Adding support: when a connector's or continuation's name changed, modify names of related connections and continuations.
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import string, os, sys
#This file is part of PLCOpenEditor, a library implementing an IEC 61131-3 editor
#based on the plcopen standard.
#
#Copyright (C) 2007: Edouard TISSERANT and Laurent BESSARD
#
#See COPYING file for copyrights details.
#
#This library is free software; you can redistribute it and/or
#modify it under the terms of the GNU General Public
#License as published by the Free Software Foundation; either
#version 2.1 of the License, or (at your option) any later version.
#
#This library is distributed in the hope that it will be useful,
#but WITHOUT ANY WARRANTY; without even the implied warranty of
#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
#General Public License for more details.
#
#You should have received a copy of the GNU General Public
#License along with this library; if not, write to the Free Software
#Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
LANGUAGES = ["IL","ST","FBD","LD","SFC"]
LOCATIONDATATYPES = {"X" : ["BOOL"],
"B" : ["SINT", "USINT", "BYTE", "STRING"],
"W" : ["INT", "UINT", "WORD", "WSTRING"],
"D" : ["DINT", "UDINT", "REAL", "DWORD"],
"L" : ["LINT", "ULINT", "LREAL", "LWORD"]}
_ = lambda x:x
# Helper for emulate join on element list
def JoinList(separator, mylist):
if len(mylist) > 0 :
return reduce(lambda x, y: x + separator + y, mylist)
else :
return mylist
def generate_block(generator, block, block_infos, body, link, order=False):
body_type = body.getcontent()["name"]
name = block.getinstanceName()
type = block.gettypeName()
executionOrderId = block.getexecutionOrderId()
if block_infos["type"] == "function":
output_variables = block.outputVariables.getvariable()
if not generator.ComputedBlocks.get(block, False) and not order:
generator.ComputedBlocks[block] = True
vars = []
one_input_connected = False
for i, variable in enumerate(block.inputVariables.getvariable()):
input_info = (generator.TagName, "block", block.getlocalId(), "input", i)
connections = variable.connectionPointIn.getconnections()
if connections is not None:
parameter = variable.getformalParameter()
if parameter != "EN":
one_input_connected = True
value = generator.ComputeExpression(body, connections, executionOrderId > 0)
if len(output_variables) > 1:
vars.append([(parameter, input_info),
(" := ", ())] + generator.ExtractModifier(variable, value, input_info))
else:
vars.append(generator.ExtractModifier(variable, value, input_info))
if one_input_connected:
for i, variable in enumerate(output_variables):
parameter = variable.getformalParameter()
if variable.getformalParameter() == "":
variable_name = "%s%d"%(type, block.getlocalId())
else:
variable_name = "%s%d_%s"%(type, block.getlocalId(), parameter)
if generator.Interface[-1][0] != "VAR" or generator.Interface[-1][1] is not None or generator.Interface[-1][2]:
generator.Interface.append(("VAR", None, False, []))
if variable.connectionPointOut in generator.ConnectionTypes:
generator.Interface[-1][3].append((generator.ConnectionTypes[variable.connectionPointOut], variable_name, None, None))
else:
generator.Interface[-1][3].append(("ANY", variable_name, None, None))
if len(output_variables) > 1 and parameter not in ["", "OUT"]:
vars.append([(parameter, (generator.TagName, "block", block.getlocalId(), "output", i)),
(" => %s"%variable_name, ())])
else:
output_info = (generator.TagName, "block", block.getlocalId(), "output", i)
output_name = variable_name
generator.Program += [(generator.CurrentIndent, ()),
(output_name, output_info),
(" := ", ()),
(type, (generator.TagName, "block", block.getlocalId(), "type")),
("(", ())]
generator.Program += JoinList([(", ", ())], vars)
generator.Program += [(");\n", ())]
else:
generator.Warnings.append(_("\"%s\" function cancelled in \"%s\" POU: No input connected")%(type, generator.TagName.split("::")[-1]))
