conti@564: /*
conti@564: * matiec - a compiler for the programming languages defined in IEC 61131-3
conti@564: *
conti@564: * Copyright (C) 2003-2011 Mario de Sousa (msousa@fe.up.pt)
conti@564: * Copyright (C) 2012 Manuele Conti (conti.ma@alice.it)
conti@564: *
conti@564: * This program is free software: you can redistribute it and/or modify
conti@564: * it under the terms of the GNU General Public License as published by
conti@564: * the Free Software Foundation, either version 3 of the License, or
conti@564: * (at your option) any later version.
conti@564: *
conti@564: * This program is distributed in the hope that it will be useful,
conti@564: * but WITHOUT ANY WARRANTY; without even the implied warranty of
conti@564: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
conti@564: * GNU General Public License for more details.
conti@564: *
conti@564: * You should have received a copy of the GNU General Public License
conti@564: * along with this program. If not, see .
conti@564: *
conti@564: *
conti@564: * This code is made available on the understanding that it will not be
conti@564: * used in safety-critical situations without a full and competent review.
conti@564: */
conti@564:
conti@564: /*
conti@564: * An IEC 61131-3 compiler.
conti@564: *
conti@564: * Based on the
conti@564: * FINAL DRAFT - IEC 61131-3, 2nd Ed. (2001-12-10)
conti@564: *
conti@564: */
conti@564:
conti@564:
msousa@572:
msousa@640: /* TODO:
msousa@640: * - Add support for comparison (= and !=) of enumeration literals!
msousa@640: * We will need to add another const_value entry to the symbol_c, containing the
msousa@640: * possible enumeration value of the enum constant!
msousa@640: * Doing this will allow us to more easily implement a constant_propagation_c later on!
msousa@640: *
msousa@640: * - Add support for comparison (= and !=) of the exact same variable
msousa@640: * (e.g. if (int_v = int_v) then ...)
msousa@640: */
msousa@640:
msousa@572:
msousa@572:
msousa@569: /* Do constant folding...
msousa@569: *
msousa@569: * I.e., Determine the value of all expressions in which only constant values (i.e. literals) are used.
msousa@569: * The (constant) result of each operation is stored (annotated) in the respective operation symbol
msousa@569: * (e.g.: add_expression_c) in the abstract syntax tree,
conti@564: *
conti@564: * For example:
msousa@569: * 2 + 3 -> the constant value '5' is stored in the add_expression_c symbol.
msousa@569: * 22.2 - 5.0 -> the constant value '17.2' is stored in the add_expression_c symbol.
conti@564: * etc...
msousa@569: *
msousa@569: *
msousa@572: * NOTE 1
msousa@572: * Some operations and constants can have multiple data types. For example,
msousa@569: * 1 AND 0
msousa@569: * may be either a BOOL, BYTE, WORD or LWORD.
msousa@569: *
msousa@569: * The same happens with
msousa@569: * 1 + 2
msousa@569: * which may be signed (e.g. INT) or unsigned (UINT)
msousa@569: *
msousa@569: * For the above reason, instead of storing a single constant value, we actually store 4:
msousa@569: * - bool
msousa@569: * - uint64
msousa@569: * - int64
msousa@569: * - real64
msousa@569: *
msousa@569: * Additionally, since the result of an operation may result in an overflow, we actually
msousa@569: * store the result inside a struct (defined in absyntax.hh)
msousa@569: *
msousa@569: * ** During stage 3 (semantic analysis/checking) we will be doing constant folding.
msousa@569: * * That algorithm will anotate the abstract syntax tree with the result of operations
msousa@569: * * on literals (i.e. 44 + 55 will store the result 99).
msousa@569: * * Since the same source code (e.g. 1 + 0) may actually be a BOOL or an ANY_INT,
msousa@569: * * or an ANY_BIT, we need to handle all possibilities, and determine the result of the
msousa@569: * * operation assuming each type.
msousa@569: * * For this reason, we have one entry for each possible type, with some expressions
msousa@569: * * having more than one entry filled in!
msousa@569: * **
msousa@569: * typedef enum { cs_undefined, // not defined --> const_value is not valid!
msousa@569: * cs_const_value, // const value is valid
msousa@569: * cs_overflow // result produced overflow or underflow --> const_value is not valid!
msousa@569: * } const_status_t;
msousa@569: *
msousa@569: * typedef struct {
msousa@569: * const_status_t status;
msousa@569: * real64_t value;
msousa@569: * } const_value_real64_t;
msousa@569: * const_value_real64_t *const_value_real64; // when NULL --> UNDEFINED
msousa@569: *
msousa@569: * typedef struct {
msousa@569: * const_status_t status;
msousa@569: * int64_t value;
msousa@569: * } const_value_int64_t;
msousa@569: * const_value_int64_t *const_value_int64; // when NULL --> UNDEFINED
msousa@569: *
msousa@569: * typedef struct {
msousa@569: * const_status_t status;
msousa@569: * uint64_t value;
msousa@569: * } const_value_uint64_t;
msousa@569: * const_value_uint64_t *const_value_uint64; // when NULL --> UNDEFINED
msousa@569: *
msousa@569: * typedef struct {
msousa@569: * const_status_t status;
msousa@569: * bool value;
msousa@569: * } const_value_bool_t;
msousa@569: * const_value_bool_t *const_value_bool; // when NULL --> UNDEFINED
msousa@569: *
msousa@569: *
msousa@569: *
msousa@569: * NOTE 2
msousa@569: * This file does not print out any error messages!
msousa@569: * We cannot really print out error messages when we find an overflow. Since each operation
conti@781: * (symbol in the abstract syntax tree for that operation) will have up to 4 constant results,
msousa@569: * it may happen that some of them overflow, while other do not.
msousa@569: * We must wait for data type checking to determine the exact data type of each expression
msousa@569: * before we can decide whether or not we should print out an overflow error message.
msousa@569: *
msousa@569: * For this reason, this visitor merely annotates the abstract syntax tree, and leaves the
conti@781: * actually printing of errors for the print_datatype_errors_c class!
conti@781: *
conti@781: * NOTE 3
conti@781: * Constant Folding class is extended with a implementation constant propagation algorithm
conti@781: * by Mario de Sousa.
conti@781: * Main idea is not to implement a general constant propagation algorithm but to reinterpret it
conti@781: * for visitor classes.
conti@781: * We declared a hash map, it contains a variables list linked with current constant values.
conti@781: * During expression evaluation we can retrieve a constant value to symbolic variables getting it from the map.
conti@781: * Also at join source points we use a meet semilattice rules to merge current values between a block
conti@781: * and adjacent block.
conti@781: *
conti@564: */
conti@564:
conti@564: #include "constant_folding.hh"
msousa@565: #include /* required for malloc() */
conti@564:
msousa@596: #include /* required for strlen() */
msousa@596: // #include /* required for atoi() */
msousa@596: #include /* required for errno */
msousa@596:
msousa@607: #include "../main.hh" // required for uint8_t, real_64_t, ..., and the macros NAN, INFINITY, INT8_MAX, REAL32_MAX, ... */
msousa@579:
msousa@579:
msousa@579:
msousa@579:
msousa@568:
msousa@568:
conti@564: #define FIRST_(symbol1, symbol2) (((symbol1)->first_order < (symbol2)->first_order) ? (symbol1) : (symbol2))
conti@564: #define LAST_(symbol1, symbol2) (((symbol1)->last_order > (symbol2)->last_order) ? (symbol1) : (symbol2))
conti@564:
conti@564: #define STAGE3_ERROR(error_level, symbol1, symbol2, ...) { \
conti@564: if (current_display_error_level >= error_level) { \
conti@564: fprintf(stderr, "%s:%d-%d..%d-%d: error: ", \
conti@564: FIRST_(symbol1,symbol2)->first_file, FIRST_(symbol1,symbol2)->first_line, FIRST_(symbol1,symbol2)->first_column,\
conti@564: LAST_(symbol1,symbol2) ->last_line, LAST_(symbol1,symbol2) ->last_column);\
conti@564: fprintf(stderr, __VA_ARGS__); \
conti@564: fprintf(stderr, "\n"); \
conti@564: error_count++; \
conti@564: } \
conti@564: }
conti@564:
conti@564:
conti@564: #define STAGE3_WARNING(symbol1, symbol2, ...) { \
conti@564: fprintf(stderr, "%s:%d-%d..%d-%d: warning: ", \
conti@564: FIRST_(symbol1,symbol2)->first_file, FIRST_(symbol1,symbol2)->first_line, FIRST_(symbol1,symbol2)->first_column,\
conti@564: LAST_(symbol1,symbol2) ->last_line, LAST_(symbol1,symbol2) ->last_column);\
conti@564: fprintf(stderr, __VA_ARGS__); \
conti@564: fprintf(stderr, "\n"); \
conti@564: warning_found = true; \
conti@564: }
conti@564:
conti@564:
conti@564:
msousa@567:
msousa@569:
msousa@569:
msousa@569:
msousa@569:
msousa@569:
msousa@569:
msousa@569:
msousa@569:
msousa@643: #define SET_CVALUE(dtype, symbol, new_value) {((symbol)->const_value._##dtype.value) = new_value; ((symbol)->const_value._##dtype.status) = symbol_c::cs_const_value;}
msousa@612: #define GET_CVALUE(dtype, symbol) ((symbol)->const_value._##dtype.value)
msousa@612: #define SET_OVFLOW(dtype, symbol) ((symbol)->const_value._##dtype.status) = symbol_c::cs_overflow
msousa@612: #define SET_NONCONST(dtype, symbol) ((symbol)->const_value._##dtype.status) = symbol_c::cs_non_const
msousa@612:
msousa@612: #define VALID_CVALUE(dtype, symbol) (symbol_c::cs_const_value == (symbol)->const_value._##dtype.status)
msousa@643: #define IS_OVFLOW(dtype, symbol) (symbol_c::cs_overflow == (symbol)->const_value._##dtype.status)
msousa@648: #define IS_NONCONST(dtype, symbol) (symbol_c::cs_non_const == (symbol)->const_value._##dtype.status)
msousa@569: #define ISZERO_CVALUE(dtype, symbol) ((VALID_CVALUE(dtype, symbol)) && (GET_CVALUE(dtype, symbol) == 0))
msousa@575:
msousa@612: #define ISEQUAL_CVALUE(dtype, symbol1, symbol2) \
msousa@612: (VALID_CVALUE(dtype, symbol1) && VALID_CVALUE(dtype, symbol2) && (GET_CVALUE(dtype, symbol1) == GET_CVALUE(dtype, symbol2)))
msousa@612:
msousa@648: #define DO_BINARY_OPER(oper_type, operation, res_type, operand1, operand2) { \
msousa@648: if (VALID_CVALUE(oper_type, operand1) && VALID_CVALUE(oper_type, operand2)) \
msousa@648: {SET_CVALUE(res_type, symbol, GET_CVALUE(oper_type, operand1) operation GET_CVALUE(oper_type, operand2));}\
msousa@648: else if (IS_OVFLOW (oper_type, operand1) || IS_OVFLOW (oper_type, operand2)) \
msousa@648: {SET_OVFLOW(res_type, symbol);} /* does it really make sense to set OVFLOW when restype is boolean?? */ \
msousa@648: else if (IS_NONCONST (oper_type, operand1) || IS_NONCONST (oper_type, operand2)) \
msousa@648: {SET_NONCONST(res_type, symbol);} \
msousa@643: }
msousa@643:
msousa@643: #define DO_UNARY_OPER(dtype, operation, operand) { \
msousa@648: if (VALID_CVALUE(dtype, operand)) \
msousa@648: {SET_CVALUE(dtype, symbol, operation GET_CVALUE(dtype, operand));} \
msousa@648: else if (IS_OVFLOW (dtype, operand)) \
msousa@648: {SET_OVFLOW(dtype, symbol);} \
msousa@648: else if (IS_NONCONST (dtype, operand)) \
msousa@648: {SET_NONCONST(dtype, symbol);} \
msousa@643: }
conti@564:
conti@776: /* Constant Propagation: Rules for Meet from "Cooper K., Torczon L. - Engineering a Compiler, Second Edition - 2011"
conti@776: * at 9.3 Static Single-Assignment Form page 517
conti@776: * - any * undefined = any
conti@776: * - any * non_const = non_const
conti@776: * - constant * constant = constant (if equal)
conti@776: * - constant * constant = non_const (if not equal)
conti@774: */
conti@774: #define COMPUTE_MEET_SEMILATTICE(dtype, c1, c2, resValue) {\
conti@776: if (( c1._##dtype.value != c2._##dtype.value && c2._##dtype.status == symbol_c::cs_const_value &&\
conti@776: c1._##dtype.status == symbol_c::cs_const_value) ||\
conti@774: ( c1._##dtype.status == symbol_c::cs_non_const && c2._##dtype.status == symbol_c::cs_const_value ) ||\
conti@774: ( c2._##dtype.status == symbol_c::cs_non_const && c1._##dtype.status == symbol_c::cs_const_value )) {\
conti@774: resValue._##dtype.status = symbol_c::cs_non_const;\
conti@774: } else {\
conti@774: resValue._##dtype.status = symbol_c::cs_const_value;\
conti@774: resValue._##dtype.value = c1._##dtype.value;\
conti@774: }\
conti@774: }
conti@774:
conti@788: typedef std::map map_values_t;
conti@788:
conti@788: static map_values_t values;
conti@788:
conti@564:
msousa@572:
msousa@596: /***********************************************************************/
msousa@596: /***********************************************************************/
msousa@596: /***********************************************************************/
msousa@596: /*** convert string to numerical value ***/
msousa@596: /***********************************************************************/
msousa@596: /***********************************************************************/
msousa@596: /***********************************************************************/
msousa@596:
msousa@596:
msousa@596:
msousa@596: /* To allow the compiler to be portable, we cannot assume that int64_t is mapped onto long long int,
msousa@596: * so we cannot call strtoll() and strtoull() in extract_int64() and extract_uint64().
