diff -r aad38592bdde -r c0bda77b37a0 stage3/visit_expression_type.cc --- a/stage3/visit_expression_type.cc Tue Aug 14 19:40:01 2012 +0200 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,2456 +0,0 @@ -/* - * matiec - a compiler for the programming languages defined in IEC 61131-3 - * - * Copyright (C) 2009-2011 Mario de Sousa (msousa@fe.up.pt) - * Copyright (C) 2007-2011 Laurent Bessard and Edouard Tisserant - * - * This program is free software: you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation, either version 3 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program. If not, see . - * - * - * This code is made available on the understanding that it will not be - * used in safety-critical situations without a full and competent review. - */ - -/* - * An IEC 61131-3 compiler. - * - * Based on the - * FINAL DRAFT - IEC 61131-3, 2nd Ed. (2001-12-10) - * - */ - - -/* Verify whether the semantic rules of data type compatibility are being followed. - * - * For example: - */ - -#include "visit_expression_type.hh" -#include -#include -#include -#include -#include - - -#define FIRST_(symbol1, symbol2) (((symbol1)->first_order < (symbol2)->first_order) ? (symbol1) : (symbol2)) -#define LAST_(symbol1, symbol2) (((symbol1)->last_order > (symbol2)->last_order) ? (symbol1) : (symbol2)) - -#define STAGE3_ERROR(symbol1, symbol2, ...) { \ - fprintf(stderr, "%s:%d-%d..%d-%d: error : ", \ - FIRST_(symbol1,symbol2)->first_file, FIRST_(symbol1,symbol2)->first_line, FIRST_(symbol1,symbol2)->first_column, \ - LAST_(symbol1,symbol2) ->last_line, LAST_(symbol1,symbol2) ->last_column); \ - fprintf(stderr, __VA_ARGS__); \ - fprintf(stderr, "\n"); \ - il_error = true; \ - error_found = true; \ - } - - -/* set to 1 to see debug info during execution */ -static int debug = 0; - - -void *visit_expression_type_c::visit(program_declaration_c *symbol) { - search_varfb_instance_type = new search_varfb_instance_type_c(symbol); - symbol->var_declarations->accept(*this); - if (debug) printf("checking semantics in body of program %s\n", ((token_c *)(symbol->program_type_name))->value); - il_parenthesis_level = 0; - il_error = false; - il_default_variable_type = NULL; - symbol->function_block_body->accept(*this); - il_default_variable_type = NULL; - delete search_varfb_instance_type; - search_varfb_instance_type = NULL; - return NULL; -} - -void *visit_expression_type_c::visit(function_declaration_c *symbol) { - search_varfb_instance_type = new search_varfb_instance_type_c(symbol); - symbol->var_declarations_list->accept(*this); - if (debug) printf("checking semantics in body of function %s\n", ((token_c *)(symbol->derived_function_name))->value); - il_parenthesis_level = 0; - il_error = false; - il_default_variable_type = NULL; - symbol->function_body->accept(*this); - il_default_variable_type = NULL; - delete search_varfb_instance_type; - search_varfb_instance_type = NULL; - return NULL; -} - -void *visit_expression_type_c::visit(function_block_declaration_c *symbol) { - search_varfb_instance_type = new search_varfb_instance_type_c(symbol); - symbol->var_declarations->accept(*this); - if (debug) printf("checking semantics in body of FB %s\n", ((token_c *)(symbol->fblock_name))->value); - il_parenthesis_level = 0; - il_error = false; - il_default_variable_type = NULL; - symbol->fblock_body->accept(*this); - il_default_variable_type = NULL; - delete search_varfb_instance_type; - search_varfb_instance_type = NULL; - return NULL; -} - - - - - - - - - -visit_expression_type_c::visit_expression_type_c(symbol_c *ignore) { - error_found = false; -} - -visit_expression_type_c::~visit_expression_type_c(void) { -} - -bool visit_expression_type_c::get_error_found(void) { - return error_found; -} - - - -/* NOTE on data type handling and literals... - * ========================================== - * - * Literals that are explicitly type cast - * e.g.: BYTE#42 - * INT#65 - * TIME#45h23m - * etc... - * are NOT considered literals in the following code. - * Since they are type cast, and their data type is fixed and well known, - * they are treated as a variable of that data type (except when determining lvalues) - * In other words, when calling search_constant_type_c on these constants, it returns - * a xxxxx_type_name_c, and not one of the xxxx_literal_c ! - * - * When the following code handles a literal, it is really a literal of unknown data type. - * e.g. 42, may be considered an int, a byte, a word, etc... - * - * NOTE: type_symbol == NULL is valid! - * This will occur, for example, when and undefined/undeclared symbolic_variable is used in the program. - * This will not be of any type, so we always return false. - */ - -/* A helper function... */ -bool visit_expression_type_c::is_ANY_ELEMENTARY_type(symbol_c *type_symbol) { - if (type_symbol == NULL) {return false;} - return is_ANY_MAGNITUDE_type(type_symbol) - || is_ANY_BIT_type (type_symbol) - || is_ANY_STRING_type (type_symbol) - || is_ANY_DATE_type (type_symbol); -} - -/* A helper function... */ -bool visit_expression_type_c::is_ANY_SAFEELEMENTARY_type(symbol_c *type_symbol) { - if (type_symbol == NULL) {return false;} - return is_ANY_SAFEMAGNITUDE_type(type_symbol) - || is_ANY_SAFEBIT_type (type_symbol) - || is_ANY_SAFESTRING_type (type_symbol) - || is_ANY_SAFEDATE_type (type_symbol); -} - -/* A helper function... */ -bool visit_expression_type_c::is_ANY_ELEMENTARY_compatible(symbol_c *type_symbol) { - if (type_symbol == NULL) {return false;} - /* NOTE: doing - * return is_ANY_SAFEELEMENTARY_type() || is_ANY_ELEMENTARY_type() - * is incorrect, as the literals would never be considered compatible... - */ - return is_ANY_MAGNITUDE_compatible(type_symbol) - || is_ANY_BIT_compatible (type_symbol) - || is_ANY_STRING_compatible (type_symbol) - || is_ANY_DATE_compatible (type_symbol); -} - - -/* A helper function... */ -bool visit_expression_type_c::is_ANY_MAGNITUDE_type(symbol_c *type_symbol) { - if (type_symbol == NULL) {return false;} - if (typeid(*type_symbol) == typeid(time_type_name_c)) {return true;} - return is_ANY_NUM_type(type_symbol); -} - -/* A helper function... */ -bool visit_expression_type_c::is_ANY_SAFEMAGNITUDE_type(symbol_c *type_symbol) { - if (type_symbol == NULL) {return false;} - if (typeid(*type_symbol) == typeid(safetime_type_name_c)) {return true;} - return is_ANY_SAFENUM_type(type_symbol); -} - -/* A helper function... */ -bool visit_expression_type_c::is_ANY_MAGNITUDE_compatible(symbol_c *type_symbol) { - if (type_symbol == NULL) {return false;} - if (is_ANY_MAGNITUDE_type (type_symbol)) {return true;} - if (is_ANY_SAFEMAGNITUDE_type(type_symbol)) {return true;} - - return is_ANY_NUM_compatible(type_symbol); -} - -/* A helper function... */ -bool visit_expression_type_c::is_ANY_NUM_type(symbol_c *type_symbol) { - if (type_symbol == NULL) {return false;} - if (is_ANY_REAL_type(type_symbol)) {return true;} - if (is_ANY_INT_type(type_symbol)) {return true;} - return false; -} - -/* A helper function... */ -bool visit_expression_type_c::is_ANY_SAFENUM_type(symbol_c *type_symbol) { - if (type_symbol == NULL) {return false;} - return is_ANY_SAFEREAL_type(type_symbol) - || is_ANY_SAFEINT_type (type_symbol); -} - -/* A helper function... */ -bool visit_expression_type_c::is_ANY_NUM_compatible(symbol_c *type_symbol) { - if (type_symbol == NULL) {return false;} - if (is_ANY_REAL_compatible(type_symbol)) {return true;} - if (is_ANY_INT_compatible(type_symbol)) {return true;} - return false; -} - -/* A helper function... */ -bool visit_expression_type_c::is_ANY_DATE_type(symbol_c *type_symbol) { - if (type_symbol == NULL) {return false;} - if (typeid(*type_symbol) == typeid(date_type_name_c)) {return true;} - if (typeid(*type_symbol) == typeid(tod_type_name_c)) {return true;} - if (typeid(*type_symbol) == typeid(dt_type_name_c)) {return true;} - return false; -} - -/* A helper function... */ -bool visit_expression_type_c::is_ANY_SAFEDATE_type(symbol_c *type_symbol) { - if (type_symbol == NULL) {return false;} - if (typeid(*type_symbol) == typeid(safedate_type_name_c)) {return true;} - if (typeid(*type_symbol) == typeid(safetod_type_name_c)) {return true;} - if (typeid(*type_symbol) == typeid(safedt_type_name_c)) {return true;} - return false; -} - -/* A helper function... */ -bool visit_expression_type_c::is_ANY_DATE_compatible(symbol_c *type_symbol) { - if (type_symbol == NULL) {return false;} - if (is_ANY_DATE_type (type_symbol)) {return true;} - if (is_ANY_SAFEDATE_type(type_symbol)) {return true;} - return false; -} - -/* A helper function... */ -bool visit_expression_type_c::is_ANY_STRING_type(symbol_c *type_symbol) { - if (type_symbol == NULL) {return false;} - if (typeid(*type_symbol) == typeid(string_type_name_c)) {return true;} - if (typeid(*type_symbol) == typeid(wstring_type_name_c)) {return true;} -// TODO literal_string ??? - return false; -} - -/* A helper function... */ -bool visit_expression_type_c::is_ANY_SAFESTRING_type(symbol_c *type_symbol) { - if (type_symbol == NULL) {return false;} - if (typeid(*type_symbol) == typeid(safestring_type_name_c)) {return true;} - if (typeid(*type_symbol) == typeid(safewstring_type_name_c)) {return true;} - return false; -} - -/* A helper function... */ -bool visit_expression_type_c::is_ANY_STRING_compatible(symbol_c *type_symbol) { - if (type_symbol == NULL) {return false;} - if (is_ANY_STRING_type (type_symbol)) {return true;} - if (is_ANY_SAFESTRING_type(type_symbol)) {return true;} - return false; -} - -/* A helper function... */ -bool visit_expression_type_c::is_ANY_INT_type(symbol_c *type_symbol) { - if (type_symbol == NULL) {return false;} - if (typeid(*type_symbol) == typeid(sint_type_name_c)) {return true;} - if (typeid(*type_symbol) == typeid(int_type_name_c)) {return true;} - if (typeid(*type_symbol) == typeid(dint_type_name_c)) {return true;} - if (typeid(*type_symbol) == typeid(lint_type_name_c)) {return true;} - if (typeid(*type_symbol) == typeid(usint_type_name_c)) {return true;} - if (typeid(*type_symbol) == typeid(uint_type_name_c)) {return true;} - if (typeid(*type_symbol) == typeid(udint_type_name_c)) {return true;} - if (typeid(*type_symbol) == typeid(ulint_type_name_c)) {return true;} - return false; -} - -/* A helper function... */ -bool visit_expression_type_c::is_ANY_SAFEINT_type(symbol_c *type_symbol) { - if (type_symbol == NULL) {return false;} - if (typeid(*type_symbol) == typeid(safesint_type_name_c)) {return true;} - if (typeid(*type_symbol) == typeid(safeint_type_name_c)) {return true;} - if (typeid(*type_symbol) == typeid(safedint_type_name_c)) {return true;} - if (typeid(*type_symbol) == typeid(safelint_type_name_c)) {return true;} - if (typeid(*type_symbol) == typeid(safeusint_type_name_c)) {return true;} - if (typeid(*type_symbol) == typeid(safeuint_type_name_c)) {return true;} - if (typeid(*type_symbol) == typeid(safeudint_type_name_c)) {return true;} - if (typeid(*type_symbol) == typeid(safeulint_type_name_c)) {return true;} - return false; -} - -/* A helper function... */ -bool visit_expression_type_c::is_ANY_INT_compatible(symbol_c *type_symbol) { - if (type_symbol == NULL) {return false;} - if (is_ANY_INT_type (type_symbol)) {return true;} - if (is_ANY_SAFEINT_type(type_symbol)) {return true;} - if (is_literal_integer_type(type_symbol)) {return true;} - return false; -} - -/* A helper function... */ -bool visit_expression_type_c::is_ANY_REAL_type(symbol_c *type_symbol) { - if (type_symbol == NULL) {return false;} - if (typeid(*type_symbol) == typeid(real_type_name_c)) {return true;} - if (typeid(*type_symbol) == typeid(lreal_type_name_c)) {return true;} - return false; -} - -/* A helper function... */ -bool visit_expression_type_c::is_ANY_SAFEREAL_type(symbol_c *type_symbol) { - if (type_symbol == NULL) {return false;} - if (typeid(*type_symbol) == typeid(safereal_type_name_c)) {return true;} - if (typeid(*type_symbol) == typeid(safelreal_type_name_c)) {return true;} - return false; -} - -/* A helper function... */ -bool visit_expression_type_c::is_ANY_REAL_compatible(symbol_c *type_symbol) { - if (type_symbol == NULL) {return false;} - if (is_ANY_REAL_type (type_symbol)) {return true;} - if (is_ANY_SAFEREAL_type(type_symbol)) {return true;} - if (is_literal_real_type(type_symbol)) {return true;} - return false; -} - -/* A helper function... */ -bool visit_expression_type_c::is_ANY_BIT_type(symbol_c *type_symbol) { - if (type_symbol == NULL) {return false;} - if (typeid(*type_symbol) == typeid(bool_type_name_c)) {return true;} - if (typeid(*type_symbol) == typeid(byte_type_name_c)) {return true;} - if (typeid(*type_symbol) == typeid(word_type_name_c)) {return