if link:
connectionPoint = link.getposition()[-1]
else:
connectionPoint = None
for i, variable in enumerate(output_variables):
blockPointx, blockPointy = variable.connectionPointOut.getrelPositionXY()
if not connectionPoint or block.getx() + blockPointx == connectionPoint.getx() and block.gety() + blockPointy == connectionPoint.gety():
output_info = (generator.TagName, "block", block.getlocalId(), "output", i)
output_name = variable.getformalParameter()
if variable.getformalParameter() == "":
output_name = "%s%d"%(type, block.getlocalId())
else:
output_name = "%s%d_%s"%(type, block.getlocalId(), variable.getformalParameter())
return generator.ExtractModifier(variable, [(output_name, output_info)], output_info)
elif block_infos["type"] == "functionBlock":
if not generator.ComputedBlocks.get(block, False) and not order:
generator.ComputedBlocks[block] = True
vars = []
for i, variable in enumerate(block.inputVariables.getvariable()):
input_info = (generator.TagName, "block", block.getlocalId(), "input", i)
connections = variable.connectionPointIn.getconnections()
if connections is not None:
parameter = variable.getformalParameter()
value = generator.ComputeExpression(body, connections, executionOrderId > 0)
vars.append([(parameter, input_info),
(" := ", ())] + generator.ExtractModifier(variable, value, input_info))
generator.Program += [(generator.CurrentIndent, ()),
(name, (generator.TagName, "block", block.getlocalId(), "name")),
("(", ())]
generator.Program += JoinList([(", ", ())], vars)
generator.Program += [(");\n", ())]
if link:
connectionPoint = link.getposition()[-1]
else:
connectionPoint = None
for i, variable in enumerate(block.outputVariables.getvariable()):
blockPointx, blockPointy = variable.connectionPointOut.getrelPositionXY()
if not connectionPoint or block.getx() + blockPointx == connectionPoint.getx() and block.gety() + blockPointy == connectionPoint.gety():
output_info = (generator.TagName, "block", block.getlocalId(), "output", i)
return generator.ExtractModifier(variable, [("%s.%s"%(name, variable.getformalParameter()), output_info)], output_info)
if link is not None:
raise ValueError, _("No output variable found")
def initialise_block(type, name, block = None):
return [(type, name, None, None)]
#-------------------------------------------------------------------------------
# Function Block Types definitions
#-------------------------------------------------------------------------------
"""
Ordored list of common Function Blocks defined in the IEC 61131-3
Each block have this attributes:
- "name" : The block name
- "type" : The block type. It can be "function", "functionBlock" or "program"
- "extensible" : Boolean that define if the block is extensible
- "inputs" : List of the block inputs
- "outputs" : List of the block outputs
- "comment" : Comment that will be displayed in the block popup
- "generate" : Method that generator will call for generating ST block code
Inputs and outputs are a tuple of characteristics that are in order:
- The name
- The data type
- The default modifier which can be "none", "negated", "rising" or "falling"
"""
BlockTypes = [{"name" : _("Standard function blocks"), "list":
[{"name" : "SR", "type" : "functionBlock", "extensible" : False,
"inputs" : [("S1","BOOL","none"),("R","BOOL","none")],
"outputs" : [("Q1","BOOL","none")],
"comment" : _("SR bistable\nThe SR bistable is a latch where the Set dominates."),
"generate" : generate_block, "initialise" : initialise_block},
{"name" : "RS", "type" : "functionBlock", "extensible" : False,
"inputs" : [("S","BOOL","none"),("R1","BOOL","none")],
"outputs" : [("Q1","BOOL","none")],
"comment" : _("RS bistable\nThe RS bistable is a latch where the Reset dominates."),
"generate" : generate_block, "initialise" : initialise_block},
{"name" : "SEMA", "type" : "functionBlock", "extensible" : False,
"inputs" : [("CLAIM","BOOL","none"),("RELEASE","BOOL","none")],
