stage4/generate_cc/plciec.h
author etisserant
Wed, 31 Jan 2007 15:32:38 +0100
changeset 0 fb772792efd1
child 16 e8b99f896416
permissions -rwxr-xr-x
Initial commit. Last MatPLC CVS with some makefile inclusion removed in order to compile fine out of MatPLC.
/*
 * (c) 2003 Mario de Sousa
 *
 * Offered to the public under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
 * Public License for more details.
 *
 * This code is made available on the understanding that it will not be
 * used in safety-critical situations without a full and competent review.
 */

/*
 * An IEC 61131-3 IL and ST compiler.
 *
 * Based on the
 * FINAL DRAFT - IEC 61131-3, 2nd Ed. (2001-12-10)
 *
 */


/*
 * Code to be included into the code generated by the 4th stage.
 *
 * This is part of the 4th stage that generates
 * a c++ source program equivalent to the IL and ST
 * code.
 */


#ifndef __PLCIEC_H
#define __PLCIEC_H

//#include <stdio.h>
#include "plc.h"
#include <math.h>
#include <time.h>



/* function that generates an IEC runtime error */
void IEC_error(void) {
  /* TODO... */
  fprintf(stderr, "IEC 61131-3 runtime error.\n");
  exit(1);
}



typedef bool	BOOL;
#define TRUE true
#define FALSE false

typedef i8	SINT;
typedef i16	INT;
typedef i32	DINT;
typedef i64	LINT;

typedef u8	USINT;
typedef u16	UINT;
typedef u32	UDINT;
typedef u64	ULINT;

typedef u8	BYTE;
typedef u16	WORD;
typedef u32	DWORD;
typedef u64	LWORD;

typedef f32	REAL;
typedef f64	LREAL;






/*********************************************/
/*     TIME AND DATE data trypes             */
/*********************************************/

/* NOTE: All the time and date data types use a struct timespec
 * internally to store the time and date. This is so as to ease all the
 * operations (add, subtract, multiply and division) the standard defines
 * on these same data types.
 * However, in order to ease the implementation of the comparison operators
 * (==, =>, <=, <, >, <>), the two elements in the timespec structure
 * must be handled in such a way as to guarantee the following:
 *  - The stored time is always the result of the operation tv_sec + tv_nsec*1e-9
 *  - tv_sec and tv_nsec will always have the same sign
 *      (i.e. either both positive or both negative)
 *  - tv_nsec always holds a value in the range ]-1, +1[ seconds.
 *      (note that -1 and +1 are excluded form the range)
 */


/* NOTE: According to the C++ standard, the result of the % and / operations is implementation dependent
 *    when the at least one of the operands is negative! However, whatever the result of the operations, we are
 *    guaranteed that (a/b)*b + (a%b) is always equal to a.
 *    This means that, even knowing that both tv_sec and tv_sec always have the same sign (we make it so this is true),
 *    we must still re-normailze the result for both the addition and subtraction operations!
 */

static inline void __normalizesign_timespec (struct timespec *ts) {
  if ((ts->tv_sec > 0) && (ts->tv_nsec < 0)) {
    ts->tv_sec--;
    ts->tv_nsec += 1000000000;
  }
  if ((ts->tv_sec < 0) && (ts->tv_nsec > 0)) {
    ts->tv_sec++;
    ts->tv_nsec -= 1000000000;
  }
}


static inline struct timespec __add_timespec (const struct timespec &t1, const struct timespec &t2) {
  /* NOTE the following sum works correctly because a long can hold a litle more than 2 seconds expressed in nano seconds! */
  long nsec;
  nsec = t1.tv_nsec + t2.tv_nsec;
  struct timespec ts;
  ts.tv_sec = t1.tv_sec + t2.tv_sec + (nsec / 1000000000);
  ts.tv_nsec = nsec % 1000000000;

  __normalizesign_timespec(&ts);

return ts;
}


static inline struct timespec __sub_timespec (const struct timespec &t1, const struct timespec &t2) {
  /* NOTE the following subtraction works correctly because a long can hold a litle more than 2 seconds expressed in nano seconds! */
  long nsec = t1.tv_nsec - t2.tv_nsec;
  struct timespec ts;
  ts.tv_sec = t1.tv_sec - t2.tv_sec + nsec / 1000000000;
  ts.tv_nsec = nsec % 1000000000;

