Better identification of error location in some error messages.
/*
* matiec - a compiler for the programming languages defined in IEC 61131-3
*
* Copyright (C) 2009-2012 Mario de Sousa (msousa@fe.up.pt)
* Copyright (C) 2007-2011 Laurent Bessard and Edouard Tisserant
* Copyright (C) 2012 Manuele Conti (manuele.conti@sirius-es.it)
* Copyright (C) 2012 Matteo Facchinetti (matteo.facchinetti@sirius-es.it)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*
* This code is made available on the understanding that it will not be
* used in safety-critical situations without a full and competent review.
*/
/*
* An IEC 61131-3 compiler.
*
* Based on the
* FINAL DRAFT - IEC 61131-3, 2nd Ed. (2001-12-10)
*
*/
#include "stage3.hh"
#include "flow_control_analysis.hh"
#include "fill_candidate_datatypes.hh"
#include "narrow_candidate_datatypes.hh"
#include "forced_narrow_candidate_datatypes.hh"
#include "print_datatypes_error.hh"
#include "lvalue_check.hh"
#include "array_range_check.hh"
#include "constant_folding.hh"
#include "declaration_check.hh"
#include "enum_declaration_check.hh"
#include "remove_forward_dependencies.hh"
static int enum_declaration_check(symbol_c *tree_root){
enum_declaration_check_c enum_declaration_check(NULL);
tree_root->accept(enum_declaration_check);
return enum_declaration_check.get_error_count();
}
/* In order to correctly handle variable sized arrays
* declaration_safety() must only be run after constant folding!
* NOTE that the dependency does not resides directly in declaration_check_c,
* but rather indirectly in the call to get_datatype_info_c::is_type_equal()
* which may in turn call get_datatype_info_c::is_arraytype_equal_relaxed()
*
* Example of a variable sized array:
* VAR_EXTERN CONSTANT max: INT; END_VAR;
* VAR_EXTERN xx: ARRAY [1..max] OF INT; END_VAR;
*/
static int declaration_safety(symbol_c *tree_root){
declaration_check_c declaration_check(tree_root);
tree_root->accept(declaration_check);
return declaration_check.get_error_count();
}
static int flow_control_analysis(symbol_c *tree_root){
flow_control_analysis_c flow_control_analysis(tree_root);
tree_root->accept(flow_control_analysis);
return 0;
}
/* Constant folding assumes that flow control analysis has been completed!
* so be sure to call flow_control_analysis() before calling this function!
*/
static int constant_propagation(symbol_c *tree_root){
constant_propagation_c constant_propagation(tree_root);
tree_root->accept(constant_propagation);
return constant_propagation.get_error_count();
}
/* Type safety analysis assumes that
* - flow control analysis
* - constant folding (constant check)
* has already been completed, so be sure to call those semantic checkers
* before calling this function
*/
static int type_safety(symbol_c *tree_root){
fill_candidate_datatypes_c fill_candidate_datatypes(tree_root);
tree_root->accept(fill_candidate_datatypes);
narrow_candidate_datatypes_c narrow_candidate_datatypes(tree_root);
tree_root->accept(narrow_candidate_datatypes);
print_datatypes_error_c print_datatypes_error(tree_root);
tree_root->accept(print_datatypes_error);
forced_narrow_candidate_datatypes_c forced_narrow_candidate_datatypes(tree_root);
tree_root->accept(forced_narrow_candidate_datatypes);
return print_datatypes_error.get_error_count();
}
/* Left value checking assumes that data type analysis has already been completed,
* so be sure to call type_safety() before calling this function
*/
static int lvalue_check(symbol_c *tree_root){
lvalue_check_c lvalue_check(tree_root);
tree_root->accept(lvalue_check);
return lvalue_check.get_error_count();
}
/* Array range check assumes that constant folding has been completed!
* so be sure to call constant_folding() before calling this function!
*/
static int array_range_check(symbol_c *tree_root){
array_range_check_c array_range_check(tree_root);
tree_root->accept(array_range_check);
return array_range_check.get_error_count();
}
/* Removing forward dependencies only makes sense when stage1_2 is run with the pre-parsing option.
* This algorithm has no dependencies on other stage 3 algorithms.
* Typically this is run last, just to show that the remaining algorithms also do not depend on the fact that
* the library_c (i.e. the source code) does not contain forward dependencies.
*/
static int remove_forward_dependencies(symbol_c *tree_root, symbol_c **ordered_tree_root) {
if (NULL != ordered_tree_root) *ordered_tree_root = tree_root; // by default, consider tree_root already ordered
if (!runtime_options.pre_parsing) return 0; // No re-ordering necessary, just return
/* We need to re-order the elements in the library, to fix any forward references! */
remove_forward_dependencies_c remove_forward_dependencies;
symbol_c *new_tree_root = remove_forward_dependencies.create_new_tree(tree_root);
if (NULL == new_tree_root) ERROR;
if (NULL != ordered_tree_root) *ordered_tree_root = new_tree_root;
return remove_forward_dependencies.get_error_count();
}
int stage3(symbol_c *tree_root, symbol_c **ordered_tree_root) {
int error_count = 0;
error_count += enum_declaration_check(tree_root);
error_count += flow_control_analysis(tree_root);
error_count += constant_propagation(tree_root);
error_count += declaration_safety(tree_root);
error_count += type_safety(tree_root);
error_count += lvalue_check(tree_root);
error_count += array_range_check(tree_root);
error_count += remove_forward_dependencies(tree_root, ordered_tree_root);
if (error_count > 0) {
fprintf(stderr, "%d error(s) found. Bailing out!\n", error_count);
return -1;
}
return 0;
}