fp@2685: /* Intel(R) Gigabit Ethernet Linux driver fp@2685: * Copyright(c) 2007-2014 Intel Corporation. fp@2685: * This program is free software; you can redistribute it and/or modify it fp@2685: * under the terms and conditions of the GNU General Public License, fp@2685: * version 2, as published by the Free Software Foundation. fp@2685: * fp@2685: * This program is distributed in the hope it will be useful, but WITHOUT fp@2685: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or fp@2685: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for fp@2685: * more details. fp@2685: * fp@2685: * You should have received a copy of the GNU General Public License along with fp@2685: * this program; if not, see . fp@2685: * fp@2685: * The full GNU General Public License is included in this distribution in fp@2685: * the file called "COPYING". fp@2685: * fp@2685: * Contact Information: fp@2685: * e1000-devel Mailing List fp@2685: * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 fp@2685: */ fp@2685: fp@2685: #include fp@2685: #include fp@2685: fp@2685: #include "e1000_mac-3.18-ethercat.h" fp@2685: #include "e1000_nvm-3.18-ethercat.h" fp@2685: fp@2685: /** fp@2685: * igb_raise_eec_clk - Raise EEPROM clock fp@2685: * @hw: pointer to the HW structure fp@2685: * @eecd: pointer to the EEPROM fp@2685: * fp@2685: * Enable/Raise the EEPROM clock bit. fp@2685: **/ fp@2685: static void igb_raise_eec_clk(struct e1000_hw *hw, u32 *eecd) fp@2685: { fp@2685: *eecd = *eecd | E1000_EECD_SK; fp@2685: wr32(E1000_EECD, *eecd); fp@2685: wrfl(); fp@2685: udelay(hw->nvm.delay_usec); fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_lower_eec_clk - Lower EEPROM clock fp@2685: * @hw: pointer to the HW structure fp@2685: * @eecd: pointer to the EEPROM fp@2685: * fp@2685: * Clear/Lower the EEPROM clock bit. fp@2685: **/ fp@2685: static void igb_lower_eec_clk(struct e1000_hw *hw, u32 *eecd) fp@2685: { fp@2685: *eecd = *eecd & ~E1000_EECD_SK; fp@2685: wr32(E1000_EECD, *eecd); fp@2685: wrfl(); fp@2685: udelay(hw->nvm.delay_usec); fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_shift_out_eec_bits - Shift data bits our to the EEPROM fp@2685: * @hw: pointer to the HW structure fp@2685: * @data: data to send to the EEPROM fp@2685: * @count: number of bits to shift out fp@2685: * fp@2685: * We need to shift 'count' bits out to the EEPROM. So, the value in the fp@2685: * "data" parameter will be shifted out to the EEPROM one bit at a time. fp@2685: * In order to do this, "data" must be broken down into bits. fp@2685: **/ fp@2685: static void igb_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count) fp@2685: { fp@2685: struct e1000_nvm_info *nvm = &hw->nvm; fp@2685: u32 eecd = rd32(E1000_EECD); fp@2685: u32 mask; fp@2685: fp@2685: mask = 0x01 << (count - 1); fp@2685: if (nvm->type == e1000_nvm_eeprom_spi) fp@2685: eecd |= E1000_EECD_DO; fp@2685: fp@2685: do { fp@2685: eecd &= ~E1000_EECD_DI; fp@2685: fp@2685: if (data & mask) fp@2685: eecd |= E1000_EECD_DI; fp@2685: fp@2685: wr32(E1000_EECD, eecd); fp@2685: wrfl(); fp@2685: fp@2685: udelay(nvm->delay_usec); fp@2685: fp@2685: igb_raise_eec_clk(hw, &eecd); fp@2685: igb_lower_eec_clk(hw, &eecd); fp@2685: fp@2685: mask >>= 1; fp@2685: } while (mask); fp@2685: fp@2685: eecd &= ~E1000_EECD_DI; fp@2685: wr32(E1000_EECD, eecd); fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_shift_in_eec_bits - Shift data bits in from the EEPROM fp@2685: * @hw: pointer to the HW structure fp@2685: * @count: number of bits to shift in fp@2685: * fp@2685: * In order to read a register from the EEPROM, we need to shift 'count' bits fp@2685: * in from the EEPROM. Bits are "shifted in" by raising the clock input to fp@2685: * the EEPROM (setting the SK bit), and then reading the value of the data out fp@2685: * "DO" bit. During this "shifting in" process the data in "DI" bit should fp@2685: * always be clear. fp@2685: **/ fp@2685: static u16 igb_shift_in_eec_bits(struct e1000_hw *hw, u16 count) fp@2685: { fp@2685: u32 eecd; fp@2685: u32 i; fp@2685: u16 data; fp@2685: fp@2685: eecd = rd32(E1000_EECD); fp@2685: fp@2685: eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); fp@2685: data = 0; fp@2685: fp@2685: for (i = 0; i < count; i++) { fp@2685: data <<= 1; fp@2685: igb_raise_eec_clk(hw, &eecd); fp@2685: fp@2685: eecd = rd32(E1000_EECD); fp@2685: fp@2685: eecd &= ~E1000_EECD_DI; fp@2685: if (eecd & E1000_EECD_DO) fp@2685: data |= 1; fp@2685: fp@2685: igb_lower_eec_clk(hw, &eecd); fp@2685: } fp@2685: fp@2685: return data; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_poll_eerd_eewr_done - Poll for EEPROM read/write completion fp@2685: * @hw: pointer to the HW structure fp@2685: * @ee_reg: EEPROM flag for polling fp@2685: * fp@2685: * Polls the EEPROM status bit for either read or write completion based fp@2685: * upon the value of 'ee_reg'. fp@2685: **/ fp@2685: static s32 igb_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg) fp@2685: { fp@2685: u32 attempts = 100000; fp@2685: u32 i, reg = 0; fp@2685: s32 ret_val = -E1000_ERR_NVM; fp@2685: fp@2685: for (i = 0; i < attempts; i++) { fp@2685: if (ee_reg == E1000_NVM_POLL_READ) fp@2685: reg = rd32(E1000_EERD); fp@2685: else fp@2685: reg = rd32(E1000_EEWR); fp@2685: fp@2685: if (reg & E1000_NVM_RW_REG_DONE) { fp@2685: ret_val = 0; fp@2685: break; fp@2685: } fp@2685: fp@2685: udelay(5); fp@2685: } fp@2685: fp@2685: return ret_val; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_acquire_nvm - Generic request for access to EEPROM fp@2685: * @hw: pointer to the HW structure fp@2685: * fp@2685: * Set the EEPROM access request bit and wait for EEPROM access grant bit. fp@2685: * Return successful if access grant bit set, else clear the request for fp@2685: * EEPROM access and return -E1000_ERR_NVM (-1). fp@2685: **/ fp@2685: s32 igb_acquire_nvm(struct e1000_hw *hw) fp@2685: { fp@2685: u32 eecd = rd32(E1000_EECD); fp@2685: s32 timeout = E1000_NVM_GRANT_ATTEMPTS; fp@2685: s32 ret_val = 0; fp@2685: fp@2685: fp@2685: wr32(E1000_EECD, eecd | E1000_EECD_REQ); fp@2685: eecd = rd32(E1000_EECD); fp@2685: fp@2685: while (timeout) { fp@2685: if (eecd & E1000_EECD_GNT) fp@2685: break; fp@2685: udelay(5); fp@2685: eecd = rd32(E1000_EECD); fp@2685: timeout--; fp@2685: } fp@2685: fp@2685: if (!timeout) { fp@2685: eecd &= ~E1000_EECD_REQ; fp@2685: wr32(E1000_EECD, eecd); fp@2685: hw_dbg("Could not acquire NVM grant\n"); fp@2685: ret_val = -E1000_ERR_NVM; fp@2685: } fp@2685: fp@2685: return ret_val; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_standby_nvm - Return EEPROM to standby state fp@2685: * @hw: pointer to the HW structure fp@2685: * fp@2685: * Return the EEPROM to a standby state. fp@2685: **/ fp@2685: static void igb_standby_nvm(struct e1000_hw *hw) fp@2685: { fp@2685: struct e1000_nvm_info *nvm = &hw->nvm; fp@2685: u32 eecd = rd32(E1000_EECD); fp@2685: fp@2685: if (nvm->type == e1000_nvm_eeprom_spi) { fp@2685: /* Toggle CS to flush commands */ fp@2685: eecd |= E1000_EECD_CS; fp@2685: wr32(E1000_EECD, eecd); fp@2685: wrfl(); fp@2685: udelay(nvm->delay_usec); fp@2685: eecd &= ~E1000_EECD_CS; fp@2685: wr32(E1000_EECD, eecd); fp@2685: wrfl(); fp@2685: udelay(nvm->delay_usec); fp@2685: } fp@2685: } fp@2685: fp@2685: /** fp@2685: * e1000_stop_nvm - Terminate EEPROM command fp@2685: * @hw: pointer to the HW structure fp@2685: * fp@2685: * Terminates the current command by inverting the EEPROM's chip select pin. fp@2685: **/ fp@2685: static void e1000_stop_nvm(struct e1000_hw *hw) fp@2685: { fp@2685: u32 eecd; fp@2685: fp@2685: eecd = rd32(E1000_EECD); fp@2685: if (hw->nvm.type == e1000_nvm_eeprom_spi) { fp@2685: /* Pull CS high */ fp@2685: eecd |= E1000_EECD_CS; fp@2685: igb_lower_eec_clk(hw, &eecd); fp@2685: } fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_release_nvm - Release exclusive access to EEPROM fp@2685: * @hw: pointer to the HW structure fp@2685: * fp@2685: * Stop any current commands to the EEPROM and clear the EEPROM request bit. fp@2685: **/ fp@2685: void igb_release_nvm(struct e1000_hw *hw) fp@2685: { fp@2685: u32 eecd; fp@2685: fp@2685: e1000_stop_nvm(hw); fp@2685: fp@2685: eecd = rd32(E1000_EECD); fp@2685: eecd &= ~E1000_EECD_REQ; fp@2685: wr32(E1000_EECD, eecd); fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_ready_nvm_eeprom - Prepares EEPROM for read/write fp@2685: * @hw: pointer to the HW structure fp@2685: * fp@2685: * Setups the EEPROM for reading and writing. fp@2685: **/ fp@2685: static s32 igb_ready_nvm_eeprom(struct e1000_hw *hw) fp@2685: { fp@2685: struct e1000_nvm_info *nvm = &hw->nvm; fp@2685: u32 eecd = rd32(E1000_EECD); fp@2685: s32 ret_val = 0; fp@2685: u16 timeout = 0; fp@2685: u8 spi_stat_reg; fp@2685: fp@2685: fp@2685: if (nvm->type == e1000_nvm_eeprom_spi) { fp@2685: /* Clear SK and CS */ fp@2685: eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); fp@2685: wr32(E1000_EECD, eecd); fp@2685: wrfl(); fp@2685: udelay(1); fp@2685: timeout = NVM_MAX_RETRY_SPI; fp@2685: fp@2685: /* Read "Status Register" repeatedly until the LSB is cleared. fp@2685: * The EEPROM will signal that the command has been completed fp@2685: * by clearing bit 0 of the internal status register. If it's fp@2685: * not cleared within 'timeout', then error out. fp@2685: */ fp@2685: while (timeout) { fp@2685: igb_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI, fp@2685: hw->nvm.opcode_bits); fp@2685: spi_stat_reg = (u8)igb_shift_in_eec_bits(hw, 8); fp@2685: if (!(spi_stat_reg & NVM_STATUS_RDY_SPI)) fp@2685: break; fp@2685: fp@2685: udelay(5); fp@2685: igb_standby_nvm(hw); fp@2685: timeout--; fp@2685: } fp@2685: fp@2685: if (!timeout) { fp@2685: hw_dbg("SPI NVM Status error\n"); fp@2685: ret_val = -E1000_ERR_NVM; fp@2685: goto out; fp@2685: } fp@2685: } fp@2685: fp@2685: out: fp@2685: return ret_val; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_read_nvm_spi - Read EEPROM's using SPI fp@2685: * @hw: pointer to the HW structure fp@2685: * @offset: offset of word in the EEPROM to read fp@2685: * @words: number of words to read fp@2685: * @data: word read from the EEPROM fp@2685: * fp@2685: * Reads a 16 bit word from the EEPROM. fp@2685: **/ fp@2685: s32 igb_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) fp@2685: { fp@2685: struct e1000_nvm_info *nvm = &hw->nvm; fp@2685: u32 i = 0; fp@2685: s32 ret_val; fp@2685: u16 word_in; fp@2685: u8 read_opcode = NVM_READ_OPCODE_SPI; fp@2685: fp@2685: /* A check for invalid values: offset too large, too many words, fp@2685: * and not enough words. fp@2685: */ fp@2685: if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || fp@2685: (words == 0)) { fp@2685: hw_dbg("nvm parameter(s) out of bounds\n"); fp@2685: ret_val = -E1000_ERR_NVM; fp@2685: goto out; fp@2685: } fp@2685: fp@2685: ret_val = nvm->ops.acquire(hw); fp@2685: if (ret_val) fp@2685: goto out; fp@2685: fp@2685: ret_val = igb_ready_nvm_eeprom(hw); fp@2685: if (ret_val) fp@2685: goto release; fp@2685: fp@2685: igb_standby_nvm(hw); fp@2685: fp@2685: if ((nvm->address_bits == 8) && (offset >= 128)) fp@2685: read_opcode |= NVM_A8_OPCODE_SPI; fp@2685: fp@2685: /* Send the READ command (opcode + addr) */ fp@2685: igb_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits); fp@2685: igb_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits); fp@2685: fp@2685: /* Read the data. SPI NVMs increment the address with each byte fp@2685: * read and will roll over if reading beyond the end. This allows fp@2685: * us to read the whole NVM from any offset fp@2685: */ fp@2685: for (i = 0; i < words; i++) { fp@2685: word_in = igb_shift_in_eec_bits(hw, 16); fp@2685: data[i] = (word_in >> 8) | (word_in << 8); fp@2685: } fp@2685: fp@2685: release: fp@2685: nvm->ops.release(hw); fp@2685: fp@2685: out: fp@2685: return ret_val; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_read_nvm_eerd - Reads EEPROM using EERD register fp@2685: * @hw: pointer to the HW structure fp@2685: * @offset: offset of word in the EEPROM to read fp@2685: * @words: number of words to read fp@2685: * @data: word read from the EEPROM fp@2685: * fp@2685: * Reads a 16 bit word from the EEPROM using the EERD register. fp@2685: **/ fp@2685: s32 igb_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) fp@2685: { fp@2685: struct e1000_nvm_info *nvm = &hw->nvm; fp@2685: u32 i, eerd = 0; fp@2685: s32 ret_val = 0; fp@2685: fp@2685: /* A check for invalid values: offset too large, too many words, fp@2685: * and not enough words. fp@2685: */ fp@2685: if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || fp@2685: (words == 0)) { fp@2685: hw_dbg("nvm parameter(s) out of bounds\n"); fp@2685: ret_val = -E1000_ERR_NVM; fp@2685: goto out; fp@2685: } fp@2685: fp@2685: for (i = 0; i < words; i++) { fp@2685: eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) + fp@2685: E1000_NVM_RW_REG_START; fp@2685: fp@2685: wr32(E1000_EERD, eerd); fp@2685: ret_val = igb_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ); fp@2685: if (ret_val) fp@2685: break; fp@2685: fp@2685: data[i] = (rd32(E1000_EERD) >> fp@2685: E1000_NVM_RW_REG_DATA); fp@2685: } fp@2685: fp@2685: out: fp@2685: return ret_val; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_write_nvm_spi - Write to EEPROM using SPI fp@2685: * @hw: pointer to the HW structure fp@2685: * @offset: offset within the EEPROM to be written to fp@2685: * @words: number of words to write fp@2685: * @data: 16 bit word(s) to be written to the EEPROM fp@2685: * fp@2685: * Writes data to EEPROM at offset using SPI interface. fp@2685: * fp@2685: * If e1000_update_nvm_checksum is not called after this function , the fp@2685: * EEPROM will most likley contain an invalid checksum. fp@2685: **/ fp@2685: s32 igb_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) fp@2685: { fp@2685: struct e1000_nvm_info *nvm = &hw->nvm; fp@2685: s32 ret_val = -E1000_ERR_NVM; fp@2685: u16 widx = 0; fp@2685: fp@2685: /* A check for invalid values: offset too large, too many words, fp@2685: * and not enough words. fp@2685: */ fp@2685: if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || fp@2685: (words == 0)) { fp@2685: hw_dbg("nvm parameter(s) out of bounds\n"); fp@2685: return ret_val; fp@2685: } fp@2685: fp@2685: while (widx < words) { fp@2685: u8 write_opcode = NVM_WRITE_OPCODE_SPI; fp@2685: fp@2685: ret_val = nvm->ops.acquire(hw); fp@2685: if (ret_val) fp@2685: return ret_val; fp@2685: fp@2685: ret_val = igb_ready_nvm_eeprom(hw); fp@2685: if (ret_val) { fp@2685: nvm->ops.release(hw); fp@2685: return ret_val; fp@2685: } fp@2685: fp@2685: igb_standby_nvm(hw); fp@2685: fp@2685: /* Send the WRITE ENABLE command (8 bit opcode) */ fp@2685: igb_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI, fp@2685: nvm->opcode_bits); fp@2685: fp@2685: igb_standby_nvm(hw); fp@2685: fp@2685: /* Some SPI eeproms use the 8th address bit embedded in the fp@2685: * opcode fp@2685: */ fp@2685: if ((nvm->address_bits == 8) && (offset >= 128)) fp@2685: write_opcode |= NVM_A8_OPCODE_SPI; fp@2685: fp@2685: /* Send the Write command (8-bit opcode + addr) */ fp@2685: igb_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits); fp@2685: igb_shift_out_eec_bits(hw, (u16)((offset + widx) * 2), fp@2685: nvm->address_bits); fp@2685: fp@2685: /* Loop to allow for up to whole page write of eeprom */ fp@2685: while (widx < words) { fp@2685: u16 word_out = data[widx]; fp@2685: fp@2685: word_out = (word_out >> 8) | (word_out << 8); fp@2685: igb_shift_out_eec_bits(hw, word_out, 16); fp@2685: widx++; fp@2685: fp@2685: if ((((offset + widx) * 2) % nvm->page_size) == 0) { fp@2685: igb_standby_nvm(hw); fp@2685: break; fp@2685: } fp@2685: } fp@2685: usleep_range(1000, 2000); fp@2685: nvm->ops.release(hw); fp@2685: } fp@2685: fp@2685: return ret_val; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_read_part_string - Read device part number fp@2685: * @hw: pointer to the HW structure fp@2685: * @part_num: pointer to device part number fp@2685: * @part_num_size: size of part number buffer fp@2685: * fp@2685: * Reads the product board assembly (PBA) number from the EEPROM and stores fp@2685: * the value in part_num. fp@2685: **/ fp@2685: s32 igb_read_part_string(struct e1000_hw *hw, u8 *part_num, u32 part_num_size) fp@2685: { fp@2685: s32 ret_val; fp@2685: u16 nvm_data; fp@2685: u16 pointer; fp@2685: u16 offset; fp@2685: u16 length; fp@2685: fp@2685: if (part_num == NULL) { fp@2685: hw_dbg("PBA string buffer was null\n"); fp@2685: ret_val = E1000_ERR_INVALID_ARGUMENT; fp@2685: goto out; fp@2685: } fp@2685: fp@2685: ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); fp@2685: if (ret_val) { fp@2685: hw_dbg("NVM Read Error\n"); fp@2685: goto out; fp@2685: } fp@2685: fp@2685: ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pointer); fp@2685: if (ret_val) { fp@2685: hw_dbg("NVM Read Error\n"); fp@2685: goto out; fp@2685: } fp@2685: fp@2685: /* if nvm_data is not ptr guard the PBA must be in legacy format which fp@2685: * means pointer is actually our second data word for the PBA number fp@2685: * and we can decode it into an ascii string fp@2685: */ fp@2685: if (nvm_data != NVM_PBA_PTR_GUARD) { fp@2685: hw_dbg("NVM PBA number is not stored as string\n"); fp@2685: fp@2685: /* we will need 11 characters to store the PBA */ fp@2685: if (part_num_size < 11) { fp@2685: hw_dbg("PBA string buffer too small\n"); fp@2685: return E1000_ERR_NO_SPACE; fp@2685: } fp@2685: fp@2685: /* extract hex string from data and pointer */ fp@2685: part_num[0] = (nvm_data >> 12) & 0xF; fp@2685: part_num[1] = (nvm_data >> 8) & 0xF; fp@2685: part_num[2] = (nvm_data >> 4) & 0xF; fp@2685: part_num[3] = nvm_data & 0xF; fp@2685: part_num[4] = (pointer >> 12) & 0xF; fp@2685: part_num[5] = (pointer >> 8) & 0xF; fp@2685: part_num[6] = '-'; fp@2685: part_num[7] = 0; fp@2685: part_num[8] = (pointer >> 4) & 0xF; fp@2685: part_num[9] = pointer & 0xF; fp@2685: fp@2685: /* put a null character on the end of our string */ fp@2685: part_num[10] = '\0'; fp@2685: fp@2685: /* switch all the data but the '-' to hex char */ fp@2685: for (offset = 0; offset < 10; offset++) { fp@2685: if (part_num[offset] < 0xA) fp@2685: part_num[offset] += '0'; fp@2685: else if (part_num[offset] < 0x10) fp@2685: part_num[offset] += 'A' - 0xA; fp@2685: } fp@2685: fp@2685: goto out; fp@2685: } fp@2685: fp@2685: ret_val = hw->nvm.ops.read(hw, pointer, 1, &length); fp@2685: if (ret_val) { fp@2685: hw_dbg("NVM Read Error\n"); fp@2685: goto out; fp@2685: } fp@2685: fp@2685: if (length == 0xFFFF || length == 0) { fp@2685: hw_dbg("NVM PBA number section invalid length\n"); fp@2685: ret_val = E1000_ERR_NVM_PBA_SECTION; fp@2685: goto out; fp@2685: } fp@2685: /* check if part_num buffer is big enough */ fp@2685: if (part_num_size < (((u32)length * 2) - 1)) { fp@2685: hw_dbg("PBA string buffer too small\n"); fp@2685: ret_val = E1000_ERR_NO_SPACE; fp@2685: goto out; fp@2685: } fp@2685: fp@2685: /* trim pba length from start of string */ fp@2685: pointer++; fp@2685: length--; fp@2685: fp@2685: for (offset = 0; offset < length; offset++) { fp@2685: ret_val = hw->nvm.ops.read(hw, pointer + offset, 1, &nvm_data); fp@2685: if (ret_val) { fp@2685: hw_dbg("NVM Read Error\n"); fp@2685: goto out; fp@2685: } fp@2685: part_num[offset * 2] = (u8)(nvm_data >> 8); fp@2685: part_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF); fp@2685: } fp@2685: part_num[offset * 2] = '\0'; fp@2685: fp@2685: out: fp@2685: return ret_val; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_read_mac_addr - Read device MAC address fp@2685: * @hw: pointer to the HW structure fp@2685: * fp@2685: * Reads the device MAC address from the EEPROM and stores the value. fp@2685: * Since devices with two ports use the same EEPROM, we increment the fp@2685: * last bit in the MAC address for the second port. fp@2685: **/ fp@2685: s32 igb_read_mac_addr(struct e1000_hw *hw) fp@2685: { fp@2685: u32 rar_high; fp@2685: u32 rar_low; fp@2685: u16 i; fp@2685: fp@2685: rar_high = rd32(E1000_RAH(0)); fp@2685: rar_low = rd32(E1000_RAL(0)); fp@2685: fp@2685: for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++) fp@2685: hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8)); fp@2685: fp@2685: for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++) fp@2685: hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8)); fp@2685: fp@2685: for (i = 0; i < ETH_ALEN; i++) fp@2685: hw->mac.addr[i] = hw->mac.perm_addr[i]; fp@2685: fp@2685: return 0; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_validate_nvm_checksum - Validate EEPROM checksum fp@2685: * @hw: pointer to the HW structure fp@2685: * fp@2685: * Calculates the EEPROM checksum by reading/adding each word of the EEPROM fp@2685: * and then verifies that the sum of the EEPROM is equal to 0xBABA. fp@2685: **/ fp@2685: s32 igb_validate_nvm_checksum(struct e1000_hw *hw) fp@2685: { fp@2685: s32 ret_val = 0; fp@2685: u16 checksum = 0; fp@2685: u16 i, nvm_data; fp@2685: fp@2685: for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { fp@2685: ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); fp@2685: if (ret_val) { fp@2685: hw_dbg("NVM Read Error\n"); fp@2685: goto out; fp@2685: } fp@2685: checksum += nvm_data; fp@2685: } fp@2685: fp@2685: if (checksum != (u16) NVM_SUM) { fp@2685: hw_dbg("NVM Checksum Invalid\n"); fp@2685: ret_val = -E1000_ERR_NVM; fp@2685: goto out; fp@2685: } fp@2685: fp@2685: out: fp@2685: return ret_val; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_update_nvm_checksum - Update EEPROM checksum fp@2685: * @hw: pointer to the HW structure fp@2685: * fp@2685: * Updates the EEPROM checksum by reading/adding each word of the EEPROM fp@2685: * up to the checksum. Then calculates the EEPROM checksum and writes the fp@2685: * value to the EEPROM. fp@2685: **/ fp@2685: s32 igb_update_nvm_checksum(struct e1000_hw *hw) fp@2685: { fp@2685: s32 ret_val; fp@2685: u16 checksum = 0; fp@2685: u16 i, nvm_data; fp@2685: fp@2685: for (i = 0; i < NVM_CHECKSUM_REG; i++) { fp@2685: ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); fp@2685: if (ret_val) { fp@2685: hw_dbg("NVM Read Error while updating checksum.\n"); fp@2685: goto out; fp@2685: } fp@2685: checksum += nvm_data; fp@2685: } fp@2685: checksum = (u16) NVM_SUM - checksum; fp@2685: ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum); fp@2685: if (ret_val) fp@2685: hw_dbg("NVM Write Error while updating checksum.\n"); fp@2685: fp@2685: out: fp@2685: return ret_val; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_get_fw_version - Get firmware version information fp@2685: * @hw: pointer to the HW structure fp@2685: * @fw_vers: pointer to output structure fp@2685: * fp@2685: * unsupported MAC types will return all 0 version structure fp@2685: **/ fp@2685: void igb_get_fw_version(struct e1000_hw *hw, struct e1000_fw_version *fw_vers) fp@2685: { fp@2685: u16 eeprom_verh, eeprom_verl, etrack_test, fw_version; fp@2685: u8 q, hval, rem, result; fp@2685: u16 comb_verh, comb_verl, comb_offset; fp@2685: fp@2685: memset(fw_vers, 0, sizeof(struct e1000_fw_version)); fp@2685: fp@2685: /* basic eeprom version numbers and bits used vary by part and by tool fp@2685: * used to create the nvm images. Check which data format we have. fp@2685: */ fp@2685: hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test); fp@2685: switch (hw->mac.type) { fp@2685: case e1000_i211: fp@2685: igb_read_invm_version(hw, fw_vers); fp@2685: return; fp@2685: case e1000_82575: fp@2685: case e1000_82576: fp@2685: case e1000_82580: fp@2685: /* Use this format, unless EETRACK ID exists, fp@2685: * then use alternate format fp@2685: */ fp@2685: if ((etrack_test & NVM_MAJOR_MASK) != NVM_ETRACK_VALID) { fp@2685: hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version); fp@2685: fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK) fp@2685: >> NVM_MAJOR_SHIFT; fp@2685: fw_vers->eep_minor = (fw_version & NVM_MINOR_MASK) fp@2685: >> NVM_MINOR_SHIFT; fp@2685: fw_vers->eep_build = (fw_version & NVM_IMAGE_ID_MASK); fp@2685: goto etrack_id; fp@2685: } fp@2685: break; fp@2685: case e1000_i210: fp@2685: if (!(igb_get_flash_presence_i210(hw))) { fp@2685: igb_read_invm_version(hw, fw_vers); fp@2685: return; fp@2685: } fp@2685: /* fall through */ fp@2685: case e1000_i350: fp@2685: /* find combo image version */ fp@2685: hw->nvm.ops.read(hw, NVM_COMB_VER_PTR, 1, &comb_offset); fp@2685: if ((comb_offset != 0x0) && fp@2685: (comb_offset != NVM_VER_INVALID)) { fp@2685: fp@2685: hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset fp@2685: + 1), 1, &comb_verh); fp@2685: hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset), fp@2685: 1, &comb_verl); fp@2685: fp@2685: /* get Option Rom version if it exists and is valid */ fp@2685: if ((comb_verh && comb_verl) && fp@2685: ((comb_verh != NVM_VER_INVALID) && fp@2685: (comb_verl != NVM_VER_INVALID))) { fp@2685: fp@2685: fw_vers->or_valid = true; fp@2685: fw_vers->or_major = fp@2685: comb_verl >> NVM_COMB_VER_SHFT; fp@2685: fw_vers->or_build = fp@2685: (comb_verl << NVM_COMB_VER_SHFT) fp@2685: | (comb_verh >> NVM_COMB_VER_SHFT); fp@2685: fw_vers->or_patch = fp@2685: comb_verh & NVM_COMB_VER_MASK; fp@2685: } fp@2685: } fp@2685: break; fp@2685: default: fp@2685: return; fp@2685: } fp@2685: hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version); fp@2685: fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK) fp@2685: >> NVM_MAJOR_SHIFT; fp@2685: fp@2685: /* check for old style version format in newer images*/ fp@2685: if ((fw_version & NVM_NEW_DEC_MASK) == 0x0) { fp@2685: eeprom_verl = (fw_version & NVM_COMB_VER_MASK); fp@2685: } else { fp@2685: eeprom_verl = (fw_version & NVM_MINOR_MASK) fp@2685: >> NVM_MINOR_SHIFT; fp@2685: } fp@2685: /* Convert minor value to hex before assigning to output struct fp@2685: * Val to be converted will not be higher than 99, per tool output fp@2685: */ fp@2685: q = eeprom_verl / NVM_HEX_CONV; fp@2685: hval = q * NVM_HEX_TENS; fp@2685: rem = eeprom_verl % NVM_HEX_CONV; fp@2685: result = hval + rem; fp@2685: fw_vers->eep_minor = result; fp@2685: fp@2685: etrack_id: fp@2685: if ((etrack_test & NVM_MAJOR_MASK) == NVM_ETRACK_VALID) { fp@2685: hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verl); fp@2685: hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verh); fp@2685: fw_vers->etrack_id = (eeprom_verh << NVM_ETRACK_SHIFT) fp@2685: | eeprom_verl; fp@2685: } fp@2685: }