true;} - if (typeid(*type_symbol) == typeid(dword_type_name_c)) {return true;} - if (typeid(*type_symbol) == typeid(lword_type_name_c)) {return true;} - return false; -} - -/* A helper function... */ -bool visit_expression_type_c::is_ANY_SAFEBIT_type(symbol_c *type_symbol) { - if (type_symbol == NULL) {return false;} - if (typeid(*type_symbol) == typeid(safebool_type_name_c)) {return true;} - if (typeid(*type_symbol) == typeid(safebyte_type_name_c)) {return true;} - if (typeid(*type_symbol) == typeid(safeword_type_name_c)) {return true;} - if (typeid(*type_symbol) == typeid(safedword_type_name_c)) {return true;} - if (typeid(*type_symbol) == typeid(safelword_type_name_c)) {return true;} - return false; -} - -/* A helper function... */ -bool visit_expression_type_c::is_ANY_BIT_compatible(symbol_c *type_symbol) { - if (type_symbol == NULL) {return false;} - if (is_ANY_BIT_type (type_symbol)) {return true;} - if (is_ANY_SAFEBIT_type(type_symbol)) {return true;} - if (is_nonneg_literal_integer_type(type_symbol)) {return true;} - if (is_literal_bool_type(type_symbol)) {return true;} - return false; -} - -/* A helper function... */ -bool visit_expression_type_c::is_BOOL_type(symbol_c *type_symbol) { - if (type_symbol == NULL) {return false;} - if (typeid(*type_symbol) == typeid(bool_type_name_c)) {return true;} - return false; -} - -/* A helper function... */ -bool visit_expression_type_c::is_SAFEBOOL_type(symbol_c *type_symbol){ - if (type_symbol == NULL) {return false;} - if (typeid(*type_symbol) == typeid(safebool_type_name_c)) {return true;} - return false; -} - -/* A helper function... */ -bool visit_expression_type_c::is_ANY_BOOL_compatible(symbol_c *type_symbol) { - if (type_symbol == NULL) {return false;} - if (is_BOOL_type (type_symbol)) {return true;} - if (is_SAFEBOOL_type(type_symbol)) {return true;} - if (is_literal_bool_type(type_symbol)) {return true;} - return false; -} - - -#define is_type(type_name_symbol, type_name_class) ((type_name_symbol == NULL) ? false : (typeid(*type_name_symbol) == typeid(type_name_class))) - - -#define sizeoftype(symbol) get_sizeof_datatype_c::getsize(symbol) - - -/* A helper function... */ -bool visit_expression_type_c::is_literal_integer_type(symbol_c *type_symbol) { - if (type_symbol == NULL) {return false;} - if (typeid(*type_symbol) == typeid(neg_integer_c)) {return true;} - return is_nonneg_literal_integer_type(type_symbol); -} - - -/* A helper function... */ -bool visit_expression_type_c::is_nonneg_literal_integer_type(symbol_c *type_symbol) { - if (type_symbol == NULL) {return false;} - if (typeid(*type_symbol) == typeid(integer_c)) {return true;} - if (typeid(*type_symbol) == typeid(binary_integer_c)) {return true;} - if (typeid(*type_symbol) == typeid(octal_integer_c)) {return true;} - if (typeid(*type_symbol) == typeid(hex_integer_c)) {return true;} - return false; -} - - -/* A helper function... */ -bool visit_expression_type_c::is_literal_real_type(symbol_c *type_symbol) { - if (type_symbol == NULL) {return false;} - if (typeid(*type_symbol) == typeid(real_c)) {return true;} - if (typeid(*type_symbol) == typeid(neg_real_c)) {return true;} - return false; -} - - -/* A helper function... */ -bool visit_expression_type_c::is_literal_bool_type(symbol_c *type_symbol) { - bool_type_name_c bool_t; - - if (type_symbol == NULL) {return false;} - if (typeid(*type_symbol) == typeid(boolean_true_c)) {return true;} - if (typeid(*type_symbol) == typeid(boolean_false_c)) {return true;} - if (is_nonneg_literal_integer_type(type_symbol)) - if (sizeoftype(&bool_t) >= sizeoftype(type_symbol)) {return true;} - return false; -} - -bool visit_expression_type_c::is_ANY_ELEMENTARY_OR_ENUMERATED_compatible(symbol_c *type_symbol) { - if (type_symbol == NULL) {return false;} - if (search_base_type.type_is_enumerated(type_symbol)) {return true;} - return is_ANY_ELEMENTARY_compatible(type_symbol); -} - - -/* Determine the common data type between two data types. - * If no common data type found, return NULL. - * - * If data types are identical, return the first (actually any would do...). - * If any of the data types is a literal, we confirm that - * the literal uses less bits than the fixed size data type. - * e.g. BYTE and 1024 returns NULL - * BYTE and 255 returns BYTE - * - * If two literals, then return the literal that requires more bits... - */ - -symbol_c *visit_expression_type_c::common_type__(symbol_c *first_type, symbol_c *second_type) { - if (first_type == NULL && second_type == NULL) {return NULL;} - if (first_type == NULL) {return second_type;} - if (second_type == NULL) {return first_type;} - - if (is_literal_integer_type(first_type) && is_literal_integer_type(second_type)) - {return ((sizeoftype(first_type) > sizeoftype(second_type))? first_type:second_type);} - - if (is_literal_real_type(first_type) && is_literal_real_type(second_type)) - {return ((sizeoftype(first_type) > sizeoftype(second_type))? first_type:second_type);} - - if (is_literal_bool_type(first_type) && is_literal_bool_type(second_type)) - {return first_type;} - - /* The following check can only be made after the is_literal_XXXX checks */ - /* When two literals of the same type, with identical typeid's are checked, - * we must return the one that occupies more bits... This is done above. - */ - if (typeid(*first_type) == typeid(*second_type)) {return first_type;} - - /* NOTE Although a BOOL is also an ANY_BIT, we must check it explicitly since some - * literal bool values are not literal integers... - */ - if (is_BOOL_type(first_type) && is_literal_bool_type(second_type)) {return first_type;} - if (is_BOOL_type(second_type) && is_literal_bool_type(first_type)) {return second_type;} - - if (is_SAFEBOOL_type(first_type) && is_literal_bool_type(second_type)) {return first_type;} - if (is_SAFEBOOL_type(second_type) && is_literal_bool_type(first_type)) {return second_type;} - - if (is_SAFEBOOL_type(first_type) && is_BOOL_type(second_type)) {return second_type;} - if (is_SAFEBOOL_type(second_type) && is_BOOL_type(first_type)) {return first_type;} - - if (is_ANY_BIT_type(first_type) && is_nonneg_literal_integer_type(second_type)) - {return ((sizeoftype(first_type) >= sizeoftype(second_type))? first_type :NULL);} - if (is_ANY_BIT_type(second_type) && is_nonneg_literal_integer_type(first_type)) - {return ((sizeoftype(second_type) >= sizeoftype(first_type)) ? second_type:NULL);} - - if (is_ANY_SAFEBIT_type(first_type) && is_nonneg_literal_integer_type(second_type)) - {return ((sizeoftype(first_type) >= sizeoftype(second_type))? first_type :NULL);} - if (is_ANY_SAFEBIT_type(second_type) && is_nonneg_literal_integer_type(first_type)) - {return ((sizeoftype(second_type) >= sizeoftype(first_type)) ? second_type:NULL);} - - if (is_ANY_SAFEBIT_type(first_type) && is_ANY_BIT_type(second_type)) - {return ((sizeoftype(first_type) == sizeoftype(second_type))? second_type:NULL);} - if (is_ANY_SAFEBIT_type(second_type) && is_ANY_BIT_type(first_type)) - {return ((sizeoftype(first_type) == sizeoftype(second_type))? first_type :NULL);} - - if (is_ANY_INT_type(first_type) && is_literal_integer_type(second_type)) - {return ((sizeoftype(first_type) >= sizeoftype(second_type))? first_type :NULL);} - if (is_ANY_INT_type(second_type) && is_literal_integer_type(first_type)) - {return ((sizeoftype(second_type) >= sizeoftype(first_type)) ? second_type:NULL);} - - if (is_ANY_SAFEINT_type(first_type) && is_literal_integer_type(second_type)) - {return ((sizeoftype(first_type) >= sizeoftype(second_type))? first_type :NULL);} - if (is_ANY_SAFEINT_type(second_type) && is_literal_integer_type(first_type)) - {return ((sizeoftype(second_type) >= sizeoftype(first_type)) ? second_type:NULL);} - - if (is_ANY_SAFEINT_type(first_type) && is_ANY_INT_type(second_type)) - {return ((sizeoftype(first_type) == sizeoftype(second_type))? second_type:NULL);} - if (is_ANY_SAFEINT_type(second_type) && is_ANY_INT_type(first_type)) - {return ((sizeoftype(first_type) == sizeoftype(second_type))? first_type :NULL);} - - if (is_ANY_REAL_type(first_type) && is_literal_real_type(second_type)) - {return ((sizeoftype(first_type) >= sizeoftype(second_type))? first_type :NULL);} - if (is_ANY_REAL_type(second_type) && is_literal_real_type(first_type)) - {return ((sizeoftype(second_type) >= sizeoftype(first_type)) ? second_type:NULL);} - - if (is_ANY_SAFEREAL_type(first_type) && is_literal_real_type(second_type)) - {return ((sizeoftype(first_type) >= sizeoftype(second_type))? first_type :NULL);} - if (is_ANY_SAFEREAL_type(second_type) && is_literal_real_type(first_type)) - {return ((sizeoftype(second_type) >= sizeoftype(first_type)) ? second_type:NULL);} - - if (is_ANY_SAFEREAL_type(first_type) && is_ANY_REAL_type(second_type)) - {return ((sizeoftype(first_type) == sizeoftype(second_type))? second_type:NULL);} - if (is_ANY_SAFEREAL_type(second_type) && is_ANY_REAL_type(first_type)) - {return ((sizeoftype(first_type) == sizeoftype(second_type))? first_type :NULL);} - - /* the Time and Date types... */ - if (is_type(first_type, safetime_type_name_c) && is_type(second_type, time_type_name_c)) {return second_type;} - if (is_type(second_type, safetime_type_name_c) && is_type( first_type, time_type_name_c)) {return first_type;} - - if (is_type(first_type, safedate_type_name_c) && is_type(second_type, date_type_name_c)) {return second_type;} - if (is_type(second_type, safedate_type_name_c) && is_type( first_type, date_type_name_c)) {return first_type;} - - if (is_type(first_type, safedt_type_name_c) && is_type(second_type, dt_type_name_c)) {return second_type;} - if (is_type(second_type, safedt_type_name_c) && is_type( first_type, dt_type_name_c)) {return first_type;} - - if (is_type(first_type, safetod_type_name_c) && is_type(second_type, tod_type_name_c)) {return second_type;} - if (is_type(second_type, safetod_type_name_c) && is_type( first_type, tod_type_name_c)) {return first_type;} - - /* no common type */ - return NULL; -} - -/* Determine the common data type between two data types. - * Unlike the common_type__() function, we stop the compiler with an ERROR - * if no common data type is found. - */ -symbol_c *visit_expression_type_c::common_type(symbol_c *first_type, symbol_c *second_type) { -/* - symbol_c *res = common_type__(first_type, second_type); - if (NULL == res) ERROR; - return res; -*/ - return common_type__(first_type, second_type); -} - -symbol_c *visit_expression_type_c::common_literal(symbol_c *first_type, symbol_c *second_type) { - printf("common_literal: %d == %d, %d == %d, %d == %d\n", - (int)is_ANY_INT_compatible(first_type), - (int)is_ANY_INT_compatible(second_type), - (int)is_ANY_REAL_compatible(first_type), - (int)is_ANY_REAL_compatible(second_type), - (int)is_ANY_BIT_compatible(first_type), - (int)is_ANY_BIT_compatible(second_type)); - if ((is_ANY_INT_compatible(first_type) && is_ANY_INT_compatible(second_type)) || - (is_ANY_BIT_compatible(first_type) && is_ANY_BIT_compatible(second_type))) - return &search_constant_type_c::integer; - else if (is_ANY_REAL_compatible(first_type) && is_ANY_REAL_compatible(second_type)) - return &search_constant_type_c::real; - return NULL; -} - -symbol_c *visit_expression_type_c::overloaded_return_type(symbol_c *type) { - if (is_ANY_INT_compatible(type)) - return &search_constant_type_c::ulint_type_name; - else if (is_ANY_REAL_compatible(type)) - return &search_constant_type_c::lreal_type_name; - else if (is_ANY_BIT_compatible(type)) - return &search_constant_type_c::lword_type_name; - return NULL; -} - -/* Return TRUE if the second (value) data type may be assigned to a variable of the first (variable) data type - * such as: - * var_type value_type - * BOOL BYTE#7 -> returns false - * INT INT#7 -> returns true - * INT 7 -> returns true - * REAL 7.89 -> returns true - * REAL 7 -> returns true - * INT 7.89 -> returns false - * SAFEBOOL BOOL#1 -> returns false !!! - * etc... - * - * NOTE: It is assumed that the var_type is the data type of an lvalue - */ -bool visit_expression_type_c::is_valid_assignment(symbol_c *var_type, symbol_c *value_type) { - if (var_type == NULL) {/* STAGE3_ERROR(value_type, value_type, "Var_type == NULL"); */ return false;} - if (value_type == NULL) {/* STAGE3_ERROR(var_type, var_type, "Value_type == NULL"); */ return false;} - - symbol_c *common_type = common_type__(var_type, value_type); - if (NULL == common_type) - return false; - return (typeid(*var_type) == typeid(*common_type)); -} - - -/* Return TRUE if there is a common data type, otherwise return FALSE - * i.e., return TRUE if both data types may be used simultaneously in an expression - * such as: - * BOOL#0 AND BYTE#7 -> returns false - * 0 AND BYTE#7 -> returns true - * INT#10 AND INT#7 -> returns true - * INT#10 AND 7 -> returns true - * REAL#34.3 AND 7.89 -> returns true - * REAL#34.3 AND 7 -> returns true - * INT#10 AND 7.89 -> returns false - * SAFEBOOL#0 AND BOOL#1 -> returns true !!! - * etc... - */ -bool visit_expression_type_c::is_compatible_type(symbol_c *first_type, symbol_c *second_type) { - if (first_type == NULL || second_type == NULL) {return false;} - return (NULL != common_type__(first_type, second_type)); -} - - - - -/* A helper function... */ -/* -symbol_c *visit_expression_type_c::compute_boolean_expression(symbol_c *left_type, symbol_c *right_type, - is_data_type_t is_data_type) { -*/ -symbol_c *visit_expression_type_c::compute_expression(symbol_c *left_type, symbol_c *right_type, is_data_type_t is_data_type, - symbol_c *left_expr, symbol_c *right_expr) { - bool error = false; - - if (!(this->*is_data_type)(left_type)) { - if (debug) printf("visit_expression_type_c::compute_expression(): invalid left_type\n"); - if (left_expr != NULL) - STAGE3_ERROR(left_expr, left_expr, "Invalid data type of operand, or of data resulting from previous IL instructions."); - error = true; - } - if (!(this->*is_data_type)(right_type)) { - if (debug) printf("visit_expression_type_c::compute_expression(): invalid right_type\n"); - if (right_expr != NULL) - STAGE3_ERROR(right_expr, right_expr, "Invalid data type of operand."); - error = true; - } - if (!is_compatible_type(left_type, right_type)) { - if (debug) printf("visit_expression_type_c::compute_expression(): left_type & right_type are incompatible\n"); - if ((left_expr != NULL) && (right_expr != NULL)) - STAGE3_ERROR(left_expr, right_expr, "Type mismatch between operands."); - error = true; - } - - if (error) - return NULL; - else - return common_type(left_type, right_type); -} - - - - -/* A helper function... */ -/* check the semantics of a FB or Function non-formal call */ -/* e.g. foo(1, 2, 3, 4); */ -/* If error_count pointer is != NULL, we do not really print out the errors, - * but rather only count how many errors were found. - * This is used to support overloaded functions, where we have to check each possible - * function, one at a time, untill we find a function call without any errors. - */ -void visit_expression_type_c::check_nonformal_call(symbol_c *f_call, symbol_c *f_decl, bool use_il_defvar, int *error_count) { - symbol_c *call_param_value, *call_param_type, *param_type; - identifier_c *param_name; - function_param_iterator_c fp_iterator(f_decl); - function_call_param_iterator_c fcp_iterator(f_call); - int extensible_parameter_highest_index = -1; - - /* reset error counter */ - if (error_count != NULL) *error_count = 0; - /* if use_il_defvar, then the first parameter for the call comes from the il_default_variable */ - if (use_il_defvar) { - /* The first parameter of the function corresponds to the il_default_variable_type of the function call */ - do { - param_name = fp_iterator.next(); - if(param_name == NULL) break; - /* The EN and ENO parameters are default parameters. - * In the non-formal invocation of a function there can be no assignment of - * values to these parameters. Therefore, we ignore the parameters declared - * in the function. - */ - } while ((strcmp(param_name->value, "EN") == 0) || (strcmp(param_name->value, "ENO") == 0)); - /* If the function does not have any parameters (param_name == NULL) - * then we cannot compare its type with the il_default_variable_type. - * - * However, I (Mario) think this is invalid syntax, as it seems to me all functions must - * have at least one parameter. - * However, we will make this semantic verification consider it possible, as later - * versions of the standard may change that syntax. - * So, instead of generating a syntax error message, we simply check whether the call - * is passing any more parameters besides the default variable (the il default variable may be ignored - * in this case, and not consider it as being a parameter being passed to the function). - * If it does, then we have found a semantic error, otherwise the function call is - * correct, and we simply return. - */ - if(param_name == NULL) { - if (fcp_iterator.next_nf() != NULL) - STAGE3_ERROR(f_call, f_call, "Too many parameters in function/FB call."); - return; - } else { - /* param_name != NULL */ - param_type = fp_iterator.param_type(); - if(!is_valid_assignment(param_type, il_default_variable_type)) { - if (error_count != NULL) (*error_count)++; - else STAGE3_ERROR(f_call, f_call, "In function/FB call, first parameter has invalid data type."); - } - } - - /* the fisrt parameter (il_def_variable) is correct */ - if (extensible_parameter_highest_index < fp_iterator.extensible_param_index()) { - extensible_parameter_highest_index = fp_iterator.extensible_param_index(); - } - } // if (use_il_defvar) - - - - /* Iterating through the non-formal parameters of the function call */ - while((call_param_value = fcp_iterator.next_nf()) != NULL) { - /* Obtaining the type of the value being passed in the function call */ - call_param_type = base_type((symbol_c*)call_param_value->accept(*this)); - if (call_param_type == NULL) { - if (error_count != NULL) (*error_count)++; - /* the following error will usually occur when ST code uses an identifier, that could refer to an enumerated constant, - * but was not actually used as a constant in any definitions of an enumerated data type - */ - else STAGE3_ERROR(call_param_value, call_param_value, "Could not determine data type of value being passed in function/FB call."); - continue; - } - - /* Iterate to the next parameter of the function being called. - * Get the name of that parameter, and ignore if EN or ENO. - */ - do { - param_name = fp_iterator.next(); - /* If there is no other parameter declared, then we are passing too many parameters... */ - if(param_name == NULL) { - if (error_count != NULL) (*error_count)++; - /* Note: We don't want to print out the follwoing error message multiple times, so we return instead of continuing with 'break' */ - else STAGE3_ERROR(f_call, f_call, "Too many parameters in function/FB call."); return; - } - } while ((strcmp(param_name->value, "EN") == 0) || (strcmp(param_name->value, "ENO") == 0)); - - /* Get the parameter type */ - param_type = base_type(fp_iterator.param_type()); - /* If the declared parameter and the parameter from the function call do not have the same type */ - if(!is_valid_assignment(param_type, call_param_type)) { - if (error_count != NULL) (*error_count)++; - else STAGE3_ERROR(call_param_value, call_param_value, "Type mismatch in function/FB call parameter."); - } - - if (extensible_parameter_highest_index < fp_iterator.extensible_param_index()) { - extensible_parameter_highest_index = fp_iterator.extensible_param_index(); - } - } - - /* The function call may not have any errors! */ - /* In the case of a call to an extensible function, we store the highest index - * of the extensible parameters this particular call uses, in the symbol_c object - * of the function call itself! - * In calls to non-extensible functions, this value will be set to -1. - * This information is later used in stage4 to correctly generate the - * output code. - */ - int extensible_param_count = -1; - if (extensible_parameter_highest_index >=0) /* if call to extensible function */ - extensible_param_count = 1 + extensible_parameter_highest_index - fp_iterator.first_extensible_param_index(); - il_function_call_c *il_function_call = dynamic_cast(f_call); - function_invocation_c *function_invocation = dynamic_cast(f_call); - if (il_function_call != NULL) il_function_call ->extensible_param_count = extensible_param_count; - else if (function_invocation != NULL) function_invocation->extensible_param_count = extensible_param_count; - // else ERROR; /* this function is also called by Function Blocks, so this is not an error! */ -} - - -/* check semantics of FB call in the IL language using input operators */ -/* e.g. CU, CLK, IN, PT, SR, ... */ -void visit_expression_type_c::check_il_fbcall(symbol_c *il_operator, const char *il_operator_str) { - symbol_c *call_param_type = il_default_variable_type; - symbol_c *fb_decl = il_operand_type; - /* The following should never occur. The function block must be defined, - * and the FB type being called MUST be in the symtable... - * This was all already checked at stage 2! - */ - if (NULL == fb_decl) ERROR; - if (call_param_type == NULL) ERROR; - - /* We also create an identifier_c object, so we can later use it to find the equivalent FB parameter */ - /* Note however that this symbol does not have the correct location (file name and line numbers) - * so any error messages must use the il_operator symbol to generate the error location - */ - identifier_c call_param_name(il_operator_str); - - /* Obtaining the type of the value being passed in the function call */ - call_param_type = base_type(call_param_type); - if (call_param_type == NULL) STAGE3_ERROR(il_operator, il_operator, "Could not determine data type of value being passed in FB call."); - - /* Find the corresponding parameter of the function being called */ - function_param_iterator_c fp_iterator(fb_decl); - if(fp_iterator.search(&call_param_name) == NULL) { - STAGE3_ERROR(il_operand, il_operand, "Called FB does not have an input parameter named %s.", il_operator_str); - } else { - /* Get the parameter type */ - symbol_c *param_type = base_type(fp_iterator.param_type()); - /* If the declared parameter and the parameter from the function call have the same type */ - if(!is_valid_assignment(param_type, call_param_type)) STAGE3_ERROR(il_operator, il_operator, "Type mismatch in FB call parameter."); - } -} - - -/* A helper function... */ -/* check the semantics of a FB or Function formal call */ -/* e.g. foo(IN1 := 1, OUT1 =>x, EN := true); */ -/* If error_count pointer is != NULL, we do not really print out the errors, - * but rather only count how many errors were found. - * This is used to support overloaded functions, where we have to check each possible - * function, one at a time, untill we find a function call without any errors. - */ -void visit_expression_type_c::check_formal_call(symbol_c *f_call, symbol_c *f_decl, int *error_count) { - symbol_c *call_param_value, *call_param_type, *call_param_name, *param_type; - symbol_c *verify_duplicate_param; - identifier_c *param_name; - function_param_iterator_c fp_iterator(f_decl); - function_call_param_iterator_c fcp_iterator(f_call); - int extensible_parameter_highest_index = -1; - identifier_c *extensible_parameter_name; - - /* reset error counter */ - if (error_count != NULL) *error_count = 0; - - /* Iterating through the formal parameters of the function call */ - while((call_param_name = fcp_iterator.next_f()) != NULL) { - - /* Obtaining the value being passed in the function call */ - call_param_value = fcp_iterator.get_current_value(); - /* the following should never occur. If it does, then we have a bug in our code... */ - if (NULL == call_param_value) ERROR; - - /* Checking if there are duplicated parameter values */ - verify_duplicate_param = fcp_iterator.search_f(call_param_name); - if(verify_duplicate_param != call_param_value){ - if (error_count != NULL) (*error_count)++; - else STAGE3_ERROR(call_param_name, verify_duplicate_param, "Duplicated parameter values."); - } - - /* Obtaining the type of the value being passed in the function call */ - call_param_type = (symbol_c*)call_param_value->accept(*this); - if (call_param_type == NULL) { - if (error_count != NULL) (*error_count)++; - else STAGE3_ERROR(call_param_name, call_param_value, "Could not determine data type of value being passed in function/FB call."); - /* The data value being passed is possibly any enumerated type value. - * We do not yet handle semantic verification of enumerated types. - */ - ERROR; - } - call_param_type = base_type(call_param_type); - if (call_param_type == NULL) STAGE3_ERROR(call_param_name, call_param_value, "Could not determine data type of value being passed in function/FB call."); - - /* Find the corresponding parameter of the function being called */ - param_name = fp_iterator.search(call_param_name); - if(param_name == NULL) { - if (error_count != NULL) (*error_count)++; - else STAGE3_ERROR(call_param_name, call_param_name, "Invalid parameter in function/FB call."); - } else { - /* Get the parameter type */ - param_type = base_type(fp_iterator.param_type()); - /* If the declared parameter and the parameter from the function call have the same type */ - if(!is_valid_assignment(param_type, call_param_type)) { - if (error_count != NULL) (*error_count)++; - else STAGE3_ERROR(call_param_name, call_param_value, "Type mismatch function/FB call parameter."); - } - if (extensible_parameter_highest_index < fp_iterator.extensible_param_index()) { - extensible_parameter_highest_index = fp_iterator.extensible_param_index(); - extensible_parameter_name = param_name; - } - } - } - - /* In the case of a call to an extensible function, we store the highest index - * of the extensible parameters this particular call uses, in the symbol_c object - * of the function call itself! - * In calls to non-extensible functions, this value will be set to -1. - * This information is later used in stage4 to correctly generate the - * output code. - */ - int extensible_param_count = -1; - if (extensible_parameter_highest_index >=0) /* if call to extensible function */ - extensible_param_count = 1 + extensible_parameter_highest_index - fp_iterator.first_extensible_param_index(); - il_formal_funct_call_c *il_formal_funct_call = dynamic_cast(f_call); - function_invocation_c *function_invocation = dynamic_cast(f_call); - if (il_formal_funct_call != NULL) il_formal_funct_call->extensible_param_count = extensible_param_count; - else if (function_invocation != NULL) function_invocation->extensible_param_count = extensible_param_count; -// else ERROR; /* this function is also called by Function Blocks, so this is not an error! */ - - /* We have iterated through all the formal parameters of the function call, - * and everything seems fine. - * If the function being called in an extensible function, we now check - * whether the extensible paramters in the formal invocation do not skip - * any indexes... - * - * f(in1:=0, in2:=0, in4:=0) --> ERROR!! - */ - if (extensible_parameter_highest_index >=0) { /* if call to extensible function */ - for (int i=fp_iterator.first_extensible_param_index(); i < extensible_parameter_highest_index; i++) { - char tmp[256]; - if (snprintf(tmp, 256, "%s%d", extensible_parameter_name->value, i) >= 256) ERROR; - if (fcp_iterator.search_f(tmp) == NULL) { - /* error in invocation of extensible function */ - if (error_count != NULL) (*error_count)++; - else STAGE3_ERROR(f_call, f_call, "Missing extensible parameters in call to extensible function."); - } - } - } -} - - - - -/* a helper function... */ -symbol_c *visit_expression_type_c::base_type(symbol_c *symbol) { - /* NOTE: symbol == NULL is valid. It will occur when, for e.g., an undefined/undeclared symbolic_variable is used - * in the code. - */ - if (symbol == NULL) return NULL; - return (symbol_c *)symbol->accept(search_base_type); -} - - -/* a helper function... */ -void *visit_expression_type_c::verify_null(symbol_c *symbol){ - if(il_default_variable_type == NULL){ - STAGE3_ERROR(symbol, symbol, "Missing LD instruction (or equivalent) before this instruction."); - } - if(il_operand_type == NULL){ - STAGE3_ERROR(symbol, symbol, "This instruction requires an operand."); - } - return NULL; -} - - -/********************************/ -/* B 1.3.3 - Derived data types */ -/********************************/ -void *visit_expression_type_c::visit(data_type_declaration_c *symbol) { - // TODO !!! - /* for the moment we must return NULL so semantic analysis of remaining code is not interrupted! */ - return NULL; -} - - -/*********************/ -/* B 1.4 - Variables */ -/*********************/ - -void *visit_expression_type_c::visit(symbolic_variable_c *symbol) { - return search_varfb_instance_type->get_basetype_decl(symbol); -} - -/********************************************/ -/* B 1.4.1 - Directly Represented Variables */ -/********************************************/ -void *visit_expression_type_c::visit(direct_variable_c *symbol) { - switch (symbol->value[2]) { - case 'X': // bit - 1 bit - return (void *)&bool_type_name; - case 'B': // byte - 8 bits - return (void *)&byte_type_name; - case 'W': // word - 16 bits - return (void *)&word_type_name; - case 'D': // double word - 32 bits - return (void *)&dword_type_name; - case 'L': // long word - 64 bits - return (void *)&lword_type_name; - default: // if none of the above, then the empty string was used <=> boolean - return (void *)&bool_type_name; - } -} - -/*************************************/ -/* B 1.4.2 - Multi-element variables */ -/*************************************/ -void *visit_expression_type_c::visit(array_variable_c *symbol) { - return search_varfb_instance_type->get_basetype_decl(symbol); -} - -void *visit_expression_type_c::visit(structured_variable_c *symbol) { - return search_varfb_instance_type->get_basetype_decl(symbol); -} - - - -/********************************/ -/* B 1.7 Configuration elements */ -/********************************/ -void *visit_expression_type_c::visit(configuration_declaration_c *symbol) { - // TODO !!! - /* for the moment we must return NULL so semantic analysis of remaining code is not interrupted! */ - return NULL; -} - - -/****************************************/ -/* B.2 - Language IL (Instruction List) */ -/****************************************/ -/***********************************/ -/* B 2.1 Instructions and Operands */ -/***********************************/ -/*| instruction_list il_instruction */ -/* The visitor of the base class search_visitor_c will handle calling each instruction in the list. - * We do not need to do anything here... - */ -// void *visit_expression_type_c::visit(instruction_list_c *symbol) - -/* | label ':' [il_incomplete_instruction] eol_list */ -//SYM_REF2(il_instruction_c, label, il_instruction) -// void *visit_expression_type_c::visit(il_instruction_c *symbol); - - -/* | il_simple_operator [il_operand] */ -// SYM_REF2(il_simple_operation_c, il_simple_operator, il_operand) -void *visit_expression_type_c::visit(il_simple_operation_c *symbol) { - if (il_error) - return NULL; - - /* determine the data type of the operand */ - il_operand = symbol->il_operand; - if (symbol->il_operand != NULL){ - il_operand_type = base_type((symbol_c *)symbol->il_operand->accept(*this)); - } else { - il_operand_type = NULL; - } - /* recursive call to see whether data types are compatible */ - symbol->il_simple_operator->accept(*this); - - il_operand_type = NULL; - il_operand = NULL; - return NULL; -} - -// | function_name [il_operand_list] */ -//SYM_REF2(il_function_call_c, function_name, il_operand_list) -void *visit_expression_type_c::visit(il_function_call_c *symbol) { - if (il_error) - return NULL; - - symbol_c *return_data_type = NULL; - symbol_c* fdecl_return_type; - symbol_c* overloaded_data_type = NULL; - int extensible_param_count = -1; - symbol->called_function_declaration = NULL; - - /* First find the declaration of the function being called! */ - function_symtable_t::iterator lower = function_symtable.lower_bound(symbol->function_name); - function_symtable_t::iterator upper = function_symtable.upper_bound(symbol->function_name); - function_symtable_t::iterator current; - if (lower == function_symtable.end()) ERROR; - - int error_count = 0; - int *error_count_ptr = NULL; - - function_symtable_t::iterator second = lower; - second++; - if (second != upper) - /* This is a call to an overloaded function... */ - error_count_ptr = &error_count; - - for(current = lower; current != upper; current++) { - function_declaration_c *f_decl = function_symtable.get_value(current); - - check_nonformal_call(symbol, f_decl, true, error_count_ptr); - - if (0 == error_count) { - /* Either: - * (i) we have a call to a non-overloaded function (error_cnt_ptr is NULL!, so error_count won't change!) - * (ii) we have a call to an overloaded function, with no errors! - */ - - fdecl_return_type = base_type(f_decl->type_name); - - if (symbol->called_function_declaration == NULL) { - /* Store the pointer to the declaration of the function being called. - * This data will be used by stage 4 to call the correct function. - * Mostly needed to disambiguate overloaded functions... - * See comments in absyntax.def for more details - */ - symbol->called_function_declaration = f_decl; - extensible_param_count = symbol->extensible_param_count; - - /* determine the base data type returned by the function being called... */ - return_data_type = fdecl_return_type; - } - else if (typeid(*return_data_type) != typeid(*fdecl_return_type)){ - return_data_type = common_literal(return_data_type, fdecl_return_type); - overloaded_data_type = overloaded_return_type(return_data_type); - } - - if (NULL == return_data_type) ERROR; - } - } - - if (overloaded_data_type != NULL) { - for(current = lower; current != upper; current++) { - function_declaration_c *f_decl = function_symtable.get_value(current); - - /* check semantics of data passed in the function call... */ - check_nonformal_call(symbol, f_decl, true, error_count_ptr); - - if (0 == error_count) { - - fdecl_return_type = base_type(f_decl->type_name); - - if (typeid(*overloaded_data_type) == typeid(*fdecl_return_type)){ - /* Store the pointer to the declaration of the function being called. - * This data will be used by stage 4 to call the correct function. - * Mostly needed to disambiguate overloaded functions... - * See comments in absyntax.def for more details - */ - symbol->called_function_declaration = f_decl; - extensible_param_count = symbol->extensible_param_count; - } - } - } - } - - if (NULL == return_data_type) { - /* No compatible function was found for this function call */ - STAGE3_ERROR(symbol, symbol, "Call to an overloaded function with invalid parameter type."); - } - else { - symbol->extensible_param_count = extensible_param_count; - /* set the new data type of the default variable for the following verifications... */ - il_default_variable_type = return_data_type; - } - - return NULL; -} - - -/* | il_expr_operator '(' [il_operand] eol_list [simple_instr_list] ')' */ -// SYM_REF3(il_expression_c, il_expr_operator, il_operand, simple_instr_list); -void *visit_expression_type_c::visit(il_expression_c *symbol) { - if (il_error) - return NULL; - - symbol_c *il_default_variable_type_back = il_default_variable_type; - - il_parenthesis_level++; - - if(symbol->il_operand != NULL) { - il_default_variable_type = base_type((symbol_c *)symbol->il_operand->accept(*this)); - } else { - il_default_variable_type = NULL; - } - - if(symbol->simple_instr_list != NULL) { - symbol->simple_instr_list->accept(*this); - } - - il_parenthesis_level--; - if (il_parenthesis_level < 0) ERROR; - - il_operand = symbol->simple_instr_list; - il_operand_type = il_default_variable_type; - il_default_variable_type = il_default_variable_type_back; - - /* Now check the if the data type semantics of operation are correct, - * but only if no previous error has been found... - */ - if (!il_error) - symbol->il_expr_operator->accept(*this); - - il_operand_type = NULL; - il_operand = NULL; - return NULL; -} - - -#if 0 -/* il_jump_operator label */ -SYM_REF2(il_jump_operation_c, il_jump_operator, label) -void *visit_expression_type_c::visit(il_jump_operation_c *symbol); -#endif - - -/* il_call_operator prev_declared_fb_name - * | il_call_operator prev_declared_fb_name '(' ')' - * | il_call_operator prev_declared_fb_name '(' eol_list ')' - * | il_call_operator prev_declared_fb_name '(' il_operand_list ')' - * | il_call_operator prev_declared_fb_name '(' eol_list il_param_list ')' - */ -/* SYM_REF4(il_fb_call_c, il_call_operator, fb_name, il_operand_list, il_param_list) */ -void *visit_expression_type_c::visit(il_fb_call_c *symbol) { - if (il_error) - return NULL; - - /* first check whether the il_default_variable is of the correct type - * for the CAL / CALC / CALCN operator being used... - */ - symbol->il_call_operator->accept(*this); - - /* Now check the FB call itself... */ - - /* First we find the declaration of the FB type of the FB instance being called... */ - /* e.g. Function_block foo_fb_type - * ... - * End_Function_Block - * - * Program test - * var fb1 : foo_fb_type; end_var - * fb1(...) - * End_Program - * - * search_varfb_instance_type->get_basetype_decl( identifier_c("fb1") ) - * in the scope of Program 'test' - * will return the fb declaration of foo_fb_type !! - */ -#if 0 - symbol_c *fb_decl_symbol = search_varfb_instance_type->get_basetype_decl(symbol->fb_name); - /* The following should never occur. The function block must be defined, - * and the FB type being called MUST be in the symtable... - * This was all already checked at stage 2! - */ - if (NULL == fb_decl_symbol) ERROR; - - function_block_declaration_c *fb_decl = dynamic_cast(fb_decl_symbol); - /* should never occur. ... */ - if (NULL == fb_decl) ERROR; -#endif - symbol_c *fb_decl = search_varfb_instance_type->get_basetype_decl(symbol->fb_name); - /* The following should never occur. The function block must be defined, - * and the FB type being called MUST be in the symtable... - * This was all already checked at stage 2! - */ - if (NULL == fb_decl) ERROR; - - /* now check the semantics of the fb call... */ - /* If the syntax parser is working correctly, exactly one of the - * following two symbols will be NULL, while the other is != NULL. - */ - if (NULL != symbol->il_operand_list) check_nonformal_call(symbol, fb_decl); - if (NULL != symbol->il_param_list) check_formal_call (symbol, fb_decl); - - return NULL; -} - - - -/* | function_name '(' eol_list [il_param_list] ')' */ -/* SYM_REF2(il_formal_funct_call_c, function_name, il_param_list) */ -void *visit_expression_type_c::visit(il_formal_funct_call_c *symbol) { - if (il_error) - return NULL; - - symbol_c *return_data_type = NULL; - symbol_c* fdecl_return_type; - symbol_c *overloaded_data_type = NULL; - int extensible_param_count = -1; - symbol->called_function_declaration = NULL; - - function_symtable_t::iterator lower = function_symtable.lower_bound(symbol->function_name); - function_symtable_t::iterator upper = function_symtable.upper_bound(symbol->function_name); - function_symtable_t::iterator current; - - if (lower == function_symtable.end()) { - function_type_t current_function_type = get_function_type((identifier_c *)symbol->function_name); - if (current_function_type == function_none) ERROR; - return NULL; - } - - int error_count = 0; - int *error_count_ptr = NULL; - - function_symtable_t::iterator second = lower; - second++; - if (second != upper) - /* This is a call to an overloaded function... */ - error_count_ptr = &error_count; - - for(current = lower; current != upper; current++) { - function_declaration_c *f_decl = function_symtable.get_value(current); - - /* check semantics of data passed in the function call... */ - check_formal_call(symbol, f_decl, error_count_ptr); - - if (0 == error_count) { - /* Either: - * (i) we have a call to a non-overloaded function (error_cnt_ptr is NULL!, so error_count won't change!) - * (ii) we have a call to an overloaded function, with no errors! - */ - - fdecl_return_type = base_type(f_decl->type_name); - - if (symbol->called_function_declaration == NULL) { - /* Store the pointer to the declaration of the function being called. - * This data will be used by stage 4 to call the correct function. - * Mostly needed to disambiguate overloaded functions... - * See comments in absyntax.def for more details - */ - symbol->called_function_declaration = f_decl; - extensible_param_count = symbol->extensible_param_count; - - /* determine the base data type returned by the function being called... */ - return_data_type = fdecl_return_type; - } - else if (typeid(*return_data_type) != typeid(*fdecl_return_type)){ - return_data_type = common_literal(return_data_type, fdecl_return_type); - overloaded_data_type = overloaded_return_type(return_data_type); - } - - /* the following should never occur. If it does, then we have a bug in the syntax parser (stage 2)... */ - if (NULL == return_data_type) ERROR; - - } - } - - if (overloaded_data_type != NULL) { - for(current = lower; current != upper; current++) { - function_declaration_c *f_decl = function_symtable.get_value(current); - - /* check semantics of data passed in the function call... */ - check_formal_call(symbol, f_decl, error_count_ptr); - - if (0 == error_count) { - - fdecl_return_type = base_type(f_decl->type_name); - - if (typeid(*overloaded_data_type) == typeid(*fdecl_return_type)){ - /* Store the pointer to the declaration of the function being called. - * This data will be used by stage 4 to call the correct function. - * Mostly needed to disambiguate overloaded functions... - * See comments in absyntax.def for more details - */ - symbol->called_function_declaration = f_decl; - extensible_param_count = symbol->extensible_param_count; - } - } - } - } - - if (NULL == return_data_type) { - /* No compatible function was found for this function call */ - STAGE3_ERROR(symbol, symbol, "Call to an overloaded function with invalid parameter type."); - } - else { - symbol->extensible_param_count = extensible_param_count; - /* the data type of the data returned by the function, and stored in the il default variable... */ - il_default_variable_type = return_data_type; - } - - return NULL; -} - - -#if 0 -/* | il_operand_list ',' il_operand */ -SYM_LIST(il_operand_list_c) -void *visit_expression_type_c::visit(il_operand_list_c *symbol); - -/* | simple_instr_list il_simple_instruction */ -SYM_LIST(simple_instr_list_c) -void *visit_expression_type_c::visit(simple_instr_list_c *symbol); - -/* | il_initial_param_list il_param_instruction */ -SYM_LIST(il_param_list_c) -void *visit_expression_type_c::visit(il_param_list_c *symbol); - -/* il_assign_operator il_operand - * | il_assign_operator '(' eol_list simple_instr_list ')' - */ -SYM_REF3(il_param_assignment_c, il_assign_operator, il_operand, simple_instr_list) -void *visit_expression_type_c::visit(il_param_assignment_c *symbol); -/* il_assign_out_operator variable */ -SYM_REF2(il_param_out_assignment_c, il_assign_out_operator, variable) -void *visit_expression_type_c::visit(il_param_out_assignment_c *symbol); - -#endif - - -/*******************/ -/* B 2.2 Operators */ -/*******************/ - -//SYM_REF0(LD_operator_c) -void *visit_expression_type_c::visit(LD_operator_c *symbol) { - if (0 == il_parenthesis_level) - il_error = false; - - if(il_operand_type == NULL) - STAGE3_ERROR(symbol, symbol, "LD operator requires an operand."); - il_default_variable_type = il_operand_type; - return NULL; -} - -// SYM_REF0(LDN_operator_c) -void *visit_expression_type_c::visit(LDN_operator_c *symbol) { - if(il_operand_type == NULL) - STAGE3_ERROR(symbol, symbol, "LDN operator requires an operand."); - if(!is_ANY_BIT_compatible(il_operand_type)) - STAGE3_ERROR(symbol, il_operand, "invalid data type of LDN operand, should be of type ANY_BIT."); - il_default_variable_type = il_operand_type; - return NULL; -} - -// SYM_REF0(ST_operator_c) -void *visit_expression_type_c::visit(ST_operator_c *symbol) { - verify_null(symbol); - - if(!is_valid_assignment(il_operand_type, il_default_variable_type)) - STAGE3_ERROR(symbol, symbol, "Type mismatch in ST operation."); - /* TODO: check whether il_operand_type is an LVALUE !! */ - /* data type of il_default_variable_type is unchanged... */ - // il_default_variable_type = il_default_variable_type; - return NULL; -} - -// SYM_REF0(STN_operator_c) - void *visit_expression_type_c::visit(STN_operator_c *symbol) { - verify_null(symbol); - if(!is_valid_assignment(il_operand_type, il_default_variable_type)) - STAGE3_ERROR(symbol, symbol, "Type mismatch in ST operation."); - /* TODO: check whether il_operand_type is an LVALUE !! */ - if(!is_ANY_BIT_compatible(il_default_variable_type)) - STAGE3_ERROR(symbol, symbol, "invalid data type of il_default_variable for STN operand, should be of type ANY_BIT."); - if(!is_ANY_BIT_compatible(il_operand_type)) - STAGE3_ERROR(symbol, il_operand, "invalid data type of STN operand, should be of type ANY_BIT."); - /* data type of il_default_variable_type is unchanged... */ - // il_default_variable_type = il_default_variable_type; - return NULL; -} - -//SYM_REF0(NOT_operator_c) -void *visit_expression_type_c::visit(NOT_operator_c *symbol) { - if(il_operand_type != NULL){ - STAGE3_ERROR(symbol, il_operand, "NOT operator may not have an operand."); - return NULL; - } - if(il_default_variable_type == NULL) { - STAGE3_ERROR(symbol, symbol, "Il default variable should not be NULL."); - return NULL; - } - if(!is_ANY_BIT_compatible(il_default_variable_type)) { - STAGE3_ERROR(symbol, symbol, "Il default variable should be of type ANY_BIT."); - return NULL; - } - /* data type of il_default_variable_type is unchanged... */ - // il_default_variable_type = il_default_variable_type; - return NULL; -} - -// SYM_REF0(S_operator_c) -void *visit_expression_type_c::visit(S_operator_c *symbol) { - verify_null(symbol); - if (!is_BOOL_type(il_default_variable_type)) {STAGE3_ERROR(symbol, symbol, "IL default variable should be BOOL type.");} - if (!is_BOOL_type(il_operand_type)) {STAGE3_ERROR(symbol, il_operand, "operator S requires operand of type BOOL.");} - /* TODO: check whether il_operand_type is an LVALUE !! */ - /* data type of il_default_variable_type is unchanged... */ - // il_default_variable_type = il_default_variable_type; - return NULL; -} - -// SYM_REF0(R_operator_c) -void *visit_expression_type_c::visit(R_operator_c *symbol) { - verify_null(symbol); - if (!is_BOOL_type(il_default_variable_type)) {STAGE3_ERROR(symbol, symbol, "IL default variable should be BOOL type.");} - if (!is_BOOL_type(il_operand_type)) {STAGE3_ERROR(symbol, il_operand, "operator R requires operand of type BOOL.");} - /* TODO: check whether il_operand_type is an LVALUE !! */ - /* data type of il_default_variable_type is unchanged... */ - // il_default_variable_type = il_default_variable_type; - return NULL; -} - - -// SYM_REF0(S1_operator_c) -void *visit_expression_type_c::visit(S1_operator_c *symbol){ - check_il_fbcall(symbol, "S1"); - return NULL; -} - -// SYM_REF0(R1_operator_c) -void *visit_expression_type_c::visit(R1_operator_c *symbol) { - check_il_fbcall(symbol, "R1"); - return NULL; -} - -// SYM_REF0(CLK_operator_c) -void *visit_expression_type_c::visit(CLK_operator_c *symbol) { - check_il_fbcall(symbol, "CLK"); - return NULL; -} - -// SYM_REF0(CU_operator_c) -void *visit_expression_type_c::visit(CU_operator_c *symbol) { - check_il_fbcall(symbol, "CU"); - return NULL; -} - -// SYM_REF0(CD_operator_c) -void *visit_expression_type_c::visit(CD_operator_c *symbol) { - check_il_fbcall(symbol, "CD"); - return NULL; -} - -// SYM_REF0(PV_operator_c) -void *visit_expression_type_c::visit(PV_operator_c *symbol) { - check_il_fbcall(symbol, "PV"); - return NULL; -} - -// SYM_REF0(IN_operator_c) -void *visit_expression_type_c::visit(IN_operator_c *symbol) { - check_il_fbcall(symbol, "IN"); - return NULL; -} - -// SYM_REF0(PT_operator_c) -void *visit_expression_type_c::visit(PT_operator_c *symbol) { - check_il_fbcall(symbol, "PT"); - return NULL; -} - -//SYM_REF0(AND_operator_c) -void *visit_expression_type_c::visit(AND_operator_c *symbol) { - verify_null(symbol); - il_default_variable_type = compute_expression(il_default_variable_type, il_operand_type, &visit_expression_type_c::is_ANY_BIT_compatible, - symbol , il_operand); - return NULL; -} - -//SYM_REF0(OR_operator_c) -void *visit_expression_type_c::visit(OR_operator_c *symbol) { - verify_null(symbol); - il_default_variable_type = compute_expression(il_default_variable_type, il_operand_type, &visit_expression_type_c::is_ANY_BIT_compatible, - symbol , il_operand); - return NULL; -} - -//SYM_REF0(XOR_operator_c) -void *visit_expression_type_c::visit(XOR_operator_c *symbol) { - verify_null(symbol); - il_default_variable_type = compute_expression(il_default_variable_type, il_operand_type, &visit_expression_type_c::is_ANY_BIT_compatible, - symbol , il_operand); - return NULL; -} - -// SYM_REF0(ANDN_operator_c) -void *visit_expression_type_c::visit(ANDN_operator_c *symbol) { - verify_null(symbol); - il_default_variable_type = compute_expression(il_default_variable_type, il_operand_type, &visit_expression_type_c::is_ANY_BIT_compatible, - symbol , il_operand); - return NULL; -} - -// SYM_REF0(ORN_operator_c) -void *visit_expression_type_c::visit(ORN_operator_c *symbol) { - verify_null(symbol); - il_default_variable_type = compute_expression(il_default_variable_type, il_operand_type, &visit_expression_type_c::is_ANY_BIT_compatible, - symbol , il_operand); - return NULL; -} - -// SYM_REF0(XORN_operator_c) -void *visit_expression_type_c::visit(XORN_operator_c *symbol) { - verify_null(symbol); - il_default_variable_type = compute_expression(il_default_variable_type, il_operand_type, &visit_expression_type_c::is_ANY_BIT_compatible, - symbol , il_operand); - return NULL; -} - -// SYM_REF0(ADD_operator_c) -void *visit_expression_type_c::visit(ADD_operator_c *symbol) { - verify_null(symbol); - symbol_c *left_type = il_default_variable_type; - symbol_c *right_type = il_operand_type; - -/* The following is not required, it is already handled by compute_expression() ... */ -/* - if (is_type(left_type, time_type_name_c) && is_type(right_type, time_type_name_c)) - il_default_variable_type = &time_type_name; -*/ - - if (is_type(left_type, tod_type_name_c) && is_type(right_type, time_type_name_c)) - il_default_variable_type = &tod_type_name; - else if (is_type(left_type, safetod_type_name_c) && is_type(right_type, time_type_name_c)) - il_default_variable_type = &tod_type_name; - else if (is_type(left_type, tod_type_name_c) && is_type(right_type, safetime_type_name_c)) - il_default_variable_type = &tod_type_name; - else if (is_type(left_type, safetod_type_name_c) && is_type(right_type, safetime_type_name_c)) - il_default_variable_type = &safetod_type_name; - - else if (is_type(left_type, dt_type_name_c) && is_type(right_type, time_type_name_c)) - il_default_variable_type = &dt_type_name; - else if (is_type(left_type, safedt_type_name_c) && is_type(right_type, time_type_name_c)) - il_default_variable_type = &dt_type_name; - else if (is_type(left_type, dt_type_name_c) && is_type(right_type, safetime_type_name_c)) - il_default_variable_type = &dt_type_name; - else if (is_type(left_type, safedt_type_name_c) && is_type(right_type, safetime_type_name_c)) - il_default_variable_type = &safedt_type_name; - - else il_default_variable_type = compute_expression(il_default_variable_type, il_operand_type, &visit_expression_type_c::is_ANY_MAGNITUDE_compatible, - symbol , il_operand); - return NULL; -} - -// SYM_REF0(SUB_operator_c) -void *visit_expression_type_c::visit(SUB_operator_c *symbol) { - verify_null(symbol); - symbol_c *left_type = il_default_variable_type; - symbol_c *right_type = il_operand_type;; - -/* The following is not required, it is already handled by compute_expression() ... */ -/* - if (typeid(*left_type) == typeid(time_type_name_c) && typeid(*right_type) == typeid(time_type_name_c)) - il_default_variable_type = &time_type_name; -*/ - - if (is_type(left_type, tod_type_name_c) && is_type(right_type, time_type_name_c)) - il_default_variable_type = &tod_type_name; - else if (is_type(left_type, safetod_type_name_c) && is_type(right_type, time_type_name_c)) - il_default_variable_type = &tod_type_name; - else if (is_type(left_type, tod_type_name_c) && is_type(right_type, safetime_type_name_c)) - il_default_variable_type = &tod_type_name; - else if (is_type(left_type, safetod_type_name_c) && is_type(right_type, safetime_type_name_c)) - il_default_variable_type = &safetod_type_name; - - else if (is_type(left_type, dt_type_name_c) && is_type(right_type, time_type_name_c)) - il_default_variable_type = &dt_type_name; - else if (is_type(left_type, safedt_type_name_c) && is_type(right_type, time_type_name_c)) - il_default_variable_type = &dt_type_name; - else if (is_type(left_type, dt_type_name_c) && is_type(right_type, safetime_type_name_c)) - il_default_variable_type = &dt_type_name; - else if (is_type(left_type, safedt_type_name_c) && is_type(right_type, safetime_type_name_c)) - il_default_variable_type = &safedt_type_name; - - else if (is_type(left_type, date_type_name_c) && is_type(right_type, date_type_name_c)) - il_default_variable_type = &time_type_name; - else if (is_type(left_type, safedate_type_name_c) && is_type(right_type, date_type_name_c)) - il_default_variable_type = &time_type_name; - else if (is_type(left_type, date_type_name_c) && is_type(right_type, safedate_type_name_c)) - il_default_variable_type = &time_type_name; - else if (is_type(left_type, safedate_type_name_c) && is_type(right_type, safedate_type_name_c)) - il_default_variable_type = &safetime_type_name; - - else if (is_type(left_type, tod_type_name_c) && is_type(right_type, tod_type_name_c)) - il_default_variable_type = &time_type_name; - else if (is_type(left_type, safetod_type_name_c) && is_type(right_type, tod_type_name_c)) - il_default_variable_type = &time_type_name; - else if (is_type(left_type, tod_type_name_c) && is_type(right_type, safetod_type_name_c)) - il_default_variable_type = &time_type_name; - else if (is_type(left_type, safetod_type_name_c) && is_type(right_type, safetod_type_name_c)) - il_default_variable_type = &safetime_type_name; - - else if (is_type(left_type, dt_type_name_c) && is_type(right_type, dt_type_name_c)) - il_default_variable_type = &time_type_name; - else if (is_type(left_type, safedt_type_name_c) && is_type(right_type, dt_type_name_c)) - il_default_variable_type = &time_type_name; - else if (is_type(left_type, dt_type_name_c) && is_type(right_type, safedt_type_name_c)) - il_default_variable_type = &time_type_name; - else if (is_type(left_type, safedt_type_name_c) && is_type(right_type, safedt_type_name_c)) - il_default_variable_type = &safetime_type_name; - - else il_default_variable_type = compute_expression(il_default_variable_type, il_operand_type, &visit_expression_type_c::is_ANY_MAGNITUDE_compatible, - symbol , il_operand); - return NULL; -} - -// SYM_REF0(MUL_operator_c) -void *visit_expression_type_c::visit(MUL_operator_c *symbol) { - verify_null(symbol); - symbol_c *left_type = il_default_variable_type; - symbol_c *right_type = il_operand_type; - - if (is_type(left_type, time_type_name_c) && is_ANY_NUM_compatible(right_type)) - il_default_variable_type = &time_type_name; - else if (is_type(left_type, safetime_type_name_c) && is_ANY_NUM_type(right_type)) - il_default_variable_type = &time_type_name; - else if (is_type(left_type, safetime_type_name_c) && is_ANY_SAFENUM_type(right_type)) - il_default_variable_type = &safetime_type_name; - /* Since we have already checked for ANY_NUM_type and ANY_SAFENUM_type in the previous lines, - * this next line is really only to check for integers/reals of undefined type on 'right_type'... - */ - else if (is_type(left_type, safetime_type_name_c) && is_ANY_NUM_compatible(right_type)) - il_default_variable_type = &safetime_type_name; - - else il_default_variable_type = compute_expression(il_default_variable_type, il_operand_type, &visit_expression_type_c::is_ANY_NUM_compatible, - symbol , il_operand); - return NULL; -} - -// SYM_REF0(DIV_operator_c) -void *visit_expression_type_c::visit(DIV_operator_c *symbol) { - verify_null(symbol); - symbol_c *left_type = il_default_variable_type; - symbol_c *right_type = il_operand_type; - - if (is_type(left_type, time_type_name_c) && is_ANY_NUM_compatible(right_type)) - il_default_variable_type = &time_type_name; - else if (is_type(left_type, safetime_type_name_c) && is_ANY_NUM_type(right_type)) - il_default_variable_type = &time_type_name; - else if (is_type(left_type, safetime_type_name_c) && is_ANY_SAFENUM_type(right_type)) - il_default_variable_type = &safetime_type_name; - /* Since we have already checked for ANY_NUM_type and ANY_SAFENUM_type in the previous lines, - * this next line is really only to check for integers/reals of undefined type on 'right_type'... - */ - else if (is_type(left_type, safetime_type_name_c) && is_ANY_NUM_compatible(right_type)) - il_default_variable_type = &safetime_type_name; - - else il_default_variable_type = compute_expression(il_default_variable_type, il_operand_type, &visit_expression_type_c::is_ANY_NUM_compatible, - symbol , il_operand); - return NULL; -} - -// SYM_REF0(MOD_operator_c) -void *visit_expression_type_c::visit(MOD_operator_c *symbol) { - verify_null(symbol); - il_default_variable_type = compute_expression(il_default_variable_type, il_operand_type, &visit_expression_type_c::is_ANY_INT_compatible, - symbol , il_operand); - return NULL; -} - -// SYM_REF0(GT_operator_c) -void *visit_expression_type_c::visit(GT_operator_c *symbol) { - verify_null(symbol); - compute_expression(il_default_variable_type, il_operand_type, &visit_expression_type_c::is_ANY_ELEMENTARY_compatible, - symbol , il_operand); - il_default_variable_type = &search_expression_type_c::bool_type_name; - return NULL; -} - -//SYM_REF0(GE_operator_c) -void *visit_expression_type_c::visit(GE_operator_c *symbol) { - verify_null(symbol); - compute_expression(il_default_variable_type, il_operand_type, &visit_expression_type_c::is_ANY_ELEMENTARY_compatible, - symbol , il_operand); - il_default_variable_type = &search_expression_type_c::bool_type_name; - return NULL; -} - -//SYM_REF0(EQ_operator_c) -void *visit_expression_type_c::visit(EQ_operator_c *symbol) { - verify_null(symbol); - compute_expression(il_default_variable_type, il_operand_type, &visit_expression_type_c::is_ANY_ELEMENTARY_compatible, - symbol , il_operand); - il_default_variable_type = &search_expression_type_c::bool_type_name; - return NULL; -} - -//SYM_REF0(LT_operator_c) -void *visit_expression_type_c::visit(LT_operator_c *symbol) { - verify_null(symbol); - compute_expression(il_default_variable_type, il_operand_type, &visit_expression_type_c::is_ANY_ELEMENTARY_compatible, - symbol , il_operand); - il_default_variable_type = &search_expression_type_c::bool_type_name; - return NULL; -} - -//SYM_REF0(LE_operator_c) -void *visit_expression_type_c::visit(LE_operator_c *symbol) { - verify_null(symbol); - compute_expression(il_default_variable_type, il_operand_type, &visit_expression_type_c::is_ANY_ELEMENTARY_compatible, - symbol , il_operand); - il_default_variable_type = &search_expression_type_c::bool_type_name; - return NULL; -} - -//SYM_REF0(NE_operator_c) -void *visit_expression_type_c::visit(NE_operator_c *symbol) { - verify_null(symbol); - compute_expression(il_default_variable_type, il_operand_type, &visit_expression_type_c::is_ANY_ELEMENTARY_compatible, - symbol , il_operand); - il_default_variable_type = &search_expression_type_c::bool_type_name; - return NULL; -} - -// SYM_REF0(CAL_operator_c) -void *visit_expression_type_c::visit(CAL_operator_c *symbol) { - return NULL; -} - -// SYM_REF0(CALC_operator_c) -void *visit_expression_type_c::visit(CALC_operator_c *symbol) { - if(il_default_variable_type == NULL) - STAGE3_ERROR(symbol, symbol, "CALC: il default variable should not be NULL."); - if (!is_BOOL_type(il_default_variable_type)) - STAGE3_ERROR(symbol, symbol, "CALC operator requires il_default_variable to be of type BOOL."); - return NULL; -} - -// SYM_REF0(CALCN_operator_c) -void *visit_expression_type_c::visit(CALCN_operator_c *symbol) { - if(il_default_variable_type == NULL) - STAGE3_ERROR(symbol, symbol, "CALCN: il_default_variable should not be NULL."); - if (!is_BOOL_type(il_default_variable_type)) - STAGE3_ERROR(symbol, symbol, "CALCN operator requires il_default_variable to be of type BOOL."); - return NULL; -} - -// SYM_REF0(RET_operator_c) -void *visit_expression_type_c::visit(RET_operator_c *symbol) { - return NULL; -} - -// SYM_REF0(RETC_operator_c) -void *visit_expression_type_c::visit(RETC_operator_c *symbol) { - if(il_default_variable_type == NULL) - STAGE3_ERROR(symbol, symbol, "RETC: il default variable should not be NULL."); - if (!is_BOOL_type(il_default_variable_type)) - STAGE3_ERROR(symbol, symbol, "RETC operator requires il_default_variable to be of type BOOL."); - return NULL; -} - -// SYM_REF0(RETCN_operator_c) -void *visit_expression_type_c::visit(RETCN_operator_c *symbol) { - if(il_default_variable_type == NULL) - STAGE3_ERROR(symbol, symbol, "RETCN: il_default_variable should not be NULL."); - if (!is_BOOL_type(il_default_variable_type)) - STAGE3_ERROR(symbol, symbol, "RETCN operator requires il_default_variable to be of type BOOL."); - return NULL; -} - -// SYM_REF0(JMP_operator_c) -void *visit_expression_type_c::visit(JMP_operator_c *symbol){ - return NULL; -} - -// SYM_REF0(JMPC_operator_c) -void *visit_expression_type_c::visit(JMPC_operator_c *symbol) { - if(il_default_variable_type == NULL) - STAGE3_ERROR(symbol, symbol, "JMPC: il default variable should not be NULL."); - if (!is_BOOL_type(il_default_variable_type)) - STAGE3_ERROR(symbol, symbol, "JMPC operator requires il_default_variable to be of type BOOL."); - return NULL; -} - -// SYM_REF0(JMPCN_operator_c) -void *visit_expression_type_c::visit(JMPCN_operator_c *symbol) { - if(il_default_variable_type == NULL) - STAGE3_ERROR(symbol, symbol, "JMPCN: il_default_variable should not be NULL."); - if (!is_BOOL_type(il_default_variable_type)) - STAGE3_ERROR(symbol, symbol, "JMPCN operator requires il_default_variable to be of type BOOL."); - return NULL; -} - -/* Symbol class handled together with function call checks */ -/* any_identifier ASSIGN */ -// SYM_REF1(il_assign_operator_c, variable_name) -// void *visit_expression_type_c::visit(il_assign_operator_c *symbol, variable_name); - -/* Symbol class handled together with function call checks */ -/*| [NOT] any_identifier SENDTO */ -// SYM_REF2(il_assign_out_operator_c, option, variable_name) -// void *visit_expression_type_c::visit(il_assign_operator_c *symbol, option, variable_name); - - - - - -/***************************************/ -/* B.3 - Language ST (Structured Text) */ -/***************************************/ -/***********************/ -/* B 3.1 - Expressions */ -/***********************/ - -void *visit_expression_type_c::visit(or_expression_c *symbol) { - symbol_c *left_type = base_type((symbol_c *)symbol->l_exp->accept(*this)); - symbol_c *right_type = base_type((symbol_c *)symbol->r_exp->accept(*this)); - return compute_expression(left_type, right_type, &visit_expression_type_c::is_ANY_BIT_compatible, symbol->l_exp, symbol->r_exp); -} - - -void *visit_expression_type_c::visit(xor_expression_c *symbol) { - symbol_c *left_type = base_type((symbol_c *)symbol->l_exp->accept(*this)); - symbol_c *right_type = base_type((symbol_c *)symbol->r_exp->accept(*this)); - return compute_expression(left_type, right_type, &visit_expression_type_c::is_ANY_BIT_compatible, symbol->l_exp, symbol->r_exp); -} - - -void *visit_expression_type_c::visit(and_expression_c *symbol) { - symbol_c *left_type = base_type((symbol_c *)symbol->l_exp->accept(*this)); - symbol_c *right_type = base_type((symbol_c *)symbol->r_exp->accept(*this)); - return compute_expression(left_type, right_type, &visit_expression_type_c::is_ANY_BIT_compatible, symbol->l_exp, symbol->r_exp); -} - - -void *visit_expression_type_c::visit(equ_expression_c *symbol) { - symbol_c *left_type = base_type((symbol_c *)symbol->l_exp->accept(*this)); - symbol_c *right_type = base_type((symbol_c *)symbol->r_exp->accept(*this)); - compute_expression(left_type, right_type, &visit_expression_type_c::is_ANY_ELEMENTARY_OR_ENUMERATED_compatible, symbol->l_exp, symbol->r_exp); - return &search_expression_type_c::bool_type_name; -} - - -void *visit_expression_type_c::visit(notequ_expression_c *symbol) { - symbol_c *left_type = base_type((symbol_c *)symbol->l_exp->accept(*this)); - symbol_c *right_type = base_type((symbol_c *)symbol->r_exp->accept(*this)); - compute_expression(left_type, right_type, &visit_expression_type_c::is_ANY_ELEMENTARY_OR_ENUMERATED_compatible, symbol->l_exp, symbol->r_exp); - return &search_expression_type_c::bool_type_name; -} - - -void *visit_expression_type_c::visit(lt_expression_c *symbol) { - symbol_c *left_type = base_type((symbol_c *)symbol->l_exp->accept(*this)); - symbol_c *right_type = base_type((symbol_c *)symbol->r_exp->accept(*this)); - compute_expression(left_type, right_type, &visit_expression_type_c::is_ANY_ELEMENTARY_compatible, symbol->l_exp, symbol->r_exp); - return &search_expression_type_c::bool_type_name; -} - - -void *visit_expression_type_c::visit(gt_expression_c *symbol) { - symbol_c *left_type = base_type((symbol_c *)symbol->l_exp->accept(*this)); - symbol_c *right_type = base_type((symbol_c *)symbol->r_exp->accept(*this)); - compute_expression(left_type, right_type, &visit_expression_type_c::is_ANY_ELEMENTARY_compatible, symbol->l_exp, symbol->r_exp); - return &search_expression_type_c::bool_type_name; -} - - -void *visit_expression_type_c::visit(le_expression_c *symbol) { - symbol_c *left_type = base_type((symbol_c *)symbol->l_exp->accept(*this)); - symbol_c *right_type = base_type((symbol_c *)symbol->r_exp->accept(*this)); - compute_expression(left_type, right_type, &visit_expression_type_c::is_ANY_ELEMENTARY_compatible, symbol->l_exp, symbol->r_exp); - return &search_expression_type_c::bool_type_name; -} - - -void *visit_expression_type_c::visit(ge_expression_c *symbol) { - symbol_c *left_type = base_type((symbol_c *)symbol->l_exp->accept(*this)); - symbol_c *right_type = base_type((symbol_c *)symbol->r_exp->accept(*this)); - compute_expression(left_type, right_type, &visit_expression_type_c::is_ANY_ELEMENTARY_compatible, symbol->l_exp, symbol->r_exp); - return &search_expression_type_c::bool_type_name; -} - - -void *visit_expression_type_c::visit(add_expression_c *symbol) { - symbol_c *left_type = base_type((symbol_c *)symbol->l_exp->accept(*this)); - symbol_c *right_type = base_type((symbol_c *)symbol->r_exp->accept(*this)); - -/* The following is already checked in compute_expression */ -/* - if (is_type(left_type, time_type_name_c) && is_type(right_type, time_type_name_c)) - return (void *)&time_type_name; -*/ - - if (is_type(left_type, tod_type_name_c) && is_type(right_type, time_type_name_c)) - return (void *)&tod_type_name; - if (is_type(left_type, safetod_type_name_c) && is_type(right_type, time_type_name_c)) - return (void *)&tod_type_name; - if (is_type(left_type, tod_type_name_c) && is_type(right_type, safetime_type_name_c)) - return (void *)&tod_type_name; - if (is_type(left_type, safetod_type_name_c) && is_type(right_type, safetime_type_name_c)) - return (void *)&safetod_type_name; - - if (is_type(left_type, dt_type_name_c) && is_type(right_type, time_type_name_c)) - return (void *)&dt_type_name; - if (is_type(left_type, safedt_type_name_c) && is_type(right_type, time_type_name_c)) - return (void *)&dt_type_name; - if (is_type(left_type, dt_type_name_c) && is_type(right_type, safetime_type_name_c)) - return (void *)&dt_type_name; - if (is_type(left_type, safedt_type_name_c) && is_type(right_type, safetime_type_name_c)) - return (void *)&safedt_type_name; - - return compute_expression(left_type, right_type, &visit_expression_type_c::is_ANY_MAGNITUDE_compatible, symbol->l_exp, symbol->r_exp); -} - - -void *visit_expression_type_c::visit(sub_expression_c *symbol) { - symbol_c *left_type = base_type((symbol_c *)symbol->l_exp->accept(*this)); - symbol_c *right_type = base_type((symbol_c *)symbol->r_exp->accept(*this)); - -/* The following is already checked in compute_expression */ -/* - if (is_type(left_type, time_type_name_c) && is_type(right_type, time_type_name_c)) - return (void *)&time_type_name; -*/ - - if (is_type(left_type, tod_type_name_c) && is_type(right_type, time_type_name_c)) - return (void *)&tod_type_name; - if (is_type(left_type, safetod_type_name_c) && is_type(right_type, time_type_name_c)) - return (void *)&tod_type_name; - if (is_type(left_type, tod_type_name_c) && is_type(right_type, safetime_type_name_c)) - return (void *)&tod_type_name; - if (is_type(left_type, safetod_type_name_c) && is_type(right_type, safetime_type_name_c)) - return (void *)&safetod_type_name; - - if (is_type(left_type, dt_type_name_c) && is_type(right_type, time_type_name_c)) - return (void *)&dt_type_name; - if (is_type(left_type, safedt_type_name_c) && is_type(right_type, time_type_name_c)) - return (void *)&dt_type_name; - if (is_type(left_type, dt_type_name_c) && is_type(right_type, safetime_type_name_c)) - return (void *)&dt_type_name; - if (is_type(left_type, safedt_type_name_c) && is_type(right_type, safetime_type_name_c)) - return (void *)&safedt_type_name; - - if (is_type(left_type, tod_type_name_c) && is_type(right_type, tod_type_name_c)) - return (void *)&time_type_name; - if (is_type(left_type, safetod_type_name_c) && is_type(right_type, tod_type_name_c)) - return (void *)&time_type_name; - if (is_type(left_type, tod_type_name_c) && is_type(right_type, safetod_type_name_c)) - return (void *)&time_type_name; - if (is_type(left_type, safetod_type_name_c) && is_type(right_type, safetod_type_name_c)) - return (void *)&safetime_type_name; - - if (is_type(left_type, date_type_name_c) && is_type(right_type, date_type_name_c)) - return (void *)&time_type_name; - if (is_type(left_type, safedate_type_name_c) && is_type(right_type, date_type_name_c)) - return (void *)&time_type_name; - if (is_type(left_type, date_type_name_c) && is_type(right_type, safedate_type_name_c)) - return (void *)&time_type_name; - if (is_type(left_type, safedate_type_name_c) && is_type(right_type, safedate_type_name_c)) - return (void *)&safetime_type_name; - - if (is_type(left_type, dt_type_name_c) && is_type(right_type, dt_type_name_c)) - return (void *)&time_type_name; - if (is_type(left_type, safedt_type_name_c) && is_type(right_type, dt_type_name_c)) - return (void *)&time_type_name; - if (is_type(left_type, dt_type_name_c) && is_type(right_type, safedt_type_name_c)) - return (void *)&time_type_name; - if (is_type(left_type, safedt_type_name_c) && is_type(right_type, safedt_type_name_c)) - return (void *)&safetime_type_name; - - return compute_expression(left_type, right_type, &visit_expression_type_c::is_ANY_MAGNITUDE_compatible, symbol->l_exp, symbol->r_exp); -} - - -void *visit_expression_type_c::visit(mul_expression_c *symbol) { - symbol_c *left_type = base_type((symbol_c *)symbol->l_exp->accept(*this)); - symbol_c *right_type = base_type((symbol_c *)symbol->r_exp->accept(*this)); - - if (is_type(left_type, time_type_name_c) && is_ANY_NUM_compatible(right_type)) - return (void *)&time_type_name; - if (is_type(left_type, safetime_type_name_c) && is_ANY_NUM_type(right_type)) - return (void *)&time_type_name; - if (is_type(left_type, safetime_type_name_c) && is_ANY_SAFENUM_type(right_type)) - return (void *)&safetime_type_name; - /* Since we have already checked for ANY_NUM_type and ANY_SAFENUM_type in the previous lines, - * this next line is really only to check for integers/reals of undefined type on 'right_type'... - */ - if (is_type(left_type, safetime_type_name_c) && is_ANY_NUM_compatible(right_type)) - return (void *)&safetime_type_name; - - return compute_expression(left_type, right_type, &visit_expression_type_c::is_ANY_NUM_compatible, symbol->l_exp, symbol->r_exp); -} - - -void *visit_expression_type_c::visit(div_expression_c *symbol) { - symbol_c *left_type = base_type((symbol_c *)symbol->l_exp->accept(*this)); - symbol_c *right_type = base_type((symbol_c *)symbol->r_exp->accept(*this)); - - if (is_type(left_type, time_type_name_c) && is_ANY_NUM_compatible(right_type)) - return (void *)&time_type_name; - if (is_type(left_type, safetime_type_name_c) && is_ANY_NUM_type(right_type)) - return (void *)&time_type_name; - if (is_type(left_type, safetime_type_name_c) && is_ANY_SAFENUM_type(right_type)) - return (void *)&safetime_type_name; - /* Since we have already checked for ANY_NUM_type and ANY_SAFENUM_type in the previous lines, - * this next line is really only to check for integers/reals of undefined type on 'right_type'... - */ - if (is_type(left_type, safetime_type_name_c) && is_ANY_NUM_compatible(right_type)) - return (void *)&safetime_type_name; - - return compute_expression(left_type, right_type, &visit_expression_type_c::is_ANY_NUM_compatible, symbol->l_exp, symbol->r_exp); -} - - -void *visit_expression_type_c::visit(mod_expression_c *symbol) { - symbol_c *left_type = base_type((symbol_c *)symbol->l_exp->accept(*this)); - symbol_c *right_type = base_type((symbol_c *)symbol->r_exp->accept(*this)); - return compute_expression(left_type, right_type, &visit_expression_type_c::is_ANY_INT_compatible, symbol->l_exp, symbol->r_exp); -} - - -void *visit_expression_type_c::visit(power_expression_c *symbol) { - symbol_c *left_type = base_type((symbol_c *)symbol->l_exp->accept(*this)); - symbol_c *right_type = base_type((symbol_c *)symbol->r_exp->accept(*this)); - if (!is_ANY_REAL_compatible(left_type)) - STAGE3_ERROR(symbol->l_exp, symbol->l_exp, "first operand of ** operator has invalid data type, should be of type ANY_REAL."); - if (!is_ANY_NUM_compatible(right_type)) - STAGE3_ERROR(symbol->r_exp, symbol->r_exp, "second operand of ** operator has invalid data type, should be of type ANY_NUM."); - - return (void *)left_type; -} - - -void *visit_expression_type_c::visit(neg_expression_c *symbol) { - symbol_c *exp_type = base_type((symbol_c *)symbol->exp->accept(*this)); - if (!is_ANY_MAGNITUDE_compatible(exp_type)) - STAGE3_ERROR(symbol, symbol, "operand of negate expression '-' has invalid data type, should be of type ANY_MAGNITUDE."); - - return exp_type; -} - - -void *visit_expression_type_c::visit(not_expression_c *symbol) { - symbol_c *type = base_type((symbol_c *)symbol->exp->accept(*this)); - return compute_expression(type, type, &visit_expression_type_c::is_ANY_BIT_compatible, NULL, symbol->exp); -} - - -void *visit_expression_type_c::visit(function_invocation_c *symbol) { - function_symtable_t::iterator lower = function_symtable.lower_bound(symbol->function_name); - function_symtable_t::iterator upper = function_symtable.upper_bound(symbol->function_name); - function_symtable_t::iterator current; - if (lower == function_symtable.end()) ERROR; - - symbol_c* return_data_type; - symbol_c* fdecl_return_type; - symbol_c* overloaded_data_type = NULL; - int extensible_param_count = -1; - symbol->called_function_declaration = NULL; - - function_symtable_t::iterator second = lower; - second++; - if (second == upper) { - /* call to a function that is not overloaded. */ - /* now check the semantics of the function call... */ - /* If the syntax parser is working correctly, exactly one of the - * following two symbols will be NULL, while the other is != NULL. - */ - function_declaration_c *f_decl = function_symtable.get_value(lower); - if (symbol-> formal_param_list != NULL) check_formal_call (symbol, f_decl); - if (symbol->nonformal_param_list != NULL) check_nonformal_call(symbol, f_decl); - /* Store the pointer to the declaration of the function being called. - * This data will be used by stage 4 to call the correct function. - * Mostly needed to disambiguate overloaded functions... - * See comments in absyntax.def for more details - */ - symbol->called_function_declaration = f_decl; - return base_type(f_decl->type_name); - } - - /* This is a call to an overloaded function... */ - if (debug) printf("visit_expression_type_c::visit(function_invocation_c *symbol): FOUND CALL TO OVERLOADED FUNCTION!!