msousa@596: *
msousa@596: * So, we create our own strtouint64() and strtoint64() functions.
msousa@596: * (We actually call them matiec_strtoint64() so they will not clash with any function
msousa@596: * that may be added to the standard library in the future).
msousa@596: * We actually create several of each, and let the compiler choose which is the correct one,
msousa@596: * by having it resolve the call to the overloaded function. For the C++ compiler to be able
msousa@596: * to resolve this ambiguity, we need to add a dummy parameter to each function!
msousa@596: *
msousa@640: * TODO: support platforms (where the compiler will run) in which int64_t is mapped onto int !!
msousa@640: * Is this really needed?
msousa@640: * Currently, when trying to compile matiec on sych a platform, the C++ compiler will not
msousa@640: * find any apropriate matiec_strtoint64() to call, so matiec will not be able to be compiled.
msousa@640: * If you need this, you are welcome to fix it yourself...
msousa@596: */
msousa@596: static int64_t matiec_strtoint64 ( long int *dummy, const char *nptr, char **endptr, int base) {return strtol (nptr, endptr, base);}
msousa@596: static int64_t matiec_strtoint64 ( long long int *dummy, const char *nptr, char **endptr, int base) {return strtoll (nptr, endptr, base);}
msousa@596:
msousa@596: static uint64_t matiec_strtouint64(unsigned long int *dummy, const char *nptr, char **endptr, int base) {return strtoul (nptr, endptr, base);}
msousa@596: static uint64_t matiec_strtouint64(unsigned long long int *dummy, const char *nptr, char **endptr, int base) {return strtoull(nptr, endptr, base);}
msousa@596:
msousa@596:
msousa@596: /* extract the value of an integer from an integer_c object !! */
msousa@596: /* NOTE: it must ignore underscores! */
msousa@601: /* NOTE: To follow the basic structure used throughout the compiler's code, we should really be
msousa@601: * writing this as a visitor_c (and do away with the dynamic casts!), but since we only have 3 distinct
msousa@601: * symbol class types to handle, it is probably easier to read if we write it as a standard function...
msousa@601: */
msousa@601: int64_t extract_int64_value(symbol_c *sym, bool *overflow) {
msousa@601: int64_t ret;
msousa@601: std::string str = "";
msousa@601: char *endptr;
conti@735: const char *value = NULL;
msousa@601: int base;
msousa@601: integer_c *integer;
msousa@601: hex_integer_c *hex_integer;
msousa@601: octal_integer_c *octal_integer;
msousa@601: binary_integer_c *binary_integer;
msousa@601:
msousa@601: if ((integer = dynamic_cast(sym)) != NULL) {value = integer ->value + 0; base = 10;}
msousa@601: else if ((hex_integer = dynamic_cast(sym)) != NULL) {value = hex_integer ->value + 3; base = 16;}
msousa@601: else if ((octal_integer = dynamic_cast(sym)) != NULL) {value = octal_integer ->value + 2; base = 8;}
msousa@601: else if ((binary_integer = dynamic_cast(sym)) != NULL) {value = binary_integer->value + 2; base = 2;}
msousa@601: else ERROR;
msousa@601:
msousa@601: for(unsigned int i = 0; i < strlen(value); i++)
msousa@601: if (value[i] != '_') str += value[i];
msousa@596:
msousa@596: errno = 0; // since strtoXX() may legally return 0, we must set errno to 0 to detect errors correctly!
msousa@600: ret = matiec_strtoint64((int64_t *)NULL, str.c_str(), &endptr, base);
msousa@596: if (overflow != NULL)
msousa@596: *overflow = (errno == ERANGE);
msousa@600: if (((errno != 0) && (errno != ERANGE)) || (*endptr != '\0'))
msousa@596: ERROR;
msousa@596:
msousa@596: return ret;
msousa@596: }
msousa@596:
msousa@601:
msousa@601:
msousa@601: uint64_t extract_uint64_value(symbol_c *sym, bool *overflow) {
msousa@601: uint64_t ret;
msousa@601: std::string str = "";
msousa@601: char *endptr;
conti@735: const char *value = NULL;
msousa@601: int base;
msousa@601: integer_c *integer;
msousa@601: hex_integer_c *hex_integer;
msousa@601: octal_integer_c *octal_integer;
msousa@601: binary_integer_c *binary_integer;
msousa@601:
msousa@601: if ((integer = dynamic_cast(sym)) != NULL) {value = integer ->value + 0; base = 10;}
msousa@601: else if ((hex_integer = dynamic_cast(sym)) != NULL) {value = hex_integer ->value + 3; base = 16;}
msousa@601: else if ((octal_integer = dynamic_cast(sym)) != NULL) {value = octal_integer ->value + 2; base = 8;}
msousa@601: else if ((binary_integer = dynamic_cast(sym)) != NULL) {value = binary_integer->value + 2; base = 2;}
msousa@601: else ERROR;
msousa@601:
msousa@601: for(unsigned int i = 0; i < strlen(value); i++)
msousa@601: if (value[i] != '_') str += value[i];
msousa@596:
msousa@596: errno = 0; // since strtoXX() may legally return 0, we must set errno to 0 to detect errors correctly!
msousa@600: ret = matiec_strtouint64((uint64_t *)NULL, str.c_str(), &endptr, base);
msousa@596: if (overflow != NULL)
msousa@596: *overflow = (errno == ERANGE);
msousa@600: if (((errno != 0) && (errno != ERANGE)) || (*endptr != '\0'))
msousa@596: ERROR;
msousa@596:
msousa@596: return ret;
msousa@596: }
msousa@596:
msousa@596:
msousa@596:
msousa@596: /* extract the value of a real from an real_c object !! */
msousa@596: /* NOTE: it must ignore underscores! */
msousa@596: /* From iec_bison.yy
msousa@596: * real:
msousa@596: * real_token {$$ = new real_c($1, locloc(@$));}
msousa@596: * | fixed_point_token {$$ = new real_c($1, locloc(@$));}
msousa@596: *
msousa@596: * From iec_flex.ll
msousa@596: * {real} {yylval.ID=strdup(yytext); return real_token;}
msousa@596: * {fixed_point} {yylval.ID=strdup(yytext); return fixed_point_token;}
msousa@596: *
msousa@596: * real {integer}\.{integer}{exponent}
msousa@596: * fixed_point {integer}\.{integer}
msousa@596: * exponent [Ee]([+-]?){integer}
msousa@596: * integer {digit}((_?{digit})*)
msousa@596: */
msousa@596: real64_t extract_real_value(symbol_c *sym, bool *overflow) {
msousa@596: std::string str = "";
msousa@600: real_c *real_sym;
Laurent@633: fixed_point_c *fixed_point_sym;
msousa@600: char *endptr;
msousa@596: real64_t ret;
msousa@596:
Laurent@633: if ((real_sym = dynamic_cast(sym)) != NULL) {
Laurent@633: for(unsigned int i = 0; i < strlen(real_sym->value); i++)
Laurent@633: if (real_sym->value[i] != '_') str += real_sym->value[i];
Laurent@633: }
Laurent@633: else if ((fixed_point_sym = dynamic_cast(sym)) != NULL) {
Laurent@633: for(unsigned int i = 0; i < strlen(fixed_point_sym->value); i++)
Laurent@633: if (fixed_point_sym->value[i] != '_') str += fixed_point_sym->value[i];
Laurent@633: }
Laurent@633: else ERROR;
msousa@596:
msousa@596: errno = 0; // since strtoXX() may legally return 0, we must set errno to 0 to detect errors correctly!
