plcopen/structures.py
author lbessard
Tue, 19 Jun 2007 08:43:41 +0200
changeset 21 e619d7bea692
parent 19 0b499416ebd7
child 22 a765fae3b361
permissions -rw-r--r--
Add support for AND, OR, XOR for booleans
#!/usr/bin/env python
# -*- coding: utf-8 -*-

import string, os, sys

#This file is part of PLCOpenEditor, a library implementing an IEC 61131-3 editor
#based on the plcopen standard. 
#
#Copyright (C): Edouard TISSERANT and Laurent BESSARD
#
#See COPYING file for copyrights details.
#
#This library is free software; you can redistribute it and/or
#modify it under the terms of the GNU General Public
#License as published by the Free Software Foundation; either
#version 2.1 of the License, or (at your option) any later version.
#
#This library is distributed in the hope that it will be useful,
#but WITHOUT ANY WARRANTY; without even the implied warranty of
#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
#Lesser General Public License for more details.
#
#You should have received a copy of the GNU General Public
#License along with this library; if not, write to the Free Software
#Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA


LANGUAGES = ["IL","ST","FBD","LD","SFC"]


#-------------------------------------------------------------------------------
#                        Function Block Types definitions
#-------------------------------------------------------------------------------


"""
Ordored list of common Function Blocks defined in the IEC 61131-3
Each block have this attributes:
    - "name" : The block name
    - "type" : The block type. It can be "function", "functionBlock" or "program"
    - "extensible" : Boolean that define if the block is extensible
    - "inputs" : List of the block inputs
    - "outputs" : List of the block outputs
    - "comment" : Comment that will be displayed in the block popup
Inputs and outputs are a tuple of characteristics that are in order:
    - The name
    - The data type
    - The default modifier which can be "none", "negated", "rising" or "falling"
"""

