stage3/narrow_candidate_datatypes.cc
changeset 625 c0bda77b37a0
parent 552 3c39d80fdede
child 652 7fe1533d2260
equal deleted inserted replaced
412:aad38592bdde 625:c0bda77b37a0
       
     1 /*
       
     2  *  matiec - a compiler for the programming languages defined in IEC 61131-3
       
     3  *
       
     4  *  Copyright (C) 2009-2012  Mario de Sousa (msousa@fe.up.pt)
       
     5  *  Copyright (C) 2012       Manuele Conti (manuele.conti@sirius-es.it)
       
     6  *  Copyright (C) 2012       Matteo Facchinetti (matteo.facchinetti@sirius-es.it)
       
     7  *
       
     8  *  This program is free software: you can redistribute it and/or modify
       
     9  *  it under the terms of the GNU General Public License as published by
       
    10  *  the Free Software Foundation, either version 3 of the License, or
       
    11  *  (at your option) any later version.
       
    12  *
       
    13  *  This program is distributed in the hope that it will be useful,
       
    14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
       
    15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
       
    16  *  GNU General Public License for more details.
       
    17  *
       
    18  *  You should have received a copy of the GNU General Public License
       
    19  *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
       
    20  *
       
    21  *
       
    22  * This code is made available on the understanding that it will not be
       
    23  * used in safety-critical situations without a full and competent review.
       
    24  */
       
    25 
       
    26 /*
       
    27  * An IEC 61131-3 compiler.
       
    28  *
       
    29  * Based on the
       
    30  * FINAL DRAFT - IEC 61131-3, 2nd Ed. (2001-12-10)
       
    31  *
       
    32  */
       
    33 
       
    34 
       
    35 /* NOTE: The algorithm implemented here assumes that candidate datatype lists have already been filled!
       
    36  *       BEFORE running this visitor, be sure to CALL the fill_candidate_datatype_c visitor!
       
    37  */
       
    38 
       
    39 
       
    40 /*
       
    41  *  Choose, from the list of all the possible datatypes each expression may take, the single datatype that it will in fact take.
       
    42  *  The resulting (chosen) datatype, will be stored in the symbol_c.datatype variable, leaving the candidate datatype list untouched!
       
    43  * 
       
    44  *  For rvalue expressions, this decision will be based on the datatype of the lvalue expression.
       
    45  *  For lvalue expressions, the candidate datatype list should have a single entry.
       
    46  * 
       
    47  *  For example, the very simple literal '0' in 'foo := 0', may represent a:
       
    48  *    BOOL, BYTE, WORD, DWORD, LWORD, USINT, SINT, UINT, INT, UDINT, DINT, ULINT, LINT (as well as the SAFE versions of these data tyes too!)
       
    49  * 
       
    50  *  In this class, the datatype of '0' will be set to the same datatype as the 'foo' variable.
       
    51  *  If the intersection of the candidate datatype lists of the left and right side expressions is empty, 
       
    52  *  then a datatype error has been found, and the datatype is either left at NULL, or set to a pointer of an invalid_type_name_c object!
       
    53  */
       
    54 
       
    55 
       
    56 #include "narrow_candidate_datatypes.hh"
       
    57 #include "datatype_functions.hh"
       
    58 #include <typeinfo>
       
    59 #include <list>
       
    60 #include <string>
       
    61 #include <string.h>
       
    62 #include <strings.h>
       
    63 
       
    64 
       
    65 /* set to 1 to see debug info during execution */
       
    66 static int debug = 0;
       
    67 
       
    68 narrow_candidate_datatypes_c::narrow_candidate_datatypes_c(symbol_c *ignore) {
       
    69 }
       
    70 
       
    71 narrow_candidate_datatypes_c::~narrow_candidate_datatypes_c(void) {
       
    72 }
       
    73 
       
    74 
       
    75 /* Only set the symbol's desired datatype to 'datatype' if that datatype is in the candidate_datatype list */
       
    76 static void set_datatype(symbol_c *datatype, symbol_c *symbol) {
       
    77   
       
    78 	/* If we are trying to set to the undefined type, and the symbol's datatype has already been set to something else, 
       
    79 	 * we abort the compoiler as I don't think this should ever occur. 
       
    80 	 * NOTE: In order to handle JMPs to labels that come before the JMP itself, we run the narrow algorithm twice.
       
    81 	 *       This means that this situation may legally occur, so we cannot abort the compiler here!
       
    82 	 */
       
    83 // 	if ((NULL == datatype) && (NULL != symbol->datatype)) ERROR;
       
    84  	if ((NULL == datatype) && (NULL != symbol->datatype)) return;
       
    85 	if ((NULL == datatype) && (NULL == symbol->datatype)) return;
       
    86 	
       
    87 	if (search_in_candidate_datatype_list(datatype, symbol->candidate_datatypes) < 0)
       
    88 		symbol->datatype = &(search_constant_type_c::invalid_type_name);   
       
    89 	else {
       
    90 		if (NULL == symbol->datatype)   
       
    91 			/* not yet set to anything, so we set it to the requested data type */
       
    92 			symbol->datatype = datatype; 
       
    93 		else {
       
    94 			/* had already been set previously to some data type. Let's check if they are the same! */
       
    95 			if (!is_type_equal(symbol->datatype, datatype))
       
    96 				symbol->datatype = &(search_constant_type_c::invalid_type_name);
       
    97 // 			else 
       
    98 				/* we leave it unchanged, as it is the same as the requested data type! */
       
    99 		}
       
   100 	}
       
   101 }
       
   102 
       
   103 
       
   104 
       
   105 /* Only set the symbol's desired datatype to 'datatype' if that datatype is in the candidate_datatype list */
       
   106 // static void set_datatype_in_prev_il_instructions(symbol_c *datatype, std::vector <symbol_c *> prev_il_instructions) {
       
   107 static void set_datatype_in_prev_il_instructions(symbol_c *datatype, il_instruction_c *symbol) {
       
   108 	if (NULL == symbol) ERROR;
       
   109 	for (unsigned int i = 0; i < symbol->prev_il_instruction.size(); i++)
       
   110 		set_datatype(datatype, symbol->prev_il_instruction[i]);
       
   111 }
       
   112 
       
   113 
       
   114 
       
   115 bool narrow_candidate_datatypes_c::is_widening_compatible(const struct widen_entry widen_table[], symbol_c *left_type, symbol_c *right_type, symbol_c *result_type, bool *deprecated_status) {
       
   116 	/* NOTE: According to our algorithm, left_type and right_type should never by NULL (if they are, we have an internal compiler error!
       
   117 	 *       However, result_type may be NULL if the code has a data type semantic error!
       
   118 	 */
       
   119 	if ((NULL == left_type) || (NULL == right_type) || (NULL == result_type))
       
   120 		return false;
       
   121 
       
   122 	for (int k = 0; NULL != widen_table[k].left;  k++) {
       
   123 		if        ((typeid(*left_type)   == typeid(*widen_table[k].left))
       
   124 		        && (typeid(*right_type)  == typeid(*widen_table[k].right))
       
   125 			&& (typeid(*result_type) == typeid(*widen_table[k].result))) {
       
   126 			if (NULL != deprecated_status)
       
   127 				*deprecated_status = (widen_table[k].status == widen_entry::deprecated);
       
   128 			return true;
       
   129 		}
       
   130 	}
       
   131 	return false;
       
   132 }
       
   133 
       
   134 /*
       
   135  * All parameters being passed to the called function MUST be in the parameter list to which f_call points to!
       
   136  * This means that, for non formal function calls in IL, de current (default value) must be artificially added to the
       
   137  * beginning of the parameter list BEFORE calling handle_function_call().
       
   138  */
       
   139 void narrow_candidate_datatypes_c::narrow_nonformal_call(symbol_c *f_call, symbol_c *f_decl, int *ext_parm_count) {
       
   140 	symbol_c *call_param_value,  *param_type;
       
   141 	identifier_c *param_name;
       
   142 	function_param_iterator_c       fp_iterator(f_decl);
       
   143 	function_call_param_iterator_c fcp_iterator(f_call);
       
   144 	int extensible_parameter_highest_index = -1;
       
   145 	unsigned int i;
       
   146 
       
   147 	if (NULL != ext_parm_count) *ext_parm_count = -1;
       
   148 
       
   149 	/* Iterating through the non-formal parameters of the function call */
       
   150 	while((call_param_value = fcp_iterator.next_nf()) != NULL) {
       
   151 		/* Obtaining the type of the value being passed in the function call */
       
   152 		/* Iterate to the next parameter of the function being called.
       
   153 		 * Get the name of that parameter, and ignore if EN or ENO.
       
   154 		 */
       
   155 		do {
       
   156 			param_name = fp_iterator.next();
       
   157 			/* If there is no other parameter declared, then we are passing too many parameters... */
       
   158 			/* This error should have been caught in fill_candidate_datatypes_c, but may occur here again when we handle FB invocations! 
       
   159 			 * In this case, we carry on analysing the code in order to be able to provide relevant error messages
       
   160 			 * for that code too!
       
   161 			 */
       
   162 			if(param_name == NULL) break;
       
   163 		} while ((strcmp(param_name->value, "EN") == 0) || (strcmp(param_name->value, "ENO") == 0));
       
   164 
       
   165 		/* Set the desired datatype for this parameter, and call it recursively. */
       
   166 		/* Note that if the call has more parameters than those declared in the function/FB declaration,
       
   167 		 * we may be setting this to NULL!
       
   168 		 */
       
   169 		symbol_c *desired_datatype = base_type(fp_iterator.param_type());
       
   170 		if ((NULL != param_name) && (NULL == desired_datatype)) ERROR;
       
   171 		if ((NULL == param_name) && (NULL != desired_datatype)) ERROR;
       
   172 
       
   173 		/* NOTE: When we are handling a nonformal function call made from IL, the first parameter is the 'default' or 'current'
       
   174 		 *       il value. However, a pointer to a copy of the prev_il_instruction is pre-pended into the operand list, so 
       
   175 		 *       the call 
       
   176 		 *       call_param_value->accept(*this);
       
   177 		 *       may actually be calling an object of the base symbol_c .
       
