > 16) {
|
|
767 |
*addr_len -= (i - 16);
|
|
768 |
i = 17;
|
|
769 |
}
|
|
770 |
|
|
771 |
data = (data << 1) | (ctrl & eedo ? 1 : 0);
|
|
772 |
}
|
|
773 |
|
|
774 |
/* Chip deselect */
|
|
775 |
iowrite8(0, &nic->csr->eeprom_ctrl_lo);
|
|
776 |
e100_write_flush(nic); udelay(4);
|
|
777 |
|
|
778 |
return cpu_to_le16(data);
|
|
779 |
};
|
|
780 |
|
|
781 |
/* Load entire EEPROM image into driver cache and validate checksum */
|
|
782 |
static int e100_eeprom_load(struct nic *nic)
|
|
783 |
{
|
|
784 |
u16 addr, addr_len = 8, checksum = 0;
|
|
785 |
|
|
786 |
/* Try reading with an 8-bit addr len to discover actual addr len */
|
|
787 |
e100_eeprom_read(nic, &addr_len, 0);
|
|
788 |
nic->eeprom_wc = 1 << addr_len;
|
|
789 |
|
|
790 |
for (addr = 0; addr < nic->eeprom_wc; addr++) {
|
|
791 |
nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
|
|
792 |
if (addr < nic->eeprom_wc - 1)
|
|
793 |
checksum += le16_to_cpu(nic->eeprom[addr]);
|
|
794 |
}
|
|
795 |
|
|
796 |
/* The checksum, stored in the last word, is calculated such that
|
|
797 |
* the sum of words should be 0xBABA */
|
|
798 |
if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) {
|
|
799 |
netif_err(nic, probe, nic->netdev, "EEPROM corrupted\n");
|
|
800 |
if (!eeprom_bad_csum_allow)
|
|
801 |
return -EAGAIN;
|
|
802 |
}
|
|
803 |
|
|
804 |
return 0;
|
|
805 |
}
|
|
806 |
|
|
807 |
/* Save (portion of) driver EEPROM cache to device and update checksum */
|
|
808 |
static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
|
|
809 |
{
|
|
810 |
u16 addr, addr_len = 8, checksum = 0;
|
|
811 |
|
|
812 |
/* Try reading with an 8-bit addr len to discover actual addr len */
|
|
813 |
e100_eeprom_read(nic, &addr_len, 0);
|
|
814 |
nic->eeprom_wc = 1 << addr_len;
|
|
815 |
|
|
816 |
if (start + count >= nic->eeprom_wc)
|
|
817 |
return -EINVAL;
|
|
818 |
|
|
819 |
for (addr = start; addr < start + count; addr++)
|
|
820 |
e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
|
|
821 |
|
|
822 |
/* The checksum, stored in the last word, is calculated such that
|
|
823 |
* the sum of words should be 0xBABA */
|
|
824 |
for (addr = 0; addr < nic->eeprom_wc - 1; addr++)
|
|
825 |
checksum += le16_to_cpu(nic->eeprom[addr]);
|
|
826 |
nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum);
|
|
827 |
e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
|
|
828 |
nic->eeprom[nic->eeprom_wc - 1]);
|
|
829 |
|
|
830 |
return 0;
|
|
831 |
}
|
|
832 |
|
|
833 |
#define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
|
|
834 |
#define E100_WAIT_SCB_FAST 20 /* delay like the old code */
|
|
835 |
static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
|
|
836 |
{
|
|
837 |
unsigned long flags;
|
|
838 |
unsigned int i;
|
|
839 |
int err = 0;
|
|
840 |
|
|
841 |
spin_lock_irqsave(&nic->cmd_lock, flags);
|
|
842 |
|
|
843 |
/* Previous command is accepted when SCB clears */
|
|
844 |
for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
|
|
845 |
if (likely(!ioread8(&nic->csr->scb.cmd_lo)))
|
|
846 |
break;
|
|
847 |
cpu_relax();
|
|
848 |
if (unlikely(i > E100_WAIT_SCB_FAST))
|
|
849 |
udelay(5);
|
|
850 |
}
|
|
851 |
if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
|
|
852 |
err = -EAGAIN;
|
|
853 |
goto err_unlock;
|
|
854 |
}
|
|
855 |
|
|
856 |
if (unlikely(cmd != cuc_resume))
|
|
857 |
iowrite32(dma_addr, &nic->csr->scb.gen_ptr);
|
|
858 |
iowrite8(cmd, &nic->csr->scb.cmd_lo);
|
|
859 |
|
|
860 |
err_unlock:
|
|
861 |
spin_unlock_irqrestore(&nic->cmd_lock, flags);
|
|
862 |
|
|
863 |
return err;
|
|
864 |
}
|
|
865 |
|
|
866 |
static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
|
|
867 |
void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
|
|
868 |
{
|
|
869 |
struct cb *cb;
|
|
870 |
unsigned long flags;
|
|
871 |
int err = 0;
|
|
872 |
|
|
873 |
spin_lock_irqsave(&nic->cb_lock, flags);
|
|
874 |
|
|
875 |
if (unlikely(!nic->cbs_avail)) {
|
|
876 |
err = -ENOMEM;
|
|
877 |
goto err_unlock;
|
|
878 |
}
|
|
879 |
|
|
880 |
cb = nic->cb_to_use;
|
|
881 |
nic->cb_to_use = cb->next;
|
|
882 |
nic->cbs_avail--;
|
|
883 |
cb->skb = skb;
|
|
884 |
|
|
885 |
if (unlikely(!nic->cbs_avail))
|
|
886 |
err = -ENOSPC;
|
|
887 |
|
|
888 |
cb_prepare(nic, cb, skb);
|
|
889 |
|
|
890 |
/* Order is important otherwise we'll be in a race with h/w:
|
|
891 |
* set S-bit in current first, then clear S-bit in previous. */
|
|
892 |
cb->command |= cpu_to_le16(cb_s);
|
|
893 |
wmb();
|
|
894 |
cb->prev->command &= cpu_to_le16(~cb_s);
|
|
895 |
|
|
896 |
while (nic->cb_to_send != nic->cb_to_use) {
|
|
897 |
if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
|
|
898 |
nic->cb_to_send->dma_addr))) {
|
|
899 |
/* Ok, here's where things get sticky. It's
|
|
900 |
* possible that we can't schedule the command
|
|
901 |
* because the controller is too busy, so
|
|
902 |
* let's just queue the command and try again
|
|
903 |
* when another command is scheduled. */
|
|
904 |
if (err == -ENOSPC) {
|
|
905 |
//request a reset
|
|
906 |
schedule_work(&nic->tx_timeout_task);
|
|
907 |
}
|
|
908 |
break;
|
|
909 |
} else {
|
|
910 |
nic->cuc_cmd = cuc_resume;
|
|
911 |
nic->cb_to_send = nic->cb_to_send->next;
|
|
912 |
}
|
|
913 |
}
|
|
914 |
|
|
915 |
err_unlock:
|
|
916 |
spin_unlock_irqrestore(&nic->cb_lock, flags);
|
|
917 |
|
|
918 |
return err;
|
|
919 |
}
|
|
920 |
|
|
921 |
static int mdio_read(struct net_device *netdev, int addr, int reg)
|
|
922 |
{
|
|
923 |
struct nic *nic = netdev_priv(netdev);
|
|
924 |
return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0);
|
|
925 |
}
|
|
926 |
|
|
927 |
static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
|
|
928 |
{
|
|
929 |
struct nic *nic = netdev_priv(netdev);
|
|
930 |
|
|
931 |
nic->mdio_ctrl(nic, addr, mdi_write, reg, data);
|
|
932 |
}
|
|
933 |
|
|
934 |
/* the standard mdio_ctrl() function for usual MII-compliant hardware */
|
|
935 |
static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
|
|
936 |
{
|
|
937 |
u32 data_out = 0;
|
|
938 |
unsigned int i;
|
|
939 |
unsigned long flags;
|
|
940 |
|
|
941 |
|
|
942 |
/*
|
|
943 |
* Stratus87247: we shouldn't be writing the MDI control
|
|
944 |
* register until the Ready bit shows True. Also, since
|
|
945 |
* manipulation of the MDI control registers is a multi-step
|
|
946 |
* procedure it should be done under lock.
|
|
947 |
*/
|
|
948 |
spin_lock_irqsave(&nic->mdio_lock, flags);
|
|
949 |
for (i = 100; i; --i) {
|
|
950 |
if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready)
|
|
951 |
break;
|
|
952 |
udelay(20);
|
|
953 |
}
|
|
954 |
if (unlikely(!i)) {
|
|
955 |
netdev_err(nic->netdev, "e100.mdio_ctrl won't go Ready\n");
|
|
956 |
spin_unlock_irqrestore(&nic->mdio_lock, flags);
|
|
957 |
return 0; /* No way to indicate timeout error */
|
|
958 |
}
|
|
959 |
iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
|
|
960 |
|
|
961 |
for (i = 0; i < 100; i++) {
|
|
962 |
udelay(20);
|
|
963 |
if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready)
|
|
964 |
break;
|
|
965 |
}
|
|
966 |
spin_unlock_irqrestore(&nic->mdio_lock, flags);
|
|
967 |
netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
|
|
968 |
"%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
|
|
969 |
dir == mdi_read ? "READ" : "WRITE",
|
|
970 |
addr, reg, data, data_out);
|
|
971 |
return (u16)data_out;
|
|
972 |
}
|
|
973 |
|
|
974 |
/* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */
|
|
975 |
static u16 mdio_ctrl_phy_82552_v(struct nic *nic,
|
|
976 |
u32 addr,
|
|
977 |
u32 dir,
|
|
978 |
u32 reg,
|
|
979 |
u16 data)
|
|
980 |
{
|
|
981 |
if ((reg == MII_BMCR) && (dir == mdi_write)) {
|
|
982 |
if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) {
|
|
983 |
u16 advert = mdio_read(nic->netdev, nic->mii.phy_id,
|
|
984 |
MII_ADVERTISE);
|
|
985 |
|
|
986 |
/*
|
|
987 |
* Workaround Si issue where sometimes the part will not
|
|
988 |
* autoneg to 100Mbps even when advertised.
|
|
989 |
*/
|
|
990 |
if (advert & ADVERTISE_100FULL)
|
|
991 |
data |= BMCR_SPEED100 | BMCR_FULLDPLX;
|
|
992 |
else if (advert & ADVERTISE_100HALF)
|
|
993 |
data |= BMCR_SPEED100;
|
|
994 |
}
|
|
995 |
}
|
|
996 |
return mdio_ctrl_hw(nic, addr, dir, reg, data);
|
|
997 |
}
|
|
998 |
|
|
999 |
/* Fully software-emulated mdio_ctrl() function for cards without
|
|
1000 |
* MII-compliant PHYs.
|
|
1001 |
* For now, this is mainly geared towards 80c24 support; in case of further
|
|
1002 |
* requirements for other types (i82503, ...?) either extend this mechanism
|
|
1003 |
* or split it, whichever is cleaner.
|
|
1004 |
*/
|
|
1005 |
static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic,
|
|
1006 |
u32 addr,
|
|
1007 |
u32 dir,
|
|
1008 |
u32 reg,
|
|
1009 |
u16 data)
|
|
1010 |
{
|
|
1011 |
/* might need to allocate a netdev_priv'ed register array eventually
|
|
1012 |
* to be able to record state changes, but for now
|
|
1013 |
* some fully hardcoded register handling ought to be ok I guess. */
|
|
1014 |
|
|
1015 |
if (dir == mdi_read) {
|
|
1016 |
switch (reg) {
|
|
1017 |
case MII_BMCR:
|
|
1018 |
/* Auto-negotiation, right? */
|
|
1019 |
return BMCR_ANENABLE |
|
|
1020 |
BMCR_FULLDPLX;
|
|
1021 |
case MII_BMSR:
|
|
1022 |
return BMSR_LSTATUS /* for mii_link_ok() */ |
|
|
1023 |
BMSR_ANEGCAPABLE |
|
|
1024 |
BMSR_10FULL;
|
|
1025 |
case MII_ADVERTISE:
|
|
1026 |
/* 80c24 is a "combo card" PHY, right? */
|
|
1027 |
return ADVERTISE_10HALF |
|
|
1028 |
ADVERTISE_10FULL;
|
|
1029 |
default:
|
|
1030 |
netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
|
|
1031 |
"%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
|
|
1032 |
dir == mdi_read ? "READ" : "WRITE",
|
|
1033 |
addr, reg, data);
|
|
1034 |
return 0xFFFF;
|
|
1035 |
}
|
|
1036 |
} else {
|
|
1037 |
switch (reg) {
|
|
1038 |
default:
|
|
1039 |
netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
|
|
1040 |
"%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
|
|
1041 |
dir == mdi_read ? "READ" : "WRITE",
|
|
1042 |
addr, reg, data);
|
|
1043 |
return 0xFFFF;
|
|
1044 |
}
|
|
1045 |
}
|
|
1046 |
}
|
|
1047 |
static inline int e100_phy_supports_mii(struct nic *nic)
|
|
1048 |
{
|
|
1049 |
/* for now, just check it by comparing whether we
|
|
1050 |
are using MII software emulation.