mjsousa@890: #if (real64_tX == float)
msousa@600: ret = strtof(str.c_str(), &endptr);
mjsousa@890: #elif (real64_tX == double)
msousa@600: ret = strtod(str.c_str(), &endptr);
mjsousa@890: #elif (real64_tX == long_double)
msousa@600: ret = strtold(str.c_str(), &endptr);
msousa@596: #else
mjsousa@890: #error Could not determine which data type is being used for real64_t (defined in main.hh). Aborting!
msousa@596: #endif
msousa@596: if (overflow != NULL)
msousa@596: *overflow = (errno == ERANGE);
msousa@600: if (((errno != 0) && (errno != ERANGE)) || (*endptr != '\0'))
msousa@596: ERROR;
msousa@596:
msousa@596: return ret;
msousa@596: }
msousa@596:
msousa@596:
msousa@596:
msousa@596:
msousa@596:
msousa@596: /***********************************************************************/
msousa@596: /***********************************************************************/
msousa@596: /***********************************************************************/
msousa@596: /*** Functions to check for overflow situation ***/
msousa@596: /***********************************************************************/
msousa@596: /***********************************************************************/
msousa@596: /***********************************************************************/
msousa@596:
msousa@596:
msousa@574: /* NOTE:
msousa@574: * Most of the conditions to detect overflows on signed and unsigned integer operations were adapted from
msousa@574: * https://www.securecoding.cert.org/confluence/display/seccode/INT32-C.+Ensure+that+operations+on+signed+integers+do+not+result+in+overflow?showComments=false
msousa@574: * https://www.securecoding.cert.org/confluence/display/seccode/INT30-C.+Ensure+that+unsigned+integer+operations+do+not+wrap
msousa@574: */
msousa@574:
msousa@574: /* NOTE: If at all possible, all overflow tests are done by pre-condition tests, i.e. tests that
msousa@574: * can be run _before_ the operation is executed, and therefore without accessing the result!
msousa@574: *
msousa@574: * The exception is for real/floating point values, that simply test if the result is NaN (not a number).
msousa@574: */
msousa@572:
msousa@572: /* res = a + b */
msousa@572: static void CHECK_OVERFLOW_uint64_SUM(symbol_c *res, symbol_c *a, symbol_c *b) {
msousa@574: if (!VALID_CVALUE(uint64, res))
msousa@574: return;
msousa@574: /* Test by post-condition: If sum is smaller than either operand => overflow! */
msousa@574: // if (GET_CVALUE(uint64, res) < GET_CVALUE(uint64, a))
msousa@574: /* Test by pre-condition: If (UINT64_MAX - a) < b => overflow! */
msousa@574: if ((UINT64_MAX - GET_CVALUE(uint64, a)) < GET_CVALUE(uint64, b))
msousa@574: SET_OVFLOW(uint64, res);
msousa@574: }
msousa@574:
msousa@572:
msousa@572: /* res = a - b */
msousa@572: static void CHECK_OVERFLOW_uint64_SUB(symbol_c *res, symbol_c *a, symbol_c *b) {
msousa@574: if (!VALID_CVALUE(uint64, res))
msousa@574: return;
msousa@574: /* Test by post-condition: If diference is larger than a => overflow! */
msousa@574: // if (GET_CVALUE(uint64, res) > GET_CVALUE(uint64, a))
msousa@574: /* Test by pre-condition: if b > a => overflow! */
msousa@574: if (GET_CVALUE(uint64, b) > GET_CVALUE(uint64, a))
msousa@574: SET_OVFLOW(uint64, res);
msousa@574: }
msousa@574:
msousa@572:
msousa@572: /* res = a * b */
msousa@572: static void CHECK_OVERFLOW_uint64_MUL(symbol_c *res, symbol_c *a, symbol_c *b) {
msousa@574: if (!VALID_CVALUE(uint64, res))
msousa@574: return;
msousa@574: /* Test by pre-condition: If (UINT64_MAX / a) < b => overflow! */
msousa@786: if (0 == GET_CVALUE(uint64, a))
msousa@786: return; // multiplying by 0 will always result in 0, a valid result!
msousa@574: if ((UINT64_MAX / GET_CVALUE(uint64, a)) < GET_CVALUE(uint64, b))
msousa@574: SET_OVFLOW(uint64, res);
msousa@574: }
msousa@574:
msousa@572:
msousa@572: /* res = a / b */
msousa@572: static void CHECK_OVERFLOW_uint64_DIV(symbol_c *res, symbol_c *a, symbol_c *b) {
msousa@574: if (!VALID_CVALUE(uint64, res))
msousa@574: return;
msousa@574: if (GET_CVALUE(uint64, b) == 0) /* division by zero! */
msousa@574: SET_OVFLOW(uint64, res);
msousa@574: }
msousa@574:
msousa@572:
msousa@572: /* res = a MOD b */
msousa@572: static void CHECK_OVERFLOW_uint64_MOD(symbol_c *res, symbol_c *a, symbol_c *b) {
msousa@574: if (!VALID_CVALUE(uint64, res))
msousa@574: return;
msousa@574: /* no overflow condition exists, including division by zero, which IEC 61131-3 considers legal for MOD operation! */
msousa@574: if (false)
msousa@574: SET_OVFLOW(uint64, res);
msousa@574: }
msousa@574:
msousa@572:
msousa@643: /* res = - a */
msousa@643: static void CHECK_OVERFLOW_uint64_NEG(symbol_c *res, symbol_c *a) {
msousa@643: /* The only legal operation is res = -0, everything else is an overflow! */
msousa@643: if (VALID_CVALUE(uint64, a) && (GET_CVALUE(uint64, a) != 0))
msousa@643: SET_OVFLOW(uint64, res);
msousa@643: }
msousa@643:
msousa@643:
msousa@643:
msousa@643:
msousa@643:
msousa@643:
msousa@572: /* res = a + b */
msousa@572: static void CHECK_OVERFLOW_int64_SUM(symbol_c *res, symbol_c *a_ptr, symbol_c *b_ptr) {
msousa@574: if (!VALID_CVALUE(int64, res))
msousa@574: return;
msousa@572: int64_t a = GET_CVALUE(int64, a_ptr);
msousa@572: int64_t b = GET_CVALUE(int64, b_ptr);
msousa@574: /* The following test is valid no matter what representation is being used (e.g. two's complement, etc...) */
msousa@574: if (((b > 0) && (a > (INT64_MAX - b)))
msousa@574: || ((b < 0) && (a < (INT64_MIN - b))))
msousa@574: SET_OVFLOW(int64, res);
msousa@574: }
msousa@574:
msousa@572:
msousa@572: /* res = a - b */
msousa@572: static void CHECK_OVERFLOW_int64_SUB(symbol_c *res, symbol_c *a_ptr, symbol_c *b_ptr) {
msousa@574: if (!VALID_CVALUE(int64, res))
msousa@574: return;
msousa@572: int64_t a = GET_CVALUE(int64, a_ptr);
msousa@572: int64_t b = GET_CVALUE(int64, b_ptr);
msousa@574: /* The following test is valid no matter what representation is being used (e.g. two's complement, etc...) */
msousa@574: if (((b > 0) && (a < (INT64_MIN + b)))
msousa@574: || ((b < 0) && (a > (INT64_MAX + b))))
msousa@574: SET_OVFLOW(int64, res);
msousa@572: }
msousa@572:
msousa@572:
msousa@572: /* res = a * b */
msousa@572: static void CHECK_OVERFLOW_int64_MUL(symbol_c *res, symbol_c *a_ptr, symbol_c *b_ptr) {
msousa@574: if (!VALID_CVALUE(int64, res))
msousa@574: return;
msousa@572: int64_t a = GET_CVALUE(int64, a_ptr);
msousa@572: int64_t b = GET_CVALUE(int64, b_ptr);
msousa@574: if ( ( (a > 0) && (b > 0) && (a > (INT64_MAX / b)))
msousa@574: || ( (a > 0) && !(b > 0) && (b < (INT64_MIN / a)))
msousa@574: || (!(a > 0) && (b > 0) && (a < (INT64_MIN / b)))
msousa@574: || (!(a > 0) && !(b > 0) && (a != 0) && (b < (INT64_MAX / a))))
msousa@574: SET_OVFLOW(int64, res);
msousa@572: }
msousa@572:
msousa@572:
msousa@572: /* res = a / b */
msousa@572: static void CHECK_OVERFLOW_int64_DIV(symbol_c *res, symbol_c *a_ptr, symbol_c *b_ptr) {
msousa@574: if (!VALID_CVALUE(int64, res))
msousa@574: return;
msousa@572: int64_t a = GET_CVALUE(int64, a_ptr);
msousa@572: int64_t b = GET_CVALUE(int64, b_ptr);
msousa@574: if ((b == 0) || ((a == INT64_MIN) && (b == -1)))
msousa@574: SET_OVFLOW(int64, res);
msousa@572: }
msousa@572:
msousa@572:
msousa@572: /* res = a MOD b */
msousa@572: static void CHECK_OVERFLOW_int64_MOD(symbol_c *res, symbol_c *a_ptr, symbol_c *b_ptr) {
msousa@574: if (!VALID_CVALUE(int64, res))
msousa@574: return;
msousa@572: int64_t a = GET_CVALUE(int64, a_ptr);
msousa@572: int64_t b = GET_CVALUE(int64, b_ptr);
msousa@572: /* IEC 61131-3 standard says IN1 MOD IN2 must be equivalent to
msousa@572: * IF (IN2 = 0) THEN OUT:=0 ; ELSE OUT:=IN1 - (IN1/IN2)*IN2 ; END_IF
msousa@572: *
msousa@572: * Note that, when IN1 = INT64_MIN, and IN2 = -1, an overflow occurs in the division,
msousa@572: * so although the MOD operation should be OK, acording to the above definition, we actually have an overflow!!
msousa@572: *
msousa@572: * On the other hand, division by 0 is OK!!
msousa@572: */
msousa@574: if ((a == INT64_MIN) && (b == -1))
msousa@574: SET_OVFLOW(int64, res);
msousa@572: }
msousa@572:
msousa@572:
msousa@572: /* res = - a */
msousa@643: static void CHECK_OVERFLOW_int64_NEG(symbol_c *res, symbol_c *a) {
msousa@574: if (!VALID_CVALUE(int64, res))
msousa@574: return;
msousa@643: if (GET_CVALUE(int64, a) == INT64_MIN)
msousa@574: SET_OVFLOW(int64, res);
msousa@572: }
msousa@572:
msousa@572:
msousa@572:
msousa@643:
msousa@579: static void CHECK_OVERFLOW_real64(symbol_c *res_ptr) {
msousa@579: if (!VALID_CVALUE(real64, res_ptr))
msousa@579: return;
msousa@579: real64_t res = GET_CVALUE(real64, res_ptr);
msousa@579: /* NaN => underflow, overflow, number is a higher precision format, is a complex number (IEEE standard) */
msousa@579: /* The IEC 61131-3 clearly states in section '2.5.1.5.2 Numerical functions':
msousa@579: * "It is an error if the result of evaluation of one of these [numerical] functions exceeds the range of values
msousa@579: * specified for the data type of the function output, or if division by zero is attempted."