   178 		 */
       
   179 		set_datatype(desired_datatype, call_param_value);
       
   180 		call_param_value->accept(*this);
       
   181 
       
   182 		if (NULL != param_name) 
       
   183 			if (extensible_parameter_highest_index < fp_iterator.extensible_param_index())
       
   184 				extensible_parameter_highest_index = fp_iterator.extensible_param_index();
       
   185 	}
       
   186 	/* In the case of a call to an extensible function, we store the highest index 
       
   187 	 * of the extensible parameters this particular call uses, in the symbol_c object
       
   188 	 * of the function call itself!
       
   189 	 * In calls to non-extensible functions, this value will be set to -1.
       
   190 	 * This information is later used in stage4 to correctly generate the
       
   191 	 * output code.
       
   192 	 */
       
   193 	if ((NULL != ext_parm_count) && (extensible_parameter_highest_index >=0) /* if call to extensible function */)
       
   194 		*ext_parm_count = 1 + extensible_parameter_highest_index - fp_iterator.first_extensible_param_index();
       
   195 }
       
   196 
       
   197 
       
   198 
       
   199 void narrow_candidate_datatypes_c::narrow_formal_call(symbol_c *f_call, symbol_c *f_decl, int *ext_parm_count) {
       
   200 	symbol_c *call_param_value, *call_param_name, *param_type;
       
   201 	symbol_c *verify_duplicate_param;
       
   202 	identifier_c *param_name;
       
   203 	function_param_iterator_c       fp_iterator(f_decl);
       
   204 	function_call_param_iterator_c fcp_iterator(f_call);
       
   205 	int extensible_parameter_highest_index = -1;
       
   206 	identifier_c *extensible_parameter_name;
       
   207 	unsigned int i;
       
   208 
       
   209 	if (NULL != ext_parm_count) *ext_parm_count = -1;
       
   210 	/* Iterating through the formal parameters of the function call */
       
   211 	while((call_param_name = fcp_iterator.next_f()) != NULL) {
       
   212 
       
   213 		/* Obtaining the value being passed in the function call */
       
   214 		call_param_value = fcp_iterator.get_current_value();
       
   215 		/* the following should never occur. If it does, then we have a bug in our code... */
       
   216 		if (NULL == call_param_value) ERROR;
       
   217 
       
   218 		/* Find the corresponding parameter in function declaration */
       
   219 		param_name = fp_iterator.search(call_param_name);
       
   220 
       
   221 		/* Set the desired datatype for this parameter, and call it recursively. */
       
   222 		/* NOTE: When handling a FB call, this narrow_formal_call() may be called to analyse
       
   223 		 *       an invalid FB call (call with parameters that do not exist on the FB declaration).
       
   224 		 *       For this reason, the param_name may come out as NULL!
       
   225 		 */
       
   226 		symbol_c *desired_datatype = base_type(fp_iterator.param_type());
       
   227 		if ((NULL != param_name) && (NULL == desired_datatype)) ERROR;
       
   228 		if ((NULL == param_name) && (NULL != desired_datatype)) ERROR;
       
   229 
       
   230 		/* set the desired data type for this parameter */
       
   231 		set_datatype(desired_datatype, call_param_value);
       
   232 		/* And recursively call that parameter/expression, so it can propagate that info */
       
   233 		call_param_value->accept(*this);
       
   234 
       
   235 		/* set the extensible_parameter_highest_index, which will be needed in stage 4 */
       
   236 		/* This value says how many extensible parameters are being passed to the standard function */
       
   237 		if (NULL != param_name) 
       
   238 			if (extensible_parameter_highest_index < fp_iterator.extensible_param_index())
       
   239 				extensible_parameter_highest_index = fp_iterator.extensible_param_index();
       
   240 	}
       
   241 	/* call is compatible! */
       
   242 
       
   243 	/* In the case of a call to an extensible function, we store the highest index 
       
   244 	 * of the extensible parameters this particular call uses, in the symbol_c object
       
   245 	 * of the function call itself!
       
   246 	 * In calls to non-extensible functions, this value will be set to -1.
       
   247 	 * This information is later used in stage4 to correctly generate the
       
   248 	 * output code.
       
   249 	 */
       
   250 	if ((NULL != ext_parm_count) && (extensible_parameter_highest_index >=0) /* if call to extensible function */)
       
   251 		*ext_parm_count = 1 + extensible_parameter_highest_index - fp_iterator.first_extensible_param_index();
       
   252 }
       
   253 
       
   254 
       
   255 /*
       
   256 typedef struct {
       
   257   symbol_c *function_name,
       
   258   symbol_c *nonformal_operand_list,
       
   259   symbol_c *   formal_operand_list,
       
   260 
       
   261   std::vector <symbol_c *> &candidate_functions,  
       
   262   symbol_c &*called_function_declaration,
       
   263   int      &extensible_param_count
       
   264 } generic_function_call_t;
       
   265 */
       
   266 void narrow_candidate_datatypes_c::narrow_function_invocation(symbol_c *fcall, generic_function_call_t fcall_data) {
       
   267 	/* set the called_function_declaration. */
       
   268 	fcall_data.called_function_declaration = NULL;
       
   269 
       
   270 	/* set the called_function_declaration taking into account the datatype that we need to return */
       
   271 	for(unsigned int i = 0; i < fcall->candidate_datatypes.size(); i++) {
       
   272 		if (is_type_equal(fcall->candidate_datatypes[i], fcall->datatype)) {
       
   273 			fcall_data.called_function_declaration = fcall_data.candidate_functions[i];
       
   274 			break;
       
   275 		}
       
   276 	}
       
   277 
       
   278 	/* NOTE: If we can't figure out the declaration of the function being called, this is not 
       
   279 	 *       necessarily an internal compiler error. It could be because the symbol->datatype is NULL
       
   280 	 *       (because the ST code being analysed has an error _before_ this function invocation).
       
   281 	 *       However, we don't just give, up, we carry on recursivly analysing the code, so as to be
       
   282 	 *       able to print out any error messages related to the parameters being passed in this function 
       
   283 	 *       invocation.
       
   284 	 */
       
   285 	/* if (NULL == symbol->called_function_declaration) ERROR; */
       
   286 	if (fcall->candidate_datatypes.size() == 1) {
       
   287 		/* If only one function declaration, then we use that (even if symbol->datatypes == NULL)
       
   288 		 * so we can check for errors in the expressions used to pass parameters in this
       
   289 		 * function invocation.
       
   290 		 */
       
   291 		fcall_data.called_function_declaration = fcall_data.candidate_functions[0];
       
   292 	}
       
   293 
       
   294 	/* If an overloaded function is being invoked, and we cannot determine which version to use,
       
   295 	 * then we can not meaningfully verify the expressions used inside that function invocation.
       
   296 	 * We simply give up!
       
   297 	 */
       
   298 	if (NULL == fcall_data.called_function_declaration)
       
   299 		return;
       
   300 
       
   301 	if (NULL != fcall_data.nonformal_operand_list)  narrow_nonformal_call(fcall, fcall_data.called_function_declaration, &(fcall_data.extensible_param_count));
       
   302 	if (NULL != fcall_data.   formal_operand_list)     narrow_formal_call(fcall, fcall_data.called_function_declaration, &(fcall_data.extensible_param_count));
       
   303 
       
   304 	return;
       
   305 }
       
   306 
       
   307 
       
   308 
       
   309 
       
   310 /* narrow implicit FB call in IL.
       
   311  * e.g.  CLK ton_var
       
   312  *        CU counter_var
       
   313  *
       
   314  * The algorithm will be to build a fake il_fb_call_c equivalent to the implicit IL FB call, and let 
       
   315  * the visit(il_fb_call_c *) method handle it!
       
   316  */
       
   317 void *narrow_candidate_datatypes_c::narrow_implicit_il_fb_call(symbol_c *il_instruction, const char *param_name, symbol_c *&called_fb_declaration) {
       
   318 
       
   319 	/* set the datatype of the il_operand, this is, the FB being called! */
       
   320 	if (NULL != il_operand) {
       
   321 		/* only set it if it is in the candidate datatypes list! */  
       
   322 		set_datatype(called_fb_declaration, il_operand);
       
   323 		il_operand->accept(*this);
       
   324 	}
       
   325 	symbol_c *fb_decl = il_operand->datatype;
       
   326 
       
   327 	if (0 == fake_prev_il_instruction->prev_il_instruction.size()) {
       
   328 		/* This IL implicit FB call (e.g. CLK ton_var) is not preceded by another IL instruction
       
   329 		 * (or list of instructions) that will set the IL current/default value.
       
   330 		 * We cannot proceed verifying type compatibility of something that does not exist.
       
   331 		 */
       
   332 		return NULL;
       
   333 	}
       
   334 
       
   335 	if (NULL == fb_decl) {
       
   336 		/* the il_operand is a not FB instance */
       
   337 		/* so we simply pass on the required datatype to the prev_il_instructions */
       
   338 		/* The invalid FB invocation will be caught in the print_datatypes_error_c by analysing NULL value in il_operand->datatype! */
       
   339 		set_datatype_in_prev_il_instructions(il_instruction->datatype, fake_prev_il_instruction);
       
   340 		return NULL;
       
   341 	}
       
   342 	
       
   343 
       
   344 	/* The value being passed to the 'param_name' parameter is actually the prev_il_instruction.
       
   345 	 * However, we do not place that object directly in the fake il_param_list_c that we will be
       
   346 	 * creating, since the visit(il_fb_call_c *) method will recursively call every object in that list.
       
   347 	 * The il_prev_intruction object will be visited once we have handled this implici IL FB call
       
   348 	 * (called from the instruction_list_c for() loop that works backwards). We DO NOT want to visit it twice.
       
   349 	 * (Anyway, if we let the visit(il_fb_call_c *) recursively visit the current prev_il_instruction, this pointer
       
   350 	 * would be changed to the IL instruction coming before the current prev_il_instruction! => things would get all messed up!)
       
   351 	 * The easiest way to work around this is to simply use a new object, and copy the relevant details to that object!
       
   352 	 */
       
   353 	symbol_c param_value = *fake_prev_il_instruction; /* copy the candidate_datatypes list ! */
       
   354 
       
   355 	identifier_c variable_name(param_name);
       
   356 	// SYM_REF1(il_assign_operator_c, variable_name)
       
   357 	il_assign_operator_c il_assign_operator(&variable_name);  
       
   358 	// SYM_REF3(il_param_assignment_c, il_assign_operator, il_operand, simple_instr_list)
       
   359 	il_param_assignment_c il_param_assignment(&il_assign_operator, &param_value/*il_operand*/, NULL);
       
   360 	il_param_list_c il_param_list;
       
   361 	il_param_list.add_element(&il_param_assignment);
       
   362 	// SYM_REF4(il_fb_call_c, il_call_operator, fb_name, il_operand_list, il_param_list, symbol_c *called_fb_declaration)
       
   363 	CAL_operator_c CAL_operator;
       
   364 	il_fb_call_c il_fb_call(&CAL_operator, il_operand, NULL, &il_param_list);
       
   365 	        
       
   366 	/* A FB call does not return any datatype, but the IL instructions that come after this
       
   367 	 * FB call may require a specific datatype in the il current/default variable, 
       
   368 	 * so we must pass this information up to the IL instruction before the FB call, since it will
       
   369 	 * be that IL instruction that will be required to produce the desired dtataype.
       
   370 	 *
       
   371 	 * The above will be done by the visit(il_fb_call_c *) method, so we must make sure to
       
   372 	 * correctly set up the il_fb_call.datatype variable!
       
   373 	 */
       
   374 	il_fb_call.called_fb_declaration = called_fb_declaration;
       
   375 	il_fb_call.accept(*this);
       
   376 
       
   377 	/* set the required datatype of the previous IL instruction! */
       
   378 	/* NOTE:
       
   379 	 * When handling these implicit IL calls, the parameter_value being passed to the FB parameter
       
   380 	 * is actually the prev_il_instruction.
       
   381 	 * 
       
   382 	 * However, since the FB call does not change the value in the current/default IL variable, this value
       
   383 	 * must also be used ny the IL instruction coming after this FB call.
       
   384 	 *
       
   385 	 * This means that we have two consumers/users for the same value. 
       
   386 	 * We must therefore check whether the datatype required by the IL instructions following this FB call 
       
   387 	 * is the same as that required for the first parameter. If not, then we have a semantic error,
       
   388 	 * and we set it to invalid_type_name.
       
   389 	 *
       
   390 	 * However, we only do that if:
       
   391 	 *  - The IL instruction that comes after this IL FB call actually asked this FB call for a specific 
       
   392 	 *     datatype in the current/default vairable, once this IL FB call returns.
       
   393 	 *     However, sometimes, (for e.g., this FB call is the last in the IL list) the subsequent FB to not aks this
       
   394 	 *     FB call for any datatype. In that case, then the datatype required to pass to the first parameter of the
       
   395 	 *     FB call must be left unchanged!
       
   396 	 */
       
   397 	if ((NULL == il_instruction->datatype) || (is_type_equal(param_value.datatype, il_instruction->datatype))) {
       
   398 		set_datatype_in_prev_il_instructions(param_value.datatype, fake_prev_il_instruction);
       
   399 	} else {
       
   400 		set_datatype_in_prev_il_instructions(&search_constant_type_c::invalid_type_name, fake_prev_il_instruction);
       
   401 	}
       
   402 	return NULL;
       
   403 }
       
   404 
       
   405 
       
   406 /* a helper function... */
       
   407 symbol_c *narrow_candidate_datatypes_c::base_type(symbol_c *symbol) {
       
   408 	/* NOTE: symbol == NULL is valid. It will occur when, for e.g., an undefined/undeclared symbolic_variable is used
       
   409 	 *       in the code.
       
   410 	 */
       
   411 	if (symbol == NULL) return NULL;
       
   412 	return (symbol_c *)symbol->accept(search_base_type);	
       
   413 }
       
   414 
       
   415 /*********************/
       
   416 /* B 1.2 - Constants */
       
   417 /*********************/
       
   418 
       
   419 /**********************/
       
   420 /* B 1.3 - Data types */
       
   421 /**********************/
       
   422 /********************************/
       
   423 /* B 1.3.3 - Derived data types */
       
   424 /********************************/
       
   425 /* simple_specification ASSIGN constant */
       
   426 // SYM_REF2(simple_spec_init_c, simple_specification, constant)
       
   427 void *narrow_candidate_datatypes_c::visit(simple_spec_init_c *symbol) {
       
   428 	if (symbol->candidate_datatypes.size() == 1)
       
   429 	  symbol->datatype = symbol->candidate_datatypes[0];
       
   430 	  
       
   431 	if (symbol->simple_specification->candidate_datatypes.size() == 1)
       
   432 	  symbol->simple_specification->datatype = symbol->simple_specification->candidate_datatypes[0];
       
   433 
       
   434 	if (NULL != symbol->constant) {
       
   435 		set_datatype(symbol->datatype, symbol->constant);
       
   436 		symbol->constant->accept(*this);
       
   437 	}
       
   438 	return NULL;
       
   439 }
       
   440 
       
   441 
       
   442 
       
   443 /*  signed_integer DOTDOT signed_integer */
       
   444 // SYM_REF2(subrange_c, lower_limit, upper_limit)
       
   445 void *narrow_candidate_datatypes_c::visit(subrange_c *symbol) {
       
   446 	symbol->lower_limit->datatype = symbol->datatype;
       
   447 	symbol->lower_limit->accept(*this);
       
   448 	symbol->upper_limit->datatype = symbol->datatype;
       
   449 	symbol->upper_limit->accept(*this);
       
   450 	return NULL;
       
   451 }
       
   452 
       
   453 
       
   454 /*********************/
       
   455 /* B 1.4 - Variables */
       
   456 /*********************/
       
   457 
       
   458 /********************************************/
       
   459 /* B 1.4.1 - Directly Represented Variables */
       
   460 /********************************************/
       
   461 
       
   462 /*************************************/
       
   463 /* B 1.4.2 - Multi-element variables */
       
   464 /*************************************/
       
   465 /*  subscripted_variable '[' subscript_list ']' */
       
   466 // SYM_REF2(array_variable_c, subscripted_variable, subscript_list)
       
   467 void *narrow_candidate_datatypes_c::visit(array_variable_c *symbol) {
       
   468 	/* we need to check the data types of the expressions used for the subscripts... */
       
   469 	symbol->subscript_list->accept(*this);
       
   470 	return NULL;
       
   471 }
       
   472 
       
   473 
       
   474 /* subscript_list ',' subscript */
       
   475 // SYM_LIST(subscript_list_c)
       
   476 void *narrow_candidate_datatypes_c::visit(subscript_list_c *symbol) {
       
   477 	for (int i = 0; i < symbol->n; i++) {
       
   478 		for (unsigned int k = 0; k < symbol->elements[i]->candidate_datatypes.size(); k++) {
       
   479 			if (is_ANY_INT_type(symbol->elements[i]->candidate_datatypes[k]))
       
   480 				symbol->elements[i]->datatype = symbol->elements[i]->candidate_datatypes[k];
       
   481 		}
       
   482 		symbol->elements[i]->accept(*this);
       
   483 	}
       
   484 	return NULL;  
       
   485 }
       
   486 
       
   487 
       
   488 
       
   489 
       
   490 /******************************************/
       
   491 /* B 1.4.3 - Declaration & Initialisation */
       
   492 /******************************************/
       
   493 
       
   494 void *narrow_candidate_datatypes_c::visit(var1_list_c *symbol) {
       
   495 #if 0   /* We don't really need to set the datatype of each variable. We just check the declaration itself! */
       
   496   for(int i = 0; i < symbol->n; i++) {
       
   497     if (symbol->elements[i]->candidate_datatypes.size() == 1)
       
   498       symbol->elements[i]->datatype = symbol->elements[i]->candidate_datatypes[0];
       
   499   }
       
   500 #endif
       
   501   return NULL;
       
   502 }  
       
   503 
       
   504 
       
   505 /*  AT direct_variable */
       
   506 // SYM_REF1(location_c, direct_variable)
       
   507 void *narrow_candidate_datatypes_c::visit(location_c *symbol) {
       
   508   set_datatype(symbol->datatype, symbol->direct_variable);
       
   509   symbol->direct_variable->accept(*this); /* currently does nothing! */
       
   510   return NULL;
       
   511 }
       
   512 
       
   513 
       
   514 /*  [variable_name] location ':' located_var_spec_init */
       
   515 /* variable_name -> may be NULL ! */
       
   516 // SYM_REF3(located_var_decl_c, variable_name, location, located_var_spec_init)
       
   517 void *narrow_candidate_datatypes_c::visit(located_var_decl_c *symbol) {
       
   518   /* let the var_spec_init set its own symbol->datatype value */
       
   519   symbol->located_var_spec_init->accept(*this);
       
   520   
       
   521   if (NULL != symbol->variable_name)
       
   522     set_datatype(symbol->located_var_spec_init->datatype, symbol->variable_name);
       
   523     
       
   524   set_datatype(symbol->located_var_spec_init->datatype, symbol->location);
       
   525   symbol->location->accept(*this);
       
   526   return NULL;
       
   527 }
       
   528 
       
   529 
       
   530 /************************************/
       
   531 /* B 1.5 Program organization units */
       
   532 /************************************/
       
   533 /*********************/
       
   534 /* B 1.5.1 Functions */
       
   535 /*********************/
       
   536 void *narrow_candidate_datatypes_c::visit(function_declaration_c *symbol) {
       
   537 	search_varfb_instance_type = new search_varfb_instance_type_c(symbol);
       
   538 	symbol->var_declarations_list->accept(*this);
       
   539 	if (debug) printf("Narrowing candidate data types list in body of function %s\n", ((token_c *)(symbol->derived_function_name))->value);
       
   540 	symbol->function_body->accept(*this);
       
   541 	delete search_varfb_instance_type;
       
   542 	search_varfb_instance_type = NULL;
       
   543 	return NULL;
       
   544 }
       
   545 
       
   546 /***************************/
       
   547 /* B 1.5.2 Function blocks */
       
   548 /***************************/
       
   549 void *narrow_candidate_datatypes_c::visit(function_block_declaration_c *symbol) {
       
   550 	search_varfb_instance_type = new search_varfb_instance_type_c(symbol);
       
   551 	symbol->var_declarations->accept(*this);
       
   552 	if (debug) printf("Narrowing candidate data types list in body of FB %s\n", ((token_c *)(symbol->fblock_name))->value);
       
   553 	symbol->fblock_body->accept(*this);
       
   554 	delete search_varfb_instance_type;
       
   555 	search_varfb_instance_type = NULL;
       
   556 	return NULL;
       
   557 }
       
   558 
       
   559 /********************/
       
   560 /* B 1.5.3 Programs */
       
   561 /********************/
       
   562 void *narrow_candidate_datatypes_c::visit(program_declaration_c *symbol) {
       
   563 	search_varfb_instance_type = new search_varfb_instance_type_c(symbol);
       
   564 	symbol->var_declarations->accept(*this);
       
   565 	if (debug) printf("Narrowing candidate data types list in body of program %s\n", ((token_c *)(symbol->program_type_name))->value);
       
   566 	symbol->function_block_body->accept(*this);
       
   567 	delete search_varfb_instance_type;
       
   568 	search_varfb_instance_type = NULL;
       
   569 	return NULL;
       
   570 }
       
   571 
       
   572 
       
   573 /********************************/
       
   574 /* B 1.7 Configuration elements */
       
   575 /********************************/
       
   576 void *narrow_candidate_datatypes_c::visit(configuration_declaration_c *symbol) {
       
   577 	// TODO !!!
       
   578 	/* for the moment we must return NULL so semantic analysis of remaining code is not interrupted! */
       
   579 	return NULL;
       
   580 }
       
   581 
       
   582 
       
   583 /****************************************/
       
   584 /* B.2 - Language IL (Instruction List) */
       
   585 /****************************************/
       
   586 /***********************************/
       
   587 /* B 2.1 Instructions and Operands */
       
   588 /***********************************/
       
   589 
       
   590 /*| instruction_list il_instruction */
       
   591 // SYM_LIST(instruction_list_c)
       
   592 void *narrow_candidate_datatypes_c::visit(instruction_list_c *symbol) {
       
   593 	/* In order to execute the narrow algoritm correctly, we need to go through the instructions backwards,
       
   594 	 * so we can not use the base class' visitor 
       
   595 	 */
       
   596 	/* In order to execute the narrow algoritm correctly
       
   597 	 * in IL instruction lists containing JMPs to labels that come before the JMP instruction
       
   598 	 * itself, we need to run the narrow algorithm twice on the Instruction List.
       
   599 	 * e.g.:  ...
       
   600 	 *          ld 23
       
   601 	 *   label1:st byte_var
       
   602 	 *          ld 34
       
   603 	 *          JMP label1     
       
   604 	 *
       
   605 	 * Note that the second time we run the narrow, most of the datatypes are already filled
       
   606 	 * in, so it will be able to produce tha correct datatypes for the IL instruction referenced
       
   607 	 * by the label, as in the 2nd pass we already know the datatypes of the JMP instruction!
       
   608 	 */
       
   609 	for(int j = 0; j < 2; j++) {
       
   610 		for(int i = symbol->n-1; i >= 0; i--) {
       
   611 			symbol->elements[i]->accept(*this);
       
   612 		}
       
   613 	}
       
   614 	return NULL;
       
   615 }
       
   616 
       
   617 /* | label ':' [il_incomplete_instruction] eol_list */
       
   618 // SYM_REF2(il_instruction_c, label, il_instruction)
       
   619 // void *visit(instruction_list_c *symbol);
       
   620 void *narrow_candidate_datatypes_c::visit(il_instruction_c *symbol) {
       
   621 	if (NULL == symbol->il_instruction) {
       
   622 		/* this empty/null il_instruction cannot generate the desired datatype. We pass on the request to the previous il instruction. */
       
   623 		set_datatype_in_prev_il_instructions(symbol->datatype, symbol);
       
   624 	} else {
       
   625 		il_instruction_c tmp_prev_il_instruction(NULL, NULL);
       
   626 		/* the narrow algorithm will need access to the intersected candidate_datatype lists of all prev_il_instructions, as well as the 
       
   627 		 * list of the prev_il_instructions.
       
   628 		 * Instead of creating two 'global' (within the class) variables, we create a single il_instruction_c variable (fake_prev_il_instruction),
       
   629 		 * and shove that data into this single variable.
       
   630 		 */
       
   631 		tmp_prev_il_instruction.prev_il_instruction = symbol->prev_il_instruction;
       
   632 		intersect_prev_candidate_datatype_lists(&tmp_prev_il_instruction);
       
   633 		/* Tell the il_instruction the datatype that it must generate - this was chosen by the next il_instruction (remember: we are iterating backwards!) */
       
   634 		fake_prev_il_instruction = &tmp_prev_il_instruction;
       
   635 		symbol->il_instruction->datatype = symbol->datatype;
       
   636 		symbol->il_instruction->accept(*this);
       
   637 		fake_prev_il_instruction = NULL;
       
   638 	}
       
   639 	return NULL;
       
   640 }
       
   641 
       
   642 
       
   643 
       
   644 
       
   645 // void *visit(instruction_list_c *symbol);
       
   646 void *narrow_candidate_datatypes_c::visit(il_simple_operation_c *symbol) {
       
   647 	/* Tell the il_simple_operator the datatype that it must generate - this was chosen by the next il_instruction (we iterate backwards!) */
       
   648 	symbol->il_simple_operator->datatype = symbol->datatype;
       
   649 	/* recursive call to see whether data types are compatible */
       
   650 	il_operand = symbol->il_operand;
       
   651 	symbol->il_simple_operator->accept(*this);
       
   652 	il_operand = NULL;
       
   653 	return NULL;
       
   654 }
       
   655 
       
   656 /* | function_name [il_operand_list] */
       
   657 /* NOTE: The parameters 'called_function_declaration' and 'extensible_param_count' are used to pass data between the stage 3 and stage 4. */
       
   658 // SYM_REF2(il_function_call_c, function_name, il_operand_list, symbol_c *called_function_declaration; int extensible_param_count;)
       
   659 void *narrow_candidate_datatypes_c::visit(il_function_call_c *symbol) {
       
   660 	/* The first parameter of a non formal function call in IL will be the 'current value' (i.e. the prev_il_instruction)
       
   661 	 * In order to be able to handle this without coding special cases, we will simply prepend that symbol
       
   662 	 * to the il_operand_list, and remove it after calling handle_function_call().
       
   663 	 * However, since handle_function_call() will be recursively calling all parameter, and we don't want
       
   664 	 * to do that for the prev_il_instruction (since it has already been visited by the fill_candidate_datatypes_c)
       
   665 	 * we create a new ____ symbol_c ____ object, and copy the relevant info to/from that object before/after
       
   666 	 * the call to handle_function_call().
       
   667 	 *
       
   668 	 * However, if no further paramters are given, then il_operand_list will be NULL, and we will
       
   669 	 * need to create a new object to hold the pointer to prev_il_instruction.
       
   670 	 * This change will also be undone at the end of this method.
       
   671 	 */
       
   672 	symbol_c param_value = *fake_prev_il_instruction; /* copy the candidate_datatypes list */
       
   673 	if (NULL == symbol->il_operand_list)  symbol->il_operand_list = new il_operand_list_c;
       
   674 	if (NULL == symbol->il_operand_list)  ERROR;
       
   675 
       
   676 	((list_c *)symbol->il_operand_list)->insert_element(&param_value, 0);
       
   677 
       
   678 	generic_function_call_t fcall_param = {
       
   679 		/* fcall_param.function_name               = */ symbol->function_name,
       
   680 		/* fcall_param.nonformal_operand_list      = */ symbol->il_operand_list,
       
   681 		/* fcall_param.formal_operand_list         = */ NULL,
       
   682 		/* enum {POU_FB, POU_function} POU_type    = */ generic_function_call_t::POU_function,
       
   683 		/* fcall_param.candidate_functions         = */ symbol->candidate_functions,
       
   684 		/* fcall_param.called_function_declaration = */ symbol->called_function_declaration,
       
   685 		/* fcall_param.extensible_param_count      = */ symbol->extensible_param_count
       
   686 	};
       
   687 
       
   688 	narrow_function_invocation(symbol, fcall_param);
       
   689 	set_datatype_in_prev_il_instructions(param_value.datatype, fake_prev_il_instruction);
       
   690 
       
   691 	/* Undo the changes to the abstract syntax tree we made above... */
       
   692 	((list_c *)symbol->il_operand_list)->remove_element(0);
       
   693 	if (((list_c *)symbol->il_operand_list)->n == 0) {
       
   694 		/* if the list becomes empty, then that means that it did not exist before we made these changes, so we delete it! */
       
   695 		delete 	symbol->il_operand_list;
       
   696 		symbol->il_operand_list = NULL;
       
   697 	}
       
   698 
       
   699 	return NULL;
       
   700 }
       
   701 
       
   702 
       
   703 /* | il_expr_operator '(' [il_operand] eol_list [simple_instr_list] ')' */
       
   704 // SYM_REF3(il_expression_c, il_expr_operator, il_operand, simple_instr_list);
       
   705 void *narrow_candidate_datatypes_c::visit(il_expression_c *symbol) {
       
   706   /* first handle the operation (il_expr_operator) that will use the result coming from the parenthesised IL list (i.e. simple_instr_list) */
       
   707   symbol->il_expr_operator->datatype = symbol->datatype;
       
   708   il_operand = symbol->simple_instr_list; /* This is not a bug! The parenthesised expression will be used as the operator! */
       
   709   symbol->il_expr_operator->accept(*this);
       
   710 
       
   711   /* now give the parenthesised IL list a chance to narrow the datatypes */
       
   712   /* The datatype that is must return was set by the call symbol->il_expr_operator->accept(*this) */
       
   713   il_instruction_c *save_fake_prev_il_instruction = fake_prev_il_instruction; /*this is not really necessary, but lets play it safe */
       
   714   symbol->simple_instr_list->accept(*this);
       
   715   fake_prev_il_instruction = save_fake_prev_il_instruction;
       
   716   return NULL;
       
   717 }
       
   718 
       
   719 
       
   720 
       
   721 
       
   722 /*  il_jump_operator label */
       
   723 void *narrow_candidate_datatypes_c::visit(il_jump_operation_c *symbol) {
       
   724   /* recursive call to fill the datatype */
       
   725   symbol->il_jump_operator->datatype = symbol->datatype;
       
   726   symbol->il_jump_operator->accept(*this);
       
   727   return NULL;
       
   728 }
       
   729 
       
   730 
       
   731 
       
   732 
       
   733 
       
   734 
       
   735 
       
   736 /*   il_call_operator prev_declared_fb_name
       
   737  * | il_call_operator prev_declared_fb_name '(' ')'
       
   738  * | il_call_operator prev_declared_fb_name '(' eol_list ')'
       
   739  * | il_call_operator prev_declared_fb_name '(' il_operand_list ')'
       
   740  * | il_call_operator prev_declared_fb_name '(' eol_list il_param_list ')'
       
   741  */
       
   742 /* NOTE: The parameter 'called_fb_declaration'is used to pass data between stage 3 and stage4 (although currently it is not used in stage 4 */
       
   743 // SYM_REF4(il_fb_call_c, il_call_operator, fb_name, il_operand_list, il_param_list, symbol_c *called_fb_declaration)
       
   744 void *narrow_candidate_datatypes_c::visit(il_fb_call_c *symbol) {
       
   745 	symbol_c *fb_decl = symbol->called_fb_declaration;
       
   746 	
       
   747 	/* Although a call to a non-declared FB is a semantic error, this is currently caught by stage 2! */
       
   748 	if (NULL == fb_decl) ERROR;
       
   749 	if (NULL != symbol->il_operand_list)  narrow_nonformal_call(symbol, fb_decl);
       
   750 	if (NULL != symbol->  il_param_list)     narrow_formal_call(symbol, fb_decl);
       
   751 
       
   752 	/* Let the il_call_operator (CAL, CALC, or CALCN) set the datatype of prev_il_instruction... */
       
   753 	symbol->il_call_operator->datatype = symbol->datatype;
       
   754 	symbol->il_call_operator->accept(*this);
       
   755 	return NULL;
       
   756 }
       
   757 
       
   758 
       
   759 /* | function_name '(' eol_list [il_param_list] ')' */
       
   760 /* NOTE: The parameter 'called_function_declaration' is used to pass data between the stage 3 and stage 4. */
       
   761 // SYM_REF2(il_formal_funct_call_c, function_name, il_param_list, symbol_c *called_function_declaration; int extensible_param_count;)
       
   762 void *narrow_candidate_datatypes_c::visit(il_formal_funct_call_c *symbol) {
       
   763 	generic_function_call_t fcall_param = {
       
   764 		/* fcall_param.function_name               = */ symbol->function_name,
       
   765 		/* fcall_param.nonformal_operand_list      = */ NULL,
       
   766 		/* fcall_param.formal_operand_list         = */ symbol->il_param_list,
       
   767 		/* enum {POU_FB, POU_function} POU_type    = */ generic_function_call_t::POU_function,
       
   768 		/* fcall_param.candidate_functions         = */ symbol->candidate_functions,
       
   769 		/* fcall_param.called_function_declaration = */ symbol->called_function_declaration,
       
   770 		/* fcall_param.extensible_param_count      = */ symbol->extensible_param_count
       
   771 	};
       
   772   
       
   773 	narrow_function_invocation(symbol, fcall_param);
       
   774 	/* The desired datatype of the previous il instruction was already set by narrow_function_invocation() */
       
   775 	return NULL;
       
   776 }
       
   777 
       
   778 
       
   779 //     void *visit(il_operand_list_c *symbol);
       
   780 
       
   781 
       
   782 /* | simple_instr_list il_simple_instruction */
       
   783 /* This object is referenced by il_expression_c objects */
       
   784 void *narrow_candidate_datatypes_c::visit(simple_instr_list_c *symbol) {
       
   785 	if (symbol->n > 0)
       
   786 		symbol->elements[symbol->n - 1]->datatype = symbol->datatype;
       
   787 
       
   788 	for(int i = symbol->n-1; i >= 0; i--) {
       
   789 		symbol->elements[i]->accept(*this);
       
   790 	}
       
   791 	return NULL;
       
   792 }
       
   793 
       
   794 
       
   795 // SYM_REF1(il_simple_instruction_c, il_simple_instruction, symbol_c *prev_il_instruction;)
       
   796 void *narrow_candidate_datatypes_c::visit(il_simple_instruction_c *symbol)	{
       
   797   if (symbol->prev_il_instruction.size() > 1) ERROR; /* There should be no labeled insructions inside an IL expression! */
       
   798     
       
   799   il_instruction_c tmp_prev_il_instruction(NULL, NULL);
       
   800   /* the narrow algorithm will need access to the intersected candidate_datatype lists of all prev_il_instructions, as well as the 
       
   801    * list of the prev_il_instructions.
       
   802    * Instead of creating two 'global' (within the class) variables, we create a single il_instruction_c variable (fake_prev_il_instruction),
       
   803    * and shove that data into this single variable.
       
   804    */
       
   805   if (symbol->prev_il_instruction.size() > 0)
       
   806     tmp_prev_il_instruction.candidate_datatypes = symbol->prev_il_instruction[0]->candidate_datatypes;
       
   807   tmp_prev_il_instruction.prev_il_instruction = symbol->prev_il_instruction;
       
   808   
       
   809    /* copy the candidate_datatypes list */
       
   810   fake_prev_il_instruction = &tmp_prev_il_instruction;
       
   811   symbol->il_simple_instruction->datatype = symbol->datatype;
       
   812   symbol->il_simple_instruction->accept(*this);
       
   813   fake_prev_il_instruction = NULL;
       
   814   return NULL;
       
   815 }
       
   816 
       
   817 //     void *visit(il_param_list_c *symbol);
       
   818 //     void *visit(il_param_assignment_c *symbol);
       
   819 //     void *visit(il_param_out_assignment_c *symbol);
       
   820 
       
   821 
       
   822 /*******************/
       
   823 /* B 2.2 Operators */
       
   824 /*******************/
       
   825 void *narrow_candidate_datatypes_c::narrow_binary_operator(const struct widen_entry widen_table[], symbol_c *symbol, bool *deprecated_operation) {
       
   826 	symbol_c *prev_instruction_type, *operand_type;
       
   827 	int count = 0;
       
   828 
       
   829 	if (NULL == symbol->datatype)
       
   830 		/* next IL instructions were unable to determine the datatype this instruction should produce */
       
   831 		return NULL;
       
   832 
       
   833         if (NULL != deprecated_operation)
       
   834 		*deprecated_operation = false;
       
   835 
       
   836 	/* NOTE 1: the il_operand __may__ be pointing to a parenthesized list of IL instructions. 
       
   837 	 * e.g.  LD 33
       
   838 	 *       AND ( 45
       
   839 	 *            OR 56
       
   840 	 *            )
       
   841 	 *       When we handle the first 'AND' IL_operator, the il_operand will point to an simple_instr_list_c.
       
   842 	 *       In this case, when we call il_operand->accept(*this);, the prev_il_instruction pointer will be overwritten!
       
   843 	 *
       
   844 	 *       We must therefore set the prev_il_instruction->datatype = symbol->datatype;
       
   845 	 *       __before__ calling il_operand->accept(*this) !!
       
   846 	 *
       
   847 	 * NOTE 2: We do not need to call prev_il_instruction->accept(*this), as the object to which prev_il_instruction
       
   848 	 *         is pointing to will be later narrowed by the call from the for() loop of the instruction_list_c
       
   849 	 *         (or simple_instr_list_c), which iterates backwards.
       
   850 	 */
       
   851 	for(unsigned int i = 0; i < fake_prev_il_instruction->candidate_datatypes.size(); i++) {
       
   852 		for(unsigned int j = 0; j < il_operand->candidate_datatypes.size(); j++) {
       
   853 			prev_instruction_type = fake_prev_il_instruction->candidate_datatypes[i];
       
   854 			operand_type = il_operand->candidate_datatypes[j];
       
   855 			if (is_widening_compatible(widen_table, prev_instruction_type, operand_type, symbol->datatype, deprecated_operation)) {
       
   856 				/* set the desired datatype of the previous il instruction */
       
   857 				set_datatype_in_prev_il_instructions(prev_instruction_type, fake_prev_il_instruction);
       
   858 				/* set the datatype for the operand */
       
   859 				il_operand->datatype = operand_type;
       
   860 				
       
   861 				count ++;
       
   862 			}
       
   863 		}
       
   864 	}
       
   865 // 	if (count > 1) ERROR; /* Since we also support SAFE data types, this assertion is not necessarily always tru! */
       
   866 	if (is_type_valid(symbol->datatype) && (count <= 0)) ERROR;
       
   867 
       
   868 	il_operand->accept(*this);
       
   869 	return NULL;
       
   870 }
       
   871 
       
   872 
       
   873 
       
   874 
       
   875 
       
   876 void *narrow_candidate_datatypes_c::handle_il_instruction(symbol_c *symbol) {
       
   877 	if (NULL == symbol->datatype)
       
   878 		/* next IL instructions were unable to determine the datatype this instruction should produce */
       
   879 		return NULL;
       
   880 	/* NOTE 1: the il_operand __may__ be pointing to a parenthesized list of IL instructions. 
       
   881 	 * e.g.  LD 33
       
   882 	 *       AND ( 45
       
   883 	 *            OR 56
       
   884 	 *            )
       
   885 	 *       When we handle the first 'AND' IL_operator, the il_operand will point to an simple_instr_list_c.
       
   886 	 *       In this case, when we call il_operand->accept(*this);, the prev_il_instruction pointer will be overwritten!
       
   887 	 *
       
   888 	 *       We must therefore set the prev_il_instruction->datatype = symbol->datatype;
       
   889 	 *       __before__ calling il_operand->accept(*this) !!
       
   890 	 *
       
   891 	 * NOTE 2: We do not need to call prev_il_instruction->accept(*this), as the object to which prev_il_instruction
       
   892 	 *         is pointing to will be later narrowed by the call from the for() loop of the instruction_list_c
       
   893 	 *         (or simple_instr_list_c), which iterates backwards.
       
   894 	 */
       
   895 	/* set the desired datatype of the previous il instruction */
       
   896 	set_datatype_in_prev_il_instructions(symbol->datatype, fake_prev_il_instruction);
       
   897 	  
       
   898 	/* set the datatype for the operand */
       
   899 	il_operand->datatype = symbol->datatype;
       
   900 	il_operand->accept(*this);
       
   901 	return NULL;
       
   902 }
       
   903 
       
   904 
       
   905 
       
   906 
       
   907 void *narrow_candidate_datatypes_c::visit(LD_operator_c *symbol)   {
       
   908 	if (NULL == symbol->datatype)
       
   909 		/* next IL instructions were unable to determine the datatype this instruction should produce */
       
   910 		return NULL;
       
   911 	/* set the datatype for the operand */
       
   912 	il_operand->datatype = symbol->datatype;
       
   913 	il_operand->accept(*this);
       
   914 	return NULL;
       
   915 }
       
   916 
       
   917 
       
   918 void *narrow_candidate_datatypes_c::visit(LDN_operator_c *symbol)  {
       
   919 	if (NULL == symbol->datatype)
       
   920 		/* next IL instructions were unable to determine the datatype this instruction should produce */
       
   921 		return NULL;
       
   922 	/* set the datatype for the operand */
       
   923 	il_operand->datatype = symbol->datatype;
       
   924 	il_operand->accept(*this);
       
   925 	return NULL;
       
   926 }
       
   927 
       
   928 void *narrow_candidate_datatypes_c::visit(ST_operator_c *symbol) {
       
   929 	if (symbol->candidate_datatypes.size() != 1)
       
   930 		return NULL;
       
   931 	symbol->datatype = symbol->candidate_datatypes[0];
       
   932 	/* set the datatype for the operand */
       
   933 	il_operand->datatype = symbol->datatype;
       
   934 	il_operand->accept(*this);
       
   935 	/* set the desired datatype of the previous il instruction */
       
   936 	set_datatype_in_prev_il_instructions(symbol->datatype, fake_prev_il_instruction);
       
   937 	return NULL;
       
   938 }
       
   939 
       
   940 void *narrow_candidate_datatypes_c::visit(STN_operator_c *symbol) {
       
   941 	if (symbol->candidate_datatypes.size() != 1)
       
   942 		return NULL;
       
   943 	symbol->datatype = symbol->candidate_datatypes[0];
       
   944 	/* set the datatype for the operand */
       
   945 	il_operand->datatype = symbol->datatype;
       
   946 	il_operand->accept(*this);
       
   947 	/* set the desired datatype of the previous il instruction */
       
   948 	set_datatype_in_prev_il_instructions(symbol->datatype, fake_prev_il_instruction);
       
   949 	return NULL;
       
   950 }
       
   951 
       
   952 void *narrow_candidate_datatypes_c::visit(NOT_operator_c *symbol) {
       
   953 	/* NOTE: the standard allows syntax in which the NOT operator is followed by an optional <il_operand>
       
   954 	 *              NOT [<il_operand>]
       
   955 	 *       However, it does not define the semantic of the NOT operation when the <il_operand> is specified.
       
   956 	 *       We therefore consider it an error if an il_operand is specified!
       
   957 	 */
       
   958 	/* We do not change the data type, we simply invert the bits in bit types! */
       
   959 	/* So, we set the desired datatype of the previous il instruction */
       
   960 	set_datatype_in_prev_il_instructions(symbol->datatype, fake_prev_il_instruction);
       
   961 	return NULL;
       
   962 }
       
   963 
       
   964 void *narrow_candidate_datatypes_c::visit(S_operator_c *symbol)  {
       
   965   /* TODO: what if this is a FB call? */
       
   966 	return handle_il_instruction(symbol);
       
   967 }
       
   968 void *narrow_candidate_datatypes_c::visit(R_operator_c *symbol)  {
       
   969   /* TODO: what if this is a FB call? */
       
   970 	return handle_il_instruction(symbol);
       
   971 }
       
   972 
       
   973 
       
   974 void *narrow_candidate_datatypes_c::visit(  S1_operator_c *symbol)  {return narrow_implicit_il_fb_call(symbol, "S1",  symbol->called_fb_declaration);}
       
   975 void *narrow_candidate_datatypes_c::visit(  R1_operator_c *symbol)  {return narrow_implicit_il_fb_call(symbol, "R1",  symbol->called_fb_declaration);}
       
   976 void *narrow_candidate_datatypes_c::visit( CLK_operator_c *symbol)  {return narrow_implicit_il_fb_call(symbol, "CLK", symbol->called_fb_declaration);}
       
   977 void *narrow_candidate_datatypes_c::visit(  CU_operator_c *symbol)  {return narrow_implicit_il_fb_call(symbol, "CU",  symbol->called_fb_declaration);}
       
   978 void *narrow_candidate_datatypes_c::visit(  CD_operator_c *symbol)  {return narrow_implicit_il_fb_call(symbol, "CD",  symbol->called_fb_declaration);}
       
   979 void *narrow_candidate_datatypes_c::visit(  PV_operator_c *symbol)  {return narrow_implicit_il_fb_call(symbol, "PV",  symbol->called_fb_declaration);}
       
   980 void *narrow_candidate_datatypes_c::visit(  IN_operator_c *symbol)  {return narrow_implicit_il_fb_call(symbol, "IN",  symbol->called_fb_declaration);}
       
   981 void *narrow_candidate_datatypes_c::visit(  PT_operator_c *symbol)  {return narrow_implicit_il_fb_call(symbol, "PT",  symbol->called_fb_declaration);}
       
   982 
       
   983 void *narrow_candidate_datatypes_c::visit( AND_operator_c *symbol)  {return narrow_binary_operator(widen_AND_table, symbol);}
       
   984 void *narrow_candidate_datatypes_c::visit(  OR_operator_c *symbol)  {return narrow_binary_operator( widen_OR_table, symbol);}
       
   985 void *narrow_candidate_datatypes_c::visit( XOR_operator_c *symbol)  {return narrow_binary_operator(widen_XOR_table, symbol);}
       
   986 void *narrow_candidate_datatypes_c::visit(ANDN_operator_c *symbol)  {return narrow_binary_operator(widen_AND_table, symbol);}
       
   987 void *narrow_candidate_datatypes_c::visit( ORN_operator_c *symbol)  {return narrow_binary_operator( widen_OR_table, symbol);}
       
   988 void *narrow_candidate_datatypes_c::visit(XORN_operator_c *symbol)  {return narrow_binary_operator(widen_XOR_table, symbol);}
       
   989 void *narrow_candidate_datatypes_c::visit( ADD_operator_c *symbol)  {return narrow_binary_operator(widen_ADD_table, symbol, &(symbol->deprecated_operation));}
       
   990 void *narrow_candidate_datatypes_c::visit( SUB_operator_c *symbol)  {return narrow_binary_operator(widen_SUB_table, symbol, &(symbol->deprecated_operation));}
       
   991 void *narrow_candidate_datatypes_c::visit( MUL_operator_c *symbol)  {return narrow_binary_operator(widen_MUL_table, symbol, &(symbol->deprecated_operation));}
       
   992 void *narrow_candidate_datatypes_c::visit( DIV_operator_c *symbol)  {return narrow_binary_operator(widen_DIV_table, symbol, &(symbol->deprecated_operation));}
       
   993 void *narrow_candidate_datatypes_c::visit( MOD_operator_c *symbol)  {return narrow_binary_operator(widen_MOD_table, symbol);}
       
   994 void *narrow_candidate_datatypes_c::visit(  GT_operator_c *symbol)  {return narrow_binary_operator(widen_CMP_table, symbol);}
       
   995 void *narrow_candidate_datatypes_c::visit(  GE_operator_c *symbol)  {return narrow_binary_operator(widen_CMP_table, symbol);}
       
   996 void *narrow_candidate_datatypes_c::visit(  EQ_operator_c *symbol)  {return narrow_binary_operator(widen_CMP_table, symbol);}
       
   997 void *narrow_candidate_datatypes_c::visit(  LT_operator_c *symbol)  {return narrow_binary_operator(widen_CMP_table, symbol);}
       
   998 void *narrow_candidate_datatypes_c::visit(  LE_operator_c *symbol)  {return narrow_binary_operator(widen_CMP_table, symbol);}
       
   999 void *narrow_candidate_datatypes_c::visit(  NE_operator_c *symbol)  {return narrow_binary_operator(widen_CMP_table, symbol);}
       
  1000 
       
  1001 
       
  1002 
       
  1003 
       
  1004 void *narrow_candidate_datatypes_c::narrow_conditional_flow_control_IL_instruction(symbol_c *symbol) {
       
  1005 	/* if the next IL instructions needs us to provide a datatype other than a bool, 
       
  1006 	 * then we have an internal compiler error - most likely in fill_candidate_datatypes_c 
       
  1007 	 */
       
  1008 	if ((NULL != symbol->datatype) && (!is_ANY_BOOL_compatible(symbol->datatype))) ERROR;
       
  1009 	if (symbol->candidate_datatypes.size() > 1) ERROR;
       
  1010 
       
  1011 	/* NOTE: If there is no IL instruction following this CALC, CALCN, JMPC, JMPC, ..., instruction,
       
  1012 	 *       we must still provide a bool_type_name_c datatype (if possible, i.e. if it exists in the candidate datatype list).
       
  1013 	 *       If it is not possible, we set it to NULL
       
  1014 	 */
       
  1015 	if (symbol->candidate_datatypes.size() == 0)    symbol->datatype = NULL;
       
  1016 	else    symbol->datatype = symbol->candidate_datatypes[0]; /* i.e. a bool_type_name_c! */
       
  1017 	if ((NULL != symbol->datatype) && (!is_ANY_BOOL_compatible(symbol->datatype))) ERROR;
       
  1018 
       
  1019 	/* set the required datatype of the previous IL instruction, i.e. a bool_type_name_c! */
       
  1020 	set_datatype_in_prev_il_instructions(symbol->datatype, fake_prev_il_instruction);
       
  1021 	return NULL;
       
  1022 }
       
  1023 
       
  1024 
       
  1025 // SYM_REF0(CAL_operator_c)
       
  1026 // SYM_REF0(CALC_operator_c)
       
  1027 // SYM_REF0(CALCN_operator_c)
       
  1028 /* called from visit(il_fb_call_c *) {symbol->il_call_operator->accpet(*this)} */
       
  1029 /* NOTE: The CAL, JMP and RET instructions simply set the desired datatype of the previous il instruction since they do not change the value in the current/default IL variable */
       
  1030 /* called from il_fb_call_c (symbol->il_call_operator->accpet(*this) ) */
       
  1031 void *narrow_candidate_datatypes_c::visit(  CAL_operator_c *symbol) {set_datatype_in_prev_il_instructions(symbol->datatype, fake_prev_il_instruction); return NULL;}
       
  1032 void *narrow_candidate_datatypes_c::visit(  RET_operator_c *symbol) {set_datatype_in_prev_il_instructions(symbol->datatype, fake_prev_il_instruction); return NULL;}
       
  1033 void *narrow_candidate_datatypes_c::visit(  JMP_operator_c *symbol) {set_datatype_in_prev_il_instructions(symbol->datatype, fake_prev_il_instruction); return NULL;}
       
  1034 void *narrow_candidate_datatypes_c::visit( CALC_operator_c *symbol) {return narrow_conditional_flow_control_IL_instruction(symbol);}
       
  1035 void *narrow_candidate_datatypes_c::visit(CALCN_operator_c *symbol) {return narrow_conditional_flow_control_IL_instruction(symbol);}
       
  1036 void *narrow_candidate_datatypes_c::visit( RETC_operator_c *symbol) {return narrow_conditional_flow_control_IL_instruction(symbol);}
       
  1037 void *narrow_candidate_datatypes_c::visit(RETCN_operator_c *symbol) {return narrow_conditional_flow_control_IL_instruction(symbol);}
       
  1038 void *narrow_candidate_datatypes_c::visit( JMPC_operator_c *symbol) {return narrow_conditional_flow_control_IL_instruction(symbol);}
       
  1039 void *narrow_candidate_datatypes_c::visit(JMPCN_operator_c *symbol) {return narrow_conditional_flow_control_IL_instruction(symbol);}
       
  1040 
       
  1041 /* Symbol class handled together with function call checks */
       
  1042 // void *visit(il_assign_operator_c *symbol, variable_name);
       
  1043 /* Symbol class handled together with function call checks */
       
  1044 // void *visit(il_assign_operator_c *symbol, option, variable_name);
       
  1045 
       
  1046 
       
  1047 /***************************************/
       
  1048 /* B.3 - Language ST (Structured Text) */
       
  1049 /***************************************/
       
  1050 /***********************/
       
  1051 /* B 3.1 - Expressions */
       
  1052 /***********************/
       
  1053 void *narrow_candidate_datatypes_c::narrow_binary_expression(const struct widen_entry widen_table[], symbol_c *symbol, symbol_c *l_expr, symbol_c *r_expr, bool *deprecated_operation) {
       
  1054 	symbol_c *l_type, *r_type;
       
  1055 	int count = 0;
       
  1056 
       
  1057         if (NULL != deprecated_operation)
       
  1058 		*deprecated_operation = false;
       
  1059 
       
  1060 	for(unsigned int i = 0; i < l_expr->candidate_datatypes.size(); i++) {
       
  1061 		for(unsigned int j = 0; j < r_expr->candidate_datatypes.size(); j++) {
       
  1062 			/* test widening compatibility */
       
  1063 			l_type = l_expr->candidate_datatypes[i];
       
  1064 			r_type = r_expr->candidate_datatypes[j];
       
  1065 			if (is_widening_compatible(widen_table, l_type, r_type, symbol->datatype, deprecated_operation)) {
       
  1066 				l_expr->datatype = l_type;
       
  1067 				r_expr->datatype = r_type;
       
  1068 				count ++;
       
  1069 			}
       
  1070 		}
       
  1071 	}
       
  1072 // 	if (count > 1) ERROR; /* Since we also support SAFE data types, this assertion is not necessarily always tru! */
       
  1073 	if (is_type_valid(symbol->datatype) && (count <= 0)) ERROR;
       
  1074 	
       
  1075 	l_expr->accept(*this);
       
  1076 	r_expr->accept(*this);
       
  1077 	return NULL;
       
  1078 }
       
  1079 
       
  1080 
       
  1081 
       
  1082 void *narrow_candidate_datatypes_c::visit(    or_expression_c *symbol) {return narrow_binary_expression( widen_OR_table, symbol, symbol->l_exp, symbol->r_exp);}
       
  1083 void *narrow_candidate_datatypes_c::visit(   xor_expression_c *symbol) {return narrow_binary_expression(widen_XOR_table, symbol, symbol->l_exp, symbol->r_exp);}
       
  1084 void *narrow_candidate_datatypes_c::visit(   and_expression_c *symbol) {return narrow_binary_expression(widen_AND_table, symbol, symbol->l_exp, symbol->r_exp);}
       
  1085 
       
  1086 void *narrow_candidate_datatypes_c::visit(   equ_expression_c *symbol) {return narrow_binary_expression(widen_CMP_table, symbol, symbol->l_exp, symbol->r_exp);}
       
  1087 void *narrow_candidate_datatypes_c::visit(notequ_expression_c *symbol) {return narrow_binary_expression(widen_CMP_table, symbol, symbol->l_exp, symbol->r_exp);}
       
  1088 void *narrow_candidate_datatypes_c::visit(    lt_expression_c *symbol) {return narrow_binary_expression(widen_CMP_table, symbol, symbol->l_exp, symbol->r_exp);}
       
  1089 void *narrow_candidate_datatypes_c::visit(    gt_expression_c *symbol) {return narrow_binary_expression(widen_CMP_table, symbol, symbol->l_exp, symbol->r_exp);}
       
  1090 void *narrow_candidate_datatypes_c::visit(    le_expression_c *symbol) {return narrow_binary_expression(widen_CMP_table, symbol, symbol->l_exp, symbol->r_exp);}
       
  1091 void *narrow_candidate_datatypes_c::visit(    ge_expression_c *symbol) {return narrow_binary_expression(widen_CMP_table, symbol, symbol->l_exp, symbol->r_exp);}
       
  1092 
       
  1093 void *narrow_candidate_datatypes_c::visit(   add_expression_c *symbol) {return narrow_binary_expression(widen_ADD_table, symbol, symbol->l_exp, symbol->r_exp, &symbol->deprecated_operation);}
       
  1094 void *narrow_candidate_datatypes_c::visit(   sub_expression_c *symbol) {return narrow_binary_expression(widen_SUB_table, symbol, symbol->l_exp, symbol->r_exp, &symbol->deprecated_operation);}
       
  1095 void *narrow_candidate_datatypes_c::visit(   mul_expression_c *symbol) {return narrow_binary_expression(widen_MUL_table, symbol, symbol->l_exp, symbol->r_exp, &symbol->deprecated_operation);}
       
  1096 void *narrow_candidate_datatypes_c::visit(   div_expression_c *symbol) {return narrow_binary_expression(widen_DIV_table, symbol, symbol->l_exp, symbol->r_exp, &symbol->deprecated_operation);}
       
  1097 void *narrow_candidate_datatypes_c::visit(   mod_expression_c *symbol) {return narrow_binary_expression(widen_MOD_table, symbol, symbol->l_exp, symbol->r_exp);}
       
  1098 void *narrow_candidate_datatypes_c::visit( power_expression_c *symbol) {return narrow_binary_expression(widen_EXPT_table,symbol, symbol->l_exp, symbol->r_exp);}
       
  1099 
       
  1100 
       
  1101 void *narrow_candidate_datatypes_c::visit(neg_expression_c *symbol) {
       
  1102 	symbol->exp->datatype = symbol->datatype;
       
  1103 	symbol->exp->accept(*this);
       
  1104 	return NULL;
       
  1105 }
       
  1106 
       
  1107 
       
  1108 void *narrow_candidate_datatypes_c::visit(not_expression_c *symbol) {
       
  1109 	symbol->exp->datatype = symbol->datatype;
       
  1110 	symbol->exp->accept(*this);
       
  1111 	return NULL;
       
  1112 }
       
  1113 
       
  1114 
       
  1115 
       
  1116 /* NOTE: The parameter 'called_function_declaration', 'extensible_param_count' and 'candidate_functions' are used to pass data between the stage 3 and stage 4. */
       
  1117 /*    formal_param_list -> may be NULL ! */
       
  1118 /* nonformal_param_list -> may be NULL ! */
       
  1119 // SYM_REF3(function_invocation_c, function_name, formal_param_list, nonformal_param_list, symbol_c *called_function_declaration; int extensible_param_count; std::vector <symbol_c *> candidate_functions;)
       
  1120 void *narrow_candidate_datatypes_c::visit(function_invocation_c *symbol) {
       
  1121 	generic_function_call_t fcall_param = {
       
  1122 		/* fcall_param.function_name               = */ symbol->function_name,
       
  1123 		/* fcall_param.nonformal_operand_list      = */ symbol->nonformal_param_list,
       
  1124 		/* fcall_param.formal_operand_list         = */ symbol->formal_param_list,
       
  1125 		/* enum {POU_FB, POU_function} POU_type    = */ generic_function_call_t::POU_function,
       
  1126 		/* fcall_param.candidate_functions         = */ symbol->candidate_functions,
       
  1127 		/* fcall_param.called_function_declaration = */ symbol->called_function_declaration,
       
  1128 		/* fcall_param.extensible_param_count      = */ symbol->extensible_param_count
       
  1129 	};
       
  1130   
       
  1131 	narrow_function_invocation(symbol, fcall_param);
       
  1132 	return NULL;
       
  1133 }
       
  1134 
       
  1135 /********************/
       
  1136 /* B 3.2 Statements */
       
  1137 /********************/
       
  1138 
       
  1139 
       
  1140 /*********************************/
       
  1141 /* B 3.2.1 Assignment Statements */
       
  1142 /*********************************/
       
  1143 
       
  1144 void *narrow_candidate_datatypes_c::visit(assignment_statement_c *symbol) {
       
  1145 	if (symbol->candidate_datatypes.size() != 1)
       
  1146 		return NULL;
       
  1147 	symbol->datatype = symbol->candidate_datatypes[0];
       
  1148 	symbol->l_exp->datatype = symbol->datatype;
       
  1149 	symbol->l_exp->accept(*this);
       
  1150 	symbol->r_exp->datatype = symbol->datatype;
       
  1151 	symbol->r_exp->accept(*this);
       
  1152 	return NULL;
       
  1153 }
       
  1154 
       
  1155 
       
  1156 /*****************************************/
       
  1157 /* B 3.2.2 Subprogram Control Statements */
       
  1158 /*****************************************/
       
  1159 
       
  1160 void *narrow_candidate_datatypes_c::visit(fb_invocation_c *symbol) {
       
  1161 	/* Note: We do not use the symbol->called_fb_declaration value (set in fill_candidate_datatypes_c)
       
  1162 	 *       because we try to identify any other datatype errors in the expressions used in the 
       
  1163 	 *       parameters to the FB call (e.g.  fb_var(var1 * 56 + func(var * 43)) )
       
  1164 	 *       even it the call to the FB is invalid. 
       
