Fix bug in datatype checking of enumerated datatypes delcarations.
/*
* matiec - a compiler for the programming languages defined in IEC 61131-3
*
* Copyright (C) 2009-2012 Mario de Sousa (msousa@fe.up.pt)
* Copyright (C) 2012 Manuele Conti (conti.ma@alice.it)
*
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*
* This code is made available on the understanding that it will not be
* used in safety-critical situations without a full and competent review.
*/
/*
* An IEC 61131-3 compiler.
*
* Based on the
* FINAL DRAFT - IEC 61131-3, 2nd Ed. (2001-12-10)
*
*/
/* Expressions on the left hand side of assignment statements have aditional restrictions on their datatype.
* For example, they cannot be literals, CONSTANT type variables, function invocations, etc...
* This class wil do those checks.
*
* Note that assignment may also be done when passing variables to OUTPUT or IN_OUT function parameters,so we check those too.
*/
#include "lvalue_check.hh"
#define FIRST_(symbol1, symbol2) (((symbol1)->first_order < (symbol2)->first_order) ? (symbol1) : (symbol2))
#define LAST_(symbol1, symbol2) (((symbol1)->last_order > (symbol2)->last_order) ? (symbol1) : (symbol2))
#define STAGE3_ERROR(error_level, symbol1, symbol2, ...) { \
if (current_display_error_level >= error_level) { \
fprintf(stderr, "%s:%d-%d..%d-%d: error: ", \
FIRST_(symbol1,symbol2)->first_file, FIRST_(symbol1,symbol2)->first_line, FIRST_(symbol1,symbol2)->first_column,\
LAST_(symbol1,symbol2) ->last_line, LAST_(symbol1,symbol2) ->last_column);\
fprintf(stderr, __VA_ARGS__); \
fprintf(stderr, "\n"); \
error_count++; \
} \
}
#define STAGE3_WARNING(symbol1, symbol2, ...) { \
fprintf(stderr, "%s:%d-%d..%d-%d: warning: ", \
FIRST_(symbol1,symbol2)->first_file, FIRST_(symbol1,symbol2)->first_line, FIRST_(symbol1,symbol2)->first_column,\
LAST_(symbol1,symbol2) ->last_line, LAST_(symbol1,symbol2) ->last_column);\
fprintf(stderr, __VA_ARGS__); \
fprintf(stderr, "\n"); \
warning_found = true; \
}
lvalue_check_c::lvalue_check_c(symbol_c *ignore) {
error_count = 0;
current_display_error_level = 0;
current_il_operand = NULL;
search_varfb_instance_type = NULL;
search_var_instance_decl = NULL;
}
lvalue_check_c::~lvalue_check_c(void) {
}
int lvalue_check_c::get_error_count() {
return error_count;
}
#include <strings.h>
/* No writing to iterator variables (used in FOR loops) inside the loop itself */
void lvalue_check_c::check_assignment_to_controlvar(symbol_c *lvalue) {
for (unsigned int i = 0; i < control_variables.size(); i++) {
token_c *lvalue_name = get_var_name_c::get_name(lvalue);
if (compare_identifiers(lvalue_name, control_variables[i]) == 0) {
STAGE3_ERROR(0, lvalue, lvalue, "Assignment to FOR control variable is not allowed.");
break;
}
}
}
/* fb_instance.var := ... is not valid if var is output variable */
/* NOTE, if a fb_instance1.fb_instance2.fb_instance3.var is used, we must iteratively check that none of the
* FB records are declared as OUTPUT variables!!
* This is the reason why we have the while() loop in this function!
*
* Note, however, that the first record (fb_instance1 in the above example) may be an output variable!
*/
void lvalue_check_c::check_assignment_to_output(symbol_c *lvalue) {
decompose_var_instance_name_c decompose_lvalue(lvalue);
/* Get the first element/record of the potentially structured variable symbol */
/* Note that if symbol is pointing to an expression (or simply a literal value), it will return a NULL.
* Once we have implemented the check_assignment_to_expression() method, and abort calling the other checks (including this one)
* when an expression is found, we may replace this check with an assertion...
* if (NULL == struct_elem) ERROR;
*/
symbol_c *struct_elem = decompose_lvalue.next_part();
if (NULL == struct_elem) return;
symbol_c *type_decl = search_var_instance_decl->get_decl(struct_elem);
// symbol_c *type_id = spec_init_sperator_c::get_spec(type_decl); /* this is not required! search_base_type_c can handle spec_init symbols! */
symbol_c *basetype_id = search_base_type_c::get_basetype_id(/*type_id*/ type_decl);
/* If we can not determine the data type of the element, then the code must have a data type semantic error.