BlockTypes = [{"name" : "Standard function blocks", "list":
               [{"name" : "SR", "type" : "functionBlock", "extensible" : False, 
                    "inputs" : [("S1","BOOL","none"),("R","BOOL","none")], 
                    "outputs" : [("Q1","BOOL","none")],
                    "comment" : "SR bistable\nThe SR bistable is a latch where the Set dominates."},
                {"name" : "RS", "type" : "functionBlock", "extensible" : False, 
                    "inputs" : [("S","BOOL","none"),("R1","BOOL","none")], 
                    "outputs" : [("Q1","BOOL","none")],
                    "comment" : "RS bistable\nThe RS bistable is a latch where the Reset dominates."},
                {"name" : "SEMA", "type" : "functionBlock", "extensible" : False, 
                    "inputs" : [("CLAIM","BOOL","none"),("RELEASE","BOOL","none")], 
                    "outputs" : [("BUSY","BOOL","none")],
                    "comment" : "Semaphore\nThe semaphore provides a mechanism to allow software elements mutually exclusive access to certain ressources."},
                {"name" : "R_TRIG", "type" : "functionBlock", "extensible" : False, 
                    "inputs" : [("CLK","BOOL","none")], 
                    "outputs" : [("Q","BOOL","none")],
                    "comment" : "Rising edge detector\nThe output produces a single pulse when a rising edge is detected."},
                {"name" : "F_TRIG", "type" : "functionBlock", "extensible" : False, 
                    "inputs" : [("CLK","BOOL","none")], 
                    "outputs" : [("Q","BOOL","none")],
                    "comment" : "Falling edge detector\nThe output produces a single pulse when a falling edge is detected."},
                {"name" : "CTU", "type" : "functionBlock", "extensible" : False, 
                    "inputs" : [("CU","BOOL","rising"),("R","BOOL","none"),("PV","INT","none")], 
                    "outputs" : [("Q","BOOL","none"),("CV","INT","none")],
                    "comment" : "Up-counter\nThe up-counter can be used to signal when a count has reached a maximum value."},
                {"name" : "CTD", "type" : "functionBlock", "extensible" : False, 
                    "inputs" : [("CD","BOOL","rising"),("LD","BOOL","none"),("PV","INT","none")], 
                    "outputs" : [("Q","BOOL","none"),("CV","INT","none")],
                    "comment" : "Down-counter\nThe down-counter can be used to signal when a count has reached zero, on counting down from a preset value."},
                {"name" : "CTUD", "type" : "functionBlock", "extensible" : False, 
                    "inputs" : [("CU","BOOL","rising"),("CD","BOOL","rising"),("R","BOOL","none"),("LD","BOOL","none"),("PV","INT","none")], 
                    "outputs" : [("QU","BOOL","none"),("QD","BOOL","none"),("CV","INT","none")],
                    "comment" : "Up-down counter\nThe up-down counter has two inputs CU and CD. It can be used to both count up on one input ans down on the other."},
                {"name" : "TP", "type" : "functionBlock", "extensible" : False, 
                    "inputs" : [("IN","BOOL","none"),("PT","TIME","none")], 
                    "outputs" : [("Q","BOOL","none"),("ET","TIME","none")],
                    "comment" : "Pulse timer\nThe pulse timer can be used to generate output pulses of a given time duration."},
                {"name" : "TOF", "type" : "functionBlock", "extensible" : False, 
                    "inputs" : [("IN","BOOL","none"),("PT","TIME","none")], 
                    "outputs" : [("Q","BOOL","none"),("ET","TIME","none")],
                    "comment" : "On-delay timer\nThe on-delay timer can be used to delay setting an output true, for fixed period after an input becomes true."},
                {"name" : "TON", "type" : "functionBlock", "extensible" : False, 
                    "inputs" : [("IN","BOOL","none"),("PT","TIME","none")], 
                    "outputs" : [("Q","BOOL","none"),("ET","TIME","none")],
                    "comment" : "Off-delay timer\nThe off-delay timer can be used to delay setting an output false, for fixed period after input goes false."},
                {"name" : "RTC", "type" : "functionBlock", "extensible" : False, 
                    "inputs" : [("EN","BOOL","none"),("PDT","DATE_AND_TIME","none")], 
                    "outputs" : [("Q","BOOL","none"),("CDT","DATE_AND_TIME","none")],
                    "comment" : "Real time clock\nThe real time clock has many uses including time stamping, setting dates and times of day in batch reports, in alarm messages and so on."},
                {"name" : "INTEGRAL", "type" : "functionBlock", "extensible" : False, 
                    "inputs" : [("RUN","BOOL","none"),("R1","BOOL","none"),("XIN","REAL","none"),("X0","REAL","none"),("CYCLE","TIME","none")], 
                    "outputs" : [("Q","BOOL","none"),("XOUT","REAL","none")],
                    "comment" : "Integral\nThe integral function block integrates the value of input XIN over time."},
                {"name" : "DERIVATIVE", "type" : "functionBlock", "extensible" : False, 
                    "inputs" : [("RUN","BOOL","none"),("XIN","REAL","none"),("CYCLE","TIME","none")], 
                    "outputs" : [("XOUT","REAL","none")],
                    "comment" : "Derivative\nThe derivative function block produces an output XOUT proportional to the rate of change of the input XIN."},
                {"name" : "PID", "type" : "functionBlock", "extensible" : False, 
                    "inputs" : [("AUTO","BOOL","none"),("PV","REAL","none"),("SP","REAL","none"),("X0","REAL","none"),("KP","REAL","none"),("TR","REAL","none"),("TD","REAL","none"),("CYCLE","TIME","none")], 
                    "outputs" : [("XOUT","REAL","none")],
                    "comment" : "PID\nThe PID (proportional, Integral, Derivative) function block provides the classical three term controller for closed loop control."},
                {"name" : "RAMP", "type" : "functionBlock", "extensible" : False, 
                    "inputs" : [("RUN","BOOL","none"),("X0","REAL","none"),("X1","REAL","none"),("TR","TIME","none"),("CYCLE","TIME","none"),("HOLDBACK","BOOL","none"),("ERROR","REAL","none"),("PV","REAL","none")], 
                    "outputs" : [("RAMP","BOOL","none"),("XOUT","REAL","none")],
                    "comment" : "Ramp\nThe RAMP function block is modelled on example given in the standard but with the addition of a 'Holdback' feature."},
                {"name" : "HYSTERESIS", "type" : "functionBlock", "extensible" : False, 
                    "inputs" : [("XIN1","REAL","none"),("XIN2","REAL","none"),("EPS","REAL","none")], 
                    "outputs" : [("Q","BOOL","none")],
                    "comment" : "Hysteresis\nThe hysteresis function block provides a hysteresis boolean output driven by the difference of two floating point (REAL) inputs XIN1 and XIN2."},
                {"name" : "RATIO_MONITOR", "type" : "functionBlock", "extensible" : False, 
                    "inputs" : [("PV1","REAL","none"),("PV2","REAL","none"),("RATIO","REAL","none"),("TIMON","TIME","none"),("TIMOFF","TIME","none"),("TOLERANCE","BOOL","none"),("RESET","BOOL","none"),("CYCLE","TIME","none")], 
                    "outputs" : [("ALARM","BOOL","none"),("TOTAL_ERR","BOOL","none")],
                    "comment" : "Ratio monitor\nThe ratio_monitor function block checks that one process value PV1 is always a given ratio (defined by input RATIO) of a second process value PV2."},
               ]}
             ]

