#!/usr/bin/env python
# -*- coding: utf-8 -*-
#This file is part of PLCOpenEditor, a library implementing an IEC 61131-3 editor
#based on the plcopen standard.
#
#Copyright (C) 2007: Edouard TISSERANT and Laurent BESSARD
#
#See COPYING file for copyrights details.
#
#This library is free software; you can redistribute it and/or
#modify it under the terms of the GNU General Public
#License as published by the Free Software Foundation; either
#version 2.1 of the License, or (at your option) any later version.
#
#This library is distributed in the hope that it will be useful,
#but WITHOUT ANY WARRANTY; without even the implied warranty of
#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
#General Public License for more details.
#
#You should have received a copy of the GNU General Public
#License along with this library; if not, write to the Free Software
#Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
import wx
from math import *
from plcopen.structures import IsOfType, IsEndType
#-------------------------------------------------------------------------------
# Common constants
#-------------------------------------------------------------------------------
"""
Definition of constants for dimensions of graphic elements
"""
# FBD and SFC constants
MIN_MOVE = 5 # Minimum move before starting a element dragging
CONNECTOR_SIZE = 8 # Size of connectors
BLOCK_LINE_SIZE = 20 # Minimum size of each line in a block
HANDLE_SIZE = 6 # Size of the squares for handles
ANCHOR_DISTANCE = 5 # Distance where wire is automativally attached to a connector
POINT_RADIUS = 2 # Radius of the point of wire ends
MIN_SEGMENT_SIZE = 2 # Minimum size of the endling segments of a wire
# LD constants
LD_LINE_SIZE = 40 # Distance between two lines in a ladder rung
LD_ELEMENT_SIZE = (21, 15) # Size (width, height) of a ladder element (contact or coil)
LD_WIRE_SIZE = 30 # Size of a wire between two contact
LD_WIRECOIL_SIZE = 70 # Size of a wire between a coil and a contact
LD_OFFSET = (10, 10) # Distance (x, y) between each comment and rung of the ladder
LD_COMMENT_DEFAULTSIZE = (600, 40) # Size (width, height) of a comment box
# SFC constants
SFC_STEP_DEFAULT_SIZE = (40, 30) # Default size of a SFC step
SFC_TRANSITION_SIZE = (20, 2) # Size of a SFC transition
SFC_DEFAULT_SEQUENCE_INTERVAL = 40 # Default size of the interval between two divergence branches
SFC_SIMULTANEOUS_SEQUENCE_EXTRA = 20 # Size of extra lines for simultaneous divergence and convergence
SFC_JUMP_SIZE = (12, 13) # Size of a SFC jump to step
SFC_WIRE_MIN_SIZE = 25 # Size of a wire between two elements
SFC_ACTION_MIN_SIZE = (100, 30) # Minimum size of an action block line
# Type definition constants for graphic elements
[INPUT, OUTPUT, INOUT] = range(3)
[CONNECTOR, CONTINUATION] = range(2)
[LEFTRAIL, RIGHTRAIL] = range(2)
[CONTACT_NORMAL, CONTACT_REVERSE, CONTACT_RISING, CONTACT_FALLING] = range(4)
[COIL_NORMAL, COIL_REVERSE, COIL_SET, COIL_RESET] = range(4)
[SELECTION_DIVERGENCE, SELECTION_CONVERGENCE, SIMULTANEOUS_DIVERGENCE, SIMULTANEOUS_CONVERGENCE] = range(4)
# Constants for defining the type of dragging that has been selected
[HANDLE_MOVE, HANDLE_RESIZE, HANDLE_POINT, HANDLE_SEGMENT, HANDLE_CONNECTOR] = range(5)
# List of value for resize handle that are valid
VALID_HANDLES = [(1,1), (1,2), (1,3), (2,3), (3,3), (3,2), (3,1), (2,1)]
# Contants for defining the direction of a connector
[EAST, NORTH, WEST, SOUTH] = [(1,0), (0,-1), (-1,0), (0,1)]
# Contants for defining which mode is selected for each view
[MODE_SELECTION, MODE_BLOCK, MODE_VARIABLE, MODE_CONNECTION, MODE_COMMENT,
MODE_COIL, MODE_CONTACT, MODE_POWERRAIL, MODE_INITIALSTEP, MODE_STEP,
MODE_TRANSITION, MODE_DIVERGENCE, MODE_JUMP, MODE_ACTION] = range(14)
# Contants for defining alignment types for graphic group
[ALIGN_LEFT, ALIGN_CENTER, ALIGN_RIGHT, ALIGN_TOP, ALIGN_MIDDLE, ALIGN_BOTTOM] = range(6)
# Contants for defining which drawing mode is selected for app
[FREEDRAWING_MODE, DRIVENDRAWING_MODE] = [1, 2]
# Color for Highlighting
HIGHLIGHTCOLOR = wx.CYAN
CURSORS = None
def ResetCursors():
global CURSORS
if CURSORS == None:
CURSORS = [wx.NullCursor,
wx.StockCursor(wx.CURSOR_HAND),
wx.StockCursor(wx.CURSOR_SIZENWSE),
wx.StockCursor(wx.CURSOR_SIZENESW),
wx.StockCursor(wx.CURSOR_SIZEWE),
wx.StockCursor(wx.CURSOR_SIZENS)]
HANDLE_CURSORS = {
(1, 1) : 2,
(3, 3) : 2,
(1, 3) : 3,
(3, 1) : 3,
(1, 2) : 4,
(3, 2) : 4,
(2, 1) : 5,
(2, 3) : 5
}
"""
Basic vector operations for calculate wire points
"""
# Calculate the scalar product of two vectors
def product(v1, v2):
return v1[0] * v2[0] + v1[1] * v2[1]
# Create a vector from two points and define if vector must be normal
def vector(p1, p2, normal = True):
vector = (p2.x - p1.x, p2.y - p1.y)
if normal:
return normalize(vector)
return vector
# Calculate the norm of a given vector
def norm(v):
return sqrt(v[0] * v[0] + v[1] * v[1])
# Normalize a given vector
def normalize(v):
v_norm = norm(v)
# Verifie if it is not a null vector
if v_norm > 0:
return (v[0] / v_norm, v[1] / v_norm)
else:
return v
"""
Function that calculates the nearest point of the grid defined by scaling for the given point
"""
def GetScaledEventPosition(event, dc, scaling):
pos = event.GetLogicalPosition(dc)
if scaling:
pos.x = round(float(pos.x) / float(scaling[0])) * scaling[0]
pos.y = round(float(pos.y) / float(scaling[1])) * scaling[1]
return pos
"""
Function that choose a direction during the wire points generation
"""
def DirectionChoice(v_base, v_target, dir_target):
dir_product = product(v_base, v_target)
if dir_product < 0:
return (-v_base[0], -v_base[1])
elif dir_product == 0 and product(v_base, dir_target) != 0:
return dir_target
return v_base
#-------------------------------------------------------------------------------
# Viewer Rubberband
#-------------------------------------------------------------------------------
"""
Class that implements a rubberband
"""
class RubberBand:
# Create a rubberband by indicated on which window it must be drawn
def __init__(self, drawingSurface):
self.drawingSurface = drawingSurface
self.Reset()
# Method that initializes the internal attributes of the rubberband
def Reset(self):
self.startPoint = None
self.currentBox = None
self.lastBox = None
# Method that return if a box is currently edited
def IsShown(self):
return self.currentBox != None
# Method that returns the currently edited box
def GetCurrentExtent(self):
return self.currentBox
# Method called when a new box starts to be edited
def OnLeftDown(self, event, dc, scaling):
pos = GetScaledEventPosition(event, dc, scaling)
# Save the point for calculate the box position and size
self.startPoint = pos
self.currentBox = wx.Rect(pos.x, pos.y, 0, 0)
self.drawingSurface.SetCursor(wx.StockCursor(wx.CURSOR_CROSS))
self.Redraw()
# Method called when dragging with a box edited
def OnMotion(self, event, dc, scaling):
pos = GetScaledEventPosition(event, dc, scaling)
# Save the last position and size of the box for erasing it
self.lastBox = wx.Rect(self.currentBox.x, self.currentBox.y, self.currentBox.width,
self.currentBox.height)
# Calculate new position and size of the box
if pos.x >= self.startPoint.x:
self.currentBox.x = self.startPoint.x
self.currentBox.width = pos.x - self.startPoint.x + 1
else:
self.currentBox.x = pos.x
self.currentBox.width = self.startPoint.x - pos.x + 1
if pos.y >= self.startPoint.y:
self.currentBox.y = self.startPoint.y
self.currentBox.height = pos.y - self.startPoint.y + 1
else:
self.currentBox.y = pos.y
self.currentBox.height = self.startPoint.y - pos.y + 1
self.Redraw()
# Method called when dragging is stopped
def OnLeftUp(self, event, dc, scaling):
self.drawingSurface.SetCursor(wx.NullCursor)
self.lastBox = self.currentBox
self.currentBox = None
self.Redraw()
# Method that erase the last box and draw the new box
def Redraw(self, dc = None):
if not dc:
dc = self.drawingSurface.GetLogicalDC()
dc.SetPen(wx.Pen(wx.WHITE, 1, wx.DOT))
dc.SetBrush(wx.TRANSPARENT_BRUSH)
dc.SetLogicalFunction(wx.XOR)
if self.lastBox:
# Erase last box
dc.DrawRectangle(self.lastBox.x, self.lastBox.y, self.lastBox.width,
self.lastBox.height)
if self.currentBox:
# Draw current box
dc.DrawRectangle(self.currentBox.x, self.currentBox.y, self.currentBox.width,
self.currentBox.height)
# Erase last box
def Erase(self, dc = None):
if not dc:
dc = self.drawingSurface.GetLogicalDC()
dc.SetPen(wx.Pen(wx.WHITE, 1, wx.DOT))
dc.SetBrush(wx.TRANSPARENT_BRUSH)
dc.SetLogicalFunction(wx.XOR)
if self.lastBox:
dc.DrawRectangle(self.lastBox.x, self.lastBox.y, self.lastBox.width,
self.lastBox.height)
# Draw current box
def Draw(self, dc = None):