msousa@579: * For this reason, any operation that has as a result a positive or negative inifinity, is also an error!
msousa@579: */
msousa@607: if ((isnan(res)) || (res == INFINITY) || (res == -INFINITY))
msousa@579: SET_OVFLOW(real64, res_ptr);
msousa@572: }
msousa@572:
msousa@572:
msousa@572:
msousa@572:
msousa@612: /***********************************************************************/
msousa@612: /***********************************************************************/
msousa@612: /***********************************************************************/
msousa@612: /*** Functions to execute operations on the const values ***/
msousa@612: /***********************************************************************/
msousa@612: /***********************************************************************/
msousa@612: /***********************************************************************/
msousa@612:
msousa@612: /* static void *handle_cmp(symbol_c *symbol, symbol_c *oper1, symbol_c *oper2, OPERATION) */
msousa@612: #define handle_cmp(symbol, oper1, oper2, operation) { \
msousa@612: if ((NULL == oper1) || (NULL == oper2)) return NULL; \
msousa@643: DO_BINARY_OPER( bool, operation, bool, oper1, oper2); \
msousa@643: DO_BINARY_OPER(uint64, operation, bool, oper1, oper2); \
msousa@643: DO_BINARY_OPER( int64, operation, bool, oper1, oper2); \
msousa@643: DO_BINARY_OPER(real64, operation, bool, oper1, oper2); \
msousa@612: return NULL; \
msousa@612: }
msousa@612:
msousa@612:
msousa@612: /* NOTE: the MOVE standard function is equivalent to the ':=' in ST syntax */
msousa@612: static void *handle_move(symbol_c *to, symbol_c *from) {
msousa@612: if (NULL == from) return NULL;
msousa@612: to->const_value = from->const_value;
msousa@612: return NULL;
msousa@612: }
msousa@612:
msousa@612:
msousa@612: /* unary negation (multiply by -1) */
msousa@612: static void *handle_neg(symbol_c *symbol, symbol_c *oper) {
msousa@643: if (NULL == oper) return NULL;
msousa@643: /* NOTE: The oper may never be an integer/real literal, '-1' and '-2.2' are stored as an neg_integer_c/neg_real_c instead.
msousa@643: * Because of this, we MUST NOT handle the INT_MIN special situation that is handled in neg_integer_c visitor!
msousa@643: *
msousa@643: * VAR v1, v2, v3 : UINT; END_VAR;
msousa@643: * v1 = 9223372036854775808 ; (* |INT64_MIN| == -INT64_MIN *) <------ LEGAL
msousa@643: * v2 = -(-v1); <------ ILLEGAL (since it -v1 is overflow!)
msousa@643: * v2 = -(-9223372036854775808 ); <------ MUST also be ILLEGAL
msousa@640: */
msousa@643: DO_UNARY_OPER(uint64, -, oper); CHECK_OVERFLOW_uint64_NEG(symbol, oper); /* handle the uint_v := -0 situation! */
msousa@643: DO_UNARY_OPER( int64, -, oper); CHECK_OVERFLOW_int64_NEG (symbol, oper);
msousa@612: DO_UNARY_OPER(real64, -, oper); CHECK_OVERFLOW_real64(symbol);
msousa@612: return NULL;
msousa@612: }
msousa@612:
msousa@612:
msousa@612: /* unary boolean negation (NOT) */
msousa@612: static void *handle_not(symbol_c *symbol, symbol_c *oper) {
msousa@612: if (NULL == oper) return NULL;
msousa@612: DO_UNARY_OPER( bool, !, oper);
msousa@612: DO_UNARY_OPER(uint64, ~, oper);
msousa@612: return NULL;
msousa@612: }
msousa@612:
msousa@612:
msousa@612: static void *handle_or (symbol_c *symbol, symbol_c *oper1, symbol_c *oper2) {
msousa@612: if ((NULL == oper1) || (NULL == oper2)) return NULL;
msousa@643: DO_BINARY_OPER( bool, ||, bool , oper1, oper2);
msousa@643: DO_BINARY_OPER(uint64, | , uint64, oper1, oper2);
msousa@612: return NULL;
msousa@612: }
msousa@612:
msousa@612:
msousa@612: static void *handle_xor(symbol_c *symbol, symbol_c *oper1, symbol_c *oper2) {
msousa@612: if ((NULL == oper1) || (NULL == oper2)) return NULL;
msousa@643: DO_BINARY_OPER( bool, ^, bool , oper1, oper2);
msousa@643: DO_BINARY_OPER(uint64, ^, uint64, oper1, oper2);
msousa@612: return NULL;
msousa@612: }
msousa@612:
msousa@612:
msousa@612: static void *handle_and(symbol_c *symbol, symbol_c *oper1, symbol_c *oper2) {
msousa@612: if ((NULL == oper1) || (NULL == oper2)) return NULL;
msousa@643: DO_BINARY_OPER( bool, &&, bool, oper1, oper2);
msousa@643: DO_BINARY_OPER(uint64, & , uint64, oper1, oper2);
msousa@612: return NULL;
msousa@612: }
msousa@612:
msousa@612:
msousa@612: static void *handle_add(symbol_c *symbol, symbol_c *oper1, symbol_c *oper2) {
msousa@612: if ((NULL == oper1) || (NULL == oper2)) return NULL;
msousa@643: DO_BINARY_OPER(uint64, +, uint64, oper1, oper2); CHECK_OVERFLOW_uint64_SUM(symbol, oper1, oper2);
msousa@643: DO_BINARY_OPER( int64, +, int64, oper1, oper2); CHECK_OVERFLOW_int64_SUM (symbol, oper1, oper2);
msousa@643: DO_BINARY_OPER(real64, +, real64, oper1, oper2); CHECK_OVERFLOW_real64 (symbol);
msousa@612: return NULL;
msousa@612: }
msousa@612:
msousa@612:
msousa@612: static void *handle_sub(symbol_c *symbol, symbol_c *oper1, symbol_c *oper2) {
msousa@612: if ((NULL == oper1) || (NULL == oper2)) return NULL;
msousa@643: DO_BINARY_OPER(uint64, -, uint64, oper1, oper2); CHECK_OVERFLOW_uint64_SUB(symbol, oper1, oper2);
msousa@643: DO_BINARY_OPER( int64, -, int64, oper1, oper2); CHECK_OVERFLOW_int64_SUB (symbol, oper1, oper2);
msousa@643: DO_BINARY_OPER(real64, -, real64, oper1, oper2); CHECK_OVERFLOW_real64 (symbol);
msousa@612: return NULL;
msousa@612: }
msousa@612:
msousa@612:
msousa@612: static void *handle_mul(symbol_c *symbol, symbol_c *oper1, symbol_c *oper2) {
msousa@612: if ((NULL == oper1) || (NULL == oper2)) return NULL;
msousa@643: DO_BINARY_OPER(uint64, *, uint64, oper1, oper2); CHECK_OVERFLOW_uint64_MUL(symbol, oper1, oper2);
msousa@643: DO_BINARY_OPER( int64, *, int64, oper1, oper2); CHECK_OVERFLOW_int64_MUL (symbol, oper1, oper2);
msousa@643: DO_BINARY_OPER(real64, *, real64, oper1, oper2); CHECK_OVERFLOW_real64 (symbol);
msousa@612: return NULL;
msousa@612: }
msousa@612:
msousa@612:
msousa@612: static void *handle_div(symbol_c *symbol, symbol_c *oper1, symbol_c *oper2) {
msousa@612: if ((NULL == oper1) || (NULL == oper2)) return NULL;
msousa@643: if (ISZERO_CVALUE(uint64, oper2)) {SET_OVFLOW(uint64, symbol);} else {DO_BINARY_OPER(uint64, /, uint64, oper1, oper2); CHECK_OVERFLOW_uint64_DIV(symbol, oper1, oper2);};
msousa@643: if (ISZERO_CVALUE( int64, oper2)) {SET_OVFLOW( int64, symbol);} else {DO_BINARY_OPER( int64, /, int64, oper1, oper2); CHECK_OVERFLOW_int64_DIV (symbol, oper1, oper2);};
msousa@643: if (ISZERO_CVALUE(real64, oper2)) {SET_OVFLOW(real64, symbol);} else {DO_BINARY_OPER(real64, /, real64, oper1, oper2); CHECK_OVERFLOW_real64(symbol);};
msousa@612: return NULL;
msousa@612: }
msousa@612:
msousa@612:
msousa@612: static void *handle_mod(symbol_c *symbol, symbol_c *oper1, symbol_c *oper2) {
msousa@612: if ((NULL == oper1) || (NULL == oper2)) return NULL;
msousa@612: /* IEC 61131-3 standard says IN1 MOD IN2 must be equivalent to
msousa@612: * IF (IN2 = 0) THEN OUT:=0 ; ELSE OUT:=IN1 - (IN1/IN2)*IN2 ; END_IF
msousa@612: *
msousa@612: * Note that, when IN1 = INT64_MIN, and IN2 = -1, an overflow occurs in the division,
msousa@612: * so although the MOD operation should be OK, acording to the above definition, we actually have an overflow!!
msousa@612: */
msousa@643: if (ISZERO_CVALUE(uint64, oper2)) {SET_CVALUE(uint64, symbol, 0);} else {DO_BINARY_OPER(uint64, %, uint64, oper1, oper2); CHECK_OVERFLOW_uint64_MOD(symbol, oper1, oper2);};
msousa@643: if (ISZERO_CVALUE( int64, oper2)) {SET_CVALUE( int64, symbol, 0);} else {DO_BINARY_OPER( int64, %, int64, oper1, oper2); CHECK_OVERFLOW_int64_MOD (symbol, oper1, oper2);};
msousa@612: return NULL;
msousa@612: }
msousa@612:
msousa@612:
msousa@612: static void *handle_pow(symbol_c *symbol, symbol_c *oper1, symbol_c *oper2) {
msousa@612: /* NOTE: If the const_value in symbol->r_exp is within the limits of both int64 and uint64, then we do both operations.
msousa@612: * That is OK, as the result should be identicial (we do create an unnecessary CVALUE variable, but who cares?).
msousa@612: * If only one is valid, then that is the oper we will do!