"outputs" : [("BUSY","BOOL","none")],
"comment" : _("Semaphore\nThe semaphore provides a mechanism to allow software elements mutually exclusive access to certain ressources."),
"generate" : generate_block, "initialise" : initialise_block},
{"name" : "R_TRIG", "type" : "functionBlock", "extensible" : False,
"inputs" : [("CLK","BOOL","none")],
"outputs" : [("Q","BOOL","none")],
"comment" : _("Rising edge detector\nThe output produces a single pulse when a rising edge is detected."),
"generate" : generate_block, "initialise" : initialise_block},
{"name" : "F_TRIG", "type" : "functionBlock", "extensible" : False,
"inputs" : [("CLK","BOOL","none")],
"outputs" : [("Q","BOOL","none")],
"comment" : _("Falling edge detector\nThe output produces a single pulse when a falling edge is detected."),
"generate" : generate_block, "initialise" : initialise_block},
{"name" : "CTU", "type" : "functionBlock", "extensible" : False,
"inputs" : [("CU","BOOL","rising"),("R","BOOL","none"),("PV","INT","none")],
"outputs" : [("Q","BOOL","none"),("CV","INT","none")],
"comment" : _("Up-counter\nThe up-counter can be used to signal when a count has reached a maximum value."),
"generate" : generate_block, "initialise" : initialise_block},
{"name" : "CTD", "type" : "functionBlock", "extensible" : False,
"inputs" : [("CD","BOOL","rising"),("LD","BOOL","none"),("PV","INT","none")],
"outputs" : [("Q","BOOL","none"),("CV","INT","none")],
"comment" : _("Down-counter\nThe down-counter can be used to signal when a count has reached zero, on counting down from a preset value."),
"generate" : generate_block, "initialise" : initialise_block},
{"name" : "CTUD", "type" : "functionBlock", "extensible" : False,
"inputs" : [("CU","BOOL","rising"),("CD","BOOL","rising"),("R","BOOL","none"),("LD","BOOL","none"),("PV","INT","none")],
"outputs" : [("QU","BOOL","none"),("QD","BOOL","none"),("CV","INT","none")],
"comment" : _("Up-down counter\nThe up-down counter has two inputs CU and CD. It can be used to both count up on one input and down on the other."),
"generate" : generate_block, "initialise" : initialise_block},
{"name" : "TP", "type" : "functionBlock", "extensible" : False,
"inputs" : [("IN","BOOL","none"),("PT","TIME","none")],
"outputs" : [("Q","BOOL","none"),("ET","TIME","none")],
"comment" : _("Pulse timer\nThe pulse timer can be used to generate output pulses of a given time duration."),
"generate" : generate_block, "initialise" : initialise_block},
{"name" : "TON", "type" : "functionBlock", "extensible" : False,
"inputs" : [("IN","BOOL","none"),("PT","TIME","none")],
"outputs" : [("Q","BOOL","none"),("ET","TIME","none")],
"comment" : _("On-delay timer\nThe on-delay timer can be used to delay setting an output true, for fixed period after an input becomes true."),
"generate" : generate_block, "initialise" : initialise_block},
{"name" : "TOF", "type" : "functionBlock", "extensible" : False,
"inputs" : [("IN","BOOL","none"),("PT","TIME","none")],
"outputs" : [("Q","BOOL","none"),("ET","TIME","none")],
"comment" : _("Off-delay timer\nThe off-delay timer can be used to delay setting an output false, for fixed period after input goes false."),
"generate" : generate_block, "initialise" : initialise_block},
]},
{"name" : _("Additional function blocks"), "list":
[{"name" : "RTC", "type" : "functionBlock", "extensible" : False,
"inputs" : [("IN","BOOL","none"),("PDT","DATE_AND_TIME","none")],
"outputs" : [("Q","BOOL","none"),("CDT","DATE_AND_TIME","none")],
"comment" : _("Real time clock\nThe real time clock has many uses including time stamping, setting dates and times of day in batch reports, in alarm messages and so on."),
"generate" : generate_block, "initialise" : initialise_block},
{"name" : "INTEGRAL", "type" : "functionBlock", "extensible" : False,
"inputs" : [("RUN","BOOL","none"),("R1","BOOL","none"),("XIN","REAL","none"),("X0","REAL","none"),("CYCLE","TIME","none")],