if not dc:
dc = self.drawingSurface.GetLogicalDC()
dc.SetPen(wx.Pen(wx.WHITE, 1, wx.DOT))
dc.SetBrush(wx.TRANSPARENT_BRUSH)
dc.SetLogicalFunction(wx.XOR)
if self.currentBox:
# Draw current box
dc.DrawRectangle(self.currentBox.x, self.currentBox.y, self.currentBox.width,
self.currentBox.height)
#-------------------------------------------------------------------------------
# Graphic element base class
#-------------------------------------------------------------------------------
"""
Class that implements a generic graphic element
"""
class Graphic_Element:
# Create a new graphic element
def __init__(self, parent, id = None):
self.Parent = parent
self.Id = id
self.oldPos = None
self.Handle = False
self.Dragging = False
self.Selected = False
self.Highlighted = False
self.Pos = wx.Point(0, 0)
self.Size = wx.Size(0, 0)
self.BoundingBox = wx.Rect(0, 0, 0, 0)
self.CurrentCursor = 0
ResetCursors()
# Make a clone of this element
def Clone(self):
return Graphic_Element(self.Parent, self.Id)
# Changes the block position
def SetPosition(self, x, y):
self.Pos.x = x
self.Pos.y = y
self.RefreshConnected()
self.RefreshBoundingBox()
# Returns the block position
def GetPosition(self):
return self.Pos.x, self.Pos.y
# Changes the element size
def SetSize(self, width, height):
self.Size.SetWidth(width)
self.Size.SetHeight(height)
self.RefreshConnectors()
self.RefreshBoundingBox()
# Returns the element size
def GetSize(self):
return self.Size.GetWidth(), self.Size.GetHeight()
# Refresh the element Bounding Box
def RefreshBoundingBox(self):
self.BoundingBox = wx.Rect(self.Pos.x, self.Pos.y, self.Size[0], self.Size[1])
# Refresh the element connectors position
def RefreshConnectors(self):
pass
# Refresh the position of wires connected to element inputs and outputs
def RefreshConnected(self):
pass
# Change the parent
def SetParent(self, parent):
self.Parent = parent
# Override this method for defining the method to call for deleting this element
def Delete(self):
pass
# Returns the Id
def GetId(self):
return self.Id
# Returns if the point given is in the bounding box
def HitTest(self, pt):
rect = self.BoundingBox
return rect.InsideXY(pt.x, pt.y)
# Returns if the point given is in the bounding box
def IsInSelection(self, rect):
return rect.InsideXY(self.BoundingBox.x, self.BoundingBox.y) and rect.InsideXY(self.BoundingBox.x + self.BoundingBox.width, self.BoundingBox.y + self.BoundingBox.height)
# Override this method for refreshing the bounding box
def RefreshBoundingBox(self):
pass
# Returns the bounding box
def GetBoundingBox(self):
return self.BoundingBox
# Change the variable that indicates if this element is selected
def SetSelected(self, selected):
self.Selected = selected
# Change the variable that indicates if this element is highlighted
def SetHighlighted(self, highlighted):
self.Highlighted = highlighted
# Test if the point is on a handle of this element
def TestHandle(self, pt):
extern_rect = wx.Rect(self.BoundingBox.x - HANDLE_SIZE - 2, self.BoundingBox.y - HANDLE_SIZE - 2,
self.BoundingBox.width + 2 * HANDLE_SIZE + 4, self.BoundingBox.height + 2 * HANDLE_SIZE + 4)
intern_rect = wx.Rect(self.BoundingBox.x - 2, self.BoundingBox.y - 2,
self.BoundingBox.width + 4, self.BoundingBox.height + 4)
# Verify that this element is selected
if self.Selected and extern_rect.InsideXY(pt.x, pt.y) and not intern_rect.InsideXY(pt.x, pt.y):
# Find if point is on a handle horizontally
if self.BoundingBox.x - HANDLE_SIZE - 2 <= pt.x < self.BoundingBox.x - 2:
handle_x = 1
elif self.BoundingBox.x + (self.BoundingBox.width - HANDLE_SIZE) / 2 <= pt.x < self.BoundingBox.x + (self.BoundingBox.width + HANDLE_SIZE) / 2:
handle_x = 2
elif self.BoundingBox.x + self.BoundingBox.width + 2 <= pt.x < self.BoundingBox.x + self.BoundingBox.width + HANDLE_SIZE + 2:
handle_x = 3
else:
handle_x = 0
# Find if point is on a handle vertically
if self.BoundingBox.y - HANDLE_SIZE - 2 <= pt.y < self.BoundingBox.y - 2:
handle_y = 1
elif self.BoundingBox.y + (self.BoundingBox.height - HANDLE_SIZE) / 2 <= pt.y < self.BoundingBox.y + (self.BoundingBox.height + HANDLE_SIZE) / 2:
handle_y = 2
elif self.BoundingBox.y + self.BoundingBox.height - 2 <= pt.y < self.BoundingBox.y + self.BoundingBox.height + HANDLE_SIZE + 2:
handle_y = 3
else:
handle_y = 0
# Verify that the result is valid
if (handle_x, handle_y) in VALID_HANDLES:
return handle_x, handle_y
return 0, 0
# Method called when a LeftDown event have been generated
def OnLeftDown(self, event, dc, scaling):
pos = event.GetLogicalPosition(dc)
# Test if an handle have been clicked
handle = self.TestHandle(pos)
# Find which type of handle have been clicked,
# Save a resize event and change the cursor
cursor = HANDLE_CURSORS.get(handle, 1)
if cursor != self.CurrentCursor:
self.Parent.SetCursor(CURSORS[cursor])
self.CurrentCursor = cursor
if cursor > 1:
self.Handle = (HANDLE_RESIZE, handle)
else:
self.Handle = (HANDLE_MOVE, None)
self.SetSelected(False)
# Initializes the last position
self.oldPos = GetScaledEventPosition(event, dc, scaling)
# Method called when a LeftUp event have been generated
def OnLeftUp(self, event, dc, scaling):
# If a dragging have been initiated
if self.Dragging and self.oldPos:
# Calculate the movement of cursor and refreshes the element state
pos = GetScaledEventPosition(event, dc, scaling)
movex = pos.x - self.oldPos.x
movey = pos.y - self.oldPos.y
self.ProcessDragging(movex, movey)
self.RefreshModel()
self.Parent.RefreshBuffer()
if self.CurrentCursor != 0:
self.Parent.SetCursor(CURSORS[0])
self.CurrentCursor = 0
self.SetSelected(True)
self.oldPos = None
# Method called when a RightUp event have been generated
def OnRightUp(self, event, dc, scaling):
self.SetSelected(True)
self.oldPos = None
# Method called when a LeftDClick event have been generated
def OnLeftDClick(self, event, dc, scaling):
pass
# Method called when a Motion event have been generated
def OnMotion(self, event, dc, scaling):
# If the cursor is dragging and the element have been clicked
if event.Dragging() and self.oldPos:
# Calculate the movement of cursor
pos = GetScaledEventPosition(event, dc, scaling)
movex = pos.x - self.oldPos.x
movey = pos.y - self.oldPos.y
# If movement is greater than MIN_MOVE then a dragging is initiated
if not self.Dragging and (abs(movex) > MIN_MOVE or abs(movey) > MIN_MOVE):
self.Dragging = True
# If a dragging have been initiated, refreshes the element state
if self.Dragging:
dragx, dragy = self.ProcessDragging(movex, movey)
self.oldPos.x += dragx
self.oldPos.y += dragy
return True
# If cursor just pass over the element, changes the cursor if it is on a handle
else:
pos = event.GetLogicalPosition(dc)
handle = self.TestHandle(pos)
# Find which type of handle have been clicked,
# Save a resize event and change the cursor
cursor = HANDLE_CURSORS.get(handle, 0)
if cursor != self.CurrentCursor:
self.Parent.SetCursor(CURSORS[cursor])
self.CurrentCursor = cursor
return False
# Moves the element
def Move(self, dx, dy, exclude = []):
self.Pos.x += dx
self.Pos.y += dy
self.RefreshConnected(exclude)
self.RefreshBoundingBox()
# Resizes the element from position and size given
def Resize(self, x, y, width, height):
self.Move(x, y)
self.SetSize(width, height)
# Refreshes the element state according to move defined and handle selected
def ProcessDragging(self, movex, movey):
handle_type, handle = self.Handle
# If it is a resize handle, calculate the values from resizing
if handle_type == HANDLE_RESIZE:
x = y = start_x = start_y = 0
width, height = start_width, start_height = self.GetSize()
if handle[0] == 1:
x = movex = max(-self.BoundingBox.x, movex)
width -= movex
elif handle[0] == 3:
width += movex
if handle[1] == 1:
y = movey = max(-self.BoundingBox.y, movey)
height -= movey
elif handle[1] == 3:
height += movey
# Verify that new size is not lesser than minimum
min_width, min_height = self.GetMinSize()
if handle[0] != 2 and (width >= min_width or width > self.Size[0]):
start_x = x
start_width = width
else:
movex = 0
if handle[1] != 2 and (height >= min_height or height > self.Size[1]):
start_y = y
start_height = height
else:
movey = 0
if movex != 0 or movey != 0:
self.Resize(start_x, start_y, start_width, start_height)
return movex, movey
# If it is a move handle, Move this element
elif handle_type == HANDLE_MOVE:
movex = max(-self.BoundingBox.x, movex)
movey = max(-self.BoundingBox.y, movey)
self.Move(movex, movey)
return movex, movey
return 0, 0
# Override this method for defining the method to call for refreshing the model of this element
def RefreshModel(self, move=True):
pass
