graphics/SFC_Objects.py
author etisserant
Wed, 31 Jan 2007 16:31:39 +0100
changeset 0 b622defdfd98
child 1 e9d01d824086
permissions -rw-r--r--
PLCOpenEditor initial commit. 31/01/07.
#!/usr/bin/env python
# -*- coding: utf-8 -*-

#This file is part of PLCOpenEditor, a library implementing an IEC 61131-3 editor
#based on the plcopen standard. 
#
#Copyright (C): Edouard TISSERANT and Laurent BESSARD
#
#See COPYING file for copyrights details.
#
#This library is free software; you can redistribute it and/or
#modify it under the terms of the GNU Lesser General Public
#License as published by the Free Software Foundation; either
#version 2.1 of the License, or (at your option) any later version.
#
#This library is distributed in the hope that it will be useful,
#but WITHOUT ANY WARRANTY; without even the implied warranty of
#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
#Lesser General Public License for more details.
#
#You should have received a copy of the GNU Lesser General Public
#License along with this library; if not, write to the Free Software
#Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA

from wxPython.wx import *
import wx

from GraphicCommons import *
from plcopen.structures import *

def GetWireSize(block):
    if isinstance(block, SFC_Step):
        return SFC_WIRE_MIN_SIZE + block.GetActionExtraLineNumber() * SFC_ACTION_MIN_SIZE[1]
    else:
        return SFC_WIRE_MIN_SIZE

#-------------------------------------------------------------------------------
#                         Sequencial Function Chart Step
#-------------------------------------------------------------------------------

"""
Class that implements the graphic representation of a step
"""

class SFC_Step(Graphic_Element):
    
    # Create a new step
    def __init__(self, parent, name, initial = False, id = None):
        Graphic_Element.__init__(self, parent)
        self.Name = name
        self.Initial = initial
        self.Id = id
        self.Size = wxSize(SFC_STEP_DEFAULT_SIZE[0], SFC_STEP_DEFAULT_SIZE[1])
        # Create an input and output connector
        if not self.Initial:
            self.Input = Connector(self, "", "ANY", wxPoint(self.Size[0] / 2, 0), NORTH)
        else:
            self.Input = None
        self.Output = None
        self.Action = None
    
    # Destructor
    def __del__(self):
        self.Input = None
        self.Output = None
        self.Action = None
    
    # Delete this step by calling the appropriate method
    def Delete(self):
        self.Parent.DeleteStep(self)
    
    # Unconnect input and output
    def Clean(self):
        if self.Input:
            self.Input.UnConnect()
        if self.Output:
            self.Output.UnConnect()
        if self.Action:
            self.Action.UnConnect()
    
    # Add output connector to step
    def AddOutput(self):
        if not self.Output:
            self.Output = Connector(self, "", "ANY", wxPoint(self.Size[0] / 2, self.Size[1]), SOUTH)
            self.RefreshBoundingBox()
    
    # Remove output connector from step
    def RemoveOutput(self):
        if self.Output:
            self.Output.UnConnect()
            self.Output = None
            self.RefreshBoundingBox()
    
    # Add action connector to step
    def AddAction(self):
        if not self.Action:
            self.Action = Connector(self, "", "ANY", wxPoint(self.Size[0], self.Size[1] / 2), EAST)
            self.RefreshBoundingBox()
    
    # Remove action connector from step
    def RemoveAction(self):
        if self.Action:
            self.Action.UnConnect()
            self.Action = None
            self.RefreshBoundingBox()
    
    # Refresh the step bounding box
    def RefreshBoundingBox(self):
        dc = wxClientDC(self.Parent)
        # Calculate the bounding box size
        if self.Action:
            bbx_width = self.Size[0] + CONNECTOR_SIZE
        else:
            bbx_width = self.Size[0]
        if self.Initial:
            bbx_y = self.Pos.y
            bbx_height = self.Size[1]
            if self.Output:
                bbx_height += CONNECTOR_SIZE
        else:
            bbx_y = self.Pos.y - CONNECTOR_SIZE
            bbx_height = self.Size[1] + CONNECTOR_SIZE
            if self.Output:
                bbx_height += CONNECTOR_SIZE
        #self.BoundingBox = wxRect(self.Pos.x, bbx_y, bbx_width + 1, bbx_height + 1)
        self.BoundingBox = wxRect(self.Pos.x, self.Pos.y, self.Size[0] + 1, self.Size[1] + 1)
        
    # Refresh the positions of the step connectors
    def RefreshConnectors(self):
        # Update input position if it exists
        if self.Input:
            self.Input.SetPosition(wxPoint(self.Size[0] / 2, 0))
        # Update output position
        if self.Output:
            self.Output.SetPosition(wxPoint(self.Size[0] / 2, self.Size[1]))
        # Update action position if it exists
        if self.Action:
            self.Action.SetPosition(wxPoint(self.Size[0], self.Size[1] / 2))
        self.RefreshConnected()
    
    # Refresh the position of wires connected to step
    def RefreshConnected(self, exclude = []):
        if self.Input:
            self.Input.MoveConnected(exclude)
        if self.Output:
            self.Output.MoveConnected(exclude)
        if self.Action:
            self.Action.MoveConnected(exclude)
    
    # Returns the step connector that starts with the point given if it exists 
    def GetConnector(self, position):
        # Test input connector if it exists
        if self.Input:
            input_pos = self.Input.GetRelPosition()
            if position.x == self.Pos.x + input_pos.x and position.y == self.Pos.y + input_pos.y:
                return self.Input
        # Test output connector if it exists
        if self.Output:
            output_pos = self.Output.GetRelPosition()
            if position.x == self.Pos.x + output_pos.x and position.y == self.Pos.y + output_pos.y:
                return self.Output
        # Test action connector if it exists
        if self.Action:
            action_pos = self.Action.GetRelPosition()
            if position.x == self.Pos.x + action_pos.x and position.y == self.Pos.y + action_pos.y:
                return self.Action
        return None
    
    # Returns input and output step connectors 
    def GetConnectors(self):
        return {"input":self.Input,"output":self.Output,"action":self.Action}
    
    # Test if point given is on step input or output connector
    def TestConnector(self, pt, exclude=True):
        # Test input connector if it exists
        if self.Input and self.Input.TestPoint(pt, exclude):
            return self.Input
        # Test output connector
        if self.Output and self.Output.TestPoint(pt, exclude):
            return self.Output
        return None