* This will have been caught by the data type semantic verifier, so we do not bother with this anymore!
*/
if (NULL == basetype_id) return;
/* Determine if the record/structure element is of a FB type. */
/* NOTE: If the structure element is not a FB type, then we can quit this check.
* Remember that the standard does not allow a STRUCT data type to have elements that are FB instances!
* Similarly, arrays of FB instances is also not allowed.
* So, as soon as we find one record/structure element that is not a FB, no other record/structure element
* will be of FB type, which means we can quit this check!
*/
function_block_declaration_c *fb_decl = function_block_type_symtable.find_value(basetype_id);
if (function_block_type_symtable.end_value() == fb_decl) return;
while (NULL != (struct_elem = decompose_lvalue.next_part())) {
search_var_instance_decl_c fb_search_var_instance_decl(fb_decl);
if (search_var_instance_decl_c::output_vt == fb_search_var_instance_decl.get_vartype(struct_elem)) {
STAGE3_ERROR(0, struct_elem, struct_elem, "Assignment to FB output variable is not allowed.");
return; /* no need to carry on checking once the first error is found! */
}
/* prepare for any possible further record/structure elements */
type_decl = fb_search_var_instance_decl.get_decl(struct_elem);
basetype_id = search_base_type_c::get_basetype_id(type_decl);
if (NULL == basetype_id) return; /* same comment as above... */
fb_decl = function_block_type_symtable.find_value(basetype_id);
if (function_block_type_symtable.end_value() == fb_decl) return; /* same comment as above... */
}
}
/* No writing to CONSTANTs */
void lvalue_check_c::check_assignment_to_constant(symbol_c *lvalue) {
unsigned int option = search_var_instance_decl->get_option(lvalue);
if (option == search_var_instance_decl_c::constant_opt) {
STAGE3_ERROR(0, lvalue, lvalue, "Assignment to CONSTANT variables is not be allowed.");
}
}
/* No assigning values to expressions. */
void lvalue_check_c::check_assignment_to_expression(symbol_c *lvalue) {
/* This may occur in function invocations, when passing values (possibly an expression) to one
* of the function's OUTPUT or IN_OUT parameters.
*/
/* This may occur in function invocations, when passing values (possibly an expression) to one
* of the function's OUTPUT or IN_OUT parameters.
*/
if (
/*********************/
/* B 1.2 - Constants */
/*********************/
/******************************/
/* B 1.2.1 - Numeric Literals */
/******************************/
(typeid( *lvalue ) == typeid( real_c )) ||
(typeid( *lvalue ) == typeid( integer_c )) ||
(typeid( *lvalue ) == typeid( binary_integer_c )) ||
(typeid( *lvalue ) == typeid( octal_integer_c )) ||
(typeid( *lvalue ) == typeid( hex_integer_c )) ||
(typeid( *lvalue ) == typeid( neg_real_c )) ||
(typeid( *lvalue ) == typeid( neg_integer_c )) ||
(typeid( *lvalue ) == typeid( integer_literal_c )) ||
(typeid( *lvalue ) == typeid( real_literal_c )) ||
(typeid( *lvalue ) == typeid( bit_string_literal_c )) ||
(typeid( *lvalue ) == typeid( boolean_literal_c )) ||
(typeid( *lvalue ) == typeid( boolean_true_c )) || /* should not really be needed */
(typeid( *lvalue ) == typeid( boolean_false_c )) || /* should not really be needed */
/*******************************/
/* B.1.2.2 Character Strings */
/*******************************/
(typeid( *lvalue ) == typeid( double_byte_character_string_c )) ||
(typeid( *lvalue ) == typeid( single_byte_character_string_c )) ||
/***************************/
/* B 1.2.3 - Time Literals */
/***************************/
/************************/
/* B 1.2.3.1 - Duration */
/************************/
(typeid( *lvalue ) == typeid( duration_c )) ||
/************************************/
/* B 1.2.3.2 - Time of day and Date */
/************************************/
(typeid( *lvalue ) == typeid( time_of_day_c )) ||
(typeid( *lvalue ) == typeid( daytime_c )) || /* should not really be needed */
(typeid( *lvalue ) == typeid( date_c )) || /* should not really be needed */
(typeid( *lvalue ) == typeid( date_literal_c )) ||
(typeid( *lvalue ) == typeid( date_and_time_c )) ||
/***************************************/
/* B.3 - Language ST (Structured Text) */
/***************************************/
/***********************/
/* B 3.1 - Expressions */
/***********************/
(typeid( *lvalue ) == typeid( or_expression_c )) ||
(typeid( *lvalue ) == typeid( xor_expression_c )) ||
(typeid( *lvalue ) == typeid( and_expression_c )) ||
(typeid( *lvalue ) == typeid( equ_expression_c )) ||
(typeid( *lvalue ) == typeid( notequ_expression_c )) ||
(typeid( *lvalue ) == typeid( lt_expression_c )) ||
(typeid( *lvalue ) == typeid( gt_expression_c )) ||
(typeid( *lvalue ) == typeid( le_expression_c )) ||
(typeid( *lvalue ) == typeid( ge_expression_c )) ||
(typeid( *lvalue ) == typeid( add_expression_c )) ||
(typeid( *lvalue ) == typeid( sub_expression_c )) ||
(typeid( *lvalue ) == typeid( mul_expression_c )) ||
(typeid( *lvalue ) == typeid( div_expression_c )) ||
(typeid( *lvalue ) == typeid( mod_expression_c )) ||
(typeid( *lvalue ) == typeid( power_expression_c )) ||
(typeid( *lvalue ) == typeid( neg_expression_c )) ||
(typeid( *lvalue ) == typeid( not_expression_c )) ||
(typeid( *lvalue ) == typeid( function_invocation_c )))
STAGE3_ERROR(0, lvalue, lvalue, "Assigning an expression to an OUT or IN_OUT parameter is not allowed.");
}
void lvalue_check_c::verify_is_lvalue(symbol_c *lvalue) {
int init_error_count = error_count; /* stop the checks once an error has been found... */
if (error_count == init_error_count) check_assignment_to_expression(lvalue);
if (error_count == init_error_count) check_assignment_to_controlvar(lvalue);
if (error_count == init_error_count) check_assignment_to_output(lvalue);
if (error_count == init_error_count) check_assignment_to_constant(lvalue);
}
/* check whether all values passed to OUT or IN_OUT parameters are legal lvalues. */
/*
* All parameters being passed to the called function MUST be in the parameter list to which f_call points to!
* This means that, for non formal function calls in IL, de current (default value) must be artificially added to the
* beginning of the parameter list BEFORE calling handle_function_call().
*/
#include <string.h> /* required for strcmp() */
void lvalue_check_c::check_nonformal_call(symbol_c *f_call, symbol_c *f_decl) {
symbol_c *call_param_value;
identifier_c *param_name;
function_param_iterator_c fp_iterator(f_decl);
function_call_param_iterator_c fcp_iterator(f_call);
/* Iterating through the non-formal parameters of the function call */
while((call_param_value = fcp_iterator.next_nf()) != NULL) {
/* Iterate to the next parameter of the function being called.
* Get the name of that parameter, and ignore if EN or ENO.
*/
do {
param_name = fp_iterator.next();
/* If there is no other parameter declared, then we are passing too many parameters... */
/* This error should have been caught in data type verification, so we simply abandon our check! */
if(param_name == NULL) return;
} while ((strcmp(param_name->value, "EN") == 0) || (strcmp(param_name->value, "ENO") == 0));
/* Determine the direction (IN, OUT, IN_OUT) of the parameter... */
function_param_iterator_c::param_direction_t param_direction = fp_iterator.param_direction();
/* We only process the parameter value if the paramater itself is valid... */
if (param_name != NULL) {
/* If the parameter is either OUT or IN_OUT, we check if 'call_param_value' is a valid lvalue */
if ((function_param_iterator_c::direction_out == param_direction) || (function_param_iterator_c::direction_inout == param_direction))
verify_is_lvalue(call_param_value);
/* parameter values to IN parameters may be expressions with function invocations that must also be checked! */
if (function_param_iterator_c::direction_in == param_direction)
call_param_value->accept(*this);
}
}
}
/* check whether all values passed to OUT or IN_OUT parameters are legal lvalues. */
void lvalue_check_c::check_formal_call(symbol_c *f_call, symbol_c *f_decl) {
/* if data type semantic verification was unable to determine which function is being called,
* then it does not make sense to go ahead and check for lvalues to unknown parameters.
* We simply bug out!