# Draws the highlightment of this element if it is highlighted (can be overwritten)
def DrawHighlightment(self, dc):
if self.Highlighted:
dc.SetPen(wx.Pen(HIGHLIGHTCOLOR))
dc.SetBrush(wx.Brush(HIGHLIGHTCOLOR))
dc.DrawRectangle(self.Pos.x - 2, self.Pos.y - 2, self.Size.width + 5, self.Size.height + 5)
# Draws the handles of this element if it is selected
def Draw(self, dc):
if self.Selected:
dc.SetPen(wx.BLACK_PEN)
dc.SetBrush(wx.BLACK_BRUSH)
dc.DrawRectangle(self.BoundingBox.x - HANDLE_SIZE - 2, self.BoundingBox.y - HANDLE_SIZE - 2, HANDLE_SIZE, HANDLE_SIZE)
dc.DrawRectangle(self.BoundingBox.x + (self.BoundingBox.width - HANDLE_SIZE) / 2,
self.BoundingBox.y - HANDLE_SIZE - 2, HANDLE_SIZE, HANDLE_SIZE)
dc.DrawRectangle(self.BoundingBox.x + self.BoundingBox.width + 2,
self.BoundingBox.y - HANDLE_SIZE - 2, HANDLE_SIZE, HANDLE_SIZE)
dc.DrawRectangle(self.BoundingBox.x + self.BoundingBox.width + 2,
self.BoundingBox.y + (self.BoundingBox.height - HANDLE_SIZE) / 2, HANDLE_SIZE, HANDLE_SIZE)
dc.DrawRectangle(self.BoundingBox.x + self.BoundingBox.width + 2,
self.BoundingBox.y + self.BoundingBox.height + 2, HANDLE_SIZE, HANDLE_SIZE)
dc.DrawRectangle(self.BoundingBox.x + (self.BoundingBox.width - HANDLE_SIZE) / 2,
self.BoundingBox.y + self.BoundingBox.height + 2, HANDLE_SIZE, HANDLE_SIZE)
dc.DrawRectangle(self.BoundingBox.x - HANDLE_SIZE - 2, self.BoundingBox.y + self.BoundingBox.height + 2, HANDLE_SIZE, HANDLE_SIZE)
dc.DrawRectangle(self.BoundingBox.x - HANDLE_SIZE - 2, self.BoundingBox.y + (self.BoundingBox.height - HANDLE_SIZE) / 2, HANDLE_SIZE, HANDLE_SIZE)
#-------------------------------------------------------------------------------
# Group of graphic elements
#-------------------------------------------------------------------------------
"""
Class that implements a group of graphic elements
"""
class Graphic_Group(Graphic_Element):
# Create a new group of graphic elements
def __init__(self, parent):
Graphic_Element.__init__(self, parent)
self.Elements = []
self.RefreshWireExclusion()
self.RefreshBoundingBox()
# Destructor
def __del__(self):
self.Elements = []
# Refresh the list of wire excluded
def RefreshWireExclusion(self):
self.WireExcluded = []
for element in self.Elements:
if isinstance(element, Wire):
startblock = element.StartConnected.GetParentBlock()
endblock = element.EndConnected.GetParentBlock()
if startblock in self.Elements and endblock in self.Elements:
self.WireExcluded.append(element)
# Make a clone of this group
def Clone(self):
clone = Graphic_Group(self.Parent)
elements = []
# Makes a clone of all the elements in this group
for element in self.Elements:
elements.append(element.Clone())
clone.SetElements(elements)
return clone
# Clean this group of elements
def Clean(self):
# Clean all the elements of the group
for element in self.Elements:
element.Clean()
# Delete this group of elements
def Delete(self):
# Delete all the elements of the group
for element in self.Elements:
element.Delete()
self.WireExcluded = []
# Returns if the point given is in the bounding box of one of the elements of this group
def HitTest(self, pt):
result = False
for element in self.Elements:
result |= element.HitTest(pt)
return result
# Returns if the element given is in this group
def IsElementIn(self, element):
return element in self.Elements
# Change the elements of the group
def SetElements(self, elements):
self.Elements = elements
self.RefreshWireExclusion()
self.RefreshBoundingBox()
# Returns the elements of the group
def GetElements(self):
return self.Elements
# Align the group elements
def AlignElements(self, horizontally, vertically):
minx = self.BoundingBox.x + self.BoundingBox.width
miny = self.BoundingBox.y + self.BoundingBox.height
maxx = self.BoundingBox.x
maxy = self.BoundingBox.y
for element in self.Elements:
if not isinstance(element, Wire):
posx, posy = element.GetPosition()
width, height = element.GetSize()
minx = min(minx, posx)
miny = min(miny, posy)
maxx = max(maxx, posx + width)
maxy = max(maxy, posy + height)
for element in self.Elements:
if not isinstance(element, Wire):
posx, posy = element.GetPosition()
width, height = element.GetSize()
movex = movey = 0
if horizontally == ALIGN_LEFT:
movex = minx - posx
elif horizontally == ALIGN_CENTER:
movex = (maxx + minx - width) / 2 - posx
elif horizontally == ALIGN_RIGHT:
movex = maxx - width - posx
if vertically == ALIGN_TOP:
movey = miny - posy
elif vertically == ALIGN_MIDDLE:
movey = (maxy + miny - height) / 2 - posy
elif vertically == ALIGN_BOTTOM:
movey = maxy - height - posy
if movex != 0 or movey != 0:
element.Move(movex, movey)
element.RefreshModel()
self.RefreshWireExclusion()
self.RefreshBoundingBox()
# Remove or select the given element if it is or not in the group
def SelectElement(self, element):
if element in self.Elements:
self.Elements.remove(element)
else:
self.Elements.append(element)
self.RefreshWireExclusion()
self.RefreshBoundingBox()
# Move this group of elements
def Move(self, movex, movey):
# Move all the elements of the group
for element in self.Elements:
if not isinstance(element, Wire):
element.Move(movex, movey, self.WireExcluded)
elif element in self.WireExcluded:
element.Move(movex, movey, True)
self.RefreshBoundingBox()
# Refreshes the bounding box of this group of elements
def RefreshBoundingBox(self):
if len(self.Elements) > 0:
bbox = self.Elements[0].GetBoundingBox()
minx, miny = bbox.x, bbox.y
maxx = bbox.x + bbox.width
maxy = bbox.y + bbox.height
for element in self.Elements[1:]:
bbox = element.GetBoundingBox()
minx = min(minx, bbox.x)
miny = min(miny, bbox.y)
maxx = max(maxx, bbox.x + bbox.width)
maxy = max(maxy, bbox.y + bbox.height)
self.BoundingBox = wx.Rect(minx, miny, maxx - minx, maxy - miny)
else:
self.BoundingBox = wx.Rect(0, 0, 0, 0)
# Forbids to change the group position
def SetPosition(x, y):
pass
# Returns the position of this group
def GetPosition(self):
return self.BoundingBox.x, self.BoundingBox.y
# Forbids to change the group size
def SetSize(width, height):
pass
# Returns the size of this group
def GetSize(self):
return self.BoundingBox.width, self.BoundingBox.height
# Change the variable that indicates if this element is highlighted
def SetHighlighted(self, highlighted):
for element in self.Elements:
element.SetHighlighted(highlighted)
# Change the variable that indicates if the elemente is selected
def SetSelected(self, selected):
for element in self.Elements:
element.SetSelected(selected)
# Method called when a RightUp event has been generated
def OnRightUp(self, event, dc, scaling):
# Popup the menu with special items for a group
self.Parent.PopupGroupMenu()
# Refreshes the model of all the elements of this group
def RefreshModel(self):
for element in self.Elements:
element.RefreshModel()
#-------------------------------------------------------------------------------
# Connector for all types of blocks
#-------------------------------------------------------------------------------
"""
Class that implements a connector for any type of block
"""
class Connector:
# Create a new connector
def __init__(self, parent, name, type, position, direction, negated = False, edge = "none", onlyone = False):
self.ParentBlock = parent
self.Name = name
self.Type = type
self.Pos = position
self.Direction = direction
self.Wires = []
if IsOfType("BOOL", type):
self.Negated = negated
self.Edge = edge
else:
self.Negated = False
self.Edge = "none"
self.OneConnected = onlyone
self.Pen = wx.BLACK_PEN
self.RefreshNameSize()
# Change the connector pen
def SetPen(self, pen):
self.Pen = pen
# Make a clone of the connector
def Clone(self, parent = None):
if parent is None:
parent = self.ParentBlock
return Connector(parent, self.Name, self.Type, wx.Point(self.Pos[0], self.Pos[1]),
self.Direction, self.Negated)
# Returns the connector parent block
def GetParentBlock(self):
return self.ParentBlock
# Returns the connector type
def GetType(self, raw = False):
if IsEndType(self.Type) or raw:
return self.Type
elif (self.Negated or self.Edge != "none") and IsOfType("BOOL", self.Type):
return "BOOL"
else:
return self.ParentBlock.GetConnectionResultType(self, self.Type)
# Returns the connector type
def GetConnectedType(self):
if IsEndType(self.Type):
return self.Type
elif len(self.Wires) == 1:
return self.Wires[0][0].GetOtherConnectedType(self.Wires[0][1])
return self.Type
# Returns if connector type is compatible with type given
def IsCompatible(self, type):
reference = self.GetType()
return IsOfType(type, reference) or IsOfType(reference, type)
# Changes the connector name
def SetType(self, type):
self.Type = type
# Returns the connector name
def GetName(self):
return self.Name