    # Changes the step name
    def SetName(self, name):
        self.Name = name

    # Returns the step name
    def GetName(self):
        return self.Name

    # Returns the step initial property
    def GetInitial(self):
        return self.Initial
    
    # Returns the connector connected to input
    def GetPreviousConnector(self):
        if self.Input:
            wires = self.Input.GetWires()
            if len(wires) == 1:
                return wires[0][0].EndConnected
        return None
    
    # Returns the connector connected to output
    def GetNextConnector(self):
        if self.Output:
            wires = self.Output.GetWires()
            if len(wires) == 1:
                return wires[0][0].StartConnected
        return None
    
    # Returns the connector connected to action
    def GetActionConnector(self):
        if self.Action:
            wires = self.Action.GetWires()
            if len(wires) == 1:
                return wires[0][0].StartConnected
        return None
    
    # Returns the number of action line
    def GetActionExtraLineNumber(self):
        if self.Action:
            wires = self.Action.GetWires()
            if len(wires) != 1:
                return 0
            action_block = wires[0][0].StartConnected.GetParentBlock()
            return max(0, action_block.GetLineNumber() - 1)
        return 0
    
    # Returns the step minimum size
    def GetMinSize(self):
        dc = wxClientDC(self.Parent)
        text_width, text_height = dc.GetTextExtent(self.Name)
        if self.Initial:
            return text_width + 14, text_height + 14
        else:
            return text_width + 10, text_height + 10
    
    # Updates the step size
    def UpdateSize(self, width, height):
        diffx = self.Size.GetWidth() / 2 - width / 2
        diffy = height - self.Size.GetHeight()
        self.Move(diffx, 0)
        Graphic_Element.SetSize(self, width, height)
        self.RefreshOutputPosition((0, diffy))
    
    # Align input element with this step
    def RefreshInputPosition(self):
        if self.Input:
            current_pos = self.Input.GetPosition(False)
            input = self.GetPreviousConnector()
            if input:
                input_pos = input.GetPosition(False)
                diffx = current_pos.x - input_pos.x
                input_block = input.GetParentBlock()
                if isinstance(input_block, SFC_Divergence):
                    input_block.MoveConnector(input, diffx)
                else:
                    if isinstance(input_block, SFC_Step):
                        input_block.MoveActionBlock((diffx, 0))
                    input_block.Move(diffx, 0)
                    input_block.RefreshInputPosition()
    
    # Align output element with this step
    def RefreshOutputPosition(self, move = None):
        if self.Output:
            wires = self.Output.GetWires()
            if len(wires) != 1:
                return
            current_pos = self.Output.GetPosition(False)
            output = wires[0][0].StartConnected
            output_pos = output.GetPosition(False)
            diffx = current_pos.x - output_pos.x
            output_block = output.GetParentBlock()
            wire_size = SFC_WIRE_MIN_SIZE + self.GetActionExtraLineNumber() * SFC_ACTION_MIN_SIZE[1]
            diffy = wire_size - output_pos.y + current_pos.y
            if diffy != 0:
                if isinstance(output_block, SFC_Step):
                    output_block.MoveActionBlock((diffx, diffy))
                wires[0][0].SetPoints([wxPoint(current_pos.x, current_pos.y + wire_size),
                    wxPoint(current_pos.x, current_pos.y)])
                if not isinstance(output_block, SFC_Divergence) or output_block.GetConnectors()["inputs"].index(output) == 0:
                    output_block.Move(diffx, diffy, self.Parent.Wires)
                    output_block.RefreshOutputPosition((diffx, diffy))
                else:
                    output_block.RefreshPosition()
            elif move:
                if isinstance(output_block, SFC_Step):
                    output_block.MoveActionBlock(move)
                wires[0][0].Move(move[0], move[1], True)
                if not isinstance(output_block, SFC_Divergence) or output_block.GetConnectors()["inputs"].index(output) == 0:
                    output_block.Move(move[0], move[1], self.Parent.Wires)
                    output_block.RefreshOutputPosition(move)
                else:
                    output_block.RefreshPosition()
            elif isinstance(output_block, SFC_Divergence):
                output_block.MoveConnector(output, diffx)
            else:
                if isinstance(output_block, SFC_Step):
                    output_block.MoveActionBlock((diffx, 0))
                output_block.Move(diffx, 0)
                output_block.RefreshOutputPosition()
    
    # Refresh action element with this step
    def MoveActionBlock(self, move):
        if self.Action:
            wires = self.Action.GetWires()
            if len(wires) != 1:
                return
            action_block = wires[0][0].StartConnected.GetParentBlock()
            action_block.Move(move[0], move[1], self.Parent.Wires)
            wires[0][0].Move(move[0], move[1], True)
    
    # Resize the divergence from position and size given
    def Resize(self, x, y, width, height):
        self.UpdateSize(width, height)
    
    # Method called when a LeftDClick event have been generated
    def OnLeftDClick(self, event, scaling):
        # Edit the step properties
        self.Parent.EditStepContent(self)
    
    # Method called when a RightUp event have been generated
    def OnRightUp(self, event, scaling):
        # Popup the menu with special items for a step
        self.Parent.PopupDefaultMenu()
    
    # Refreshes the step state according to move defined and handle selected
    def ProcessDragging(self, movex, movey):
        handle_type, handle = self.Handle
        if handle_type == HANDLE_MOVE:
            action_block = None
            if self.Initial:
                self.MoveActionBlock((movex, movey))
                self.Move(movex, movey, self.Parent.Wires)
                self.RefreshOutputPosition((movex, movey))
            else:
                self.MoveActionBlock((movex, 0))
                self.Move(movex, 0)
                self.RefreshInputPosition()
                self.RefreshOutputPosition()
        else:
            Graphic_Element.ProcessDragging(self, movex, movey)
    
    # Refresh input element model
    def RefreshInputModel(self):
        if self.Input:
            input = self.GetPreviousConnector()
            if input:                
                input_block = input.GetParentBlock()
                input_block.RefreshModel(False)
                if not isinstance(input_block, SFC_Divergence):
                    input_block.RefreshInputModel()
    
    # Refresh output element model
    def RefreshOutputModel(self, move=False):
        if self.Output:
            output = self.GetNextConnector()
            if output:
                output_block = output.GetParentBlock()
                output_block.RefreshModel(False)
                if not isinstance(output_block, SFC_Divergence) or move:
                    output_block.RefreshOutputModel(move)
    