"""
Function that returns the block definition associated to the block type given
"""

def GetBlockType(type):
    for category in BlockTypes:
        for blocktype in category["list"]:
            if blocktype["name"] == type:
                return blocktype
    return None


#-------------------------------------------------------------------------------
#                           Data Types definitions
#-------------------------------------------------------------------------------

"""
Ordored list of common data types defined in the IEC 61131-3
Each type is associated to his direct parent type. It defines then a hierarchy
between type that permits to make a comparison of two types
"""
TypeHierarchy_list = [
	("ANY", None),
	("ANY_DERIVED", "ANY"),
	("ANY_ELEMENTARY", "ANY"),
	("ANY_MAGNITUDE", "ANY_ELEMENTARY"),
	("ANY_BIT", "ANY_ELEMENTARY"),
	("ANY_STRING", "ANY_ELEMENTARY"),
	("ANY_DATE", "ANY_ELEMENTARY"),
	("ANY_NUM", "ANY_MAGNITUDE"),
	("ANY_REAL", "ANY_NUM"),
	("ANY_INT", "ANY_NUM"),
	("REAL", "ANY_REAL"),
	("LREAL", "ANY_REAL"),
	("SINT", "ANY_INT"),
	("INT", "ANY_INT"),
	("DINT", "ANY_INT"),
	("LINT", "ANY_INT"),
	("USINT", "ANY_INT"),
	("UINT", "ANY_INT"),
	("UDINT", "ANY_INT"),
	("ULINT", "ANY_INT"),
	("TIME", "ANY_MAGNITUDE"),
	("BOOL", "ANY_BIT"),
	("BYTE", "ANY_BIT"),
	("WORD", "ANY_BIT"),
	("DWORD", "ANY_BIT"),
	("LWORD", "ANY_BIT"),
	("STRING", "ANY_STRING"),
	("WSTRING", "ANY_STRING"),
	("DATE", "ANY_DATE"),
	("TOD", "ANY_DATE"),
	("DT", "ANY_DATE")]

TypeHierarchy = dict(TypeHierarchy_list)

"""
returns true if the given data type is the same that "reference" meta-type or one of its types.
"""

def IsOfType(test, reference):
    while test != None:
        if test == reference:
            return True
        test = TypeHierarchy[test]
    return False

"""
returns list of all types that correspont to the ANY* meta type
"""
def GetSubTypes(reference):
    return [ typename for typename in TypeHierarchy.iterkeys() if typename[:3] != "ANY" and IsOfType(typename, reference)]


#-------------------------------------------------------------------------------
#                             Test identifier
#-------------------------------------------------------------------------------



# Test if identifier is valid
def TestIdentifier(identifier):
     if identifier[0].isdigit():
        return False
     words = identifier.split('_')
     for i, word in enumerate(words):
         if len(word) == 0 and i != 0:
             return False
         if len(word) != 0 and not word.isalnum():
             return False
     return True


#-------------------------------------------------------------------------------
#                            Languages Keywords
#-------------------------------------------------------------------------------


# Keywords for Pou Declaration
POU_KEYWORDS = ["FUNCTION", "END_FUNCTION", "FUNCTION_BLOCK", "END_FUNCTION_BLOCK",
 "PROGRAM", "END_PROGRAM", "EN", "ENO", "F_EDGE", "R_EDGE"]
for category in BlockTypes:
    for block in category["list"]:
        if block["name"] not in POU_KEYWORDS:
            POU_KEYWORDS.append(block["name"])


# Keywords for Type Declaration
TYPE_KEYWORDS = ["TYPE", "END_TYPE", "STRUCT", "END_STRUCT", "ARRAY", "OF", "T",
 "D", "TIME_OF_DAY", "DATE_AND_TIME"]
TYPE_KEYWORDS.extend([keyword for keyword in TypeHierarchy.keys() if keyword not in TYPE_KEYWORDS])