  1165 	 *       This makes sense because it may be errors in those expressions which are
       
  1166 	 *       making this an invalid call, so it makes sense to point them out to the user!
       
  1167 	 */
       
  1168 	symbol_c *fb_decl = search_varfb_instance_type->get_basetype_decl(symbol->fb_name);
       
  1169 
       
  1170 	/* Although a call to a non-declared FB is a semantic error, this is currently caught by stage 2! */
       
  1171 	if (NULL == fb_decl) ERROR;
       
  1172 	if (NULL != symbol->nonformal_param_list)  narrow_nonformal_call(symbol, fb_decl);
       
  1173 	if (NULL != symbol->   formal_param_list)     narrow_formal_call(symbol, fb_decl);
       
  1174 
       
  1175 	return NULL;
       
  1176 }
       
  1177 
       
  1178 
       
  1179 /********************************/
       
  1180 /* B 3.2.3 Selection Statements */
       
  1181 /********************************/
       
  1182 
       
  1183 void *narrow_candidate_datatypes_c::visit(if_statement_c *symbol) {
       
  1184 	for(unsigned int i = 0; i < symbol->expression->candidate_datatypes.size(); i++) {
       
  1185 		if (is_ANY_BOOL_compatible(symbol->expression->candidate_datatypes[i]))
       
  1186 			symbol->expression->datatype = symbol->expression->candidate_datatypes[i];
       
  1187 	}
       
  1188 	symbol->expression->accept(*this);
       
  1189 	if (NULL != symbol->statement_list)
       
  1190 		symbol->statement_list->accept(*this);
       
  1191 	if (NULL != symbol->elseif_statement_list)
       
  1192 		symbol->elseif_statement_list->accept(*this);
       
  1193 	if (NULL != symbol->else_statement_list)
       
  1194 		symbol->else_statement_list->accept(*this);
       
  1195 	return NULL;
       
  1196 }
       
  1197 
       
  1198 
       
  1199 void *narrow_candidate_datatypes_c::visit(elseif_statement_c *symbol) {
       
  1200 	for (unsigned int i = 0; i < symbol->expression->candidate_datatypes.size(); i++) {
       
  1201 		if (is_ANY_BOOL_compatible(symbol->expression->candidate_datatypes[i]))
       
  1202 			symbol->expression->datatype = symbol->expression->candidate_datatypes[i];
       
  1203 	}
       
  1204 	symbol->expression->accept(*this);
       
  1205 	if (NULL != symbol->statement_list)
       
  1206 		symbol->statement_list->accept(*this);
       
  1207 	return NULL;
       
  1208 }
       
  1209 
       
  1210 /* CASE expression OF case_element_list ELSE statement_list END_CASE */
       
  1211 // SYM_REF3(case_statement_c, expression, case_element_list, statement_list)
       
  1212 void *narrow_candidate_datatypes_c::visit(case_statement_c *symbol) {
       
  1213 	for (unsigned int i = 0; i < symbol->expression->candidate_datatypes.size(); i++) {
       
  1214 		if ((is_ANY_INT_type(symbol->expression->candidate_datatypes[i]))
       
  1215 				 || (search_base_type.type_is_enumerated(symbol->expression->candidate_datatypes[i])))
       
  1216 			symbol->expression->datatype = symbol->expression->candidate_datatypes[i];
       
  1217 	}
       
  1218 	symbol->expression->accept(*this);
       
  1219 	if (NULL != symbol->statement_list)
       
  1220 		symbol->statement_list->accept(*this);
       
  1221 	if (NULL != symbol->case_element_list) {
       
  1222 		symbol->case_element_list->datatype = symbol->expression->datatype;
       
  1223 		symbol->case_element_list->accept(*this);
       
  1224 	}
       
  1225 	return NULL;
       
  1226 }
       
  1227 
       
  1228 /* helper symbol for case_statement */
       
  1229 // SYM_LIST(case_element_list_c)
       
  1230 void *narrow_candidate_datatypes_c::visit(case_element_list_c *symbol) {
       
  1231 	for (int i = 0; i < symbol->n; i++) {
       
  1232 		symbol->elements[i]->datatype = symbol->datatype;
       
  1233 		symbol->elements[i]->accept(*this);
       
  1234 	}
       
  1235 	return NULL;
       
  1236 }
       
  1237 
       
  1238 /*  case_list ':' statement_list */
       
  1239 // SYM_REF2(case_element_c, case_list, statement_list)
       
  1240 void *narrow_candidate_datatypes_c::visit(case_element_c *symbol) {
       
  1241 	symbol->case_list->datatype = symbol->datatype;
       
  1242 	symbol->case_list->accept(*this);
       
  1243 	symbol->statement_list->accept(*this);
       
  1244 	return NULL;
       
  1245 }
       
  1246 
       
  1247 // SYM_LIST(case_list_c)
       
  1248 void *narrow_candidate_datatypes_c::visit(case_list_c *symbol) {
       
  1249 	for (int i = 0; i < symbol->n; i++) {
       
  1250 		for (unsigned int k = 0; k < symbol->elements[i]->candidate_datatypes.size(); k++) {
       
  1251 			if (is_type_equal(symbol->datatype, symbol->elements[i]->candidate_datatypes[k]))
       
  1252 				symbol->elements[i]->datatype = symbol->elements[i]->candidate_datatypes[k];
       
  1253 		}
       
  1254 		/* NOTE: this may be an integer, a subrange_c, or a enumerated value! */
       
  1255 		symbol->elements[i]->accept(*this);
       
  1256 	}
       
  1257 	return NULL;
       
  1258 }
       
  1259 
       
  1260 
       
  1261 /********************************/
       
  1262 /* B 3.2.4 Iteration Statements */
       
  1263 /********************************/
       
  1264 void *narrow_candidate_datatypes_c::visit(for_statement_c *symbol) {
       
  1265 	/* Control variable */
       
  1266 	for(unsigned int i = 0; i < symbol->control_variable->candidate_datatypes.size(); i++) {
       
  1267 		if (is_ANY_INT_type(symbol->control_variable->candidate_datatypes[i])) {
       
  1268 			symbol->control_variable->datatype = symbol->control_variable->candidate_datatypes[i];
       
  1269 		}
       
  1270 	}
       
  1271 	symbol->control_variable->accept(*this);
       
  1272 	/* BEG expression */
       
  1273 	for(unsigned int i = 0; i < symbol->beg_expression->candidate_datatypes.size(); i++) {
       
  1274 		if (is_type_equal(symbol->control_variable->datatype,symbol->beg_expression->candidate_datatypes[i]) &&
       
  1275 				is_ANY_INT_type(symbol->beg_expression->candidate_datatypes[i])) {
       
  1276 			symbol->beg_expression->datatype = symbol->beg_expression->candidate_datatypes[i];
       
  1277 		}
       
  1278 	}
       
  1279 	symbol->beg_expression->accept(*this);
       
  1280 	/* END expression */
       
  1281 	for(unsigned int i = 0; i < symbol->end_expression->candidate_datatypes.size(); i++) {
       
  1282 		if (is_type_equal(symbol->control_variable->datatype,symbol->end_expression->candidate_datatypes[i]) &&
       
  1283 				is_ANY_INT_type(symbol->end_expression->candidate_datatypes[i])) {
       
  1284 			symbol->end_expression->datatype = symbol->end_expression->candidate_datatypes[i];
       
  1285 		}
       
  1286 	}
       
  1287 	symbol->end_expression->accept(*this);
       
  1288 	/* BY expression */
       
  1289 	if (NULL != symbol->by_expression) {
       
  1290 		for(unsigned int i = 0; i < symbol->by_expression->candidate_datatypes.size(); i++) {
       
  1291 			if (is_type_equal(symbol->control_variable->datatype,symbol->by_expression->candidate_datatypes[i]) &&
       
  1292 					is_ANY_INT_type(symbol->by_expression->candidate_datatypes[i])) {
       
  1293 				symbol->by_expression->datatype = symbol->by_expression->candidate_datatypes[i];
       
  1294 			}
       
  1295 		}
       
  1296 		symbol->by_expression->accept(*this);
       
  1297 	}
       
  1298 	if (NULL != symbol->statement_list)
       
  1299 		symbol->statement_list->accept(*this);
       
  1300 	return NULL;
       
  1301 }
       
  1302 
       
  1303 void *narrow_candidate_datatypes_c::visit(while_statement_c *symbol) {
       
  1304 	for (unsigned int i = 0; i < symbol->expression->candidate_datatypes.size(); i++) {
       
  1305 		if(is_BOOL_type(symbol->expression->candidate_datatypes[i]))
       
  1306 			symbol->expression->datatype = symbol->expression->candidate_datatypes[i];
       
  1307 	}
       
  1308 	symbol->expression->accept(*this);
       
  1309 	if (NULL != symbol->statement_list)
       
  1310 		symbol->statement_list->accept(*this);
       
  1311 	return NULL;
       
  1312 }
       
  1313 
       
  1314 void *narrow_candidate_datatypes_c::visit(repeat_statement_c *symbol) {
       
  1315 	for (unsigned int i = 0; i < symbol->expression->candidate_datatypes.size(); i++) {
       
  1316 		if(is_BOOL_type(symbol->expression->candidate_datatypes[i]))
       
  1317 			symbol->expression->datatype = symbol->expression->candidate_datatypes[i];
       
  1318 	}
       
  1319 	symbol->expression->accept(*this);
       
  1320 	if (NULL != symbol->statement_list)
       
  1321 		symbol->statement_list->accept(*this);
       
  1322 	return NULL;
       
  1323 }
       
  1324 
       
  1325 
       
  1326 
       
  1327 
       
  1328