    # Refreshes the step model
    def RefreshModel(self, move=True):
        self.Parent.RefreshStepModel(self)
        if self.Action:
            action = self.GetActionConnector()
            if action:
                action_block = action.GetParentBlock()
                action_block.RefreshModel(False)
        # If step has moved, refresh the model of wires connected to output
        if move:
            self.RefreshInputModel()
            self.RefreshOutputModel(self.Initial)
    
    # Draws step
    def Draw(self, dc):
        dc.SetPen(wxBLACK_PEN)
        dc.SetBrush(wxWHITE_BRUSH)
        # Draw two rectangles for representing the step
        dc.DrawRectangle(self.Pos.x, self.Pos.y, self.Size[0] + 1, self.Size[1] + 1)
        if self.Initial:
            dc.DrawRectangle(self.Pos.x + 2, self.Pos.y + 2, self.Size[0] - 3, self.Size[1] - 3)
        # Draw step name
        namewidth, nameheight = dc.GetTextExtent(self.Name)
        dc.DrawText(self.Name, self.Pos.x + (self.Size[0] - namewidth) / 2,
                    self.Pos.y + (self.Size[1] - nameheight) / 2)
        # Draw input and output connectors
        if self.Input:
            self.Input.Draw(dc)
        if self.Output:
            self.Output.Draw(dc)
        if self.Action:
            self.Action.Draw(dc)
        Graphic_Element.Draw(self, dc)

#-------------------------------------------------------------------------------
#                       Sequencial Function Chart Transition
#-------------------------------------------------------------------------------

"""
Class that implements the graphic representation of a transition
"""

class SFC_Transition(Graphic_Element):
    
    # Create a new transition
    def __init__(self, parent, type = "reference", condition = "", id = None):
        Graphic_Element.__init__(self, parent)
        self.Type = type
        self.Condition = condition
        self.Id = id
        self.Size = wxSize(SFC_TRANSITION_SIZE[0], SFC_TRANSITION_SIZE[1])
        # Create an input and output connector
        self.Input = Connector(self, "", "ANY", wxPoint(self.Size[0] / 2, 0), NORTH)
        self.Output = Connector(self, "", "ANY", wxPoint(self.Size[0] / 2, self.Size[1]), SOUTH)
    
    # Destructor
    def __del__(self):
        self.Input = None
        self.Output = None
    
    # Forbids to change the transition size
    def SetSize(self, width, height):
        pass
    
    # Forbids to resize the transition
    def Resize(self, x, y, width, height):
        pass
    
    # Delete this transition by calling the appropriate method
    def Delete(self):
        self.Parent.DeleteTransition(self)
    
    # Unconnect input and output
    def Clean(self):
        self.Input.UnConnect()
        self.Output.UnConnect()
    
    # Refresh the transition bounding box
    def RefreshBoundingBox(self):
        dc = wxClientDC(self.Parent)
        if self.Condition != "":
            text_width, text_height = dc.GetTextExtent(self.Condition)
        else:
            text_width, text_height = dc.GetTextExtent("Transition")
        # Calculate the bounding box size
        bbx_width = self.Size[0] + CONNECTOR_SIZE + 2 + text_width
        bbx_y = self.Pos.y - max(0, (text_height - self.Size[1]) / 2)
        bbx_height = max(self.Size[1], text_height)
        self.BoundingBox = wxRect(self.Pos.x, bbx_y, bbx_width + 1, bbx_height + 1)
        
    # Returns the connector connected to input
    def GetPreviousConnector(self):
        wires = self.Input.GetWires()
        if len(wires) == 1:
            return wires[0][0].EndConnected
        return None
    
    # Returns the connector connected to output
    def GetNextConnector(self):
        wires = self.Output.GetWires()
        if len(wires) == 1:
            return wires[0][0].StartConnected
        return None
    
    # Refresh the positions of the transition connectors
    def RefreshConnectors(self):
        # Update input position
        self.Input.SetPosition(wxPoint(self.Size[0] / 2, 0))
        # Update output position
        self.Output.SetPosition(wxPoint(self.Size[0] / 2, self.Size[1]))
        self.RefreshConnected()
    
    # Refresh the position of the wires connected to transition
    def RefreshConnected(self, exclude = []):
        self.Input.MoveConnected(exclude)
        self.Output.MoveConnected(exclude)
    
    # Returns the transition connector that starts with the point given if it exists 
    def GetConnector(self, position):
        # Test input connector
        input_pos = self.Input.GetRelPosition()
        if position.x == self.Pos.x + input_pos.x and position.y == self.Pos.y + input_pos.y:
            return self.Input
        # Test output connector
        output_pos = self.Output.GetRelPosition()
        if position.x == self.Pos.x + output_pos.x and position.y == self.Pos.y + output_pos.y:
            return self.Output
        return None
    
    # Returns input and output transition connectors
    def GetConnectors(self):
        return {"input":self.Input,"output":self.Output}
    
    # Test if point given is on transition input or output connector
    def TestConnector(self, pt, exclude=True):
        # Test input connector
        if self.Input.TestPoint(pt, exclude):
            return self.Input
        # Test output connector
        if self.Output.TestPoint(pt, exclude):
            return self.Output
        return None

    # Changes the transition type
    def SetType(self, type):
        self.Type = type
        
    # Returns the transition type
    def GetType(self):
        return self.Type

    # Changes the transition condition
    def SetCondition(self, condition):
        self.Condition = condition
        self.RefreshBoundingBox()

    # Returns the transition condition
    def GetCondition(self):
        return self.Condition
        
    # Returns the transition minimum size
    def GetMinSize(self):
        return SFC_TRANSITION_SIZE
    
    # Align input element with this step
    def RefreshInputPosition(self):
        wires = self.Input.GetWires()
        current_pos = self.Input.GetPosition(False)
        input = self.GetPreviousConnector()
        if input:
            input_pos = input.GetPosition(False)
            diffx = current_pos.x - input_pos.x
            input_block = input.GetParentBlock()
            if isinstance(input_block, SFC_Divergence):
                input_block.MoveConnector(input, diffx)
            else:
                if isinstance(input_block, SFC_Step):
                    input_block.MoveActionBlock((diffx, 0))
                input_block.Move(diffx, 0)
                input_block.RefreshInputPosition()
    