msousa@612: */
msousa@612: if (VALID_CVALUE(real64, oper1) && VALID_CVALUE( int64, oper2))
msousa@612: SET_CVALUE(real64, symbol, pow(GET_CVALUE(real64, oper1), GET_CVALUE( int64, oper2)));
msousa@612: if (VALID_CVALUE(real64, oper1) && VALID_CVALUE(uint64, oper2))
msousa@612: SET_CVALUE(real64, symbol, pow(GET_CVALUE(real64, oper1), GET_CVALUE(uint64, oper2)));
msousa@612: CHECK_OVERFLOW_real64(symbol);
msousa@612: return NULL;
msousa@612: }
msousa@612:
conti@788: static map_values_t inner_left_join_values(map_values_t m1, map_values_t m2) {
conti@788: map_values_t::const_iterator itr;
conti@788: map_values_t ret;
conti@788:
conti@788: itr = m1.begin();
conti@788: for ( ; itr != m1.end(); ++itr) {
conti@788: std::string name = itr->first;
conti@788: symbol_c::const_value_t value;
conti@788:
conti@788: if (m2.count(name) > 0) {
conti@788: symbol_c::const_value_t c1 = itr->second;
conti@788: symbol_c::const_value_t c2 = m2[name];
conti@788: COMPUTE_MEET_SEMILATTICE (real64, c1, c2, value);
conti@788: COMPUTE_MEET_SEMILATTICE (uint64, c1, c2, value);
conti@788: COMPUTE_MEET_SEMILATTICE ( int64, c1, c2, value);
conti@788: COMPUTE_MEET_SEMILATTICE ( bool, c1, c2, value);
conti@788: } else
conti@788: value = m1[name];
conti@788: ret[name] = value;
conti@788: }
conti@788:
conti@788: return ret;
conti@788: }
conti@788:
msousa@612: /***********************************************************************/
msousa@612: /***********************************************************************/
msousa@612: /***********************************************************************/
msousa@612: /*** Helper functions for handling IL instruction lists. ***/
msousa@612: /***********************************************************************/
msousa@612: /***********************************************************************/
msousa@612: /***********************************************************************/
msousa@612:
msousa@612:
msousa@612: /* If the cvalues of all the prev_il_intructions have the same VALID value, then set the local cvalue to that value, otherwise, set it to NONCONST! */
msousa@612: #define intersect_prev_CVALUE_(dtype, symbol) { \
msousa@612: symbol->const_value._##dtype = symbol->prev_il_instruction[0]->const_value._##dtype; \
msousa@612: for (unsigned int i = 1; i < symbol->prev_il_instruction.size(); i++) { \
msousa@612: if (!ISEQUAL_CVALUE(dtype, symbol, symbol->prev_il_instruction[i])) \
msousa@612: {SET_NONCONST(dtype, symbol); break;} \
msousa@612: } \
msousa@612: }
msousa@612:
msousa@612: static void intersect_prev_cvalues(il_instruction_c *symbol) {
msousa@612: if (symbol->prev_il_instruction.empty())
msousa@612: return;
msousa@612: intersect_prev_CVALUE_(real64, symbol);
msousa@612: intersect_prev_CVALUE_(uint64, symbol);
msousa@612: intersect_prev_CVALUE_( int64, symbol);
msousa@612: intersect_prev_CVALUE_( bool, symbol);
msousa@612: }
msousa@572:
msousa@572:
msousa@572:
msousa@596: /***********************************************************************/
msousa@596: /***********************************************************************/
msousa@596: /***********************************************************************/
msousa@596: /*** The constant_folding_c ***/
msousa@596: /***********************************************************************/
msousa@596: /***********************************************************************/
msousa@596: /***********************************************************************/
msousa@572:
mjsousa@945: #if 0
mjsousa@945: // not currently needed, so comment it out!...
mjsousa@945: // returns true if both symbols have the same value in all the cvalues
mjsousa@945: bool constant_folding_c::is_equal_cvalue(symbol_c *symbol_1, symbol_c *symbol_2) {
mjsousa@945: if (VALID_CVALUE (real64, symbol_1) != VALID_CVALUE (real64, symbol_2)) return false;
mjsousa@945: if (VALID_CVALUE (uint64, symbol_1) != VALID_CVALUE (uint64, symbol_2)) return false;
mjsousa@945: if (VALID_CVALUE ( int64, symbol_1) != VALID_CVALUE ( int64, symbol_2)) return false;
mjsousa@945: if (VALID_CVALUE ( bool, symbol_1) != VALID_CVALUE ( bool, symbol_2)) return false;
mjsousa@945: if (VALID_CVALUE (real64, symbol_1) && !ISEQUAL_CVALUE(real64, symbol_1, symbol_2)) return false;
mjsousa@945: if (VALID_CVALUE (uint64, symbol_1) && !ISEQUAL_CVALUE(uint64, symbol_1, symbol_2)) return false;
mjsousa@945: if (VALID_CVALUE ( int64, symbol_1) && !ISEQUAL_CVALUE( int64, symbol_1, symbol_2)) return false;
mjsousa@945: if (VALID_CVALUE ( bool, symbol_1) && !ISEQUAL_CVALUE( bool, symbol_1, symbol_2)) return false;
mjsousa@945: return true;
mjsousa@945: }
mjsousa@945: #endif
msousa@572:
msousa@572:
msousa@572:
conti@564: constant_folding_c::constant_folding_c(symbol_c *symbol) {
conti@564: error_count = 0;
msousa@568: warning_found = false;
conti@564: current_display_error_level = 0;
conti@661: il_operand = NULL;
conti@661: search_varfb_instance_type = NULL;
conti@661: prev_il_instruction = NULL;
msousa@568:
msousa@568: /* check whether the platform on which the compiler is being run implements IEC 559 floating point data types. */
msousa@568: symbol_c null_symbol;
msousa@568: if (! (std::numeric_limits::is_iec559) )
msousa@579: STAGE3_WARNING(&null_symbol, &null_symbol, "The platform running the compiler does not implement IEC 60559 floating point numbers. "
msousa@568: "Any error and/or warning messages related to overflow/underflow of the result of operations on REAL/LREAL literals "
msousa@579: "(i.e. constant folding) may themselves be erroneous, although are most probably correct."
msousa@579: "However, more likely is the possible existance of overflow/underflow errors that are not detected.");
conti@564: }
conti@564:
msousa@567:
conti@564: constant_folding_c::~constant_folding_c(void) {
conti@564: }
conti@564:
msousa@567:
conti@564: int constant_folding_c::get_error_count() {
conti@564: return error_count;
conti@564: }
conti@564:
conti@564:
conti@564: /*********************/
conti@564: /* B 1.2 - Constants */
conti@564: /*********************/
conti@564: /******************************/
conti@564: /* B 1.2.1 - Numeric Literals */
conti@564: /******************************/
conti@564: void *constant_folding_c::visit(real_c *symbol) {
msousa@576: bool overflow;
msousa@612: SET_CVALUE(real64, symbol, extract_real_value(symbol, &overflow));
msousa@576: if (overflow) SET_OVFLOW(real64, symbol);
msousa@567: return NULL;
msousa@567: }
msousa@567:
conti@564:
conti@564: void *constant_folding_c::visit(integer_c *symbol) {
conti@587: bool overflow;
msousa@612: SET_CVALUE( int64, symbol, extract_int64_value (symbol, &overflow));
conti@588: if (overflow) SET_OVFLOW(int64, symbol);
msousa@612: SET_CVALUE(uint64, symbol, extract_uint64_value(symbol, &overflow));
conti@588: if (overflow) SET_OVFLOW(uint64, symbol);
conti@564: return NULL;
conti@564: }
conti@564:
msousa@567:
conti@564: void *constant_folding_c::visit(neg_real_c *symbol) {
conti@564: symbol->exp->accept(*this);
msousa@643: DO_UNARY_OPER(real64, -, symbol->exp); CHECK_OVERFLOW_real64(symbol);
msousa@643: if (IS_OVFLOW(real64, symbol->exp)) SET_OVFLOW(real64, symbol);
msousa@643: return NULL;
msousa@643: }
msousa@643:
msousa@643:
msousa@569:
msousa@569: /* | '-' integer {$$ = new neg_integer_c($2, locloc(@$));} */
conti@564: void *constant_folding_c::visit(neg_integer_c *symbol) {
msousa@569: symbol->exp->accept(*this);
msousa@643: /* Note that due to syntax restrictions, the value of symbol->exp will always be positive.
msousa@643: * However, the following code does not depend on that restriction.
msousa@643: */
msousa@643: /* The remainder of the code (for example, data type checking) considers the neg_integer_c as a leaf of the
msousa@643: * abstract syntax tree, and therefore simply ignores the values of neg_integer_c->exp.
msousa@643: * For this reason only, and in only this situation, we must guarantee that any 'overflow' situation in
msousa@643: * the cvalue of neg_integer_c->exp is also reflected back to this neg_integer_c symbol.
msousa@643: * For the rest of the code we do NOT do this, as it would gurantee that a single overflow deep inside
msousa@643: * an expression would imply that the expression itself would also be set to 'overflow' condition.
msousa@643: * This in turn would then have the compiler produce a whole load of error messages where they are not wanted!
msousa@643: */
msousa@643: DO_UNARY_OPER(uint64, -, symbol->exp); CHECK_OVERFLOW_uint64_NEG(symbol, symbol->exp); /* handle the uintv := -0 situation */
msousa@643: if (IS_OVFLOW(uint64, symbol->exp)) SET_OVFLOW(uint64, symbol);
msousa@643: DO_UNARY_OPER( int64, -, symbol->exp); CHECK_OVERFLOW_int64_NEG (symbol, symbol->exp);
msousa@643: if (IS_OVFLOW( int64, symbol->exp)) SET_OVFLOW( int64, symbol);
msousa@590: /* NOTE 1: INT64_MIN = -(INT64_MAX + 1) ---> assuming two's complement representation!!!
msousa@590: * NOTE 2: if the user happens to want INT_MIN, that value will first be parsed as a positive integer, before being negated here.
msousa@590: * However, the positive value cannot be stored inside an int64! So, in this case, we will get the value from the uint64 cvalue.