  __normalizesign_timespec(&ts);

  return ts;
}


static inline struct timespec __mul_timespec (const struct timespec &t1, const long double value) {
#if 0
  /* A simple implementation that risks reducing the precision of the TIME value */
  long double sec_d1 = t1.tv_nsec / (long double)1e9 * value;
  long double sec_d2 = t1.tv_sec * value;
  long int sec = (long int)truncl(sec_d1 + sec_d2);
  struct timespec ts;
  ts.tv_sec = sec;
  ts.tv_nsec = (long int)((sec_d1 + sec_d2 - sec)*1e9);
  return ts;
#else
  /* A more robust implementation that reduces the loss of precision of the TIME value */
  /* NOTE: The following assumes that the value stored in tv_nsec is never larger than 1 sec
   *  and is also based on the fact that tv_nsec can safely store slighlty more thanb 2 sec.
   */
  long double sec_d1 = t1.tv_nsec / (long double)1e9 * value;
  long double sec_d2 = t1.tv_sec * value;
  long int sec1 = (long int)sec_d1;
  long int sec2 = (long int)sec_d2;
  struct timespec ts;
  ts.tv_sec = sec1 + sec2;
  ts.tv_nsec = (long int)(((sec_d1 - sec1) + (sec_d2 - sec2))*1e9);
  /* re-normalize the value of tv_nsec */
  /* i.e. guarantee that it falls in the range ]-1, +1[ seconds. */
  if (ts.tv_nsec >=  1000000000) {ts.tv_nsec -= 1000000000; ts.tv_sec += 1;}
  if (ts.tv_nsec <= -1000000000) {ts.tv_nsec += 1000000000; ts.tv_sec -= 1;}
  /* We don't need to re-normalize the sign, since we are guaranteed that tv_sec and tv_nsec
   * will still both have the same sign after being multiplied by the same value.
   */
  return ts;
#endif
}

/* Helper Macro for the comparison operators... */
#define __compare_timespec(CMP, t1, t2) ((t1.tv_sec == t2.tv_sec)? t1.tv_nsec CMP t2.tv_nsec : t1.tv_sec CMP t2.tv_sec)



/* Some necessary forward declarations... */
class TIME;
class TOD;
class DT;
class DATE;

typedef struct timespec __timebase_t;



class TIME{
  private:
    /* private variable that contains the value of time. */
    /* NOTE: The stored value is _always_ (time.tv_sec + time.tv_nsec),
       no matter whether tv_sec is positive or negative, or tv_nsec is positive or negative.
    */
    __timebase_t time;

  public:
    /* conversion to __timebase_t */
    operator __timebase_t(void) {return time;}

    /* constructors... */
    TIME (void) {time.tv_sec = 0; time.tv_nsec = 0;}
    TIME (__timebase_t time) {this->time = time;}
    TIME (const TIME &time) {this->time = time.time;}  /* copy constructor */
    TIME(int sign, double mseconds, double seconds=0, double minutes=0, double hours=0, double days=0) {
      /* sign is 1 for positive values, -1 for negative time... */
      long double total_sec = ((days*24 + hours)*60 + minutes)*60 + seconds + mseconds/1e3;
      if (sign >= 0) sign = 1; else sign = -1;
      time.tv_sec = sign * (long int)total_sec;
      time.tv_nsec = sign * (long int)((total_sec - time.tv_sec)*1e9);
    }

    /* used in plciec.cc to set the value of the __CURRENT_TIME variable without having to call a
     * TIME((__timebase_t time) constructor followed by the copy constructor.
     */
    void operator= (__timebase_t time) {this->time = time;}

    /* Arithmetic operators (section 2.5.1.5.6. of version 2 of the IEC 61131-3 standard) */
    TIME operator+ (const TIME &time) {return TIME(__add_timespec(this->time, time.time));}
    TIME operator- (const TIME &time) {return TIME(__sub_timespec(this->time, time.time));}

    friend  TOD operator+ (const TIME &time, const TOD &tod);
    friend  TOD operator+ (const TOD &tod, const TIME &time);
    friend  TOD operator- (const TOD &tod, const TIME &time);

    friend  DT  operator+ (const TIME &time, const DT &dt);
    friend  DT  operator+ (const DT &dt, const TIME &time);
    friend  DT operator- (const DT &dt, const TIME &time);

    friend  TIME operator* (const TIME &time, const long double value);
    friend  TIME operator* (const long double value, const TIME &time);
    friend  TIME operator/ (const TIME &time, const long double value);