"outputs" : [("Q","BOOL","none"),("XOUT","REAL","none")],
"comment" : _("Integral\nThe integral function block integrates the value of input XIN over time."),
"generate" : generate_block, "initialise" : initialise_block},
{"name" : "DERIVATIVE", "type" : "functionBlock", "extensible" : False,
"inputs" : [("RUN","BOOL","none"),("XIN","REAL","none"),("CYCLE","TIME","none")],
"outputs" : [("XOUT","REAL","none")],
"comment" : _("Derivative\nThe derivative function block produces an output XOUT proportional to the rate of change of the input XIN."),
"generate" : generate_block, "initialise" : initialise_block},
{"name" : "PID", "type" : "functionBlock", "extensible" : False,
"inputs" : [("AUTO","BOOL","none"),("PV","REAL","none"),("SP","REAL","none"),("X0","REAL","none"),("KP","REAL","none"),("TR","REAL","none"),("TD","REAL","none"),("CYCLE","TIME","none")],
"outputs" : [("XOUT","REAL","none")],
"comment" : _("PID\nThe PID (proportional, Integral, Derivative) function block provides the classical three term controller for closed loop control."),
"generate" : generate_block, "initialise" : initialise_block},
{"name" : "RAMP", "type" : "functionBlock", "extensible" : False,
"inputs" : [("RUN","BOOL","none"),("X0","REAL","none"),("X1","REAL","none"),("TR","TIME","none"),("CYCLE","TIME","none")],
"outputs" : [("BUSY","BOOL","none"),("XOUT","REAL","none")],
"comment" : _("Ramp\nThe RAMP function block is modelled on example given in the standard."),
"generate" : generate_block, "initialise" : initialise_block},
{"name" : "HYSTERESIS", "type" : "functionBlock", "extensible" : False,
"inputs" : [("XIN1","REAL","none"),("XIN2","REAL","none"),("EPS","REAL","none")],
"outputs" : [("Q","BOOL","none")],
"comment" : _("Hysteresis\nThe hysteresis function block provides a hysteresis boolean output driven by the difference of two floating point (REAL) inputs XIN1 and XIN2."),
"generate" : generate_block, "initialise" : initialise_block},
## {"name" : "RATIO_MONITOR", "type" : "functionBlock", "extensible" : False,
## "inputs" : [("PV1","REAL","none"),("PV2","REAL","none"),("RATIO","REAL","none"),("TIMON","TIME","none"),("TIMOFF","TIME","none"),("TOLERANCE","BOOL","none"),("RESET","BOOL","none"),("CYCLE","TIME","none")],
## "outputs" : [("ALARM","BOOL","none"),("TOTAL_ERR","BOOL","none")],
## "comment" : _("Ratio monitor\nThe ratio_monitor function block checks that one process value PV1 is always a given ratio (defined by input RATIO) of a second process value PV2."),
## "generate" : generate_block, "initialise" : initialise_block}
]},
]
#-------------------------------------------------------------------------------
# Data Types definitions
#-------------------------------------------------------------------------------
"""
Ordored list of common data types defined in the IEC 61131-3
Each type is associated to his direct parent type. It defines then a hierarchy
between type that permits to make a comparison of two types
"""
TypeHierarchy_list = [
("ANY", None),
("ANY_DERIVED", "ANY"),
("ANY_ELEMENTARY", "ANY"),
("ANY_MAGNITUDE", "ANY_ELEMENTARY"),
("ANY_BIT", "ANY_ELEMENTARY"),
("ANY_NBIT", "ANY_BIT"),
("ANY_STRING", "ANY_ELEMENTARY"),
("ANY_DATE", "ANY_ELEMENTARY"),
("ANY_NUM", "ANY_MAGNITUDE"),
("ANY_REAL", "ANY_NUM"),
("ANY_INT", "ANY_NUM"),
("ANY_SINT", "ANY_INT"),
("ANY_UINT", "ANY_INT"),
("BOOL", "ANY_BIT"),
("SINT", "ANY_SINT"),
("INT", "ANY_SINT"),
("DINT", "ANY_SINT"),
("LINT", "ANY_SINT"),
("USINT", "ANY_UINT"),
("UINT", "ANY_UINT"),
("UDINT", "ANY_UINT"),
("ULINT", "ANY_UINT"),
("REAL", "ANY_REAL"),
("LREAL", "ANY_REAL"),
("TIME", "ANY_MAGNITUDE"),
("DATE", "ANY_DATE"),
("TOD", "ANY_DATE"),
("DT", "ANY_DATE"),
("STRING", "ANY_STRING"),
("BYTE", "ANY_NBIT"),
("WORD", "ANY_NBIT"),
("DWORD", "ANY_NBIT"),
("LWORD", "ANY_NBIT")
#("WSTRING", "ANY_STRING") # TODO
]
TypeHierarchy = dict(TypeHierarchy_list)
"""
returns true if the given data type is the same that "reference" meta-type or one of its types.
