Fix datatype analysis of structured variables that contain arrays in their fields (e.g. var.x1[var2 + 42].y1).
--- a/stage3/fill_candidate_datatypes.cc Mon Aug 05 15:57:00 2013 +0100
+++ b/stage3/fill_candidate_datatypes.cc Wed Aug 07 10:18:29 2013 +0100
@@ -1112,12 +1112,29 @@
/* if we were to want the data type of the array itself, then we should call_param_name
* search_varfb_instance_type->get_basetype_decl(symbol->subscripted_variable)
*/
- symbol_c *result = search_varfb_instance_type->get_basetype_decl(symbol);
- if (NULL != result) add_datatype_to_candidate_list(symbol, result);
+ add_datatype_to_candidate_list(symbol, search_varfb_instance_type->get_basetype_decl(symbol)); /* will only add if non NULL */
/* recursively call the subscript list, so we can check the data types of the expressions used for the subscripts */
symbol->subscript_list->accept(*this);
+ /* recursively call the subscripted_variable. We need to do this since the array variable may be stored inside a structured
+ * variable (i.e. if it is an element inside a struct), in which case we want to recursively visit every element of the struct,
+ * as it may contain more arrays whose subscripts must also be visited!
+ * e.g. structvar.a1[v1+2].b1.c1[v2+3].d1
+ * TYPE
+ * d_s: STRUCT d1: int; d2: int;
+ * d_a: ARRAY [1..3] OF d_s;
+ * c_s: STRUCT c1: d_a; c2: d_a;
+ * b_s: STRUCT b1: c_s; b2: c_s;
+ * b_a: ARRAY [1..3] OF b_s;
+ * a_s: STRUCT a1: b_a; a2: b_a;
+ * END_TYPE
+ * VAR
+ * structvar: a_s;
+ * END_VAR
+ */
+ symbol->subscripted_variable->accept(*this);
+
if (debug) std::cout << "ARRAY_VAR [" << symbol->candidate_datatypes.size() << "]\n";
return NULL;
}
@@ -1136,11 +1153,18 @@
* this into account!
*/
// SYM_REF2(structured_variable_c, record_variable, field_selector)
-/* NOTE: We do not need to recursively determine the data types of each field_selector, as the search_varfb_instance_type
- * will do that for us. So we determine the candidate datatypes only for the full structured_variable.
- */
void *fill_candidate_datatypes_c::visit(structured_variable_c *symbol) {
+ /* NOTE: We do not need to recursively determine the data types of each field_selector, as the search_varfb_instance_type
+ * will do that for us. So we determine the candidate datatypes only for the full structured_variable.
+ */
add_datatype_to_candidate_list(symbol, search_varfb_instance_type->get_basetype_decl(symbol)); /* will only add if non NULL */
+ /* However, we do need to visit each record type recursively!
+ * Remember that a structured variable may be stored inside an array (e.g. arrayvar[33].elem1)
+ * The array subscripts may contain a complex expression (e.g. arrayvar[ varx + 33].elem1) whose datatype must be correctly determined!
+ * The expression, may even contain a function call to an overloaded function!
+ * (e.g. arrayvar[ varx + TRUNC(realvar)].elem1)
+ */
+ symbol->record_variable->accept(*this);
return NULL;
}
--- a/stage3/narrow_candidate_datatypes.cc Mon Aug 05 15:57:00 2013 +0100
+++ b/stage3/narrow_candidate_datatypes.cc Wed Aug 07 10:18:29 2013 +0100
@@ -662,6 +662,14 @@
void *narrow_candidate_datatypes_c::visit(array_variable_c *symbol) {
/* we need to check the data types of the expressions used for the subscripts... */
symbol->subscript_list->accept(*this);
+
+ /* Set the datatype of the subscripted variable and visit it recursively. For the reason why we do this, */
+ /* Please read the comments in the array_variable_c and structured_variable_c visitors in the fill_candidate_datatypes.cc file! */
+ symbol->subscripted_variable->accept(*this); // visit recursively
+
+ if (symbol->subscripted_variable->candidate_datatypes.size() == 1)
+ symbol->subscripted_variable->datatype = symbol->subscripted_variable->candidate_datatypes[0]; // set the datatype
+
return NULL;
}
@@ -681,6 +689,24 @@
+/* record_variable '.' field_selector */
+/* WARNING: input and/or output variables of function blocks
+ * may be accessed as fields of a structured variable!
+ * Code handling a structured_variable_c must take
+ * this into account!
+ */
+// SYM_REF2(structured_variable_c, record_variable, field_selector)
+void *narrow_candidate_datatypes_c::visit(structured_variable_c *symbol) {
+ /* Set the datatype of the record_variable and visit it recursively. For the reason why we do this, */
+ /* Please read the comments in the array_variable_c and structured_variable_c visitors in the fill_candidate_datatypes.cc file! */
+ symbol->record_variable->accept(*this); // visit recursively
+
+ if (symbol->record_variable->candidate_datatypes.size() == 1)
+ symbol->record_variable->datatype = symbol->record_variable->candidate_datatypes[0]; // set the datatype
+
+ return NULL;
+}
+
/******************************************/
/* B 1.4.3 - Declaration & Initialisation */
--- a/stage3/narrow_candidate_datatypes.hh Mon Aug 05 15:57:00 2013 +0100
+++ b/stage3/narrow_candidate_datatypes.hh Wed Aug 07 10:18:29 2013 +0100
@@ -189,6 +189,7 @@
/*************************************/
void *visit(array_variable_c *symbol);
void *visit(subscript_list_c *symbol);
+ void *visit(structured_variable_c *symbol);
/******************************************/
/* B 1.4.3 - Declaration & Initialisation */
--- a/stage3/print_datatypes_error.cc Mon Aug 05 15:57:00 2013 +0100
+++ b/stage3/print_datatypes_error.cc Wed Aug 07 10:18:29 2013 +0100
@@ -134,6 +134,10 @@
bool function_invocation_error = false;
const char *POU_str = NULL;
+debug_c::print("print_datatypes_error_c::handle_function_invocation() CALLED!\n");
+debug_c::print(fcall);
+
+
if (generic_function_call_t::POU_FB == fcall_data.POU_type) POU_str = "FB";
if (generic_function_call_t::POU_function == fcall_data.POU_type) POU_str = "function";
if (NULL == POU_str) ERROR;
@@ -204,7 +208,11 @@
}
}
if (NULL != fcall_data.nonformal_operand_list) {
+debug_c::print("print_datatypes_error_c::handle_function_invocation() CALLING ---> fcall_data.nonformal_operand_list->accept(*this)!\n");
+debug_c::print_ast(fcall_data.nonformal_operand_list);
+debug_c::print("print_datatypes_error_c::handle_function_invocation() LIST_END\n");
fcall_data.nonformal_operand_list->accept(*this);
+debug_c::print("print_datatypes_error_c::handle_function_invocation() RETURNED <--- fcall_data.nonformal_operand_list->accept(*this)!\n");
if (f_decl)
for (int i = 1; (param_value = fcp_iterator.next_nf()) != NULL; i++) {
/* TODO: verify if it is lvalue when INOUT or OUTPUT parameters! */
@@ -569,6 +577,10 @@
/* subscripted_variable '[' subscript_list ']' */
// SYM_REF2(array_variable_c, subscripted_variable, subscript_list)
void *print_datatypes_error_c::visit(array_variable_c *symbol) {
+ /* the subscripted variable may be a structure or another array variable, that must also be visisted! */
+ /* Please read the comments in the array_variable_c and structured_variable_c visitors in the fill_candidate_datatypes.cc file! */
+ symbol->subscripted_variable->accept(*this);
+
if (symbol->candidate_datatypes.size() == 0)
STAGE3_ERROR(0, symbol, symbol, "Array variable not declared in this scope.");
@@ -598,13 +610,13 @@
* this into account!
*/
// SYM_REF2(structured_variable_c, record_variable, field_selector)
-/* NOTE: We do not recursively determine the data types of each field_selector in fill_candidate_datatypes_c,
- * so it does not make sense to recursively visit all the field_selectors to print out error messages.
- * Maybe in the future, if we find the need to print out more detailed error messages, we might do it that way. For now, we don't!
- */
void *print_datatypes_error_c::visit(structured_variable_c *symbol) {
+ /* the record variable may be another structure or even an array variable, that must also be visisted! */
+ /* Please read the comments in the array_variable_c and structured_variable_c visitors in the fill_candidate_datatypes.cc file! */
+ symbol->record_variable->accept(*this);
+
if (symbol->candidate_datatypes.size() == 0)
- STAGE3_ERROR(0, symbol, symbol, "Undeclared structured/FB variable.");
+ STAGE3_ERROR(0, symbol, symbol, "Undeclared structured (or FB) variable, or non-existant field (variable) in structure (FB).");
return NULL;
}