    /* Comparison operators (section 2.5.1.5.4. of version 2 of the IEC 61131-3 standard) */
    BOOL operator>  (const TIME &time) {return  __compare_timespec(>,  this->time, time.time);}
    BOOL operator>= (const TIME &time) {return  __compare_timespec(>=, this->time, time.time);}
    BOOL operator<  (const TIME &time) {return  __compare_timespec(<,  this->time, time.time);}
    BOOL operator<= (const TIME &time) {return  __compare_timespec(<=, this->time, time.time);}
    BOOL operator== (const TIME &time) {return  __compare_timespec(==, this->time, time.time);}
    BOOL operator!= (const TIME &time) {return !__compare_timespec(==, this->time, time.time);}
};



/* Time of Day */
class TOD {
  private:
    __timebase_t time;

  public:
    /* conversion to __timebase_t */
    operator __timebase_t(void) {return time;}

    /* constructors... */
    TOD (void) {time.tv_sec = 0; time.tv_nsec = 0;}
    TOD (__timebase_t time) {this->time = time;}
    TOD (const TOD &tod) {this->time = tod.time;}  /* copy constructor */
    TOD (double seconds, double minutes=0, double hours=0) {
      long double total_sec = (hours*60 + minutes)*60 + seconds;
      time.tv_sec = (long int)total_sec;
      time.tv_nsec = (long int)((total_sec - time.tv_sec)*1e9);
    }

    /* Arithmetic operators (section 2.5.1.5.6. of version 2 of the IEC 61131-3 standard) */
    TIME operator- (const TOD &tod) {return TIME(__sub_timespec(this->time, tod.time));}

    friend  TOD operator+ (const TIME &time, const TOD &tod);
    friend  TOD operator+ (const TOD &tod, const TIME &time);
    friend  TOD operator- (const TOD &tod, const TIME &time);

    /* The following operation is not in the standard,
     * but will ease the implementation of the default function CONCAT_DATE_TOD
     */
    friend  DT operator+ (const DATE &date, const TOD &tod);
    friend  DT operator+ (const TOD &tod, const DATE &date);

    /* Comparison operators (section 2.5.1.5.4. of version 2 of the IEC 61131-3 standard) */
    BOOL operator>  (const TOD &tod) {return  __compare_timespec(>,  this->time, tod.time);}
    BOOL operator>= (const TOD &tod) {return  __compare_timespec(>=, this->time, tod.time);}
    BOOL operator<  (const TOD &tod) {return  __compare_timespec(<,  this->time, tod.time);}
    BOOL operator<= (const TOD &tod) {return  __compare_timespec(<=, this->time, tod.time);}
    BOOL operator== (const TOD &tod) {return  __compare_timespec(==, this->time, tod.time);}
    BOOL operator!= (const TOD &tod) {return !__compare_timespec(==, this->time, tod.time);}
};



//typedef DATE;
class DATE {
  private:
    __timebase_t time;

  public:
    /* conversion to __timebase_t */
    operator __timebase_t(void) {return time;}

    /* constructors... */
    DATE (void) {time.tv_sec = 0; time.tv_nsec = 0;}
    DATE (__timebase_t time) {this->time = time;}
    DATE (const DATE &date) {this->time = date.time;}  /* copy constructor */
    DATE (int day, int month, int year) {
      struct tm broken_down_time;

      broken_down_time.tm_sec = 0;
      broken_down_time.tm_min = 0;
      broken_down_time.tm_hour = 0;
      broken_down_time.tm_mday = day;  /* day of month, from 1 to 31 */
      broken_down_time.tm_mon = month - 1;   /* month since January, in the range 0 to 11 */
      broken_down_time.tm_year = year - 1900;  /* number of years since 1900 */

      time_t epoch_seconds = mktime(&broken_down_time); /* determine number of seconds since the epoch, i.e. Jan 1st 1970 */

      if ((time_t)(-1) == epoch_seconds)
        IEC_error();

      time.tv_sec = epoch_seconds;
      time.tv_nsec = 0;
    }

    /* Arithmetic operators (section 2.5.1.5.6. of version 2 of the IEC 61131-3 standard) */
    TIME operator- (const DATE &date) {return TIME(__sub_timespec(this->time, date.time));}
    /* The following operation is not in the standard,
     * but will ease the implementation of the default function CONCAT_DATE_TOD
     */
    friend  DT operator+ (const DATE &date, const TOD &tod);
    friend  DT operator+ (const TOD &tod, const DATE &date);

