#!/usr/bin/env python
# -*- coding: utf-8 -*-
import string, os, sys
#This file is part of PLCOpenEditor, a library implementing an IEC 61131-3 editor
#based on the plcopen standard.
#
#Copyright (C) 2007: Edouard TISSERANT and Laurent BESSARD
#
#See COPYING file for copyrights details.
#
#This library is free software; you can redistribute it and/or
#modify it under the terms of the GNU General Public
#License as published by the Free Software Foundation; either
#version 2.1 of the License, or (at your option) any later version.
#
#This library is distributed in the hope that it will be useful,
#but WITHOUT ANY WARRANTY; without even the implied warranty of
#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
#General Public License for more details.
#
#You should have received a copy of the GNU General Public
#License along with this library; if not, write to the Free Software
#Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
LANGUAGES = ["IL","ST","FBD","LD","SFC"]
LOCATIONDATATYPES = {"X" : ["BOOL"],
"B" : ["SINT", "USINT", "BYTE", "STRING"],
"W" : ["INT", "UINT", "WORD", "WSTRING"],
"D" : ["DINT", "UDINT", "REAL", "DWORD"],
"L" : ["LINT", "ULINT", "LREAL", "LWORD"]}
def generate_block(generator, block, body, link, order=False):
body_type = body.getcontent()["name"]
name = block.getinstanceName()
type = block.gettypeName()
executionOrderId = block.getexecutionOrderId()
block_infos = GetBlockType(type)
if block_infos["type"] == "function":
output_variable = block.outputVariables.getvariable()[0]
output_name = "%s%d_OUT"%(type, block.getlocalId())
if not generator.ComputedBlocks.get(block, False) and not order:
generator.ComputedBlocks[block] = True
if generator.Interface[-1][0] != "VAR" or generator.Interface[-1][1] or generator.Interface[-1][2] or generator.Interface[-1][3]:
generator.Interface.append(("VAR", False, False, False, []))
if output_variable.connectionPointOut in generator.ConnectionTypes:
generator.Interface[-1][4].append((generator.ConnectionTypes[output_variable.connectionPointOut], output_name, None, None))
else:
generator.Interface[-1][4].append(("ANY", output_name, None, None))
vars = []
for variable in block.inputVariables.getvariable():
connections = variable.connectionPointIn.getconnections()
if connections and len(connections) == 1:
if body_type == "FBD" or body_type == "SFC":
value = generator.ComputeFBDExpression(body, connections[0], executionOrderId > 0)
elif body_type == "LD":
paths = generator.GenerateLDPaths(variable.connectionPointIn.getConnections(), body)
if len(paths) > 0:
paths = tuple(paths)
else:
paths = paths[0]
value = generator.ComputeLDExpression(paths, True)
vars.append(generator.ExtractModifier(variable, value))
generator.Program += " %s := %s(%s);\n"%(output_name, type, ", ".join(vars))
return generator.ExtractModifier(output_variable, output_name)
elif block_infos["type"] == "functionBlock":
if not generator.ComputedBlocks.get(block, False) and not order:
generator.ComputedBlocks[block] = True
vars = []
for variable in block.inputVariables.getvariable():
connections = variable.connectionPointIn.getconnections()
if connections and len(connections) == 1:
parameter = variable.getformalParameter()
if body_type == "FBD" or body_type == "SFC":
value = generator.ComputeFBDExpression(body, connections[0], executionOrderId > 0)
elif body_type == "LD":
paths = generator.GenerateLDPaths(variable.connectionPointIn.getconnections(), body)
if len(paths) > 0:
paths = tuple(paths)
else:
paths = paths[0]
value = generator.ComputeLDExpression(paths, True)
vars.append("%s := %s"%(parameter, generator.ExtractModifier(variable, value)))
generator.Program += " %s(%s);\n"%(name, ", ".join(vars))
if link:
connectionPoint = link.getposition()[-1]