# Changes the connector name
def SetName(self, name):
self.Name = name
self.RefreshNameSize()
def SetValue(self, value):
for wire, handle in self.Wires:
wire.SetValue(value)
# Changes the connector name size
def RefreshNameSize(self):
if self.Name != "":
dc = wx.ClientDC(self.ParentBlock.Parent)
self.NameSize = dc.GetTextExtent(self.Name)
else:
self.NameSize = 0, 0
# Returns the connector name size
def GetNameSize(self):
return self.NameSize
# Returns the wires connected to the connector
def GetWires(self):
return self.Wires
# Returns the parent block Id
def GetBlockId(self):
return self.ParentBlock.GetId()
# Returns the connector relative position
def GetRelPosition(self):
return self.Pos
# Returns the connector absolute position
def GetPosition(self, size = True):
parent_pos = self.ParentBlock.GetPosition()
# If the position of the end of the connector is asked
if size:
x = parent_pos[0] + self.Pos.x + self.Direction[0] * CONNECTOR_SIZE
y = parent_pos[1] + self.Pos.y + self.Direction[1] * CONNECTOR_SIZE
else:
x = parent_pos[0] + self.Pos.x
y = parent_pos[1] + self.Pos.y
return wx.Point(x, y)
# Change the connector relative position
def SetPosition(self, pos):
self.Pos = pos
# Returns the connector direction
def GetDirection(self):
return self.Direction
# Change the connector direction
def SetDirection(self, direction):
self.Direction = direction
# Connect a wire to this connector at the last place
def Connect(self, wire, refresh = True):
self.InsertConnect(len(self.Wires), wire, refresh)
# Connect a wire to this connector at the place given
def InsertConnect(self, idx, wire, refresh = True):
if wire not in self.Wires:
self.Wires.insert(idx, wire)
if refresh:
self.ParentBlock.RefreshModel(False)
# Returns the index of the wire given in the list of connected
def GetWireIndex(self, wire):
for i, (tmp_wire, handle) in enumerate(self.Wires):
if tmp_wire == wire:
return i
return None
# Unconnect a wire or all wires connected to the connector
def UnConnect(self, wire = None, unconnect = True, delete = False):
i = 0
found = False
while i < len(self.Wires) and not found:
if not wire or self.Wires[i][0] == wire:
# If Unconnect haven't been called from a wire, disconnect the connector in the wire
if unconnect:
if self.Wires[i][1] == 0:
self.Wires[i][0].UnConnectStartPoint(delete)
else:
self.Wires[i][0].UnConnectEndPoint(delete)
# Remove wire from connected
if wire:
self.Wires.pop(i)
found = True
i += 1
# If no wire defined, unconnect all wires
if not wire:
self.Wires = []
self.ParentBlock.RefreshModel(False)
# Returns if connector has one or more wire connected
def IsConnected(self):
return len(self.Wires) > 0
# Move the wires connected
def MoveConnected(self, exclude = []):
if len(self.Wires) > 0:
# Calculate the new position of the end point
parent_pos = self.ParentBlock.GetPosition()
x = parent_pos[0] + self.Pos.x + self.Direction[0] * CONNECTOR_SIZE
y = parent_pos[1] + self.Pos.y + self.Direction[1] * CONNECTOR_SIZE
# Move the corresponding point on all the wires connected
for wire, index in self.Wires:
if wire not in exclude:
if index == 0:
wire.MoveStartPoint(wx.Point(x, y))
else:
wire.MoveEndPoint(wx.Point(x, y))
# Refreshes the model of all the wires connected
def RefreshWires(self):
for wire in self.Wires:
wire[0].RefreshModel()
# Refreshes the parent block model
def RefreshParentBlock(self):
self.ParentBlock.RefreshModel(False)
# Highlight the parent block
def HighlightParentBlock(self, highlight):
self.ParentBlock.SetHighlighted(highlight)
# Returns all the blocks connected to this connector
def GetConnectedBlocks(self):
blocks = []
for wire, handle in self.Wires:
# Get other connector connected to each wire
if handle == 0:
connector = wire.GetEndConnected()
else:
connector = wire.GetStartConnected()
# Get parent block for this connector
if connector:
block = connector.GetParentBlock()
if block not in blocks:
blocks.append(block)
return blocks
# Returns the connector negated property
def IsNegated(self):
return self.Negated
# Changes the connector negated property
def SetNegated(self, negated):
if IsOfType("BOOL", self.Type):
self.Negated = negated
self.Edge = "none"
# Returns the connector edge property
def GetEdge(self):
return self.Edge
# Changes the connector edge property
def SetEdge(self, edge):
if IsOfType("BOOL", self.Type):
self.Edge = edge
self.Negated = False
# Tests if the point given is near from the end point of this connector
def TestPoint(self, pt, exclude = True):
parent_pos = self.ParentBlock.GetPosition()
if not (len(self.Wires) > 0 and self.OneConnected and exclude):
# Calculate a square around the end point of this connector
x = parent_pos[0] + self.Pos.x + self.Direction[0] * CONNECTOR_SIZE - ANCHOR_DISTANCE
y = parent_pos[1] + self.Pos.y + self.Direction[1] * CONNECTOR_SIZE - ANCHOR_DISTANCE
width = ANCHOR_DISTANCE * 2 + abs(self.Direction[0]) * CONNECTOR_SIZE
height = ANCHOR_DISTANCE * 2 + abs(self.Direction[1]) * CONNECTOR_SIZE
rect = wx.Rect(x, y, width, height)
return rect.InsideXY(pt.x, pt.y)
return False
# Draws the highlightment of this element if it is highlighted
def DrawHighlightment(self, dc):
dc.SetPen(wx.Pen(HIGHLIGHTCOLOR))
dc.SetBrush(wx.Brush(HIGHLIGHTCOLOR))
parent_pos = self.ParentBlock.GetPosition()
posx = parent_pos[0] + self.Pos.x
posy = parent_pos[1] + self.Pos.y
width = CONNECTOR_SIZE
height = CONNECTOR_SIZE
if self.Direction[0] < 0:
posx += CONNECTOR_SIZE * self.Direction[0]
elif self.Direction[0] == 0:
posx -= 2
width = 5
if self.Direction[1] < 0:
posy += CONNECTOR_SIZE * self.Direction[1]
elif self.Direction[1] == 0:
posy -= 2
height = 5
dc.DrawRectangle(posx, posy, width, height)
# Draws the connector
def Draw(self, dc):
dc.SetPen(self.Pen)
dc.SetBrush(wx.WHITE_BRUSH)
parent_pos = self.ParentBlock.GetPosition()
if self.Negated:
# If connector is negated, draw a circle
xcenter = parent_pos[0] + self.Pos.x + (CONNECTOR_SIZE * self.Direction[0]) / 2
ycenter = parent_pos[1] + self.Pos.y + (CONNECTOR_SIZE * self.Direction[1]) / 2
dc.DrawCircle(xcenter, ycenter, CONNECTOR_SIZE / 2)
else:
xstart = parent_pos[0] + self.Pos.x
ystart = parent_pos[1] + self.Pos.y
if self.Edge == "rising":
# If connector has a rising edge, draw a right arrow
dc.DrawLine(xstart, ystart, xstart - 4, ystart - 4)
dc.DrawLine(xstart, ystart, xstart - 4, ystart + 4)
elif self.Edge == "falling":
# If connector has a falling edge, draw a left arrow
dc.DrawLine(xstart, ystart, xstart + 4, ystart - 4)
dc.DrawLine(xstart, ystart, xstart + 4, ystart + 4)
xend = xstart + CONNECTOR_SIZE * self.Direction[0]
yend = ystart + CONNECTOR_SIZE * self.Direction[1]
dc.DrawLine(xstart + self.Direction[0], ystart + self.Direction[1], xend, yend)
if self.Direction[0] != 0:
ytext = parent_pos[1] + self.Pos.y - self.NameSize[1] / 2
if self.Direction[0] < 0:
xtext = parent_pos[0] + self.Pos.x + 5
else:
xtext = parent_pos[0] + self.Pos.x - (self.NameSize[0] + 5)
if self.Direction[1] != 0:
xtext = parent_pos[0] + self.Pos.x - self.NameSize[0] / 2
if self.Direction[1] < 0:
ytext = parent_pos[1] + self.Pos.y + 5
else:
ytext = parent_pos[1] + self.Pos.y - (self.NameSize[1] + 5)
# Draw the text
dc.DrawText(self.Name, xtext, ytext)
#-------------------------------------------------------------------------------
# Common Wire Element
#-------------------------------------------------------------------------------
"""
Class that implements a wire for connecting two blocks
"""
class Wire(Graphic_Element):
# Create a new wire
def __init__(self, parent, start = None, end = None):
Graphic_Element.__init__(self, parent)
self.StartPoint = start
self.EndPoint = end
self.StartConnected = None
self.EndConnected = None
# If the start and end points are defined, calculate the wire
if start and end:
self.ResetPoints()
self.GeneratePoints()
else:
self.Points = []
self.Segments = []
self.SelectedSegment = None
self.Value = None
self.OverStart = False
self.OverEnd = False
# Destructor of a wire
def __del__(self):
self.StartConnected = None
self.EndConnected = None
# Forbids to change the wire position
def SetPosition(x, y):
pass
# Forbids to change the wire size
def SetSize(width, height):
pass
# Returns connector to which start point is connected
def GetStartConnected(self):
return self.StartConnected
# Returns connector to which start point is connected
def GetStartConnectedType(self):
if self.StartConnected:
return self.StartConnected.GetType()
return None
# Returns connector to which end point is connected
def GetEndConnected(self):
return self.EndConnected
# Returns connector to which end point is connected
def GetEndConnectedType(self):
if self.EndConnected:
return self.EndConnected.GetType()