    /* Comparison operators (section 2.5.1.5.4. of version 2 of the IEC 61131-3 standard) */
    BOOL operator>  (const DATE &date) {return  __compare_timespec(>,  this->time, date.time);}
    BOOL operator>= (const DATE &date) {return  __compare_timespec(>=, this->time, date.time);}
    BOOL operator<  (const DATE &date) {return  __compare_timespec(<,  this->time, date.time);}
    BOOL operator<= (const DATE &date) {return  __compare_timespec(<=, this->time, date.time);}
    BOOL operator== (const DATE &date) {return  __compare_timespec(==, this->time, date.time);}
    BOOL operator!= (const DATE &date) {return !__compare_timespec(==, this->time, date.time);}
};





class DT {
  private:
    __timebase_t time;

  public:
    /* conversion to __timebase_t */
    operator __timebase_t(void) {return time;}

    /* constructors... */
    DT (void) {time.tv_sec = 0; time.tv_nsec = 0;}
    DT (__timebase_t time) {this->time = time;}
    DT (const DT &dt) {this->time = dt.time;}  /* copy constructor */
    DT (double seconds,  double minutes, double hours, int day, int month, int year) {
      long double total_sec = (hours*60 + minutes)*60 + seconds;
      time.tv_sec = (long int)total_sec;
      time.tv_nsec = (long int)((total_sec - time.tv_sec)*1e9);

      struct tm broken_down_time;
      broken_down_time.tm_sec = 0;
      broken_down_time.tm_min = 0;
      broken_down_time.tm_hour = 0;
      broken_down_time.tm_mday = day;  /* day of month, from 1 to 31 */
      broken_down_time.tm_mon = month - 1;   /* month since January, in the range 0 to 11 */
      broken_down_time.tm_year = year - 1900;  /* number of years since 1900 */

      time_t epoch_seconds = mktime(&broken_down_time); /* determine number of seconds since the epoch, i.e. Jan 1st 1970 */
      if ((time_t)(-1) == epoch_seconds)
        IEC_error();

      time.tv_sec += epoch_seconds;
      if (time.tv_sec < epoch_seconds)
        /* since the TOD is always positive, if the above happens then we had an overflow */
	IEC_error();
    }

    /* Helpers to conversion operators (section 2.5.1.5.6. of version 2 of the IEC 61131-3 standard) */
    DATE __to_DATE(void) {
#if 0
      /* slow version */
      struct tm broken_down_time;
      time_t seconds = time.tv_sec;
      if (NULL == gmtime_r(seconds, &broken_down_time)) /* get the UTC (GMT) broken down time */
        IEC_error();
      return DATE(broken_down_time.tm_mday, broken_down_time.tm_mon, broken_down_time.tm_year);
#else
      /* Faster version, based on the fact that the date will always be a multiple of 60*60*24 seconds,
       * and that the value of tv_nsec falls in the range ]-1, +1[
       */
      /* The above is true since the Unix function mktime() seems to ignore all leap seconds! */
      struct timespec date_time = {time.tv_sec - (time.tv_sec % (24*60*60)), 0};
      return DATE(date_time);
#endif
    }

    TOD __to_TOD(void) {
#if 0
      /* slow version */
      struct tm broken_down_time;
      time_t seconds = time.tv_sec;
      if (NULL == gmtime_r(seconds, &broken_down_time)) /* get the UTC (GMT) broken down time */
        IEC_error();
      return TOD(broken_down_time.tm_sec, broken_down_time.tm_min, broken_down_time.tm_hour);
#else
      /* Faster version, based on the fact that the date will always be a multiple of 60*60*24 seconds
       * and that the value of tv_nsec falls in the range ]-1, +1[
       */
      /* The above is true since the Unix function mktime() seems to ignore all leap seconds! */
      struct timespec time_time = {time.tv_sec % (24*60*60), time.tv_nsec};
      return TOD(time_time);
#endif
    }