*/
if (NULL == f_decl) return;
symbol_c *call_param_name;
function_param_iterator_c fp_iterator(f_decl);
function_call_param_iterator_c fcp_iterator(f_call);
/* Iterating through the formal parameters of the function call */
while((call_param_name = fcp_iterator.next_f()) != NULL) {
/* Obtaining the value being passed in the function call */
symbol_c *call_param_value = fcp_iterator.get_current_value();
if (NULL == call_param_value) ERROR;
/* Find the corresponding parameter in function declaration, and it's direction (IN, OUT, IN_OUT) */
identifier_c *param_name = fp_iterator.search(call_param_name);
function_param_iterator_c::param_direction_t param_direction = fp_iterator.param_direction();
/* We only process the parameter value if the paramater itself is valid... */
if (param_name != NULL) {
/* If the parameter is either OUT or IN_OUT, we check if 'call_param_value' is a valid lvalue */
if ((function_param_iterator_c::direction_out == param_direction) || (function_param_iterator_c::direction_inout == param_direction))
verify_is_lvalue(call_param_value);
/* parameter values to IN parameters may be expressions with function invocations that must also be checked! */
if (function_param_iterator_c::direction_in == param_direction)
call_param_value->accept(*this);
}
}
}
/**************************************/
/* B 1.5 - Program organisation units */
/**************************************/
/***********************/
/* B 1.5.1 - Functions */
/***********************/
void *lvalue_check_c::visit(function_declaration_c *symbol) {
search_varfb_instance_type = new search_varfb_instance_type_c(symbol);
search_var_instance_decl = new search_var_instance_decl_c(symbol);
symbol->function_body->accept(*this);
delete search_varfb_instance_type;
delete search_var_instance_decl;
search_varfb_instance_type = NULL;
search_var_instance_decl = NULL;
return NULL;
}
/*****************************/
/* B 1.5.2 - Function blocks */
/*****************************/
void *lvalue_check_c::visit(function_block_declaration_c *symbol) {
search_varfb_instance_type = new search_varfb_instance_type_c(symbol);
search_var_instance_decl = new search_var_instance_decl_c(symbol);
symbol->fblock_body->accept(*this);
delete search_varfb_instance_type;
delete search_var_instance_decl;
search_varfb_instance_type = NULL;
search_var_instance_decl = NULL;
return NULL;
}
/**********************/
/* B 1.5.3 - Programs */
/**********************/
void *lvalue_check_c::visit(program_declaration_c *symbol) {
search_varfb_instance_type = new search_varfb_instance_type_c(symbol);
search_var_instance_decl = new search_var_instance_decl_c(symbol);
symbol->function_block_body->accept(*this);
delete search_varfb_instance_type;
delete search_var_instance_decl;
search_varfb_instance_type = NULL;
search_var_instance_decl = NULL;
return NULL;
}
/****************************************/
/* B.2 - Language IL (Instruction List) */
/****************************************/
/***********************************/
/* B 2.1 Instructions and Operands */
/***********************************/
void *lvalue_check_c::visit(il_instruction_c *symbol) {
/* il_instruction will be NULL when parsing a label with no instruction
* e.g.: label1: <---- il_instruction = NULL!
* LD 33
* ...
*/
if (NULL != symbol->il_instruction)
symbol->il_instruction->accept(*this);
return NULL;
}
void *lvalue_check_c::visit(il_simple_operation_c *symbol) {
current_il_operand = symbol->il_operand;
symbol->il_simple_operator->accept(*this);
current_il_operand = NULL;
return NULL;
}
/* | function_name [il_operand_list] */
/* NOTE: The parameters 'called_function_declaration' and 'extensible_param_count' are used to pass data between the stage 3 and stage 4. */
// SYM_REF2(il_function_call_c, function_name, il_operand_list, symbol_c *called_function_declaration; int extensible_param_count;)
void *lvalue_check_c::visit(il_function_call_c *symbol) {
/* The first parameter of a non formal function call in IL will be the 'current value' (i.e. the prev_il_instruction)
* In order to be able to handle this without coding special cases, we will simply prepend that symbol
* to the il_operand_list, and remove it after calling handle_function_call().
*
* However, if no further paramters are given, then il_operand_list will be NULL, and we will
* need to create a new object to hold the pointer to prev_il_instruction.
* This change will also be undone at the end of this method.
*/
/* TODO: Copying the location data will result in confusing error message.
* We need to make this better, by inserting code to handle this special situation explicitly!
*/
/* NOTE: When calling a function, using the 'current value' as the first parameter of the function invocation
* implies that we can only call functions whose first parameter is IN. It would not do to pass
* the 'current value' to an OUT or IN_OUT parameter.
* In order to make sure that this will be caught by the check_nonformal_call() function,
* we add a symbol that cannot be an lvalue; in this case, a real_c (REAL literal).