"""
def IsOfType(type, reference):
if reference is None:
return True
elif type == reference:
return True
else:
parent_type = TypeHierarchy[type]
if parent_type is not None:
return IsOfType(parent_type, reference)
return False
"""
returns list of all types that correspont to the ANY* meta type
"""
def GetSubTypes(type):
return [typename for typename, parenttype in TypeHierarchy.items() if not typename.startswith("ANY") and IsOfType(typename, type)]
DataTypeRange_list = [
("SINT", (-2**7, 2**7 - 1)),
("INT", (-2**15, 2**15 - 1)),
("DINT", (-2**31, 2**31 - 1)),
("LINT", (-2**31, 2**31 - 1)),
("USINT", (0, 2**8 - 1)),
("UINT", (0, 2**16 - 1)),
("UDINT", (0, 2**31 - 1)),
("ULINT", (0, 2**31 - 1))
]
DataTypeRange = dict(DataTypeRange_list)
#-------------------------------------------------------------------------------
# Test identifier
#-------------------------------------------------------------------------------
# Test if identifier is valid
def TestIdentifier(identifier):
if identifier[0].isdigit():
return False
words = identifier.split('_')
for i, word in enumerate(words):
if len(word) == 0 and i != 0:
return False
if len(word) != 0 and not word.isalnum():
return False
return True
#-------------------------------------------------------------------------------
# Standard functions list generation
#-------------------------------------------------------------------------------
"""
take a .csv file and translate it it a "csv_table"
"""
def csv_file_to_table(file):
return [ map(string.strip,line.split(';')) for line in file.xreadlines()]
"""
seek into the csv table to a section ( section_name match 1st field )
return the matching row without first field
"""
def find_section(section_name, table):
fields = [None]
while(fields[0] != section_name):
fields = table.pop(0)
return fields[1:]
"""
extract the standard functions standard parameter names and types...
return a { ParameterName: Type, ...}
"""
def get_standard_funtions_input_variables(table):
variables = find_section("Standard_functions_variables_types", table)
standard_funtions_input_variables = {}
fields = [True,True]
while(fields[1]):
fields = table.pop(0)
variable_from_csv = dict([(champ, val) for champ, val in zip(variables, fields[1:]) if champ!=''])
standard_funtions_input_variables[variable_from_csv['name']] = variable_from_csv['type']
return standard_funtions_input_variables
"""
translate .csv file input declaration into PLCOpenEditor interessting values
in : "(ANY_NUM, ANY_NUM)" and { ParameterName: Type, ...}
return [("IN1","ANY_NUM","none"),("IN2","ANY_NUM","none")]
"""
def csv_input_translate(str_decl, variables, base):
decl = str_decl.replace('(','').replace(')','').replace(' ','').split(',')
params = []
len_of_not_predifined_variable = len([True for param_type in decl if param_type not in variables])
for param_type in decl:
if param_type in variables.keys():
param_name = param_type
param_type = variables[param_type]
elif len_of_not_predifined_variable > 1:
param_name = "IN%d"%base
base += 1
else:
param_name = "IN"
params.append((param_name, param_type, "none"))
return params
ANY_TO_ANY_LIST=[