# Keywords for Variable Declaration
VAR_KEYWORDS = ["VAR", "VAR_INPUT", "VAR_OUTPUT", "VAR_IN_OUT", "VAR_TEMP", 
 "VAR_EXTERNAL", "END_VAR", "AT", "CONSTANT", "RETAIN", "NON_RETAIN"]


# Keywords for Configuration Declaration
CONFIG_KEYWORDS = ["CONFIGURATION", "END_CONFIGURATION", "RESOURCE", "ON", "END_RESOURCE",
 "PROGRAM", "WITH", "READ_ONLY", "READ_WRITE", "TASK", "VAR_ACCESS", "VAR_CONFIG", 
 "VAR_GLOBAL", "END_VAR"]


# Keywords for Structured Function Chart
SFC_KEYWORDS = ["ACTION", "END_ACTION", "INITIAL_STEP", "STEP", "END_STEP", "TRANSITION",
 "FROM", "TO", "END_TRANSITION"]


# Keywords for Instruction List
IL_KEYWORDS = ["LD", "LDN", "ST", "STN", "S", "R", "AND", "ANDN", "OR", "ORN",
 "XOR", "XORN", "NOT", "ADD", "SUB", "MUL", "DIV", "MOD", "GT", "GE", "EQ", "NE",
 "LE", "LT", "JMP", "JMPC", "JMPNC", "CAL", "CALC", "CALNC", "RET", "RETC", "RETNC"]


# Keywords for Instruction List and Structured Text
ST_KEYWORDS = ["IF", "THEN", "ELSIF", "ELSE", "END_IF", "CASE", "OF", "END_CASE", 
 "FOR", "TO", "BY", "DO", "END_FOR", "WHILE", "DO", "END_WHILE", "REPEAT", "UNTIL", 
 "END_REPEAT", "EXIT", "RETURN", "NOT", "MOD", "AND", "XOR", "OR"]

 
# All the keywords of IEC
IEC_KEYWORDS = ["E", "TRUE", "FALSE"]
IEC_KEYWORDS.extend([keyword for keyword in POU_KEYWORDS if keyword not in IEC_KEYWORDS])
IEC_KEYWORDS.extend([keyword for keyword in TYPE_KEYWORDS if keyword not in IEC_KEYWORDS])
IEC_KEYWORDS.extend([keyword for keyword in VAR_KEYWORDS if keyword not in IEC_KEYWORDS])
IEC_KEYWORDS.extend([keyword for keyword in CONFIG_KEYWORDS if keyword not in IEC_KEYWORDS])
IEC_KEYWORDS.extend([keyword for keyword in SFC_KEYWORDS if keyword not in IEC_KEYWORDS])
IEC_KEYWORDS.extend([keyword for keyword in IL_KEYWORDS if keyword not in IEC_KEYWORDS])
IEC_KEYWORDS.extend([keyword for keyword in ST_KEYWORDS if keyword not in IEC_KEYWORDS])



"""
take a .csv file and translate it it a "csv_table"
"""            
def csv_file_to_table(file):
	return [ map(string.strip,line.split(';')) for line in file.xreadlines()]

"""
seek into the csv table to a section ( section_name match 1st field )
return the matching row without first field
"""
def find_section(section_name, table):
	fields = [None]
	while(fields[0] != section_name):
		fields = table.pop(0)
	return fields[1:]

"""
extract the standard functions standard parameter names and types...
return a { ParameterName: Type, ...}
"""
def get_standard_funtions_input_variables(table):
	variables = find_section("Standard_functions_variables_types", table)
	standard_funtions_input_variables = {}
	fields = [True,True]
	while(fields[1]):
		fields = table.pop(0)
		variable_from_csv = dict([(champ, val) for champ, val in zip(variables, fields[1:]) if champ!=''])
		standard_funtions_input_variables[variable_from_csv['name']] = variable_from_csv['type']
	return standard_funtions_input_variables
	