else:
connectionPoint = None
for variable in block.outputVariables.getvariable():
blockPointx, blockPointy = variable.connectionPointOut.getrelPositionXY()
if not connectionPoint or block.getx() + blockPointx == connectionPoint.getx() and block.gety() + blockPointy == connectionPoint.gety():
return generator.ExtractModifier(variable, "%s.%s"%(name, variable.getformalParameter()))
raise ValueError, "No output variable found"
def initialise_block(type, name, block = None):
return [(type, name, None, None)]
#-------------------------------------------------------------------------------
# Function Block Types definitions
#-------------------------------------------------------------------------------
"""
Ordored list of common Function Blocks defined in the IEC 61131-3
Each block have this attributes:
- "name" : The block name
- "type" : The block type. It can be "function", "functionBlock" or "program"
- "extensible" : Boolean that define if the block is extensible
- "inputs" : List of the block inputs
- "outputs" : List of the block outputs
- "comment" : Comment that will be displayed in the block popup
- "generate" : Method that generator will call for generating ST block code
Inputs and outputs are a tuple of characteristics that are in order:
- The name
- The data type
- The default modifier which can be "none", "negated", "rising" or "falling"
"""
BlockTypes = [{"name" : "Standard function blocks", "list":
[{"name" : "SR", "type" : "functionBlock", "extensible" : False,
"inputs" : [("S1","BOOL","none"),("R","BOOL","none")],
"outputs" : [("Q1","BOOL","none")],
"comment" : "SR bistable\nThe SR bistable is a latch where the Set dominates.",
"generate" : generate_block, "initialise" : initialise_block},
{"name" : "RS", "type" : "functionBlock", "extensible" : False,
"inputs" : [("S","BOOL","none"),("R1","BOOL","none")],
"outputs" : [("Q1","BOOL","none")],
"comment" : "RS bistable\nThe RS bistable is a latch where the Reset dominates.",
"generate" : generate_block, "initialise" : initialise_block},
{"name" : "SEMA", "type" : "functionBlock", "extensible" : False,
"inputs" : [("CLAIM","BOOL","none"),("RELEASE","BOOL","none")],
"outputs" : [("BUSY","BOOL","none")],
"comment" : "Semaphore\nThe semaphore provides a mechanism to allow software elements mutually exclusive access to certain ressources.",
"generate" : generate_block, "initialise" : initialise_block},
{"name" : "R_TRIG", "type" : "functionBlock", "extensible" : False,
"inputs" : [("CLK","BOOL","none")],
"outputs" : [("Q","BOOL","none")],
"comment" : "Rising edge detector\nThe output produces a single pulse when a rising edge is detected.",
"generate" : generate_block, "initialise" : initialise_block},
{"name" : "F_TRIG", "type" : "functionBlock", "extensible" : False,
"inputs" : [("CLK","BOOL","none")],
"outputs" : [("Q","BOOL","none")],
"comment" : "Falling edge detector\nThe output produces a single pulse when a falling edge is detected.",
"generate" : generate_block, "initialise" : initialise_block},
{"name" : "CTU", "type" : "functionBlock", "extensible" : False,
"inputs" : [("CU","BOOL","rising"),("R","BOOL","none"),("PV","INT","none")],
"outputs" : [("Q","BOOL","none"),("CV","INT","none")],
"comment" : "Up-counter\nThe up-counter can be used to signal when a count has reached a maximum value.",
"generate" : generate_block, "initialise" : initialise_block},
{"name" : "CTD", "type" : "functionBlock", "extensible" : False,
"inputs" : [("CD","BOOL","rising"),("LD","BOOL","none"),("PV","INT","none")],
"outputs" : [("Q","BOOL","none"),("CV","INT","none")],
"comment" : "Down-counter\nThe down-counter can be used to signal when a count has reached zero, on counting down from a preset value.",
"generate" : generate_block, "initialise" : initialise_block},
{"name" : "CTUD", "type" : "functionBlock", "extensible" : False,
"inputs" : [("CU","BOOL","rising"),("CD","BOOL","rising"),("R","BOOL","none"),("LD","BOOL","none"),("PV","INT","none")],
"outputs" : [("QU","BOOL","none"),("QD","BOOL","none"),("CV","INT","none")],
"comment" : "Up-down counter\nThe up-down counter has two inputs CU and CD. It can be used to both count up on one input ans down on the other.",
"generate" : generate_block, "initialise" : initialise_block},
{"name" : "TP", "type" : "functionBlock", "extensible" : False,
"inputs" : [("IN","BOOL","none"),("PT","TIME","none")],
"outputs" : [("Q","BOOL","none"),("ET","TIME","none")],
"comment" : "Pulse timer\nThe pulse timer can be used to generate output pulses of a given time duration.",
"generate" : generate_block, "initialise" : initialise_block},
{"name" : "TOF", "type" : "functionBlock", "extensible" : False,
"inputs" : [("IN","BOOL","none"),("PT","TIME","none")],
"outputs" : [("Q","BOOL","none"),("ET","TIME","none")],
"comment" : "On-delay timer\nThe on-delay timer can be used to delay setting an output true, for fixed period after an input becomes true.",
"generate" : generate_block, "initialise" : initialise_block},
{"name" : "TON", "type" : "functionBlock", "extensible" : False,
"inputs" : [("IN","BOOL","none"),("PT","TIME","none")],
"outputs" : [("Q","BOOL","none"),("ET","TIME","none")],
"comment" : "Off-delay timer\nThe off-delay timer can be used to delay setting an output false, for fixed period after input goes false.",
"generate" : generate_block, "initialise" : initialise_block},
{"name" : "RTC", "type" : "functionBlock", "extensible" : False,
"inputs" : [("EN","BOOL","none"),("PDT","DATE_AND_TIME","none")],
"outputs" : [("Q","BOOL","none"),("CDT","DATE_AND_TIME","none")],
"comment" : "Real time clock\nThe real time clock has many uses including time stamping, setting dates and times of day in batch reports, in alarm messages and so on.",
"generate" : generate_block, "initialise" : initialise_block},
{"name" : "INTEGRAL", "type" : "functionBlock", "extensible" : False,
"inputs" : [("RUN","BOOL","none"),("R1","BOOL","none"),("XIN","REAL","none"),("X0","REAL","none"),("CYCLE","TIME","none")],
"outputs" : [("Q","BOOL","none"),("XOUT","REAL","none")],
"comment" : "Integral\nThe integral function block integrates the value of input XIN over time.",
"generate" : generate_block, "initialise" : initialise_block},
{"name" : "DERIVATIVE", "type" : "functionBlock", "extensible" : False,
"inputs" : [("RUN","BOOL","none"),("XIN","REAL","none"),("CYCLE","TIME","none")],
"outputs" : [("XOUT","REAL","none")],
"comment" : "Derivative\nThe derivative function block produces an output XOUT proportional to the rate of change of the input XIN.",
"generate" : generate_block, "initialise" : initialise_block},
{"name" : "PID", "type" : "functionBlock", "extensible" : False,
"inputs" : [("AUTO","BOOL","none"),("PV","REAL","none"),("SP","REAL","none"),("X0","REAL","none"),("KP","REAL","none"),("TR","REAL","none"),("TD","REAL","none"),("CYCLE","TIME","none")],
"outputs" : [("XOUT","REAL","none")],
"comment" : "PID\nThe PID (proportional, Integral, Derivative) function block provides the classical three term controller for closed loop control.",
"generate" : generate_block, "initialise" : initialise_block},
{"name" : "RAMP", "type" : "functionBlock", "extensible" : False,
"inputs" : [("RUN","BOOL","none"),("X0","REAL","none"),("X1","REAL","none"),("TR","TIME","none"),("CYCLE","TIME","none"),("HOLDBACK","BOOL","none"),("ERROR","REAL","none"),("PV","REAL","none")],
"outputs" : [("RAMP","BOOL","none"),("XOUT","REAL","none")],
"comment" : "Ramp\nThe RAMP function block is modelled on example given in the standard but with the addition of a 'Holdback' feature.",