|
|
1051 |
*/
|
|
1052 |
return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated);
|
|
1053 |
}
|
|
1054 |
|
|
1055 |
static void e100_get_defaults(struct nic *nic)
|
|
1056 |
{
|
|
1057 |
struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
|
|
1058 |
struct param_range cbs = { .min = 64, .max = 256, .count = 128 };
|
|
1059 |
|
|
1060 |
/* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
|
|
1061 |
nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision;
|
|
1062 |
if (nic->mac == mac_unknown)
|
|
1063 |
nic->mac = mac_82557_D100_A;
|
|
1064 |
|
|
1065 |
nic->params.rfds = rfds;
|
|
1066 |
nic->params.cbs = cbs;
|
|
1067 |
|
|
1068 |
/* Quadwords to DMA into FIFO before starting frame transmit */
|
|
1069 |
nic->tx_threshold = 0xE0;
|
|
1070 |
|
|
1071 |
/* no interrupt for every tx completion, delay = 256us if not 557 */
|
|
1072 |
nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
|
|
1073 |
((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
|
|
1074 |
|
|
1075 |
/* Template for a freshly allocated RFD */
|
|
1076 |
nic->blank_rfd.command = 0;
|
|
1077 |
nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF);
|
|
1078 |
nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN);
|
|
1079 |
|
|
1080 |
/* MII setup */
|
|
1081 |
nic->mii.phy_id_mask = 0x1F;
|
|
1082 |
nic->mii.reg_num_mask = 0x1F;
|
|
1083 |
nic->mii.dev = nic->netdev;
|
|
1084 |
nic->mii.mdio_read = mdio_read;
|
|
1085 |
nic->mii.mdio_write = mdio_write;
|
|
1086 |
}
|
|
1087 |
|
|
1088 |
static void e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
|
|
1089 |
{
|
|
1090 |
struct config *config = &cb->u.config;
|
|
1091 |
u8 *c = (u8 *)config;
|
|
1092 |
|
|
1093 |
cb->command = cpu_to_le16(cb_config);
|
|
1094 |
|
|
1095 |
memset(config, 0, sizeof(struct config));
|
|
1096 |
|
|
1097 |
config->byte_count = 0x16; /* bytes in this struct */
|
|
1098 |
config->rx_fifo_limit = 0x8; /* bytes in FIFO before DMA */
|
|
1099 |
config->direct_rx_dma = 0x1; /* reserved */
|
|
1100 |
config->standard_tcb = 0x1; /* 1=standard, 0=extended */
|
|
1101 |
config->standard_stat_counter = 0x1; /* 1=standard, 0=extended */
|
|
1102 |
config->rx_discard_short_frames = 0x1; /* 1=discard, 0=pass */
|
|
1103 |
config->tx_underrun_retry = 0x3; /* # of underrun retries */
|
|
1104 |
if (e100_phy_supports_mii(nic))
|
|
1105 |
config->mii_mode = 1; /* 1=MII mode, 0=i82503 mode */
|
|
1106 |
config->pad10 = 0x6;
|
|
1107 |
config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */
|
|
1108 |
config->preamble_length = 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */
|
|
1109 |
config->ifs = 0x6; /* x16 = inter frame spacing */
|
|
1110 |
config->ip_addr_hi = 0xF2; /* ARP IP filter - not used */
|
|
1111 |
config->pad15_1 = 0x1;
|
|
1112 |
config->pad15_2 = 0x1;
|
|
1113 |
config->crs_or_cdt = 0x0; /* 0=CRS only, 1=CRS or CDT */
|
|
1114 |
config->fc_delay_hi = 0x40; /* time delay for fc frame */
|
|
1115 |
config->tx_padding = 0x1; /* 1=pad short frames */
|
|
1116 |
config->fc_priority_threshold = 0x7; /* 7=priority fc disabled */
|
|
1117 |
config->pad18 = 0x1;
|
|
1118 |
config->full_duplex_pin = 0x1; /* 1=examine FDX# pin */
|
|
1119 |
config->pad20_1 = 0x1F;
|
|
1120 |
config->fc_priority_location = 0x1; /* 1=byte#31, 0=byte#19 */
|
|
1121 |
config->pad21_1 = 0x5;
|
|
1122 |
|
|
1123 |
config->adaptive_ifs = nic->adaptive_ifs;
|
|
1124 |
config->loopback = nic->loopback;
|
|
1125 |
|
|
1126 |
if (nic->mii.force_media && nic->mii.full_duplex)
|
|
1127 |
config->full_duplex_force = 0x1; /* 1=force, 0=auto */
|
|
1128 |
|
|
1129 |
if (nic->flags & promiscuous || nic->loopback) {
|
|
1130 |
config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */
|
|
1131 |
config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */
|
|
1132 |
config->promiscuous_mode = 0x1; /* 1=on, 0=off */
|
|
1133 |
}
|
|
1134 |
|
|
1135 |
if (nic->flags & multicast_all)
|
|
1136 |
config->multicast_all = 0x1; /* 1=accept, 0=no */
|
|
1137 |
|
|
1138 |
/* disable WoL when up */
|
|
1139 |
if (netif_running(nic->netdev) || !(nic->flags & wol_magic))
|
|
1140 |
config->magic_packet_disable = 0x1; /* 1=off, 0=on */
|
|
1141 |
|
|
1142 |
if (nic->mac >= mac_82558_D101_A4) {
|
|
1143 |
config->fc_disable = 0x1; /* 1=Tx fc off, 0=Tx fc on */
|
|
1144 |
config->mwi_enable = 0x1; /* 1=enable, 0=disable */
|
|
1145 |
config->standard_tcb = 0x0; /* 1=standard, 0=extended */
|
|
1146 |
config->rx_long_ok = 0x1; /* 1=VLANs ok, 0=standard */
|
|
1147 |
if (nic->mac >= mac_82559_D101M) {
|
|
1148 |
config->tno_intr = 0x1; /* TCO stats enable */
|
|
1149 |
/* Enable TCO in extended config */
|
|
1150 |
if (nic->mac >= mac_82551_10) {
|
|
1151 |
config->byte_count = 0x20; /* extended bytes */
|
|
1152 |
config->rx_d102_mode = 0x1; /* GMRC for TCO */
|
|
1153 |
}
|
|
1154 |
} else {
|
|
1155 |
config->standard_stat_counter = 0x0;
|
|
1156 |
}
|
|
1157 |
}
|
|
1158 |
|
|
1159 |
netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
|
|
1160 |
"[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
|
|
1161 |
c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]);
|
|
1162 |
netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
|
|
1163 |
"[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
|
|
1164 |
c[8], c[9], c[10], c[11], c[12], c[13], c[14], c[15]);
|
|
1165 |
netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
|
|
1166 |
"[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
|
|
1167 |
c[16], c[17], c[18], c[19], c[20], c[21], c[22], c[23]);
|
|
1168 |
}
|
|
1169 |
|
|
1170 |
/*************************************************************************
|
|
1171 |
* CPUSaver parameters
|
|
1172 |
*
|
|
1173 |
* All CPUSaver parameters are 16-bit literals that are part of a
|
|
1174 |
* "move immediate value" instruction. By changing the value of
|
|
1175 |
* the literal in the instruction before the code is loaded, the
|
|
1176 |
* driver can change the algorithm.
|
|
1177 |
*
|
|
1178 |
* INTDELAY - This loads the dead-man timer with its initial value.
|
|
1179 |
* When this timer expires the interrupt is asserted, and the
|
|
1180 |
* timer is reset each time a new packet is received. (see
|
|
1181 |
* BUNDLEMAX below to set the limit on number of chained packets)
|
|
1182 |
* The current default is 0x600 or 1536. Experiments show that
|
|
1183 |
* the value should probably stay within the 0x200 - 0x1000.
|
|
1184 |
*
|
|
1185 |
* BUNDLEMAX -
|
|
1186 |
* This sets the maximum number of frames that will be bundled. In
|
|
1187 |
* some situations, such as the TCP windowing algorithm, it may be
|
|
1188 |
* better to limit the growth of the bundle size than let it go as
|
|
1189 |
* high as it can, because that could cause too much added latency.
|
|
1190 |
* The default is six, because this is the number of packets in the
|
|
1191 |
* default TCP window size. A value of 1 would make CPUSaver indicate
|
|
1192 |
* an interrupt for every frame received. If you do not want to put
|
|
1193 |
* a limit on the bundle size, set this value to xFFFF.
|
|
1194 |
*
|
|
1195 |
* BUNDLESMALL -
|
|
1196 |
* This contains a bit-mask describing the minimum size frame that
|
|
1197 |
* will be bundled. The default masks the lower 7 bits, which means
|
|
1198 |
* that any frame less than 128 bytes in length will not be bundled,
|
|
1199 |
* but will instead immediately generate an interrupt. This does
|
|
1200 |
* not affect the current bundle in any way. Any frame that is 128
|
|
1201 |
* bytes or large will be bundled normally. This feature is meant
|
|
1202 |
* to provide immediate indication of ACK frames in a TCP environment.
|
|
1203 |
* Customers were seeing poor performance when a machine with CPUSaver
|
|
1204 |
* enabled was sending but not receiving. The delay introduced when
|
|
1205 |
* the ACKs were received was enough to reduce total throughput, because
|
|
1206 |
* the sender would sit idle until the ACK was finally seen.
|
|
1207 |
*
|
|
1208 |
* The current default is 0xFF80, which masks out the lower 7 bits.
|
|
1209 |
* This means that any frame which is x7F (127) bytes or smaller
|
|
1210 |
* will cause an immediate interrupt. Because this value must be a
|
|
1211 |
* bit mask, there are only a few valid values that can be used. To
|
|
1212 |
* turn this feature off, the driver can write the value xFFFF to the
|
|
1213 |
* lower word of this instruction (in the same way that the other
|
|
1214 |
* parameters are used). Likewise, a value of 0xF800 (2047) would
|
|
1215 |
* cause an interrupt to be generated for every frame, because all
|
|
1216 |
* standard Ethernet frames are <= 2047 bytes in length.
|
|
1217 |
*************************************************************************/
|
|
1218 |
|
|
1219 |
/* if you wish to disable the ucode functionality, while maintaining the
|
|
1220 |
* workarounds it provides, set the following defines to:
|
|
1221 |
* BUNDLESMALL 0
|
|
1222 |
* BUNDLEMAX 1
|
|
1223 |
* INTDELAY 1
|
|
1224 |
*/
|
|
1225 |
#define BUNDLESMALL 1
|
|
1226 |
#define BUNDLEMAX (u16)6
|
|
1227 |
#define INTDELAY (u16)1536 /* 0x600 */
|
|
1228 |
|
|
1229 |
/* Initialize firmware */
|
|
1230 |
static const struct firmware *e100_request_firmware(struct nic *nic)
|
|
1231 |
{
|
|
1232 |
const char *fw_name;
|
|
1233 |
const struct firmware *fw = nic->fw;
|
|
1234 |
u8 timer, bundle, min_size;
|
|
1235 |
int err = 0;
|
|
1236 |
|
|
1237 |
/* do not load u-code for ICH devices */
|
|
1238 |
if (nic->flags & ich)
|
|
1239 |
return NULL;
|
|
1240 |
|
|
1241 |
/* Search for ucode match against h/w revision */
|
|
1242 |
if (nic->mac == mac_82559_D101M)
|
|
1243 |
fw_name = FIRMWARE_D101M;
|
|
1244 |
else if (nic->mac == mac_82559_D101S)
|
|
1245 |
fw_name = FIRMWARE_D101S;
|
|
1246 |
else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10)
|
|
1247 |
fw_name = FIRMWARE_D102E;
|
|
1248 |
else /* No ucode on other devices */
|
|
1249 |
return NULL;
|
|
1250 |
|
|
1251 |
/* If the firmware has not previously been loaded, request a pointer
|
|
1252 |
* to it. If it was previously loaded, we are reinitializing the
|
|
1253 |
* adapter, possibly in a resume from hibernate, in which case
|
|
1254 |
* request_firmware() cannot be used.
|
|
1255 |
*/
|
|
1256 |
if (!fw)
|
|
1257 |
err = request_firmware(&fw, fw_name, &nic->pdev->dev);
|
|
1258 |
|
|
1259 |
if (err) {
|
|
1260 |
netif_err(nic, probe, nic->netdev,
|
|
1261 |
"Failed to load firmware \"%s\": %d\n",
|
|
1262 |
fw_name, err);
|
|
1263 |
return ERR_PTR(err);
|
|
1264 |
}
|
|
1265 |
|
|
1266 |
/* Firmware should be precisely UCODE_SIZE (words) plus three bytes
|
|
1267 |
indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */
|
|
1268 |
if (fw->size != UCODE_SIZE * 4 + 3) {
|
|
1269 |
netif_err(nic, probe, nic->netdev,
|
|
1270 |
"Firmware \"%s\" has wrong size %zu\n",
|
|
1271 |
fw_name, fw->size);
|
|
1272 |
release_firmware(fw);
|
|
1273 |
return ERR_PTR(-EINVAL);
|
|
1274 |
}
|
|
1275 |
|
|
1276 |
/* Read timer, bundle and min_size from end of firmware blob */
|
|
1277 |
timer = fw->data[UCODE_SIZE * 4];
|
|
1278 |
bundle = fw->data[UCODE_SIZE * 4 + 1];
|
|
1279 |
min_size = fw->data[UCODE_SIZE * 4 + 2];
|
|
1280 |
|
|
1281 |
if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE ||
|
|
1282 |
min_size >= UCODE_SIZE) {
|
|
1283 |
netif_err(nic, probe, nic->netdev,
|
|
1284 |
"\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n",
|
|
1285 |
fw_name, timer, bundle, min_size);
|
|
1286 |
release_firmware(fw);
|
|
1287 |
return ERR_PTR(-EINVAL);
|
|
1288 |
}
|
|
1289 |
|
|
1290 |
/* OK, firmware is validated and ready to use. Save a pointer
|
|
1291 |
* to it in the nic */
|
|
1292 |
nic->fw = fw;
|
|
1293 |
return fw;
|
|
1294 |
}
|
|
1295 |
|
|
1296 |
static void e100_setup_ucode(struct nic *nic, struct cb *cb,
|
|
1297 |
struct sk_buff *skb)
|
|
1298 |
{
|
|
1299 |
const struct firmware *fw = (void *)skb;
|
|
1300 |
u8 timer, bundle, min_size;
|
|
1301 |
|
|
1302 |
/* It's not a real skb; we just abused the fact that e100_exec_cb
|
|
1303 |
will pass it through to here... */
|
|
1304 |
cb->skb = NULL;
|
|
1305 |
|
|
1306 |
/* firmware is stored as little endian already */
|
|
1307 |
memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4);
|
|
1308 |
|
|
1309 |
/* Read timer, bundle and min_size from end of firmware blob */
|
|
1310 |
timer = fw->data[UCODE_SIZE * 4];
|
|
1311 |
bundle = fw->data[UCODE_SIZE * 4 + 1];
|
|
1312 |
min_size = fw->data[UCODE_SIZE * 4 + 2];
|
|
1313 |
|
|
1314 |
/* Insert user-tunable settings in cb->u.ucode */
|
|
1315 |
cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000);
|
|
1316 |
cb->u.ucode[timer] |= cpu_to_le32(INTDELAY);
|
|
1317 |
cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000);
|
|
1318 |
cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX);
|
|
1319 |
cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000);
|
|
1320 |
cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80);
|
|
1321 |
|
|
1322 |
cb->command = cpu_to_le16(cb_ucode | cb_el);
|
|
1323 |
}
|
|
1324 |
|
|
1325 |
static inline int e100_load_ucode_wait(struct nic *nic)
|
|
1326 |
{
|
|
1327 |
const struct firmware *fw;
|
|
1328 |
int err = 0, counter = 50;
|
|
1329 |
struct cb *cb = nic->cb_to_clean;
|
|
1330 |
|
|
1331 |
fw = e100_request_firmware(nic);
|
|
1332 |
/* If it's NULL, then no ucode is required */
|
|
1333 |
if (!fw || IS_ERR(fw))
|
|
1334 |
return PTR_ERR(fw);
|
|
1335 |
|
|
1336 |
if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode)))
|
|
1337 |
netif_err(nic, probe, nic->netdev,
|
|
1338 |
"ucode cmd failed with error %d\n", err);
|
|
1339 |
|
|
1340 |
/* must restart cuc */
|
|
1341 |
nic->cuc_cmd = cuc_start;
|
|
1342 |
|
|
1343 |
/* wait for completion */
|
|
1344 |
e100_write_flush(nic);
|
|
1345 |
udelay(10);
|
|
1346 |
|
|
1347 |
/* wait for possibly (ouch) 500ms */
|
|
1348 |
while (!(cb->status & cpu_to_le16(cb_complete))) {
|
|
1349 |
msleep(10);
|
|
1350 |
if (!--counter) break;
|
|
1351 |
}
|
|
1352 |
|
|
1353 |
/* ack any interrupts, something could have been set */
|
|
1354 |
iowrite8(~0, &nic->csr->scb.stat_ack);
|
|
1355 |
|
|
1356 |
/* if the command failed, or is not OK, notify and return */
|
|
1357 |
if (!counter || !(cb->status & cpu_to_le16(cb_ok))) {
|
|
1358 |
netif_err(nic, probe, nic->netdev, "ucode load failed\n");
|
|
1359 |
err = -EPERM;
|
|
1360 |
}
|
|
1361 |
|
|
1362 |
return err;
|
|
1363 |
}
|
|
1364 |
|
|
1365 |
static void e100_setup_iaaddr(struct nic *nic, struct cb *cb,
|
|
1366 |
struct sk_buff *skb)
|
|
1367 |
{
|
|
1368 |
cb->command = cpu_to_le16(cb_iaaddr);
|
|
1369 |
memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
|
|
1370 |
}
|
|
1371 |
|
|
1372 |
static void e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
|
|
1373 |
{
|
|
1374 |
cb->command = cpu_to_le16(cb_dump);
|
|
1375 |
cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
|
|
1376 |
offsetof(struct mem, dump_buf));
|
|
1377 |
}
|
|
1378 |
|
|
1379 |
static int e100_phy_check_without_mii(struct nic *nic)
|
|
1380 |
{
|
|
1381 |
u8 phy_type;
|
|
1382 |
int without_mii;
|
|
1383 |
|
|
1384 |
phy_type = (nic->eeprom[eeprom_phy_iface] >> 8) & 0x0f;
|
|
1385 |
|
|
1386 |
switch (phy_type) {
|
|
1387 |
case NoSuchPhy: /* Non-MII PHY; UNTESTED! */
|
|
1388 |
case I82503: /* Non-MII PHY; UNTESTED! */
|
|
1389 |
case S80C24: /* Non-MII PHY; tested and working */
|
|
1390 |
/* paragraph from the FreeBSD driver, "FXP_PHY_80C24":
|
|
1391 |
* The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
|
|
1392 |
* doesn't have a programming interface of any sort. The
|
|
1393 |
* media is sensed automatically based on how the link partner
|
|
1394 |
* is configured. This is, in essence, manual configuration.