# simple type conv are let as C cast
(("ANY_INT","ANY_BIT"),("ANY_NUM","ANY_BIT"), ("return_type", "__move_", "IN_type")),
(("ANY_REAL",),("ANY_REAL",), ("return_type", "__move_", "IN_type")),
# REAL_TO_INT
(("ANY_REAL",),("ANY_SINT",), ("return_type", "__real_to_sint", None)),
(("ANY_REAL",),("ANY_UINT",), ("return_type", "__real_to_uint", None)),
(("ANY_REAL",),("ANY_BIT",), ("return_type", "__real_to_bit", None)),
# TO_TIME
(("ANY_INT","ANY_BIT"),("ANY_DATE","TIME"), ("return_type", "__int_to_time", None)),
(("ANY_REAL",),("ANY_DATE","TIME"), ("return_type", "__real_to_time", None)),
(("ANY_STRING",), ("ANY_DATE","TIME"), ("return_type", "__string_to_time", None)),
# FROM_TIME
(("ANY_DATE","TIME"), ("ANY_REAL",), ("return_type", "__time_to_real", None)),
(("ANY_DATE","TIME"), ("ANY_INT","ANY_NBIT"), ("return_type", "__time_to_int", None)),
(("TIME",), ("ANY_STRING",), ("return_type", "__time_to_string", None)),
(("DATE",), ("ANY_STRING",), ("return_type", "__date_to_string", None)),
(("TOD",), ("ANY_STRING",), ("return_type", "__tod_to_string", None)),
(("DT",), ("ANY_STRING",), ("return_type", "__dt_to_string", None)),
# TO_STRING
(("BOOL",), ("ANY_STRING",), ("return_type", "__bool_to_string", None)),
(("ANY_BIT",), ("ANY_STRING",), ("return_type", "__bit_to_string", None)),
(("ANY_REAL",), ("ANY_STRING",), ("return_type", "__real_to_string", None)),
(("ANY_SINT",), ("ANY_STRING",), ("return_type", "__sint_to_string", None)),
(("ANY_UINT",), ("ANY_STRING",), ("return_type", "__uint_to_string", None)),
# FROM_STRING
(("ANY_STRING",), ("BOOL",), ("return_type", "__string_to_bool", None)),
(("ANY_STRING",), ("ANY_BIT",), ("return_type", "__string_to_bit", None)),
(("ANY_STRING",), ("ANY_SINT",), ("return_type", "__string_to_sint", None)),
(("ANY_STRING",), ("ANY_UINT",), ("return_type", "__string_to_uint", None)),
(("ANY_STRING",), ("ANY_REAL",), ("return_type", "__string_to_real", None))]
BCD_TO_ANY_LIST=[
(("BYTE",),("USINT",), ("return_type", "__bcd_to_uint", None)),
(("WORD",),("UINT",), ("return_type", "__bcd_to_uint", None)),
(("DWORD",),("UDINT",), ("return_type", "__bcd_to_uint", None)),
(("LWORD",),("ULINT",), ("return_type", "__bcd_to_uint", None))]
ANY_TO_BCD_LIST=[
(("USINT",),("BYTE",), ("return_type", "__uint_to_bcd", None)),
(("UINT",),("WORD",), ("return_type", "__uint_to_bcd", None)),
(("UDINT",),("DWORD",), ("return_type", "__uint_to_bcd", None)),
(("ULINT",),("LWORD",), ("return_type", "__uint_to_bcd", None))]
def ANY_TO_ANY_FORMAT_GEN(any_to_any_list, fdecl):
for (InTypes, OutTypes, Format) in any_to_any_list:
outs = reduce(lambda a,b: a or b, map(lambda testtype : IsOfType(fdecl["outputs"][0][1],testtype), OutTypes))
inps = reduce(lambda a,b: a or b, map(lambda testtype : IsOfType(fdecl["inputs"][0][1],testtype), InTypes))
if inps and outs and fdecl["outputs"][0][1] != fdecl["inputs"][0][1]:
return Format
return None
"""
Returns this kind of declaration for all standard functions
[{"name" : "Numerical", 'list': [ {
'baseinputnumber': 1,
'comment': 'Addition',
'extensible': True,
'inputs': [ ('IN1', 'ANY_NUM', 'none'),
('IN2', 'ANY_NUM', 'none')],
'name': 'ADD',
'outputs': [('OUT', 'ANY_NUM', 'none')],
'type': 'function'}, ...... ] },.....]