*/
real_c param_value(NULL);
*((symbol_c *)(¶m_value)) = *((symbol_c *)symbol); /* copy the symbol location (file, line, offset) data */
if (NULL == symbol->il_operand_list) symbol->il_operand_list = new il_operand_list_c;
if (NULL == symbol->il_operand_list) ERROR;
((list_c *)symbol->il_operand_list)->insert_element(¶m_value, 0);
check_nonformal_call(symbol, symbol->called_function_declaration);
/* Undo the changes to the abstract syntax tree we made above... */
((list_c *)symbol->il_operand_list)->remove_element(0);
if (((list_c *)symbol->il_operand_list)->n == 0) {
/* if the list becomes empty, then that means that it did not exist before we made these changes, so we delete it! */
delete symbol->il_operand_list;
symbol->il_operand_list = NULL;
}
return NULL;
}
/* il_call_operator prev_declared_fb_name
* | il_call_operator prev_declared_fb_name '(' ')'
* | il_call_operator prev_declared_fb_name '(' eol_list ')'
* | il_call_operator prev_declared_fb_name '(' il_operand_list ')'
* | il_call_operator prev_declared_fb_name '(' eol_list il_param_list ')'
*/
/* NOTE: The parameter 'called_fb_declaration'is used to pass data between stage 3 and stage4 (although currently it is not used in stage 4 */
// SYM_REF4(il_fb_call_c, il_call_operator, fb_name, il_operand_list, il_param_list, symbol_c *called_fb_declaration)
void *lvalue_check_c::visit(il_fb_call_c *symbol) {
if (NULL != symbol->il_operand_list) check_nonformal_call(symbol, symbol->called_fb_declaration);
if (NULL != symbol-> il_param_list) check_formal_call(symbol, symbol->called_fb_declaration);
return NULL;
}
/* | function_name '(' eol_list [il_param_list] ')' */
/* NOTE: The parameter 'called_function_declaration' is used to pass data between the stage 3 and stage 4. */
// SYM_REF2(il_formal_funct_call_c, function_name, il_param_list, symbol_c *called_function_declaration; int extensible_param_count;)
void *lvalue_check_c::visit(il_formal_funct_call_c *symbol) {
check_formal_call(symbol, symbol->called_function_declaration);
return NULL;
}
/*******************/
/* B 2.2 Operators */
/*******************/
void *lvalue_check_c::visit(ST_operator_c *symbol) {
verify_is_lvalue(current_il_operand);
return NULL;
}
void *lvalue_check_c::visit(STN_operator_c *symbol) {
verify_is_lvalue(current_il_operand);
return NULL;
}
void *lvalue_check_c::visit(S_operator_c *symbol) {
verify_is_lvalue(current_il_operand);
return NULL;
}
void *lvalue_check_c::visit(R_operator_c *symbol) {
verify_is_lvalue(current_il_operand);
return NULL;
}
/***************************************/
/* B.3 - Language ST (Structured Text) */
/***************************************/
/***********************/
/* B 3.1 - Expressions */
/***********************/
// SYM_REF3(function_invocation_c, function_name, formal_param_list, nonformal_param_list, symbol_c *called_function_declaration; int extensible_param_count; std::vector <symbol_c *> candidate_functions;)
void *lvalue_check_c::visit(function_invocation_c *symbol) {
if (NULL != symbol->formal_param_list ) check_formal_call (symbol, symbol->called_function_declaration);
if (NULL != symbol->nonformal_param_list) check_nonformal_call(symbol, symbol->called_function_declaration);
return NULL;
}
/*********************************/
/* B 3.2.1 Assignment Statements */
/*********************************/
void *lvalue_check_c::visit(assignment_statement_c *symbol) {
verify_is_lvalue(symbol->l_exp);
/* We call visit r_exp to check function_call */
symbol->r_exp->accept(*this);
return NULL;
}
/*****************************************/
/* B 3.2.2 Subprogram Control Statements */
/*****************************************/
void *lvalue_check_c::visit(fb_invocation_c *symbol) {
if (NULL != symbol->formal_param_list ) check_formal_call (symbol, symbol->called_fb_declaration);
if (NULL != symbol->nonformal_param_list) check_nonformal_call(symbol, symbol->called_fb_declaration);
return NULL;
}
/********************************/
/* B 3.2.4 Iteration Statements */
/********************************/
void *lvalue_check_c::visit(for_statement_c *symbol) {
verify_is_lvalue(symbol->control_variable);
control_variables.push_back(get_var_name_c::get_name(symbol->control_variable));
symbol->statement_list->accept(*this);
control_variables.pop_back();
return NULL;
}