    /* Arithmetic operators (section 2.5.1.5.6. of version 2 of the IEC 61131-3 standard) */
    TIME operator- (const DT &dt) {return TIME(__sub_timespec(this->time, dt.time));}

    friend  DT operator+ (const TIME &time, const DT &dt);
    friend  DT operator+ (const DT &dt, const TIME &time);
    friend  DT operator- (const DT &dt, const TIME &time);

    /* Comparison operators (section 2.5.1.5.4. of version 2 of the IEC 61131-3 standard) */
    BOOL operator>  (const DT &dt) {return  __compare_timespec(>,  this->time, dt.time);}
    BOOL operator>= (const DT &dt) {return  __compare_timespec(>=, this->time, dt.time);}
    BOOL operator<  (const DT &dt) {return  __compare_timespec(<,  this->time, dt.time);}
    BOOL operator<= (const DT &dt) {return  __compare_timespec(<=, this->time, dt.time);}
    BOOL operator== (const DT &dt) {return  __compare_timespec(==, this->time, dt.time);}
    BOOL operator!= (const DT &dt) {return !__compare_timespec(==, this->time, dt.time);}
};


/* The operations on time and data types... */
TOD operator+ (const TIME &time, const TOD &tod) {return TOD(__add_timespec(tod.time, time.time));};
TOD operator+ (const TOD &tod, const TIME &time) {return TOD(__add_timespec(tod.time, time.time));};
TOD operator- (const TOD &tod, const TIME &time) {return TOD(__sub_timespec(tod.time, time.time));};

DT  operator+ (const TIME &time, const DT &dt) {return DT(__add_timespec(dt.time, time.time));};
DT  operator+ (const DT &dt, const TIME &time) {return DT(__add_timespec(dt.time, time.time));};
DT  operator- (const DT &dt, const TIME &time) {return DT(__sub_timespec(dt.time, time.time));};

TIME operator* (const TIME &time, const long double value) {return TIME(__mul_timespec(time.time, value));}
TIME operator* (const long double value, const TIME &time) {return TIME(__mul_timespec(time.time, value));}
TIME operator/ (const TIME &time, const long double value) {return TIME(__mul_timespec(time.time, 1.0/value));}

/* The following operation is not in the standard,
 * but will ease the implementation of the default function CONCAT_DATE_TOD
 */
DT operator+ (const DATE &date, const TOD &tod) {return DT(__add_timespec(date.time, tod.time));};
DT operator+ (const TOD &tod, const DATE &date) {return DT(__add_timespec(date.time, tod.time));};


/* global variable that will be used to implement the timers TON, TOFF and TP */
extern TIME __CURRENT_TIME;



//typedef STRING;
//typedef WSTRING;



typedef union __IL_DEFVAR_T {
	BOOL	BOOLvar;

	SINT	SINTvar;
	INT 	INTvar;
	DINT	DINTvar;
	LINT	LINTvar;

	USINT	USINTvar;
	UINT	UINTvar;
	UDINT	UDINTvar;
	ULINT	ULINTvar;

	BYTE	BYTEvar;
	WORD	WORDvar;
	DWORD	DWORDvar;
	LWORD	LWORDvar;

	REAL	REALvar;
	LREAL	LREALvar;