return None
def GetOtherConnectedType(self, handle):
if handle == 0:
return self.GetEndConnectedType()
else:
return self.GetStartConnectedType()
def IsConnectedCompatible(self):
if self.StartConnected:
return self.StartConnected.IsCompatible(self.GetEndConnectedType())
elif self.EndConnected:
return True
return False
def SetValue(self, value):
self.Value = value
# Unconnect the start and end points
def Clean(self):
if self.StartConnected:
self.UnConnectStartPoint()
if self.EndConnected:
self.UnConnectEndPoint()
# Delete this wire by calling the corresponding method
def Delete(self):
self.Parent.DeleteWire(self)
# Select a segment and not the whole wire. It's useful for Ladder Diagram
def SetSelectedSegment(self, segment):
# The last segment is indicated
if segment == -1:
segment = len(self.Segments) - 1
# The selected segment is reinitialised
if segment == None:
if self.StartConnected:
self.StartConnected.SetPen(wx.BLACK_PEN)
if self.EndConnected:
self.EndConnected.SetPen(wx.BLACK_PEN)
# The segment selected is the first
elif segment == 0:
if self.StartConnected:
self.StartConnected.SetPen(wx.RED_PEN)
if self.EndConnected:
# There is only one segment
if len(self.Segments) == 1:
self.EndConnected.SetPen(wx.RED_PEN)
else:
self.EndConnected.SetPen(wx.BLACK_PEN)
# The segment selected is the last
elif segment == len(self.Segments) - 1:
if self.StartConnected:
self.StartConnected.SetPen(wx.BLACK_PEN)
if self.EndConnected:
self.EndConnected.SetPen(wx.RED_PEN)
self.SelectedSegment = segment
# Reinitialize the wire points
def ResetPoints(self):
if self.StartPoint and self.EndPoint:
self.Points = [self.StartPoint[0], self.EndPoint[0]]
self.Segments = [self.StartPoint[1]]
else:
self.Points = []
self.Segments = []
# Refresh the wire bounding box
def RefreshBoundingBox(self):
if len(self.Points) > 0:
# If startpoint or endpoint is connected, save the point radius
start_radius = end_radius = 0
if not self.StartConnected:
start_radius = POINT_RADIUS
if not self.EndConnected:
end_radius = POINT_RADIUS
# Initialize minimum and maximum from the first point
minx, minbbxx = self.Points[0].x, self.Points[0].x - start_radius
maxx, maxbbxx = self.Points[0].x, self.Points[0].x + start_radius
miny, minbbxy = self.Points[0].y, self.Points[0].y - start_radius
maxy, maxbbxy = self.Points[0].y, self.Points[0].y + start_radius
# Actualize minimum and maximum with the other points
for point in self.Points[1:-1]:
minx, minbbxx = min(minx, point.x), min(minbbxx, point.x)
maxx, maxbbxx = max(maxx, point.x), max(maxbbxx, point.x)
miny, minbbxy = min(miny, point.y), min(minbbxy, point.y)
maxy, maxbbxy = max(maxy, point.y), max(maxbbxy, point.y)
if len(self.Points) > 1:
minx, minbbxx = min(minx, self.Points[-1].x), min(minbbxx, self.Points[-1].x - end_radius)
maxx, maxbbxx = max(maxx, self.Points[-1].x), max(maxbbxx, self.Points[-1].x + end_radius)
miny, minbbxy = min(miny, self.Points[-1].y), min(minbbxy, self.Points[-1].y - end_radius)
maxy, maxbbxy = max(maxy, self.Points[-1].y), max(maxbbxy, self.Points[-1].y + end_radius)
self.Pos.x, self.Pos.y = minx, miny
self.Size = wx.Size(maxx - minx + 1, maxy - miny + 1)
self.BoundingBox = wx.Rect(minbbxx, minbbxy, maxbbxx - minbbxx + 1, maxbbxy - minbbxy + 1)
# Refresh the realpoints that permits to keep the proportionality in wire during resizing
def RefreshRealPoints(self):
if len(self.Points) > 0:
self.RealPoints = []
# Calculate float relative position of each point with the minimum point
for point in self.Points:
self.RealPoints.append([float(point.x - self.Pos.x), float(point.y - self.Pos.y)])
# Returns the wire minimum size
def GetMinSize(self):
width = 1
height = 1
dir_product = product(self.StartPoint[1], self.EndPoint[1])
# The directions are opposed
if dir_product < 0:
if self.StartPoint[0] != 0:
width = MIN_SEGMENT_SIZE * 2
if self.StartPoint[1] != 0:
height = MIN_SEGMENT_SIZE * 2
# The directions are the same
elif dir_product > 0:
if self.StartPoint[0] != 0:
width = MIN_SEGMENT_SIZE
if self.StartPoint[1] != 0:
height = MIN_SEGMENT_SIZE
# The directions are perpendiculars
else:
width = MIN_SEGMENT_SIZE
height = MIN_SEGMENT_SIZE
return width + 1, height + 1
# Returns if the point given is on one of the wire segments
def HitTest(self, pt):
test = False
for i in xrange(len(self.Points) - 1):
rect = wx.Rect(0, 0, 0, 0)
x1, y1 = self.Points[i].x, self.Points[i].y
x2, y2 = self.Points[i + 1].x, self.Points[i + 1].y
# Calculate a rectangle around the segment
rect = wx.Rect(min(x1, x2) - ANCHOR_DISTANCE, min(y1, y2) - ANCHOR_DISTANCE,
abs(x1 - x2) + 2 * ANCHOR_DISTANCE, abs(y1 - y2) + 2 * ANCHOR_DISTANCE)
test |= rect.InsideXY(pt.x, pt.y)
return test
# Returns the wire start or end point if the point given is on one of them
def TestPoint(self, pt):
# Test the wire start point
rect = wx.Rect(self.Points[0].x - ANCHOR_DISTANCE, self.Points[0].y - ANCHOR_DISTANCE,
2 * ANCHOR_DISTANCE, 2 * ANCHOR_DISTANCE)
if rect.InsideXY(pt.x, pt.y):
return 0
# Test the wire end point
if len(self.Points) > 1:
rect = wx.Rect(self.Points[-1].x - ANCHOR_DISTANCE, self.Points[-1].y - ANCHOR_DISTANCE,
2 * ANCHOR_DISTANCE, 2 * ANCHOR_DISTANCE)
if rect.InsideXY(pt.x, pt.y):
return -1
return None
# Returns the wire segment if the point given is on it
def TestSegment(self, pt, all=False):
for i in xrange(len(self.Segments)):
# If wire is not in a Ladder Diagram, first and last segments are excluded
if 0 < i < len(self.Segments) - 1 or all:
x1, y1 = self.Points[i].x, self.Points[i].y
x2, y2 = self.Points[i + 1].x, self.Points[i + 1].y
# Calculate a rectangle around the segment
rect = wx.Rect(min(x1, x2) - ANCHOR_DISTANCE, min(y1, y2) - ANCHOR_DISTANCE,
abs(x1 - x2) + 2 * ANCHOR_DISTANCE, abs(y1 - y2) + 2 * ANCHOR_DISTANCE)
if rect.InsideXY(pt.x, pt.y):
return i, self.Segments[i]
return None
# Define the wire points
def SetPoints(self, points):
if len(points) > 1:
self.Points = [wx.Point(x, y) for x, y in points]
# Calculate the start and end directions
self.StartPoint = [None, vector(self.Points[0], self.Points[1])]
self.EndPoint = [None, vector(self.Points[-1], self.Points[-2])]
# Calculate the start and end points
self.StartPoint[0] = wx.Point(self.Points[0].x + CONNECTOR_SIZE * self.StartPoint[1][0],
self.Points[0].y + CONNECTOR_SIZE * self.StartPoint[1][1])
self.EndPoint[0] = wx.Point(self.Points[-1].x + CONNECTOR_SIZE * self.EndPoint[1][0],
self.Points[-1].y + CONNECTOR_SIZE * self.EndPoint[1][1])
self.Points[0] = self.StartPoint[0]
self.Points[-1] = self.EndPoint[0]
# Calculate the segments directions
self.Segments = []
for i in xrange(len(self.Points) - 1):
self.Segments.append(vector(self.Points[i], self.Points[i + 1]))
self.RefreshBoundingBox()
self.RefreshRealPoints()
# Returns the position of the point indicated
def GetPoint(self, index):
if index < len(self.Points):
return self.Points[index].x, self.Points[index].y
return None
# Returns a list of the position of all wire points
def GetPoints(self, invert = False):
points = self.VerifyPoints()
points[0] = wx.Point(points[0].x - CONNECTOR_SIZE * self.StartPoint[1][0],
points[0].y - CONNECTOR_SIZE * self.StartPoint[1][1])
points[-1] = wx.Point(points[-1].x - CONNECTOR_SIZE * self.EndPoint[1][0],
points[-1].y - CONNECTOR_SIZE * self.EndPoint[1][1])
# An inversion of the list is asked
if invert:
points.reverse()
return points
# Returns the position of the two selected segment points
def GetSelectedSegmentPoints(self):
if self.SelectedSegment != None and len(self.Points) > 1:
return self.Points[self.SelectedSegment:self.SelectedSegment + 2]
return []
# Returns if the selected segment is the first and/or the last of the wire
def GetSelectedSegmentConnections(self):
if self.SelectedSegment != None and len(self.Points) > 1:
return self.SelectedSegment == 0, self.SelectedSegment == len(self.Segments) - 1
return (True, True)
# Returns the connectors on which the wire is connected
def GetConnected(self):
connected = []
if self.StartConnected and self.StartPoint[1] == WEST:
connected.append(self.StartConnected)
if self.EndConnected and self.EndPoint[1] == WEST:
connected.append(self.EndConnected)
return connected
# Returns the id of the block connected to the first or the last wire point
def GetConnectedInfos(self, index):
if index == 0 and self.StartConnected:
return self.StartConnected.GetBlockId(), self.StartConnected.GetName()
elif index == -1 and self.EndConnected:
return self.EndConnected.GetBlockId(), self.EndConnected.GetName()
return None
# Update the wire points position by keeping at most possible the current positions
def GeneratePoints(self, realpoints = True):
i = 0