"generate" : generate_block, "initialise" : initialise_block},
{"name" : "HYSTERESIS", "type" : "functionBlock", "extensible" : False,
"inputs" : [("XIN1","REAL","none"),("XIN2","REAL","none"),("EPS","REAL","none")],
"outputs" : [("Q","BOOL","none")],
"comment" : "Hysteresis\nThe hysteresis function block provides a hysteresis boolean output driven by the difference of two floating point (REAL) inputs XIN1 and XIN2.",
"generate" : generate_block, "initialise" : initialise_block},
{"name" : "RATIO_MONITOR", "type" : "functionBlock", "extensible" : False,
"inputs" : [("PV1","REAL","none"),("PV2","REAL","none"),("RATIO","REAL","none"),("TIMON","TIME","none"),("TIMOFF","TIME","none"),("TOLERANCE","BOOL","none"),("RESET","BOOL","none"),("CYCLE","TIME","none")],
"outputs" : [("ALARM","BOOL","none"),("TOTAL_ERR","BOOL","none")],
"comment" : "Ratio monitor\nThe ratio_monitor function block checks that one process value PV1 is always a given ratio (defined by input RATIO) of a second process value PV2.",
"generate" : generate_block, "initialise" : initialise_block}
]},
]
PluginTypes = []
"""
Function that returns the block definition associated to the block type given
"""
def GetBlockType(type, inputs = None):
for category in BlockTypes + PluginTypes:
for blocktype in category["list"]:
if inputs:
block_inputs = tuple([var_type for name, var_type, modifier in blocktype["inputs"]])
same_inputs = inputs == block_inputs
else:
same_inputs = True
if blocktype["name"] == type and same_inputs:
return blocktype
return None
"""
Function that add a new plugin to the plugin list
"""
def AddPluginBlockList(blocklist):
PluginTypes.extend(blocklist)
def ClearPluginTypes():
for i in xrange(len(PluginTypes)):
PluginTypes.pop(0)
#-------------------------------------------------------------------------------
# Data Types definitions
#-------------------------------------------------------------------------------
"""
Ordored list of common data types defined in the IEC 61131-3
Each type is associated to his direct parent type. It defines then a hierarchy
between type that permits to make a comparison of two types
"""
TypeHierarchy_list = [
("ANY", None),
("ANY_DERIVED", "ANY"),
("ANY_ELEMENTARY", "ANY"),
("ANY_MAGNITUDE", "ANY_ELEMENTARY"),
("ANY_BIT", "ANY_ELEMENTARY"),
("ANY_NBIT", "ANY_BIT"),
("ANY_STRING", "ANY_ELEMENTARY"),
("ANY_DATE", "ANY_ELEMENTARY"),
("ANY_NUM", "ANY_MAGNITUDE"),
("ANY_REAL", "ANY_NUM"),
("ANY_INT", "ANY_NUM"),
("ANY_SINT", "ANY_INT"),
("ANY_UINT", "ANY_INT"),
("BOOL", "ANY_BIT"),
("SINT", "ANY_SINT"),
("INT", "ANY_SINT"),
("DINT", "ANY_SINT"),
("LINT", "ANY_SINT"),
("USINT", "ANY_UINT"),
("UINT", "ANY_UINT"),
("UDINT", "ANY_UINT"),
("ULINT", "ANY_UINT"),
("REAL", "ANY_REAL"),
("LREAL", "ANY_REAL"),
("TIME", "ANY_MAGNITUDE"),
("DATE", "ANY_DATE"),
("TOD", "ANY_DATE"),
("DT", "ANY_DATE"),
("STRING", "ANY_STRING"),
("BYTE", "ANY_NBIT"),
("WORD", "ANY_NBIT"),
("DWORD", "ANY_NBIT"),
("LWORD", "ANY_NBIT")
#("WSTRING", "ANY_STRING") # TODO
]
TypeHierarchy = dict(TypeHierarchy_list)
def ResetTypeHierarchy():
TypeHierarchy = dict(TypeHierarchy_list)
def AddDataTypeHierarchy(name, reference):
TypeHierarchy[name] = reference
DataTypeRange_list = [
("SINT", (-2**7, 2**7 - 1)),
("INT", (-2**15, 2**15 - 1)),
("DINT", (-2**31, 2**31 - 1)),
("LINT", (-2**31, 2**31 - 1)),
("USINT", (0, 2**8 - 1)),
("UINT", (0, 2**16 - 1)),
("UDINT", (0, 2**31 - 1)),
("ULINT", (0, 2**31 - 1))
]
DataTypeRange = dict(DataTypeRange_list)
def ResetDataTypeRange():
DataTypeRange = dict(DataTypeRange_list)
def AddDataTypeRange(name, range):
DataTypeRange[name] = range
"""
returns true if the given data type is the same that "reference" meta-type or one of its types.
"""
def IsOfType(test, reference):
if reference is None:
return True
while test is not None:
if test == reference:
return True
test = TypeHierarchy[test]
return False
def IsEndType(reference):
if reference is not None:
return not reference.startswith("ANY")
else:
return True
def GetBaseType(type):
parent_type = TypeHierarchy[type]
if parent_type.startswith("ANY"):
return type
else:
return GetBaseType(parent_type)
def GetDataTypeRange(reference):
while reference is not None:
if reference in DataTypeRange:
return DataTypeRange[reference]
else:
reference = TypeHierarchy[reference]
return None
"""
returns list of all types that correspont to the ANY* meta type
"""
def GetSubTypes(reference):
return [typename for typename, parenttype in TypeHierarchy.items() if not typename.startswith("ANY") and IsOfType(typename, reference)]
EnumeratedDataValues = []
def ResetEnumeratedDataValues():
EnumeratedDataValues = []
def AddEnumeratedDataValues(values):
EnumeratedDataValues.extend(values)
#-------------------------------------------------------------------------------
# Test identifier
#-------------------------------------------------------------------------------
# Test if identifier is valid
def TestIdentifier(identifier):
if identifier[0].isdigit():
return False
words = identifier.split('_')
for i, word in enumerate(words):
if len(word) == 0 and i != 0:
return False
if len(word) != 0 and not word.isalnum():
return False
return True
#-------------------------------------------------------------------------------
# Standard functions list generation
#-------------------------------------------------------------------------------
"""
take a .csv file and translate it it a "csv_table"
"""
def csv_file_to_table(file):
return [ map(string.strip,line.split(';')) for line in file.xreadlines()]
"""
seek into the csv table to a section ( section_name match 1st field )
return the matching row without first field
"""
def find_section(section_name, table):
fields = [None]
while(fields[0] != section_name):
fields = table.pop(0)
return fields[1:]
"""
extract the standard functions standard parameter names and types...
return a { ParameterName: Type, ...}
"""
def get_standard_funtions_input_variables(table):
variables = find_section("Standard_functions_variables_types", table)
standard_funtions_input_variables = {}
fields = [True,True]
while(fields[1]):
fields = table.pop(0)
variable_from_csv = dict([(champ, val) for champ, val in zip(variables, fields[1:]) if champ!=''])
standard_funtions_input_variables[variable_from_csv['name']] = variable_from_csv['type']
return standard_funtions_input_variables
"""
translate .csv file input declaration into PLCOpenEditor interessting values
in : "(ANY_NUM, ANY_NUM)" and { ParameterName: Type, ...}
return [("IN1","ANY_NUM","none"),("IN2","ANY_NUM","none")]
"""
def csv_input_translate(str_decl, variables, base):
decl = str_decl.replace('(','').replace(')','').replace(' ','').split(',')
params = []
len_of_not_predifined_variable = len([True for param_type in decl if param_type not in variables])
for param_type in decl:
if param_type in variables.keys():
param_name = param_type
param_type = variables[param_type]
elif len_of_not_predifined_variable > 1:
param_name = "IN%d"%base
base += 1
else:
param_name = "IN"
params.append((param_name, param_type, "none"))
return params
ANY_TO_ANY_LIST=[
# simple type conv are let as C cast
(("ANY_NUM","ANY_BIT"),("ANY_NUM","ANY_BIT"), "(%(return_type)s)%(IN_value)s"),
# TO_TIME
(("ANY_INT","ANY_BIT"),("ANY_DATE","TIME"), "(%(return_type)s)__int_to_time(%(IN_value)s)"),
(("ANY_REAL",),("ANY_DATE","TIME"), "(%(return_type)s)__real_to_time(%(IN_value)s)"),
(("ANY_STRING",), ("ANY_DATE","TIME"), "(%(return_type)s)__string_to_time(%(IN_value)s)"),
# FROM_TIME
(("ANY_DATE","TIME"), ("ANY_REAL",), "(%(return_type)s)__time_to_real(%(IN_value)s)"),
(("ANY_DATE","TIME"), ("ANY_INT","ANY_NBIT"), "(%(return_type)s)__time_to_int(%(IN_value)s)"),
(("TIME",), ("ANY_STRING",), "(%(return_type)s)__time_to_string(%(IN_value)s)"),
(("DATE",), ("ANY_STRING",), "(%(return_type)s)__date_to_string(%(IN_value)s)"),
(("TOD",), ("ANY_STRING",), "(%(return_type)s)__tod_to_string(%(IN_value)s)"),
(("DT",), ("ANY_STRING",), "(%(return_type)s)__dt_to_string(%(IN_value)s)"),
# TO_STRING
(("BOOL",), ("ANY_STRING",), "(%(return_type)s)__bool_to_string(%(IN_value)s)"),
(("ANY_BIT",), ("ANY_STRING",), "(%(return_type)s)__bit_to_string(%(IN_value)s)"),
(("ANY_REAL",), ("ANY_STRING",), "(%(return_type)s)__real_to_string(%(IN_value)s)"),
(("ANY_SINT",), ("ANY_STRING",), "(%(return_type)s)__sint_to_string(%(IN_value)s)"),
(("ANY_UINT",), ("ANY_STRING",), "(%(return_type)s)__uint_to_string(%(IN_value)s)"),
# FROM_STRING
(("ANY_STRING",), ("BOOL",), "(%(return_type)s)__string_to_bool(%(IN_value)s)"),
(("ANY_STRING",), ("ANY_BIT",), "(%(return_type)s)__string_to_bit(%(IN_value)s)"),
(("ANY_STRING",), ("ANY_SINT",), "(%(return_type)s)__string_to_sint(%(IN_value)s)"),
(("ANY_STRING",), ("ANY_UINT",), "(%(return_type)s)__string_to_uint(%(IN_value)s)"),
(("ANY_STRING",), ("ANY_REAL",), "(%(return_type)s)__string_to_real(%(IN_value)s)")]
BCD_TO_ANY_LIST=[
(("BYTE",),("USINT",), "(%(return_type)s)__bcd_to_uint(%(IN_value)s)"),
(("WORD",),("UINT",), "(%(return_type)s)__bcd_to_uint(%(IN_value)s)"),
(("DWORD",),("UDINT",), "(%(return_type)s)__bcd_to_uint(%(IN_value)s)"),
(("LWORD",),("ULINT",), "(%(return_type)s)__bcd_to_uint(%(IN_value)s)")]
ANY_TO_BCD_LIST=[
(("USINT",),("BYTE",), "(%(return_type)s)__uint_to_bcd(%(IN_value)s)"),
(("UINT",),("WORD",), "(%(return_type)s)__uint_to_bcd(%(IN_value)s)"),
(("UDINT",),("DWORD",), "(%(return_type)s)__uint_to_bcd(%(IN_value)s)"),
(("ULINT",),("LWORD",), "(%(return_type)s)__uint_to_bcd(%(IN_value)s)")]
def ANY_TO_ANY_FORMAT_GEN(any_to_any_list, fdecl):
for (InTypes, OutTypes, Format) in any_to_any_list:
outs = reduce(lambda a,b: a or b, map(lambda testtype : IsOfType(fdecl["outputs"][0][1],testtype), OutTypes))
inps = reduce(lambda a,b: a or b, map(lambda testtype : IsOfType(fdecl["inputs"][0][1],testtype), InTypes))
if inps and outs and fdecl["outputs"][0][1] != fdecl["inputs"][0][1]:
return Format
return None
"""
Returns this kind of declaration for all standard functions
[{"name" : "Numerical", 'list': [ {
'baseinputnumber': 1,
'comment': 'Addition',
'extensible': True,
'inputs': [ ('IN1', 'ANY_NUM', 'none'),
('IN2', 'ANY_NUM', 'none')],
'name': 'ADD',
'outputs': [('OUT', 'ANY_NUM', 'none')],
'type': 'function'}, ...... ] },.....]
"""
def get_standard_funtions(table):
variables = get_standard_funtions_input_variables(table)
fonctions = find_section("Standard_functions_type",table)
Standard_Functions_Decl = []
Current_section = None
translate = {
"extensible" : lambda x: {"yes":True, "no":False}[x],
"inputs" : lambda x:csv_input_translate(x,variables,baseinputnumber),
"outputs":lambda x:[("OUT",x,"none")]}
for fields in table:
if fields[1]:
# If function section name given
if fields[0]:
Current_section = {"name" : fields[0], "list" : []}
Standard_Functions_Decl.append(Current_section)
Function_decl_list = []
if Current_section:
Function_decl = dict([(champ, val) for champ, val in zip(fonctions, fields[1:]) if champ])
Function_decl["generate"] = generate_block
Function_decl["initialise"] = lambda x,y:[]
baseinputnumber = int(Function_decl.get("baseinputnumber",1))
Function_decl["baseinputnumber"] = baseinputnumber
for param, value in Function_decl.iteritems():
if param in translate:
Function_decl[param] = translate[param](value)
Function_decl["type"] = "function"
if Function_decl["name"].startswith('*') or Function_decl["name"].endswith('*') :
input_ovrloading_types = GetSubTypes(Function_decl["inputs"][0][1])
output_types = GetSubTypes(Function_decl["outputs"][0][1])
else:
input_ovrloading_types = [None]
output_types = [None]
funcdeclname_orig = Function_decl["name"]
funcdeclname = Function_decl["name"].strip('*_')
fdc = Function_decl["inputs"][:]
for intype in input_ovrloading_types:
if intype != None:
Function_decl["inputs"] = []
for decl_tpl in fdc:
if IsOfType(intype, decl_tpl[1]):
Function_decl["inputs"] += [(decl_tpl[0], intype, decl_tpl[2])]
else:
Function_decl["inputs"] += [(decl_tpl)]
if funcdeclname_orig.startswith('*'):
funcdeclin = intype + '_' + funcdeclname
else:
funcdeclin = funcdeclname
else:
funcdeclin = funcdeclname
for outype in output_types:
if outype != None:
decl_tpl = Function_decl["outputs"][0]
Function_decl["outputs"] = [ (decl_tpl[0] , outype, decl_tpl[2])]
if funcdeclname_orig.endswith('*'):
funcdeclout = funcdeclin + '_' + outype
else:
funcdeclout = funcdeclin
else:
funcdeclout = funcdeclin
Function_decl["name"] = funcdeclout
fdecl = Function_decl
res = eval(Function_decl["python_eval_c_code_format"])
if res != None :
# create the copy of decl dict to be appended to section
Function_decl_copy = Function_decl.copy()
# Have to generate type description in comment with freshly redefined types
Function_decl_copy["comment"] += (
"\n (" +
str([ " " + fctdecl[1]+":"+fctdecl[0] for fctdecl in Function_decl["inputs"]]).strip("[]").replace("'",'') +
" ) => (" +
str([ " " + fctdecl[1]+":"+fctdecl[0] for fctdecl in Function_decl["outputs"]]).strip("[]").replace("'",'') +
" )")
Current_section["list"].append(Function_decl_copy)
#pp.pprint(Function_decl_copy)
else:
raise "First function must be in a category"
return Standard_Functions_Decl
std_decl = get_standard_funtions(csv_file_to_table(open(os.path.join(os.path.split(__file__)[0],"iec_std.csv"))))#, True)
BlockTypes.extend(std_decl)
#-------------------------------------------------------------------------------
# Languages Keywords
#-------------------------------------------------------------------------------
# Keywords for Pou Declaration
POU_KEYWORDS = ["FUNCTION", "END_FUNCTION", "FUNCTION_BLOCK", "END_FUNCTION_BLOCK",
"PROGRAM", "END_PROGRAM", "EN", "ENO", "F_EDGE", "R_EDGE"]
for category in BlockTypes:
for block in category["list"]:
if block["name"] not in POU_KEYWORDS:
POU_KEYWORDS.append(block["name"])
# Keywords for Type Declaration
TYPE_KEYWORDS = ["TYPE", "END_TYPE", "STRUCT", "END_STRUCT", "ARRAY", "OF", "T",
"D", "TIME_OF_DAY", "DATE_AND_TIME"]
TYPE_KEYWORDS.extend([keyword for keyword in TypeHierarchy.keys() if keyword not in TYPE_KEYWORDS])
# Keywords for Variable Declaration
VAR_KEYWORDS = ["VAR", "VAR_INPUT", "VAR_OUTPUT", "VAR_IN_OUT", "VAR_TEMP",
"VAR_EXTERNAL", "END_VAR", "AT", "CONSTANT", "RETAIN", "NON_RETAIN"]
# Keywords for Configuration Declaration
CONFIG_KEYWORDS = ["CONFIGURATION", "END_CONFIGURATION", "RESOURCE", "ON", "END_RESOURCE",
"PROGRAM", "WITH", "READ_ONLY", "READ_WRITE", "TASK", "VAR_ACCESS", "VAR_CONFIG",
"VAR_GLOBAL", "END_VAR"]
# Keywords for Structured Function Chart
SFC_KEYWORDS = ["ACTION", "END_ACTION", "INITIAL_STEP", "STEP", "END_STEP", "TRANSITION",
"FROM", "TO", "END_TRANSITION"]
# Keywords for Instruction List
IL_KEYWORDS = ["TRUE", "FALSE", "LD", "LDN", "ST", "STN", "S", "R", "AND", "ANDN", "OR", "ORN",
"XOR", "XORN", "NOT", "ADD", "SUB", "MUL", "DIV", "MOD", "GT", "GE", "EQ", "NE",
"LE", "LT", "JMP", "JMPC", "JMPNC", "CAL", "CALC", "CALNC", "RET", "RETC", "RETNC"]
# Keywords for Structured Text
ST_KEYWORDS = ["TRUE", "FALSE", "IF", "THEN", "ELSIF", "ELSE", "END_IF", "CASE", "OF", "END_CASE",
"FOR", "TO", "BY", "DO", "END_FOR", "WHILE", "DO", "END_WHILE", "REPEAT", "UNTIL",
"END_REPEAT", "EXIT", "RETURN", "NOT", "MOD", "AND", "XOR", "OR"]
# All the keywords of IEC
IEC_KEYWORDS = ["E", "TRUE", "FALSE"]
IEC_KEYWORDS.extend([keyword for keyword in POU_KEYWORDS if keyword not in IEC_KEYWORDS])
IEC_KEYWORDS.extend([keyword for keyword in TYPE_KEYWORDS if keyword not in IEC_KEYWORDS])
IEC_KEYWORDS.extend([keyword for keyword in VAR_KEYWORDS if keyword not in IEC_KEYWORDS])
IEC_KEYWORDS.extend([keyword for keyword in CONFIG_KEYWORDS if keyword not in IEC_KEYWORDS])
IEC_KEYWORDS.extend([keyword for keyword in SFC_KEYWORDS if keyword not in IEC_KEYWORDS])
IEC_KEYWORDS.extend([keyword for keyword in IL_KEYWORDS if keyword not in IEC_KEYWORDS])
IEC_KEYWORDS.extend([keyword for keyword in ST_KEYWORDS if keyword not in IEC_KEYWORDS])