msousa@643: *
msousa@643: * This same situation is usually considered an overflow (check handle_neg() function). However, here we have a special
msousa@643: * situation. If we do not allow this, then the user would never the able to use the following code:
msousa@643: * VAR v : LINT; END_VAR
msousa@643: * v := -9223372036854775809 ; (* - |INT64_MIN| == INT64_MIN *)
msousa@590: */
msousa@590: // if (INT64_MIN == -INT64_MAX - 1) // We do not really need to check that the platform uses two's complement
msousa@621: if (VALID_CVALUE(uint64, symbol->exp) && (GET_CVALUE(uint64, symbol->exp) == (uint64_t)INT64_MAX+1)) {
msousa@590: SET_CVALUE(int64, symbol, INT64_MIN);
msousa@590: }
conti@564: return NULL;
conti@564: }
conti@564:
msousa@567:
conti@564: void *constant_folding_c::visit(binary_integer_c *symbol) {
msousa@600: bool overflow;
msousa@612: SET_CVALUE( int64, symbol, extract_int64_value (symbol, &overflow));
msousa@600: if (overflow) SET_OVFLOW(int64, symbol);
msousa@612: SET_CVALUE(uint64, symbol, extract_uint64_value(symbol, &overflow));
msousa@600: if (overflow) SET_OVFLOW(uint64, symbol);
conti@564: return NULL;
conti@564: }
conti@564:
msousa@567:
conti@564: void *constant_folding_c::visit(octal_integer_c *symbol) {
msousa@600: bool overflow;
msousa@612: SET_CVALUE( int64, symbol, extract_int64_value (symbol, &overflow));
msousa@600: if (overflow) SET_OVFLOW(int64, symbol);
msousa@612: SET_CVALUE(uint64, symbol, extract_uint64_value(symbol, &overflow));
msousa@600: if (overflow) SET_OVFLOW(uint64, symbol);
conti@564: return NULL;
conti@564: }
conti@564:
msousa@567:
conti@564: void *constant_folding_c::visit(hex_integer_c *symbol) {
msousa@600: bool overflow;
msousa@612: SET_CVALUE( int64, symbol, extract_int64_value (symbol, &overflow));
msousa@600: if (overflow) SET_OVFLOW(int64, symbol);
msousa@612: SET_CVALUE(uint64, symbol, extract_uint64_value(symbol, &overflow));
msousa@600: if (overflow) SET_OVFLOW(uint64, symbol);
msousa@569: return NULL;
msousa@569: }
msousa@569:
msousa@569:
msousa@569: /*
msousa@569: integer_literal:
msousa@569: integer_type_name '#' signed_integer {$$ = new integer_literal_c($1, $3, locloc(@$));}
msousa@569: | integer_type_name '#' binary_integer {$$ = new integer_literal_c($1, $3, locloc(@$));}
msousa@569: | integer_type_name '#' octal_integer {$$ = new integer_literal_c($1, $3, locloc(@$));}
msousa@569: | integer_type_name '#' hex_integer {$$ = new integer_literal_c($1, $3, locloc(@$));}
msousa@569: */
msousa@569: // SYM_REF2(integer_literal_c, type, value)
conti@564: void *constant_folding_c::visit(integer_literal_c *symbol) {
conti@564: symbol->value->accept(*this);
msousa@575: DO_UNARY_OPER( int64, /* none */, symbol->value);
msousa@575: DO_UNARY_OPER(uint64, /* none */, symbol->value);
conti@564: return NULL;
conti@564: }
conti@564:
msousa@567:
conti@564: void *constant_folding_c::visit(real_literal_c *symbol) {
conti@564: symbol->value->accept(*this);
msousa@575: DO_UNARY_OPER(real64, /* none */, symbol->value);
conti@564: return NULL;
conti@564: }
conti@564:
msousa@567:
conti@564: void *constant_folding_c::visit(bit_string_literal_c *symbol) {
conti@564: return NULL;
conti@564: }
conti@564:
msousa@567:
conti@564: void *constant_folding_c::visit(boolean_literal_c *symbol) {
conti@564: symbol->value->accept(*this);
msousa@575: DO_UNARY_OPER(bool, /* none */, symbol->value);
conti@564: return NULL;
conti@564: }
conti@564:
msousa@567:
conti@564: void *constant_folding_c::visit(boolean_true_c *symbol) {
msousa@612: SET_CVALUE(bool, symbol, true);
conti@564: return NULL;
conti@564: }
conti@564:
msousa@567:
conti@564: void *constant_folding_c::visit(boolean_false_c *symbol) {
msousa@612: SET_CVALUE(bool, symbol, false);
msousa@612: return NULL;
msousa@612: }
msousa@612:
Laurent@633: /************************/
Laurent@633: /* B 1.2.3.1 - Duration */
Laurent@633: /********* **************/
Laurent@633: void *constant_folding_c::visit(fixed_point_c *symbol) {
Laurent@633: bool overflow;
Laurent@633: SET_CVALUE(real64, symbol, extract_real_value(symbol, &overflow));
Laurent@633: if (overflow) SET_OVFLOW(real64, symbol);
Laurent@633: return NULL;
Laurent@633: }
msousa@612:
conti@774: /*********************/
conti@774: /* B 1.4 - Variables */
conti@774: /*********************/
msousa@792: #if DO_CONSTANT_PROPAGATION__
conti@774: void *constant_folding_c::visit(symbolic_variable_c *symbol) {
conti@774: std::string varName;
conti@774:
conti@783: varName = get_var_name_c::get_name(symbol->var_name)->value;
conti@774: if (values.count(varName) > 0) {
conti@774: symbol->const_value = values[varName];
conti@774: }
conti@774: return NULL;
conti@774: }
msousa@792: #endif // DO_CONSTANT_PROPAGATION__
conti@774:
conti@788:
conti@774: /**********************/
conti@774: /* B 1.5.3 - Programs */
conti@774: /**********************/
msousa@792: #if DO_CONSTANT_PROPAGATION__
conti@774: void *constant_folding_c::visit(program_declaration_c *symbol) {
conti@774: symbol_c *var_name;
conti@774:
conti@787: symbol->var_declarations->accept(*this);
conti@774: values.clear(); /* Clear global map */
conti@774: search_var_instance_decl_c search_var_instance_decl(symbol);
conti@774: function_param_iterator_c fpi(symbol);
conti@774: while((var_name = fpi.next()) != NULL) {
conti@783: std::string varName = get_var_name_c::get_name(var_name)->value;
conti@774: symbol_c *varDecl = search_var_instance_decl.get_decl(var_name);
conti@774: values[varName] = varDecl->const_value;
conti@774: }
conti@774: /* Add all variables declared into Values map and put them to initial value */
conti@774: symbol->function_block_body->accept(*this);
conti@774: return NULL;
conti@774: }
msousa@792: #endif // DO_CONSTANT_PROPAGATION__
msousa@612:
msousa@612:
msousa@612: /****************************************/
msousa@612: /* B.2 - Language IL (Instruction List) */
msousa@612: /****************************************/
msousa@612: /***********************************/
msousa@612: /* B 2.1 Instructions and Operands */
msousa@612: /***********************************/
msousa@612: /* Not needed, since we inherit from iterator_visitor_c */
msousa@612: /*| instruction_list il_instruction */
msousa@612: // SYM_LIST(instruction_list_c)
msousa@612: // void *constant_folding_c::visit(instruction_list_c *symbol) {}
msousa@612:
msousa@612: /* | label ':' [il_incomplete_instruction] eol_list */
msousa@612: // SYM_REF2(il_instruction_c, label, il_instruction)
msousa@612: // void *visit(instruction_list_c *symbol);
msousa@612: void *constant_folding_c::visit(il_instruction_c *symbol) {
msousa@612: if (NULL == symbol->il_instruction) {
msousa@612: /* This empty/null il_instruction does not change the value of the current/default IL variable.
msousa@612: * So it inherits the candidate_datatypes from it's previous IL instructions!
msousa@612: */
msousa@612: intersect_prev_cvalues(symbol);
msousa@612: } else {
msousa@612: il_instruction_c fake_prev_il_instruction = *symbol;
msousa@612: intersect_prev_cvalues(&fake_prev_il_instruction);
msousa@612:
msousa@612: if (symbol->prev_il_instruction.size() == 0) prev_il_instruction = NULL;
msousa@612: else prev_il_instruction = &fake_prev_il_instruction;
msousa@612: symbol->il_instruction->accept(*this);
msousa@612: prev_il_instruction = NULL;
msousa@612:
msousa@612: /* This object has (inherits) the same cvalues as the il_instruction */
msousa@612: symbol->const_value = symbol->il_instruction->const_value;
msousa@612: }
msousa@612:
msousa@612: return NULL;
msousa@612: }
msousa@612:
msousa@612:
msousa@612: void *constant_folding_c::visit(il_simple_operation_c *symbol) {
msousa@612: /* determine the cvalue of the operand */
msousa@612: if (NULL != symbol->il_operand) {
msousa@612: symbol->il_operand->accept(*this);
msousa@612: }
msousa@612: /* determine the cvalue resulting from executing the il_operator... */
msousa@612: il_operand = symbol->il_operand;
msousa@612: symbol->il_simple_operator->accept(*this);
msousa@612: il_operand = NULL;
msousa@612: /* This object has (inherits) the same cvalues as the il_instruction */
msousa@612: symbol->const_value = symbol->il_simple_operator->const_value;
msousa@612: return NULL;
msousa@612: }
msousa@612:
msousa@612:
msousa@612: /* TODO: handle function invocations... */
msousa@612: /* | function_name [il_operand_list] */
msousa@612: /* NOTE: The parameters 'called_function_declaration' and 'extensible_param_count' are used to pass data between the stage 3 and stage 4. */
msousa@612: // SYM_REF2(il_function_call_c, function_name, il_operand_list, symbol_c *called_function_declaration; int extensible_param_count;)
msousa@612: // void *constant_folding_c::visit(il_function_call_c *symbol) {}
msousa@612:
msousa@612:
msousa@612: /* | il_expr_operator '(' [il_operand] eol_list [simple_instr_list] ')' */
msousa@612: // SYM_REF3(il_expression_c, il_expr_operator, il_operand, simple_instr_list);
msousa@612: void *constant_folding_c::visit(il_expression_c *symbol) {
msousa@612: symbol_c *prev_il_instruction_backup = prev_il_instruction;
msousa@612:
msousa@690: /* Stage2 will insert an artificial (and equivalent) LD to the simple_instr_list if necessary. We can therefore ignore the 'il_operand' entry! */
msousa@690: // if (NULL != symbol->il_operand)
msousa@690: // symbol->il_operand->accept(*this);
msousa@612:
msousa@612: if(symbol->simple_instr_list != NULL)
msousa@612: symbol->simple_instr_list->accept(*this);
msousa@612:
msousa@612: /* Now do the operation, */
msousa@612: il_operand = symbol->simple_instr_list;
msousa@612: prev_il_instruction = prev_il_instruction_backup;
msousa@612: symbol->il_expr_operator->accept(*this);
msousa@612: il_operand = NULL;
msousa@612:
msousa@612: /* This object has (inherits) the same cvalues as the il_instruction */
msousa@612: symbol->const_value = symbol->il_expr_operator->const_value;
msousa@690:
msousa@690: /* Since stage2 will insert an artificial (and equivalent) LD to the simple_instr_list when an 'il_operand' exists, we know
msousa@690: * that if (symbol->il_operand != NULL), then the first IL instruction in the simple_instr_list will be the equivalent and artificial
msousa@690: * 'LD ' IL instruction.
msousa@690: * Just to be cosistent, we will copy the constant info back into the il_operand, even though this should not be necessary!
msousa@690: */
msousa@690: if ((NULL != symbol->il_operand) && ((NULL == symbol->simple_instr_list) || (0 == ((list_c *)symbol->simple_instr_list)->n))) ERROR; // stage2 is not behaving as we expect it to!