"""
translate .csv file input declaration into PLCOpenEditor interessting values
in : "(ANY_NUM, ANY_NUM)" and { ParameterName: Type, ...}
return [("IN1","ANY_NUM","none"),("IN2","ANY_NUM","none")] 
"""
def csv_input_translate(str_decl, variables, base):
	decl = str_decl.replace('(','').replace(')','').replace(' ','').split(',')
	param_types = []
	param_names = []
	modifiers = []

	len_of_not_predifined_variable = 0
	for param_type in decl:
		predifined_variable_param_type = variables.get(param_type,None)
		if not predifined_variable_param_type :
			len_of_not_predifined_variable += 1

	if len_of_not_predifined_variable>1 : suffix = str(base)
	else: suffix = ''
	
	for param_type in decl:
		predifined_variable_param_type = variables.get(param_type,None)
		if predifined_variable_param_type :
			param_types.append(predifined_variable_param_type)
			param_names.append(param_type)
		else:
			param_types.append(param_type)
			param_names.append("IN"+suffix)
			base+=1
			suffix = str(base)

	modifiers = ["none"]*len(param_types)
	return zip(param_names,param_types,modifiers)

"""
Fillin the PLCOpenEditor standard function dictionnary
translate input and output declaration to something more pythonesque
and add interface description to comment
"""
def decl_function(dico_from_table, variables):
	Function_decl = { "type" : "function" }
	for field, val in dico_from_table:
		translate = {
			"baseinputnumber" : lambda x:int(x),
			"extensible" : lambda x: {"yes":True, "no":False}[x],
			"inputs" : lambda x:csv_input_translate(x,variables,Function_decl.get("baseinputnumber",1)),
			"outputs":lambda x:[("OUT",x,"none")]}
		Function_decl[field] = translate.get(field,lambda x:x)(val)
	return Function_decl


def ANY_TO_ANY_FORMAT_GEN(fdecl):

	ANY_T0_ANY_LIST=[
		(("ANY_NUM","ANY_BIT"),("ANY_NUM","ANY_BIT"), "(%(return_type)s)%(IN_value)s"),
		(("ANY_NUM","ANY_BIT"),("ANY_DATE","TIME"), "(%(return_type)s)real_to_time(%(IN_value)s)"), 
		(("ANY_DATE","TIME"), ("ANY_NUM","ANY_BIT"), "(%(return_type)s)time_to_real(%(IN_value)s)"), 
		(("ANY_DATE","TIME"), ("ANY_STRING",), "(%(return_type)s)time_to_string(%(IN_value)s)"),
		(("ANY_STRING",), ("ANY_DATE","TIME"), "(%(return_type)s)string_to_time(%(IN_value)s)"),
		(("ANY_BIT",), ("ANY_STRING",), "(%(return_type)s)int_to_string(%(IN_value)s, 16)"),
		(("ANY_NUM",), ("ANY_STRING",), "(%(return_type)s)int_to_string(%(IN_value)s, 10)"),
		(("ANY_STRING",), ("ANY_BIT",), "(%(return_type)s)string_to_int(%(IN_value)s, 16)"),
		(("ANY_STRING",), ("ANY_NUM",), "(%(return_type)s)string_to_int(%(IN_value)s, 10)")]
	
	for (InTypes, OutTypes, Format) in ANY_T0_ANY_LIST:
		inps = reduce(lambda a,b: a or b, map(lambda testtype : IsOfType(fdecl["outputs"][0][1],testtype), InTypes))
		#print "IN     ",inps , fdecl["outputs"][0][1], InTypes
		outs = reduce(lambda a,b: a or b, map(lambda testtype : IsOfType(fdecl["inputs"][0][1],testtype), OutTypes))
		#print "OUT    ",outs , fdecl["inputs"][0][1], OutTypes
		if (inps and outs ):
		 	return Format

	#print "IN:", fdecl["outputs"][0][1], "    OUT:", fdecl["inputs"][0][1]
	
	return "#error %s_TO_%s not implemented!"%(fdecl["inputs"][0][1],fdecl["outputs"][0][1])


"""
Returns this kind of declaration for all standard functions

            [{"name" : "Numerical", 'list': [   {   
                'baseinputnumber': 1,
                'comment': 'Addition',
                'extensible': True,
                'inputs': [   ('IN1', 'ANY_NUM', 'none'),
                              ('IN2', 'ANY_NUM', 'none')],
                'name': 'ADD',
                'outputs': [('OUT', 'ANY_NUM', 'none')],
                'type': 'function'}, ...... ] },.....]
"""
def get_standard_funtions(table):
	
	variables = get_standard_funtions_input_variables(table)
	
	fonctions = find_section("Standard_functions_type",table)

	Standard_Functions_Decl = []
	Current_section = None
	for fields in table:
		if fields[1]:
			# If function section name given
			if fields[0] :
				if Current_section: 
					Standard_Functions_Decl.append(Current_section)
				Current_section = { "name" : fields[0], "list" : [] }
				Function_decl_list = []
		
			dico_from_table = [ (champ,val) for champ,val in zip(fonctions, fields[1:]) if champ ]
			Function_decl = decl_function(dico_from_table,variables)
			if Function_decl["name"].startswith('*') :
				input_types = [ GetSubTypes(inpdecl[1]) for inpdecl in Function_decl["inputs"] ]
				input_ovrloading_types = input_types[map(len,input_types).index(max(map(len,input_types)))]
			else:
				input_ovrloading_types = [None]
				
			if Function_decl["name"].endswith('*') :
				output_types = GetSubTypes(Function_decl["outputs"][0][1])
			else:
				output_types = [None]
				
			funcdeclname_orig = Function_decl["name"]
			funcdeclname = Function_decl["name"].strip('*_')
			fdc = Function_decl["inputs"][:]
			for intype in input_ovrloading_types:
				if intype != None:
					Function_decl["inputs"] = []
					for decl_tpl in fdc:
						if IsOfType(intype, decl_tpl[1]):
							Function_decl["inputs"] += [(decl_tpl[0], intype, decl_tpl[2])]
						else:
							Function_decl["inputs"] += [(decl_tpl)]
						
						if funcdeclname_orig.startswith('*'):
							funcdeclin = intype + '_' + funcdeclname 
						else:
							funcdeclin = funcdeclname
				else:
					funcdeclin = funcdeclname
							

				if Function_decl["return_type_rule"] == "copy_input":
					output_types = [intype]
				elif Function_decl["return_type_rule"] == "defined":
					pass

				for outype in output_types:
					if outype != None:
						decl_tpl = Function_decl["outputs"][0]
						Function_decl["outputs"] = [ (decl_tpl[0] , outype,  decl_tpl[2])]
						if funcdeclname_orig.endswith('*'):
							funcdeclout =  funcdeclin + '_' + outype
						else:
							funcdeclout =  funcdeclin
					else:
						funcdeclout =  funcdeclin
					Function_decl["name"] = funcdeclout


					try:
						fdecl = Function_decl
						res = eval(Function_decl["python_eval_c_code_format"])
					except Exception,e:
						res = None

					if res != None :
						# create the copy of decl dict to be appended to section
						Function_decl_copy = Function_decl.copy()
						# Have to generate type description in comment with freshly redefined types
						Function_decl_copy["comment"] += (
							"\n (" +
							str([ " " + fctdecl[1]+":"+fctdecl[0] for fctdecl in Function_decl["inputs"]]).strip("[]").replace("'",'') +
							" ) => (" +
							str([ " " + fctdecl[1]+":"+fctdecl[0] for fctdecl in Function_decl["outputs"]]).strip("[]").replace("'",'') +
							" )")
						Current_section["list"].append(Function_decl_copy)
						#pp.pprint(Function_decl_copy)
						
	Standard_Functions_Decl.append(Current_section)
	
	return Standard_Functions_Decl


if __name__ == '__main__':
	
	import pprint
	pp = pprint.PrettyPrinter(indent=4)

	def ANY_to_compiler_test_type_GEN(typename, paramname):
		return {"ANY" : "",
		"ANY_BIT" : "if(search_expression_type->is_binary_type(%(paramname)s_type_symbol))",
		"ANY_NUM" : "if(search_expression_type->is_num_type(%(paramname)s_type_symbol))",
		"ANY_REAL" : "if(search_expression_type->is_real_type(%(paramname)s_type_symbol))",
		"ANY_INT" : "if(search_expression_type->is_integer_type(%(paramname)s_type_symbol))"
		}.get(typename,
			"if (typeid(*last_type_symbol) == typeid(%(typename)s_type_name_c))")%{
					"paramname" : paramname, "typename": typename.lower()}
	
	def recurse_and_indent(fdecls, indent, do_type_search_only = False):
		if type(fdecls) != type(tuple()):
			res = ""
			for Paramname, ParamTypes in fdecls.iteritems():
				res += ("""
{
	identifier_c param_name("%(input_name)s");
	/* Get the value from a foo(<param_name> = <param_value>) style call */
	symbol_c *%(input_name)s_param_value = function_call_param_iterator.search(&param_name);
	
	/* Get the value from a foo(<param_value>) style call */
	if (%(input_name)s_param_value == NULL)
	  %(input_name)s_param_value = function_call_param_iterator.next();
	symbol_c *%(input_name)s_type_symbol = search_expression_type->get_type(%(input_name)s_param_value);
	last_type_symbol = last_type_symbol && search_expression_type->is_same_type(%(input_name)s_type_symbol, last_type_symbol) ? search_expression_type->common_type(%(input_name)s_type_symbol, last_type_symbol) : %(input_name)s_type_symbol ;
"""%{"input_name":Paramname})
				
				for ParamType,NextParamDecl in ParamTypes.iteritems():
				
					res += ("""	
	%(type_test)s
	{
%(if_good_type_code)s
	}
"""%{
	"type_test":ANY_to_compiler_test_type_GEN(ParamType,Paramname), 
	"if_good_type_code":recurse_and_indent(NextParamDecl,indent,do_type_search_only).replace('\n','\n	')})

				res += """	
	ERROR;
}
"""
			
			return res.replace('\n','\n'+indent)
		else:
			res = "\n"
			fdecl=fdecls[0]
			
			result_type_rule = fdecl["return_type_rule"]
			res += {
				"copy_input" : "symbol_c * return_type_symbol = last_type_symbol;\n",
				"defined" : "symbol_c * return_type_symbol = &search_constant_type_c::%s_type_name;\n"%fdecl["outputs"][0][1].lower(),
				}.get(result_type_rule, "symbol_c * return_type_symbol = %s;\n"%result_type_rule)
			
			if not do_type_search_only:
				try:
					code_gen = eval(fdecl["python_eval_c_code_format"])
				except Exception:
					code_gen = "#error in eval of " + fdecl["name"]
	
				code_gen_dic_decl = {}
				for paramname,paramtype,unused in fdecl["inputs"]:
					code_gen_dic_decl[paramname+"_value"] = '");\n%s_param_value->accept(*this);\ns4o.print("'%(paramname)
					code_gen_dic_decl[paramname+"_type"] = '");\n%s_type_symbol->accept(*this);\ns4o.print("'%(paramname)
				code_gen_dic_decl["return_type"] = '");\nreturn_type_symbol->accept(*this);\ns4o.print("'
				code_gen_dic_decl["param_count"] = '");\ns4o.print_integer(nb_param);\ns4o.print("'
				code_gen_dic_decl["start_bool_filter"] = '");\nif (search_expression_type->is_bool_type(last_type_symbol))\n  s4o.print("('
				code_gen_dic_decl["end_bool_filter"] = '");\nif (search_expression_type->is_bool_type(last_type_symbol)) {\n  s4o.print("&1");\n  s4o.print(")");\n}\ns4o.print("'
                
				if type(code_gen) == type(tuple()):
					res += 's4o.print("%s");\n'%(code_gen[0]%code_gen_dic_decl)
					static_param_accept_list = []
					for paramname,paramtype,unused in fdecl["inputs"]:
						static_param_accept_list.append("%s_param_value->accept(*this);\n"%(paramname))
					res += ('s4o.print("%s");\n'%(code_gen[1])).join(static_param_accept_list)
					code = 's4o.print("%s");\nparam_value->accept(*this);\n'%(code_gen[1])
					end_code = 's4o.print("%s");\nreturn NULL;\n'%(code_gen[2]%code_gen_dic_decl)
				else:
					code = ''
					end_code = ('s4o.print("' + code_gen%code_gen_dic_decl + '");\nreturn NULL;\n').replace('s4o.print("");\n','')
	
				if fdecl["extensible"]:
					res += ("""
int base_num = %d;
symbol_c *param_value = NULL;
do{
	char my_name[10];
	sprintf(my_name, "IN%%d", base_num++);
	identifier_c param_name(my_name);
	
	/* Get the value from a foo(<param_name> = <param_value>) style call */
	param_value = function_call_param_iterator.search(&param_name);
	
	/* Get the value from a foo(<param_value>) style call */
	if (param_value == NULL)
	  param_value = function_call_param_iterator.next();
	if (param_value != NULL){
		symbol_c *current_type_symbol = search_expression_type->get_type(param_value);
		last_type_symbol = last_type_symbol && search_expression_type->is_same_type(current_type_symbol, last_type_symbol) ? search_expression_type->common_type(current_type_symbol, last_type_symbol) : current_type_symbol ;
	
		/*Function specific CODE */
		%s
	}
	
}while(param_value != NULL);
%s
"""%(fdecl["baseinputnumber"]+2, code.replace('\n','\n		'), end_code))
				else:
					#res += code + end_code
					res += end_code
			else:
				res += "return return_type_symbol;\n"
			
					
			return res.replace('\n','\n'+indent)

###################################################################
###                                                             ###
###                           MAIN                              ###
###                                                             ###
###################################################################

	# Get definitions
	std_decl = get_standard_funtions(csv_file_to_table(open("iec_std.csv")))#, True)
	
	# Reorganize into a dict of dict, according 
	# fname : paramname : paramtype : paraname : paramtype...
	# Keep ptrack of original order in a separated list
	std_fdecls = {}
	official_order = []
	for section in std_decl:
		for fdecl in section["list"]:
			if len(official_order)==0 or official_order[-1] != fdecl["name"]:
				official_order.append(fdecl["name"])
			# store all func by name in a dict
			std_fdecls_fdecl_name = std_fdecls.get(fdecl["name"], {})
			current = std_fdecls_fdecl_name
			for i in fdecl["inputs"]:
				current[i[0]] = current.get(i[0], {})
				current = current[i[0]]
				last = current
				current[i[1]] = current.get(i[1], {})
				current = current[i[1]]
			last[i[1]]=(fdecl,)
			std_fdecls[fdecl["name"]] = std_fdecls_fdecl_name

	# Generate the long enumeration of std function types
	function_type_decl =  """
/****
 * IEC 61131-3 standard function lib
 * generated code, do not edit by hand
 */
typedef enum {
"""
	for fname, fdecls in [ (fname,std_fdecls[fname]) for fname in official_order ]:
		function_type_decl += "	function_"+fname.lower()+",\n"

	function_type_decl += """	function_none
} function_type_t;
"""

	# Generate the funct thaat return enumerated according function name
	get_function_type_decl = """
/****
 * IEC 61131-3 standard function lib
 * generated code, do not edit by hand
 */
function_type_t get_function_type(identifier_c *function_name) {
"""
	for fname, fdecls in [ (fname,std_fdecls[fname]) for fname in official_order ]:
		get_function_type_decl += """
	if (!strcasecmp(function_name->value, "%s"))
		return function_%s;
"""%(fname,fname.lower())

	get_function_type_decl += """
	else return function_none;
}

"""

	# Generate the part of generate_cc_st_c::visit(function_invocation)
	# that is responsible to generate C code for std lib calls.
	st_code_gen = """
/****
 * IEC 61131-3 standard function lib
 * generated code, do not edit by hand
 */
switch(current_function_type){
"""
	
	for fname, fdecls in [ (fname,std_fdecls[fname]) for fname in official_order ]:
		st_code_gen += """
/****
 *%s
 */
	case function_%s :
	{
		symbol_c *last_type_symbol = NULL;
"""	%(fname, fname.lower())
		indent =  "	"

		st_code_gen += recurse_and_indent(fdecls, indent).replace('\n','\n	')
		
		st_code_gen += """
	}/*function_%s*/
	break;
"""	%(fname.lower())
	st_code_gen +=  """
	case function_none :
	ERROR;
}
return NULL;
"""


	# Generate the part of search_expression_type_c::visit(function_invocation)
	# that is responsible of returning type symbol for function invocation.
	search_type_code =  """
/****
 * IEC 61131-3 standard function lib
 * generated code, do not edit by hand
 */
switch(current_function_type){
"""
	
	for fname, fdecls in [ (fname,std_fdecls[fname]) for fname in official_order ]:
		search_type_code += """
/****
 *%s
 */
	case function_%s :
	{
		symbol_c *last_type_symbol = NULL;
"""	%(fname, fname.lower())
		indent =  "	"

		search_type_code += recurse_and_indent(fdecls, indent, True).replace('\n','\n	')
		
		search_type_code += """
	}/*function_%s*/
	break;
"""	%(fname.lower())
	search_type_code += """
	case function_none :
	ERROR;
}
return NULL;
"""


	# Now, print that out, or write to files from sys.argv
	for name, ext in [
			('function_type_decl','h'),
			('get_function_type_decl','c'),
			('st_code_gen','c'),
			('search_type_code','c')]:
		fd = open(os.path.join(sys.argv[1],name+'.'+ext),'w')
		fd.write(eval(name))
		fd.close()
else:
	# Put standard functions declaration in Bloktypes
	BlockTypes.extend(get_standard_funtions(csv_file_to_table(open(os.path.join(sys.path[0], "plcopen/iec_std.csv")))))