    # Align output element with this step
    def RefreshOutputPosition(self, move = None):
        wires = self.Output.GetWires()
        if len(wires) != 1:
            return
        current_pos = self.Output.GetPosition(False)
        output = wires[0][0].StartConnected
        output_pos = output.GetPosition(False)
        diffx = current_pos.x - output_pos.x
        output_block = output.GetParentBlock()
        if move:
            if isinstance(output_block, SFC_Step):
                output_block.MoveActionBlock(move)
            wires[0][0].Move(move[0], move[1], True)
            if not isinstance(output_block, SFC_Divergence) or output_block.GetConnectors()["inputs"].index(output) == 0:
                output_block.Move(move[0], move[1], self.Parent.Wires)
                output_block.RefreshOutputPosition(move)
            else:
                output_block.RefreshPosition()
        elif isinstance(output_block, SFC_Divergence):
            output_block.MoveConnector(output, diffx)
        else:
            if isinstance(output_block, SFC_Step):
                output_block.MoveActionBlock((diffx, 0))
            output_block.Move(diffx, 0)
            output_block.RefreshOutputPosition()
    
    # Method called when a LeftDClick event have been generated
    def OnLeftDClick(self, event, scaling):
        # Edit the transition properties
        self.Parent.EditTransitionContent(self)
    
    # Method called when a RightUp event have been generated
    def OnRightUp(self, event, scaling):
        # Popup the menu with special items for a step
        self.Parent.PopupDefaultMenu()
    
    # Refreshes the transition state according to move defined and handle selected
    def ProcessDragging(self, movex, movey):
        self.Move(movex, 0)
        self.RefreshInputPosition()
        self.RefreshOutputPosition()
    
    # Refresh input element model
    def RefreshInputModel(self):
        input = self.GetPreviousConnector()
        if input:
            input_block = input.GetParentBlock()
            input_block.RefreshModel(False)
            if not isinstance(input_block, SFC_Divergence):
                input_block.RefreshInputModel()
    
    # Refresh output element model
    def RefreshOutputModel(self, move=False):
        output = self.GetNextConnector()
        if output:
            output_block = output.GetParentBlock()
            output_block.RefreshModel(False)
            if not isinstance(output_block, SFC_Divergence) or move:
                output_block.RefreshOutputModel(move)
    
    # Refreshes the transition model
    def RefreshModel(self, move=True):
        self.Parent.RefreshTransitionModel(self)
        # If transition has moved, refresh the model of wires connected to output
        if move:
            self.RefreshInputModel()
            self.RefreshOutputModel()
    
    # Draws transition
    def Draw(self, dc):
        dc.SetPen(wxBLACK_PEN)
        dc.SetBrush(wxBLACK_BRUSH)
        # Draw plain rectangle for representing the transition
        dc.DrawRectangle(self.Pos.x, self.Pos.y, self.Size[0] + 1, self.Size[1] + 1)
        # Draw transition condition
        if self.Condition != "":
            text_width, text_height = dc.GetTextExtent(self.Condition)
            condition = self.Condition
        else:
            text_width, text_height = dc.GetTextExtent("Transition")
            condition = "Transition"
        dc.DrawText(condition, self.Pos.x + self.Size[0] + CONNECTOR_SIZE + 2,
                    self.Pos.y + (self.Size[1] - text_height) / 2)
        # Draw input and output connectors
        self.Input.Draw(dc)
        self.Output.Draw(dc)
        Graphic_Element.Draw(self, dc)

#-------------------------------------------------------------------------------
#                Sequencial Function Chart Divergence and Convergence
#-------------------------------------------------------------------------------

"""
Class that implements the graphic representation of a divergence or convergence,
selection or simultaneous
"""

class SFC_Divergence(Graphic_Element):
    
    # Create a new divergence
    def __init__(self, parent, type, number = 2, id = None):
        Graphic_Element.__init__(self, parent)
        self.Type = type
        self.Id = id
        self.RealConnectors = None
        number = max(2, number)
        if self.Type in [SELECTION_DIVERGENCE, SELECTION_CONVERGENCE]:
            self.Size = wxSize((number - 1) * SFC_DEFAULT_SEQUENCE_INTERVAL, 1)
        elif self.Type in [SIMULTANEOUS_DIVERGENCE, SIMULTANEOUS_CONVERGENCE]:
            self.Size = wxSize((number - 1) * SFC_DEFAULT_SEQUENCE_INTERVAL, 3)
        # Create an input and output connector
        if self.Type in [SELECTION_DIVERGENCE, SIMULTANEOUS_DIVERGENCE]:
            self.Inputs = [Connector(self, "", "ANY", wxPoint(self.Size[0] / 2, 0), NORTH)]
            self.Outputs = []
            for i in xrange(number):
                self.Outputs.append(Connector(self, "", "ANY", wxPoint(i * SFC_DEFAULT_SEQUENCE_INTERVAL, self.Size[1]), SOUTH))
        elif self.Type in [SELECTION_CONVERGENCE, SIMULTANEOUS_CONVERGENCE]:
            self.Inputs = []
            for i in xrange(number):
                self.Inputs.append(Connector(self, "", "ANY", wxPoint(i * SFC_DEFAULT_SEQUENCE_INTERVAL, 0), NORTH))
            self.Outputs = [Connector(self, "", "ANY", wxPoint(self.Size[0] / 2, self.Size[1]), SOUTH)]
    
    # Destructor
    def __del__(self):
        self.Inputs = []
        self.Outputs = []
    
    # Forbids to resize the divergence
    def Resize(self, x, y, width, height):
        pass
    
    # Delete this divergence by calling the appropriate method
    def Delete(self):
        self.Parent.DeleteDivergence(self)
    
    # Returns the divergence type
    def GetType(self):
        return self.Type
    
    # Unconnect input and output
    def Clean(self):
        for input in self.Inputs:
            input.UnConnect()
        for output in self.Outputs:
            output.UnConnect()
    
    # Add a branch to the divergence
    def AddBranch(self):
        if self.Type in [SELECTION_DIVERGENCE, SIMULTANEOUS_DIVERGENCE]:
            maxx = 0
            for output in self.Outputs:
                pos = output.GetRelPosition()
                maxx = max(maxx, pos.x)
            connector = Connector(self, "", "ANY", wxPoint(maxx + SFC_DEFAULT_SEQUENCE_INTERVAL, self.Size[1]), SOUTH)
            self.Outputs.append(connector)
            self.MoveConnector(connector, 0)
        elif self.Type in [SELECTION_CONVERGENCE, SIMULTANEOUS_CONVERGENCE]:
            maxx = 0
            for input in self.Inputs:
                pos = input.GetRelPosition()
                maxx = max(maxx, pos.x)
            connector = Connector(self, "", "ANY", wxPoint(maxx + SFC_DEFAULT_SEQUENCE_INTERVAL, 0), NORTH)
            self.Inputs.append(connector)
            self.MoveConnector(connector, SFC_DEFAULT_SEQUENCE_INTERVAL)
    
    # Remove a branch from the divergence
    def RemoveBranch(self, connector):
        if self.Type in [SELECTION_DIVERGENCE, SIMULTANEOUS_DIVERGENCE]:
            if connector in self.Outputs:
                self.Outputs.remove(connector)
                self.MoveConnector(self.Outputs[0], 0)
        elif self.Type in [SELECTION_CONVERGENCE, SIMULTANEOUS_CONVERGENCE]:
            if connector in self.Inputs:
                self.Inputs.remove(connector)
                self.MoveConnector(self.Inputs[0], 0)
    
    # Return the number of branches for the divergence
    def GetBranchNumber(self):
        if self.Type in [SELECTION_DIVERGENCE, SIMULTANEOUS_DIVERGENCE]:
            return len(self.Outputs)
        elif self.Type in [SELECTION_CONVERGENCE, SIMULTANEOUS_CONVERGENCE]:
            return len(self.Inputs)
    
    # Returns if the point given is in the bounding box
    def HitTest(self, pt):
        rect = self.BoundingBox
        return rect.InsideXY(pt.x, pt.y) or self.TestConnector(pt, False) != None
    
    # Refresh the divergence bounding box
    def RefreshBoundingBox(self):
        if self.Type in [SELECTION_DIVERGENCE, SELECTION_CONVERGENCE]:
            self.BoundingBox = wxRect(self.Pos.x, self.Pos.y - CONNECTOR_SIZE, 
                self.Size[0] + 1, self.Size[1] + CONNECTOR_SIZE * 2 + 1)
        elif self.Type in [SIMULTANEOUS_DIVERGENCE, SIMULTANEOUS_CONVERGENCE]:
            self.BoundingBox = wxRect(self.Pos.x - SFC_SIMULTANEOUS_SEQUENCE_EXTRA, self.Pos.y - CONNECTOR_SIZE, 
                self.Size[0] + 2 * SFC_SIMULTANEOUS_SEQUENCE_EXTRA + 1, self.Size[1] + CONNECTOR_SIZE * 2 + 1)
    
    # Refresh the position of wires connected to divergence
    def RefreshConnected(self, exclude = []):
        for input in self.Inputs:
            input.MoveConnected(exclude)
        for output in self.Outputs:
            output.MoveConnected(exclude)
    
    # Moves the divergence connector given
    def MoveConnector(self, connector, movex):
        position = connector.GetRelPosition()
        connector.SetPosition(wxPoint(position.x + movex, position.y))
        minx = self.Size[0]
        maxx = 0
        for input in self.Inputs:
            input_pos = input.GetRelPosition()
            minx = min(minx, input_pos.x)
            maxx = max(maxx, input_pos.x)
        for output in self.Outputs:
            output_pos = output.GetRelPosition()
            minx = min(minx, output_pos.x)
            maxx = max(maxx, output_pos.x)
        if minx != 0:
            for input in self.Inputs:
                input_pos = input.GetRelPosition()
                input.SetPosition(wxPoint(input_pos.x - minx, input_pos.y))
            for output in self.Outputs:
                output_pos = output.GetRelPosition()
                output.SetPosition(wxPoint(output_pos.x - minx, output_pos.y))
        self.Pos.x += minx
        self.Size[0] = maxx - minx
        connector.MoveConnected()
        self.RefreshBoundingBox()
    
    # Returns the divergence connector that starts with the point given if it exists 
    def GetConnector(self, position):
        # Test input connector
        for input in self.Inputs:
            input_pos = input.GetPosition(False)
            if position.x == input_pos.x and position.y == input_pos.y:
                return input
        # Test output connector
        for output in self.Outputs:
            output_pos = output.GetPosition(False)
            if position.x == output_pos.x and position.y == output_pos.y:
                return output
        return None
    
    # Returns input and output divergence connectors 
    def GetConnectors(self):
        return {"inputs":self.Inputs,"outputs":self.Outputs}
    
    # Test if point given is on divergence input or output connector
    def TestConnector(self, pt, exclude=True):
        # Test input connector
        for input in self.Inputs:
            if input.TestPoint(pt, exclude):
                return input
        # Test output connector
        for output in self.Outputs:
            if output.TestPoint(pt, exclude):
                return output
        return None
    
    # Changes the divergence size
    def SetSize(self, width, height):
        for i, input in enumerate(self.Inputs):
            position = input.GetRelPosition()
            if self.RealConnectors:
                input.SetPosition(wxPoint(int(round(self.RealConnectors["Inputs"][i] * width)), position.y))
            else:
                input.SetPosition(wxPoint(int(round(float(position.x)*float(width)/float(self.Size[0]))), position.y))
            input.MoveConnected()
        for i, output in enumerate(self.Outputs):
            position = output.GetRelPosition()
            if self.RealConnectors:
                output.SetPosition(wxPoint(int(round(self.RealConnectors["Outputs"][i] * width)), position.y))
            else:
                output.SetPosition(wxPoint(int(round(float(position.x)*float(width)/float(self.Size[0]))), position.y))
            output.MoveConnected()
        self.Size = wxSize(width, self.Size[1])
        self.RefreshBoundingBox()
    
    # Returns the divergence minimum size
    def GetMinSize(self):
        return 0, self.Size[1]
    
    # Refresh the position of the block connected to connector
    def RefreshConnectedPosition(self, connector):
        wires = connector.GetWires()
        if len(wires) != 1:
            return
        current_pos = connector.GetPosition(False)
        if connector in self.Inputs:
            next = wires[0][0].EndConnected
        else:
            next = wires[0][0].StartConnected
        next_pos = next.GetPosition(False)
        diffx = current_pos.x - next_pos.x
        next_block = next.GetParentBlock()
        if isinstance(next_block, SFC_Divergence):
            next_block.MoveConnector(next, diffx)
        else:
            next_block.Move(diffx, 0)
            if connector in self.Inputs:
                next_block.RefreshInputPosition()
            else:
                next_block.RefreshOutputPosition()
    