# Calculate the start enad end points with the minimum segment size in the right direction
end = wx.Point(self.EndPoint[0].x + self.EndPoint[1][0] * MIN_SEGMENT_SIZE,
self.EndPoint[0].y + self.EndPoint[1][1] * MIN_SEGMENT_SIZE)
start = wx.Point(self.StartPoint[0].x + self.StartPoint[1][0] * MIN_SEGMENT_SIZE,
self.StartPoint[0].y + self.StartPoint[1][1] * MIN_SEGMENT_SIZE)
# Evaluate the point till it's the last
while i < len(self.Points) - 1:
# The next point is the last
if i + 1 == len(self.Points) - 1:
# Calculate the direction from current point to end point
v_end = vector(self.Points[i], end)
# The current point is the first
if i == 0:
# If the end point is not in the start direction, a point is added
if v_end != self.Segments[0] or v_end == self.EndPoint[1]:
self.Points.insert(1, wx.Point(start.x, start.y))
self.Segments.insert(1, DirectionChoice((self.Segments[0][1],
self.Segments[0][0]), v_end, self.EndPoint[1]))
# The current point is the second
elif i == 1:
# The previous direction and the target direction are mainly opposed, a point is added
if product(v_end, self.Segments[0]) < 0:
self.Points.insert(2, wx.Point(self.Points[1].x, self.Points[1].y))
self.Segments.insert(2, DirectionChoice((self.Segments[1][1],
self.Segments[1][0]), v_end, self.EndPoint[1]))
# The previous direction and the end direction are the same or they are
# perpendiculars and the end direction points towards current segment
elif product(self.Segments[0], self.EndPoint[1]) >= 0 and product(self.Segments[1], self.EndPoint[1]) <= 0:
# Current point and end point are aligned
if self.Segments[0][0] != 0:
self.Points[1].x = end.x
if self.Segments[0][1] != 0:
self.Points[1].y = end.y
# If the previous direction and the end direction are the same, a point is added
if product(self.Segments[0], self.EndPoint[1]) > 0:
self.Points.insert(2, wx.Point(self.Points[1].x, self.Points[1].y))
self.Segments.insert(2, DirectionChoice((self.Segments[1][1],
self.Segments[1][0]), v_end, self.EndPoint[1]))
else:
# Current point is positioned in the middle of start point
# and end point on the current direction and a point is added
if self.Segments[0][0] != 0:
self.Points[1].x = (end.x + start.x) / 2
if self.Segments[0][1] != 0:
self.Points[1].y = (end.y + start.y) / 2
self.Points.insert(2, wx.Point(self.Points[1].x, self.Points[1].y))
self.Segments.insert(2, DirectionChoice((self.Segments[1][1],
self.Segments[1][0]), v_end, self.EndPoint[1]))
else:
# The previous direction and the end direction are perpendiculars
if product(self.Segments[i - 1], self.EndPoint[1]) == 0:
# The target direction and the end direction aren't mainly the same
if product(v_end, self.EndPoint[1]) <= 0:
# Current point and end point are aligned
if self.Segments[i - 1][0] != 0:
self.Points[i].x = end.x
if self.Segments[i - 1][1] != 0:
self.Points[i].y = end.y
# Previous direction is updated from the new point
if product(vector(self.Points[i - 1], self.Points[i]), self.Segments[i - 1]) < 0:
self.Segments[i - 1] = (-self.Segments[i - 1][0], -self.Segments[i - 1][1])
else:
test = True
# If the current point is the third, test if the second
# point can be aligned with the end point
if i == 2:
test_point = wx.Point(self.Points[1].x, self.Points[1].y)
if self.Segments[1][0] != 0:
test_point.y = end.y
if self.Segments[1][1] != 0:
test_point.x = end.x
vector_test = vector(self.Points[0], test_point, False)
test = norm(vector_test) > MIN_SEGMENT_SIZE and product(self.Segments[0], vector_test) > 0
# The previous point can be aligned
if test:
self.Points[i].x, self.Points[i].y = end.x, end.y
if self.Segments[i - 1][0] != 0:
self.Points[i - 1].y = end.y
if self.Segments[i - 1][1] != 0:
self.Points[i - 1].x = end.x
self.Segments[i] = (-self.EndPoint[1][0], -self.EndPoint[1][1])
else:
# Current point is positioned in the middle of previous point
# and end point on the current direction and a point is added
if self.Segments[1][0] != 0:
self.Points[2].x = (self.Points[1].x + end.x) / 2
if self.Segments[1][1] != 0:
self.Points[2].y = (self.Points[1].y + end.y) / 2
self.Points.insert(3, wx.Point(self.Points[2].x, self.Points[2].y))
self.Segments.insert(3, DirectionChoice((self.Segments[2][1],
self.Segments[2][0]), v_end, self.EndPoint[1]))
else:
# Current point is aligned with end point
if self.Segments[i - 1][0] != 0:
self.Points[i].x = end.x
if self.Segments[i - 1][1] != 0:
self.Points[i].y = end.y
# Previous direction is updated from the new point
if product(vector(self.Points[i - 1], self.Points[i]), self.Segments[i - 1]) < 0:
self.Segments[i - 1] = (-self.Segments[i - 1][0], -self.Segments[i - 1][1])
# If previous direction and end direction are opposed
if product(self.Segments[i - 1], self.EndPoint[1]) < 0:
# Current point is positioned in the middle of previous point
# and end point on the current direction
if self.Segments[i - 1][0] != 0:
self.Points[i].x = (end.x + self.Points[i - 1].x) / 2
if self.Segments[i - 1][1] != 0:
self.Points[i].y = (end.y + self.Points[i - 1].y) / 2
# A point is added
self.Points.insert(i + 1, wx.Point(self.Points[i].x, self.Points[i].y))
self.Segments.insert(i + 1, DirectionChoice((self.Segments[i][1],
self.Segments[i][0]), v_end, self.EndPoint[1]))
else:
# Current point is the first, and second is not mainly in the first direction
if i == 0 and product(vector(start, self.Points[1]), self.Segments[0]) < 0:
# If first and second directions aren't perpendiculars, a point is added
if product(self.Segments[0], self.Segments[1]) != 0:
self.Points.insert(1, wx.Point(start.x, start.y))
self.Segments.insert(1, DirectionChoice((self.Segments[0][1],
self.Segments[0][0]), vector(start, self.Points[1]), self.Segments[1]))
else:
self.Points[1].x, self.Points[1].y = start.x, start.y
else:
# Next point is aligned with current point
if self.Segments[i][0] != 0:
self.Points[i + 1].y = self.Points[i].y
if self.Segments[i][1] != 0:
self.Points[i + 1].x = self.Points[i].x
# Current direction is updated from the new point
if product(vector(self.Points[i], self.Points[i + 1]), self.Segments[i]) < 0:
self.Segments[i] = (-self.Segments[i][0], -self.Segments[i][1])
i += 1
self.RefreshBoundingBox()
if realpoints:
self.RefreshRealPoints()
# Verify that two consecutive points haven't the same position
def VerifyPoints(self):
points = [point for point in self.Points]
segments = [segment for segment in self.Segments]
i = 1
while i < len(points) - 1:
if points[i] == points[i + 1] and segments[i - 1] == segments[i + 1]:
for j in xrange(2):
points.pop(i)
segments.pop(i)
else:
i += 1
# If the wire isn't in a Ladder Diagram, save the new point list
if self.Parent.__class__.__name__ != "LD_Viewer":
self.Points = [point for point in points]
self.Segments = [segment for segment in segments]
self.RefreshBoundingBox()
self.RefreshRealPoints()
return points
# Moves all the wire points except the first and the last if they are connected
def Move(self, dx, dy, endpoints = False):
for i, point in enumerate(self.Points):
if endpoints or not (i == 0 and self.StartConnected) and not (i == len(self.Points) - 1 and self.EndConnected):
point.x += dx
point.y += dy
self.StartPoint[0] = self.Points[0]
self.EndPoint[0] = self.Points[-1]
self.GeneratePoints()
# Resize the wire from position and size given
def Resize(self, x, y, width, height):
if len(self.Points) > 1:
# Calculate the new position of each point for testing the new size
minx, miny = self.Pos.x, self.Pos.y
lastwidth, lastheight = self.Size.width, self.Size.height
for i, point in enumerate(self.RealPoints):
# If start or end point is connected, it's not calculate
if not (i == 0 and self.StartConnected) and not (i == len(self.Points) - 1 and self.EndConnected):
if i == 0:
dir = self.StartPoint[1]
elif i == len(self.Points) - 1:
dir = self.EndPoint[1]
else:
dir = (0, 0)
pointx = max(-dir[0] * MIN_SEGMENT_SIZE, min(int(round(point[0] * (width - 1) / float(lastwidth - 1))),
width - dir[0] * MIN_SEGMENT_SIZE - 1))
pointy = max(-dir[1] * MIN_SEGMENT_SIZE, min(int(round(point[1] * (height - 1) / float(lastheight - 1))),
height - dir[1] * MIN_SEGMENT_SIZE - 1))
self.Points[i] = wx.Point(minx + x + pointx, miny + y + pointy)
self.StartPoint[0] = self.Points[0]
self.EndPoint[0] = self.Points[-1]
self.GeneratePoints(False)
# Test if the wire position or size have changed
if x != 0 and minx == self.Pos.x:
x = 0
width = lastwidth
if y != 0 and miny == self.Pos.y:
y = 0
height = lastwidth
if width != lastwidth and lastwidth == self.Size.width:
width = lastwidth
if height != lastheight and lastheight == self.Size.height:
height = lastheight