"""
def get_standard_funtions(table):
variables = get_standard_funtions_input_variables(table)
fonctions = find_section("Standard_functions_type",table)
Standard_Functions_Decl = []
Current_section = None
translate = {
"extensible" : lambda x: {"yes":True, "no":False}[x],
"inputs" : lambda x:csv_input_translate(x,variables,baseinputnumber),
"outputs":lambda x:[("OUT",x,"none")]}
for fields in table:
if fields[1]:
# If function section name given
if fields[0]:
words = fields[0].split('"')
if len(words) > 1:
section_name = words[1]
else:
section_name = fields[0]
Current_section = {"name" : section_name, "list" : []}
Standard_Functions_Decl.append(Current_section)
Function_decl_list = []
if Current_section:
Function_decl = dict([(champ, val) for champ, val in zip(fonctions, fields[1:]) if champ])
Function_decl["generate"] = generate_block
Function_decl["initialise"] = lambda x,y:[]
baseinputnumber = int(Function_decl.get("baseinputnumber",1))
Function_decl["baseinputnumber"] = baseinputnumber
for param, value in Function_decl.iteritems():
if param in translate:
Function_decl[param] = translate[param](value)
Function_decl["type"] = "function"
if Function_decl["name"].startswith('*') or Function_decl["name"].endswith('*') :
input_ovrloading_types = GetSubTypes(Function_decl["inputs"][0][1])
output_types = GetSubTypes(Function_decl["outputs"][0][1])
else:
input_ovrloading_types = [None]
output_types = [None]
funcdeclname_orig = Function_decl["name"]
funcdeclname = Function_decl["name"].strip('*_')
fdc = Function_decl["inputs"][:]
for intype in input_ovrloading_types:
if intype != None:
Function_decl["inputs"] = []
for decl_tpl in fdc:
if IsOfType(intype, decl_tpl[1]):
Function_decl["inputs"] += [(decl_tpl[0], intype, decl_tpl[2])]
else:
Function_decl["inputs"] += [(decl_tpl)]
if funcdeclname_orig.startswith('*'):
funcdeclin = intype + '_' + funcdeclname
else:
funcdeclin = funcdeclname
else:
funcdeclin = funcdeclname
for outype in output_types:
if outype != None:
decl_tpl = Function_decl["outputs"][0]
Function_decl["outputs"] = [ (decl_tpl[0] , outype, decl_tpl[2])]
if funcdeclname_orig.endswith('*'):
funcdeclout = funcdeclin + '_' + outype
else:
funcdeclout = funcdeclin
else:
funcdeclout = funcdeclin
Function_decl["name"] = funcdeclout
fdecl = Function_decl
res = eval(Function_decl["python_eval_c_code_format"])
if res != None :
# create the copy of decl dict to be appended to section
Function_decl_copy = Function_decl.copy()
Current_section["list"].append(Function_decl_copy)
else:
raise "First function must be in a category"
return Standard_Functions_Decl
std_decl = get_standard_funtions(csv_file_to_table(open(os.path.join(os.path.split(__file__)[0],"iec_std.csv"))))#, True)
BlockTypes.extend(std_decl)
for section in BlockTypes:
for desc in section["list"]:
words = desc["comment"].split('"')
if len(words) > 1:
desc["comment"] = words[1]
desc["usage"] = (
"\n (" +
str([ " " + fctdecl[1]+":"+fctdecl[0] for fctdecl in desc["inputs"]]).strip("[]").replace("'",'') +
" ) => (" +
str([ " " + fctdecl[1]+":"+fctdecl[0] for fctdecl in desc["outputs"]]).strip("[]").replace("'",'') +
" )")
#-------------------------------------------------------------------------------