    # Refresh the position of this divergence
    def RefreshPosition(self):
        y = 0
        for input in self.Inputs:
            wires = input.GetWires()
            if len(wires) != 1:
                return
            previous = wires[0][0].EndConnected
            previous_pos = previous.GetPosition(False)
            y = max(y, previous_pos.y + GetWireSize(previous.GetParentBlock()))
        diffy = y - self.Pos.y
        if diffy != 0:
            self.Move(0, diffy, self.Parent.Wires)
            self.RefreshOutputPosition((0, diffy))
        for input in self.Inputs:
            input.MoveConnected()
    
    # Align output element with this divergence
    def RefreshOutputPosition(self, move = None):
        if move:
            for output_connector in self.Outputs:
                wires = output_connector.GetWires()
                if len(wires) != 1:
                    return
                current_pos = output_connector.GetPosition(False)
                output = wires[0][0].StartConnected
                output_pos = output.GetPosition(False)
                diffx = current_pos.x - output_pos.x
                output_block = output.GetParentBlock()
                if isinstance(output_block, SFC_Step):
                    output_block.MoveActionBlock(move)
                wires[0][0].Move(move[0], move[1], True)
                if not isinstance(output_block, SFC_Divergence) or output_block.GetConnectors()["inputs"].index(output) == 0:
                    output_block.Move(move[0], move[1], self.Parent.Wires)
                    output_block.RefreshOutputPosition(move)
    
    # Method called when a LeftDown event have been generated
    def OnLeftDown(self, event, scaling):
        pos = GetScaledEventPosition(event, scaling)
        # Test if a connector have been handled
        connector = self.TestConnector(pos, False)
        if connector:
            self.Handle = (HANDLE_CONNECTOR, connector)
            self.Parent.SetCursor(wxStockCursor(wxCURSOR_HAND))
            self.Selected = False
            # Initializes the last position
            self.oldPos = GetScaledEventPosition(event, scaling)
        else:
            self.RealConnectors = {"Inputs":[],"Outputs":[]}
            for input in self.Inputs:
                position = input.GetRelPosition()
                self.RealConnectors["Inputs"].append(float(position.x)/float(self.Size[0]))
            for output in self.Outputs:
                position = output.GetRelPosition()
                self.RealConnectors["Outputs"].append(float(position.x)/float(self.Size[0]))
            Graphic_Element.OnLeftDown(self, event, scaling)
    
    # Method called when a LeftUp event have been generated
    def OnLeftUp(self, event, scaling):
        self.RealConnectors = None
        handle_type, handle = self.Handle
        if handle_type == HANDLE_CONNECTOR:
            wires = handle.GetWires()
            if len(wires) != 1:
                return
            if handle in self.Inputs:
                block = wires[0][0].EndConnected.GetParentBlock()
            else:
                block = wires[0][0].StartConnected.GetParentBlock()
            block.RefreshModel(False)
            if not isinstance(block, SFC_Divergence):
                if handle in self.Inputs:
                    block.RefreshInputModel()
                else:
                    block.RefreshOutputModel()
        Graphic_Element.OnLeftUp(self, event, scaling)
    
    # Method called when a RightUp event have been generated
    def OnRightUp(self, event, scaling):
        pos = GetScaledEventPosition(event, scaling)
        # Popup the menu with special items for a block and a connector if one is handled
        connector = self.TestConnector(pos, False)
        if connector:
            self.Handle = (HANDLE_CONNECTOR, connector)
            self.Parent.PopupDivergenceMenu(True)
        else:
            # Popup the divergence menu without delete branch
            self.Parent.PopupDivergenceMenu(False)
    
    # Refreshes the divergence state according to move defined and handle selected
    def ProcessDragging(self, movex, movey):
        handle_type, handle = self.Handle
        # A connector has been handled
        if handle_type == HANDLE_CONNECTOR:
            self.MoveConnector(handle, movex)
            self.RefreshConnectedPosition(handle)
    
    # Refresh output element model
    def RefreshOutputModel(self, move=False):
        if move:
            for output in self.Outputs:
                wires = output.GetWires()
                if len(wires) != 1:
                    return
                output_block = wires[0][0].StartConnected.GetParentBlock()
                output_block.RefreshModel(False)
                if not isinstance(output_block, SFC_Divergence) or move:
                    output_block.RefreshOutputModel(move)
    
    # Refreshes the divergence model
    def RefreshModel(self, move=True):
        self.Parent.RefreshDivergenceModel(self)
        # If divergence has moved, refresh the model of wires connected to outputs
        if move:
            self.RefreshOutputModel()
    
    # Draws divergence
    def Draw(self, dc):
        dc.SetPen(wxBLACK_PEN)
        dc.SetBrush(wxBLACK_BRUSH)
        # Draw plain rectangle for representing the divergence
        if self.Type in [SELECTION_DIVERGENCE, SELECTION_CONVERGENCE]:
            dc.DrawRectangle(self.Pos.x, self.Pos.y, self.Size[0] + 1, self.Size[1] + 1)
        elif self.Type in [SIMULTANEOUS_DIVERGENCE, SIMULTANEOUS_CONVERGENCE]:
            dc.DrawLine(self.Pos.x - SFC_SIMULTANEOUS_SEQUENCE_EXTRA, self.Pos.y, 
                        self.Pos.x + self.Size[0] + SFC_SIMULTANEOUS_SEQUENCE_EXTRA + 1, self.Pos.y)
            dc.DrawLine(self.Pos.x - SFC_SIMULTANEOUS_SEQUENCE_EXTRA, self.Pos.y + 3, 
                        self.Pos.x + self.Size[0] + SFC_SIMULTANEOUS_SEQUENCE_EXTRA + 1, self.Pos.y + 3)
        # Draw inputs and outputs connectors
        for input in self.Inputs:
            input.Draw(dc)
        for output in self.Outputs:
            output.Draw(dc)
        Graphic_Element.Draw(self, dc)

#-------------------------------------------------------------------------------
#                   Sequencial Function Chart Jump to Step
#-------------------------------------------------------------------------------

"""
Class that implements the graphic representation of a jump to step
"""

class SFC_Jump(Graphic_Element):
    
    # Create a new jump
    def __init__(self, parent, target, id = None):
        Graphic_Element.__init__(self, parent)
        self.Target = target
        self.Id = id
        self.Size = wxSize(SFC_JUMP_SIZE[0], SFC_JUMP_SIZE[1])
        # Create an input and output connector
        self.Input = Connector(self, "", "ANY", wxPoint(self.Size[0] / 2, 0), NORTH)
        
    # Destructor
    def __del__(self):
        self.Inputs = None
    
    # Forbids to change the jump size
    def SetSize(self, width, height):
        pass
    
    # Forbids to resize jump
    def Resize(self, x, y, width, height):
        pass
    
    # Delete this jump by calling the appropriate method
    def Delete(self):
        self.Parent.DeleteJump(self)
    
    # Unconnect input
    def Clean(self):
        if self.Input:
            self.Input.UnConnect()
    
    # Refresh the jump bounding box
    def RefreshBoundingBox(self):
        dc = wxClientDC(self.Parent)
        text_width, text_height = dc.GetTextExtent(self.Target)
        # Calculate the bounding box size
        bbx_width = self.Size[0] + 2 + text_width
        self.BoundingBox = wxRect(self.Pos.x, self.Pos.y - CONNECTOR_SIZE, 
                bbx_width + 1, self.Size[1] + CONNECTOR_SIZE + 1)
    
    # Returns the connector connected to input
    def GetPreviousConnector(self):
        if self.Input:
            wires = self.Input.GetWires()
            if len(wires) == 1:
                return wires[0][0].EndConnected
        return None
    
    # Refresh the position of wires connected to jump
    def RefreshConnected(self, exclude = []):
        if self.Input:
            self.Input.MoveConnected(exclude)
    
    # Returns input jump connector 
    def GetConnector(self, position = None):
        return self.Input
    
    # Test if point given is on jump input connector
    def TestConnector(self, pt, exclude = True):
        # Test input connector
        if self.Input and self.Input.TestPoint(pt, exclude):
            return self.Input
        return None
    
    # Changes the jump target
    def SetTarget(self, target):
        self.Target = target
        self.RefreshBoundingBox()
    
    # Returns the jump target
    def GetTarget(self):
        return self.Target
    
    # Returns the jump minimum size
    def GetMinSize(self):
        return SFC_JUMP_SIZE
    
    # Align input element with this jump
    def RefreshInputPosition(self):
        if self.Input:
            current_pos = self.Input.GetPosition(False)
            input = self.GetPreviousConnector()
            if input:
                input_pos = input.GetPosition(False)
                diffx = current_pos.x - input_pos.x
                input_block = input.GetParentBlock()
                if isinstance(input_block, SFC_Divergence):
                    input_block.MoveConnector(input, diffx)
                else:
                    if isinstance(input_block, SFC_Step):
                        input_block.MoveActionBlock((diffx, 0))
                    input_block.Move(diffx, 0)
                    input_block.RefreshInputPosition()
    
    # Can't align output element, because there is no output
    def RefreshOutputPosition(self, move = None):
        pass
    
    # Method called when a LeftDClick event have been generated
    def OnLeftDClick(self, event, scaling):
        # Edit the jump properties
        self.Parent.EditJumpContent(self)
    
    # Method called when a RightUp event have been generated
    def OnRightUp(self, event, scaling):
        # Popup the default menu
        self.Parent.PopupDefaultMenu()
    
    # Refreshes the jump state according to move defined and handle selected
    def ProcessDragging(self, movex, movey):
        self.Move(movex, 0)
        self.RefreshInputPosition()
    
    # Refresh input element model
    def RefreshInputModel(self):
        input = self.GetPreviousConnector()
        if input:
            input_block = input.GetParentBlock()
            input_block.RefreshModel(False)
            if not isinstance(input_block, SFC_Divergence):
                input_block.RefreshInputModel()
    
    # Refresh output element model
    def RefreshOutputModel(self, move=False):
        pass
    
    # Refreshes the jump model
    def RefreshModel(self, move=True):
        self.Parent.RefreshJumpModel(self)
        if move:
            self.RefreshInputModel()
    
    # Draws divergence
    def Draw(self, dc):
        dc.SetPen(wxBLACK_PEN)
        dc.SetBrush(wxBLACK_BRUSH)
        # Draw plain rectangle for representing the divergence
        dc.DrawLine(self.Pos.x + self.Size[0] / 2, self.Pos.y, self.Pos.x + self.Size[0] / 2, self.Pos.y + self.Size[1])
        points = [wxPoint(self.Pos.x, self.Pos.y),
                  wxPoint(self.Pos.x + self.Size[0] / 2, self.Pos.y + self.Size[1] / 3),
                  wxPoint(self.Pos.x + self.Size[0], self.Pos.y),
                  wxPoint(self.Pos.x + self.Size[0] / 2, self.Pos.y + self.Size[1])]
        dc.DrawPolygon(points)
        text_width, text_height = dc.GetTextExtent(self.Target)
        dc.DrawText(self.Target, self.Pos.x + self.Size[0] + 2,
                    self.Pos.y + (self.Size[1] - text_height) / 2)
        # Draw input connector
        if self.Input:
            self.Input.Draw(dc)
        Graphic_Element.Draw(self, dc)


#-------------------------------------------------------------------------------
#                   Sequencial Function Chart Action Block
#-------------------------------------------------------------------------------

"""
Class that implements the graphic representation of an action block
"""

class SFC_ActionBlock(Graphic_Element):
    
    # Create a new action block
    def __init__(self, parent, actions = [], id = None):
        Graphic_Element.__init__(self, parent)
        self.Id = id
        self.Size = wxSize(SFC_ACTION_MIN_SIZE[0], SFC_ACTION_MIN_SIZE[1])
        # Create an input and output connector
        self.Input = Connector(self, "", "ANY", wxPoint(0, SFC_ACTION_MIN_SIZE[1] / 2), WEST)
        self.SetActions(actions)
    
    # Destructor
    def __del__(self):
        self.Input = None
    
    # Returns the number of action lines
    def GetLineNumber(self):
        return len(self.Actions)
    
    # Forbids to resize the action block
    def Resize(self, x, y, width, height):
        if x == 0:
            self.SetSize(width, self.Size[1])
    
    # Delete this action block by calling the appropriate method
    def Delete(self):
        self.Parent.DeleteActionBlock(self)
    
    # Unconnect input and output
    def Clean(self):
        self.Input.UnConnect()
        
    # Refresh the action block bounding box
    def RefreshBoundingBox(self):
        self.BoundingBox = wxRect(self.Pos.x, self.Pos.y, self.Size[0], self.Size[1])
    
    # Refresh the position of wires connected to action block
    def RefreshConnected(self, exclude = []):
        self.Input.MoveConnected(exclude)
    
    # Returns input action block connector 
    def GetConnector(self, position = None):
        return self.Input
    
    # Test if point given is on action block input connector
    def TestConnector(self, pt, exclude = True):
        # Test input connector
        if self.Input.TestPoint(pt, exclude):
            return self.Input
        return None
    
    # Changes the action block actions
    def SetActions(self, actions):
        dc = wxClientDC(self.Parent)
        self.Actions = actions
        self.ColSize = [0, 0, 0]
        for action in self.Actions:
            width, height = dc.GetTextExtent(action["qualifier"])
            self.ColSize[0] = max(self.ColSize[0], width + 10)
            if "duration" in action:
                width, height = dc.GetTextExtent("T#%s"%action["duration"])
                self.ColSize[0] = max(self.ColSize[0], width + 10)
            width, height = dc.GetTextExtent(action["value"])
            self.ColSize[1] = max(self.ColSize[1], width + 10)
            if "indicator" in action and action["indicator"] != "":
                width, height = dc.GetTextExtent(action["indicator"])
                self.ColSize[2] = max(self.ColSize[2], width + 10)
        self.Size = wxSize(max(self.ColSize[0] + self.ColSize[1] + self.ColSize[2],
            self.Size[0]), len(self.Actions) * SFC_ACTION_MIN_SIZE[1])
        self.RefreshBoundingBox()
        if self.Input:
            wires = self.Input.GetWires()
            if len(wires) == 1:
                input_block = wires[0][0].EndConnected.GetParentBlock()
                input_block.RefreshOutputPosition()
                input_block.RefreshOutputModel(True)
    
    # Returns the action block actions
    def GetActions(self):
        return self.Actions
    
    # Returns the action block minimum size
    def GetMinSize(self):
        return SFC_ACTION_MIN_SIZE[0], len(self.Actions) * SFC_ACTION_MIN_SIZE[1]
    
    # Method called when a LeftDClick event have been generated
    def OnLeftDClick(self, event, scaling):
        # Edit the action block properties
        self.Parent.EditActionBlockContent(self)
    
    # Refreshes the action block state according to move defined and handle selected
    def ProcessDragging(self, movex, movey):
        handle_type, handle = self.Handle
        if handle_type == HANDLE_MOVE:
            wires = self.Input.GetWires()
            if len(wires) == 1:
                input_pos = wires[0][0].EndConnected.GetPosition(False)
                if self.Pos.x - input_pos.x + movex >= SFC_WIRE_MIN_SIZE:
                    self.Move(movex, 0)
        else:
            Graphic_Element.ProcessDragging(self, movex, movey)
    
   # Refreshes the action block model
    def RefreshModel(self, move=True):
        self.Parent.RefreshActionBlockModel(self)
    
    # Draws divergence
    def Draw(self, dc):
        dc.SetPen(wxBLACK_PEN)
        dc.SetBrush(wxWHITE_BRUSH)
        colsize = [self.ColSize[0], self.Size[0] - self.ColSize[0] - self.ColSize[2], self.ColSize[2]]
        # Draw plain rectangle for representing the action block
        dc.DrawRectangle(self.Pos.x, self.Pos.y, self.Size[0] + 1, self.Size[1] + 1)
        dc.DrawLine(self.Pos.x + colsize[0], self.Pos.y, 
                self.Pos.x + colsize[0], self.Pos.y + self.Size[1])
        dc.DrawLine(self.Pos.x + colsize[0] + colsize[1], self.Pos.y, 
                self.Pos.x + colsize[0] + colsize[1], self.Pos.y + self.Size[1])
        for i, action in enumerate(self.Actions):
            if i != 0:
                dc.DrawLine(self.Pos.x, self.Pos.y + i * SFC_ACTION_MIN_SIZE[1], 
                    self.Pos.x + self.Size[0], self.Pos.y + i * SFC_ACTION_MIN_SIZE[1])
            text_width, text_height = dc.GetTextExtent(action["qualifier"])
            if "duration" in action:
                dc.DrawText(action["qualifier"], self.Pos.x + (colsize[0] - text_width) / 2,
                    self.Pos.y + i * SFC_ACTION_MIN_SIZE[1] + SFC_ACTION_MIN_SIZE[1] / 2 - text_height)
                text_width, text_height = dc.GetTextExtent("T#%s"%action["duration"])
                dc.DrawText("T#%s"%action["duration"], self.Pos.x + (colsize[0] - text_width) / 2,
                    self.Pos.y + i * SFC_ACTION_MIN_SIZE[1] + SFC_ACTION_MIN_SIZE[1] / 2)
            else:
                dc.DrawText(action["qualifier"], self.Pos.x + (colsize[0] - text_width) / 2,
                        self.Pos.y + i * SFC_ACTION_MIN_SIZE[1] + (SFC_ACTION_MIN_SIZE[1] - text_height) / 2)
            text_width, text_height = dc.GetTextExtent(action["value"])
            dc.DrawText(action["value"], self.Pos.x + colsize[0] + (colsize[1] - text_width) / 2,
                    self.Pos.y + i * SFC_ACTION_MIN_SIZE[1] + (SFC_ACTION_MIN_SIZE[1] - text_height) / 2)
            if "indicator" in action:
                text_width, text_height = dc.GetTextExtent(action["indicator"])
                dc.DrawText(action["indicator"], self.Pos.x + colsize[0] + colsize[1] + (colsize[2] - text_width) / 2,
                        self.Pos.y + i * SFC_ACTION_MIN_SIZE[1] + (SFC_ACTION_MIN_SIZE[1] - text_height) / 2)
        # Draw input connector
        self.Input.Draw(dc)
        Graphic_Element.Draw(self, dc)