	/* NOTE: since the TIME, DATE, ... classes all have constructors,
	 *   C++ does not allow them to be used as members of a union.
	 *   The workaround is to use a base data type (in this case __timebase_t) that
	 *   contains all the internal data these classes require, and then add an operator
	 *   member function to each class that allows it to be converted to that same base data type,
	 *   acompanied by a constructor using that data type.
	 */
	/*
	TIME	TIMEvar;
	TOD	TODvar;
	DT	DTvar;
	DATE	DATEvar;
	*/
	__timebase_t	TIMEvar;
	__timebase_t	TODvar;
	__timebase_t	DTvar;
	__timebase_t	DATEvar;
} __IL_DEFVAR_T;
  /*TODO TODO TODO TODO TODO TODO TODO TODO TODO
   * How do we add support for the possibility of storing
   * data values of derived data types into the default register,
   * to be later used for calling functions, stroing in another
   * variable, etc...?
   *
   * For example:
   *  TYPE
   *    point_t : STRUCT
   *                x : INT;
   *                y : INT;
   *              END_STRUCT;
   *  END_TYPE
   *
   *  VAR p1, p2, p3 : point_t;
   *
   *  LD p1
   *  ST p2
   *
   *
   * We could do it with a pointer to void, that would contain not
   * the value itself, but rather the address in which the value
   * is currently stored.
   * For example, we could add a
   *    void *generic_ptr
   * to this union, and then have the above LD and ST instructions
   * converted to:
   *   __IL_DEFVAR.generic_ptr = (void *)(&p1);
   *   p2 = *((point_t *)__IL_DEFVAR.generic_ptr);
   *
   * Unfortunately the above will only work as long as the p1 variable
   * does not get a chance to change its value before the default register
   * gets loaded with something esle (and therefore the value is no
   * longer needed).
   * Additionally, a scenario where the value of p1 may change before the
   * default register gets a new value is if p1 is used in a function block
   * call for an output parameter!
   * For example:
   *
   *  LD p1
   *  CAL funcblock(
   *         param1 => p1
   *      )
   *  ST p2
   *
   * In the above scenario, p1 gets a new value when the function block
   * funcblock is called. When we get to copy the default register to
   * p2, we will no longer be copying the value that got stored in the default
   * register when we did 'LD p1', but rather the value returned by the
   * function block call!!!
   *
   * How the do we implement this???
   * We will probably need to declare a default variable of the correct data
   * type whenever we get these values stored to the default register.
   * For example
   *   LD p1
   *   ST p2
   *
   * would be converted to:
   *   union {
   *     point_tvar point_t;
   *   } __IL_DEFVAR_special ;
   *
   *   __IL_DEFVAR_special.point_tvar = p1;
   *   p2 = __IL_DEFVAR_special.point_tvar;
   *
   * The above requires that we iterate through the whole Instruction list
   * before we start the conversion, in order to first determine if we need
   * to declare that new variable for the default register.
   *
   * Since we have to do this, it would probaly be a better idea to simply
   * do away with the __IL_DEFVAR_T data type we declare here, and
   * declare the __IL_DEFVAR at the begining of each IL code segment
   * with all the data types that get used in that segment!
   */


/* Names start with double underscore so as not to clash with
 * names in ST or IL source code! Names including a double underscore are
 * ilegal under IL and ST!
 */

/* This is an abstract base class, that cannot be instantiated... */
template<typename value_type> class __ext_ref_c {
  public:
    virtual void operator= (value_type value) = 0;
    virtual operator value_type(void) = 0;
};






/* Names start with double underscore so as not to clash with
 * names in ST or IL source code! Names including a double underscore are
 * ilegal under IL and ST!
 */
template<typename value_type> class __ext_element_c
  : public __ext_ref_c<value_type> {
//{

  private:
    value_type value;

  public:
    virtual void operator= (value_type value) {
      this->value = value;
    }

    virtual operator value_type(void) {
      return value;
    }

    __ext_element_c(void) {}

    __ext_element_c(value_type value) {
      this->value = value;
    }
};


/* Names start with double underscore so as not to clash with
 * names in ST or IL source code! Names including a double underscore are
 * ilegal under IL and ST!
 */
template<typename value_type, int size = 8 * sizeof(value_type) /* in bits */> class __plc_pt_c
  : public __ext_ref_c<value_type> {

  private:
    plc_pt_t plc_pt;
    bool valid_plc_pt;

  private:
    void init_name(const char *pt_name) {
      /* assume error! */
      valid_plc_pt = false;
      plc_pt = plc_pt_by_name(pt_name);
      if (plc_pt.valid == 0) {
        plc_pt = plc_pt_null();
	return;
      }
      /* We can't have this check here, otherwise the boolean variables won't work correctly,
       * since MatPLC uses 1 bit for boolean variables, whereas g++ uses 8 bits.
       */
      /*
      if (plc_pt_len(plc_pt) != size) {
        plc_pt = plc_pt_null();
	return;
      }
      */
      valid_plc_pt = true;
    }

  public:
    virtual void operator= (value_type value) {
      plc_set(plc_pt, *((u32 *)&value));
    }

    virtual operator value_type(void) {
      u32 tmp_val = plc_get(plc_pt);
      return *((value_type *)&tmp_val);
    }

    __plc_pt_c(const char *pt_name) {
      init_name(pt_name);
    }

    __plc_pt_c(const char *pt_name, value_type init_value) {
      init_name(pt_name);
      *this = init_value;
    }

    bool valid(void) {return valid_plc_pt;}
};



#define DEFAULT_MODULE_NAME "iec"



#endif /* __PLCIEC_H */