# Languages Keywords
#-------------------------------------------------------------------------------
# Keywords for Pou Declaration
POU_BLOCK_START_KEYWORDS = ["FUNCTION", "FUNCTION_BLOCK", "PROGRAM"]
POU_BLOCK_END_KEYWORDS = ["END_FUNCTION", "END_FUNCTION_BLOCK", "END_PROGRAM"]
POU_KEYWORDS = ["EN", "ENO", "F_EDGE", "R_EDGE"] + POU_BLOCK_START_KEYWORDS + POU_BLOCK_END_KEYWORDS
for category in BlockTypes:
for block in category["list"]:
if block["name"] not in POU_KEYWORDS:
POU_KEYWORDS.append(block["name"])
# Keywords for Type Declaration
TYPE_BLOCK_START_KEYWORDS = ["TYPE", "STRUCT"]
TYPE_BLOCK_END_KEYWORDS = ["END_TYPE", "END_STRUCT"]
TYPE_KEYWORDS = ["ARRAY", "OF", "T", "D", "TIME_OF_DAY", "DATE_AND_TIME"] + TYPE_BLOCK_START_KEYWORDS + TYPE_BLOCK_END_KEYWORDS
TYPE_KEYWORDS.extend([keyword for keyword in TypeHierarchy.keys() if keyword not in TYPE_KEYWORDS])
# Keywords for Variable Declaration
VAR_BLOCK_START_KEYWORDS = ["VAR", "VAR_INPUT", "VAR_OUTPUT", "VAR_IN_OUT", "VAR_TEMP", "VAR_EXTERNAL"]
VAR_BLOCK_END_KEYWORDS = ["END_VAR"]
VAR_KEYWORDS = ["AT", "CONSTANT", "RETAIN", "NON_RETAIN"] + VAR_BLOCK_START_KEYWORDS + VAR_BLOCK_END_KEYWORDS
# Keywords for Configuration Declaration
CONFIG_BLOCK_START_KEYWORDS = ["CONFIGURATION", "RESOURCE", "VAR_ACCESS", "VAR_CONFIG", "VAR_GLOBAL"]
CONFIG_BLOCK_END_KEYWORDS = ["END_CONFIGURATION", "END_RESOURCE", "END_VAR"]
CONFIG_KEYWORDS = ["ON", "PROGRAM", "WITH", "READ_ONLY", "READ_WRITE", "TASK"] + CONFIG_BLOCK_START_KEYWORDS + CONFIG_BLOCK_END_KEYWORDS
# Keywords for Structured Function Chart
SFC_BLOCK_START_KEYWORDS = ["ACTION", "INITIAL_STEP", "STEP", "TRANSITION"]
SFC_BLOCK_END_KEYWORDS = ["END_ACTION", "END_STEP", "END_TRANSITION"]
SFC_KEYWORDS = ["FROM", "TO"] + SFC_BLOCK_START_KEYWORDS + SFC_BLOCK_START_KEYWORDS
# Keywords for Instruction List
IL_KEYWORDS = ["TRUE", "FALSE", "LD", "LDN", "ST", "STN", "S", "R", "AND", "ANDN", "OR", "ORN",
"XOR", "XORN", "NOT", "ADD", "SUB", "MUL", "DIV", "MOD", "GT", "GE", "EQ", "NE",
"LE", "LT", "JMP", "JMPC", "JMPCN", "CAL", "CALC", "CALCN", "RET", "RETC", "RETCN"]
# Keywords for Structured Text
ST_BLOCK_START_KEYWORDS = ["IF", "ELSIF", "ELSE", "CASE", "FOR", "WHILE", "REPEAT"]
ST_BLOCK_END_KEYWORDS = ["END_IF", "END_CASE", "END_FOR", "END_WHILE", "END_REPEAT"]
ST_KEYWORDS = ["TRUE", "FALSE", "THEN", "OF", "TO", "BY", "DO", "DO", "UNTIL", "EXIT",
"RETURN", "NOT", "MOD", "AND", "XOR", "OR"] + ST_BLOCK_START_KEYWORDS + ST_BLOCK_END_KEYWORDS
# All the keywords of IEC
IEC_BLOCK_START_KEYWORDS = []
IEC_BLOCK_END_KEYWORDS = []
IEC_KEYWORDS = ["E", "TRUE", "FALSE"]
for all_keywords, keywords_list in [(IEC_BLOCK_START_KEYWORDS, [POU_BLOCK_START_KEYWORDS, TYPE_BLOCK_START_KEYWORDS,
VAR_BLOCK_START_KEYWORDS, CONFIG_BLOCK_START_KEYWORDS,
SFC_BLOCK_START_KEYWORDS, ST_BLOCK_START_KEYWORDS]),
(IEC_BLOCK_END_KEYWORDS, [POU_BLOCK_END_KEYWORDS, TYPE_BLOCK_END_KEYWORDS,
VAR_BLOCK_END_KEYWORDS, CONFIG_BLOCK_END_KEYWORDS,
SFC_BLOCK_END_KEYWORDS, ST_BLOCK_END_KEYWORDS]),
(IEC_KEYWORDS, [POU_KEYWORDS, TYPE_KEYWORDS, VAR_KEYWORDS, CONFIG_KEYWORDS,
SFC_KEYWORDS, IL_KEYWORDS, ST_KEYWORDS])]:
for keywords in keywords_list:
all_keywords.extend([keyword for keyword in keywords if keyword not in all_keywords])