# Calculate the real points from the new size, it's important for
# keeping a proportionality in the points position with the size
# duringa resize dragging
for i, point in enumerate(self.RealPoints):
if not (i == 0 and self.StartConnected) and not (i == len(self.Points) - 1 and self.EndConnected):
point[0] = point[0] * (width - 1) / float(lastwidth - 1)
point[1] = point[1] * (height - 1) / float(lastheight - 1)
# Calculate the correct position of the points from real points
for i, point in enumerate(self.RealPoints):
if not (i == 0 and self.StartConnected) and not (i == len(self.Points) - 1 and self.EndConnected):
if i == 0:
dir = self.StartPoint[1]
elif i == len(self.Points) - 1:
dir = self.EndPoint[1]
else:
dir = (0, 0)
realpointx = max(-dir[0] * MIN_SEGMENT_SIZE, min(int(round(point[0])),
width - dir[0] * MIN_SEGMENT_SIZE - 1))
realpointy = max(-dir[1] * MIN_SEGMENT_SIZE, min(int(round(point[1])),
height - dir[1] * MIN_SEGMENT_SIZE - 1))
self.Points[i] = wx.Point(minx + x + realpointx, miny + y + realpointy)
self.StartPoint[0] = self.Points[0]
self.EndPoint[0] = self.Points[-1]
self.GeneratePoints(False)
# Moves the wire start point and update the wire points
def MoveStartPoint(self, point):
if len(self.Points) > 1:
self.StartPoint[0] = point
self.Points[0] = point
self.GeneratePoints()
# Changes the wire start direction and update the wire points
def SetStartPointDirection(self, dir):
if len(self.Points) > 1:
self.StartPoint[1] = dir
self.Segments[0] = dir
self.GeneratePoints()
# Rotates the wire start direction by an angle of 90 degrees anticlockwise
def RotateStartPoint(self):
self.SetStartPointDirection((self.StartPoint[1][1], -self.StartPoint[1][0]))
# Connects wire start point to the connector given and moves wire start point
# to given point
def ConnectStartPoint(self, point, connector):
if point:
self.MoveStartPoint(point)
self.StartConnected = connector
# Unconnects wire start point
def UnConnectStartPoint(self, delete = False):
if delete:
self.StartConnected = None
self.Delete()
elif self.StartConnected:
self.StartConnected.UnConnect(self, unconnect = False)
self.StartConnected = None
# Moves the wire end point and update the wire points
def MoveEndPoint(self, point):
if len(self.Points) > 1:
self.EndPoint[0] = point
self.Points[-1] = point
self.GeneratePoints()
# Changes the wire end direction and update the wire points
def SetEndPointDirection(self, dir):
if len(self.Points) > 1:
self.EndPoint[1] = dir
self.GeneratePoints()
# Rotates the wire end direction by an angle of 90 degrees anticlockwise
def RotateEndPoint(self):
self.SetEndPointDirection((self.EndPoint[1][1], -self.EndPoint[1][0]))
# Connects wire end point to the connector given and moves wire end point
# to given point
def ConnectEndPoint(self, point, connector):
if point:
self.MoveEndPoint(point)
self.EndConnected = connector
# Unconnects wire end point
def UnConnectEndPoint(self, delete = False):
if delete:
self.EndConnected = None
self.Delete()
elif self.EndConnected:
self.EndConnected.UnConnect(self, unconnect = False)
self.EndConnected = None
# Moves the wire segment given by its index
def MoveSegment(self, idx, movex, movey):
if 0 < idx < len(self.Segments) - 1:
if self.Segments[idx] in (NORTH, SOUTH):
start_x = self.Points[idx].x
self.Points[idx].x += movex
self.Points[idx + 1].x += movex
self.GeneratePoints()
if start_x != self.Points[idx].x:
return self.Points[idx].x - start_x, 0
elif self.Segments[idx] in (EAST, WEST):
start_y = self.Points[idx].y
self.Points[idx].y += movey
self.Points[idx + 1].y += movey
self.GeneratePoints()
if start_y != self.Points[idx].y:
return 0, self.Points[idx].y - start_y
return 0, 0
# Adds two points in the middle of the handled segment
def AddSegment(self):
handle_type, handle = self.Handle
if handle_type == HANDLE_SEGMENT:
segment, dir = handle
pointx = self.Points[segment].x
pointy = self.Points[segment].y
if dir[0] != 0:
pointx = (self.Points[segment].x + self.Points[segment + 1].x) / 2
if dir[1] != 0:
pointy = (self.Points[segment].y + self.Points[segment + 1].y) / 2
self.Points.insert(segment + 1, wx.Point(pointx, pointy))
self.Segments.insert(segment + 1, (dir[1], dir[0]))
self.Points.insert(segment + 2, wx.Point(pointx, pointy))
self.Segments.insert(segment + 2, dir)
self.GeneratePoints()
# Delete the handled segment by removing the two segment points
def DeleteSegment(self):
handle_type, handle = self.Handle
if handle_type == HANDLE_SEGMENT:
segment, dir = handle
for i in xrange(2):
self.Points.pop(segment)
self.Segments.pop(segment)
self.GeneratePoints()
self.RefreshModel()
# Method called when a LeftDown event have been generated
def OnLeftDown(self, event, dc, scaling):
pos = GetScaledEventPosition(event, dc, scaling)
# Test if a point have been handled
#result = self.TestPoint(pos)
#if result != None:
# self.Handle = (HANDLE_POINT, result)
# self.Parent.SetCursor(wx.StockCursor(wx.CURSOR_HAND))
#else:
# Test if a segment have been handled
result = self.TestSegment(pos)
if result != None:
if result[1] in (NORTH, SOUTH):
self.Parent.SetCursor(wx.StockCursor(wx.CURSOR_SIZEWE))
elif result[1] in (EAST, WEST):
self.Parent.SetCursor(wx.StockCursor(wx.CURSOR_SIZENS))
self.Handle = (HANDLE_SEGMENT, result)
# Execute the default method for a graphic element
else:
Graphic_Element.OnLeftDown(self, event, dc, scaling)
self.oldPos = pos
# Method called when a RightUp event has been generated
def OnRightUp(self, event, dc, scaling):
pos = GetScaledEventPosition(event, dc, scaling)
# Test if a segment has been handled
result = self.TestSegment(pos)
if result != None:
self.Handle = (HANDLE_SEGMENT, result)
# Popup the menu with special items for a wire
self.Parent.PopupWireMenu()
else:
# Execute the default method for a graphic element
Graphic_Element.OnRightUp(self, event, dc, scaling)
# Method called when a LeftDClick event has been generated
def OnLeftDClick(self, event, dc, scaling):
if event.ControlDown():
direction = (self.StartPoint[1], self.EndPoint[1])
if direction in [(EAST, WEST), (WEST, EAST)]:
avgy = (self.StartPoint[0].y + self.EndPoint[0].y) / 2
if self.StartConnected is not None:
startblock = self.StartConnected.GetParentBlock()
startblock.Move(0, avgy - self.StartPoint[0].y)
startblock.RefreshModel()
else:
self.MoveStartPoint(wx.Point(self.StartPoint[0].x, avgy))
if self.EndConnected is not None:
endblock = self.EndConnected.GetParentBlock()
endblock.Move(0, avgy - self.EndPoint[0].y)
endblock.RefreshModel()
else:
self.MoveEndPoint(wx.Point(self.EndPoint[0].x, avgy))
elif direction in [(NORTH, SOUTH), (SOUTH, NORTH)]:
avgx = (self.StartPoint[0].x + self.EndPoint[0].x) / 2
if self.StartConnected is not None:
startblock = self.StartConnected.GetParentBlock()
startblock.Move(avgx - self.StartPoint[0].x, 0)
startblock.RefreshModel()
else:
self.MoveStartPoint(wx.Point(avgx, self.StartPoint[0].y))
if self.EndConnected is not None:
endblock = self.EndConnected.GetParentBlock()
endblock.Move(avgx - self.EndPoint[0].x, 0)
endblock.RefreshModel()
else:
self.MoveEndPoint(wx.Point(avgx, self.EndPoint[0].y))
self.Parent.RefreshBuffer()
else:
self.ResetPoints()
self.GeneratePoints()
self.RefreshModel()
self.Parent.RefreshBuffer()
# Method called when a Motion event has been generated
def OnMotion(self, event, dc, scaling):
pos = GetScaledEventPosition(event, dc, scaling)
if not event.Dragging():
# Test if a segment has been handled
result = self.TestSegment(pos)
if result:
if result[1] in (NORTH, SOUTH):
if self.CurrentCursor != 4:
self.CurrentCursor = 4
wx.CallAfter(self.Parent.SetCursor, CURSORS[4])
elif result[1] in (EAST, WEST):
if self.CurrentCursor != 5:
self.CurrentCursor = 5
wx.CallAfter(self.Parent.SetCursor, CURSORS[5])
return False
else:
# Test if a point has been handled
#result = self.TestPoint(pos)
#if result != None:
# if result == 0 and self.StartConnected:
# self.OverStart = True
# elif result != 0 and self.EndConnected:
# self.OverEnd = True
#else:
# self.OverStart = False
# self.OverEnd = False
# Execute the default method for a graphic element
return Graphic_Element.OnMotion(self, event, dc, scaling)
else:
# Execute the default method for a graphic element
return Graphic_Element.OnMotion(self, event, dc, scaling)
# Refreshes the wire state according to move defined and handle selected
def ProcessDragging(self, movex, movey):
handle_type, handle = self.Handle
# A point has been handled
if handle_type == HANDLE_POINT:
movex = max(-self.Points[handle].x + POINT_RADIUS, movex)
movey = max(-self.Points[handle].y + POINT_RADIUS, movey)
# Try to connect point to a connector
new_pos = wx.Point(self.Points[handle].x + movex, self.Points[handle].y + movey)
connector = self.Parent.FindBlockConnector(new_pos)
if connector:
if handle == 0 and self.EndConnected != connector and connector.IsCompatible(self.GetEndConnectedType()):
connector.HighlightParentBlock(True)
connector.Connect((self, handle))
self.SetStartPointDirection(connector.GetDirection())
self.ConnectStartPoint(connector.GetPosition(), connector)
pos = connector.GetPosition()
movex = pos.x - self.oldPos.x
movey = pos.y - self.oldPos.y
self.Dragging = False
elif handle != 0 and self.StartConnected != connector and connector.IsCompatible(self.GetStartConnectedType()):
connector.HighlightParentBlock(True)
connector.Connect((self, handle))
self.SetEndPointDirection(connector.GetDirection())
self.ConnectEndPoint(connector.GetPosition(), connector)
pos = connector.GetPosition()
movex = pos.x - self.oldPos.x
movey = pos.y - self.oldPos.y
self.Dragging = False
elif handle == 0:
self.MoveStartPoint(new_pos)
else:
self.MoveEndPoint(new_pos)
# If there is no connector, move the point
elif handle == 0:
if self.StartConnected:
self.UnConnectStartPoint()
self.StartConnected.HighlightParentBlock(False)
self.MoveStartPoint(new_pos)
else:
if self.EndConnected:
self.EndConnected.HighlightParentBlock(False)
self.UnConnectEndPoint()
self.MoveEndPoint(new_pos)
return movex, movey
# A segment has been handled, move a segment
elif handle_type == HANDLE_SEGMENT:
return self.MoveSegment(handle[0], movex, movey)
# Execute the default method for a graphic element
else:
return Graphic_Element.ProcessDragging(self, movex, movey)
# Refreshes the wire model
def RefreshModel(self, move=True):
if self.StartConnected and self.StartPoint[1] in [WEST, NORTH]:
self.StartConnected.RefreshParentBlock()
if self.EndConnected and self.EndPoint[1] in [WEST, NORTH]:
self.EndConnected.RefreshParentBlock()
# Draws the highlightment of this element if it is highlighted
def DrawHighlightment(self, dc):
if self.Highlighted:
dc.SetPen(wx.Pen(HIGHLIGHTCOLOR))
dc.SetBrush(wx.Brush(HIGHLIGHTCOLOR))
# Draw the start and end points if they are not connected or the mouse is over them
if len(self.Points) > 0 and (not self.StartConnected or self.OverStart):
dc.DrawCircle(self.Points[0].x, self.Points[0].y, POINT_RADIUS + 2)
if len(self.Points) > 1 and (not self.EndConnected or self.OverEnd):
dc.DrawCircle(self.Points[-1].x, self.Points[-1].y, POINT_RADIUS + 2)
for i in xrange(len(self.Points) - 1):
posx = min(self.Points[i].x, self.Points[i + 1].x) - 2
posy = min(self.Points[i].y, self.Points[i + 1].y) - 2
width = abs(self.Points[i + 1].x - self.Points[i].x) + 5
height = abs(self.Points[i + 1].y - self.Points[i].y) + 5
dc.DrawRectangle(posx, posy, width, height)
if self.StartConnected is not None:
self.StartConnected.DrawHighlightment(dc)
if self.EndConnected is not None:
self.EndConnected.DrawHighlightment(dc)
# Draws the wire lines and points
def Draw(self, dc):
dc.SetPen(wx.BLACK_PEN)
dc.SetBrush(wx.BLACK_BRUSH)
# Draw the start and end points if they are not connected or the mouse is over them
if len(self.Points) > 0 and (not self.StartConnected or self.OverStart):
dc.DrawCircle(self.Points[0].x, self.Points[0].y, POINT_RADIUS)
if len(self.Points) > 1 and (not self.EndConnected or self.OverEnd):
dc.DrawCircle(self.Points[-1].x, self.Points[-1].y, POINT_RADIUS)
# Draw the wire lines and the last point (it seems that DrawLines stop before the last point)
dc.DrawLines(self.Points)
dc.DrawPoint(self.Points[-1].x, self.Points[-1].y)
# Draw the segment selected in red
if self.SelectedSegment != None:
dc.SetPen(wx.RED_PEN)
dc.DrawLine(self.Points[self.SelectedSegment].x, self.Points[self.SelectedSegment].y,
self.Points[self.SelectedSegment + 1].x, self.Points[self.SelectedSegment + 1].y)
if self.SelectedSegment == len(self.Segments) - 1:
dc.DrawPoint(self.Points[-1].x, self.Points[-1].y)
Graphic_Element.Draw(self, dc)
#-------------------------------------------------------------------------------
# Graphic comment element
#-------------------------------------------------------------------------------
"""
Class that implements a comment
"""
class Comment(Graphic_Element):
# Create a new comment
def __init__(self, parent, content, id = None):
Graphic_Element.__init__(self, parent)
self.Id = id
self.Content = content
self.Pos = wx.Point(0, 0)
self.Size = wx.Size(0, 0)
# Make a clone of this comment
def Clone(self, id = None):
comment = Comment(self.Parent, self.Content, id)
comment.SetSize(self.Size[0], self.Size[1])
return comment
# Method for keeping compatibility with others
def Clean(self):
pass
# Delete this comment by calling the corresponding method
def Delete(self):
self.Parent.DeleteComment(self)
# Refresh the comment bounding box
def RefreshBoundingBox(self):
self.BoundingBox = wx.Rect(self.Pos.x, self.Pos.y, self.Size[0] + 1, self.Size[1] + 1)
# Changes the comment size
def SetSize(self, width, height):
self.Size.SetWidth(width)
self.Size.SetHeight(height)
self.RefreshBoundingBox()
# Returns the comment size
def GetSize(self):
return self.Size.GetWidth(), self.Size.GetHeight()
# Returns the comment minimum size
def GetMinSize(self):
dc = wx.ClientDC(self.Parent)
min_width = 0
min_height = 0
# The comment minimum size is the maximum size of words in the content
for line in self.Content.splitlines():
for word in line.split(" "):
wordwidth, wordheight = dc.GetTextExtent(word)
min_width = max(min_width, wordwidth)
min_height = max(min_height, wordheight)
return min_width + 20, min_height + 20
# Changes the comment position
def SetPosition(self, x, y):
self.Pos.x = x
self.Pos.y = y
self.RefreshBoundingBox()
# Changes the comment content
def SetContent(self, content):
self.Content = content
min_width, min_height = self.GetMinSize()
self.Size[0] = max(self.Size[0], min_width)
self.Size[1] = max(self.Size[1], min_height)
self.RefreshBoundingBox()
# Returns the comment content
def GetContent(self):
return self.Content
# Returns the comment position
def GetPosition(self):
return self.Pos.x, self.Pos.y
# Moves the comment
def Move(self, dx, dy, connected = True):
self.Pos.x += dx
self.Pos.y += dy
self.RefreshBoundingBox()
# Resizes the comment with the position and the size given
def Resize(self, x, y, width, height):
self.Move(x, y)
self.SetSize(width, height)
# Method called when a RightUp event have been generated
def OnRightUp(self, event, dc, scaling):
# Popup the default menu
self.Parent.PopupDefaultMenu()
# Refreshes the comment model
def RefreshModel(self, move=True):
self.Parent.RefreshCommentModel(self)
# Method called when a LeftDClick event have been generated
def OnLeftDClick(self, event, dc, scaling):
# Edit the comment content
self.Parent.EditCommentContent(self)
# Draws the highlightment of this element if it is highlighted
def DrawHighlightment(self, dc):
if self.Highlighted:
dc.SetPen(wx.Pen(HIGHLIGHTCOLOR))
dc.SetBrush(wx.Brush(HIGHLIGHTCOLOR))
polygon = [wx.Point(self.Pos.x - 2, self.Pos.y - 2),
wx.Point(self.Pos.x + self.Size[0] - 8, self.Pos.y - 2),
wx.Point(self.Pos.x + self.Size[0] + 2, self.Pos.y + 8),
wx.Point(self.Pos.x + self.Size[0] + 2, self.Pos.y + self.Size[1] + 2),
wx.Point(self.Pos.x - 2, self.Pos.y + self.Size[1] + 2)]
dc.DrawPolygon(polygon)
# Draws the comment and its content
def Draw(self, dc):
dc.SetPen(wx.BLACK_PEN)
dc.SetBrush(wx.WHITE_BRUSH)
# Draws the comment shape
polygon = [wx.Point(self.Pos.x, self.Pos.y),
wx.Point(self.Pos.x + self.Size[0] - 10, self.Pos.y),
wx.Point(self.Pos.x + self.Size[0], self.Pos.y + 10),
wx.Point(self.Pos.x + self.Size[0], self.Pos.y + self.Size[1]),
wx.Point(self.Pos.x, self.Pos.y + self.Size[1])]
dc.DrawPolygon(polygon)
lines = [wx.Point(self.Pos.x + self.Size[0] - 10, self.Pos.y),
wx.Point(self.Pos.x + self.Size[0] - 10, self.Pos.y + 10),
wx.Point(self.Pos.x + self.Size[0], self.Pos.y + 10)]
dc.DrawLines(lines)
# Draws the comment content
y = self.Pos.y + 10
for line in self.Content.splitlines():
first = True
words = line.split(" ")
for i, word in enumerate(words):
if first:
test = word
else:
test = linetext + " " + word
wordwidth, wordheight = dc.GetTextExtent(test)
if y + wordheight > self.Pos.y + self.Size[1] - 10:
break
if wordwidth < self.Size[0] - 20 and i < len(words) - 1:
linetext = test
first = False
else:
if wordwidth < self.Size[0] - 20 and i == len(words) - 1:
dc.DrawText(test, self.Pos.x + 10, y)
else:
dc.DrawText(linetext, self.Pos.x + 10, y)
if i == len(words) - 1:
y += wordheight + 5
if y + wordheight > self.Pos.y + self.Size[1] - 10:
break
dc.DrawText(word, self.Pos.x + 10, y)
else:
linetext = word
y += wordheight + 5
if y + wordheight > self.Pos.y + self.Size[1] - 10:
break
Graphic_Element.Draw(self, dc)