msousa@690: if (NULL != symbol->il_operand)
msousa@690: symbol->il_operand->const_value = ((list_c *)symbol->simple_instr_list)->elements[0]->const_value;
msousa@690:
msousa@612: return NULL;
msousa@612: }
msousa@612:
msousa@612:
msousa@612:
msousa@612: void *constant_folding_c::visit(il_jump_operation_c *symbol) {
msousa@612: /* recursive call to fill const values... */
msousa@612: il_operand = NULL;
msousa@612: symbol->il_jump_operator->accept(*this);
msousa@612: il_operand = NULL;
msousa@612: /* This object has (inherits) the same cvalues as the il_jump_operator */
msousa@612: symbol->const_value = symbol->il_jump_operator->const_value;
msousa@612: return NULL;
msousa@612: }
msousa@612:
msousa@612:
msousa@612:
msousa@612: /* FB calls leave the value in the accumulator unchanged */
msousa@612: /* il_call_operator prev_declared_fb_name
msousa@612: * | il_call_operator prev_declared_fb_name '(' ')'
msousa@612: * | il_call_operator prev_declared_fb_name '(' eol_list ')'
msousa@612: * | il_call_operator prev_declared_fb_name '(' il_operand_list ')'
msousa@612: * | il_call_operator prev_declared_fb_name '(' eol_list il_param_list ')'
msousa@612: */
msousa@612: /* NOTE: The parameter 'called_fb_declaration'is used to pass data between stage 3 and stage4 (although currently it is not used in stage 4 */
msousa@612: // SYM_REF4(il_fb_call_c, il_call_operator, fb_name, il_operand_list, il_param_list, symbol_c *called_fb_declaration)
msousa@612: void *constant_folding_c::visit(il_fb_call_c *symbol) {return handle_move(symbol, prev_il_instruction);}
msousa@612:
msousa@612:
msousa@612: /* TODO: handle function invocations... */
msousa@612: /* | function_name '(' eol_list [il_param_list] ')' */
msousa@612: /* NOTE: The parameter 'called_function_declaration' is used to pass data between the stage 3 and stage 4. */
msousa@612: // SYM_REF2(il_formal_funct_call_c, function_name, il_param_list, symbol_c *called_function_declaration; int extensible_param_count;)
msousa@612: // void *constant_folding_c::visit(il_formal_funct_call_c *symbol) {return NULL;}
msousa@612:
msousa@612:
msousa@612:
msousa@612: /* Not needed, since we inherit from iterator_visitor_c */
msousa@612: // void *constant_folding_c::visit(il_operand_list_c *symbol);
msousa@612:
msousa@612:
msousa@612:
msousa@612: /* | simple_instr_list il_simple_instruction */
msousa@612: /* This object is referenced by il_expression_c objects */
msousa@612: void *constant_folding_c::visit(simple_instr_list_c *symbol) {
msousa@612: if (symbol->n <= 0)
msousa@612: return NULL; /* List is empty! Nothing to do. */
msousa@612:
msousa@612: for(int i = 0; i < symbol->n; i++)
msousa@612: symbol->elements[i]->accept(*this);
msousa@612:
msousa@612: /* This object has (inherits) the same cvalues as the il_jump_operator */
msousa@612: symbol->const_value = symbol->elements[symbol->n-1]->const_value;
msousa@612: return NULL;
msousa@612: }
msousa@612:
msousa@612:
msousa@612:
msousa@612: // SYM_REF1(il_simple_instruction_c, il_simple_instruction, symbol_c *prev_il_instruction;)
msousa@612: void *constant_folding_c::visit(il_simple_instruction_c *symbol) {
msousa@612: if (symbol->prev_il_instruction.size() > 1) ERROR; /* There should be no labeled insructions inside an IL expression! */
msousa@612: if (symbol->prev_il_instruction.size() == 0) prev_il_instruction = NULL;
msousa@612: else prev_il_instruction = symbol->prev_il_instruction[0];
msousa@612: symbol->il_simple_instruction->accept(*this);
msousa@612: prev_il_instruction = NULL;
msousa@612:
msousa@612: /* This object has (inherits) the same cvalues as the il_jump_operator */
msousa@612: symbol->const_value = symbol->il_simple_instruction->const_value;
msousa@612: return NULL;
msousa@612: }
msousa@612:
msousa@612:
msousa@612: /*
msousa@612: void *visit(il_param_list_c *symbol);
msousa@612: void *visit(il_param_assignment_c *symbol);
msousa@612: void *visit(il_param_out_assignment_c *symbol);
msousa@612: */
msousa@612:
msousa@612:
msousa@612: /*******************/
msousa@612: /* B 2.2 Operators */
msousa@612: /*******************/
msousa@612: void *constant_folding_c::visit( LD_operator_c *symbol) {return handle_move(symbol, il_operand);}
msousa@612: void *constant_folding_c::visit( LDN_operator_c *symbol) {return handle_not (symbol, il_operand);}
msousa@612:
msousa@612: /* NOTE: we are implementing a constant folding algorithm, not a constant propagation algorithm.
msousa@612: * For the constant propagation algorithm, the correct implementation of ST(N)_operator_c would be...
msousa@612: */
msousa@612: //void *constant_folding_c::visit( ST_operator_c *symbol) {return handle_move(il_operand, symbol);}
msousa@612: //void *constant_folding_c::visit( STN_operator_c *symbol) {return handle_not (il_operand, symbol);}
msousa@612: void *constant_folding_c::visit( ST_operator_c *symbol) {return handle_move(symbol, prev_il_instruction);}
msousa@612: void *constant_folding_c::visit( STN_operator_c *symbol) {return handle_move(symbol, prev_il_instruction);}
msousa@612:
msousa@612: /* NOTE: the standard allows syntax in which the NOT operator is followed by an optional
msousa@612: * NOT []
msousa@612: * However, it does not define the semantic of the NOT operation when the is specified.
msousa@612: * We therefore consider it an error if an il_operand is specified! This error will be caught elsewhere!
msousa@612: */
msousa@612: void *constant_folding_c::visit( NOT_operator_c *symbol) {return handle_not(symbol, prev_il_instruction);}
msousa@612:
msousa@612: /* NOTE: Since we are only implementing a constant folding algorithm, and not a constant propagation algorithm,
msousa@612: * the following IL instructions do not change/set the value of the il_operand!
msousa@612: */
msousa@612: void *constant_folding_c::visit( S_operator_c *symbol) {return handle_move(symbol, prev_il_instruction);}
msousa@612: void *constant_folding_c::visit( R_operator_c *symbol) {return handle_move(symbol, prev_il_instruction);}
msousa@612:
msousa@612: /* FB calls leave the value in the accumulator unchanged */
msousa@612: void *constant_folding_c::visit( S1_operator_c *symbol) {return handle_move(symbol, prev_il_instruction);}
msousa@612: void *constant_folding_c::visit( R1_operator_c *symbol) {return handle_move(symbol, prev_il_instruction);}
msousa@612: void *constant_folding_c::visit( CLK_operator_c *symbol) {return handle_move(symbol, prev_il_instruction);}
msousa@612: void *constant_folding_c::visit( CU_operator_c *symbol) {return handle_move(symbol, prev_il_instruction);}
msousa@612: void *constant_folding_c::visit( CD_operator_c *symbol) {return handle_move(symbol, prev_il_instruction);}
msousa@612: void *constant_folding_c::visit( PV_operator_c *symbol) {return handle_move(symbol, prev_il_instruction);}
msousa@612: void *constant_folding_c::visit( IN_operator_c *symbol) {return handle_move(symbol, prev_il_instruction);}
msousa@612: void *constant_folding_c::visit( PT_operator_c *symbol) {return handle_move(symbol, prev_il_instruction);}
msousa@612:
msousa@612: void *constant_folding_c::visit( AND_operator_c *symbol) {return handle_and (symbol, prev_il_instruction, il_operand);}
msousa@612: void *constant_folding_c::visit( OR_operator_c *symbol) {return handle_or (symbol, prev_il_instruction, il_operand);}
msousa@612: void *constant_folding_c::visit( XOR_operator_c *symbol) {return handle_xor (symbol, prev_il_instruction, il_operand);}
msousa@612: void *constant_folding_c::visit( ANDN_operator_c *symbol) { handle_and (symbol, prev_il_instruction, il_operand); return handle_not(symbol, symbol);}
msousa@612: void *constant_folding_c::visit( ORN_operator_c *symbol) { handle_or (symbol, prev_il_instruction, il_operand); return handle_not(symbol, symbol);}
msousa@612: void *constant_folding_c::visit( XORN_operator_c *symbol) { handle_xor (symbol, prev_il_instruction, il_operand); return handle_not(symbol, symbol);}
msousa@612:
msousa@612: void *constant_folding_c::visit( ADD_operator_c *symbol) {return handle_add (symbol, prev_il_instruction, il_operand);}
msousa@612: void *constant_folding_c::visit( SUB_operator_c *symbol) {return handle_sub (symbol, prev_il_instruction, il_operand);}
msousa@612: void *constant_folding_c::visit( MUL_operator_c *symbol) {return handle_mul (symbol, prev_il_instruction, il_operand);}
msousa@612: void *constant_folding_c::visit( DIV_operator_c *symbol) {return handle_div (symbol, prev_il_instruction, il_operand);}
msousa@612: void *constant_folding_c::visit( MOD_operator_c *symbol) {return handle_mod (symbol, prev_il_instruction, il_operand);}
msousa@612:
msousa@612: void *constant_folding_c::visit( GT_operator_c *symbol) { handle_cmp (symbol, prev_il_instruction, il_operand, > );}
msousa@612: void *constant_folding_c::visit( GE_operator_c *symbol) { handle_cmp (symbol, prev_il_instruction, il_operand, >=);}
msousa@612: void *constant_folding_c::visit( EQ_operator_c *symbol) { handle_cmp (symbol, prev_il_instruction, il_operand, ==);}
msousa@612: void *constant_folding_c::visit( LT_operator_c *symbol) { handle_cmp (symbol, prev_il_instruction, il_operand, < );}
msousa@612: void *constant_folding_c::visit( LE_operator_c *symbol) { handle_cmp (symbol, prev_il_instruction, il_operand, <=);}
msousa@612: void *constant_folding_c::visit( NE_operator_c *symbol) { handle_cmp (symbol, prev_il_instruction, il_operand, !=);}
msousa@612:
msousa@612: void *constant_folding_c::visit( CAL_operator_c *symbol) {return handle_move(symbol, prev_il_instruction);}
msousa@612: void *constant_folding_c::visit( RET_operator_c *symbol) {return handle_move(symbol, prev_il_instruction);}
msousa@612: void *constant_folding_c::visit( JMP_operator_c *symbol) {return handle_move(symbol, prev_il_instruction);}