\n"); - for(current = lower; current != upper; current++) { - if (debug) printf("visit_expression_type_c::visit(function_invocation_c *symbol): FOUND CALL TO OVERLOADED FUNCTION!! iterating...\n"); - int error_count = 0; - function_declaration_c *f_decl = function_symtable.get_value(current); - if (symbol-> formal_param_list != NULL) check_formal_call (symbol, f_decl, &error_count); - if (symbol->nonformal_param_list != NULL) check_nonformal_call(symbol, f_decl, false, &error_count); - if (0 == error_count) { - - fdecl_return_type = base_type(f_decl->type_name); - - if (symbol->called_function_declaration == NULL) { - /* Store the pointer to the declaration of the function being called. - * This data will be used by stage 4 to call the correct function. - * Mostly needed to disambiguate overloaded functions... - * See comments in absyntax.def for more details - */ - symbol->called_function_declaration = f_decl; - extensible_param_count = symbol->extensible_param_count; - - /* determine the base data type returned by the function being called... */ - return_data_type = fdecl_return_type; - } - else if (typeid(*return_data_type) != typeid(*fdecl_return_type)){ - return_data_type = common_literal(return_data_type, fdecl_return_type); - overloaded_data_type = overloaded_return_type(return_data_type); - } - - if (NULL == return_data_type) ERROR; - } - } - - if (overloaded_data_type != NULL) { - for(current = lower; current != upper; current++) { - function_declaration_c *f_decl = function_symtable.get_value(current); - int error_count = 0; - if (symbol-> formal_param_list != NULL) check_formal_call (symbol, f_decl, &error_count); - if (symbol->nonformal_param_list != NULL) check_nonformal_call(symbol, f_decl, false, &error_count); - if (0 == error_count) { - - fdecl_return_type = base_type(f_decl->type_name); - - if (typeid(*overloaded_data_type) == typeid(*fdecl_return_type)){ - /* Store the pointer to the declaration of the function being called. - * This data will be used by stage 4 to call the correct function. - * Mostly needed to disambiguate overloaded functions... - * See comments in absyntax.def for more details - */ - symbol->called_function_declaration = f_decl; - extensible_param_count = symbol->extensible_param_count; - } - } - } - } - - if (return_data_type != NULL) { - symbol->extensible_param_count = extensible_param_count; - return return_data_type; - } - - /* No compatible function was found for this function call */ - STAGE3_ERROR(symbol, symbol, "Call to an overloaded function with invalid parameter type."); - return NULL; -} - -/********************/ -/* B 3.2 Statements */ -/********************/ -// SYM_LIST(statement_list_c) -/* The visitor of the base class search_visitor_c will handle calling each instruction in the list. - * We do not need to do anything here... - */ -// void *visit_expression_type_c::visit(statement_list_c *symbol) - - -/*********************************/ -/* B 3.2.1 Assignment Statements */ -/*********************************/ - -void *visit_expression_type_c::visit(assignment_statement_c *symbol) { - symbol_c *left_type = base_type((symbol_c *)symbol->l_exp->accept(*this)); - symbol_c *right_type = base_type((symbol_c *)symbol->r_exp->accept(*this)); - - if (debug) { - printf("visit_expression_type_c::visit(assignment_statement_c) called. Checking --->"); - symbolic_variable_c *hi = dynamic_cast(symbol->l_exp); - if (hi != NULL) { - identifier_c *hi1 = dynamic_cast(hi->var_name); - if (hi1 != NULL) printf("%s", hi1->value); - } - printf(" := "); - hex_integer_c *hi2 = dynamic_cast(symbol->r_exp); - if (hi2 != NULL) printf("%s", hi2->value); - printf("\n"); - } // if (debug) - - if (NULL == left_type) { - STAGE3_ERROR(symbol->l_exp, symbol->l_exp, "Could not determine data type of expression (undefined variable, constant, or structure element?).\n"); - } else if (NULL == right_type) { - STAGE3_ERROR(symbol->r_exp, symbol->r_exp, "Could not determine data type of expression (undefined variable, constant, or structure element?).\n"); - } else if (!is_valid_assignment(left_type, right_type)) - STAGE3_ERROR(symbol, symbol, "data type mismatch in assignment statement!\n"); - - return NULL; -} - - - -/*****************************************/ -/* B 3.2.2 Subprogram Control Statements */ -/*****************************************/ - -/* RETURN */ -// SYM_REF0(return_statement_c) - - -/* fb_name '(' [param_assignment_list] ')' */ -/* param_assignment_list -> may be NULL ! */ -// SYM_REF3(fb_invocation_c, fb_name, formal_param_list, nonformal_param_list) -void *visit_expression_type_c::visit(fb_invocation_c *symbol) { - symbol_c *fb_decl = search_varfb_instance_type->get_basetype_decl(symbol->fb_name); - /* The following should never occur. The function block must be defined, - * and the FB type being called MUST be in the symtable... - * This was all already checked at stage 2! - */ - if (NULL == fb_decl) ERROR; - - /* now check the semantics of the fb call... */ - /* If the syntax parser is working correctly, exactly one of the - * following two symbols will be NULL, while the other is != NULL. - */ - if (symbol-> formal_param_list != NULL) check_formal_call (symbol, fb_decl); - if (symbol->nonformal_param_list != NULL) check_nonformal_call(symbol, fb_decl); - - return NULL; -} - - -#if 0 -/* helper symbol for fb_invocation */ -/* param_assignment_list ',' param_assignment */ -SYM_LIST(param_assignment_list_c) - -/* variable_name ASSIGN expression */ -SYM_REF2(input_variable_param_assignment_c, variable_name, expression) - -/* [NOT] variable_name '=>' variable */ -SYM_REF3(output_variable_param_assignment_c, not_param, variable_name, variable) - -/* helper CLASS for output_variable_param_assignment */ -SYM_REF0(not_paramassign_c) -#endif - -/********************************/ -/* B 3.2.3 Selection Statements */ -/********************************/ - -/* IF expression THEN statement_list elseif_statement_list ELSE statement_list END_IF */ -// SYM_REF4(if_statement_c, expression, statement_list, elseif_statement_list, else_statement_list) -void *visit_expression_type_c::visit(if_statement_c *symbol) { - symbol_c *expr_type = base_type((symbol_c*)symbol->expression->accept(*this)); - if (!is_BOOL_type(expr_type)) STAGE3_ERROR(symbol->expression,symbol->expression,"IF conditional expression is not of boolean type."); - if (NULL != symbol->statement_list) - symbol->statement_list->accept(*this); - if (NULL != symbol->elseif_statement_list) - symbol->elseif_statement_list->accept(*this); - if (NULL != symbol->else_statement_list) - symbol->else_statement_list->accept(*this); - return NULL; -} - -/* helper symbol for if_statement */ -// SYM_LIST(elseif_statement_list_c) -// void *visit_expression_type_c::visit(elseif_statement_list_c *symbol) { } - -/* helper symbol for elseif_statement_list */ -/* ELSIF expression THEN statement_list */ -// SYM_REF2(elseif_statement_c, expression, statement_list) -void *visit_expression_type_c::visit(elseif_statement_c *symbol) { - symbol_c *elseif_expr_type = base_type((symbol_c*)symbol->expression->accept(*this)); - if(!is_BOOL_type(elseif_expr_type)) STAGE3_ERROR(symbol->expression,symbol->expression,"ELSIF conditional expression is not of boolean type."); - if (NULL != symbol->statement_list) - symbol->statement_list->accept(*this); - return NULL; -} - - -/* CASE expression OF case_element_list ELSE statement_list END_CASE */ -// SYM_REF3(case_statement_c, expression, case_element_list, statement_list) -void *visit_expression_type_c::visit(case_statement_c *symbol) { - case_expression_type = base_type((symbol_c*)symbol->expression->accept(*this)); - if (NULL != case_expression_type) { - if (NULL != symbol->case_element_list) - symbol->case_element_list->accept(*this); - } - if (NULL != symbol->statement_list) - symbol->statement_list->accept(*this); - return NULL; -} - -#if 0 -/* helper symbol for case_statement */ -// SYM_LIST(case_element_list_c) -// void *visit_expression_type_c::visit(case_element_list_c *symbol); - -/* case_list ':' statement_list */ -// SYM_REF2(case_element_c, case_list, statement_list) -void *visit_expression_type_c::visit(case_element_c *symbol); -#endif - -// SYM_LIST(case_list_c) -void *visit_expression_type_c::visit(case_list_c *symbol) { - symbol_c *element_type; - for(int i = 0; i < symbol->n; i++) { - element_type = (symbol_c *)symbol->elements[i]->accept(*this); - if (NULL == element_type) { - STAGE3_ERROR(symbol->elements[i], symbol->elements[i], "Case list element has undefined data type."); - } else { - element_type = base_type(element_type); - if (NULL != element_type){ - /* The CASE value is only used for comparison (and not assingment), so we only check for compatibility! */ - if (!is_compatible_type(case_expression_type, element_type)) - STAGE3_ERROR(symbol->elements[i], symbol->elements[i], "Invalid data type of case list element."); - } - } - } - return NULL; -} - -/********************************/ -/* B 3.2.4 Iteration Statements */ -/********************************/ - -/* FOR control_variable ASSIGN expression TO expression [BY expression] DO statement_list END_FOR */ -// SYM_REF5(for_statement_c, control_variable, beg_expression, end_expression, by_expression, statement_list) -void *visit_expression_type_c::visit(for_statement_c *symbol) { - symbol_c *var_type = (symbol_c*)symbol->control_variable->accept(*this); - if (NULL == var_type) ERROR; - var_type = base_type(var_type); - if (NULL == var_type) ERROR; - // ASSIGN - symbol_c *beg_expr_type = base_type((symbol_c*)symbol->beg_expression->accept(*this)); - if (NULL != beg_expr_type) { - /* The BEG value is assigned to the variable, so we check for assignment validity! */ - if(!is_valid_assignment(var_type, beg_expr_type)) - STAGE3_ERROR(symbol->beg_expression, symbol->beg_expression, "Data type mismatch between control variable and initial value."); - } - // TO - symbol_c *end_expr_type = base_type((symbol_c*)symbol->end_expression->accept(*this)); - if (NULL != end_expr_type) { - /* The TO value is only used for comparison, so we only check for compatibility! */ - if(!is_compatible_type(var_type, end_expr_type)) - STAGE3_ERROR(symbol->end_expression, symbol->end_expression, "Data type mismatch between control variable and final value."); - } - // BY - if(symbol->by_expression != NULL) { - symbol_c *by_expr_type = base_type((symbol_c*)symbol->by_expression->accept(*this)); - if (NULL != end_expr_type) { - /* The BY value is used in an expression (add, sub, ...), so we only check for compatibility! */ - if(!is_compatible_type(var_type, by_expr_type)) - STAGE3_ERROR(symbol->by_expression, symbol->by_expression, "Data type mismatch between control variable and BY value."); - } - } - // DO - if (NULL != symbol->statement_list) - symbol->statement_list->accept(*this); - return NULL; -} - - -/* WHILE expression DO statement_list END_WHILE */ -// SYM_REF2(while_statement_c, expression, statement_list) -void *visit_expression_type_c::visit(while_statement_c *symbol) { - symbol_c *expr_type = base_type((symbol_c*)symbol->expression->accept(*this)); - if (NULL != expr_type) { - if(!is_BOOL_type(expr_type)) - STAGE3_ERROR(symbol->expression,symbol->expression,"WHILE conditional expression is not of boolean type."); - } - - if (NULL != symbol->statement_list) - symbol->statement_list->accept(*this); - return NULL; -} - -/* REPEAT statement_list UNTIL expression END_REPEAT */ -// SYM_REF2(repeat_statement_c, statement_list, expression) -void *visit_expression_type_c::visit(repeat_statement_c *symbol) { - if (NULL != symbol->statement_list) - symbol->statement_list->accept(*this); - - symbol_c *expr_type = base_type((symbol_c*)symbol->expression->accept(*this)); - if (NULL != expr_type) { - if(!is_BOOL_type(expr_type)) - STAGE3_ERROR(symbol->expression,symbol->expression,"REPEAT conditional expression is not of boolean type."); - } - return NULL; -} - -/* EXIT */ -// SYM_REF0(exit_statement_c) - - -