|
|
1395 |
*/
|
|
1396 |
netif_info(nic, probe, nic->netdev,
|
|
1397 |
"found MII-less i82503 or 80c24 or other PHY\n");
|
|
1398 |
|
|
1399 |
nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated;
|
|
1400 |
nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */
|
|
1401 |
|
|
1402 |
/* these might be needed for certain MII-less cards...
|
|
1403 |
* nic->flags |= ich;
|
|
1404 |
* nic->flags |= ich_10h_workaround; */
|
|
1405 |
|
|
1406 |
without_mii = 1;
|
|
1407 |
break;
|
|
1408 |
default:
|
|
1409 |
without_mii = 0;
|
|
1410 |
break;
|
|
1411 |
}
|
|
1412 |
return without_mii;
|
|
1413 |
}
|
|
1414 |
|
|
1415 |
#define NCONFIG_AUTO_SWITCH 0x0080
|
|
1416 |
#define MII_NSC_CONG MII_RESV1
|
|
1417 |
#define NSC_CONG_ENABLE 0x0100
|
|
1418 |
#define NSC_CONG_TXREADY 0x0400
|
|
1419 |
#define ADVERTISE_FC_SUPPORTED 0x0400
|
|
1420 |
static int e100_phy_init(struct nic *nic)
|
|
1421 |
{
|
|
1422 |
struct net_device *netdev = nic->netdev;
|
|
1423 |
u32 addr;
|
|
1424 |
u16 bmcr, stat, id_lo, id_hi, cong;
|
|
1425 |
|
|
1426 |
/* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
|
|
1427 |
for (addr = 0; addr < 32; addr++) {
|
|
1428 |
nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
|
|
1429 |
bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
|
|
1430 |
stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
|
|
1431 |
stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
|
|
1432 |
if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
|
|
1433 |
break;
|
|
1434 |
}
|
|
1435 |
if (addr == 32) {
|
|
1436 |
/* uhoh, no PHY detected: check whether we seem to be some
|
|
1437 |
* weird, rare variant which is *known* to not have any MII.
|
|
1438 |
* But do this AFTER MII checking only, since this does
|
|
1439 |
* lookup of EEPROM values which may easily be unreliable. */
|
|
1440 |
if (e100_phy_check_without_mii(nic))
|
|
1441 |
return 0; /* simply return and hope for the best */
|
|
1442 |
else {
|
|
1443 |
/* for unknown cases log a fatal error */
|
|
1444 |
netif_err(nic, hw, nic->netdev,
|
|
1445 |
"Failed to locate any known PHY, aborting\n");
|
|
1446 |
return -EAGAIN;
|
|
1447 |
}
|
|
1448 |
} else
|
|
1449 |
netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
|
|
1450 |
"phy_addr = %d\n", nic->mii.phy_id);
|
|
1451 |
|
|
1452 |
/* Get phy ID */
|
|
1453 |
id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
|
|
1454 |
id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
|
|
1455 |
nic->phy = (u32)id_hi << 16 | (u32)id_lo;
|
|
1456 |
netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
|
|
1457 |
"phy ID = 0x%08X\n", nic->phy);
|
|
1458 |
|
|
1459 |
/* Select the phy and isolate the rest */
|
|
1460 |
for (addr = 0; addr < 32; addr++) {
|
|
1461 |
if (addr != nic->mii.phy_id) {
|
|
1462 |
mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
|
|
1463 |
} else if (nic->phy != phy_82552_v) {
|
|
1464 |
bmcr = mdio_read(netdev, addr, MII_BMCR);
|
|
1465 |
mdio_write(netdev, addr, MII_BMCR,
|
|
1466 |
bmcr & ~BMCR_ISOLATE);
|
|
1467 |
}
|
|
1468 |
}
|
|
1469 |
/*
|
|
1470 |
* Workaround for 82552:
|
|
1471 |
* Clear the ISOLATE bit on selected phy_id last (mirrored on all
|
|
1472 |
* other phy_id's) using bmcr value from addr discovery loop above.
|
|
1473 |
*/
|
|
1474 |
if (nic->phy == phy_82552_v)
|
|
1475 |
mdio_write(netdev, nic->mii.phy_id, MII_BMCR,
|
|
1476 |
bmcr & ~BMCR_ISOLATE);
|
|
1477 |
|
|
1478 |
/* Handle National tx phys */
|
|
1479 |
#define NCS_PHY_MODEL_MASK 0xFFF0FFFF
|
|
1480 |
if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
|
|
1481 |
/* Disable congestion control */
|
|
1482 |
cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
|
|
1483 |
cong |= NSC_CONG_TXREADY;
|
|
1484 |
cong &= ~NSC_CONG_ENABLE;
|
|
1485 |
mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
|
|
1486 |
}
|
|
1487 |
|
|
1488 |
if (nic->phy == phy_82552_v) {
|
|
1489 |
u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE);
|
|
1490 |
|
|
1491 |
/* assign special tweaked mdio_ctrl() function */
|
|
1492 |
nic->mdio_ctrl = mdio_ctrl_phy_82552_v;
|
|
1493 |
|
|
1494 |
/* Workaround Si not advertising flow-control during autoneg */
|
|
1495 |
advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
|
|
1496 |
mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert);
|
|
1497 |
|
|
1498 |
/* Reset for the above changes to take effect */
|
|
1499 |
bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
|
|
1500 |
bmcr |= BMCR_RESET;
|
|
1501 |
mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr);
|
|
1502 |
} else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
|
|
1503 |
(mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
|
|
1504 |
!(nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))) {
|
|
1505 |
/* enable/disable MDI/MDI-X auto-switching. */
|
|
1506 |
mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
|
|
1507 |
nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
|
|
1508 |
}
|
|
1509 |
|
|
1510 |
return 0;
|
|
1511 |
}
|
|
1512 |
|
|
1513 |
static int e100_hw_init(struct nic *nic)
|
|
1514 |
{
|
|
1515 |
int err;
|
|
1516 |
|
|
1517 |
e100_hw_reset(nic);
|
|
1518 |
|
|
1519 |
netif_err(nic, hw, nic->netdev, "e100_hw_init\n");
|
|
1520 |
if (!in_interrupt() && (err = e100_self_test(nic)))
|
|
1521 |
return err;
|
|
1522 |
|
|
1523 |
if ((err = e100_phy_init(nic)))
|
|
1524 |
return err;
|
|
1525 |
if ((err = e100_exec_cmd(nic, cuc_load_base, 0)))
|
|
1526 |
return err;
|
|
1527 |
if ((err = e100_exec_cmd(nic, ruc_load_base, 0)))
|
|
1528 |
return err;
|
|
1529 |
if ((err = e100_load_ucode_wait(nic)))
|
|
1530 |
return err;
|
|
1531 |
if ((err = e100_exec_cb(nic, NULL, e100_configure)))
|
|
1532 |
return err;
|
|
1533 |
if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
|
|
1534 |
return err;
|
|
1535 |
if ((err = e100_exec_cmd(nic, cuc_dump_addr,
|
|
1536 |
nic->dma_addr + offsetof(struct mem, stats))))
|
|
1537 |
return err;
|
|
1538 |
if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
|
|
1539 |
return err;
|
|
1540 |
|
|
1541 |
e100_disable_irq(nic);
|
|
1542 |
|
|
1543 |
return 0;
|
|
1544 |
}
|
|
1545 |
|
|
1546 |
static void e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
|
|
1547 |
{
|
|
1548 |
struct net_device *netdev = nic->netdev;
|
|
1549 |
struct netdev_hw_addr *ha;
|
|
1550 |
u16 i, count = min(netdev_mc_count(netdev), E100_MAX_MULTICAST_ADDRS);
|
|
1551 |
|
|
1552 |
cb->command = cpu_to_le16(cb_multi);
|
|
1553 |
cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
|
|
1554 |
i = 0;
|
|
1555 |
netdev_for_each_mc_addr(ha, netdev) {
|
|
1556 |
if (i == count)
|
|
1557 |
break;
|
|
1558 |
memcpy(&cb->u.multi.addr[i++ * ETH_ALEN], &ha->addr,
|
|
1559 |
ETH_ALEN);
|
|
1560 |
}
|
|
1561 |
}
|
|
1562 |
|
|
1563 |
static void e100_set_multicast_list(struct net_device *netdev)
|
|
1564 |
{
|
|
1565 |
struct nic *nic = netdev_priv(netdev);
|
|
1566 |
|
|
1567 |
netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
|
|
1568 |
"mc_count=%d, flags=0x%04X\n",
|
|
1569 |
netdev_mc_count(netdev), netdev->flags);
|
|
1570 |
|
|
1571 |
if (netdev->flags & IFF_PROMISC)
|
|
1572 |
nic->flags |= promiscuous;
|
|
1573 |
else
|
|
1574 |
nic->flags &= ~promiscuous;
|
|
1575 |
|
|
1576 |
if (netdev->flags & IFF_ALLMULTI ||
|
|
1577 |
netdev_mc_count(netdev) > E100_MAX_MULTICAST_ADDRS)
|
|
1578 |
nic->flags |= multicast_all;
|
|
1579 |
else
|
|
1580 |
nic->flags &= ~multicast_all;
|
|
1581 |
|
|
1582 |
e100_exec_cb(nic, NULL, e100_configure);
|
|
1583 |
e100_exec_cb(nic, NULL, e100_multi);
|
|
1584 |
}
|
|
1585 |
|
|
1586 |
static void e100_update_stats(struct nic *nic)
|
|
1587 |
{
|
|
1588 |
struct net_device *dev = nic->netdev;
|
|
1589 |
struct net_device_stats *ns = &dev->stats;
|
|
1590 |
struct stats *s = &nic->mem->stats;
|
|
1591 |
__le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
|
|
1592 |
(nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames :
|
|
1593 |
&s->complete;
|
|
1594 |
|
|
1595 |
/* Device's stats reporting may take several microseconds to
|
|
1596 |
* complete, so we're always waiting for results of the
|
|
1597 |
* previous command. */
|
|
1598 |
|
|
1599 |
if (*complete == cpu_to_le32(cuc_dump_reset_complete)) {
|
|
1600 |
*complete = 0;
|
|
1601 |
nic->tx_frames = le32_to_cpu(s->tx_good_frames);
|
|
1602 |
nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
|
|
1603 |
ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
|
|
1604 |
ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
|
|
1605 |
ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
|
|
1606 |
ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
|
|
1607 |
ns->collisions += nic->tx_collisions;
|
|
1608 |
ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
|
|
1609 |
le32_to_cpu(s->tx_lost_crs);
|
|
1610 |
ns->rx_length_errors += le32_to_cpu(s->rx_short_frame_errors) +
|
|
1611 |
nic->rx_over_length_errors;
|
|
1612 |
ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
|
|
1613 |
ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
|
|
1614 |
ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
|
|
1615 |
ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
|
|
1616 |
ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
|
|
1617 |
ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
|
|
1618 |
le32_to_cpu(s->rx_alignment_errors) +
|
|
1619 |
le32_to_cpu(s->rx_short_frame_errors) +
|
|
1620 |
le32_to_cpu(s->rx_cdt_errors);
|
|
1621 |
nic->tx_deferred += le32_to_cpu(s->tx_deferred);
|
|
1622 |
nic->tx_single_collisions +=
|
|
1623 |
le32_to_cpu(s->tx_single_collisions);
|
|
1624 |
nic->tx_multiple_collisions +=
|
|
1625 |
le32_to_cpu(s->tx_multiple_collisions);
|
|
1626 |
if (nic->mac >= mac_82558_D101_A4) {
|
|
1627 |
nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
|
|
1628 |
nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
|
|
1629 |
nic->rx_fc_unsupported +=
|
|
1630 |
le32_to_cpu(s->fc_rcv_unsupported);
|
|
1631 |
if (nic->mac >= mac_82559_D101M) {
|
|
1632 |
nic->tx_tco_frames +=
|
|
1633 |
le16_to_cpu(s->xmt_tco_frames);
|
|
1634 |
nic->rx_tco_frames +=
|
|
1635 |
le16_to_cpu(s->rcv_tco_frames);
|
|
1636 |
}
|
|
1637 |
}
|
|
1638 |
}
|
|
1639 |
|
|
1640 |
|
|
1641 |
if (e100_exec_cmd(nic, cuc_dump_reset, 0))
|
|
1642 |
netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
|
|
1643 |
"exec cuc_dump_reset failed\n");
|
|
1644 |
}
|
|
1645 |
|
|
1646 |
static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
|
|
1647 |
{
|
|
1648 |
/* Adjust inter-frame-spacing (IFS) between two transmits if
|
|
1649 |
* we're getting collisions on a half-duplex connection. */
|
|
1650 |
|
|
1651 |
if (duplex == DUPLEX_HALF) {
|
|
1652 |
u32 prev = nic->adaptive_ifs;
|
|
1653 |
u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
|
|
1654 |
|
|
1655 |
if ((nic->tx_frames / 32 < nic->tx_collisions) &&
|
|
1656 |
(nic->tx_frames > min_frames)) {
|
|
1657 |
if (nic->adaptive_ifs < 60)
|
|
1658 |
nic->adaptive_ifs += 5;
|
|
1659 |
} else if (nic->tx_frames < min_frames) {
|
|
1660 |
if (nic->adaptive_ifs >= 5)
|
|
1661 |
nic->adaptive_ifs -= 5;
|
|
1662 |
}
|
|
1663 |
if (nic->adaptive_ifs != prev)
|
|
1664 |
e100_exec_cb(nic, NULL, e100_configure);
|
|
1665 |
}
|
|
1666 |
}
|
|
1667 |
|
|
1668 |
static void e100_watchdog(unsigned long data)
|
|
1669 |
{
|
|
1670 |
struct nic *nic = (struct nic *)data;
|
|
1671 |
struct ethtool_cmd cmd;
|
|
1672 |
|
|
1673 |
netif_printk(nic, timer, KERN_DEBUG, nic->netdev,
|
|
1674 |
"right now = %ld\n", jiffies);
|
|
1675 |
|
|
1676 |
/* mii library handles link maintenance tasks */
|
|
1677 |
|
|
1678 |
mii_ethtool_gset(&nic->mii, &cmd);
|
|
1679 |
|
|
1680 |
if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
|
|
1681 |
netdev_info(nic->netdev, "NIC Link is Up %u Mbps %s Duplex\n",
|
|
1682 |
cmd.speed == SPEED_100 ? 100 : 10,
|
|
1683 |
cmd.duplex == DUPLEX_FULL ? "Full" : "Half");
|
|
1684 |
} else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
|
|
1685 |
netdev_info(nic->netdev, "NIC Link is Down\n");
|
|
1686 |
}
|
|
1687 |
|
|
1688 |
mii_check_link(&nic->mii);
|
|
1689 |
|
|
1690 |
/* Software generated interrupt to recover from (rare) Rx
|
|
1691 |
* allocation failure.
|
|
1692 |
* Unfortunately have to use a spinlock to not re-enable interrupts
|
|
1693 |
* accidentally, due to hardware that shares a register between the
|
|
1694 |
* interrupt mask bit and the SW Interrupt generation bit */
|
|
1695 |
spin_lock_irq(&nic->cmd_lock);
|
|
1696 |
iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
|
|
1697 |
e100_write_flush(nic);
|
|
1698 |
spin_unlock_irq(&nic->cmd_lock);
|
|
1699 |
|
|
1700 |
e100_update_stats(nic);
|
|
1701 |
e100_adjust_adaptive_ifs(nic, cmd.speed, cmd.duplex);
|
|
1702 |
|
|
1703 |
if (nic->mac <= mac_82557_D100_C)
|
|
1704 |
/* Issue a multicast command to workaround a 557 lock up */
|
|
1705 |
e100_set_multicast_list(nic->netdev);
|
|
1706 |
|
|
1707 |
if (nic->flags & ich && cmd.speed==SPEED_10 && cmd.duplex==DUPLEX_HALF)
|
|
1708 |
/* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
|
|
1709 |
nic->flags |= ich_10h_workaround;
|
|
1710 |
else
|
|
1711 |
nic->flags &= ~ich_10h_workaround;
|
|
1712 |
|
|
1713 |
mod_timer(&nic->watchdog,
|
|
1714 |
round_jiffies(jiffies + E100_WATCHDOG_PERIOD));
|
|
1715 |
}
|
|
1716 |
|
|
1717 |
static void e100_xmit_prepare(struct nic *nic, struct cb *cb,
|
|
1718 |
struct sk_buff *skb)
|
|
1719 |
{
|
|
1720 |
cb->command = nic->tx_command;
|
|
1721 |
/* interrupt every 16 packets regardless of delay */
|
|
1722 |
if ((nic->cbs_avail & ~15) == nic->cbs_avail)
|
|
1723 |
cb->command |= cpu_to_le16(cb_i);
|
|
1724 |
cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
|
|
1725 |
cb->u.tcb.tcb_byte_count = 0;
|
|
1726 |
cb->u.tcb.threshold = nic->tx_threshold;
|
|
1727 |
cb->u.tcb.tbd_count = 1;
|
|
1728 |
cb->u.tcb.tbd.buf_addr = cpu_to_le32(pci_map_single(nic->pdev,
|
|
1729 |
skb->data, skb->len, PCI_DMA_TODEVICE));
|
|
1730 |
/* check for mapping failure? */
|
|
1731 |
cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
|
|
1732 |
}
|
|
1733 |
|
|
1734 |
static netdev_tx_t e100_xmit_frame(struct sk_buff *skb,
|
|
1735 |
struct net_device *netdev)
|
|
1736 |
{
|
|
1737 |
struct nic *nic = netdev_priv(netdev);
|
|
1738 |
int err;
|
|
1739 |
|
|
1740 |
if (nic->flags & ich_10h_workaround) {
|
|
1741 |
/* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
|
|
1742 |
Issue a NOP command followed by a 1us delay before
|
|
1743 |
issuing the Tx command. */
|
|
1744 |
if (e100_exec_cmd(nic, cuc_nop, 0))
|
|
1745 |
netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
|
|
1746 |
"exec cuc_nop failed\n");
|
|
1747 |
udelay(1);
|
|
1748 |
}
|
|
1749 |
|
|
1750 |
err = e100_exec_cb(nic, skb, e100_xmit_prepare);
|
|
1751 |
|
|
1752 |
switch (err) {
|
|
1753 |
case -ENOSPC:
|
|
1754 |
/* We queued the skb, but now we're out of space. */
|
|
1755 |
netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
|
|
1756 |
"No space for CB\n");
|
|
1757 |
netif_stop_queue(netdev);
|
|
1758 |
break;
|
|
1759 |
case -ENOMEM:
|
|
1760 |
/* This is a hard error - log it. */
|
|
1761 |
netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
|
|
1762 |
"Out of Tx resources, returning skb\n");
|
|
1763 |
netif_stop_queue(netdev);
|
|
1764 |
return NETDEV_TX_BUSY;
|
|
1765 |
}
|
|
1766 |
|
|
1767 |
return NETDEV_TX_OK;
|
|
1768 |
}
|
|
1769 |
|
|
1770 |
static int e100_tx_clean(struct nic *nic)
|
|
1771 |
{
|
|
1772 |
struct net_device *dev = nic->netdev;
|
|
1773 |
struct cb *cb;
|
|
1774 |
int tx_cleaned = 0;
|
|
1775 |
|
|
1776 |
spin_lock(&nic->cb_lock);
|
|
1777 |
|
|
1778 |
/* Clean CBs marked complete */
|
|
1779 |
for (cb = nic->cb_to_clean;
|
|
1780 |
cb->status & cpu_to_le16(cb_complete);
|
|
1781 |
cb = nic->cb_to_clean = cb->next) {
|
|
1782 |
rmb(); /* read skb after status */
|
|
1783 |
netif_printk(nic, tx_done, KERN_DEBUG, nic->netdev,
|
|
1784 |
"cb[%d]->status = 0x%04X\n",
|
|
1785 |
(int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)),
|
|
1786 |
cb->status);
|
|
1787 |
|
|
1788 |
if (likely(cb->skb != NULL)) {
|
|
1789 |
dev->stats.tx_packets++;
|
|
1790 |
dev->stats.tx_bytes += cb->skb->len;
|
|
1791 |
|
|
1792 |
pci_unmap_single(nic->pdev,
|
|
1793 |
le32_to_cpu(cb->u.tcb.tbd.buf_addr),
|
|
1794 |
le16_to_cpu(cb->u.tcb.tbd.size),
|
|
1795 |
PCI_DMA_TODEVICE);
|
|
1796 |
dev_kfree_skb_any(cb->skb);
|
|
1797 |
cb->skb = NULL;
|
|
1798 |
tx_cleaned = 1;
|
|
1799 |
}
|
|
1800 |
cb->status = 0;
|
|
1801 |
nic->cbs_avail++;
|
|
1802 |
}
|
|
1803 |
|
|
1804 |
spin_unlock(&nic->cb_lock);
|
|
1805 |
|
|
1806 |
/* Recover from running out of Tx resources in xmit_frame */
|
|
1807 |
if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
|
|
1808 |
netif_wake_queue(nic->netdev);
|
|
1809 |
|
|
1810 |
return tx_cleaned;
|
|
1811 |
}
|
|
1812 |
|
|
1813 |
static void e100_clean_cbs(struct nic *nic)
|
|
1814 |
{
|
|
1815 |
if (nic->cbs) {
|
|
1816 |
while (nic->cbs_avail != nic->params.cbs.count) {
|
|
1817 |
struct cb *cb = nic->cb_to_clean;
|
|
1818 |
if (cb->skb) {
|
|
1819 |
pci_unmap_single(nic->pdev,
|
|
1820 |
le32_to_cpu(cb->u.tcb.tbd.buf_addr),
|
|
1821 |
le16_to_cpu(cb->u.tcb.tbd.size),
|
|
1822 |
PCI_DMA_TODEVICE);
|
|
1823 |
dev_kfree_skb(cb->skb);
|
|
1824 |
}
|
|
1825 |
nic->cb_to_clean = nic->cb_to_clean->next;
|
|
1826 |
nic->cbs_avail++;
|
|
1827 |
}
|
|
1828 |
pci_pool_free(nic->cbs_pool, nic->cbs, nic->cbs_dma_addr);
|
|
1829 |
nic->cbs = NULL;
|
|
1830 |
nic->cbs_avail = 0;
|
|
1831 |
}
|
|
1832 |
nic->cuc_cmd = cuc_start;
|
|
1833 |
nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
|
|
1834 |
nic->cbs;
|
|
1835 |
}
|
|
1836 |
|
|
1837 |
static int e100_alloc_cbs(struct nic *nic)
|
|
1838 |
{
|
|
1839 |
struct cb *cb;
|
|
1840 |
unsigned int i, count = nic->params.cbs.count;
|
|
1841 |
|
|
1842 |
nic->cuc_cmd = cuc_start;
|
|
1843 |
nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
|
|
1844 |
nic->cbs_avail = 0;
|
|
1845 |
|
|
1846 |
nic->cbs = pci_pool_alloc(nic->cbs_pool, GFP_KERNEL,
|
|
1847 |
&nic->cbs_dma_addr);
|
|
1848 |
if (!nic->cbs)
|
|
1849 |
return -ENOMEM;
|
|
1850 |
memset(nic->cbs, 0, count * sizeof(struct cb));
|
|
1851 |
|
|
1852 |
for (cb = nic->cbs, i = 0; i < count; cb++, i++) {
|
|
1853 |
cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
|
|
1854 |
cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
|
|
1855 |
|
|
1856 |
cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
|
|
1857 |
cb->link = cpu_to_le32(nic->cbs_dma_addr +
|
|
1858 |
((i+1) % count) * sizeof(struct cb));
|
|
1859 |
}
|
|
1860 |
|
|
1861 |
nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
|
|
1862 |
nic->cbs_avail = count;
|
|
1863 |
|
|
1864 |
return 0;
|
|
1865 |
}
|
|
1866 |
|
|
1867 |
static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
|
|
1868 |
{
|
|
1869 |
if (!nic->rxs) return;
|
|
1870 |
if (RU_SUSPENDED != nic->ru_running) return;
|
|
1871 |
|
|
1872 |
/* handle init time starts */
|
|
1873 |
if (!rx) rx = nic->rxs;
|
|
1874 |
|
|
1875 |
/* (Re)start RU if suspended or idle and RFA is non-NULL */
|
|
1876 |
if (rx->skb) {
|
|
1877 |
e100_exec_cmd(nic, ruc_start, rx->dma_addr);
|
|
1878 |
nic->ru_running = RU_RUNNING;
|
|
1879 |
}
|
|
1880 |
}
|
|
1881 |
|
|
1882 |
#define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN)
|
|
1883 |
static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
|
|
1884 |
{
|
|
1885 |
if (!(rx->skb = netdev_alloc_skb_ip_align(nic->netdev, RFD_BUF_LEN)))
|
|
1886 |
return -ENOMEM;
|
|
1887 |
|
|
1888 |
/* Init, and map the RFD. */
|
|
1889 |
skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd));
|
|
1890 |
rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data,
|
|
1891 |
RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
|
|
1892 |
|
|
1893 |
if (pci_dma_mapping_error(nic->pdev, rx->dma_addr)) {
|
|
1894 |
dev_kfree_skb_any(rx->skb);
|
|
1895 |
rx->skb = NULL;
|
|
1896 |
rx->dma_addr = 0;
|
|
1897 |
return -ENOMEM;
|
|
1898 |
}
|
|
1899 |
|
|
1900 |
/* Link the RFD to end of RFA by linking previous RFD to
|
|
1901 |
* this one. We are safe to touch the previous RFD because
|
|
1902 |
* it is protected by the before last buffer's el bit being set */
|
|
1903 |
if (rx->prev->skb) {
|
|
1904 |
struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
|
|
1905 |
put_unaligned_le32(rx->dma_addr, &prev_rfd->link);
|
|
1906 |
pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr,
|
|
1907 |
sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
|
|
1908 |
}
|
|
1909 |
|
|
1910 |
return 0;
|
|
1911 |
}
|
|
1912 |
|
|
1913 |
static int e100_rx_indicate(struct nic *nic, struct rx *rx,
|
|
1914 |
unsigned int *work_done, unsigned int work_to_do)
|
|
1915 |
{
|
|
1916 |
struct net_device *dev = nic->netdev;
|
|
1917 |
struct sk_buff *skb = rx->skb;
|
|
1918 |
struct rfd *rfd = (struct rfd *)skb->data;
|
|
1919 |
u16 rfd_status, actual_size;
|
|
1920 |
|
|
1921 |
if (unlikely(work_done && *work_done >= work_to_do))
|
|
1922 |
return -EAGAIN;
|
|
1923 |
|
|
1924 |
/* Need to sync before taking a peek at cb_complete bit */
|
|
1925 |
pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr,
|
|
1926 |
sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
|
|
1927 |
rfd_status = le16_to_cpu(rfd->status);
|
|
1928 |
|
|
1929 |
netif_printk(nic, rx_status, KERN_DEBUG, nic->netdev,
|
|
1930 |
"status=0x%04X\n", rfd_status);
|
|
1931 |
rmb(); /* read size after status bit */
|
|
1932 |
|
|
1933 |
/* If data isn't ready, nothing to indicate */
|
|
1934 |
if (unlikely(!(rfd_status & cb_complete))) {
|
|
1935 |
/* If the next buffer has the el bit, but we think the receiver
|
|
1936 |
* is still running, check to see if it really stopped while
|
|
1937 |
* we had interrupts off.
|
|
1938 |
* This allows for a fast restart without re-enabling
|
|
1939 |
* interrupts */
|
|
1940 |
if ((le16_to_cpu(rfd->command) & cb_el) &&
|
|
1941 |
(RU_RUNNING == nic->ru_running))
|
|
1942 |
|
|
1943 |
if (ioread8(&nic->csr->scb.status) & rus_no_res)
|
|
1944 |
nic->ru_running = RU_SUSPENDED;
|
|
1945 |
pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
|
|
1946 |
sizeof(struct rfd),
|
|
1947 |
PCI_DMA_FROMDEVICE);
|
|
1948 |
return -ENODATA;
|
|
1949 |
}
|
|
1950 |
|
|
1951 |
/* Get actual data size */
|
|
1952 |
actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
|
|
1953 |
if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
|
|
1954 |
actual_size = RFD_BUF_LEN - sizeof(struct rfd);
|
|
1955 |
|
|
1956 |
/* Get data */
|
|
1957 |
pci_unmap_single(nic->pdev, rx->dma_addr,
|
|
1958 |
RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
|
|
1959 |
|
|
1960 |
/* If this buffer has the el bit, but we think the receiver
|
|
1961 |
* is still running, check to see if it really stopped while
|
|
1962 |
* we had interrupts off.
|
|
1963 |
* This allows for a fast restart without re-enabling interrupts.
|
|
1964 |
* This can happen when the RU sees the size change but also sees
|
|
1965 |
* the el bit set. */
|
|
1966 |
if ((le16_to_cpu(rfd->command) & cb_el) &&
|
|
1967 |
(RU_RUNNING == nic->ru_running)) {
|
|
1968 |
|
|
1969 |
if (ioread8(&nic->csr->scb.status) & rus_no_res)
|
|
1970 |
nic->ru_running = RU_SUSPENDED;
|
|
1971 |
}
|
|
1972 |
|
|
1973 |
/* Pull off the RFD and put the actual data (minus eth hdr) */
|
|
1974 |
skb_reserve(skb, sizeof(struct rfd));
|
|
1975 |
skb_put(skb, actual_size);
|
|
1976 |
skb->protocol = eth_type_trans(skb, nic->netdev);
|
|
1977 |
|
|
1978 |
if (unlikely(!(rfd_status & cb_ok))) {
|
|
1979 |
/* Don't indicate if hardware indicates errors */
|
|
1980 |
dev_kfree_skb_any(skb);
|
|
1981 |
} else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN) {
|
|
1982 |
/* Don't indicate oversized frames */
|
|
1983 |
nic->rx_over_length_errors++;
|
|
1984 |
dev_kfree_skb_any(skb);
|
|
1985 |
} else {
|
|
1986 |
dev->stats.rx_packets++;
|
|
1987 |
dev->stats.rx_bytes += actual_size;
|
|
1988 |
netif_receive_skb(skb);
|
|
1989 |
if (work_done)
|
|
1990 |
(*work_done)++;
|
|
1991 |
}
|
|
1992 |
|
|
1993 |
rx->skb = NULL;
|
|
1994 |
|
|
1995 |
return 0;
|
|
1996 |
}
|
|
1997 |
|
|
1998 |
static void e100_rx_clean(struct nic *nic, unsigned int *work_done,
|
|
1999 |
unsigned int work_to_do)
|
|
2000 |
{
|
|
2001 |
struct rx *rx;
|
|
2002 |
int restart_required = 0, err = 0;
|
|
2003 |
struct rx *old_before_last_rx, *new_before_last_rx;
|
|
2004 |
struct rfd *old_before_last_rfd, *new_before_last_rfd;
|
|
2005 |
|
|
2006 |
/* Indicate newly arrived packets */
|
|
2007 |
for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
|
|
2008 |
err = e100_rx_indicate(nic, rx, work_done, work_to_do);
|
|
2009 |
/* Hit quota or no more to clean */
|
|
2010 |
if (-EAGAIN == err || -ENODATA == err)
|
|
2011 |
break;
|
|
2012 |
}
|
|
2013 |
|
|
2014 |
|
|
2015 |
/* On EAGAIN, hit quota so have more work to do, restart once
|
|
2016 |
* cleanup is complete.
|
|
2017 |
* Else, are we already rnr? then pay attention!!! this ensures that
|
|
2018 |
* the state machine progression never allows a start with a
|
|
2019 |
* partially cleaned list, avoiding a race between hardware
|
|
2020 |
* and rx_to_clean when in NAPI mode */
|
|
2021 |
if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running)
|
|
2022 |
restart_required = 1;
|
|
2023 |
|
|
2024 |
old_before_last_rx = nic->rx_to_use->prev->prev;
|
|
2025 |
old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data;
|
|
2026 |
|
|
2027 |
/* Alloc new skbs to refill list */
|
|
2028 |
for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
|
|
2029 |
if (unlikely(e100_rx_alloc_skb(nic, rx)))
|
|
2030 |
break; /* Better luck next time (see watchdog) */
|
|
2031 |
}
|
|
2032 |
|
|
2033 |
new_before_last_rx = nic->rx_to_use->prev->prev;
|
|
2034 |
if (new_before_last_rx != old_before_last_rx) {
|
|
2035 |
/* Set the el-bit on the buffer that is before the last buffer.
|
|
2036 |
* This lets us update the next pointer on the last buffer
|
|
2037 |
* without worrying about hardware touching it.
|
|
2038 |
* We set the size to 0 to prevent hardware from touching this
|
|
2039 |
* buffer.
|
|
2040 |
* When the hardware hits the before last buffer with el-bit
|
|
2041 |
* and size of 0, it will RNR interrupt, the RUS will go into
|
|
2042 |
* the No Resources state. It will not complete nor write to
|
|
2043 |
* this buffer. */
|
|
2044 |
new_before_last_rfd =
|
|
2045 |
(struct rfd *)new_before_last_rx->skb->data;
|
|
2046 |
new_before_last_rfd->size = 0;
|
|
2047 |
new_before_last_rfd->command |= cpu_to_le16(cb_el);
|
|
2048 |
pci_dma_sync_single_for_device(nic->pdev,
|
|
2049 |
new_before_last_rx->dma_addr, sizeof(struct rfd),
|
|
2050 |
PCI_DMA_BIDIRECTIONAL);
|
|
2051 |
|
|
2052 |
/* Now that we have a new stopping point, we can clear the old
|
|
2053 |
* stopping point. We must sync twice to get the proper
|
|
2054 |
* ordering on the hardware side of things. */
|
|
2055 |
old_before_last_rfd->command &= ~cpu_to_le16(cb_el);
|
|
2056 |
pci_dma_sync_single_for_device(nic->pdev,
|
|
2057 |
old_before_last_rx->dma_addr, sizeof(struct rfd),
|
|
2058 |
PCI_DMA_BIDIRECTIONAL);
|
|
2059 |
old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN);
|
|
2060 |
pci_dma_sync_single_for_device(nic->pdev,
|
|
2061 |
old_before_last_rx->dma_addr, sizeof(struct rfd),
|
|
2062 |
PCI_DMA_BIDIRECTIONAL);
|
|
2063 |
}
|
|
2064 |
|
|
2065 |
if (restart_required) {
|
|
2066 |
// ack the rnr?
|
|
2067 |
iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack);
|
|
2068 |
e100_start_receiver(nic, nic->rx_to_clean);
|
|
2069 |
if (work_done)
|
|
2070 |
(*work_done)++;
|
|
2071 |
}
|
|
2072 |
}
|
|
2073 |
|
|
2074 |
static void e100_rx_clean_list(struct nic *nic)
|
|
2075 |
{
|
|
2076 |
struct rx *rx;
|
|
2077 |
unsigned int i, count = nic->params.rfds.count;
|
|
2078 |
|
|
2079 |
nic->ru_running = RU_UNINITIALIZED;
|
|
2080 |
|
|
2081 |
if (nic->rxs) {
|
|
2082 |
for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
|
|
2083 |
if (rx->skb) {
|
|
2084 |
pci_unmap_single(nic->pdev, rx->dma_addr,
|
|
2085 |
RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
|
|
2086 |
dev_kfree_skb(rx->skb);
|
|
2087 |
}
|
|
2088 |
}
|
|
2089 |
kfree(nic->rxs);
|
|
2090 |
nic->rxs = NULL;
|
|
2091 |
}
|
|
2092 |
|
|
2093 |
nic->rx_to_use = nic->rx_to_clean = NULL;
|
|
2094 |
}
|
|
2095 |
|
|
2096 |
static int e100_rx_alloc_list(struct nic *nic)
|
|
2097 |
{
|
|
2098 |
struct rx *rx;
|
|
2099 |
unsigned int i, count = nic->params.rfds.count;
|
|
2100 |
struct rfd *before_last;
|
|
2101 |
|
|
2102 |
nic->rx_to_use = nic->rx_to_clean = NULL;
|
|
2103 |
nic->ru_running = RU_UNINITIALIZED;
|
|
2104 |
|
|
2105 |
if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_ATOMIC)))
|
|
2106 |
return -ENOMEM;
|
|
2107 |
|
|
2108 |
for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
|
|
2109 |
rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
|
|
2110 |
rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
|
|
2111 |
if (e100_rx_alloc_skb(nic, rx)) {
|
|
2112 |
e100_rx_clean_list(nic);
|
|
2113 |
return -ENOMEM;
|
|
2114 |
}
|
|
2115 |
}
|
|
2116 |
/* Set the el-bit on the buffer that is before the last buffer.
|
|
2117 |
* This lets us update the next pointer on the last buffer without
|
|
2118 |
* worrying about hardware touching it.
|
|
2119 |
* We set the size to 0 to prevent hardware from touching this buffer.
|
|
2120 |
* When the hardware hits the before last buffer with el-bit and size
|
|
2121 |
* of 0, it will RNR interrupt, the RU will go into the No Resources
|
|
2122 |
* state. It will not complete nor write to this buffer. */
|
|
2123 |
rx = nic->rxs->prev->prev;
|
|
2124 |
before_last = (struct rfd *)rx->skb->data;
|
|
2125 |
before_last->command |= cpu_to_le16(cb_el);
|
|
2126 |
before_last->size = 0;
|
|
2127 |
pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
|
|
2128 |
sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
|
|
2129 |
|
|
2130 |
nic->rx_to_use = nic->rx_to_clean = nic->rxs;
|
|
2131 |
nic->ru_running = RU_SUSPENDED;
|
|
2132 |
|
|
2133 |
return 0;
|
|
2134 |
}
|
|
2135 |
|
|
2136 |
static irqreturn_t e100_intr(int irq, void *dev_id)
|
|
2137 |
{
|
|
2138 |
struct net_device *netdev = dev_id;
|
|
2139 |
struct nic *nic = netdev_priv(netdev);
|
|
2140 |
u8 stat_ack = ioread8(&nic->csr->scb.stat_ack);
|
|
2141 |
|
|
2142 |
netif_printk(nic, intr, KERN_DEBUG, nic->netdev,
|
|
2143 |
"stat_ack = 0x%02X\n", stat_ack);
|
|
2144 |
|
|
2145 |
if (stat_ack == stat_ack_not_ours || /* Not our interrupt */
|
|
2146 |
stat_ack == stat_ack_not_present) /* Hardware is ejected */
|
|
2147 |
return IRQ_NONE;
|
|
2148 |
|
|
2149 |
/* Ack interrupt(s) */
|
|
2150 |
iowrite8(stat_ack, &nic->csr->scb.stat_ack);
|
|
2151 |
|
|
2152 |
/* We hit Receive No Resource (RNR); restart RU after cleaning */
|
|
2153 |
if (stat_ack & stat_ack_rnr)
|
|
2154 |
nic->ru_running = RU_SUSPENDED;
|
|
2155 |
|
|
2156 |
if (likely(napi_schedule_prep(&nic->napi))) {
|
|
2157 |
e100_disable_irq(nic);
|
|
2158 |
__napi_schedule(&nic->napi);
|
|
2159 |
}
|
|
2160 |
|
|
2161 |
return IRQ_HANDLED;
|
|
2162 |
}
|
|
2163 |
|
|
2164 |
static int e100_poll(struct napi_struct *napi, int budget)
|
|
2165 |
{
|
|
2166 |
struct nic *nic = container_of(napi, struct nic, napi);
|
|
2167 |
unsigned int work_done = 0;
|
|
2168 |
|
|
2169 |
e100_rx_clean(nic, &work_done, budget);
|
|
2170 |
e100_tx_clean(nic);
|
|
2171 |
|
|
2172 |
/* If budget not fully consumed, exit the polling mode */
|
|
2173 |
if (work_done < budget) {
|
|
2174 |
napi_complete(napi);
|
|
2175 |
e100_enable_irq(nic);
|
|
2176 |
}
|
|
2177 |
|
|
2178 |
return work_done;
|
|
2179 |
}
|
|
2180 |
|
|
2181 |
#ifdef CONFIG_NET_POLL_CONTROLLER
|
|
2182 |
static void e100_netpoll(struct net_device *netdev)
|
|
2183 |
{
|
|
2184 |
struct nic *nic = netdev_priv(netdev);
|
|
2185 |
|
|
2186 |
e100_disable_irq(nic);
|
|
2187 |
e100_intr(nic->pdev->irq, netdev);
|
|
2188 |
e100_tx_clean(nic);
|
|
2189 |
e100_enable_irq(nic);
|
|
2190 |
}
|
|
2191 |
#endif
|
|
2192 |
|
|
2193 |
static int e100_set_mac_address(struct net_device *netdev, void *p)
|
|
2194 |
{
|
|
2195 |
struct nic *nic = netdev_priv(netdev);
|
|
2196 |
struct sockaddr *addr = p;
|
|
2197 |
|
|
2198 |
if (!is_valid_ether_addr(addr->sa_data))
|
|
2199 |
return -EADDRNOTAVAIL;
|
|
2200 |
|
|
2201 |
memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
|
|
2202 |
e100_exec_cb(nic, NULL, e100_setup_iaaddr);
|
|
2203 |
|
|
2204 |
return 0;
|
|
2205 |
}
|
|
2206 |
|
|
2207 |
static int e100_change_mtu(struct net_device *netdev, int new_mtu)
|
|
2208 |
{
|
|
2209 |
if (new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN)
|
|
2210 |
return -EINVAL;
|
|
2211 |
netdev->mtu = new_mtu;
|
|
2212 |
return 0;
|
|
2213 |
}
|
|
2214 |
|
|
2215 |
static int e100_asf(struct nic *nic)
|
|
2216 |
{
|
|
2217 |
/* ASF can be enabled from eeprom */
|
|
2218 |
return (nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
|
|
2219 |
(nic->eeprom[eeprom_config_asf] & eeprom_asf) &&
|
|
2220 |
!(nic->eeprom[eeprom_config_asf] & eeprom_gcl) &&
|
|
2221 |
((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE);
|
|
2222 |
}
|
|
2223 |
|
|
2224 |
static int e100_up(struct nic *nic)
|
|
2225 |
{
|
|
2226 |
int err;
|
|
2227 |
|
|
2228 |
if ((err = e100_rx_alloc_list(nic)))
|
|
2229 |
return err;
|
|
2230 |
if ((err = e100_alloc_cbs(nic)))
|
|
2231 |
goto err_rx_clean_list;
|
|
2232 |
if ((err = e100_hw_init(nic)))
|
|
2233 |
goto err_clean_cbs;
|
|
2234 |
e100_set_multicast_list(nic->netdev);
|
|
2235 |
e100_start_receiver(nic, NULL);
|
|
2236 |
mod_timer(&nic->watchdog, jiffies);
|
|
2237 |
if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED,
|
|
2238 |
nic->netdev->name, nic->netdev)))
|
|
2239 |
goto err_no_irq;
|
|
2240 |
netif_wake_queue(nic->netdev);
|
|
2241 |
napi_enable(&nic->napi);
|
|
2242 |
/* enable ints _after_ enabling poll, preventing a race between
|
|
2243 |
* disable ints+schedule */
|
|
2244 |
e100_enable_irq(nic);
|
|
2245 |
return 0;
|
|
2246 |
|
|
2247 |
err_no_irq:
|
|
2248 |
del_timer_sync(&nic->watchdog);
|
|
2249 |
err_clean_cbs:
|
|
2250 |
e100_clean_cbs(nic);
|
|
2251 |
err_rx_clean_list:
|
|
2252 |
e100_rx_clean_list(nic);
|
|
2253 |
return err;
|
|
2254 |
}
|
|
2255 |
|
|
2256 |
static void e100_down(struct nic *nic)
|
|
2257 |
{
|
|
2258 |
/* wait here for poll to complete */
|
|
2259 |
napi_disable(&nic->napi);
|
|
2260 |
netif_stop_queue(nic->netdev);
|
|
2261 |
e100_hw_reset(nic);
|
|
2262 |
free_irq(nic->pdev->irq, nic->netdev);
|
|
2263 |
del_timer_sync(&nic->watchdog);
|
|
2264 |
netif_carrier_off(nic->netdev);
|
|
2265 |
e100_clean_cbs(nic);
|
|
2266 |
e100_rx_clean_list(nic);
|
|
2267 |
}
|
|
2268 |
|
|
2269 |
static void e100_tx_timeout(struct net_device *netdev)
|
|
2270 |
{
|
|
2271 |
struct nic *nic = netdev_priv(netdev);
|
|
2272 |
|
|
2273 |
/* Reset outside of interrupt context, to avoid request_irq
|
|
2274 |
* in interrupt context */
|
|
2275 |
schedule_work(&nic->tx_timeout_task);
|
|
2276 |
}
|
|
2277 |
|
|
2278 |
static void e100_tx_timeout_task(struct work_struct *work)
|
|
2279 |
{
|
|
2280 |
struct nic *nic = container_of(work, struct nic, tx_timeout_task);
|
|
2281 |
struct net_device *netdev = nic->netdev;
|
|
2282 |
|
|
2283 |
netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
|
|
2284 |
"scb.status=0x%02X\n", ioread8(&nic->csr->scb.status));
|
|
2285 |
|
|
2286 |
rtnl_lock();
|
|
2287 |
if (netif_running(netdev)) {
|
|
2288 |
e100_down(netdev_priv(netdev));
|
|
2289 |
e100_up(netdev_priv(netdev));
|
|
2290 |
}
|
|
2291 |
rtnl_unlock();
|
|
2292 |
}
|
|
2293 |
|
|
2294 |
static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
|
|
2295 |
{
|
|
2296 |
int err;
|
|
2297 |
struct sk_buff *skb;
|
|
2298 |
|
|
2299 |
/* Use driver resources to perform internal MAC or PHY
|
|
2300 |
* loopback test. A single packet is prepared and transmitted
|
|
2301 |
* in loopback mode, and the test passes if the received
|
|
2302 |
* packet compares byte-for-byte to the transmitted packet. */
|
|
2303 |
|
|
2304 |
if ((err = e100_rx_alloc_list(nic)))
|
|
2305 |
return err;
|
|
2306 |
if ((err = e100_alloc_cbs(nic)))
|
|
2307 |
goto err_clean_rx;
|
|
2308 |
|
|
2309 |
/* ICH PHY loopback is broken so do MAC loopback instead */
|
|
2310 |
if (nic->flags & ich && loopback_mode == lb_phy)
|
|
2311 |
loopback_mode = lb_mac;
|
|
2312 |
|
|
2313 |
nic->loopback = loopback_mode;
|
|
2314 |
if ((err = e100_hw_init(nic)))
|
|
2315 |
goto err_loopback_none;
|
|
2316 |
|
|
2317 |
if (loopback_mode == lb_phy)
|
|
2318 |
mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
|
|
2319 |
BMCR_LOOPBACK);
|
|
2320 |
|
|
2321 |
e100_start_receiver(nic, NULL);
|
|
2322 |
|
|
2323 |
if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) {
|
|
2324 |
err = -ENOMEM;
|
|
2325 |
goto err_loopback_none;
|
|
2326 |
}
|
|
2327 |
skb_put(skb, ETH_DATA_LEN);
|
|
2328 |
memset(skb->data, 0xFF, ETH_DATA_LEN);
|
|
2329 |
e100_xmit_frame(skb, nic->netdev);
|
|
2330 |
|
|
2331 |
msleep(10);
|
|
2332 |
|
|
2333 |
pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr,
|
|
2334 |
RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
|
|
2335 |
|
|
2336 |
if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
|
|
2337 |
skb->data, ETH_DATA_LEN))
|
|
2338 |
err = -EAGAIN;
|
|
2339 |
|
|
2340 |
err_loopback_none:
|
|
2341 |
mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
|
|
2342 |
nic->loopback = lb_none;
|
|
2343 |
e100_clean_cbs(nic);
|
|
2344 |
e100_hw_reset(nic);
|
|
2345 |
err_clean_rx:
|
|
2346 |
e100_rx_clean_list(nic);
|
|
2347 |
return err;
|
|
2348 |
}
|
|
2349 |
|
|
2350 |
#define MII_LED_CONTROL 0x1B
|
|
2351 |
#define E100_82552_LED_OVERRIDE 0x19
|
|
2352 |
#define E100_82552_LED_ON 0x000F /* LEDTX and LED_RX both on */
|
|
2353 |
#define E100_82552_LED_OFF 0x000A /* LEDTX and LED_RX both off */
|
|
2354 |
static void e100_blink_led(unsigned long data)
|
|
2355 |
{
|
|
2356 |
struct nic *nic = (struct nic *)data;
|
|
2357 |
enum led_state {
|
|
2358 |
led_on = 0x01,
|
|
2359 |
led_off = 0x04,
|
|
2360 |
led_on_559 = 0x05,
|
|
2361 |
led_on_557 = 0x07,
|
|
2362 |
};
|
|
2363 |
u16 led_reg = MII_LED_CONTROL;
|
|
2364 |
|
|
2365 |
if (nic->phy == phy_82552_v) {
|
|
2366 |
led_reg = E100_82552_LED_OVERRIDE;
|
|
2367 |
|
|
2368 |
nic->leds = (nic->leds == E100_82552_LED_ON) ?
|
|
2369 |
E100_82552_LED_OFF : E100_82552_LED_ON;
|
|
2370 |
} else {
|
|
2371 |
nic->leds = (nic->leds & led_on) ? led_off :
|
|
2372 |
(nic->mac < mac_82559_D101M) ? led_on_557 :
|
|
2373 |
led_on_559;
|
|
2374 |
}
|
|
2375 |
mdio_write(nic->netdev, nic->mii.phy_id, led_reg, nic->leds);
|
|
2376 |
mod_timer(&nic->blink_timer, jiffies + HZ / 4);
|
|
2377 |
}
|
|
2378 |
|
|
2379 |
static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
|
|
2380 |
{
|
|
2381 |
struct nic *nic = netdev_priv(netdev);
|
|
2382 |
return mii_ethtool_gset(&nic->mii, cmd);
|
|
2383 |
}
|
|
2384 |
|
|
2385 |
static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
|
|
2386 |
{
|
|
2387 |
struct nic *nic = netdev_priv(netdev);
|
|
2388 |
int err;
|
|
2389 |
|
|
2390 |
mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
|
|
2391 |
err = mii_ethtool_sset(&nic->mii, cmd);
|
|
2392 |
e100_exec_cb(nic, NULL, e100_configure);
|
|
2393 |
|
|
2394 |
return err;
|
|
2395 |
}
|
|
2396 |
|
|
2397 |
static void e100_get_drvinfo(struct net_device *netdev,
|
|
2398 |
struct ethtool_drvinfo *info)
|
|
2399 |
{
|
|
2400 |
struct nic *nic = netdev_priv(netdev);
|
|
2401 |
strcpy(info->driver, DRV_NAME);
|
|
2402 |
strcpy(info->version, DRV_VERSION);
|
|
2403 |
strcpy(info->fw_version, "N/A");
|
|
2404 |
strcpy(info->bus_info, pci_name(nic->pdev));
|
|
2405 |
}
|
|
2406 |
|
|
2407 |
#define E100_PHY_REGS 0x1C
|
|
2408 |
static int e100_get_regs_len(struct net_device *netdev)
|
|
2409 |
{
|
|
2410 |
struct nic *nic = netdev_priv(netdev);
|
|
2411 |
return 1 + E100_PHY_REGS + sizeof(nic->mem->dump_buf);
|
|
2412 |
}
|
|
2413 |
|
|
2414 |
static void e100_get_regs(struct net_device *netdev,
|
|
2415 |
struct ethtool_regs *regs, void *p)
|
|
2416 |
{
|
|
2417 |
struct nic *nic = netdev_priv(netdev);
|
|
2418 |
u32 *buff = p;
|
|
2419 |
int i;
|
|
2420 |
|
|
2421 |
regs->version = (1 << 24) | nic->pdev->revision;
|
|
2422 |
buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 |
|
|
2423 |
ioread8(&nic->csr->scb.cmd_lo) << 16 |
|
|
2424 |
ioread16(&nic->csr->scb.status);
|
|
2425 |
for (i = E100_PHY_REGS; i >= 0; i--)
|
|
2426 |
buff[1 + E100_PHY_REGS - i] =
|
|
2427 |
mdio_read(netdev, nic->mii.phy_id, i);
|
|
2428 |
memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
|
|
2429 |
e100_exec_cb(nic, NULL, e100_dump);
|
|
2430 |
msleep(10);
|
|
2431 |
memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf,
|
|
2432 |
sizeof(nic->mem->dump_buf));
|
|
2433 |
}
|
|
2434 |
|
|
2435 |
static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
|
|
2436 |
{
|
|
2437 |
struct nic *nic = netdev_priv(netdev);
|
|
2438 |
wol->supported = (nic->mac >= mac_82558_D101_A4) ? WAKE_MAGIC : 0;
|
|
2439 |
wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
|
|
2440 |
}
|
|
2441 |
|
|
2442 |
static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
|
|
2443 |
{
|
|
2444 |
struct nic *nic = netdev_priv(netdev);
|
|
2445 |
|
|
2446 |
if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) ||
|
|
2447 |
!device_can_wakeup(&nic->pdev->dev))
|
|
2448 |
return -EOPNOTSUPP;
|
|
2449 |
|
|
2450 |
if (wol->wolopts)
|
|
2451 |
nic->flags |= wol_magic;
|
|
2452 |
else
|
|
2453 |
nic->flags &= ~wol_magic;
|
|
2454 |
|
|
2455 |
device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts);
|
|
2456 |
|
|
2457 |
e100_exec_cb(nic, NULL, e100_configure);
|
|
2458 |
|
|
2459 |
return 0;
|
|
2460 |
}
|
|
2461 |
|
|
2462 |
static u32 e100_get_msglevel(struct net_device *netdev)
|
|
2463 |
{
|
|
2464 |
struct nic *nic = netdev_priv(netdev);
|
|
2465 |
return nic->msg_enable;
|
|
2466 |
}
|
|
2467 |
|
|
2468 |
static void e100_set_msglevel(struct net_device *netdev, u32 value)
|
|
2469 |
{
|
|
2470 |
struct nic *nic = netdev_priv(netdev);
|
|
2471 |
nic->msg_enable = value;
|
|
2472 |
}
|
|
2473 |
|
|
2474 |
static int e100_nway_reset(struct net_device *netdev)
|
|
2475 |
{
|
|
2476 |
struct nic *nic = netdev_priv(netdev);
|
|
2477 |
return mii_nway_restart(&nic->mii);
|
|
2478 |
}
|
|
2479 |
|
|
2480 |
static u32 e100_get_link(struct net_device *netdev)
|
|
2481 |
{
|
|
2482 |
struct nic *nic = netdev_priv(netdev);
|
|
2483 |
return mii_link_ok(&nic->mii);
|
|
2484 |
}
|
|
2485 |
|
|
2486 |
static int e100_get_eeprom_len(struct net_device *netdev)
|
|
2487 |
{
|
|
2488 |
struct nic *nic = netdev_priv(netdev);
|
|
2489 |
return nic->eeprom_wc << 1;
|
|
2490 |
}
|
|
2491 |
|
|
2492 |
#define E100_EEPROM_MAGIC 0x1234
|
|
2493 |
static int e100_get_eeprom(struct net_device *netdev,
|
|
2494 |
struct ethtool_eeprom *eeprom, u8 *bytes)
|
|
2495 |
{
|
|
2496 |
struct nic *nic = netdev_priv(netdev);
|
|
2497 |
|
|
2498 |
eeprom->magic = E100_EEPROM_MAGIC;
|
|
2499 |
memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
|
|
2500 |
|
|
2501 |
return 0;
|
|
2502 |
}
|
|
2503 |
|
|
2504 |
static int e100_set_eeprom(struct net_device *netdev,
|
|
2505 |
struct ethtool_eeprom *eeprom, u8 *bytes)
|
|
2506 |
{
|
|
2507 |
struct nic *nic = netdev_priv(netdev);
|
|
2508 |
|
|
2509 |
if (eeprom->magic != E100_EEPROM_MAGIC)
|
|
2510 |
return -EINVAL;
|
|
2511 |
|
|
2512 |
memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
|
|
2513 |
|
|
2514 |
return e100_eeprom_save(nic, eeprom->offset >> 1,
|
|
2515 |
(eeprom->len >> 1) + 1);
|
|
2516 |
}
|
|
2517 |
|
|
2518 |
static void e100_get_ringparam(struct net_device *netdev,
|
|
2519 |
struct ethtool_ringparam *ring)
|
|
2520 |
{
|
|
2521 |
struct nic *nic = netdev_priv(netdev);
|
|
2522 |
struct param_range *rfds = &nic->params.rfds;
|
|
2523 |
struct param_range *cbs = &nic->params.cbs;
|
|
2524 |
|
|
2525 |
ring->rx_max_pending = rfds->max;
|
|
2526 |
ring->tx_max_pending = cbs->max;
|
|
2527 |
ring->rx_mini_max_pending = 0;
|
|
2528 |
ring->rx_jumbo_max_pending = 0;
|
|
2529 |
ring->rx_pending = rfds->count;
|
|
2530 |
ring->tx_pending = cbs->count;
|
|
2531 |
ring->rx_mini_pending = 0;
|
|
2532 |
ring->rx_jumbo_pending = 0;
|
|
2533 |
}
|
|
2534 |
|
|
2535 |
static int e100_set_ringparam(struct net_device *netdev,
|
|
2536 |
struct ethtool_ringparam *ring)
|
|
2537 |
{
|
|
2538 |
struct nic *nic = netdev_priv(netdev);
|
|
2539 |
struct param_range *rfds = &nic->params.rfds;
|
|
2540 |
struct param_range *cbs = &nic->params.cbs;
|
|
2541 |
|
|
2542 |
if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
|
|
2543 |
return -EINVAL;
|
|
2544 |
|
|
2545 |
if (netif_running(netdev))
|
|
2546 |
e100_down(nic);
|
|
2547 |
rfds->count = max(ring->rx_pending, rfds->min);
|
|
2548 |
rfds->count = min(rfds->count, rfds->max);
|
|
2549 |
cbs->count = max(ring->tx_pending, cbs->min);
|
|
2550 |
cbs->count = min(cbs->count, cbs->max);
|
|
2551 |
netif_info(nic, drv, nic->netdev, "Ring Param settings: rx: %d, tx %d\n",
|
|
2552 |
rfds->count, cbs->count);
|
|
2553 |
if (netif_running(netdev))
|
|
2554 |
e100_up(nic);
|
|
2555 |
|
|
2556 |
return 0;
|
|
2557 |
}
|
|
2558 |
|
|
2559 |
static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
|
|
2560 |
"Link test (on/offline)",
|
|
2561 |
"Eeprom test (on/offline)",
|
|
2562 |
"Self test (offline)",
|
|
2563 |
"Mac loopback (offline)",
|
|
2564 |
"Phy loopback (offline)",
|
|
2565 |
};
|
|
2566 |
#define E100_TEST_LEN ARRAY_SIZE(e100_gstrings_test)
|
|
2567 |
|
|
2568 |
static void e100_diag_test(struct net_device *netdev,
|
|
2569 |
struct ethtool_test *test, u64 *data)
|
|
2570 |
{
|
|
2571 |
struct ethtool_cmd cmd;
|
|
2572 |
struct nic *nic = netdev_priv(netdev);
|
|
2573 |
int i, err;
|
|
2574 |
|
|
2575 |
memset(data, 0, E100_TEST_LEN * sizeof(u64));
|
|
2576 |
data[0] = !mii_link_ok(&nic->mii);
|
|
2577 |
data[1] = e100_eeprom_load(nic);
|
|
2578 |
if (test->flags & ETH_TEST_FL_OFFLINE) {
|
|
2579 |
|
|
2580 |
/* save speed, duplex & autoneg settings */
|
|
2581 |
err = mii_ethtool_gset(&nic->mii, &cmd);
|
|
2582 |
|
|
2583 |
if (netif_running(netdev))
|
|
2584 |
e100_down(nic);
|
|
2585 |
data[2] = e100_self_test(nic);
|
|
2586 |
data[3] = e100_loopback_test(nic, lb_mac);
|
|
2587 |
data[4] = e100_loopback_test(nic, lb_phy);
|
|
2588 |
|
|
2589 |
/* restore speed, duplex & autoneg settings */
|
|
2590 |
err = mii_ethtool_sset(&nic->mii, &cmd);
|
|
2591 |
|
|
2592 |
if (netif_running(netdev))
|
|
2593 |
e100_up(nic);
|
|
2594 |
}
|
|
2595 |
for (i = 0; i < E100_TEST_LEN; i++)
|
|
2596 |
test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
|
|
2597 |
|
|
2598 |
msleep_interruptible(4 * 1000);
|
|
2599 |
}
|
|
2600 |
|
|
2601 |
static int e100_phys_id(struct net_device *netdev, u32 data)
|
|
2602 |
{
|
|
2603 |
struct nic *nic = netdev_priv(netdev);
|
|
2604 |
u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE :
|
|
2605 |
MII_LED_CONTROL;
|
|
2606 |
|
|
2607 |
if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
|
|
2608 |
data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
|
|
2609 |
mod_timer(&nic->blink_timer, jiffies);
|
|
2610 |
msleep_interruptible(data * 1000);
|
|
2611 |
del_timer_sync(&nic->blink_timer);
|
|
2612 |
mdio_write(netdev, nic->mii.phy_id, led_reg, 0);
|
|
2613 |
|
|
2614 |
return 0;
|
|
2615 |
}
|
|
2616 |
|
|
2617 |
static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
|
|
2618 |
"rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
|
|
2619 |
"tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
|
|
2620 |
"rx_length_errors", "rx_over_errors", "rx_crc_errors",
|
|
2621 |
"rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
|
|
2622 |
"tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
|
|
2623 |
"tx_heartbeat_errors", "tx_window_errors",
|
|
2624 |
/* device-specific stats */
|
|
2625 |
"tx_deferred", "tx_single_collisions", "tx_multi_collisions",
|
|
2626 |
"tx_flow_control_pause", "rx_flow_control_pause",
|
|
2627 |
"rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
|
|
2628 |
};
|
|
2629 |
#define E100_NET_STATS_LEN 21
|
|
2630 |
#define E100_STATS_LEN ARRAY_SIZE(e100_gstrings_stats)
|
|
2631 |
|
|
2632 |
static int e100_get_sset_count(struct net_device *netdev, int sset)
|
|
2633 |
{
|
|
2634 |
switch (sset) {
|
|
2635 |
case ETH_SS_TEST:
|
|
2636 |
return E100_TEST_LEN;
|
|
2637 |
case ETH_SS_STATS:
|
|
2638 |
return E100_STATS_LEN;
|
|
2639 |
default:
|
|
2640 |
return -EOPNOTSUPP;
|
|
2641 |
}
|
|
2642 |
}
|
|
2643 |
|
|
2644 |
static void e100_get_ethtool_stats(struct net_device *netdev,
|
|
2645 |
struct ethtool_stats *stats, u64 *data)
|
|
2646 |
{
|
|
2647 |
struct nic *nic = netdev_priv(netdev);
|
|
2648 |
int i;
|
|
2649 |
|
|
2650 |
for (i = 0; i < E100_NET_STATS_LEN; i++)
|
|
2651 |
data[i] = ((unsigned long *)&netdev->stats)[i];
|
|
2652 |
|
|
2653 |
data[i++] = nic->tx_deferred;
|
|
2654 |
data[i++] = nic->tx_single_collisions;
|
|
2655 |
data[i++] = nic->tx_multiple_collisions;
|
|
2656 |
data[i++] = nic->tx_fc_pause;
|
|
2657 |
data[i++] = nic->rx_fc_pause;
|
|
2658 |
data[i++] = nic->rx_fc_unsupported;
|
|
2659 |
data[i++] = nic->tx_tco_frames;
|
|
2660 |
data[i++] = nic->rx_tco_frames;
|
|
2661 |
}
|
|
2662 |
|
|
2663 |
static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
|
|
2664 |
{
|
|
2665 |
switch (stringset) {
|
|
2666 |
case ETH_SS_TEST:
|
|
2667 |
memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test));
|
|
2668 |
break;
|
|
2669 |
case ETH_SS_STATS:
|
|
2670 |
memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats));
|
|
2671 |
break;
|
|
2672 |
}
|
|
2673 |
}
|
|
2674 |
|
|
2675 |
static const struct ethtool_ops e100_ethtool_ops = {
|
|
2676 |
.get_settings = e100_get_settings,
|
|
2677 |
.set_settings = e100_set_settings,
|
|
2678 |
.get_drvinfo = e100_get_drvinfo,
|
|
2679 |
.get_regs_len = e100_get_regs_len,
|
|
2680 |
.get_regs = e100_get_regs,
|
|
2681 |
.get_wol = e100_get_wol,
|
|
2682 |
.set_wol = e100_set_wol,
|
|
2683 |
.get_msglevel = e100_get_msglevel,
|
|
2684 |
.set_msglevel = e100_set_msglevel,
|
|
2685 |
.nway_reset = e100_nway_reset,
|
|
2686 |
.get_link = e100_get_link,
|
|
2687 |
.get_eeprom_len = e100_get_eeprom_len,
|
|
2688 |
.get_eeprom = e100_get_eeprom,
|
|
2689 |
.set_eeprom = e100_set_eeprom,
|
|
2690 |
.get_ringparam = e100_get_ringparam,
|
|
2691 |
.set_ringparam = e100_set_ringparam,
|
|
2692 |
.self_test = e100_diag_test,
|
|
2693 |
.get_strings = e100_get_strings,
|
|
2694 |
.phys_id = e100_phys_id,
|
|
2695 |
.get_ethtool_stats = e100_get_ethtool_stats,
|
|
2696 |
.get_sset_count = e100_get_sset_count,
|
|
2697 |
};
|
|
2698 |
|
|
2699 |
static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
|
|
2700 |
{
|
|
2701 |
struct nic *nic = netdev_priv(netdev);
|
|
2702 |
|
|
2703 |
return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
|
|
2704 |
}
|
|
2705 |
|
|
2706 |
static int e100_alloc(struct nic *nic)
|
|
2707 |
{
|
|
2708 |
nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem),
|
|
2709 |
&nic->dma_addr);
|
|
2710 |
return nic->mem ? 0 : -ENOMEM;
|
|
2711 |
}
|
|
2712 |
|
|
2713 |
static void e100_free(struct nic *nic)
|
|
2714 |
{
|
|
2715 |
if (nic->mem) {
|
|
2716 |
pci_free_consistent(nic->pdev, sizeof(struct mem),
|
|
2717 |
nic->mem, nic->dma_addr);
|
|
2718 |
nic->mem = NULL;
|
|
2719 |
}
|
|
2720 |
}
|
|
2721 |
|
|
2722 |
static int e100_open(struct net_device *netdev)
|
|
2723 |
{
|
|
2724 |
struct nic *nic = netdev_priv(netdev);
|
|
2725 |
int err = 0;
|
|
2726 |
|
|
2727 |
netif_carrier_off(netdev);
|
|
2728 |
if ((err = e100_up(nic)))
|
|
2729 |
netif_err(nic, ifup, nic->netdev, "Cannot open interface, aborting\n");
|
|
2730 |
return err;
|
|
2731 |
}
|
|
2732 |
|
|
2733 |
static int e100_close(struct net_device *netdev)
|
|
2734 |
{
|
|
2735 |
e100_down(netdev_priv(netdev));
|
|
2736 |
return 0;
|
|
2737 |
}
|
|
2738 |
|
|
2739 |
static const struct net_device_ops e100_netdev_ops = {
|
|
2740 |
.ndo_open = e100_open,
|
|
2741 |
.ndo_stop = e100_close,
|
|
2742 |
.ndo_start_xmit = e100_xmit_frame,
|
|
2743 |
.ndo_validate_addr = eth_validate_addr,
|
|
2744 |
.ndo_set_multicast_list = e100_set_multicast_list,
|
|
2745 |
.ndo_set_mac_address = e100_set_mac_address,
|
|
2746 |
.ndo_change_mtu = e100_change_mtu,
|
|
2747 |
.ndo_do_ioctl = e100_do_ioctl,
|
|
2748 |
.ndo_tx_timeout = e100_tx_timeout,
|
|
2749 |
#ifdef CONFIG_NET_POLL_CONTROLLER
|
|
2750 |
.ndo_poll_controller = e100_netpoll,
|
|
2751 |
#endif
|
|
2752 |
};
|
|
2753 |
|
|
2754 |
static int __devinit e100_probe(struct pci_dev *pdev,
|
|
2755 |
const struct pci_device_id *ent)
|
|
2756 |
{
|
|
2757 |
struct net_device *netdev;
|
|
2758 |
struct nic *nic;
|
|
2759 |
int err;
|
|
2760 |
|
|
2761 |
if (!(netdev = alloc_etherdev(sizeof(struct nic)))) {
|
|
2762 |
if (((1 << debug) - 1) & NETIF_MSG_PROBE)
|
|
2763 |
pr_err("Etherdev alloc failed, aborting\n");
|
|
2764 |
return -ENOMEM;
|
|
2765 |
}
|
|
2766 |
|
|
2767 |
netdev->netdev_ops = &e100_netdev_ops;
|
|
2768 |
SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops);
|
|
2769 |
netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
|
|
2770 |
strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
|
|
2771 |
|
|
2772 |
nic = netdev_priv(netdev);
|
|
2773 |
netif_napi_add(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT);
|
|
2774 |
nic->netdev = netdev;
|
|
2775 |
nic->pdev = pdev;
|
|
2776 |
nic->msg_enable = (1 << debug) - 1;
|
|
2777 |
nic->mdio_ctrl = mdio_ctrl_hw;
|
|
2778 |
pci_set_drvdata(pdev, netdev);
|
|
2779 |
|
|
2780 |
if ((err = pci_enable_device(pdev))) {
|
|
2781 |
netif_err(nic, probe, nic->netdev, "Cannot enable PCI device, aborting\n");
|
|
2782 |
goto err_out_free_dev;
|
|
2783 |
}
|
|
2784 |
|
|
2785 |
if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
|
|
2786 |
netif_err(nic, probe, nic->netdev, "Cannot find proper PCI device base address, aborting\n");
|
|
2787 |
err = -ENODEV;
|
|
2788 |
goto err_out_disable_pdev;
|
|
2789 |
}
|
|
2790 |
|
|
2791 |
if ((err = pci_request_regions(pdev, DRV_NAME))) {
|
|
2792 |
netif_err(nic, probe, nic->netdev, "Cannot obtain PCI resources, aborting\n");
|
|
2793 |
goto err_out_disable_pdev;
|
|
2794 |
}
|
|
2795 |
|
|
2796 |
if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
|
|
2797 |
netif_err(nic, probe, nic->netdev, "No usable DMA configuration, aborting\n");
|
|
2798 |
goto err_out_free_res;
|
|
2799 |
}
|
|
2800 |
|
|
2801 |
SET_NETDEV_DEV(netdev, &pdev->dev);
|
|
2802 |
|
|
2803 |
if (use_io)
|
|
2804 |
netif_info(nic, probe, nic->netdev, "using i/o access mode\n");
|
|
2805 |
|
|
2806 |
nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr));
|
|
2807 |
if (!nic->csr) {
|
|
2808 |
netif_err(nic, probe, nic->netdev, "Cannot map device registers, aborting\n");
|
|
2809 |
err = -ENOMEM;
|
|
2810 |
goto err_out_free_res;
|
|
2811 |
}
|
|
2812 |
|
|
2813 |
if (ent->driver_data)
|
|
2814 |
nic->flags |= ich;
|
|
2815 |
else
|
|
2816 |
nic->flags &= ~ich;
|
|
2817 |
|
|
2818 |
e100_get_defaults(nic);
|
|
2819 |
|
|
2820 |
/* locks must be initialized before calling hw_reset */
|
|
2821 |
spin_lock_init(&nic->cb_lock);
|
|
2822 |
spin_lock_init(&nic->cmd_lock);
|
|
2823 |
spin_lock_init(&nic->mdio_lock);
|
|
2824 |
|
|
2825 |
/* Reset the device before pci_set_master() in case device is in some
|
|
2826 |
* funky state and has an interrupt pending - hint: we don't have the
|
|
2827 |
* interrupt handler registered yet. */
|
|
2828 |
e100_hw_reset(nic);
|
|
2829 |
|
|
2830 |
pci_set_master(pdev);
|
|
2831 |
|
|
2832 |
init_timer(&nic->watchdog);
|
|
2833 |
nic->watchdog.function = e100_watchdog;
|
|
2834 |
nic->watchdog.data = (unsigned long)nic;
|
|
2835 |
init_timer(&nic->blink_timer);
|
|
2836 |
nic->blink_timer.function = e100_blink_led;
|
|
2837 |
nic->blink_timer.data = (unsigned long)nic;
|
|
2838 |
|
|
2839 |
INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task);
|
|
2840 |
|
|
2841 |
if ((err = e100_alloc(nic))) {
|
|
2842 |
netif_err(nic, probe, nic->netdev, "Cannot alloc driver memory, aborting\n");
|
|
2843 |
goto err_out_iounmap;
|
|
2844 |
}
|
|
2845 |
|
|
2846 |
if ((err = e100_eeprom_load(nic)))
|
|
2847 |
goto err_out_free;
|
|
2848 |
|
|
2849 |
e100_phy_init(nic);
|
|
2850 |
|
|
2851 |
memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN);
|
|
2852 |
memcpy(netdev->perm_addr, nic->eeprom, ETH_ALEN);
|
|
2853 |
if (!is_valid_ether_addr(netdev->perm_addr)) {
|
|
2854 |
if (!eeprom_bad_csum_allow) {
|
|
2855 |
netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, aborting\n");
|
|
2856 |
err = -EAGAIN;
|
|
2857 |
goto err_out_free;
|
|
2858 |
} else {
|
|
2859 |
netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, you MUST configure one.\n");
|
|
2860 |
}
|
|
2861 |
}
|
|
2862 |
|
|
2863 |
/* Wol magic packet can be enabled from eeprom */
|
|
2864 |
if ((nic->mac >= mac_82558_D101_A4) &&
|
|
2865 |
(nic->eeprom[eeprom_id] & eeprom_id_wol)) {
|
|
2866 |
nic->flags |= wol_magic;
|
|
2867 |
device_set_wakeup_enable(&pdev->dev, true);
|
|
2868 |
}
|
|
2869 |
|
|
2870 |
/* ack any pending wake events, disable PME */
|
|
2871 |
pci_pme_active(pdev, false);
|
|
2872 |
|
|
2873 |
strcpy(netdev->name, "eth%d");
|
|
2874 |
if ((err = register_netdev(netdev))) {
|
|
2875 |
netif_err(nic, probe, nic->netdev, "Cannot register net device, aborting\n");
|
|
2876 |
goto err_out_free;
|
|
2877 |
}
|
|
2878 |
nic->cbs_pool = pci_pool_create(netdev->name,
|
|
2879 |
nic->pdev,
|
|
2880 |
nic->params.cbs.max * sizeof(struct cb),
|
|
2881 |
sizeof(u32),
|
|
2882 |
0);
|
|
2883 |
netif_info(nic, probe, nic->netdev,
|
|
2884 |
"addr 0x%llx, irq %d, MAC addr %pM\n",
|
|
2885 |
(unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0),
|
|
2886 |
pdev->irq, netdev->dev_addr);
|
|
2887 |
|
|
2888 |
return 0;
|
|
2889 |
|
|
2890 |
err_out_free:
|
|
2891 |
e100_free(nic);
|
|
2892 |
err_out_iounmap:
|
|
2893 |
pci_iounmap(pdev, nic->csr);
|
|
2894 |
err_out_free_res:
|
|
2895 |
pci_release_regions(pdev);
|
|
2896 |
err_out_disable_pdev:
|
|
2897 |
pci_disable_device(pdev);
|
|
2898 |
err_out_free_dev:
|
|
2899 |
pci_set_drvdata(pdev, NULL);
|
|
2900 |
free_netdev(netdev);
|
|
2901 |
return err;
|
|
2902 |
}
|
|
2903 |
|
|
2904 |
static void __devexit e100_remove(struct pci_dev *pdev)
|
|
2905 |
{
|
|
2906 |
struct net_device *netdev = pci_get_drvdata(pdev);
|
|
2907 |
|
|
2908 |
if (netdev) {
|
|
2909 |
struct nic *nic = netdev_priv(netdev);
|
|
2910 |
unregister_netdev(netdev);
|
|
2911 |
e100_free(nic);
|
|
2912 |
pci_iounmap(pdev, nic->csr);
|
|
2913 |
pci_pool_destroy(nic->cbs_pool);
|
|
2914 |
free_netdev(netdev);
|
|
2915 |
pci_release_regions(pdev);
|
|
2916 |
pci_disable_device(pdev);
|
|
2917 |
pci_set_drvdata(pdev, NULL);
|
|
2918 |
}
|
|
2919 |
}
|
|
2920 |
|
|
2921 |
#define E100_82552_SMARTSPEED 0x14 /* SmartSpeed Ctrl register */
|
|
2922 |
#define E100_82552_REV_ANEG 0x0200 /* Reverse auto-negotiation */
|
|
2923 |
#define E100_82552_ANEG_NOW 0x0400 /* Auto-negotiate now */
|
|
2924 |
static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake)
|
|
2925 |
{
|
|
2926 |
struct net_device *netdev = pci_get_drvdata(pdev);
|
|
2927 |
struct nic *nic = netdev_priv(netdev);
|
|
2928 |
|
|
2929 |
if (netif_running(netdev))
|
|
2930 |
e100_down(nic);
|
|
2931 |
netif_device_detach(netdev);
|
|
2932 |
|
|
2933 |
pci_save_state(pdev);
|
|
2934 |
|
|
2935 |
if ((nic->flags & wol_magic) | e100_asf(nic)) {
|
|
2936 |
/* enable reverse auto-negotiation */
|
|
2937 |
if (nic->phy == phy_82552_v) {
|
|
2938 |
u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
|
|
2939 |
E100_82552_SMARTSPEED);
|
|
2940 |
|
|
2941 |
mdio_write(netdev, nic->mii.phy_id,
|
|
2942 |
E100_82552_SMARTSPEED, smartspeed |
|
|
2943 |
E100_82552_REV_ANEG | E100_82552_ANEG_NOW);
|
|
2944 |
}
|
|
2945 |
*enable_wake = true;
|
|
2946 |
} else {
|
|
2947 |
*enable_wake = false;
|
|
2948 |
}
|
|
2949 |
|
|
2950 |
pci_disable_device(pdev);
|
|
2951 |
}
|
|
2952 |
|
|
2953 |
static int __e100_power_off(struct pci_dev *pdev, bool wake)
|
|
2954 |
{
|
|
2955 |
if (wake)
|
|
2956 |
return pci_prepare_to_sleep(pdev);
|
|
2957 |
|
|
2958 |
pci_wake_from_d3(pdev, false);
|
|
2959 |
pci_set_power_state(pdev, PCI_D3hot);
|
|
2960 |
|
|
2961 |
return 0;
|
|
2962 |
}
|
|
2963 |
|
|
2964 |
#ifdef CONFIG_PM
|
|
2965 |
static int e100_suspend(struct pci_dev *pdev, pm_message_t state)
|
|
2966 |
{
|
|
2967 |
bool wake;
|
|
2968 |
__e100_shutdown(pdev, &wake);
|
|
2969 |
return __e100_power_off(pdev, wake);
|
|
2970 |
}
|
|
2971 |
|
|
2972 |
static int e100_resume(struct pci_dev *pdev)
|
|
2973 |
{
|
|
2974 |
struct net_device *netdev = pci_get_drvdata(pdev);
|
|
2975 |
struct nic *nic = netdev_priv(netdev);
|
|
2976 |
|
|
2977 |
pci_set_power_state(pdev, PCI_D0);
|
|
2978 |
pci_restore_state(pdev);
|
|
2979 |
/* ack any pending wake events, disable PME */
|
|
2980 |
pci_enable_wake(pdev, 0, 0);
|
|
2981 |
|
|
2982 |
/* disable reverse auto-negotiation */
|
|
2983 |
if (nic->phy == phy_82552_v) {
|
|
2984 |
u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
|
|
2985 |
E100_82552_SMARTSPEED);
|
|
2986 |
|
|
2987 |
mdio_write(netdev, nic->mii.phy_id,
|
|
2988 |
E100_82552_SMARTSPEED,
|
|
2989 |
smartspeed & ~(E100_82552_REV_ANEG));
|
|
2990 |
}
|
|
2991 |
|
|
2992 |
netif_device_attach(netdev);
|
|
2993 |
if (netif_running(netdev))
|
|
2994 |
e100_up(nic);
|
|
2995 |
|
|
2996 |
return 0;
|
|
2997 |
}
|
|
2998 |
#endif /* CONFIG_PM */
|
|
2999 |
|
|
3000 |
static void e100_shutdown(struct pci_dev *pdev)
|
|
3001 |
{
|
|
3002 |
bool wake;
|
|
3003 |
__e100_shutdown(pdev, &wake);
|
|
3004 |
if (system_state == SYSTEM_POWER_OFF)
|
|
3005 |
__e100_power_off(pdev, wake);
|
|
3006 |
}
|
|
3007 |
|
|
3008 |
/* ------------------ PCI Error Recovery infrastructure -------------- */
|
|
3009 |
/**
|
|
3010 |
* e100_io_error_detected - called when PCI error is detected.
|
|
3011 |
* @pdev: Pointer to PCI device
|
|
3012 |
* @state: The current pci connection state
|
|
3013 |
*/
|
|
3014 |
static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
|
|
3015 |
{
|
|
3016 |
struct net_device *netdev = pci_get_drvdata(pdev);
|
|
3017 |
struct nic *nic = netdev_priv(netdev);
|
|
3018 |
|
|
3019 |
netif_device_detach(netdev);
|
|
3020 |
|
|
3021 |
if (state == pci_channel_io_perm_failure)
|
|
3022 |
return PCI_ERS_RESULT_DISCONNECT;
|
|
3023 |
|
|
3024 |
if (netif_running(netdev))
|
|
3025 |
e100_down(nic);
|
|
3026 |
pci_disable_device(pdev);
|
|
3027 |
|
|
3028 |
/* Request a slot reset. */
|
|
3029 |
return PCI_ERS_RESULT_NEED_RESET;
|
|
3030 |
}
|
|
3031 |
|
|
3032 |
/**
|
|
3033 |
* e100_io_slot_reset - called after the pci bus has been reset.
|
|
3034 |
* @pdev: Pointer to PCI device
|
|
3035 |
*
|
|
3036 |
* Restart the card from scratch.
|
|
3037 |
*/
|
|
3038 |
static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev)
|
|
3039 |
{
|
|
3040 |
struct net_device *netdev = pci_get_drvdata(pdev);
|
|
3041 |
struct nic *nic = netdev_priv(netdev);
|
|
3042 |
|
|
3043 |
if (pci_enable_device(pdev)) {
|
|
3044 |
pr_err("Cannot re-enable PCI device after reset\n");
|
|
3045 |
return PCI_ERS_RESULT_DISCONNECT;
|
|
3046 |
}
|
|
3047 |
pci_set_master(pdev);
|
|
3048 |
|
|
3049 |
/* Only one device per card can do a reset */
|
|
3050 |
if (0 != PCI_FUNC(pdev->devfn))
|
|
3051 |
return PCI_ERS_RESULT_RECOVERED;
|
|
3052 |
e100_hw_reset(nic);
|
|
3053 |
e100_phy_init(nic);
|
|
3054 |
|
|
3055 |
return PCI_ERS_RESULT_RECOVERED;
|
|
3056 |
}
|
|
3057 |
|
|
3058 |
/**
|
|
3059 |
* e100_io_resume - resume normal operations
|
|
3060 |
* @pdev: Pointer to PCI device
|
|
3061 |
*
|
|
3062 |
* Resume normal operations after an error recovery
|
|
3063 |
* sequence has been completed.
|
|
3064 |
*/
|
|
3065 |
static void e100_io_resume(struct pci_dev *pdev)
|
|
3066 |
{
|
|
3067 |
struct net_device *netdev = pci_get_drvdata(pdev);
|
|
3068 |
struct nic *nic = netdev_priv(netdev);
|
|
3069 |
|
|
3070 |
/* ack any pending wake events, disable PME */
|
|
3071 |
pci_enable_wake(pdev, 0, 0);
|
|
3072 |
|
|
3073 |
netif_device_attach(netdev);
|
|
3074 |
if (netif_running(netdev)) {
|
|
3075 |
e100_open(netdev);
|
|
3076 |
mod_timer(&nic->watchdog, jiffies);
|
|
3077 |
}
|
|
3078 |
}
|
|
3079 |
|
|
3080 |
static struct pci_error_handlers e100_err_handler = {
|
|
3081 |
.error_detected = e100_io_error_detected,
|
|
3082 |
.slot_reset = e100_io_slot_reset,
|
|
3083 |
.resume = e100_io_resume,
|
|
3084 |
};
|
|
3085 |
|
|
3086 |
static struct pci_driver e100_driver = {
|
|
3087 |
.name = DRV_NAME,
|
|
3088 |
.id_table = e100_id_table,
|
|
3089 |
.probe = e100_probe,
|
|
3090 |
.remove = __devexit_p(e100_remove),
|
|
3091 |
#ifdef CONFIG_PM
|
|
3092 |
/* Power Management hooks */
|
|
3093 |
.suspend = e100_suspend,
|
|
3094 |
.resume = e100_resume,
|
|
3095 |
#endif
|
|
3096 |
.shutdown = e100_shutdown,
|
|
3097 |
.err_handler = &e100_err_handler,
|
|
3098 |
};
|
|
3099 |
|
|
3100 |
static int __init e100_init_module(void)
|
|
3101 |
{
|
|
3102 |
if (((1 << debug) - 1) & NETIF_MSG_DRV) {
|
|
3103 |
pr_info("%s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
|
|
3104 |
pr_info("%s\n", DRV_COPYRIGHT);
|
|
3105 |
}
|
|
3106 |
return pci_register_driver(&e100_driver);
|
|
3107 |
}
|
|
3108 |
|
|
3109 |
static void __exit e100_cleanup_module(void)
|
|
3110 |
{
|
|
3111 |
pci_unregister_driver(&e100_driver);
|
|
3112 |
}
|
|
3113 |
|
|
3114 |
module_init(e100_init_module);
|
|
3115 |
module_exit(e100_cleanup_module);
|