msousa@612: void *constant_folding_c::visit( CALC_operator_c *symbol) {return handle_move(symbol, prev_il_instruction);}
msousa@612: void *constant_folding_c::visit(CALCN_operator_c *symbol) {return handle_move(symbol, prev_il_instruction);}
msousa@612: void *constant_folding_c::visit( RETC_operator_c *symbol) {return handle_move(symbol, prev_il_instruction);}
msousa@612: void *constant_folding_c::visit(RETCN_operator_c *symbol) {return handle_move(symbol, prev_il_instruction);}
msousa@612: void *constant_folding_c::visit( JMPC_operator_c *symbol) {return handle_move(symbol, prev_il_instruction);}
msousa@612: void *constant_folding_c::visit(JMPCN_operator_c *symbol) {return handle_move(symbol, prev_il_instruction);}
msousa@612:
msousa@612:
msousa@567:
msousa@567:
conti@564: /***************************************/
conti@564: /* B.3 - Language ST (Structured Text) */
conti@564: /***************************************/
conti@564: /***********************/
conti@564: /* B 3.1 - Expressions */
conti@564: /***********************/
msousa@612: void *constant_folding_c::visit( or_expression_c *symbol) {symbol->l_exp->accept(*this); symbol->r_exp->accept(*this); return handle_or (symbol, symbol->l_exp, symbol->r_exp);}
msousa@612: void *constant_folding_c::visit( xor_expression_c *symbol) {symbol->l_exp->accept(*this); symbol->r_exp->accept(*this); return handle_xor(symbol, symbol->l_exp, symbol->r_exp);}
msousa@612: void *constant_folding_c::visit( and_expression_c *symbol) {symbol->l_exp->accept(*this); symbol->r_exp->accept(*this); return handle_and(symbol, symbol->l_exp, symbol->r_exp);}
msousa@612:
msousa@612: void *constant_folding_c::visit( equ_expression_c *symbol) {symbol->l_exp->accept(*this); symbol->r_exp->accept(*this); handle_cmp (symbol, symbol->l_exp, symbol->r_exp, ==);}
msousa@612: void *constant_folding_c::visit(notequ_expression_c *symbol) {symbol->l_exp->accept(*this); symbol->r_exp->accept(*this); handle_cmp (symbol, symbol->l_exp, symbol->r_exp, !=);}
msousa@612: void *constant_folding_c::visit( lt_expression_c *symbol) {symbol->l_exp->accept(*this); symbol->r_exp->accept(*this); handle_cmp (symbol, symbol->l_exp, symbol->r_exp, < );}
msousa@612: void *constant_folding_c::visit( gt_expression_c *symbol) {symbol->l_exp->accept(*this); symbol->r_exp->accept(*this); handle_cmp (symbol, symbol->l_exp, symbol->r_exp, > );}
msousa@612: void *constant_folding_c::visit( le_expression_c *symbol) {symbol->l_exp->accept(*this); symbol->r_exp->accept(*this); handle_cmp (symbol, symbol->l_exp, symbol->r_exp, <=);}
msousa@612: void *constant_folding_c::visit( ge_expression_c *symbol) {symbol->l_exp->accept(*this); symbol->r_exp->accept(*this); handle_cmp (symbol, symbol->l_exp, symbol->r_exp, >=);}
msousa@612:
msousa@612: void *constant_folding_c::visit( add_expression_c *symbol) {symbol->l_exp->accept(*this); symbol->r_exp->accept(*this); return handle_add(symbol, symbol->l_exp, symbol->r_exp);}
msousa@612: void *constant_folding_c::visit( sub_expression_c *symbol) {symbol->l_exp->accept(*this); symbol->r_exp->accept(*this); return handle_sub(symbol, symbol->l_exp, symbol->r_exp);}
msousa@612: void *constant_folding_c::visit( mul_expression_c *symbol) {symbol->l_exp->accept(*this); symbol->r_exp->accept(*this); return handle_mul(symbol, symbol->l_exp, symbol->r_exp);}
msousa@612: void *constant_folding_c::visit( div_expression_c *symbol) {symbol->l_exp->accept(*this); symbol->r_exp->accept(*this); return handle_div(symbol, symbol->l_exp, symbol->r_exp);}
msousa@612: void *constant_folding_c::visit( mod_expression_c *symbol) {symbol->l_exp->accept(*this); symbol->r_exp->accept(*this); return handle_mod(symbol, symbol->l_exp, symbol->r_exp);}
msousa@612: void *constant_folding_c::visit( power_expression_c *symbol) {symbol->l_exp->accept(*this); symbol->r_exp->accept(*this); return handle_pow(symbol, symbol->l_exp, symbol->r_exp);}
msousa@612:
msousa@612: void *constant_folding_c::visit( neg_expression_c *symbol) {symbol-> exp->accept(*this); return handle_neg(symbol, symbol->exp);}
msousa@612: void *constant_folding_c::visit( not_expression_c *symbol) {symbol-> exp->accept(*this); return handle_not(symbol, symbol->exp);}
msousa@612:
msousa@612: /* TODO: handle function invocations... */
Laurent@633: // void *fill_candidate_datatypes_c::visit(function_invocation_c *symbol) {}
conti@774:
conti@774:
conti@774:
msousa@792: #if DO_CONSTANT_PROPAGATION__
conti@774: /*********************************/
conti@774: /* B 3.2.1 Assignment Statements */
conti@774: /*********************************/
conti@774: void *constant_folding_c::visit(assignment_statement_c *symbol) {
conti@774: std::string varName;
conti@774:
conti@774: symbol->r_exp->accept(*this);
conti@774: symbol->l_exp->const_value = symbol->r_exp->const_value;
conti@783: varName = get_var_name_c::get_name(symbol->l_exp)->value;
conti@774: values[varName] = symbol->l_exp->const_value;
conti@780:
conti@774: return NULL;
conti@774: }
conti@774:
conti@774: /********************************/
conti@774: /* B 3.2.3 Selection Statements */
conti@774: /********************************/
conti@774: void *constant_folding_c::visit(if_statement_c *symbol) {
conti@788: map_values_t values_incoming;
conti@788: map_values_t values_statement_result;
conti@788: map_values_t values_elsestatement_result;
conti@788: map_values_t::iterator itr;
conti@780:
conti@780: /* Optimize dead code */
conti@780: symbol->expression->accept(*this);
conti@780: if (VALID_CVALUE(bool, symbol->expression) && GET_CVALUE(bool, symbol->expression) == false)
conti@780: return NULL;
conti@780:
conti@774: values_incoming = values; /* save incoming status */
conti@774: symbol->statement_list->accept(*this);
conti@774: values_statement_result = values;
conti@774: if (NULL != symbol->else_statement_list) {
conti@774: values = values_incoming;
conti@774: symbol->else_statement_list->accept(*this);
conti@774: values_elsestatement_result = values;
conti@774: } else
conti@774: values_elsestatement_result = values_incoming;
conti@788: values = inner_left_join_values(values_statement_result, values_elsestatement_result);
conti@780:
conti@780: return NULL;
conti@780: }
conti@780:
conti@780: /********************************/
conti@780: /* B 3.2.4 Iteration Statements */
conti@780: /********************************/
conti@780: void *constant_folding_c::visit(for_statement_c *symbol) {
conti@788: map_values_t values_incoming;
conti@788: map_values_t values_statement_result;
conti@782: std::string varName;
conti@780:
conti@780: values_incoming = values; /* save incoming status */
conti@782: symbol->beg_expression->accept(*this);
conti@782: symbol->end_expression->accept(*this);
conti@783: varName = get_var_name_c::get_name(symbol->control_variable)->value;
conti@788: values[varName]._int64.status = symbol_c::cs_non_const;
conti@782:
conti@782: /* Optimize dead code */
conti@788: if (NULL != symbol->by_expression) {
conti@788: symbol->by_expression->accept(*this);
conti@788: if (VALID_CVALUE(int64, symbol->by_expression ) && GET_CVALUE(int64, symbol->by_expression ) > 0 &&
conti@788: VALID_CVALUE(int64, symbol->beg_expression) && VALID_CVALUE(int64, symbol->end_expression) &&
conti@788: GET_CVALUE(int64, symbol->beg_expression) > GET_CVALUE(int64, symbol->end_expression))
conti@788: return NULL;
conti@788:
conti@788: if (VALID_CVALUE(int64, symbol->by_expression ) && GET_CVALUE(int64, symbol->by_expression ) < 0 &&
conti@788: VALID_CVALUE(int64, symbol->beg_expression) && VALID_CVALUE(int64, symbol->end_expression) &&
conti@788: GET_CVALUE(int64, symbol->beg_expression) < GET_CVALUE(int64, symbol->end_expression))
conti@788: return NULL;
conti@788:
conti@788: } else {
conti@788: if (VALID_CVALUE(int64, symbol->beg_expression) && VALID_CVALUE(int64, symbol->end_expression) &&
conti@788: GET_CVALUE(int64, symbol->beg_expression) > GET_CVALUE(int64, symbol->end_expression))
conti@788: return NULL;
conti@788:
conti@788: }
conti@788:
conti@782:
conti@780: symbol->statement_list->accept(*this);
conti@780: values_statement_result = values;
conti@788: values = inner_left_join_values(values_statement_result, values_incoming);
conti@780:
conti@780: return NULL;
conti@780: }
conti@780:
conti@780: void *constant_folding_c::visit(while_statement_c *symbol) {
conti@788: map_values_t values_incoming;
conti@788: map_values_t values_statement_result;
conti@780:
conti@780: /* Optimize dead code */
conti@780: symbol->expression->accept(*this);
conti@780: if (VALID_CVALUE(bool, symbol->expression) && GET_CVALUE(bool, symbol->expression) == false)
conti@780: return NULL;
conti@780:
conti@780: values_incoming = values; /* save incoming status */
conti@780: symbol->statement_list->accept(*this);
conti@780: values_statement_result = values;
conti@788: values = inner_left_join_values(values_statement_result, values_incoming);
conti@780:
conti@780: return NULL;
conti@780: }
conti@780:
conti@780: void *constant_folding_c::visit(repeat_statement_c *symbol) {
conti@788: map_values_t values_incoming;
conti@788: map_values_t values_statement_result;
conti@780:
conti@790: values_incoming = values; /* save incoming status */
conti@790: symbol->statement_list->accept(*this);
conti@790:
conti@780: /* Optimize dead code */
conti@780: symbol->expression->accept(*this);
conti@790: if (VALID_CVALUE(bool, symbol->expression) && GET_CVALUE(bool, symbol->expression) == true)
conti@780: return NULL;
conti@780:
conti@780: values_statement_result = values;
conti@788: values = inner_left_join_values(values_statement_result, values_incoming);
conti@788:
conti@788: return NULL;
conti@788: }
conti@788:
msousa@792: #endif // DO_CONSTANT_PROPAGATION__
msousa@792:
msousa@792: