fp@1900: /******************************************************************************* fp@1900: fp@1900: Intel PRO/1000 Linux driver fp@1900: Copyright(c) 1999 - 2006 Intel Corporation. fp@1900: fp@1900: This program is free software; you can redistribute it and/or modify it fp@1900: under the terms and conditions of the GNU General Public License, fp@1900: version 2, as published by the Free Software Foundation. fp@1900: fp@1900: This program is distributed in the hope it will be useful, but WITHOUT fp@1900: ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or fp@1900: FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for fp@1900: more details. fp@1900: fp@1900: You should have received a copy of the GNU General Public License along with fp@1900: this program; if not, write to the Free Software Foundation, Inc., fp@1900: 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. fp@1900: fp@1900: The full GNU General Public License is included in this distribution in fp@1900: the file called "COPYING". fp@1900: fp@1900: Contact Information: fp@1900: Linux NICS fp@1900: e1000-devel Mailing List fp@1900: Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 fp@1900: fp@1900: vim: noexpandtab fp@1900: fp@1900: *******************************************************************************/ fp@1900: fp@1900: #include "e1000-2.6.27-ethercat.h" fp@1900: #include fp@1900: fp@1900: char e1000_driver_name[] = "ec_e1000"; fp@1900: static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver"; fp@1900: #define DRV_VERSION "7.3.21-k3-NAPI" fp@1900: const char e1000_driver_version[] = DRV_VERSION; fp@1900: static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation."; fp@1900: fp@1900: /* e1000_pci_tbl - PCI Device ID Table fp@1900: * fp@1900: * Last entry must be all 0s fp@1900: * fp@1900: * Macro expands to... fp@1900: * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)} fp@1900: */ fp@1900: static struct pci_device_id e1000_pci_tbl[] = { fp@1900: INTEL_E1000_ETHERNET_DEVICE(0x1000), fp@1900: INTEL_E1000_ETHERNET_DEVICE(0x1001), fp@1900: INTEL_E1000_ETHERNET_DEVICE(0x1004), fp@1900: INTEL_E1000_ETHERNET_DEVICE(0x1008), fp@1900: INTEL_E1000_ETHERNET_DEVICE(0x1009), fp@1900: INTEL_E1000_ETHERNET_DEVICE(0x100C), fp@1900: INTEL_E1000_ETHERNET_DEVICE(0x100D), fp@1900: INTEL_E1000_ETHERNET_DEVICE(0x100E), fp@1900: INTEL_E1000_ETHERNET_DEVICE(0x100F), fp@1900: INTEL_E1000_ETHERNET_DEVICE(0x1010), fp@1900: INTEL_E1000_ETHERNET_DEVICE(0x1011), fp@1900: INTEL_E1000_ETHERNET_DEVICE(0x1012), fp@1900: INTEL_E1000_ETHERNET_DEVICE(0x1013), fp@1900: INTEL_E1000_ETHERNET_DEVICE(0x1014), fp@1900: INTEL_E1000_ETHERNET_DEVICE(0x1015), fp@1900: INTEL_E1000_ETHERNET_DEVICE(0x1016), fp@1900: INTEL_E1000_ETHERNET_DEVICE(0x1017), fp@1900: INTEL_E1000_ETHERNET_DEVICE(0x1018), fp@1900: INTEL_E1000_ETHERNET_DEVICE(0x1019), fp@1900: INTEL_E1000_ETHERNET_DEVICE(0x101A), fp@1900: INTEL_E1000_ETHERNET_DEVICE(0x101D), fp@1900: INTEL_E1000_ETHERNET_DEVICE(0x101E), fp@1900: INTEL_E1000_ETHERNET_DEVICE(0x1026), fp@1900: INTEL_E1000_ETHERNET_DEVICE(0x1027), fp@1900: INTEL_E1000_ETHERNET_DEVICE(0x1028), fp@1900: INTEL_E1000_ETHERNET_DEVICE(0x1075), fp@1900: INTEL_E1000_ETHERNET_DEVICE(0x1076), fp@1900: INTEL_E1000_ETHERNET_DEVICE(0x1077), fp@1900: INTEL_E1000_ETHERNET_DEVICE(0x1078), fp@1900: INTEL_E1000_ETHERNET_DEVICE(0x1079), fp@1900: INTEL_E1000_ETHERNET_DEVICE(0x107A), fp@1900: INTEL_E1000_ETHERNET_DEVICE(0x107B), fp@1900: INTEL_E1000_ETHERNET_DEVICE(0x107C), fp@1900: INTEL_E1000_ETHERNET_DEVICE(0x108A), fp@1900: INTEL_E1000_ETHERNET_DEVICE(0x1099), fp@1900: INTEL_E1000_ETHERNET_DEVICE(0x10B5), fp@1900: /* required last entry */ fp@1900: {0,} fp@1900: }; fp@1900: fp@1900: // do not auto-load driver fp@1900: // MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); fp@1900: fp@1900: int e1000_up(struct e1000_adapter *adapter); fp@1900: void e1000_down(struct e1000_adapter *adapter); fp@1900: void e1000_reinit_locked(struct e1000_adapter *adapter); fp@1900: void e1000_reset(struct e1000_adapter *adapter); fp@1900: int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx); fp@1900: int e1000_setup_all_tx_resources(struct e1000_adapter *adapter); fp@1900: int e1000_setup_all_rx_resources(struct e1000_adapter *adapter); fp@1900: void e1000_free_all_tx_resources(struct e1000_adapter *adapter); fp@1900: void e1000_free_all_rx_resources(struct e1000_adapter *adapter); fp@1900: static int e1000_setup_tx_resources(struct e1000_adapter *adapter, fp@1900: struct e1000_tx_ring *txdr); fp@1900: static int e1000_setup_rx_resources(struct e1000_adapter *adapter, fp@1900: struct e1000_rx_ring *rxdr); fp@1900: static void e1000_free_tx_resources(struct e1000_adapter *adapter, fp@1900: struct e1000_tx_ring *tx_ring); fp@1900: static void e1000_free_rx_resources(struct e1000_adapter *adapter, fp@1900: struct e1000_rx_ring *rx_ring); fp@1900: void e1000_update_stats(struct e1000_adapter *adapter); fp@1900: fp@1900: static int e1000_init_module(void); fp@1900: static void e1000_exit_module(void); fp@1900: static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent); fp@1900: static void __devexit e1000_remove(struct pci_dev *pdev); fp@1900: static int e1000_alloc_queues(struct e1000_adapter *adapter); fp@1900: static int e1000_sw_init(struct e1000_adapter *adapter); fp@1900: static int e1000_open(struct net_device *netdev); fp@1900: static int e1000_close(struct net_device *netdev); fp@1900: static void e1000_configure_tx(struct e1000_adapter *adapter); fp@1900: static void e1000_configure_rx(struct e1000_adapter *adapter); fp@1900: static void e1000_setup_rctl(struct e1000_adapter *adapter); fp@1900: static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter); fp@1900: static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter); fp@1900: static void e1000_clean_tx_ring(struct e1000_adapter *adapter, fp@1900: struct e1000_tx_ring *tx_ring); fp@1900: static void e1000_clean_rx_ring(struct e1000_adapter *adapter, fp@1900: struct e1000_rx_ring *rx_ring); fp@1900: static void e1000_set_rx_mode(struct net_device *netdev); fp@1900: static void e1000_update_phy_info(unsigned long data); fp@1900: static void e1000_watchdog(unsigned long data); fp@1900: static void e1000_82547_tx_fifo_stall(unsigned long data); fp@1900: static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev); fp@1900: static struct net_device_stats * e1000_get_stats(struct net_device *netdev); fp@1900: static int e1000_change_mtu(struct net_device *netdev, int new_mtu); fp@1900: static int e1000_set_mac(struct net_device *netdev, void *p); fp@1900: void ec_poll(struct net_device *); fp@1900: static irqreturn_t e1000_intr(int irq, void *data); fp@1900: static irqreturn_t e1000_intr_msi(int irq, void *data); fp@1900: static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, fp@1900: struct e1000_tx_ring *tx_ring); fp@1900: static int e1000_clean(struct napi_struct *napi, int budget); fp@1900: static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, fp@1900: struct e1000_rx_ring *rx_ring, fp@1900: int *work_done, int work_to_do); fp@1900: static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, fp@1900: struct e1000_rx_ring *rx_ring, fp@1900: int *work_done, int work_to_do); fp@1900: static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, fp@1900: struct e1000_rx_ring *rx_ring, fp@1900: int cleaned_count); fp@1900: static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter, fp@1900: struct e1000_rx_ring *rx_ring, fp@1900: int cleaned_count); fp@1900: static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd); fp@1900: static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, fp@1900: int cmd); fp@1900: static void e1000_enter_82542_rst(struct e1000_adapter *adapter); fp@1900: static void e1000_leave_82542_rst(struct e1000_adapter *adapter); fp@1900: static void e1000_tx_timeout(struct net_device *dev); fp@1900: static void e1000_reset_task(struct work_struct *work); fp@1900: static void e1000_smartspeed(struct e1000_adapter *adapter); fp@1900: static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, fp@1900: struct sk_buff *skb); fp@1900: fp@1900: static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp); fp@1900: static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid); fp@1900: static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid); fp@1900: static void e1000_restore_vlan(struct e1000_adapter *adapter); fp@1900: fp@1900: static int e1000_suspend(struct pci_dev *pdev, pm_message_t state); fp@1900: #ifdef CONFIG_PM fp@1900: static int e1000_resume(struct pci_dev *pdev); fp@1900: #endif fp@1900: static void e1000_shutdown(struct pci_dev *pdev); fp@1900: fp@1900: #ifdef CONFIG_NET_POLL_CONTROLLER fp@1900: /* for netdump / net console */ fp@1900: static void e1000_netpoll (struct net_device *netdev); fp@1900: #endif fp@1900: fp@1900: #define COPYBREAK_DEFAULT 256 fp@1900: static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT; fp@1900: module_param(copybreak, uint, 0644); fp@1900: MODULE_PARM_DESC(copybreak, fp@1900: "Maximum size of packet that is copied to a new buffer on receive"); fp@1900: fp@1900: static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, fp@1900: pci_channel_state_t state); fp@1900: static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev); fp@1900: static void e1000_io_resume(struct pci_dev *pdev); fp@1900: fp@1900: static struct pci_error_handlers e1000_err_handler = { fp@1900: .error_detected = e1000_io_error_detected, fp@1900: .slot_reset = e1000_io_slot_reset, fp@1900: .resume = e1000_io_resume, fp@1900: }; fp@1900: fp@1900: static struct pci_driver e1000_driver = { fp@1900: .name = e1000_driver_name, fp@1900: .id_table = e1000_pci_tbl, fp@1900: .probe = e1000_probe, fp@1900: .remove = __devexit_p(e1000_remove), fp@1900: #ifdef CONFIG_PM fp@1900: /* Power Managment Hooks */ fp@1900: .suspend = e1000_suspend, fp@1900: .resume = e1000_resume, fp@1900: #endif fp@1900: .shutdown = e1000_shutdown, fp@1900: .err_handler = &e1000_err_handler fp@1900: }; fp@1900: fp@1900: MODULE_AUTHOR("Florian Pose "); fp@1900: MODULE_DESCRIPTION("EtherCAT-capable Intel(R) PRO/1000 Network Driver"); fp@1900: MODULE_LICENSE("GPL"); fp@1900: MODULE_VERSION(DRV_VERSION); fp@1900: fp@1900: static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE; fp@1900: module_param(debug, int, 0); fp@1900: MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); fp@1900: fp@1900: /** fp@1900: * e1000_init_module - Driver Registration Routine fp@1900: * fp@1900: * e1000_init_module is the first routine called when the driver is fp@1900: * loaded. All it does is register with the PCI subsystem. fp@1900: **/ fp@1900: fp@1900: static int __init e1000_init_module(void) fp@1900: { fp@1900: int ret; fp@1900: printk(KERN_INFO "%s - version %s\n", fp@1900: e1000_driver_string, e1000_driver_version); fp@1900: fp@1900: printk(KERN_INFO "%s\n", e1000_copyright); fp@1900: fp@1900: ret = pci_register_driver(&e1000_driver); fp@1900: if (copybreak != COPYBREAK_DEFAULT) { fp@1900: if (copybreak == 0) fp@1900: printk(KERN_INFO "e1000: copybreak disabled\n"); fp@1900: else fp@1900: printk(KERN_INFO "e1000: copybreak enabled for " fp@1900: "packets <= %u bytes\n", copybreak); fp@1900: } fp@1900: return ret; fp@1900: } fp@1900: fp@1900: module_init(e1000_init_module); fp@1900: fp@1900: /** fp@1900: * e1000_exit_module - Driver Exit Cleanup Routine fp@1900: * fp@1900: * e1000_exit_module is called just before the driver is removed fp@1900: * from memory. fp@1900: **/ fp@1900: fp@1900: static void __exit e1000_exit_module(void) fp@1900: { fp@1900: pci_unregister_driver(&e1000_driver); fp@1900: } fp@1900: fp@1900: module_exit(e1000_exit_module); fp@1900: fp@1900: static int e1000_request_irq(struct e1000_adapter *adapter) fp@1900: { fp@1900: struct e1000_hw *hw = &adapter->hw; fp@1900: struct net_device *netdev = adapter->netdev; fp@1900: irq_handler_t handler = e1000_intr; fp@1900: int irq_flags = IRQF_SHARED; fp@1900: int err; fp@1900: fp@1900: if (adapter->ecdev) fp@1900: return 0; fp@2421: fp@1900: if (hw->mac_type >= e1000_82571) { fp@1900: adapter->have_msi = !pci_enable_msi(adapter->pdev); fp@1900: if (adapter->have_msi) { fp@1900: handler = e1000_intr_msi; fp@1900: irq_flags = 0; fp@1900: } fp@1900: } fp@1900: fp@1900: err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name, fp@1900: netdev); fp@1900: if (err) { fp@1900: if (adapter->have_msi) fp@1900: pci_disable_msi(adapter->pdev); fp@1900: DPRINTK(PROBE, ERR, fp@1900: "Unable to allocate interrupt Error: %d\n", err); fp@1900: } fp@1900: fp@1900: return err; fp@1900: } fp@1900: fp@1900: static void e1000_free_irq(struct e1000_adapter *adapter) fp@1900: { fp@1900: struct net_device *netdev = adapter->netdev; fp@1900: fp@1900: if (adapter->ecdev) fp@1900: return; fp@1900: fp@1900: free_irq(adapter->pdev->irq, netdev); fp@1900: fp@1900: if (adapter->have_msi) fp@1900: pci_disable_msi(adapter->pdev); fp@1900: } fp@1900: fp@1900: /** fp@1900: * e1000_irq_disable - Mask off interrupt generation on the NIC fp@1900: * @adapter: board private structure fp@1900: **/ fp@1900: fp@1900: static void e1000_irq_disable(struct e1000_adapter *adapter) fp@1900: { fp@1900: struct e1000_hw *hw = &adapter->hw; fp@1900: fp@1900: if (adapter->ecdev) fp@1900: return; fp@1900: fp@1900: ew32(IMC, ~0); fp@1900: E1000_WRITE_FLUSH(); fp@1900: synchronize_irq(adapter->pdev->irq); fp@1900: } fp@1900: fp@1900: /** fp@1900: * e1000_irq_enable - Enable default interrupt generation settings fp@1900: * @adapter: board private structure fp@1900: **/ fp@1900: fp@1900: static void e1000_irq_enable(struct e1000_adapter *adapter) fp@1900: { fp@1900: struct e1000_hw *hw = &adapter->hw; fp@1900: fp@1900: if (adapter->ecdev) fp@1900: return; fp@2421: fp@1900: ew32(IMS, IMS_ENABLE_MASK); fp@1900: E1000_WRITE_FLUSH(); fp@1900: } fp@1900: fp@1900: static void e1000_update_mng_vlan(struct e1000_adapter *adapter) fp@1900: { fp@1900: struct e1000_hw *hw = &adapter->hw; fp@1900: struct net_device *netdev = adapter->netdev; fp@1900: u16 vid = hw->mng_cookie.vlan_id; fp@1900: u16 old_vid = adapter->mng_vlan_id; fp@1900: if (adapter->vlgrp) { fp@1900: if (!vlan_group_get_device(adapter->vlgrp, vid)) { fp@1900: if (hw->mng_cookie.status & fp@1900: E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) { fp@1900: e1000_vlan_rx_add_vid(netdev, vid); fp@1900: adapter->mng_vlan_id = vid; fp@1900: } else fp@1900: adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; fp@1900: fp@1900: if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && fp@1900: (vid != old_vid) && fp@1900: !vlan_group_get_device(adapter->vlgrp, old_vid)) fp@1900: e1000_vlan_rx_kill_vid(netdev, old_vid); fp@1900: } else fp@1900: adapter->mng_vlan_id = vid; fp@1900: } fp@1900: } fp@1900: fp@1900: /** fp@1900: * e1000_release_hw_control - release control of the h/w to f/w fp@1900: * @adapter: address of board private structure fp@1900: * fp@1900: * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit. fp@1900: * For ASF and Pass Through versions of f/w this means that the fp@1900: * driver is no longer loaded. For AMT version (only with 82573) i fp@1900: * of the f/w this means that the network i/f is closed. fp@1900: * fp@1900: **/ fp@1900: fp@1900: static void e1000_release_hw_control(struct e1000_adapter *adapter) fp@1900: { fp@1900: u32 ctrl_ext; fp@1900: u32 swsm; fp@1900: struct e1000_hw *hw = &adapter->hw; fp@1900: fp@1900: /* Let firmware taken over control of h/w */ fp@1900: switch (hw->mac_type) { fp@1900: case e1000_82573: fp@1900: swsm = er32(SWSM); fp@1900: ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD); fp@1900: break; fp@1900: case e1000_82571: fp@1900: case e1000_82572: fp@1900: case e1000_80003es2lan: fp@1900: case e1000_ich8lan: fp@1900: ctrl_ext = er32(CTRL_EXT); fp@1900: ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); fp@1900: break; fp@1900: default: fp@1900: break; fp@1900: } fp@1900: } fp@1900: fp@1900: /** fp@1900: * e1000_get_hw_control - get control of the h/w from f/w fp@1900: * @adapter: address of board private structure fp@1900: * fp@1900: * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit. fp@1900: * For ASF and Pass Through versions of f/w this means that fp@1900: * the driver is loaded. For AMT version (only with 82573) fp@1900: * of the f/w this means that the network i/f is open. fp@1900: * fp@1900: **/ fp@1900: fp@1900: static void e1000_get_hw_control(struct e1000_adapter *adapter) fp@1900: { fp@1900: u32 ctrl_ext; fp@1900: u32 swsm; fp@1900: struct e1000_hw *hw = &adapter->hw; fp@1900: fp@1900: /* Let firmware know the driver has taken over */ fp@1900: switch (hw->mac_type) { fp@1900: case e1000_82573: fp@1900: swsm = er32(SWSM); fp@1900: ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD); fp@1900: break; fp@1900: case e1000_82571: fp@1900: case e1000_82572: fp@1900: case e1000_80003es2lan: fp@1900: case e1000_ich8lan: fp@1900: ctrl_ext = er32(CTRL_EXT); fp@1900: ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); fp@1900: break; fp@1900: default: fp@1900: break; fp@1900: } fp@1900: } fp@1900: fp@1900: static void e1000_init_manageability(struct e1000_adapter *adapter) fp@1900: { fp@1900: struct e1000_hw *hw = &adapter->hw; fp@1900: fp@1900: if (adapter->en_mng_pt) { fp@1900: u32 manc = er32(MANC); fp@1900: fp@1900: /* disable hardware interception of ARP */ fp@1900: manc &= ~(E1000_MANC_ARP_EN); fp@1900: fp@1900: /* enable receiving management packets to the host */ fp@1900: /* this will probably generate destination unreachable messages fp@1900: * from the host OS, but the packets will be handled on SMBUS */ fp@1900: if (hw->has_manc2h) { fp@1900: u32 manc2h = er32(MANC2H); fp@1900: fp@1900: manc |= E1000_MANC_EN_MNG2HOST; fp@1900: #define E1000_MNG2HOST_PORT_623 (1 << 5) fp@1900: #define E1000_MNG2HOST_PORT_664 (1 << 6) fp@1900: manc2h |= E1000_MNG2HOST_PORT_623; fp@1900: manc2h |= E1000_MNG2HOST_PORT_664; fp@1900: ew32(MANC2H, manc2h); fp@1900: } fp@1900: fp@1900: ew32(MANC, manc); fp@1900: } fp@1900: } fp@1900: fp@1900: static void e1000_release_manageability(struct e1000_adapter *adapter) fp@1900: { fp@1900: struct e1000_hw *hw = &adapter->hw; fp@1900: fp@1900: if (adapter->en_mng_pt) { fp@1900: u32 manc = er32(MANC); fp@1900: fp@1900: /* re-enable hardware interception of ARP */ fp@1900: manc |= E1000_MANC_ARP_EN; fp@1900: fp@1900: if (hw->has_manc2h) fp@1900: manc &= ~E1000_MANC_EN_MNG2HOST; fp@1900: fp@1900: /* don't explicitly have to mess with MANC2H since fp@1900: * MANC has an enable disable that gates MANC2H */ fp@1900: fp@1900: ew32(MANC, manc); fp@1900: } fp@1900: } fp@1900: fp@1900: /** fp@1900: * e1000_configure - configure the hardware for RX and TX fp@1900: * @adapter = private board structure fp@1900: **/ fp@1900: static void e1000_configure(struct e1000_adapter *adapter) fp@1900: { fp@1900: struct net_device *netdev = adapter->netdev; fp@1900: int i; fp@1900: fp@1900: e1000_set_rx_mode(netdev); fp@1900: fp@1900: e1000_restore_vlan(adapter); fp@1900: e1000_init_manageability(adapter); fp@1900: fp@1900: e1000_configure_tx(adapter); fp@1900: e1000_setup_rctl(adapter); fp@1900: e1000_configure_rx(adapter); fp@1900: /* call E1000_DESC_UNUSED which always leaves fp@1900: * at least 1 descriptor unused to make sure fp@1900: * next_to_use != next_to_clean */ fp@1900: for (i = 0; i < adapter->num_rx_queues; i++) { fp@1900: struct e1000_rx_ring *ring = &adapter->rx_ring[i]; fp@1900: if (adapter->ecdev) { fp@1900: /* fill rx ring completely! */ fp@1900: adapter->alloc_rx_buf(adapter, ring, ring->count); fp@1900: } else { fp@1900: /* this one leaves the last ring element unallocated! */ fp@1900: adapter->alloc_rx_buf(adapter, ring, fp@1900: E1000_DESC_UNUSED(ring)); fp@1900: } fp@1900: } fp@1900: fp@1900: adapter->tx_queue_len = netdev->tx_queue_len; fp@1900: } fp@1900: fp@1900: int e1000_up(struct e1000_adapter *adapter) fp@1900: { fp@1900: struct e1000_hw *hw = &adapter->hw; fp@1900: fp@1900: /* hardware has been reset, we need to reload some things */ fp@1900: e1000_configure(adapter); fp@1900: fp@1900: clear_bit(__E1000_DOWN, &adapter->flags); fp@1900: fp@1900: if (!adapter->ecdev) { fp@1900: napi_enable(&adapter->napi); fp@1900: fp@1900: e1000_irq_enable(adapter); fp@1900: fp@1900: /* fire a link change interrupt to start the watchdog */ fp@1900: ew32(ICS, E1000_ICS_LSC); fp@1900: } fp@1900: return 0; fp@1900: } fp@1900: fp@1900: /** fp@1900: * e1000_power_up_phy - restore link in case the phy was powered down fp@1900: * @adapter: address of board private structure fp@1900: * fp@1900: * The phy may be powered down to save power and turn off link when the fp@1900: * driver is unloaded and wake on lan is not enabled (among others) fp@1900: * *** this routine MUST be followed by a call to e1000_reset *** fp@1900: * fp@1900: **/ fp@1900: fp@1900: void e1000_power_up_phy(struct e1000_adapter *adapter) fp@1900: { fp@1900: struct e1000_hw *hw = &adapter->hw; fp@1900: u16 mii_reg = 0; fp@1900: fp@1900: /* Just clear the power down bit to wake the phy back up */ fp@1900: if (hw->media_type == e1000_media_type_copper) { fp@1900: /* according to the manual, the phy will retain its fp@1900: * settings across a power-down/up cycle */ fp@1900: e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); fp@1900: mii_reg &= ~MII_CR_POWER_DOWN; fp@1900: e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); fp@1900: } fp@1900: } fp@1900: fp@1900: static void e1000_power_down_phy(struct e1000_adapter *adapter) fp@1900: { fp@1900: struct e1000_hw *hw = &adapter->hw; fp@1900: fp@1900: /* Power down the PHY so no link is implied when interface is down * fp@1900: * The PHY cannot be powered down if any of the following is true * fp@1900: * (a) WoL is enabled fp@1900: * (b) AMT is active fp@1900: * (c) SoL/IDER session is active */ fp@1900: if (!adapter->wol && hw->mac_type >= e1000_82540 && fp@1900: hw->media_type == e1000_media_type_copper) { fp@1900: u16 mii_reg = 0; fp@1900: fp@1900: switch (hw->mac_type) { fp@1900: case e1000_82540: fp@1900: case e1000_82545: fp@1900: case e1000_82545_rev_3: fp@1900: case e1000_82546: fp@1900: case e1000_82546_rev_3: fp@1900: case e1000_82541: fp@1900: case e1000_82541_rev_2: fp@1900: case e1000_82547: fp@1900: case e1000_82547_rev_2: fp@1900: if (er32(MANC) & E1000_MANC_SMBUS_EN) fp@1900: goto out; fp@1900: break; fp@1900: case e1000_82571: fp@1900: case e1000_82572: fp@1900: case e1000_82573: fp@1900: case e1000_80003es2lan: fp@1900: case e1000_ich8lan: fp@1900: if (e1000_check_mng_mode(hw) || fp@1900: e1000_check_phy_reset_block(hw)) fp@1900: goto out; fp@1900: break; fp@1900: default: fp@1900: goto out; fp@1900: } fp@1900: e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); fp@1900: mii_reg |= MII_CR_POWER_DOWN; fp@1900: e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); fp@1900: mdelay(1); fp@1900: } fp@1900: out: fp@1900: return; fp@1900: } fp@1900: fp@1900: void e1000_down(struct e1000_adapter *adapter) fp@1900: { fp@1900: struct net_device *netdev = adapter->netdev; fp@1900: fp@1900: /* signal that we're down so the interrupt handler does not fp@1900: * reschedule our watchdog timer */ fp@1900: set_bit(__E1000_DOWN, &adapter->flags); fp@1900: fp@1900: if (!adapter->ecdev) { fp@1900: napi_disable(&adapter->napi); fp@1900: fp@1900: e1000_irq_disable(adapter); fp@1900: fp@1900: del_timer_sync(&adapter->tx_fifo_stall_timer); fp@1900: del_timer_sync(&adapter->watchdog_timer); fp@1900: del_timer_sync(&adapter->phy_info_timer); fp@1900: } fp@1900: fp@1900: netdev->tx_queue_len = adapter->tx_queue_len; fp@1900: adapter->link_speed = 0; fp@1900: adapter->link_duplex = 0; fp@1900: if (!adapter->ecdev) { fp@1900: netif_carrier_off(netdev); fp@1900: netif_stop_queue(netdev); fp@1900: } fp@1900: fp@1900: e1000_reset(adapter); fp@1900: e1000_clean_all_tx_rings(adapter); fp@1900: e1000_clean_all_rx_rings(adapter); fp@1900: } fp@1900: fp@1900: void e1000_reinit_locked(struct e1000_adapter *adapter) fp@1900: { fp@1900: WARN_ON(in_interrupt()); fp@1900: while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) fp@1900: msleep(1); fp@1900: e1000_down(adapter); fp@1900: e1000_up(adapter); fp@1900: clear_bit(__E1000_RESETTING, &adapter->flags); fp@1900: } fp@1900: fp@1900: void e1000_reset(struct e1000_adapter *adapter) fp@1900: { fp@1900: struct e1000_hw *hw = &adapter->hw; fp@1900: u32 pba = 0, tx_space, min_tx_space, min_rx_space; fp@1900: u16 fc_high_water_mark = E1000_FC_HIGH_DIFF; fp@1900: bool legacy_pba_adjust = false; fp@1900: fp@1900: /* Repartition Pba for greater than 9k mtu fp@1900: * To take effect CTRL.RST is required. fp@1900: */ fp@1900: fp@1900: switch (hw->mac_type) { fp@1900: case e1000_82542_rev2_0: fp@1900: case e1000_82542_rev2_1: fp@1900: case e1000_82543: fp@1900: case e1000_82544: fp@1900: case e1000_82540: fp@1900: case e1000_82541: fp@1900: case e1000_82541_rev_2: fp@1900: legacy_pba_adjust = true; fp@1900: pba = E1000_PBA_48K; fp@1900: break; fp@1900: case e1000_82545: fp@1900: case e1000_82545_rev_3: fp@1900: case e1000_82546: fp@1900: case e1000_82546_rev_3: fp@1900: pba = E1000_PBA_48K; fp@1900: break; fp@1900: case e1000_82547: fp@1900: case e1000_82547_rev_2: fp@1900: legacy_pba_adjust = true; fp@1900: pba = E1000_PBA_30K; fp@1900: break; fp@1900: case e1000_82571: fp@1900: case e1000_82572: fp@1900: case e1000_80003es2lan: fp@1900: pba = E1000_PBA_38K; fp@1900: break; fp@1900: case e1000_82573: fp@1900: pba = E1000_PBA_20K; fp@1900: break; fp@1900: case e1000_ich8lan: fp@1900: pba = E1000_PBA_8K; fp@1900: case e1000_undefined: fp@1900: case e1000_num_macs: fp@1900: break; fp@1900: } fp@1900: fp@1900: if (legacy_pba_adjust) { fp@1900: if (adapter->netdev->mtu > E1000_RXBUFFER_8192) fp@1900: pba -= 8; /* allocate more FIFO for Tx */ fp@1900: fp@1900: if (hw->mac_type == e1000_82547) { fp@1900: adapter->tx_fifo_head = 0; fp@1900: adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT; fp@1900: adapter->tx_fifo_size = fp@1900: (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT; fp@1900: atomic_set(&adapter->tx_fifo_stall, 0); fp@1900: } fp@1900: } else if (hw->max_frame_size > MAXIMUM_ETHERNET_FRAME_SIZE) { fp@1900: /* adjust PBA for jumbo frames */ fp@1900: ew32(PBA, pba); fp@1900: fp@1900: /* To maintain wire speed transmits, the Tx FIFO should be fp@1900: * large enough to accomodate two full transmit packets, fp@1900: * rounded up to the next 1KB and expressed in KB. Likewise, fp@1900: * the Rx FIFO should be large enough to accomodate at least fp@1900: * one full receive packet and is similarly rounded up and fp@1900: * expressed in KB. */ fp@1900: pba = er32(PBA); fp@1900: /* upper 16 bits has Tx packet buffer allocation size in KB */ fp@1900: tx_space = pba >> 16; fp@1900: /* lower 16 bits has Rx packet buffer allocation size in KB */ fp@1900: pba &= 0xffff; fp@1900: /* don't include ethernet FCS because hardware appends/strips */ fp@1900: min_rx_space = adapter->netdev->mtu + ENET_HEADER_SIZE + fp@1900: VLAN_TAG_SIZE; fp@1900: min_tx_space = min_rx_space; fp@1900: min_tx_space *= 2; fp@1900: min_tx_space = ALIGN(min_tx_space, 1024); fp@1900: min_tx_space >>= 10; fp@1900: min_rx_space = ALIGN(min_rx_space, 1024); fp@1900: min_rx_space >>= 10; fp@1900: fp@1900: /* If current Tx allocation is less than the min Tx FIFO size, fp@1900: * and the min Tx FIFO size is less than the current Rx FIFO fp@1900: * allocation, take space away from current Rx allocation */ fp@1900: if (tx_space < min_tx_space && fp@1900: ((min_tx_space - tx_space) < pba)) { fp@1900: pba = pba - (min_tx_space - tx_space); fp@1900: fp@1900: /* PCI/PCIx hardware has PBA alignment constraints */ fp@1900: switch (hw->mac_type) { fp@1900: case e1000_82545 ... e1000_82546_rev_3: fp@1900: pba &= ~(E1000_PBA_8K - 1); fp@1900: break; fp@1900: default: fp@1900: break; fp@1900: } fp@1900: fp@1900: /* if short on rx space, rx wins and must trump tx fp@1900: * adjustment or use Early Receive if available */ fp@1900: if (pba < min_rx_space) { fp@1900: switch (hw->mac_type) { fp@1900: case e1000_82573: fp@1900: /* ERT enabled in e1000_configure_rx */ fp@1900: break; fp@1900: default: fp@1900: pba = min_rx_space; fp@1900: break; fp@1900: } fp@1900: } fp@1900: } fp@1900: } fp@1900: fp@1900: ew32(PBA, pba); fp@1900: fp@1900: /* flow control settings */ fp@1900: /* Set the FC high water mark to 90% of the FIFO size. fp@1900: * Required to clear last 3 LSB */ fp@1900: fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8; fp@1900: /* We can't use 90% on small FIFOs because the remainder fp@1900: * would be less than 1 full frame. In this case, we size fp@1900: * it to allow at least a full frame above the high water fp@1900: * mark. */ fp@1900: if (pba < E1000_PBA_16K) fp@1900: fc_high_water_mark = (pba * 1024) - 1600; fp@1900: fp@1900: hw->fc_high_water = fc_high_water_mark; fp@1900: hw->fc_low_water = fc_high_water_mark - 8; fp@1900: if (hw->mac_type == e1000_80003es2lan) fp@1900: hw->fc_pause_time = 0xFFFF; fp@1900: else fp@1900: hw->fc_pause_time = E1000_FC_PAUSE_TIME; fp@1900: hw->fc_send_xon = 1; fp@1900: hw->fc = hw->original_fc; fp@1900: fp@1900: /* Allow time for pending master requests to run */ fp@1900: e1000_reset_hw(hw); fp@1900: if (hw->mac_type >= e1000_82544) fp@1900: ew32(WUC, 0); fp@1900: fp@1900: if (e1000_init_hw(hw)) fp@1900: DPRINTK(PROBE, ERR, "Hardware Error\n"); fp@1900: e1000_update_mng_vlan(adapter); fp@1900: fp@1900: /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */ fp@1900: if (hw->mac_type >= e1000_82544 && fp@1900: hw->mac_type <= e1000_82547_rev_2 && fp@1900: hw->autoneg == 1 && fp@1900: hw->autoneg_advertised == ADVERTISE_1000_FULL) { fp@1900: u32 ctrl = er32(CTRL); fp@1900: /* clear phy power management bit if we are in gig only mode, fp@1900: * which if enabled will attempt negotiation to 100Mb, which fp@1900: * can cause a loss of link at power off or driver unload */ fp@1900: ctrl &= ~E1000_CTRL_SWDPIN3; fp@1900: ew32(CTRL, ctrl); fp@1900: } fp@1900: fp@1900: /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ fp@1900: ew32(VET, ETHERNET_IEEE_VLAN_TYPE); fp@1900: fp@1900: e1000_reset_adaptive(hw); fp@1900: e1000_phy_get_info(hw, &adapter->phy_info); fp@1900: fp@1900: if (!adapter->smart_power_down && fp@1900: (hw->mac_type == e1000_82571 || fp@1900: hw->mac_type == e1000_82572)) { fp@1900: u16 phy_data = 0; fp@1900: /* speed up time to link by disabling smart power down, ignore fp@1900: * the return value of this function because there is nothing fp@1900: * different we would do if it failed */ fp@1900: e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, fp@1900: &phy_data); fp@1900: phy_data &= ~IGP02E1000_PM_SPD; fp@1900: e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, fp@1900: phy_data); fp@1900: } fp@1900: fp@1900: e1000_release_manageability(adapter); fp@1900: } fp@1900: fp@1900: /** fp@1900: * Dump the eeprom for users having checksum issues fp@1900: **/ fp@1900: static void e1000_dump_eeprom(struct e1000_adapter *adapter) fp@1900: { fp@1900: struct net_device *netdev = adapter->netdev; fp@1900: struct ethtool_eeprom eeprom; fp@1900: const struct ethtool_ops *ops = netdev->ethtool_ops; fp@1900: u8 *data; fp@1900: int i; fp@1900: u16 csum_old, csum_new = 0; fp@1900: fp@1900: eeprom.len = ops->get_eeprom_len(netdev); fp@1900: eeprom.offset = 0; fp@1900: fp@1900: data = kmalloc(eeprom.len, GFP_KERNEL); fp@1900: if (!data) { fp@1900: printk(KERN_ERR "Unable to allocate memory to dump EEPROM" fp@1900: " data\n"); fp@1900: return; fp@1900: } fp@1900: fp@1900: ops->get_eeprom(netdev, &eeprom, data); fp@1900: fp@1900: csum_old = (data[EEPROM_CHECKSUM_REG * 2]) + fp@1900: (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8); fp@1900: for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2) fp@1900: csum_new += data[i] + (data[i + 1] << 8); fp@1900: csum_new = EEPROM_SUM - csum_new; fp@1900: fp@1900: printk(KERN_ERR "/*********************/\n"); fp@1900: printk(KERN_ERR "Current EEPROM Checksum : 0x%04x\n", csum_old); fp@1900: printk(KERN_ERR "Calculated : 0x%04x\n", csum_new); fp@1900: fp@1900: printk(KERN_ERR "Offset Values\n"); fp@1900: printk(KERN_ERR "======== ======\n"); fp@1900: print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0); fp@1900: fp@1900: printk(KERN_ERR "Include this output when contacting your support " fp@1900: "provider.\n"); fp@1900: printk(KERN_ERR "This is not a software error! Something bad " fp@1900: "happened to your hardware or\n"); fp@1900: printk(KERN_ERR "EEPROM image. Ignoring this " fp@1900: "problem could result in further problems,\n"); fp@1900: printk(KERN_ERR "possibly loss of data, corruption or system hangs!\n"); fp@1900: printk(KERN_ERR "The MAC Address will be reset to 00:00:00:00:00:00, " fp@1900: "which is invalid\n"); fp@1900: printk(KERN_ERR "and requires you to set the proper MAC " fp@1900: "address manually before continuing\n"); fp@1900: printk(KERN_ERR "to enable this network device.\n"); fp@1900: printk(KERN_ERR "Please inspect the EEPROM dump and report the issue " fp@1900: "to your hardware vendor\n"); fp@1900: printk(KERN_ERR "or Intel Customer Support.\n"); fp@1900: printk(KERN_ERR "/*********************/\n"); fp@1900: fp@1900: kfree(data); fp@1900: } fp@1900: fp@1900: /** fp@1900: * e1000_is_need_ioport - determine if an adapter needs ioport resources or not fp@1900: * @pdev: PCI device information struct fp@1900: * fp@1900: * Return true if an adapter needs ioport resources fp@1900: **/ fp@1900: static int e1000_is_need_ioport(struct pci_dev *pdev) fp@1900: { fp@1900: switch (pdev->device) { fp@1900: case E1000_DEV_ID_82540EM: fp@1900: case E1000_DEV_ID_82540EM_LOM: fp@1900: case E1000_DEV_ID_82540EP: fp@1900: case E1000_DEV_ID_82540EP_LOM: fp@1900: case E1000_DEV_ID_82540EP_LP: fp@1900: case E1000_DEV_ID_82541EI: fp@1900: case E1000_DEV_ID_82541EI_MOBILE: fp@1900: case E1000_DEV_ID_82541ER: fp@1900: case E1000_DEV_ID_82541ER_LOM: fp@1900: case E1000_DEV_ID_82541GI: fp@1900: case E1000_DEV_ID_82541GI_LF: fp@1900: case E1000_DEV_ID_82541GI_MOBILE: fp@1900: case E1000_DEV_ID_82544EI_COPPER: fp@1900: case E1000_DEV_ID_82544EI_FIBER: fp@1900: case E1000_DEV_ID_82544GC_COPPER: fp@1900: case E1000_DEV_ID_82544GC_LOM: fp@1900: case E1000_DEV_ID_82545EM_COPPER: fp@1900: case E1000_DEV_ID_82545EM_FIBER: fp@1900: case E1000_DEV_ID_82546EB_COPPER: fp@1900: case E1000_DEV_ID_82546EB_FIBER: fp@1900: case E1000_DEV_ID_82546EB_QUAD_COPPER: fp@1900: return true; fp@1900: default: fp@1900: return false; fp@1900: } fp@1900: } fp@1900: fp@1900: /** fp@1900: * e1000_probe - Device Initialization Routine fp@1900: * @pdev: PCI device information struct fp@1900: * @ent: entry in e1000_pci_tbl fp@1900: * fp@1900: * Returns 0 on success, negative on failure fp@1900: * fp@1900: * e1000_probe initializes an adapter identified by a pci_dev structure. fp@1900: * The OS initialization, configuring of the adapter private structure, fp@1900: * and a hardware reset occur. fp@1900: **/ fp@1900: static int __devinit e1000_probe(struct pci_dev *pdev, fp@1900: const struct pci_device_id *ent) fp@1900: { fp@1900: struct net_device *netdev; fp@1900: struct e1000_adapter *adapter; fp@1900: struct e1000_hw *hw; fp@1900: fp@1900: static int cards_found = 0; fp@1900: static int global_quad_port_a = 0; /* global ksp3 port a indication */ fp@1900: int i, err, pci_using_dac; fp@1900: u16 eeprom_data = 0; fp@1900: u16 eeprom_apme_mask = E1000_EEPROM_APME; fp@1900: int bars, need_ioport; fp@1900: DECLARE_MAC_BUF(mac); fp@1900: fp@1900: /* do not allocate ioport bars when not needed */ fp@1900: need_ioport = e1000_is_need_ioport(pdev); fp@1900: if (need_ioport) { fp@1900: bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO); fp@1900: err = pci_enable_device(pdev); fp@1900: } else { fp@1900: bars = pci_select_bars(pdev, IORESOURCE_MEM); fp@1900: err = pci_enable_device_mem(pdev); fp@1900: } fp@1900: if (err) fp@1900: return err; fp@1900: fp@1900: if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK) && fp@1900: !pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK)) { fp@1900: pci_using_dac = 1; fp@1900: } else { fp@1900: err = pci_set_dma_mask(pdev, DMA_32BIT_MASK); fp@1900: if (err) { fp@1900: err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK); fp@1900: if (err) { fp@1900: E1000_ERR("No usable DMA configuration, " fp@1900: "aborting\n"); fp@1900: goto err_dma; fp@1900: } fp@1900: } fp@1900: pci_using_dac = 0; fp@1900: } fp@1900: fp@1900: err = pci_request_selected_regions(pdev, bars, e1000_driver_name); fp@1900: if (err) fp@1900: goto err_pci_reg; fp@1900: fp@1900: pci_set_master(pdev); fp@1900: fp@1900: err = -ENOMEM; fp@1900: netdev = alloc_etherdev(sizeof(struct e1000_adapter)); fp@1900: if (!netdev) fp@1900: goto err_alloc_etherdev; fp@1900: fp@1900: SET_NETDEV_DEV(netdev, &pdev->dev); fp@1900: fp@1900: pci_set_drvdata(pdev, netdev); fp@1900: adapter = netdev_priv(netdev); fp@1900: adapter->netdev = netdev; fp@1900: adapter->pdev = pdev; fp@1900: adapter->msg_enable = (1 << debug) - 1; fp@1900: adapter->bars = bars; fp@1900: adapter->need_ioport = need_ioport; fp@1900: fp@1900: hw = &adapter->hw; fp@1900: hw->back = adapter; fp@1900: fp@1900: err = -EIO; fp@1900: hw->hw_addr = ioremap(pci_resource_start(pdev, BAR_0), fp@1900: pci_resource_len(pdev, BAR_0)); fp@1900: if (!hw->hw_addr) fp@1900: goto err_ioremap; fp@1900: fp@1900: if (adapter->need_ioport) { fp@1900: for (i = BAR_1; i <= BAR_5; i++) { fp@1900: if (pci_resource_len(pdev, i) == 0) fp@1900: continue; fp@1900: if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { fp@1900: hw->io_base = pci_resource_start(pdev, i); fp@1900: break; fp@1900: } fp@1900: } fp@1900: } fp@1900: fp@1900: netdev->open = &e1000_open; fp@1900: netdev->stop = &e1000_close; fp@1900: netdev->hard_start_xmit = &e1000_xmit_frame; fp@1900: netdev->get_stats = &e1000_get_stats; fp@1900: netdev->set_rx_mode = &e1000_set_rx_mode; fp@1900: netdev->set_mac_address = &e1000_set_mac; fp@1900: netdev->change_mtu = &e1000_change_mtu; fp@1900: netdev->do_ioctl = &e1000_ioctl; fp@1900: e1000_set_ethtool_ops(netdev); fp@1900: netdev->tx_timeout = &e1000_tx_timeout; fp@1900: netdev->watchdog_timeo = 5 * HZ; fp@1900: netif_napi_add(netdev, &adapter->napi, e1000_clean, 64); fp@1900: netdev->vlan_rx_register = e1000_vlan_rx_register; fp@1900: netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid; fp@1900: netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid; fp@1900: #ifdef CONFIG_NET_POLL_CONTROLLER fp@1900: netdev->poll_controller = e1000_netpoll; fp@1900: #endif fp@1900: strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); fp@1900: fp@1900: adapter->bd_number = cards_found; fp@1900: fp@1900: /* setup the private structure */ fp@1900: fp@1900: err = e1000_sw_init(adapter); fp@1900: if (err) fp@1900: goto err_sw_init; fp@1900: fp@1900: err = -EIO; fp@1900: /* Flash BAR mapping must happen after e1000_sw_init fp@1900: * because it depends on mac_type */ fp@1900: if ((hw->mac_type == e1000_ich8lan) && fp@1900: (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) { fp@1900: hw->flash_address = fp@1900: ioremap(pci_resource_start(pdev, 1), fp@1900: pci_resource_len(pdev, 1)); fp@1900: if (!hw->flash_address) fp@1900: goto err_flashmap; fp@1900: } fp@1900: fp@1900: if (e1000_check_phy_reset_block(hw)) fp@1900: DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n"); fp@1900: fp@1900: if (hw->mac_type >= e1000_82543) { fp@1900: netdev->features = NETIF_F_SG | fp@1900: NETIF_F_HW_CSUM | fp@1900: NETIF_F_HW_VLAN_TX | fp@1900: NETIF_F_HW_VLAN_RX | fp@1900: NETIF_F_HW_VLAN_FILTER; fp@1900: if (hw->mac_type == e1000_ich8lan) fp@1900: netdev->features &= ~NETIF_F_HW_VLAN_FILTER; fp@1900: } fp@1900: fp@1900: if ((hw->mac_type >= e1000_82544) && fp@1900: (hw->mac_type != e1000_82547)) fp@1900: netdev->features |= NETIF_F_TSO; fp@1900: fp@1900: if (hw->mac_type > e1000_82547_rev_2) fp@1900: netdev->features |= NETIF_F_TSO6; fp@1900: if (pci_using_dac) fp@1900: netdev->features |= NETIF_F_HIGHDMA; fp@1900: fp@1900: netdev->features |= NETIF_F_LLTX; fp@1900: fp@1900: adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw); fp@1900: fp@1900: /* initialize eeprom parameters */ fp@1900: if (e1000_init_eeprom_params(hw)) { fp@1900: E1000_ERR("EEPROM initialization failed\n"); fp@1900: goto err_eeprom; fp@1900: } fp@1900: fp@1900: /* before reading the EEPROM, reset the controller to fp@1900: * put the device in a known good starting state */ fp@1900: fp@1900: e1000_reset_hw(hw); fp@1900: fp@1900: /* make sure the EEPROM is good */ fp@1900: if (e1000_validate_eeprom_checksum(hw) < 0) { fp@1900: DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n"); fp@1900: e1000_dump_eeprom(adapter); fp@1900: /* fp@1900: * set MAC address to all zeroes to invalidate and temporary fp@1900: * disable this device for the user. This blocks regular fp@1900: * traffic while still permitting ethtool ioctls from reaching fp@1900: * the hardware as well as allowing the user to run the fp@1900: * interface after manually setting a hw addr using fp@1900: * `ip set address` fp@1900: */ fp@1900: memset(hw->mac_addr, 0, netdev->addr_len); fp@1900: } else { fp@1900: /* copy the MAC address out of the EEPROM */ fp@1900: if (e1000_read_mac_addr(hw)) fp@1900: DPRINTK(PROBE, ERR, "EEPROM Read Error\n"); fp@1900: } fp@1900: /* don't block initalization here due to bad MAC address */ fp@1900: memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len); fp@1900: memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len); fp@1900: fp@1900: if (!is_valid_ether_addr(netdev->perm_addr)) fp@1900: DPRINTK(PROBE, ERR, "Invalid MAC Address\n"); fp@1900: fp@1900: e1000_get_bus_info(hw); fp@1900: fp@1900: init_timer(&adapter->tx_fifo_stall_timer); fp@1900: adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall; fp@1900: adapter->tx_fifo_stall_timer.data = (unsigned long)adapter; fp@1900: fp@1900: init_timer(&adapter->watchdog_timer); fp@1900: adapter->watchdog_timer.function = &e1000_watchdog; fp@1900: adapter->watchdog_timer.data = (unsigned long) adapter; fp@1900: fp@1900: init_timer(&adapter->phy_info_timer); fp@1900: adapter->phy_info_timer.function = &e1000_update_phy_info; fp@1900: adapter->phy_info_timer.data = (unsigned long)adapter; fp@1900: fp@1900: INIT_WORK(&adapter->reset_task, e1000_reset_task); fp@1900: fp@1900: e1000_check_options(adapter); fp@1900: fp@1900: /* Initial Wake on LAN setting fp@1900: * If APM wake is enabled in the EEPROM, fp@1900: * enable the ACPI Magic Packet filter fp@1900: */ fp@1900: fp@1900: switch (hw->mac_type) { fp@1900: case e1000_82542_rev2_0: fp@1900: case e1000_82542_rev2_1: fp@1900: case e1000_82543: fp@1900: break; fp@1900: case e1000_82544: fp@1900: e1000_read_eeprom(hw, fp@1900: EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data); fp@1900: eeprom_apme_mask = E1000_EEPROM_82544_APM; fp@1900: break; fp@1900: case e1000_ich8lan: fp@1900: e1000_read_eeprom(hw, fp@1900: EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data); fp@1900: eeprom_apme_mask = E1000_EEPROM_ICH8_APME; fp@1900: break; fp@1900: case e1000_82546: fp@1900: case e1000_82546_rev_3: fp@1900: case e1000_82571: fp@1900: case e1000_80003es2lan: fp@1900: if (er32(STATUS) & E1000_STATUS_FUNC_1){ fp@1900: e1000_read_eeprom(hw, fp@1900: EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); fp@1900: break; fp@1900: } fp@1900: /* Fall Through */ fp@1900: default: fp@1900: e1000_read_eeprom(hw, fp@1900: EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); fp@1900: break; fp@1900: } fp@1900: if (eeprom_data & eeprom_apme_mask) fp@1900: adapter->eeprom_wol |= E1000_WUFC_MAG; fp@1900: fp@1900: /* now that we have the eeprom settings, apply the special cases fp@1900: * where the eeprom may be wrong or the board simply won't support fp@1900: * wake on lan on a particular port */ fp@1900: switch (pdev->device) { fp@1900: case E1000_DEV_ID_82546GB_PCIE: fp@1900: adapter->eeprom_wol = 0; fp@1900: break; fp@1900: case E1000_DEV_ID_82546EB_FIBER: fp@1900: case E1000_DEV_ID_82546GB_FIBER: fp@1900: case E1000_DEV_ID_82571EB_FIBER: fp@1900: /* Wake events only supported on port A for dual fiber fp@1900: * regardless of eeprom setting */ fp@1900: if (er32(STATUS) & E1000_STATUS_FUNC_1) fp@1900: adapter->eeprom_wol = 0; fp@1900: break; fp@1900: case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: fp@1900: case E1000_DEV_ID_82571EB_QUAD_COPPER: fp@1900: case E1000_DEV_ID_82571EB_QUAD_FIBER: fp@1900: case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE: fp@1900: case E1000_DEV_ID_82571PT_QUAD_COPPER: fp@1900: /* if quad port adapter, disable WoL on all but port A */ fp@1900: if (global_quad_port_a != 0) fp@1900: adapter->eeprom_wol = 0; fp@1900: else fp@1900: adapter->quad_port_a = 1; fp@1900: /* Reset for multiple quad port adapters */ fp@1900: if (++global_quad_port_a == 4) fp@1900: global_quad_port_a = 0; fp@1900: break; fp@1900: } fp@1900: fp@1900: /* initialize the wol settings based on the eeprom settings */ fp@1900: adapter->wol = adapter->eeprom_wol; fp@1900: device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); fp@1900: fp@1900: /* print bus type/speed/width info */ fp@1900: DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ", fp@1900: ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : fp@1900: (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")), fp@1900: ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" : fp@1900: (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" : fp@1900: (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" : fp@1900: (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" : fp@1900: (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"), fp@1900: ((hw->bus_width == e1000_bus_width_64) ? "64-bit" : fp@1900: (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" : fp@1900: (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" : fp@1900: "32-bit")); fp@1900: fp@1900: printk("%s\n", print_mac(mac, netdev->dev_addr)); fp@1900: fp@1900: if (hw->bus_type == e1000_bus_type_pci_express) { fp@1900: DPRINTK(PROBE, WARNING, "This device (id %04x:%04x) will no " fp@1900: "longer be supported by this driver in the future.\n", fp@1900: pdev->vendor, pdev->device); fp@1900: DPRINTK(PROBE, WARNING, "please use the \"e1000e\" " fp@1900: "driver instead.\n"); fp@1900: } fp@1900: fp@1900: /* reset the hardware with the new settings */ fp@1900: e1000_reset(adapter); fp@1900: fp@1900: /* If the controller is 82573 and f/w is AMT, do not set fp@1900: * DRV_LOAD until the interface is up. For all other cases, fp@1900: * let the f/w know that the h/w is now under the control fp@1900: * of the driver. */ fp@1900: if (hw->mac_type != e1000_82573 || fp@1900: !e1000_check_mng_mode(hw)) fp@1900: e1000_get_hw_control(adapter); fp@1900: fp@1900: // offer device to EtherCAT master module fp@1900: adapter->ecdev = ecdev_offer(netdev, ec_poll, THIS_MODULE); fp@1900: if (adapter->ecdev) { fp@2582: err = ecdev_open(adapter->ecdev); fp@2582: if (err) { fp@1900: ecdev_withdraw(adapter->ecdev); fp@1900: goto err_register; fp@1900: } fp@1900: } else { fp@1900: /* tell the stack to leave us alone until e1000_open() is called */ fp@1900: netif_carrier_off(netdev); fp@1900: netif_stop_queue(netdev); fp@1900: fp@1900: strcpy(netdev->name, "eth%d"); fp@1900: err = register_netdev(netdev); fp@1900: if (err) fp@1900: goto err_register; fp@1900: } fp@1900: fp@1900: DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n"); fp@1900: fp@1900: cards_found++; fp@1900: return 0; fp@1900: fp@1900: err_register: fp@1900: e1000_release_hw_control(adapter); fp@1900: err_eeprom: fp@1900: if (!e1000_check_phy_reset_block(hw)) fp@1900: e1000_phy_hw_reset(hw); fp@1900: fp@1900: if (hw->flash_address) fp@1900: iounmap(hw->flash_address); fp@1900: err_flashmap: fp@1900: for (i = 0; i < adapter->num_rx_queues; i++) fp@1900: dev_put(&adapter->polling_netdev[i]); fp@1900: fp@1900: kfree(adapter->tx_ring); fp@1900: kfree(adapter->rx_ring); fp@1900: kfree(adapter->polling_netdev); fp@1900: err_sw_init: fp@1900: iounmap(hw->hw_addr); fp@1900: err_ioremap: fp@1900: free_netdev(netdev); fp@1900: err_alloc_etherdev: fp@1900: pci_release_selected_regions(pdev, bars); fp@1900: err_pci_reg: fp@1900: err_dma: fp@1900: pci_disable_device(pdev); fp@1900: return err; fp@1900: } fp@1900: fp@1900: /** fp@1900: * e1000_remove - Device Removal Routine fp@1900: * @pdev: PCI device information struct fp@1900: * fp@1900: * e1000_remove is called by the PCI subsystem to alert the driver fp@1900: * that it should release a PCI device. The could be caused by a fp@1900: * Hot-Plug event, or because the driver is going to be removed from fp@1900: * memory. fp@1900: **/ fp@1900: fp@1900: static void __devexit e1000_remove(struct pci_dev *pdev) fp@1900: { fp@1900: struct net_device *netdev = pci_get_drvdata(pdev); fp@1900: struct e1000_adapter *adapter = netdev_priv(netdev); fp@1900: struct e1000_hw *hw = &adapter->hw; fp@1900: int i; fp@1900: fp@1900: cancel_work_sync(&adapter->reset_task); fp@1900: fp@1900: e1000_release_manageability(adapter); fp@1900: fp@1900: /* Release control of h/w to f/w. If f/w is AMT enabled, this fp@1900: * would have already happened in close and is redundant. */ fp@1900: e1000_release_hw_control(adapter); fp@1900: fp@1900: for (i = 0; i < adapter->num_rx_queues; i++) fp@1900: dev_put(&adapter->polling_netdev[i]); fp@1900: fp@1900: if (adapter->ecdev) { fp@1900: ecdev_close(adapter->ecdev); fp@1900: ecdev_withdraw(adapter->ecdev); fp@1900: } else { fp@1900: unregister_netdev(netdev); fp@1900: } fp@1900: fp@1900: if (!e1000_check_phy_reset_block(hw)) fp@1900: e1000_phy_hw_reset(hw); fp@1900: fp@1900: kfree(adapter->tx_ring); fp@1900: kfree(adapter->rx_ring); fp@1900: kfree(adapter->polling_netdev); fp@1900: fp@1900: iounmap(hw->hw_addr); fp@1900: if (hw->flash_address) fp@1900: iounmap(hw->flash_address); fp@1900: pci_release_selected_regions(pdev, adapter->bars); fp@1900: fp@1900: free_netdev(netdev); fp@1900: fp@1900: pci_disable_device(pdev); fp@1900: } fp@1900: fp@1900: /** fp@1900: * e1000_sw_init - Initialize general software structures (struct e1000_adapter) fp@1900: * @adapter: board private structure to initialize fp@1900: * fp@1900: * e1000_sw_init initializes the Adapter private data structure. fp@1900: * Fields are initialized based on PCI device information and fp@1900: * OS network device settings (MTU size). fp@1900: **/ fp@1900: fp@1900: static int __devinit e1000_sw_init(struct e1000_adapter *adapter) fp@1900: { fp@1900: struct e1000_hw *hw = &adapter->hw; fp@1900: struct net_device *netdev = adapter->netdev; fp@1900: struct pci_dev *pdev = adapter->pdev; fp@1900: int i; fp@1900: fp@1900: /* PCI config space info */ fp@1900: fp@1900: hw->vendor_id = pdev->vendor; fp@1900: hw->device_id = pdev->device; fp@1900: hw->subsystem_vendor_id = pdev->subsystem_vendor; fp@1900: hw->subsystem_id = pdev->subsystem_device; fp@1900: hw->revision_id = pdev->revision; fp@1900: fp@1900: pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word); fp@1900: fp@1900: adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; fp@1900: adapter->rx_ps_bsize0 = E1000_RXBUFFER_128; fp@1900: hw->max_frame_size = netdev->mtu + fp@1900: ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; fp@1900: hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE; fp@1900: fp@1900: /* identify the MAC */ fp@1900: fp@1900: if (e1000_set_mac_type(hw)) { fp@1900: DPRINTK(PROBE, ERR, "Unknown MAC Type\n"); fp@1900: return -EIO; fp@1900: } fp@1900: fp@1900: switch (hw->mac_type) { fp@1900: default: fp@1900: break; fp@1900: case e1000_82541: fp@1900: case e1000_82547: fp@1900: case e1000_82541_rev_2: fp@1900: case e1000_82547_rev_2: fp@1900: hw->phy_init_script = 1; fp@1900: break; fp@1900: } fp@1900: fp@1900: e1000_set_media_type(hw); fp@1900: fp@1900: hw->wait_autoneg_complete = false; fp@1900: hw->tbi_compatibility_en = true; fp@1900: hw->adaptive_ifs = true; fp@1900: fp@1900: /* Copper options */ fp@1900: fp@1900: if (hw->media_type == e1000_media_type_copper) { fp@1900: hw->mdix = AUTO_ALL_MODES; fp@1900: hw->disable_polarity_correction = false; fp@1900: hw->master_slave = E1000_MASTER_SLAVE; fp@1900: } fp@1900: fp@1900: adapter->num_tx_queues = 1; fp@1900: adapter->num_rx_queues = 1; fp@1900: fp@1900: if (e1000_alloc_queues(adapter)) { fp@1900: DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n"); fp@1900: return -ENOMEM; fp@1900: } fp@1900: fp@1900: for (i = 0; i < adapter->num_rx_queues; i++) { fp@1900: adapter->polling_netdev[i].priv = adapter; fp@1900: dev_hold(&adapter->polling_netdev[i]); fp@1900: set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state); fp@1900: } fp@1900: spin_lock_init(&adapter->tx_queue_lock); fp@1900: fp@1900: /* Explicitly disable IRQ since the NIC can be in any state. */ fp@1900: e1000_irq_disable(adapter); fp@1900: fp@1900: spin_lock_init(&adapter->stats_lock); fp@1900: fp@1900: set_bit(__E1000_DOWN, &adapter->flags); fp@1900: fp@1900: return 0; fp@1900: } fp@1900: fp@1900: /** fp@1900: * e1000_alloc_queues - Allocate memory for all rings fp@1900: * @adapter: board private structure to initialize fp@1900: * fp@1900: * We allocate one ring per queue at run-time since we don't know the fp@1900: * number of queues at compile-time. The polling_netdev array is fp@1900: * intended for Multiqueue, but should work fine with a single queue. fp@1900: **/ fp@1900: fp@1900: static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter) fp@1900: { fp@1900: adapter->tx_ring = kcalloc(adapter->num_tx_queues, fp@1900: sizeof(struct e1000_tx_ring), GFP_KERNEL); fp@1900: if (!adapter->tx_ring) fp@1900: return -ENOMEM; fp@1900: fp@1900: adapter->rx_ring = kcalloc(adapter->num_rx_queues, fp@1900: sizeof(struct e1000_rx_ring), GFP_KERNEL); fp@1900: if (!adapter->rx_ring) { fp@1900: kfree(adapter->tx_ring); fp@1900: return -ENOMEM; fp@1900: } fp@1900: fp@1900: adapter->polling_netdev = kcalloc(adapter->num_rx_queues, fp@1900: sizeof(struct net_device), fp@1900: GFP_KERNEL); fp@1900: if (!adapter->polling_netdev) { fp@1900: kfree(adapter->tx_ring); fp@1900: kfree(adapter->rx_ring); fp@1900: return -ENOMEM; fp@1900: } fp@1900: fp@1900: return E1000_SUCCESS; fp@1900: } fp@1900: fp@1900: /** fp@1900: * e1000_open - Called when a network interface is made active fp@1900: * @netdev: network interface device structure fp@1900: * fp@1900: * Returns 0 on success, negative value on failure fp@1900: * fp@1900: * The open entry point is called when a network interface is made fp@1900: * active by the system (IFF_UP). At this point all resources needed fp@1900: * for transmit and receive operations are allocated, the interrupt fp@1900: * handler is registered with the OS, the watchdog timer is started, fp@1900: * and the stack is notified that the interface is ready. fp@1900: **/ fp@1900: fp@1900: static int e1000_open(struct net_device *netdev) fp@1900: { fp@1900: struct e1000_adapter *adapter = netdev_priv(netdev); fp@1900: struct e1000_hw *hw = &adapter->hw; fp@1900: int err; fp@1900: fp@1900: /* disallow open during test */ fp@1900: if (test_bit(__E1000_TESTING, &adapter->flags)) fp@1900: return -EBUSY; fp@1900: fp@1900: /* allocate transmit descriptors */ fp@1900: err = e1000_setup_all_tx_resources(adapter); fp@1900: if (err) fp@1900: goto err_setup_tx; fp@1900: fp@1900: /* allocate receive descriptors */ fp@1900: err = e1000_setup_all_rx_resources(adapter); fp@1900: if (err) fp@1900: goto err_setup_rx; fp@1900: fp@1900: e1000_power_up_phy(adapter); fp@1900: fp@1900: adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; fp@1900: if ((hw->mng_cookie.status & fp@1900: E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) { fp@1900: e1000_update_mng_vlan(adapter); fp@1900: } fp@1900: fp@1900: /* If AMT is enabled, let the firmware know that the network fp@1900: * interface is now open */ fp@1900: if (hw->mac_type == e1000_82573 && fp@1900: e1000_check_mng_mode(hw)) fp@1900: e1000_get_hw_control(adapter); fp@1900: fp@1900: /* before we allocate an interrupt, we must be ready to handle it. fp@1900: * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt fp@1900: * as soon as we call pci_request_irq, so we have to setup our fp@1900: * clean_rx handler before we do so. */ fp@1900: e1000_configure(adapter); fp@1900: fp@1900: err = e1000_request_irq(adapter); fp@1900: if (err) fp@1900: goto err_req_irq; fp@1900: fp@1900: /* From here on the code is the same as e1000_up() */ fp@1900: clear_bit(__E1000_DOWN, &adapter->flags); fp@1900: fp@2469: if (!adapter->ecdev) { fp@2469: napi_enable(&adapter->napi); fp@2469: fp@2469: e1000_irq_enable(adapter); fp@2469: fp@2469: netif_start_queue(netdev); fp@2469: } fp@1900: fp@1900: /* fire a link status change interrupt to start the watchdog */ fp@1900: ew32(ICS, E1000_ICS_LSC); fp@1900: fp@1900: return E1000_SUCCESS; fp@1900: fp@1900: err_req_irq: fp@1900: e1000_release_hw_control(adapter); fp@1900: e1000_power_down_phy(adapter); fp@1900: e1000_free_all_rx_resources(adapter); fp@1900: err_setup_rx: fp@1900: e1000_free_all_tx_resources(adapter); fp@1900: err_setup_tx: fp@1900: e1000_reset(adapter); fp@1900: fp@1900: return err; fp@1900: } fp@1900: fp@1900: /** fp@1900: * e1000_close - Disables a network interface fp@1900: * @netdev: network interface device structure fp@1900: * fp@1900: * Returns 0, this is not allowed to fail fp@1900: * fp@1900: * The close entry point is called when an interface is de-activated fp@1900: * by the OS. The hardware is still under the drivers control, but fp@1900: * needs to be disabled. A global MAC reset is issued to stop the fp@1900: * hardware, and all transmit and receive resources are freed. fp@1900: **/ fp@1900: fp@1900: static int e1000_close(struct net_device *netdev) fp@1900: { fp@1900: struct e1000_adapter *adapter = netdev_priv(netdev); fp@1900: struct e1000_hw *hw = &adapter->hw; fp@1900: fp@1900: WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); fp@1900: e1000_down(adapter); fp@1900: e1000_power_down_phy(adapter); fp@1900: e1000_free_irq(adapter); fp@1900: fp@1900: e1000_free_all_tx_resources(adapter); fp@1900: e1000_free_all_rx_resources(adapter); fp@1900: fp@1900: /* kill manageability vlan ID if supported, but not if a vlan with fp@1900: * the same ID is registered on the host OS (let 8021q kill it) */ fp@1900: if ((hw->mng_cookie.status & fp@1900: E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && fp@1900: !(adapter->vlgrp && fp@1900: vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) { fp@1900: e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); fp@1900: } fp@1900: fp@1900: /* If AMT is enabled, let the firmware know that the network fp@1900: * interface is now closed */ fp@1900: if (hw->mac_type == e1000_82573 && fp@1900: e1000_check_mng_mode(hw)) fp@1900: e1000_release_hw_control(adapter); fp@1900: fp@1900: return 0; fp@1900: } fp@1900: fp@1900: /** fp@1900: * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary fp@1900: * @adapter: address of board private structure fp@1900: * @start: address of beginning of memory fp@1900: * @len: length of memory fp@1900: **/ fp@1900: static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start, fp@1900: unsigned long len) fp@1900: { fp@1900: struct e1000_hw *hw = &adapter->hw; fp@1900: unsigned long begin = (unsigned long)start; fp@1900: unsigned long end = begin + len; fp@1900: fp@1900: /* First rev 82545 and 82546 need to not allow any memory fp@1900: * write location to cross 64k boundary due to errata 23 */ fp@1900: if (hw->mac_type == e1000_82545 || fp@1900: hw->mac_type == e1000_82546) { fp@1900: return ((begin ^ (end - 1)) >> 16) != 0 ? false : true; fp@1900: } fp@1900: fp@1900: return true; fp@1900: } fp@1900: fp@1900: /** fp@1900: * e1000_setup_tx_resources - allocate Tx resources (Descriptors) fp@1900: * @adapter: board private structure fp@1900: * @txdr: tx descriptor ring (for a specific queue) to setup fp@1900: * fp@1900: * Return 0 on success, negative on failure fp@1900: **/ fp@1900: fp@1900: static int e1000_setup_tx_resources(struct e1000_adapter *adapter, fp@1900: struct e1000_tx_ring *txdr) fp@1900: { fp@1900: struct pci_dev *pdev = adapter->pdev; fp@1900: int size; fp@1900: fp@1900: size = sizeof(struct e1000_buffer) * txdr->count; fp@1900: txdr->buffer_info = vmalloc(size); fp@1900: if (!txdr->buffer_info) { fp@1900: DPRINTK(PROBE, ERR, fp@1900: "Unable to allocate memory for the transmit descriptor ring\n"); fp@1900: return -ENOMEM; fp@1900: } fp@1900: memset(txdr->buffer_info, 0, size); fp@1900: fp@1900: /* round up to nearest 4K */ fp@1900: fp@1900: txdr->size = txdr->count * sizeof(struct e1000_tx_desc); fp@1900: txdr->size = ALIGN(txdr->size, 4096); fp@1900: fp@1900: txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma); fp@1900: if (!txdr->desc) { fp@1900: setup_tx_desc_die: fp@1900: vfree(txdr->buffer_info); fp@1900: DPRINTK(PROBE, ERR, fp@1900: "Unable to allocate memory for the transmit descriptor ring\n"); fp@1900: return -ENOMEM; fp@1900: } fp@1900: fp@1900: /* Fix for errata 23, can't cross 64kB boundary */ fp@1900: if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { fp@1900: void *olddesc = txdr->desc; fp@1900: dma_addr_t olddma = txdr->dma; fp@1900: DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes " fp@1900: "at %p\n", txdr->size, txdr->desc); fp@1900: /* Try again, without freeing the previous */ fp@1900: txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma); fp@1900: /* Failed allocation, critical failure */ fp@1900: if (!txdr->desc) { fp@1900: pci_free_consistent(pdev, txdr->size, olddesc, olddma); fp@1900: goto setup_tx_desc_die; fp@1900: } fp@1900: fp@1900: if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { fp@1900: /* give up */ fp@1900: pci_free_consistent(pdev, txdr->size, txdr->desc, fp@1900: txdr->dma); fp@1900: pci_free_consistent(pdev, txdr->size, olddesc, olddma); fp@1900: DPRINTK(PROBE, ERR, fp@1900: "Unable to allocate aligned memory " fp@1900: "for the transmit descriptor ring\n"); fp@1900: vfree(txdr->buffer_info); fp@1900: return -ENOMEM; fp@1900: } else { fp@1900: /* Free old allocation, new allocation was successful */ fp@1900: pci_free_consistent(pdev, txdr->size, olddesc, olddma); fp@1900: } fp@1900: } fp@1900: memset(txdr->desc, 0, txdr->size); fp@1900: fp@1900: txdr->next_to_use = 0; fp@1900: txdr->next_to_clean = 0; fp@1900: spin_lock_init(&txdr->tx_lock); fp@1900: fp@1900: return 0; fp@1900: } fp@1900: fp@1900: /** fp@1900: * e1000_setup_all_tx_resources - wrapper to allocate Tx resources fp@1900: * (Descriptors) for all queues fp@1900: * @adapter: board private structure fp@1900: * fp@1900: * Return 0 on success, negative on failure fp@1900: **/ fp@1900: fp@1900: int e1000_setup_all_tx_resources(struct e1000_adapter *adapter) fp@1900: { fp@1900: int i, err = 0; fp@1900: fp@1900: for (i = 0; i < adapter->num_tx_queues; i++) { fp@1900: err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]); fp@1900: if (err) { fp@1900: DPRINTK(PROBE, ERR, fp@1900: "Allocation for Tx Queue %u failed\n", i); fp@1900: for (i-- ; i >= 0; i--) fp@1900: e1000_free_tx_resources(adapter, fp@1900: &adapter->tx_ring[i]); fp@1900: break; fp@1900: } fp@1900: } fp@1900: fp@1900: return err; fp@1900: } fp@1900: fp@1900: /** fp@1900: * e1000_configure_tx - Configure 8254x Transmit Unit after Reset fp@1900: * @adapter: board private structure fp@1900: * fp@1900: * Configure the Tx unit of the MAC after a reset. fp@1900: **/ fp@1900: fp@1900: static void e1000_configure_tx(struct e1000_adapter *adapter) fp@1900: { fp@1900: u64 tdba; fp@1900: struct e1000_hw *hw = &adapter->hw; fp@1900: u32 tdlen, tctl, tipg, tarc; fp@1900: u32 ipgr1, ipgr2; fp@1900: fp@1900: /* Setup the HW Tx Head and Tail descriptor pointers */ fp@1900: fp@1900: switch (adapter->num_tx_queues) { fp@1900: case 1: fp@1900: default: fp@1900: tdba = adapter->tx_ring[0].dma; fp@1900: tdlen = adapter->tx_ring[0].count * fp@1900: sizeof(struct e1000_tx_desc); fp@1900: ew32(TDLEN, tdlen); fp@1900: ew32(TDBAH, (tdba >> 32)); fp@1900: ew32(TDBAL, (tdba & 0x00000000ffffffffULL)); fp@1900: ew32(TDT, 0); fp@1900: ew32(TDH, 0); fp@1900: adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH); fp@1900: adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT); fp@1900: break; fp@1900: } fp@1900: fp@1900: /* Set the default values for the Tx Inter Packet Gap timer */ fp@1900: if (hw->mac_type <= e1000_82547_rev_2 && fp@1900: (hw->media_type == e1000_media_type_fiber || fp@1900: hw->media_type == e1000_media_type_internal_serdes)) fp@1900: tipg = DEFAULT_82543_TIPG_IPGT_FIBER; fp@1900: else fp@1900: tipg = DEFAULT_82543_TIPG_IPGT_COPPER; fp@1900: fp@1900: switch (hw->mac_type) { fp@1900: case e1000_82542_rev2_0: fp@1900: case e1000_82542_rev2_1: fp@1900: tipg = DEFAULT_82542_TIPG_IPGT; fp@1900: ipgr1 = DEFAULT_82542_TIPG_IPGR1; fp@1900: ipgr2 = DEFAULT_82542_TIPG_IPGR2; fp@1900: break; fp@1900: case e1000_80003es2lan: fp@1900: ipgr1 = DEFAULT_82543_TIPG_IPGR1; fp@1900: ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; fp@1900: break; fp@1900: default: fp@1900: ipgr1 = DEFAULT_82543_TIPG_IPGR1; fp@1900: ipgr2 = DEFAULT_82543_TIPG_IPGR2; fp@1900: break; fp@1900: } fp@1900: tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; fp@1900: tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; fp@1900: ew32(TIPG, tipg); fp@1900: fp@1900: /* Set the Tx Interrupt Delay register */ fp@1900: fp@1900: ew32(TIDV, adapter->tx_int_delay); fp@1900: if (hw->mac_type >= e1000_82540) fp@1900: ew32(TADV, adapter->tx_abs_int_delay); fp@1900: fp@1900: /* Program the Transmit Control Register */ fp@1900: fp@1900: tctl = er32(TCTL); fp@1900: tctl &= ~E1000_TCTL_CT; fp@1900: tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | fp@1900: (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); fp@1900: fp@1900: if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) { fp@1900: tarc = er32(TARC0); fp@1900: /* set the speed mode bit, we'll clear it if we're not at fp@1900: * gigabit link later */ fp@1900: tarc |= (1 << 21); fp@1900: ew32(TARC0, tarc); fp@1900: } else if (hw->mac_type == e1000_80003es2lan) { fp@1900: tarc = er32(TARC0); fp@1900: tarc |= 1; fp@1900: ew32(TARC0, tarc); fp@1900: tarc = er32(TARC1); fp@1900: tarc |= 1; fp@1900: ew32(TARC1, tarc); fp@1900: } fp@1900: fp@1900: e1000_config_collision_dist(hw); fp@1900: fp@1900: /* Setup Transmit Descriptor Settings for eop descriptor */ fp@1900: adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; fp@1900: fp@1900: /* only set IDE if we are delaying interrupts using the timers */ fp@1900: if (adapter->tx_int_delay) fp@1900: adapter->txd_cmd |= E1000_TXD_CMD_IDE; fp@1900: fp@1900: if (hw->mac_type < e1000_82543) fp@1900: adapter->txd_cmd |= E1000_TXD_CMD_RPS; fp@1900: else fp@1900: adapter->txd_cmd |= E1000_TXD_CMD_RS; fp@1900: fp@1900: /* Cache if we're 82544 running in PCI-X because we'll fp@1900: * need this to apply a workaround later in the send path. */ fp@1900: if (hw->mac_type == e1000_82544 && fp@1900: hw->bus_type == e1000_bus_type_pcix) fp@1900: adapter->pcix_82544 = 1; fp@1900: fp@1900: ew32(TCTL, tctl); fp@1900: fp@1900: } fp@1900: fp@1900: /** fp@1900: * e1000_setup_rx_resources - allocate Rx resources (Descriptors) fp@1900: * @adapter: board private structure fp@1900: * @rxdr: rx descriptor ring (for a specific queue) to setup fp@1900: * fp@1900: * Returns 0 on success, negative on failure fp@1900: **/ fp@1900: fp@1900: static int e1000_setup_rx_resources(struct e1000_adapter *adapter, fp@1900: struct e1000_rx_ring *rxdr) fp@1900: { fp@1900: struct e1000_hw *hw = &adapter->hw; fp@1900: struct pci_dev *pdev = adapter->pdev; fp@1900: int size, desc_len; fp@1900: fp@1900: size = sizeof(struct e1000_buffer) * rxdr->count; fp@1900: rxdr->buffer_info = vmalloc(size); fp@1900: if (!rxdr->buffer_info) { fp@1900: DPRINTK(PROBE, ERR, fp@1900: "Unable to allocate memory for the receive descriptor ring\n"); fp@1900: return -ENOMEM; fp@1900: } fp@1900: memset(rxdr->buffer_info, 0, size); fp@1900: fp@1900: rxdr->ps_page = kcalloc(rxdr->count, sizeof(struct e1000_ps_page), fp@1900: GFP_KERNEL); fp@1900: if (!rxdr->ps_page) { fp@1900: vfree(rxdr->buffer_info); fp@1900: DPRINTK(PROBE, ERR, fp@1900: "Unable to allocate memory for the receive descriptor ring\n"); fp@1900: return -ENOMEM; fp@1900: } fp@1900: fp@1900: rxdr->ps_page_dma = kcalloc(rxdr->count, fp@1900: sizeof(struct e1000_ps_page_dma), fp@1900: GFP_KERNEL); fp@1900: if (!rxdr->ps_page_dma) { fp@1900: vfree(rxdr->buffer_info); fp@1900: kfree(rxdr->ps_page); fp@1900: DPRINTK(PROBE, ERR, fp@1900: "Unable to allocate memory for the receive descriptor ring\n"); fp@1900: return -ENOMEM; fp@1900: } fp@1900: fp@1900: if (hw->mac_type <= e1000_82547_rev_2) fp@1900: desc_len = sizeof(struct e1000_rx_desc); fp@1900: else fp@1900: desc_len = sizeof(union e1000_rx_desc_packet_split); fp@1900: fp@1900: /* Round up to nearest 4K */ fp@1900: fp@1900: rxdr->size = rxdr->count * desc_len; fp@1900: rxdr->size = ALIGN(rxdr->size, 4096); fp@1900: fp@1900: rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma); fp@1900: fp@1900: if (!rxdr->desc) { fp@1900: DPRINTK(PROBE, ERR, fp@1900: "Unable to allocate memory for the receive descriptor ring\n"); fp@1900: setup_rx_desc_die: fp@1900: vfree(rxdr->buffer_info); fp@1900: kfree(rxdr->ps_page); fp@1900: kfree(rxdr->ps_page_dma); fp@1900: return -ENOMEM; fp@1900: } fp@1900: fp@1900: /* Fix for errata 23, can't cross 64kB boundary */ fp@1900: if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { fp@1900: void *olddesc = rxdr->desc; fp@1900: dma_addr_t olddma = rxdr->dma; fp@1900: DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes " fp@1900: "at %p\n", rxdr->size, rxdr->desc); fp@1900: /* Try again, without freeing the previous */ fp@1900: rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma); fp@1900: /* Failed allocation, critical failure */ fp@1900: if (!rxdr->desc) { fp@1900: pci_free_consistent(pdev, rxdr->size, olddesc, olddma); fp@1900: DPRINTK(PROBE, ERR, fp@1900: "Unable to allocate memory " fp@1900: "for the receive descriptor ring\n"); fp@1900: goto setup_rx_desc_die; fp@1900: } fp@1900: fp@1900: if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { fp@1900: /* give up */ fp@1900: pci_free_consistent(pdev, rxdr->size, rxdr->desc, fp@1900: rxdr->dma); fp@1900: pci_free_consistent(pdev, rxdr->size, olddesc, olddma); fp@1900: DPRINTK(PROBE, ERR, fp@1900: "Unable to allocate aligned memory " fp@1900: "for the receive descriptor ring\n"); fp@1900: goto setup_rx_desc_die; fp@1900: } else { fp@1900: /* Free old allocation, new allocation was successful */ fp@1900: pci_free_consistent(pdev, rxdr->size, olddesc, olddma); fp@1900: } fp@1900: } fp@1900: memset(rxdr->desc, 0, rxdr->size); fp@1900: fp@1900: rxdr->next_to_clean = 0; fp@1900: rxdr->next_to_use = 0; fp@1900: fp@1900: return 0; fp@1900: } fp@1900: fp@1900: /** fp@1900: * e1000_setup_all_rx_resources - wrapper to allocate Rx resources fp@1900: * (Descriptors) for all queues fp@1900: * @adapter: board private structure fp@1900: * fp@1900: * Return 0 on success, negative on failure fp@1900: **/ fp@1900: fp@1900: int e1000_setup_all_rx_resources(struct e1000_adapter *adapter) fp@1900: { fp@1900: int i, err = 0; fp@1900: fp@1900: for (i = 0; i < adapter->num_rx_queues; i++) { fp@1900: err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]); fp@1900: if (err) { fp@1900: DPRINTK(PROBE, ERR, fp@1900: "Allocation for Rx Queue %u failed\n", i); fp@1900: for (i-- ; i >= 0; i--) fp@1900: e1000_free_rx_resources(adapter, fp@1900: &adapter->rx_ring[i]); fp@1900: break; fp@1900: } fp@1900: } fp@1900: fp@1900: return err; fp@1900: } fp@1900: fp@1900: /** fp@1900: * e1000_setup_rctl - configure the receive control registers fp@1900: * @adapter: Board private structure fp@1900: **/ fp@1900: #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \ fp@1900: (((S) & (PAGE_SIZE - 1)) ? 1 : 0)) fp@1900: static void e1000_setup_rctl(struct e1000_adapter *adapter) fp@1900: { fp@1900: struct e1000_hw *hw = &adapter->hw; fp@1900: u32 rctl, rfctl; fp@1900: u32 psrctl = 0; fp@1900: #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT fp@1900: u32 pages = 0; fp@1900: #endif fp@1900: fp@1900: rctl = er32(RCTL); fp@1900: fp@1900: rctl &= ~(3 << E1000_RCTL_MO_SHIFT); fp@1900: fp@1900: rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | fp@1900: E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | fp@1900: (hw->mc_filter_type << E1000_RCTL_MO_SHIFT); fp@1900: fp@1900: if (hw->tbi_compatibility_on == 1) fp@1900: rctl |= E1000_RCTL_SBP; fp@1900: else fp@1900: rctl &= ~E1000_RCTL_SBP; fp@1900: fp@1900: if (adapter->netdev->mtu <= ETH_DATA_LEN) fp@1900: rctl &= ~E1000_RCTL_LPE; fp@1900: else fp@1900: rctl |= E1000_RCTL_LPE; fp@1900: fp@1900: /* Setup buffer sizes */ fp@1900: rctl &= ~E1000_RCTL_SZ_4096; fp@1900: rctl |= E1000_RCTL_BSEX; fp@1900: switch (adapter->rx_buffer_len) { fp@1900: case E1000_RXBUFFER_256: fp@1900: rctl |= E1000_RCTL_SZ_256; fp@1900: rctl &= ~E1000_RCTL_BSEX; fp@1900: break; fp@1900: case E1000_RXBUFFER_512: fp@1900: rctl |= E1000_RCTL_SZ_512; fp@1900: rctl &= ~E1000_RCTL_BSEX; fp@1900: break; fp@1900: case E1000_RXBUFFER_1024: fp@1900: rctl |= E1000_RCTL_SZ_1024; fp@1900: rctl &= ~E1000_RCTL_BSEX; fp@1900: break; fp@1900: case E1000_RXBUFFER_2048: fp@1900: default: fp@1900: rctl |= E1000_RCTL_SZ_2048; fp@1900: rctl &= ~E1000_RCTL_BSEX; fp@1900: break; fp@1900: case E1000_RXBUFFER_4096: fp@1900: rctl |= E1000_RCTL_SZ_4096; fp@1900: break; fp@1900: case E1000_RXBUFFER_8192: fp@1900: rctl |= E1000_RCTL_SZ_8192; fp@1900: break; fp@1900: case E1000_RXBUFFER_16384: fp@1900: rctl |= E1000_RCTL_SZ_16384; fp@1900: break; fp@1900: } fp@1900: fp@1900: #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT fp@1900: /* 82571 and greater support packet-split where the protocol fp@1900: * header is placed in skb->data and the packet data is fp@1900: * placed in pages hanging off of skb_shinfo(skb)->nr_frags. fp@1900: * In the case of a non-split, skb->data is linearly filled, fp@1900: * followed by the page buffers. Therefore, skb->data is fp@1900: * sized to hold the largest protocol header. fp@1900: */ fp@1900: /* allocations using alloc_page take too long for regular MTU fp@1900: * so only enable packet split for jumbo frames */ fp@1900: pages = PAGE_USE_COUNT(adapter->netdev->mtu); fp@1900: if ((hw->mac_type >= e1000_82571) && (pages <= 3) && fp@1900: PAGE_SIZE <= 16384 && (rctl & E1000_RCTL_LPE)) fp@1900: adapter->rx_ps_pages = pages; fp@1900: else fp@1900: adapter->rx_ps_pages = 0; fp@1900: #endif fp@1900: if (adapter->rx_ps_pages) { fp@1900: /* Configure extra packet-split registers */ fp@1900: rfctl = er32(RFCTL); fp@1900: rfctl |= E1000_RFCTL_EXTEN; fp@1900: /* disable packet split support for IPv6 extension headers, fp@1900: * because some malformed IPv6 headers can hang the RX */ fp@1900: rfctl |= (E1000_RFCTL_IPV6_EX_DIS | fp@1900: E1000_RFCTL_NEW_IPV6_EXT_DIS); fp@1900: fp@1900: ew32(RFCTL, rfctl); fp@1900: fp@1900: rctl |= E1000_RCTL_DTYP_PS; fp@1900: fp@1900: psrctl |= adapter->rx_ps_bsize0 >> fp@1900: E1000_PSRCTL_BSIZE0_SHIFT; fp@1900: fp@1900: switch (adapter->rx_ps_pages) { fp@1900: case 3: fp@1900: psrctl |= PAGE_SIZE << fp@1900: E1000_PSRCTL_BSIZE3_SHIFT; fp@1900: case 2: fp@1900: psrctl |= PAGE_SIZE << fp@1900: E1000_PSRCTL_BSIZE2_SHIFT; fp@1900: case 1: fp@1900: psrctl |= PAGE_SIZE >> fp@1900: E1000_PSRCTL_BSIZE1_SHIFT; fp@1900: break; fp@1900: } fp@1900: fp@1900: ew32(PSRCTL, psrctl); fp@1900: } fp@1900: fp@1900: ew32(RCTL, rctl); fp@1900: } fp@1900: fp@1900: /** fp@1900: * e1000_configure_rx - Configure 8254x Receive Unit after Reset fp@1900: * @adapter: board private structure fp@1900: * fp@1900: * Configure the Rx unit of the MAC after a reset. fp@1900: **/ fp@1900: fp@1900: static void e1000_configure_rx(struct e1000_adapter *adapter) fp@1900: { fp@1900: u64 rdba; fp@1900: struct e1000_hw *hw = &adapter->hw; fp@1900: u32 rdlen, rctl, rxcsum, ctrl_ext; fp@1900: fp@1900: if (adapter->rx_ps_pages) { fp@1900: /* this is a 32 byte descriptor */ fp@1900: rdlen = adapter->rx_ring[0].count * fp@1900: sizeof(union e1000_rx_desc_packet_split); fp@1900: adapter->clean_rx = e1000_clean_rx_irq_ps; fp@1900: adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps; fp@1900: } else { fp@1900: rdlen = adapter->rx_ring[0].count * fp@1900: sizeof(struct e1000_rx_desc); fp@1900: adapter->clean_rx = e1000_clean_rx_irq; fp@1900: adapter->alloc_rx_buf = e1000_alloc_rx_buffers; fp@1900: } fp@1900: fp@1900: /* disable receives while setting up the descriptors */ fp@1900: rctl = er32(RCTL); fp@1900: ew32(RCTL, rctl & ~E1000_RCTL_EN); fp@1900: fp@1900: /* set the Receive Delay Timer Register */ fp@1900: ew32(RDTR, adapter->rx_int_delay); fp@1900: fp@1900: if (hw->mac_type >= e1000_82540) { fp@1900: ew32(RADV, adapter->rx_abs_int_delay); fp@1900: if (adapter->itr_setting != 0) fp@1900: ew32(ITR, 1000000000 / (adapter->itr * 256)); fp@1900: } fp@1900: fp@1900: if (hw->mac_type >= e1000_82571) { fp@1900: ctrl_ext = er32(CTRL_EXT); fp@1900: /* Reset delay timers after every interrupt */ fp@1900: ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR; fp@1900: /* Auto-Mask interrupts upon ICR access */ fp@1900: ctrl_ext |= E1000_CTRL_EXT_IAME; fp@1900: ew32(IAM, 0xffffffff); fp@1900: ew32(CTRL_EXT, ctrl_ext); fp@1900: E1000_WRITE_FLUSH(); fp@1900: } fp@1900: fp@1900: /* Setup the HW Rx Head and Tail Descriptor Pointers and fp@1900: * the Base and Length of the Rx Descriptor Ring */ fp@1900: switch (adapter->num_rx_queues) { fp@1900: case 1: fp@1900: default: fp@1900: rdba = adapter->rx_ring[0].dma; fp@1900: ew32(RDLEN, rdlen); fp@1900: ew32(RDBAH, (rdba >> 32)); fp@1900: ew32(RDBAL, (rdba & 0x00000000ffffffffULL)); fp@1900: ew32(RDT, 0); fp@1900: ew32(RDH, 0); fp@1900: adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH); fp@1900: adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT); fp@1900: break; fp@1900: } fp@1900: fp@1900: /* Enable 82543 Receive Checksum Offload for TCP and UDP */ fp@1900: if (hw->mac_type >= e1000_82543) { fp@1900: rxcsum = er32(RXCSUM); fp@1900: if (adapter->rx_csum) { fp@1900: rxcsum |= E1000_RXCSUM_TUOFL; fp@1900: fp@1900: /* Enable 82571 IPv4 payload checksum for UDP fragments fp@1900: * Must be used in conjunction with packet-split. */ fp@1900: if ((hw->mac_type >= e1000_82571) && fp@1900: (adapter->rx_ps_pages)) { fp@1900: rxcsum |= E1000_RXCSUM_IPPCSE; fp@1900: } fp@1900: } else { fp@1900: rxcsum &= ~E1000_RXCSUM_TUOFL; fp@1900: /* don't need to clear IPPCSE as it defaults to 0 */ fp@1900: } fp@1900: ew32(RXCSUM, rxcsum); fp@1900: } fp@1900: fp@1900: /* enable early receives on 82573, only takes effect if using > 2048 fp@1900: * byte total frame size. for example only for jumbo frames */ fp@1900: #define E1000_ERT_2048 0x100 fp@1900: if (hw->mac_type == e1000_82573) fp@1900: ew32(ERT, E1000_ERT_2048); fp@1900: fp@1900: /* Enable Receives */ fp@1900: ew32(RCTL, rctl); fp@1900: } fp@1900: fp@1900: /** fp@1900: * e1000_free_tx_resources - Free Tx Resources per Queue fp@1900: * @adapter: board private structure fp@1900: * @tx_ring: Tx descriptor ring for a specific queue fp@1900: * fp@1900: * Free all transmit software resources fp@1900: **/ fp@1900: fp@1900: static void e1000_free_tx_resources(struct e1000_adapter *adapter, fp@1900: struct e1000_tx_ring *tx_ring) fp@1900: { fp@1900: struct pci_dev *pdev = adapter->pdev; fp@1900: fp@1900: e1000_clean_tx_ring(adapter, tx_ring); fp@1900: fp@1900: vfree(tx_ring->buffer_info); fp@1900: tx_ring->buffer_info = NULL; fp@1900: fp@1900: pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma); fp@1900: fp@1900: tx_ring->desc = NULL; fp@1900: } fp@1900: fp@1900: /** fp@1900: * e1000_free_all_tx_resources - Free Tx Resources for All Queues fp@1900: * @adapter: board private structure fp@1900: * fp@1900: * Free all transmit software resources fp@1900: **/ fp@1900: fp@1900: void e1000_free_all_tx_resources(struct e1000_adapter *adapter) fp@1900: { fp@1900: int i; fp@1900: fp@1900: for (i = 0; i < adapter->num_tx_queues; i++) fp@1900: e1000_free_tx_resources(adapter, &adapter->tx_ring[i]); fp@1900: } fp@1900: fp@1900: static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter, fp@1900: struct e1000_buffer *buffer_info) fp@1900: { fp@1900: if (adapter->ecdev) fp@1900: return; fp@1900: fp@1900: if (buffer_info->dma) { fp@1900: pci_unmap_page(adapter->pdev, fp@1900: buffer_info->dma, fp@1900: buffer_info->length, fp@1900: PCI_DMA_TODEVICE); fp@1900: buffer_info->dma = 0; fp@1900: } fp@1900: if (buffer_info->skb) { fp@1900: dev_kfree_skb_any(buffer_info->skb); fp@1900: buffer_info->skb = NULL; fp@1900: } fp@1900: /* buffer_info must be completely set up in the transmit path */ fp@1900: } fp@1900: fp@1900: /** fp@1900: * e1000_clean_tx_ring - Free Tx Buffers fp@1900: * @adapter: board private structure fp@1900: * @tx_ring: ring to be cleaned fp@1900: **/ fp@1900: fp@1900: static void e1000_clean_tx_ring(struct e1000_adapter *adapter, fp@1900: struct e1000_tx_ring *tx_ring) fp@1900: { fp@1900: struct e1000_hw *hw = &adapter->hw; fp@1900: struct e1000_buffer *buffer_info; fp@1900: unsigned long size; fp@1900: unsigned int i; fp@1900: fp@1900: /* Free all the Tx ring sk_buffs */ fp@1900: fp@1900: for (i = 0; i < tx_ring->count; i++) { fp@1900: buffer_info = &tx_ring->buffer_info[i]; fp@1900: e1000_unmap_and_free_tx_resource(adapter, buffer_info); fp@1900: } fp@1900: fp@1900: size = sizeof(struct e1000_buffer) * tx_ring->count; fp@1900: memset(tx_ring->buffer_info, 0, size); fp@1900: fp@1900: /* Zero out the descriptor ring */ fp@1900: fp@1900: memset(tx_ring->desc, 0, tx_ring->size); fp@1900: fp@1900: tx_ring->next_to_use = 0; fp@1900: tx_ring->next_to_clean = 0; fp@1900: tx_ring->last_tx_tso = 0; fp@1900: fp@1900: writel(0, hw->hw_addr + tx_ring->tdh); fp@1900: writel(0, hw->hw_addr + tx_ring->tdt); fp@1900: } fp@1900: fp@1900: /** fp@1900: * e1000_clean_all_tx_rings - Free Tx Buffers for all queues fp@1900: * @adapter: board private structure fp@1900: **/ fp@1900: fp@1900: static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter) fp@1900: { fp@1900: int i; fp@1900: fp@1900: for (i = 0; i < adapter->num_tx_queues; i++) fp@1900: e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]); fp@1900: } fp@1900: fp@1900: /** fp@1900: * e1000_free_rx_resources - Free Rx Resources fp@1900: * @adapter: board private structure fp@1900: * @rx_ring: ring to clean the resources from fp@1900: * fp@1900: * Free all receive software resources fp@1900: **/ fp@1900: fp@1900: static void e1000_free_rx_resources(struct e1000_adapter *adapter, fp@1900: struct e1000_rx_ring *rx_ring) fp@1900: { fp@1900: struct pci_dev *pdev = adapter->pdev; fp@1900: fp@1900: e1000_clean_rx_ring(adapter, rx_ring); fp@1900: fp@1900: vfree(rx_ring->buffer_info); fp@1900: rx_ring->buffer_info = NULL; fp@1900: kfree(rx_ring->ps_page); fp@1900: rx_ring->ps_page = NULL; fp@1900: kfree(rx_ring->ps_page_dma); fp@1900: rx_ring->ps_page_dma = NULL; fp@1900: fp@1900: pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma); fp@1900: fp@1900: rx_ring->desc = NULL; fp@1900: } fp@1900: fp@1900: /** fp@1900: * e1000_free_all_rx_resources - Free Rx Resources for All Queues fp@1900: * @adapter: board private structure fp@1900: * fp@1900: * Free all receive software resources fp@1900: **/ fp@1900: fp@1900: void e1000_free_all_rx_resources(struct e1000_adapter *adapter) fp@1900: { fp@1900: int i; fp@1900: fp@1900: for (i = 0; i < adapter->num_rx_queues; i++) fp@1900: e1000_free_rx_resources(adapter, &adapter->rx_ring[i]); fp@1900: } fp@1900: fp@1900: /** fp@1900: * e1000_clean_rx_ring - Free Rx Buffers per Queue fp@1900: * @adapter: board private structure fp@1900: * @rx_ring: ring to free buffers from fp@1900: **/ fp@1900: fp@1900: static void e1000_clean_rx_ring(struct e1000_adapter *adapter, fp@1900: struct e1000_rx_ring *rx_ring) fp@1900: { fp@1900: struct e1000_hw *hw = &adapter->hw; fp@1900: struct e1000_buffer *buffer_info; fp@1900: struct e1000_ps_page *ps_page; fp@1900: struct e1000_ps_page_dma *ps_page_dma; fp@1900: struct pci_dev *pdev = adapter->pdev; fp@1900: unsigned long size; fp@1900: unsigned int i, j; fp@1900: fp@1900: /* Free all the Rx ring sk_buffs */ fp@1900: for (i = 0; i < rx_ring->count; i++) { fp@1900: buffer_info = &rx_ring->buffer_info[i]; fp@1900: if (buffer_info->skb) { fp@1900: pci_unmap_single(pdev, fp@1900: buffer_info->dma, fp@1900: buffer_info->length, fp@1900: PCI_DMA_FROMDEVICE); fp@1900: fp@1900: dev_kfree_skb(buffer_info->skb); fp@1900: buffer_info->skb = NULL; fp@1900: } fp@1900: ps_page = &rx_ring->ps_page[i]; fp@1900: ps_page_dma = &rx_ring->ps_page_dma[i]; fp@1900: for (j = 0; j < adapter->rx_ps_pages; j++) { fp@1900: if (!ps_page->ps_page[j]) break; fp@1900: pci_unmap_page(pdev, fp@1900: ps_page_dma->ps_page_dma[j], fp@1900: PAGE_SIZE, PCI_DMA_FROMDEVICE); fp@1900: ps_page_dma->ps_page_dma[j] = 0; fp@1900: put_page(ps_page->ps_page[j]); fp@1900: ps_page->ps_page[j] = NULL; fp@1900: } fp@1900: } fp@1900: fp@1900: size = sizeof(struct e1000_buffer) * rx_ring->count; fp@1900: memset(rx_ring->buffer_info, 0, size); fp@1900: size = sizeof(struct e1000_ps_page) * rx_ring->count; fp@1900: memset(rx_ring->ps_page, 0, size); fp@1900: size = sizeof(struct e1000_ps_page_dma) * rx_ring->count; fp@1900: memset(rx_ring->ps_page_dma, 0, size); fp@1900: fp@1900: /* Zero out the descriptor ring */ fp@1900: fp@1900: memset(rx_ring->desc, 0, rx_ring->size); fp@1900: fp@1900: rx_ring->next_to_clean = 0; fp@1900: rx_ring->next_to_use = 0; fp@1900: fp@1900: writel(0, hw->hw_addr + rx_ring->rdh); fp@1900: writel(0, hw->hw_addr + rx_ring->rdt); fp@1900: } fp@1900: fp@1900: /** fp@1900: * e1000_clean_all_rx_rings - Free Rx Buffers for all queues fp@1900: * @adapter: board private structure fp@1900: **/ fp@1900: fp@1900: static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter) fp@1900: { fp@1900: int i; fp@1900: fp@1900: for (i = 0; i < adapter->num_rx_queues; i++) fp@1900: e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]); fp@1900: } fp@1900: fp@1900: /* The 82542 2.0 (revision 2) needs to have the receive unit in reset fp@1900: * and memory write and invalidate disabled for certain operations fp@1900: */ fp@1900: static void e1000_enter_82542_rst(struct e1000_adapter *adapter) fp@1900: { fp@1900: struct e1000_hw *hw = &adapter->hw; fp@1900: struct net_device *netdev = adapter->netdev; fp@1900: u32 rctl; fp@1900: fp@1900: e1000_pci_clear_mwi(hw); fp@1900: fp@1900: rctl = er32(RCTL); fp@1900: rctl |= E1000_RCTL_RST; fp@1900: ew32(RCTL, rctl); fp@1900: E1000_WRITE_FLUSH(); fp@1900: mdelay(5); fp@1900: fp@1900: if (!adapter->ecdev && netif_running(netdev)) fp@1900: e1000_clean_all_rx_rings(adapter); fp@1900: } fp@1900: fp@1900: static void e1000_leave_82542_rst(struct e1000_adapter *adapter) fp@1900: { fp@1900: struct e1000_hw *hw = &adapter->hw; fp@1900: struct net_device *netdev = adapter->netdev; fp@1900: u32 rctl; fp@1900: fp@1900: rctl = er32(RCTL); fp@1900: rctl &= ~E1000_RCTL_RST; fp@1900: ew32(RCTL, rctl); fp@1900: E1000_WRITE_FLUSH(); fp@1900: mdelay(5); fp@1900: fp@1900: if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) fp@1900: e1000_pci_set_mwi(hw); fp@1900: fp@1900: if (!adapter->netdev && netif_running(netdev)) { fp@1900: /* No need to loop, because 82542 supports only 1 queue */ fp@1900: struct e1000_rx_ring *ring = &adapter->rx_ring[0]; fp@1900: e1000_configure_rx(adapter); fp@2421: if (adapter->ecdev) { fp@1900: /* fill rx ring completely! */ fp@1900: adapter->alloc_rx_buf(adapter, ring, ring->count); fp@1900: } else { fp@1900: /* this one leaves the last ring element unallocated! */ fp@1900: adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring)); fp@1900: } fp@1900: fp@1900: } fp@1900: } fp@1900: fp@1900: /** fp@1900: * e1000_set_mac - Change the Ethernet Address of the NIC fp@1900: * @netdev: network interface device structure fp@1900: * @p: pointer to an address structure fp@1900: * fp@1900: * Returns 0 on success, negative on failure fp@1900: **/ fp@1900: fp@1900: static int e1000_set_mac(struct net_device *netdev, void *p) fp@1900: { fp@1900: struct e1000_adapter *adapter = netdev_priv(netdev); fp@1900: struct e1000_hw *hw = &adapter->hw; fp@1900: struct sockaddr *addr = p; fp@1900: fp@1900: if (!is_valid_ether_addr(addr->sa_data)) fp@1900: return -EADDRNOTAVAIL; fp@1900: fp@1900: /* 82542 2.0 needs to be in reset to write receive address registers */ fp@1900: fp@1900: if (hw->mac_type == e1000_82542_rev2_0) fp@1900: e1000_enter_82542_rst(adapter); fp@1900: fp@1900: memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); fp@1900: memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len); fp@1900: fp@1900: e1000_rar_set(hw, hw->mac_addr, 0); fp@1900: fp@1900: /* With 82571 controllers, LAA may be overwritten (with the default) fp@1900: * due to controller reset from the other port. */ fp@1900: if (hw->mac_type == e1000_82571) { fp@1900: /* activate the work around */ fp@1900: hw->laa_is_present = 1; fp@1900: fp@1900: /* Hold a copy of the LAA in RAR[14] This is done so that fp@1900: * between the time RAR[0] gets clobbered and the time it fp@1900: * gets fixed (in e1000_watchdog), the actual LAA is in one fp@1900: * of the RARs and no incoming packets directed to this port fp@1900: * are dropped. Eventaully the LAA will be in RAR[0] and fp@1900: * RAR[14] */ fp@1900: e1000_rar_set(hw, hw->mac_addr, fp@1900: E1000_RAR_ENTRIES - 1); fp@1900: } fp@1900: fp@1900: if (hw->mac_type == e1000_82542_rev2_0) fp@1900: e1000_leave_82542_rst(adapter); fp@1900: fp@1900: return 0; fp@1900: } fp@1900: fp@1900: /** fp@1900: * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set fp@1900: * @netdev: network interface device structure fp@1900: * fp@1900: * The set_rx_mode entry point is called whenever the unicast or multicast fp@1900: * address lists or the network interface flags are updated. This routine is fp@1900: * responsible for configuring the hardware for proper unicast, multicast, fp@1900: * promiscuous mode, and all-multi behavior. fp@1900: **/ fp@1900: fp@1900: static void e1000_set_rx_mode(struct net_device *netdev) fp@1900: { fp@1900: struct e1000_adapter *adapter = netdev_priv(netdev); fp@1900: struct e1000_hw *hw = &adapter->hw; fp@1900: struct dev_addr_list *uc_ptr; fp@1900: struct dev_addr_list *mc_ptr; fp@1900: u32 rctl; fp@1900: u32 hash_value; fp@1900: int i, rar_entries = E1000_RAR_ENTRIES; fp@1900: int mta_reg_count = (hw->mac_type == e1000_ich8lan) ? fp@1900: E1000_NUM_MTA_REGISTERS_ICH8LAN : fp@1900: E1000_NUM_MTA_REGISTERS; fp@1900: fp@1900: if (hw->mac_type == e1000_ich8lan) fp@1900: rar_entries = E1000_RAR_ENTRIES_ICH8LAN; fp@1900: fp@1900: /* reserve RAR[14] for LAA over-write work-around */ fp@1900: if (hw->mac_type == e1000_82571) fp@1900: rar_entries--; fp@1900: fp@1900: /* Check for Promiscuous and All Multicast modes */ fp@1900: fp@1900: rctl = er32(RCTL); fp@1900: fp@1900: if (netdev->flags & IFF_PROMISC) { fp@1900: rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); fp@1900: rctl &= ~E1000_RCTL_VFE; fp@1900: } else { fp@1900: if (netdev->flags & IFF_ALLMULTI) { fp@1900: rctl |= E1000_RCTL_MPE; fp@1900: } else { fp@1900: rctl &= ~E1000_RCTL_MPE; fp@1900: } fp@1900: if (adapter->hw.mac_type != e1000_ich8lan) fp@1900: rctl |= E1000_RCTL_VFE; fp@1900: } fp@1900: fp@1900: uc_ptr = NULL; fp@1900: if (netdev->uc_count > rar_entries - 1) { fp@1900: rctl |= E1000_RCTL_UPE; fp@1900: } else if (!(netdev->flags & IFF_PROMISC)) { fp@1900: rctl &= ~E1000_RCTL_UPE; fp@1900: uc_ptr = netdev->uc_list; fp@1900: } fp@1900: fp@1900: ew32(RCTL, rctl); fp@1900: fp@1900: /* 82542 2.0 needs to be in reset to write receive address registers */ fp@1900: fp@1900: if (hw->mac_type == e1000_82542_rev2_0) fp@1900: e1000_enter_82542_rst(adapter); fp@1900: fp@1900: /* load the first 14 addresses into the exact filters 1-14. Unicast fp@1900: * addresses take precedence to avoid disabling unicast filtering fp@1900: * when possible. fp@1900: * fp@1900: * RAR 0 is used for the station MAC adddress fp@1900: * if there are not 14 addresses, go ahead and clear the filters fp@1900: * -- with 82571 controllers only 0-13 entries are filled here fp@1900: */ fp@1900: mc_ptr = netdev->mc_list; fp@1900: fp@1900: for (i = 1; i < rar_entries; i++) { fp@1900: if (uc_ptr) { fp@1900: e1000_rar_set(hw, uc_ptr->da_addr, i); fp@1900: uc_ptr = uc_ptr->next; fp@1900: } else if (mc_ptr) { fp@1900: e1000_rar_set(hw, mc_ptr->da_addr, i); fp@1900: mc_ptr = mc_ptr->next; fp@1900: } else { fp@1900: E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0); fp@1900: E1000_WRITE_FLUSH(); fp@1900: E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0); fp@1900: E1000_WRITE_FLUSH(); fp@1900: } fp@1900: } fp@1900: WARN_ON(uc_ptr != NULL); fp@1900: fp@1900: /* clear the old settings from the multicast hash table */ fp@1900: fp@1900: for (i = 0; i < mta_reg_count; i++) { fp@1900: E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); fp@1900: E1000_WRITE_FLUSH(); fp@1900: } fp@1900: fp@1900: /* load any remaining addresses into the hash table */ fp@1900: fp@1900: for (; mc_ptr; mc_ptr = mc_ptr->next) { fp@1900: hash_value = e1000_hash_mc_addr(hw, mc_ptr->da_addr); fp@1900: e1000_mta_set(hw, hash_value); fp@1900: } fp@1900: fp@1900: if (hw->mac_type == e1000_82542_rev2_0) fp@1900: e1000_leave_82542_rst(adapter); fp@1900: } fp@1900: fp@1900: /* Need to wait a few seconds after link up to get diagnostic information from fp@1900: * the phy */ fp@1900: fp@1900: static void e1000_update_phy_info(unsigned long data) fp@1900: { fp@1900: struct e1000_adapter *adapter = (struct e1000_adapter *)data; fp@1900: struct e1000_hw *hw = &adapter->hw; fp@1900: e1000_phy_get_info(hw, &adapter->phy_info); fp@1900: } fp@1900: fp@1900: /** fp@1900: * e1000_82547_tx_fifo_stall - Timer Call-back fp@1900: * @data: pointer to adapter cast into an unsigned long fp@1900: **/ fp@1900: fp@1900: static void e1000_82547_tx_fifo_stall(unsigned long data) fp@1900: { fp@1900: struct e1000_adapter *adapter = (struct e1000_adapter *)data; fp@1900: struct e1000_hw *hw = &adapter->hw; fp@1900: struct net_device *netdev = adapter->netdev; fp@1900: u32 tctl; fp@1900: fp@1900: if (atomic_read(&adapter->tx_fifo_stall)) { fp@1900: if ((er32(TDT) == er32(TDH)) && fp@1900: (er32(TDFT) == er32(TDFH)) && fp@1900: (er32(TDFTS) == er32(TDFHS))) { fp@1900: tctl = er32(TCTL); fp@1900: ew32(TCTL, tctl & ~E1000_TCTL_EN); fp@1900: ew32(TDFT, adapter->tx_head_addr); fp@1900: ew32(TDFH, adapter->tx_head_addr); fp@1900: ew32(TDFTS, adapter->tx_head_addr); fp@1900: ew32(TDFHS, adapter->tx_head_addr); fp@1900: ew32(TCTL, tctl); fp@1900: E1000_WRITE_FLUSH(); fp@1900: fp@1900: adapter->tx_fifo_head = 0; fp@1900: atomic_set(&adapter->tx_fifo_stall, 0); fp@1900: if (!adapter->ecdev) netif_wake_queue(netdev); fp@1900: } else { fp@1900: if (!adapter->ecdev) fp@1900: mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1); fp@1900: } fp@1900: } fp@1900: } fp@1900: fp@1900: /** fp@1900: * e1000_watchdog - Timer Call-back fp@1900: * @data: pointer to adapter cast into an unsigned long fp@1900: **/ fp@1900: static void e1000_watchdog(unsigned long data) fp@1900: { fp@1900: struct e1000_adapter *adapter = (struct e1000_adapter *)data; fp@1900: struct e1000_hw *hw = &adapter->hw; fp@1900: struct net_device *netdev = adapter->netdev; fp@1900: struct e1000_tx_ring *txdr = adapter->tx_ring; fp@1900: u32 link, tctl; fp@1900: s32 ret_val; fp@1900: fp@1900: ret_val = e1000_check_for_link(hw); fp@1900: if ((ret_val == E1000_ERR_PHY) && fp@1900: (hw->phy_type == e1000_phy_igp_3) && fp@1900: (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) { fp@1900: /* See e1000_kumeran_lock_loss_workaround() */ fp@1900: DPRINTK(LINK, INFO, fp@1900: "Gigabit has been disabled, downgrading speed\n"); fp@1900: } fp@1900: fp@1900: if (hw->mac_type == e1000_82573) { fp@1900: e1000_enable_tx_pkt_filtering(hw); fp@1900: if (adapter->mng_vlan_id != hw->mng_cookie.vlan_id) fp@1900: e1000_update_mng_vlan(adapter); fp@1900: } fp@1900: fp@1900: if ((hw->media_type == e1000_media_type_internal_serdes) && fp@1900: !(er32(TXCW) & E1000_TXCW_ANE)) fp@1900: link = !hw->serdes_link_down; fp@1900: else fp@1900: link = er32(STATUS) & E1000_STATUS_LU; fp@1900: fp@1900: if (link) { fp@1900: if ((adapter->ecdev && !ecdev_get_link(adapter->ecdev)) fp@1900: || (!adapter->ecdev && !netif_carrier_ok(netdev))) { fp@1900: u32 ctrl; fp@1900: bool txb2b = true; fp@1900: e1000_get_speed_and_duplex(hw, fp@1900: &adapter->link_speed, fp@1900: &adapter->link_duplex); fp@1900: fp@1900: ctrl = er32(CTRL); fp@1900: DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s, " fp@1900: "Flow Control: %s\n", fp@1900: adapter->link_speed, fp@1900: adapter->link_duplex == FULL_DUPLEX ? fp@1900: "Full Duplex" : "Half Duplex", fp@1900: ((ctrl & E1000_CTRL_TFCE) && (ctrl & fp@1900: E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl & fp@1900: E1000_CTRL_RFCE) ? "RX" : ((ctrl & fp@1900: E1000_CTRL_TFCE) ? "TX" : "None" ))); fp@1900: fp@1900: /* tweak tx_queue_len according to speed/duplex fp@1900: * and adjust the timeout factor */ fp@1900: netdev->tx_queue_len = adapter->tx_queue_len; fp@1900: adapter->tx_timeout_factor = 1; fp@1900: switch (adapter->link_speed) { fp@1900: case SPEED_10: fp@1900: txb2b = false; fp@1900: netdev->tx_queue_len = 10; fp@1900: adapter->tx_timeout_factor = 8; fp@1900: break; fp@1900: case SPEED_100: fp@1900: txb2b = false; fp@1900: netdev->tx_queue_len = 100; fp@1900: /* maybe add some timeout factor ? */ fp@1900: break; fp@1900: } fp@1900: fp@1900: if ((hw->mac_type == e1000_82571 || fp@1900: hw->mac_type == e1000_82572) && fp@1900: !txb2b) { fp@1900: u32 tarc0; fp@1900: tarc0 = er32(TARC0); fp@1900: tarc0 &= ~(1 << 21); fp@1900: ew32(TARC0, tarc0); fp@1900: } fp@1900: fp@1900: /* disable TSO for pcie and 10/100 speeds, to avoid fp@1900: * some hardware issues */ fp@1900: if (!adapter->tso_force && fp@1900: hw->bus_type == e1000_bus_type_pci_express){ fp@1900: switch (adapter->link_speed) { fp@1900: case SPEED_10: fp@1900: case SPEED_100: fp@1900: DPRINTK(PROBE,INFO, fp@1900: "10/100 speed: disabling TSO\n"); fp@1900: netdev->features &= ~NETIF_F_TSO; fp@1900: netdev->features &= ~NETIF_F_TSO6; fp@1900: break; fp@1900: case SPEED_1000: fp@1900: netdev->features |= NETIF_F_TSO; fp@1900: netdev->features |= NETIF_F_TSO6; fp@1900: break; fp@1900: default: fp@1900: /* oops */ fp@1900: break; fp@1900: } fp@1900: } fp@1900: fp@1900: /* enable transmits in the hardware, need to do this fp@1900: * after setting TARC0 */ fp@1900: tctl = er32(TCTL); fp@1900: tctl |= E1000_TCTL_EN; fp@1900: ew32(TCTL, tctl); fp@1900: fp@1900: if (adapter->ecdev) { fp@1900: ecdev_set_link(adapter->ecdev, 1); fp@1900: } else { fp@1900: netif_carrier_on(netdev); fp@1900: netif_wake_queue(netdev); fp@1900: mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ)); fp@1900: } fp@1900: adapter->smartspeed = 0; fp@1900: } else { fp@1900: /* make sure the receive unit is started */ fp@1900: if (hw->rx_needs_kicking) { fp@1900: u32 rctl = er32(RCTL); fp@1900: ew32(RCTL, rctl | E1000_RCTL_EN); fp@1900: } fp@1900: } fp@1900: } else { fp@1900: if ((adapter->ecdev && ecdev_get_link(adapter->ecdev)) fp@1900: || (!adapter->ecdev && netif_carrier_ok(netdev))) { fp@1900: adapter->link_speed = 0; fp@1900: adapter->link_duplex = 0; fp@1900: DPRINTK(LINK, INFO, "NIC Link is Down\n"); fp@1900: if (adapter->ecdev) { fp@1900: ecdev_set_link(adapter->ecdev, 0); fp@1900: } else { fp@1900: netif_carrier_off(netdev); fp@1900: netif_stop_queue(netdev); fp@1900: mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ)); fp@1900: } fp@1900: fp@1900: /* 80003ES2LAN workaround-- fp@1900: * For packet buffer work-around on link down event; fp@1900: * disable receives in the ISR and fp@1900: * reset device here in the watchdog fp@1900: */ fp@1900: if (hw->mac_type == e1000_80003es2lan) fp@1900: /* reset device */ fp@1900: schedule_work(&adapter->reset_task); fp@1900: } fp@1900: fp@1900: e1000_smartspeed(adapter); fp@1900: } fp@1900: fp@1900: e1000_update_stats(adapter); fp@1900: fp@1900: hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; fp@1900: adapter->tpt_old = adapter->stats.tpt; fp@1900: hw->collision_delta = adapter->stats.colc - adapter->colc_old; fp@1900: adapter->colc_old = adapter->stats.colc; fp@1900: fp@1900: adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old; fp@1900: adapter->gorcl_old = adapter->stats.gorcl; fp@1900: adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old; fp@1900: adapter->gotcl_old = adapter->stats.gotcl; fp@1900: fp@1900: e1000_update_adaptive(hw); fp@1900: fp@1900: if (!adapter->ecdev && !netif_carrier_ok(netdev)) { fp@1900: if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) { fp@1900: /* We've lost link, so the controller stops DMA, fp@1900: * but we've got queued Tx work that's never going fp@1900: * to get done, so reset controller to flush Tx. fp@1900: * (Do the reset outside of interrupt context). */ fp@1900: adapter->tx_timeout_count++; fp@1900: schedule_work(&adapter->reset_task); fp@1900: } fp@1900: } fp@1900: fp@1900: /* Cause software interrupt to ensure rx ring is cleaned */ fp@1900: ew32(ICS, E1000_ICS_RXDMT0); fp@1900: fp@1900: /* Force detection of hung controller every watchdog period */ fp@1900: if (!adapter->ecdev) adapter->detect_tx_hung = true; fp@1900: fp@1900: /* With 82571 controllers, LAA may be overwritten due to controller fp@1900: * reset from the other port. Set the appropriate LAA in RAR[0] */ fp@1900: if (hw->mac_type == e1000_82571 && hw->laa_is_present) fp@1900: e1000_rar_set(hw, hw->mac_addr, 0); fp@1900: fp@1900: /* Reset the timer */ fp@1900: if (!adapter->ecdev) fp@1900: mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 2 * HZ)); fp@1900: } fp@1900: fp@1900: enum latency_range { fp@1900: lowest_latency = 0, fp@1900: low_latency = 1, fp@1900: bulk_latency = 2, fp@1900: latency_invalid = 255 fp@1900: }; fp@1900: fp@1900: /** fp@1900: * e1000_update_itr - update the dynamic ITR value based on statistics fp@1900: * Stores a new ITR value based on packets and byte fp@1900: * counts during the last interrupt. The advantage of per interrupt fp@1900: * computation is faster updates and more accurate ITR for the current fp@1900: * traffic pattern. Constants in this function were computed fp@1900: * based on theoretical maximum wire speed and thresholds were set based fp@1900: * on testing data as well as attempting to minimize response time fp@1900: * while increasing bulk throughput. fp@1900: * this functionality is controlled by the InterruptThrottleRate module fp@1900: * parameter (see e1000_param.c) fp@1900: * @adapter: pointer to adapter fp@1900: * @itr_setting: current adapter->itr fp@1900: * @packets: the number of packets during this measurement interval fp@1900: * @bytes: the number of bytes during this measurement interval fp@1900: **/ fp@1900: static unsigned int e1000_update_itr(struct e1000_adapter *adapter, fp@1900: u16 itr_setting, int packets, int bytes) fp@1900: { fp@1900: unsigned int retval = itr_setting; fp@1900: struct e1000_hw *hw = &adapter->hw; fp@1900: fp@1900: if (unlikely(hw->mac_type < e1000_82540)) fp@1900: goto update_itr_done; fp@1900: fp@1900: if (packets == 0) fp@1900: goto update_itr_done; fp@1900: fp@1900: switch (itr_setting) { fp@1900: case lowest_latency: fp@1900: /* jumbo frames get bulk treatment*/ fp@1900: if (bytes/packets > 8000) fp@1900: retval = bulk_latency; fp@1900: else if ((packets < 5) && (bytes > 512)) fp@1900: retval = low_latency; fp@1900: break; fp@1900: case low_latency: /* 50 usec aka 20000 ints/s */ fp@1900: if (bytes > 10000) { fp@1900: /* jumbo frames need bulk latency setting */ fp@1900: if (bytes/packets > 8000) fp@1900: retval = bulk_latency; fp@1900: else if ((packets < 10) || ((bytes/packets) > 1200)) fp@1900: retval = bulk_latency; fp@1900: else if ((packets > 35)) fp@1900: retval = lowest_latency; fp@1900: } else if (bytes/packets > 2000) fp@1900: retval = bulk_latency; fp@1900: else if (packets <= 2 && bytes < 512) fp@1900: retval = lowest_latency; fp@1900: break; fp@1900: case bulk_latency: /* 250 usec aka 4000 ints/s */ fp@1900: if (bytes > 25000) { fp@1900: if (packets > 35) fp@1900: retval = low_latency; fp@1900: } else if (bytes < 6000) { fp@1900: retval = low_latency; fp@1900: } fp@1900: break; fp@1900: } fp@1900: fp@1900: update_itr_done: fp@1900: return retval; fp@1900: } fp@1900: fp@1900: static void e1000_set_itr(struct e1000_adapter *adapter) fp@1900: { fp@1900: struct e1000_hw *hw = &adapter->hw; fp@1900: u16 current_itr; fp@1900: u32 new_itr = adapter->itr; fp@1900: fp@1900: if (unlikely(hw->mac_type < e1000_82540)) fp@1900: return; fp@1900: fp@1900: /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ fp@1900: if (unlikely(adapter->link_speed != SPEED_1000)) { fp@1900: current_itr = 0; fp@1900: new_itr = 4000; fp@1900: goto set_itr_now; fp@1900: } fp@1900: fp@1900: adapter->tx_itr = e1000_update_itr(adapter, fp@1900: adapter->tx_itr, fp@1900: adapter->total_tx_packets, fp@1900: adapter->total_tx_bytes); fp@1900: /* conservative mode (itr 3) eliminates the lowest_latency setting */ fp@1900: if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) fp@1900: adapter->tx_itr = low_latency; fp@1900: fp@1900: adapter->rx_itr = e1000_update_itr(adapter, fp@1900: adapter->rx_itr, fp@1900: adapter->total_rx_packets, fp@1900: adapter->total_rx_bytes); fp@1900: /* conservative mode (itr 3) eliminates the lowest_latency setting */ fp@1900: if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) fp@1900: adapter->rx_itr = low_latency; fp@1900: fp@1900: current_itr = max(adapter->rx_itr, adapter->tx_itr); fp@1900: fp@1900: switch (current_itr) { fp@1900: /* counts and packets in update_itr are dependent on these numbers */ fp@1900: case lowest_latency: fp@1900: new_itr = 70000; fp@1900: break; fp@1900: case low_latency: fp@1900: new_itr = 20000; /* aka hwitr = ~200 */ fp@1900: break; fp@1900: case bulk_latency: fp@1900: new_itr = 4000; fp@1900: break; fp@1900: default: fp@1900: break; fp@1900: } fp@1900: fp@1900: set_itr_now: fp@1900: if (new_itr != adapter->itr) { fp@1900: /* this attempts to bias the interrupt rate towards Bulk fp@1900: * by adding intermediate steps when interrupt rate is fp@1900: * increasing */ fp@1900: new_itr = new_itr > adapter->itr ? fp@1900: min(adapter->itr + (new_itr >> 2), new_itr) : fp@1900: new_itr; fp@1900: adapter->itr = new_itr; fp@1900: ew32(ITR, 1000000000 / (new_itr * 256)); fp@1900: } fp@1900: fp@1900: return; fp@1900: } fp@1900: fp@1900: #define E1000_TX_FLAGS_CSUM 0x00000001 fp@1900: #define E1000_TX_FLAGS_VLAN 0x00000002 fp@1900: #define E1000_TX_FLAGS_TSO 0x00000004 fp@1900: #define E1000_TX_FLAGS_IPV4 0x00000008 fp@1900: #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 fp@1900: #define E1000_TX_FLAGS_VLAN_SHIFT 16 fp@1900: fp@1900: static int e1000_tso(struct e1000_adapter *adapter, fp@1900: struct e1000_tx_ring *tx_ring, struct sk_buff *skb) fp@1900: { fp@1900: struct e1000_context_desc *context_desc; fp@1900: struct e1000_buffer *buffer_info; fp@1900: unsigned int i; fp@1900: u32 cmd_length = 0; fp@1900: u16 ipcse = 0, tucse, mss; fp@1900: u8 ipcss, ipcso, tucss, tucso, hdr_len; fp@1900: int err; fp@1900: fp@1900: if (skb_is_gso(skb)) { fp@1900: if (skb_header_cloned(skb)) { fp@1900: err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); fp@1900: if (err) fp@1900: return err; fp@1900: } fp@1900: fp@1900: hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); fp@1900: mss = skb_shinfo(skb)->gso_size; fp@1900: if (skb->protocol == htons(ETH_P_IP)) { fp@1900: struct iphdr *iph = ip_hdr(skb); fp@1900: iph->tot_len = 0; fp@1900: iph->check = 0; fp@1900: tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, fp@1900: iph->daddr, 0, fp@1900: IPPROTO_TCP, fp@1900: 0); fp@1900: cmd_length = E1000_TXD_CMD_IP; fp@1900: ipcse = skb_transport_offset(skb) - 1; fp@1900: } else if (skb->protocol == htons(ETH_P_IPV6)) { fp@1900: ipv6_hdr(skb)->payload_len = 0; fp@1900: tcp_hdr(skb)->check = fp@1900: ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, fp@1900: &ipv6_hdr(skb)->daddr, fp@1900: 0, IPPROTO_TCP, 0); fp@1900: ipcse = 0; fp@1900: } fp@1900: ipcss = skb_network_offset(skb); fp@1900: ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; fp@1900: tucss = skb_transport_offset(skb); fp@1900: tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; fp@1900: tucse = 0; fp@1900: fp@1900: cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | fp@1900: E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); fp@1900: fp@1900: i = tx_ring->next_to_use; fp@1900: context_desc = E1000_CONTEXT_DESC(*tx_ring, i); fp@1900: buffer_info = &tx_ring->buffer_info[i]; fp@1900: fp@1900: context_desc->lower_setup.ip_fields.ipcss = ipcss; fp@1900: context_desc->lower_setup.ip_fields.ipcso = ipcso; fp@1900: context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); fp@1900: context_desc->upper_setup.tcp_fields.tucss = tucss; fp@1900: context_desc->upper_setup.tcp_fields.tucso = tucso; fp@1900: context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); fp@1900: context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); fp@1900: context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; fp@1900: context_desc->cmd_and_length = cpu_to_le32(cmd_length); fp@1900: fp@1900: buffer_info->time_stamp = jiffies; fp@1900: buffer_info->next_to_watch = i; fp@1900: fp@1900: if (++i == tx_ring->count) i = 0; fp@1900: tx_ring->next_to_use = i; fp@1900: fp@1900: return true; fp@1900: } fp@1900: return false; fp@1900: } fp@1900: fp@1900: static bool e1000_tx_csum(struct e1000_adapter *adapter, fp@1900: struct e1000_tx_ring *tx_ring, struct sk_buff *skb) fp@1900: { fp@1900: struct e1000_context_desc *context_desc; fp@1900: struct e1000_buffer *buffer_info; fp@1900: unsigned int i; fp@1900: u8 css; fp@1900: fp@1900: if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) { fp@1900: css = skb_transport_offset(skb); fp@1900: fp@1900: i = tx_ring->next_to_use; fp@1900: buffer_info = &tx_ring->buffer_info[i]; fp@1900: context_desc = E1000_CONTEXT_DESC(*tx_ring, i); fp@1900: fp@1900: context_desc->lower_setup.ip_config = 0; fp@1900: context_desc->upper_setup.tcp_fields.tucss = css; fp@1900: context_desc->upper_setup.tcp_fields.tucso = fp@1900: css + skb->csum_offset; fp@1900: context_desc->upper_setup.tcp_fields.tucse = 0; fp@1900: context_desc->tcp_seg_setup.data = 0; fp@1900: context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT); fp@1900: fp@1900: buffer_info->time_stamp = jiffies; fp@1900: buffer_info->next_to_watch = i; fp@1900: fp@1900: if (unlikely(++i == tx_ring->count)) i = 0; fp@1900: tx_ring->next_to_use = i; fp@1900: fp@1900: return true; fp@1900: } fp@1900: fp@1900: return false; fp@1900: } fp@1900: fp@1900: #define E1000_MAX_TXD_PWR 12 fp@1900: #define E1000_MAX_DATA_PER_TXD (1<hw; fp@1900: struct e1000_buffer *buffer_info; fp@1900: unsigned int len = skb->len; fp@1900: unsigned int offset = 0, size, count = 0, i; fp@1900: unsigned int f; fp@1900: len -= skb->data_len; fp@1900: fp@1900: i = tx_ring->next_to_use; fp@1900: fp@1900: while (len) { fp@1900: buffer_info = &tx_ring->buffer_info[i]; fp@1900: size = min(len, max_per_txd); fp@1900: /* Workaround for Controller erratum -- fp@1900: * descriptor for non-tso packet in a linear SKB that follows a fp@1900: * tso gets written back prematurely before the data is fully fp@1900: * DMA'd to the controller */ fp@1900: if (!skb->data_len && tx_ring->last_tx_tso && fp@1900: !skb_is_gso(skb)) { fp@1900: tx_ring->last_tx_tso = 0; fp@1900: size -= 4; fp@1900: } fp@1900: fp@1900: /* Workaround for premature desc write-backs fp@1900: * in TSO mode. Append 4-byte sentinel desc */ fp@1900: if (unlikely(mss && !nr_frags && size == len && size > 8)) fp@1900: size -= 4; fp@1900: /* work-around for errata 10 and it applies fp@1900: * to all controllers in PCI-X mode fp@1900: * The fix is to make sure that the first descriptor of a fp@1900: * packet is smaller than 2048 - 16 - 16 (or 2016) bytes fp@1900: */ fp@1900: if (unlikely((hw->bus_type == e1000_bus_type_pcix) && fp@1900: (size > 2015) && count == 0)) fp@1900: size = 2015; fp@1900: fp@1900: /* Workaround for potential 82544 hang in PCI-X. Avoid fp@1900: * terminating buffers within evenly-aligned dwords. */ fp@1900: if (unlikely(adapter->pcix_82544 && fp@1900: !((unsigned long)(skb->data + offset + size - 1) & 4) && fp@1900: size > 4)) fp@1900: size -= 4; fp@1900: fp@1900: buffer_info->length = size; fp@1900: buffer_info->dma = fp@1900: pci_map_single(adapter->pdev, fp@1900: skb->data + offset, fp@1900: size, fp@1900: PCI_DMA_TODEVICE); fp@1900: buffer_info->time_stamp = jiffies; fp@1900: buffer_info->next_to_watch = i; fp@1900: fp@1900: len -= size; fp@1900: offset += size; fp@1900: count++; fp@1900: if (unlikely(++i == tx_ring->count)) i = 0; fp@1900: } fp@1900: fp@1900: for (f = 0; f < nr_frags; f++) { fp@1900: struct skb_frag_struct *frag; fp@1900: fp@1900: frag = &skb_shinfo(skb)->frags[f]; fp@1900: len = frag->size; fp@1900: offset = frag->page_offset; fp@1900: fp@1900: while (len) { fp@1900: buffer_info = &tx_ring->buffer_info[i]; fp@1900: size = min(len, max_per_txd); fp@1900: /* Workaround for premature desc write-backs fp@1900: * in TSO mode. Append 4-byte sentinel desc */ fp@1900: if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8)) fp@1900: size -= 4; fp@1900: /* Workaround for potential 82544 hang in PCI-X. fp@1900: * Avoid terminating buffers within evenly-aligned fp@1900: * dwords. */ fp@1900: if (unlikely(adapter->pcix_82544 && fp@1900: !((unsigned long)(frag->page+offset+size-1) & 4) && fp@1900: size > 4)) fp@1900: size -= 4; fp@1900: fp@1900: buffer_info->length = size; fp@1900: buffer_info->dma = fp@1900: pci_map_page(adapter->pdev, fp@1900: frag->page, fp@1900: offset, fp@1900: size, fp@1900: PCI_DMA_TODEVICE); fp@1900: buffer_info->time_stamp = jiffies; fp@1900: buffer_info->next_to_watch = i; fp@1900: fp@1900: len -= size; fp@1900: offset += size; fp@1900: count++; fp@1900: if (unlikely(++i == tx_ring->count)) i = 0; fp@1900: } fp@1900: } fp@1900: fp@1900: i = (i == 0) ? tx_ring->count - 1 : i - 1; fp@1900: tx_ring->buffer_info[i].skb = skb; fp@1900: tx_ring->buffer_info[first].next_to_watch = i; fp@1900: fp@1900: return count; fp@1900: } fp@1900: fp@1900: static void e1000_tx_queue(struct e1000_adapter *adapter, fp@1900: struct e1000_tx_ring *tx_ring, int tx_flags, fp@1900: int count) fp@1900: { fp@1900: struct e1000_hw *hw = &adapter->hw; fp@1900: struct e1000_tx_desc *tx_desc = NULL; fp@1900: struct e1000_buffer *buffer_info; fp@1900: u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; fp@1900: unsigned int i; fp@1900: fp@1900: if (likely(tx_flags & E1000_TX_FLAGS_TSO)) { fp@1900: txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | fp@1900: E1000_TXD_CMD_TSE; fp@1900: txd_upper |= E1000_TXD_POPTS_TXSM << 8; fp@1900: fp@1900: if (likely(tx_flags & E1000_TX_FLAGS_IPV4)) fp@1900: txd_upper |= E1000_TXD_POPTS_IXSM << 8; fp@1900: } fp@1900: fp@1900: if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) { fp@1900: txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; fp@1900: txd_upper |= E1000_TXD_POPTS_TXSM << 8; fp@1900: } fp@1900: fp@1900: if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) { fp@1900: txd_lower |= E1000_TXD_CMD_VLE; fp@1900: txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); fp@1900: } fp@1900: fp@1900: i = tx_ring->next_to_use; fp@1900: fp@1900: while (count--) { fp@1900: buffer_info = &tx_ring->buffer_info[i]; fp@1900: tx_desc = E1000_TX_DESC(*tx_ring, i); fp@1900: tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); fp@1900: tx_desc->lower.data = fp@1900: cpu_to_le32(txd_lower | buffer_info->length); fp@1900: tx_desc->upper.data = cpu_to_le32(txd_upper); fp@1900: if (unlikely(++i == tx_ring->count)) i = 0; fp@1900: } fp@1900: fp@1900: tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); fp@1900: fp@1900: /* Force memory writes to complete before letting h/w fp@1900: * know there are new descriptors to fetch. (Only fp@1900: * applicable for weak-ordered memory model archs, fp@1900: * such as IA-64). */ fp@1900: wmb(); fp@1900: fp@1900: tx_ring->next_to_use = i; fp@1900: writel(i, hw->hw_addr + tx_ring->tdt); fp@1900: /* we need this if more than one processor can write to our tail fp@1900: * at a time, it syncronizes IO on IA64/Altix systems */ fp@1900: mmiowb(); fp@1900: } fp@1900: fp@1900: /** fp@1900: * 82547 workaround to avoid controller hang in half-duplex environment. fp@1900: * The workaround is to avoid queuing a large packet that would span fp@1900: * the internal Tx FIFO ring boundary by notifying the stack to resend fp@1900: * the packet at a later time. This gives the Tx FIFO an opportunity to fp@1900: * flush all packets. When that occurs, we reset the Tx FIFO pointers fp@1900: * to the beginning of the Tx FIFO. fp@1900: **/ fp@1900: fp@1900: #define E1000_FIFO_HDR 0x10 fp@1900: #define E1000_82547_PAD_LEN 0x3E0 fp@1900: fp@1900: static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, fp@1900: struct sk_buff *skb) fp@1900: { fp@1900: u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head; fp@1900: u32 skb_fifo_len = skb->len + E1000_FIFO_HDR; fp@1900: fp@1900: skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR); fp@1900: fp@1900: if (adapter->link_duplex != HALF_DUPLEX) fp@1900: goto no_fifo_stall_required; fp@1900: fp@1900: if (atomic_read(&adapter->tx_fifo_stall)) fp@1900: return 1; fp@1900: fp@1900: if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) { fp@1900: atomic_set(&adapter->tx_fifo_stall, 1); fp@1900: return 1; fp@1900: } fp@1900: fp@1900: no_fifo_stall_required: fp@1900: adapter->tx_fifo_head += skb_fifo_len; fp@1900: if (adapter->tx_fifo_head >= adapter->tx_fifo_size) fp@1900: adapter->tx_fifo_head -= adapter->tx_fifo_size; fp@1900: return 0; fp@1900: } fp@1900: fp@1900: #define MINIMUM_DHCP_PACKET_SIZE 282 fp@1900: static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter, fp@1900: struct sk_buff *skb) fp@1900: { fp@1900: struct e1000_hw *hw = &adapter->hw; fp@1900: u16 length, offset; fp@1900: if (vlan_tx_tag_present(skb)) { fp@1900: if (!((vlan_tx_tag_get(skb) == hw->mng_cookie.vlan_id) && fp@1900: ( hw->mng_cookie.status & fp@1900: E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) ) fp@1900: return 0; fp@1900: } fp@1900: if (skb->len > MINIMUM_DHCP_PACKET_SIZE) { fp@1900: struct ethhdr *eth = (struct ethhdr *)skb->data; fp@1900: if ((htons(ETH_P_IP) == eth->h_proto)) { fp@1900: const struct iphdr *ip = fp@1900: (struct iphdr *)((u8 *)skb->data+14); fp@1900: if (IPPROTO_UDP == ip->protocol) { fp@1900: struct udphdr *udp = fp@1900: (struct udphdr *)((u8 *)ip + fp@1900: (ip->ihl << 2)); fp@1900: if (ntohs(udp->dest) == 67) { fp@1900: offset = (u8 *)udp + 8 - skb->data; fp@1900: length = skb->len - offset; fp@1900: fp@1900: return e1000_mng_write_dhcp_info(hw, fp@1900: (u8 *)udp + 8, fp@1900: length); fp@1900: } fp@1900: } fp@1900: } fp@1900: } fp@1900: return 0; fp@1900: } fp@1900: fp@1900: static int __e1000_maybe_stop_tx(struct net_device *netdev, int size) fp@1900: { fp@1900: struct e1000_adapter *adapter = netdev_priv(netdev); fp@1900: struct e1000_tx_ring *tx_ring = adapter->tx_ring; fp@1900: fp@2471: if (adapter->ecdev) { fp@2471: return -EBUSY; fp@2471: } fp@2471: fp@1900: netif_stop_queue(netdev); fp@1900: /* Herbert's original patch had: fp@1900: * smp_mb__after_netif_stop_queue(); fp@1900: * but since that doesn't exist yet, just open code it. */ fp@1900: smp_mb(); fp@1900: fp@1900: /* We need to check again in a case another CPU has just fp@1900: * made room available. */ fp@1900: if (likely(E1000_DESC_UNUSED(tx_ring) < size)) fp@1900: return -EBUSY; fp@1900: fp@1900: /* A reprieve! */ fp@1900: netif_start_queue(netdev); fp@1900: ++adapter->restart_queue; fp@1900: return 0; fp@1900: } fp@1900: fp@1900: static int e1000_maybe_stop_tx(struct net_device *netdev, fp@1900: struct e1000_tx_ring *tx_ring, int size) fp@1900: { fp@1900: if (likely(E1000_DESC_UNUSED(tx_ring) >= size)) fp@1900: return 0; fp@1900: return __e1000_maybe_stop_tx(netdev, size); fp@1900: } fp@1900: fp@1900: #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 ) fp@1900: static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev) fp@1900: { fp@1900: struct e1000_adapter *adapter = netdev_priv(netdev); fp@1900: struct e1000_hw *hw = &adapter->hw; fp@1900: struct e1000_tx_ring *tx_ring; fp@1900: unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD; fp@1900: unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; fp@1900: unsigned int tx_flags = 0; fp@1900: unsigned int len = skb->len - skb->data_len; fp@1900: unsigned long flags = 0; fp@1900: unsigned int nr_frags = 0; fp@1900: unsigned int mss = 0; fp@1900: int count = 0; fp@1900: int tso; fp@1900: unsigned int f; fp@1900: fp@1900: /* This goes back to the question of how to logically map a tx queue fp@1900: * to a flow. Right now, performance is impacted slightly negatively fp@1900: * if using multiple tx queues. If the stack breaks away from a fp@1900: * single qdisc implementation, we can look at this again. */ fp@1900: tx_ring = adapter->tx_ring; fp@1900: fp@1900: if (unlikely(skb->len <= 0)) { fp@1900: if (!adapter->ecdev) fp@1900: dev_kfree_skb_any(skb); fp@1900: return NETDEV_TX_OK; fp@1900: } fp@1900: fp@1900: /* 82571 and newer doesn't need the workaround that limited descriptor fp@1900: * length to 4kB */ fp@1900: if (hw->mac_type >= e1000_82571) fp@1900: max_per_txd = 8192; fp@1900: fp@1900: mss = skb_shinfo(skb)->gso_size; fp@1900: /* The controller does a simple calculation to fp@1900: * make sure there is enough room in the FIFO before fp@1900: * initiating the DMA for each buffer. The calc is: fp@1900: * 4 = ceil(buffer len/mss). To make sure we don't fp@1900: * overrun the FIFO, adjust the max buffer len if mss fp@1900: * drops. */ fp@1900: if (mss) { fp@1900: u8 hdr_len; fp@1900: max_per_txd = min(mss << 2, max_per_txd); fp@1900: max_txd_pwr = fls(max_per_txd) - 1; fp@1900: fp@1900: /* TSO Workaround for 82571/2/3 Controllers -- if skb->data fp@1900: * points to just header, pull a few bytes of payload from fp@1900: * frags into skb->data */ fp@1900: hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); fp@1900: if (skb->data_len && hdr_len == len) { fp@1900: switch (hw->mac_type) { fp@1900: unsigned int pull_size; fp@1900: case e1000_82544: fp@1900: /* Make sure we have room to chop off 4 bytes, fp@1900: * and that the end alignment will work out to fp@1900: * this hardware's requirements fp@1900: * NOTE: this is a TSO only workaround fp@1900: * if end byte alignment not correct move us fp@1900: * into the next dword */ fp@1900: if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4) fp@1900: break; fp@1900: /* fall through */ fp@1900: case e1000_82571: fp@1900: case e1000_82572: fp@1900: case e1000_82573: fp@1900: case e1000_ich8lan: fp@1900: pull_size = min((unsigned int)4, skb->data_len); fp@1900: if (!__pskb_pull_tail(skb, pull_size)) { fp@1900: DPRINTK(DRV, ERR, fp@1900: "__pskb_pull_tail failed.\n"); fp@1900: dev_kfree_skb_any(skb); fp@1900: return NETDEV_TX_OK; fp@1900: } fp@1900: len = skb->len - skb->data_len; fp@1900: break; fp@1900: default: fp@1900: /* do nothing */ fp@1900: break; fp@1900: } fp@1900: } fp@1900: } fp@1900: fp@1900: /* reserve a descriptor for the offload context */ fp@1900: if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) fp@1900: count++; fp@1900: count++; fp@1900: fp@1900: /* Controller Erratum workaround */ fp@1900: if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb)) fp@1900: count++; fp@1900: fp@1900: count += TXD_USE_COUNT(len, max_txd_pwr); fp@1900: fp@1900: if (adapter->pcix_82544) fp@1900: count++; fp@1900: fp@1900: /* work-around for errata 10 and it applies to all controllers fp@1900: * in PCI-X mode, so add one more descriptor to the count fp@1900: */ fp@1900: if (unlikely((hw->bus_type == e1000_bus_type_pcix) && fp@1900: (len > 2015))) fp@1900: count++; fp@1900: fp@1900: nr_frags = skb_shinfo(skb)->nr_frags; fp@1900: for (f = 0; f < nr_frags; f++) fp@1900: count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size, fp@1900: max_txd_pwr); fp@1900: if (adapter->pcix_82544) fp@1900: count += nr_frags; fp@1900: fp@1900: fp@1900: if (hw->tx_pkt_filtering && fp@1900: (hw->mac_type == e1000_82573)) fp@1900: e1000_transfer_dhcp_info(adapter, skb); fp@1900: fp@1900: if (!adapter->ecdev && fp@1900: !spin_trylock_irqsave(&tx_ring->tx_lock, flags)) fp@1900: /* Collision - tell upper layer to requeue */ fp@1900: return NETDEV_TX_LOCKED; fp@1900: fp@1900: /* need: count + 2 desc gap to keep tail from touching fp@1900: * head, otherwise try next time */ fp@1900: if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) { fp@1900: if (!adapter->ecdev) { fp@1900: spin_unlock_irqrestore(&tx_ring->tx_lock, flags); fp@1900: } fp@1900: return NETDEV_TX_BUSY; fp@1900: } fp@1900: fp@1900: if (unlikely(hw->mac_type == e1000_82547)) { fp@1900: if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) { fp@1900: if (!adapter->ecdev) { fp@1900: netif_stop_queue(netdev); fp@1900: mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1); fp@1900: spin_unlock_irqrestore(&tx_ring->tx_lock, flags); fp@1900: } fp@1900: return NETDEV_TX_BUSY; fp@1900: } fp@1900: } fp@1900: fp@1900: if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) { fp@1900: tx_flags |= E1000_TX_FLAGS_VLAN; fp@1900: tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT); fp@1900: } fp@1900: fp@1900: first = tx_ring->next_to_use; fp@1900: fp@1900: tso = e1000_tso(adapter, tx_ring, skb); fp@1900: if (tso < 0) { fp@1900: if (!adapter->ecdev) { fp@1900: dev_kfree_skb_any(skb); fp@1900: spin_unlock_irqrestore(&tx_ring->tx_lock, flags); fp@1900: } fp@1900: return NETDEV_TX_OK; fp@1900: } fp@1900: fp@1900: if (likely(tso)) { fp@1900: tx_ring->last_tx_tso = 1; fp@1900: tx_flags |= E1000_TX_FLAGS_TSO; fp@1900: } else if (likely(e1000_tx_csum(adapter, tx_ring, skb))) fp@1900: tx_flags |= E1000_TX_FLAGS_CSUM; fp@1900: fp@1900: /* Old method was to assume IPv4 packet by default if TSO was enabled. fp@1900: * 82571 hardware supports TSO capabilities for IPv6 as well... fp@1900: * no longer assume, we must. */ fp@1900: if (likely(skb->protocol == htons(ETH_P_IP))) fp@1900: tx_flags |= E1000_TX_FLAGS_IPV4; fp@1900: fp@1900: e1000_tx_queue(adapter, tx_ring, tx_flags, fp@1900: e1000_tx_map(adapter, tx_ring, skb, first, fp@1900: max_per_txd, nr_frags, mss)); fp@1900: fp@1900: netdev->trans_start = jiffies; fp@1900: fp@1900: if (!adapter->ecdev) { fp@1900: /* Make sure there is space in the ring for the next send. */ fp@1900: e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2); fp@1900: fp@1900: spin_unlock_irqrestore(&tx_ring->tx_lock, flags); fp@1900: } fp@1900: return NETDEV_TX_OK; fp@1900: } fp@1900: fp@1900: /** fp@1900: * e1000_tx_timeout - Respond to a Tx Hang fp@1900: * @netdev: network interface device structure fp@1900: **/ fp@1900: fp@1900: static void e1000_tx_timeout(struct net_device *netdev) fp@1900: { fp@1900: struct e1000_adapter *adapter = netdev_priv(netdev); fp@1900: fp@1900: /* Do the reset outside of interrupt context */ fp@1900: adapter->tx_timeout_count++; fp@1900: schedule_work(&adapter->reset_task); fp@1900: } fp@1900: fp@1900: static void e1000_reset_task(struct work_struct *work) fp@1900: { fp@1900: struct e1000_adapter *adapter = fp@1900: container_of(work, struct e1000_adapter, reset_task); fp@1900: fp@1900: e1000_reinit_locked(adapter); fp@1900: } fp@1900: fp@1900: /** fp@1900: * e1000_get_stats - Get System Network Statistics fp@1900: * @netdev: network interface device structure fp@1900: * fp@1900: * Returns the address of the device statistics structure. fp@1900: * The statistics are actually updated from the timer callback. fp@1900: **/ fp@1900: fp@1900: static struct net_device_stats *e1000_get_stats(struct net_device *netdev) fp@1900: { fp@1900: struct e1000_adapter *adapter = netdev_priv(netdev); fp@1900: fp@1900: /* only return the current stats */ fp@1900: return &adapter->net_stats; fp@1900: } fp@1900: fp@1900: /** fp@1900: * e1000_change_mtu - Change the Maximum Transfer Unit fp@1900: * @netdev: network interface device structure fp@1900: * @new_mtu: new value for maximum frame size fp@1900: * fp@1900: * Returns 0 on success, negative on failure fp@1900: **/ fp@1900: fp@1900: static int e1000_change_mtu(struct net_device *netdev, int new_mtu) fp@1900: { fp@1900: struct e1000_adapter *adapter = netdev_priv(netdev); fp@1900: struct e1000_hw *hw = &adapter->hw; fp@1900: int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; fp@1900: u16 eeprom_data = 0; fp@1900: fp@1900: if (adapter->ecdev) fp@1900: return -EBUSY; fp@1900: fp@1900: if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) || fp@1900: (max_frame > MAX_JUMBO_FRAME_SIZE)) { fp@1900: DPRINTK(PROBE, ERR, "Invalid MTU setting\n"); fp@1900: return -EINVAL; fp@1900: } fp@1900: fp@1900: /* Adapter-specific max frame size limits. */ fp@1900: switch (hw->mac_type) { fp@1900: case e1000_undefined ... e1000_82542_rev2_1: fp@1900: case e1000_ich8lan: fp@1900: if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) { fp@1900: DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n"); fp@1900: return -EINVAL; fp@1900: } fp@1900: break; fp@1900: case e1000_82573: fp@1900: /* Jumbo Frames not supported if: fp@1900: * - this is not an 82573L device fp@1900: * - ASPM is enabled in any way (0x1A bits 3:2) */ fp@1900: e1000_read_eeprom(hw, EEPROM_INIT_3GIO_3, 1, fp@1900: &eeprom_data); fp@1900: if ((hw->device_id != E1000_DEV_ID_82573L) || fp@1900: (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) { fp@1900: if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) { fp@1900: DPRINTK(PROBE, ERR, fp@1900: "Jumbo Frames not supported.\n"); fp@1900: return -EINVAL; fp@1900: } fp@1900: break; fp@1900: } fp@1900: /* ERT will be enabled later to enable wire speed receives */ fp@1900: fp@1900: /* fall through to get support */ fp@1900: case e1000_82571: fp@1900: case e1000_82572: fp@1900: case e1000_80003es2lan: fp@1900: #define MAX_STD_JUMBO_FRAME_SIZE 9234 fp@1900: if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) { fp@1900: DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n"); fp@1900: return -EINVAL; fp@1900: } fp@1900: break; fp@1900: default: fp@1900: /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */ fp@1900: break; fp@1900: } fp@1900: fp@1900: /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN fp@1900: * means we reserve 2 more, this pushes us to allocate from the next fp@1900: * larger slab size fp@1900: * i.e. RXBUFFER_2048 --> size-4096 slab */ fp@1900: fp@1900: if (max_frame <= E1000_RXBUFFER_256) fp@1900: adapter->rx_buffer_len = E1000_RXBUFFER_256; fp@1900: else if (max_frame <= E1000_RXBUFFER_512) fp@1900: adapter->rx_buffer_len = E1000_RXBUFFER_512; fp@1900: else if (max_frame <= E1000_RXBUFFER_1024) fp@1900: adapter->rx_buffer_len = E1000_RXBUFFER_1024; fp@1900: else if (max_frame <= E1000_RXBUFFER_2048) fp@1900: adapter->rx_buffer_len = E1000_RXBUFFER_2048; fp@1900: else if (max_frame <= E1000_RXBUFFER_4096) fp@1900: adapter->rx_buffer_len = E1000_RXBUFFER_4096; fp@1900: else if (max_frame <= E1000_RXBUFFER_8192) fp@1900: adapter->rx_buffer_len = E1000_RXBUFFER_8192; fp@1900: else if (max_frame <= E1000_RXBUFFER_16384) fp@1900: adapter->rx_buffer_len = E1000_RXBUFFER_16384; fp@1900: fp@1900: /* adjust allocation if LPE protects us, and we aren't using SBP */ fp@1900: if (!hw->tbi_compatibility_on && fp@1900: ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) || fp@1900: (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))) fp@1900: adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; fp@1900: fp@1900: netdev->mtu = new_mtu; fp@1900: hw->max_frame_size = max_frame; fp@1900: fp@1900: if (netif_running(netdev)) fp@1900: e1000_reinit_locked(adapter); fp@1900: fp@1900: return 0; fp@1900: } fp@1900: fp@1900: /** fp@1900: * e1000_update_stats - Update the board statistics counters fp@1900: * @adapter: board private structure fp@1900: **/ fp@1900: fp@1900: void e1000_update_stats(struct e1000_adapter *adapter) fp@1900: { fp@1900: struct e1000_hw *hw = &adapter->hw; fp@1900: struct pci_dev *pdev = adapter->pdev; fp@1900: unsigned long flags = 0; fp@1900: u16 phy_tmp; fp@1900: fp@1900: #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF fp@1900: fp@1900: /* fp@1900: * Prevent stats update while adapter is being reset, or if the pci fp@1900: * connection is down. fp@1900: */ fp@1900: if (adapter->link_speed == 0) fp@1900: return; fp@1900: if (pci_channel_offline(pdev)) fp@1900: return; fp@1900: fp@1900: if (!adapter->ecdev) fp@1900: spin_lock_irqsave(&adapter->stats_lock, flags); fp@1900: fp@1900: /* these counters are modified from e1000_tbi_adjust_stats, fp@1900: * called from the interrupt context, so they must only fp@1900: * be written while holding adapter->stats_lock fp@1900: */ fp@1900: fp@1900: adapter->stats.crcerrs += er32(CRCERRS); fp@1900: adapter->stats.gprc += er32(GPRC); fp@1900: adapter->stats.gorcl += er32(GORCL); fp@1900: adapter->stats.gorch += er32(GORCH); fp@1900: adapter->stats.bprc += er32(BPRC); fp@1900: adapter->stats.mprc += er32(MPRC); fp@1900: adapter->stats.roc += er32(ROC); fp@1900: fp@1900: if (hw->mac_type != e1000_ich8lan) { fp@1900: adapter->stats.prc64 += er32(PRC64); fp@1900: adapter->stats.prc127 += er32(PRC127); fp@1900: adapter->stats.prc255 += er32(PRC255); fp@1900: adapter->stats.prc511 += er32(PRC511); fp@1900: adapter->stats.prc1023 += er32(PRC1023); fp@1900: adapter->stats.prc1522 += er32(PRC1522); fp@1900: } fp@1900: fp@1900: adapter->stats.symerrs += er32(SYMERRS); fp@1900: adapter->stats.mpc += er32(MPC); fp@1900: adapter->stats.scc += er32(SCC); fp@1900: adapter->stats.ecol += er32(ECOL); fp@1900: adapter->stats.mcc += er32(MCC); fp@1900: adapter->stats.latecol += er32(LATECOL); fp@1900: adapter->stats.dc += er32(DC); fp@1900: adapter->stats.sec += er32(SEC); fp@1900: adapter->stats.rlec += er32(RLEC); fp@1900: adapter->stats.xonrxc += er32(XONRXC); fp@1900: adapter->stats.xontxc += er32(XONTXC); fp@1900: adapter->stats.xoffrxc += er32(XOFFRXC); fp@1900: adapter->stats.xofftxc += er32(XOFFTXC); fp@1900: adapter->stats.fcruc += er32(FCRUC); fp@1900: adapter->stats.gptc += er32(GPTC); fp@1900: adapter->stats.gotcl += er32(GOTCL); fp@1900: adapter->stats.gotch += er32(GOTCH); fp@1900: adapter->stats.rnbc += er32(RNBC); fp@1900: adapter->stats.ruc += er32(RUC); fp@1900: adapter->stats.rfc += er32(RFC); fp@1900: adapter->stats.rjc += er32(RJC); fp@1900: adapter->stats.torl += er32(TORL); fp@1900: adapter->stats.torh += er32(TORH); fp@1900: adapter->stats.totl += er32(TOTL); fp@1900: adapter->stats.toth += er32(TOTH); fp@1900: adapter->stats.tpr += er32(TPR); fp@1900: fp@1900: if (hw->mac_type != e1000_ich8lan) { fp@1900: adapter->stats.ptc64 += er32(PTC64); fp@1900: adapter->stats.ptc127 += er32(PTC127); fp@1900: adapter->stats.ptc255 += er32(PTC255); fp@1900: adapter->stats.ptc511 += er32(PTC511); fp@1900: adapter->stats.ptc1023 += er32(PTC1023); fp@1900: adapter->stats.ptc1522 += er32(PTC1522); fp@1900: } fp@1900: fp@1900: adapter->stats.mptc += er32(MPTC); fp@1900: adapter->stats.bptc += er32(BPTC); fp@1900: fp@1900: /* used for adaptive IFS */ fp@1900: fp@1900: hw->tx_packet_delta = er32(TPT); fp@1900: adapter->stats.tpt += hw->tx_packet_delta; fp@1900: hw->collision_delta = er32(COLC); fp@1900: adapter->stats.colc += hw->collision_delta; fp@1900: fp@1900: if (hw->mac_type >= e1000_82543) { fp@1900: adapter->stats.algnerrc += er32(ALGNERRC); fp@1900: adapter->stats.rxerrc += er32(RXERRC); fp@1900: adapter->stats.tncrs += er32(TNCRS); fp@1900: adapter->stats.cexterr += er32(CEXTERR); fp@1900: adapter->stats.tsctc += er32(TSCTC); fp@1900: adapter->stats.tsctfc += er32(TSCTFC); fp@1900: } fp@1900: if (hw->mac_type > e1000_82547_rev_2) { fp@1900: adapter->stats.iac += er32(IAC); fp@1900: adapter->stats.icrxoc += er32(ICRXOC); fp@1900: fp@1900: if (hw->mac_type != e1000_ich8lan) { fp@1900: adapter->stats.icrxptc += er32(ICRXPTC); fp@1900: adapter->stats.icrxatc += er32(ICRXATC); fp@1900: adapter->stats.ictxptc += er32(ICTXPTC); fp@1900: adapter->stats.ictxatc += er32(ICTXATC); fp@1900: adapter->stats.ictxqec += er32(ICTXQEC); fp@1900: adapter->stats.ictxqmtc += er32(ICTXQMTC); fp@1900: adapter->stats.icrxdmtc += er32(ICRXDMTC); fp@1900: } fp@1900: } fp@1900: fp@1900: /* Fill out the OS statistics structure */ fp@1900: adapter->net_stats.multicast = adapter->stats.mprc; fp@1900: adapter->net_stats.collisions = adapter->stats.colc; fp@1900: fp@1900: /* Rx Errors */ fp@1900: fp@1900: /* RLEC on some newer hardware can be incorrect so build fp@1900: * our own version based on RUC and ROC */ fp@1900: adapter->net_stats.rx_errors = adapter->stats.rxerrc + fp@1900: adapter->stats.crcerrs + adapter->stats.algnerrc + fp@1900: adapter->stats.ruc + adapter->stats.roc + fp@1900: adapter->stats.cexterr; fp@1900: adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc; fp@1900: adapter->net_stats.rx_length_errors = adapter->stats.rlerrc; fp@1900: adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs; fp@1900: adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc; fp@1900: adapter->net_stats.rx_missed_errors = adapter->stats.mpc; fp@1900: fp@1900: /* Tx Errors */ fp@1900: adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol; fp@1900: adapter->net_stats.tx_errors = adapter->stats.txerrc; fp@1900: adapter->net_stats.tx_aborted_errors = adapter->stats.ecol; fp@1900: adapter->net_stats.tx_window_errors = adapter->stats.latecol; fp@1900: adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs; fp@1900: if (hw->bad_tx_carr_stats_fd && fp@1900: adapter->link_duplex == FULL_DUPLEX) { fp@1900: adapter->net_stats.tx_carrier_errors = 0; fp@1900: adapter->stats.tncrs = 0; fp@1900: } fp@1900: fp@1900: /* Tx Dropped needs to be maintained elsewhere */ fp@1900: fp@1900: /* Phy Stats */ fp@1900: if (hw->media_type == e1000_media_type_copper) { fp@1900: if ((adapter->link_speed == SPEED_1000) && fp@1900: (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) { fp@1900: phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; fp@1900: adapter->phy_stats.idle_errors += phy_tmp; fp@1900: } fp@1900: fp@1900: if ((hw->mac_type <= e1000_82546) && fp@1900: (hw->phy_type == e1000_phy_m88) && fp@1900: !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp)) fp@1900: adapter->phy_stats.receive_errors += phy_tmp; fp@1900: } fp@1900: fp@1900: /* Management Stats */ fp@1900: if (hw->has_smbus) { fp@1900: adapter->stats.mgptc += er32(MGTPTC); fp@1900: adapter->stats.mgprc += er32(MGTPRC); fp@1900: adapter->stats.mgpdc += er32(MGTPDC); fp@1900: } fp@1900: fp@1900: if (!adapter->ecdev) fp@1900: spin_unlock_irqrestore(&adapter->stats_lock, flags); fp@1900: } fp@1900: fp@1900: void ec_poll(struct net_device *netdev) fp@1900: { fp@1900: struct e1000_adapter *adapter = netdev_priv(netdev); fp@1900: fp@1900: if (jiffies - adapter->ec_watchdog_jiffies >= 2 * HZ) { fp@1900: e1000_watchdog((unsigned long) adapter); fp@1900: adapter->ec_watchdog_jiffies = jiffies; fp@1900: } fp@1900: fp@1900: #ifdef CONFIG_PCI_MSI fp@1900: e1000_intr_msi(0, netdev); fp@1900: #else fp@1900: e1000_intr(0, netdev); fp@1900: #endif fp@1900: } fp@1900: fp@1900: /** fp@1900: * e1000_intr_msi - Interrupt Handler fp@1900: * @irq: interrupt number fp@1900: * @data: pointer to a network interface device structure fp@1900: **/ fp@1900: fp@1900: static irqreturn_t e1000_intr_msi(int irq, void *data) fp@1900: { fp@1900: struct net_device *netdev = data; fp@1900: struct e1000_adapter *adapter = netdev_priv(netdev); fp@1900: struct e1000_hw *hw = &adapter->hw; fp@1900: u32 icr = er32(ICR); fp@1900: fp@1900: if (adapter->ecdev) { fp@1900: int i, ec_work_done = 0; fp@1900: for (i = 0; i < E1000_MAX_INTR; i++) { fp@1900: if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring, fp@2050: &ec_work_done, 100) && fp@1900: !e1000_clean_tx_irq(adapter, adapter->tx_ring))) { fp@1900: break; fp@1900: } fp@1900: } fp@1900: } else { fp@1900: /* in NAPI mode read ICR disables interrupts using IAM */ fp@1900: fp@1900: if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { fp@1900: hw->get_link_status = 1; fp@1900: /* 80003ES2LAN workaround-- For packet buffer work-around on fp@1900: * link down event; disable receives here in the ISR and reset fp@1900: * adapter in watchdog */ fp@1900: if (netif_carrier_ok(netdev) && fp@1900: (hw->mac_type == e1000_80003es2lan)) { fp@1900: /* disable receives */ fp@1900: u32 rctl = er32(RCTL); fp@1900: ew32(RCTL, rctl & ~E1000_RCTL_EN); fp@1900: } fp@1900: /* guard against interrupt when we're going down */ fp@1900: if (!test_bit(__E1000_DOWN, &adapter->flags)) fp@1900: mod_timer(&adapter->watchdog_timer, jiffies + 1); fp@1900: } fp@1900: fp@1900: if (likely(netif_rx_schedule_prep(netdev, &adapter->napi))) { fp@1900: adapter->total_tx_bytes = 0; fp@1900: adapter->total_tx_packets = 0; fp@1900: adapter->total_rx_bytes = 0; fp@1900: adapter->total_rx_packets = 0; fp@1900: __netif_rx_schedule(netdev, &adapter->napi); fp@1900: } else fp@1900: e1000_irq_enable(adapter); fp@1900: } fp@1900: fp@1900: return IRQ_HANDLED; fp@1900: } fp@1900: fp@1900: /** fp@1900: * e1000_intr - Interrupt Handler fp@1900: * @irq: interrupt number fp@1900: * @data: pointer to a network interface device structure fp@1900: **/ fp@1900: fp@1900: static irqreturn_t e1000_intr(int irq, void *data) fp@1900: { fp@1900: struct net_device *netdev = data; fp@1900: struct e1000_adapter *adapter = netdev_priv(netdev); fp@1900: struct e1000_hw *hw = &adapter->hw; fp@1900: u32 rctl, icr = er32(ICR); fp@1900: fp@1900: if (unlikely((!icr) || test_bit(__E1000_RESETTING, &adapter->flags))) fp@1900: return IRQ_NONE; /* Not our interrupt */ fp@1900: fp@1900: /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is fp@1900: * not set, then the adapter didn't send an interrupt */ fp@1900: if (unlikely(hw->mac_type >= e1000_82571 && fp@1900: !(icr & E1000_ICR_INT_ASSERTED))) fp@1900: return IRQ_NONE; fp@1900: fp@1900: /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No fp@1900: * need for the IMC write */ fp@1900: fp@1900: if (!adapter->ecdev && unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) { fp@1900: hw->get_link_status = 1; fp@1900: /* 80003ES2LAN workaround-- fp@1900: * For packet buffer work-around on link down event; fp@1900: * disable receives here in the ISR and fp@1900: * reset adapter in watchdog fp@1900: */ fp@1900: if (netif_carrier_ok(netdev) && fp@1900: (hw->mac_type == e1000_80003es2lan)) { fp@1900: /* disable receives */ fp@1900: rctl = er32(RCTL); fp@1900: ew32(RCTL, rctl & ~E1000_RCTL_EN); fp@1900: } fp@1900: /* guard against interrupt when we're going down */ fp@1900: if (!test_bit(__E1000_DOWN, &adapter->flags)) fp@1900: mod_timer(&adapter->watchdog_timer, jiffies + 1); fp@1900: } fp@1900: fp@1900: if (adapter->ecdev) { fp@1900: int i, ec_work_done = 0; fp@1900: for (i = 0; i < E1000_MAX_INTR; i++) { fp@1900: if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring, fp@2050: &ec_work_done, 100) && fp@1900: !e1000_clean_tx_irq(adapter, adapter->tx_ring))) { fp@1900: break; fp@1900: } fp@1900: } fp@1900: } else { fp@1900: if (unlikely(hw->mac_type < e1000_82571)) { fp@1900: /* disable interrupts, without the synchronize_irq bit */ fp@1900: ew32(IMC, ~0); fp@1900: E1000_WRITE_FLUSH(); fp@1900: } fp@1900: if (likely(netif_rx_schedule_prep(netdev, &adapter->napi))) { fp@1900: adapter->total_tx_bytes = 0; fp@1900: adapter->total_tx_packets = 0; fp@1900: adapter->total_rx_bytes = 0; fp@1900: adapter->total_rx_packets = 0; fp@1900: __netif_rx_schedule(netdev, &adapter->napi); fp@1900: } else fp@1900: /* this really should not happen! if it does it is basically a fp@1900: * bug, but not a hard error, so enable ints and continue */ fp@1900: e1000_irq_enable(adapter); fp@1900: } fp@1900: fp@1900: return IRQ_HANDLED; fp@1900: } fp@1900: fp@1900: /** fp@1900: * e1000_clean - NAPI Rx polling callback fp@1900: * @adapter: board private structure fp@1900: * EtherCAT: never called fp@1900: **/ fp@1900: static int e1000_clean(struct napi_struct *napi, int budget) fp@1900: { fp@1900: struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi); fp@1900: struct net_device *poll_dev = adapter->netdev; fp@1900: int tx_cleaned = 0, work_done = 0; fp@1900: fp@1900: /* Must NOT use netdev_priv macro here. */ fp@1900: adapter = poll_dev->priv; fp@1900: fp@1900: /* e1000_clean is called per-cpu. This lock protects fp@1900: * tx_ring[0] from being cleaned by multiple cpus fp@1900: * simultaneously. A failure obtaining the lock means fp@1900: * tx_ring[0] is currently being cleaned anyway. */ fp@1900: if (spin_trylock(&adapter->tx_queue_lock)) { fp@1900: tx_cleaned = e1000_clean_tx_irq(adapter, fp@1900: &adapter->tx_ring[0]); fp@1900: spin_unlock(&adapter->tx_queue_lock); fp@1900: } fp@1900: fp@1900: adapter->clean_rx(adapter, &adapter->rx_ring[0], fp@1900: &work_done, budget); fp@1900: fp@1900: if (tx_cleaned) fp@1900: work_done = budget; fp@1900: fp@1900: /* If budget not fully consumed, exit the polling mode */ fp@1900: if (work_done < budget) { fp@1900: if (likely(adapter->itr_setting & 3)) fp@1900: e1000_set_itr(adapter); fp@1900: netif_rx_complete(poll_dev, napi); fp@1900: e1000_irq_enable(adapter); fp@1900: } fp@1900: fp@1900: return work_done; fp@1900: } fp@1900: fp@1900: /** fp@1900: * e1000_clean_tx_irq - Reclaim resources after transmit completes fp@1900: * @adapter: board private structure fp@1900: **/ fp@1900: static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, fp@1900: struct e1000_tx_ring *tx_ring) fp@1900: { fp@1900: struct e1000_hw *hw = &adapter->hw; fp@1900: struct net_device *netdev = adapter->netdev; fp@1900: struct e1000_tx_desc *tx_desc, *eop_desc; fp@1900: struct e1000_buffer *buffer_info; fp@1900: unsigned int i, eop; fp@1900: unsigned int count = 0; fp@1900: bool cleaned = false; fp@1900: unsigned int total_tx_bytes=0, total_tx_packets=0; fp@1900: fp@1900: i = tx_ring->next_to_clean; fp@1900: eop = tx_ring->buffer_info[i].next_to_watch; fp@1900: eop_desc = E1000_TX_DESC(*tx_ring, eop); fp@1900: fp@1900: while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) { fp@1900: for (cleaned = false; !cleaned; ) { fp@1900: tx_desc = E1000_TX_DESC(*tx_ring, i); fp@1900: buffer_info = &tx_ring->buffer_info[i]; fp@1900: cleaned = (i == eop); fp@1900: fp@1900: if (cleaned) { fp@1900: struct sk_buff *skb = buffer_info->skb; fp@1900: unsigned int segs, bytecount; fp@1900: segs = skb_shinfo(skb)->gso_segs ?: 1; fp@1900: /* multiply data chunks by size of headers */ fp@1900: bytecount = ((segs - 1) * skb_headlen(skb)) + fp@1900: skb->len; fp@1900: total_tx_packets += segs; fp@1900: total_tx_bytes += bytecount; fp@1900: } fp@1900: e1000_unmap_and_free_tx_resource(adapter, buffer_info); fp@1900: tx_desc->upper.data = 0; fp@1900: fp@1900: if (unlikely(++i == tx_ring->count)) i = 0; fp@1900: } fp@1900: fp@1900: eop = tx_ring->buffer_info[i].next_to_watch; fp@1900: eop_desc = E1000_TX_DESC(*tx_ring, eop); fp@1900: #define E1000_TX_WEIGHT 64 fp@1900: /* weight of a sort for tx, to avoid endless transmit cleanup */ fp@1900: if (count++ == E1000_TX_WEIGHT) fp@1900: break; fp@1900: } fp@1900: fp@1900: tx_ring->next_to_clean = i; fp@1900: fp@1900: #define TX_WAKE_THRESHOLD 32 fp@1900: if (!adapter->ecdev && unlikely(cleaned && netif_carrier_ok(netdev) && fp@1900: E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) { fp@1900: /* Make sure that anybody stopping the queue after this fp@1900: * sees the new next_to_clean. fp@1900: */ fp@1900: smp_mb(); fp@1900: if (netif_queue_stopped(netdev)) { fp@1900: netif_wake_queue(netdev); fp@1900: ++adapter->restart_queue; fp@1900: } fp@1900: } fp@1900: fp@1900: if (!adapter->ecdev && adapter->detect_tx_hung) { fp@1900: /* Detect a transmit hang in hardware, this serializes the fp@1900: * check with the clearing of time_stamp and movement of i */ fp@1900: adapter->detect_tx_hung = false; fp@1900: if (tx_ring->buffer_info[eop].dma && fp@1900: time_after(jiffies, tx_ring->buffer_info[eop].time_stamp + fp@1900: (adapter->tx_timeout_factor * HZ)) fp@1900: && !(er32(STATUS) & E1000_STATUS_TXOFF)) { fp@1900: fp@1900: /* detected Tx unit hang */ fp@1900: DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n" fp@1900: " Tx Queue <%lu>\n" fp@1900: " TDH <%x>\n" fp@1900: " TDT <%x>\n" fp@1900: " next_to_use <%x>\n" fp@1900: " next_to_clean <%x>\n" fp@1900: "buffer_info[next_to_clean]\n" fp@1900: " time_stamp <%lx>\n" fp@1900: " next_to_watch <%x>\n" fp@1900: " jiffies <%lx>\n" fp@1900: " next_to_watch.status <%x>\n", fp@1900: (unsigned long)((tx_ring - adapter->tx_ring) / fp@1900: sizeof(struct e1000_tx_ring)), fp@1900: readl(hw->hw_addr + tx_ring->tdh), fp@1900: readl(hw->hw_addr + tx_ring->tdt), fp@1900: tx_ring->next_to_use, fp@1900: tx_ring->next_to_clean, fp@1900: tx_ring->buffer_info[eop].time_stamp, fp@1900: eop, fp@1900: jiffies, fp@1900: eop_desc->upper.fields.status); fp@1900: netif_stop_queue(netdev); fp@1900: } fp@1900: } fp@1900: adapter->total_tx_bytes += total_tx_bytes; fp@1900: adapter->total_tx_packets += total_tx_packets; fp@1900: adapter->net_stats.tx_bytes += total_tx_bytes; fp@1900: adapter->net_stats.tx_packets += total_tx_packets; fp@1900: return cleaned; fp@1900: } fp@1900: fp@1900: /** fp@1900: * e1000_rx_checksum - Receive Checksum Offload for 82543 fp@1900: * @adapter: board private structure fp@1900: * @status_err: receive descriptor status and error fields fp@1900: * @csum: receive descriptor csum field fp@1900: * @sk_buff: socket buffer with received data fp@1900: **/ fp@1900: fp@1900: static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, fp@1900: u32 csum, struct sk_buff *skb) fp@1900: { fp@1900: struct e1000_hw *hw = &adapter->hw; fp@1900: u16 status = (u16)status_err; fp@1900: u8 errors = (u8)(status_err >> 24); fp@1900: skb->ip_summed = CHECKSUM_NONE; fp@1900: fp@1900: /* 82543 or newer only */ fp@1900: if (unlikely(hw->mac_type < e1000_82543)) return; fp@1900: /* Ignore Checksum bit is set */ fp@1900: if (unlikely(status & E1000_RXD_STAT_IXSM)) return; fp@1900: /* TCP/UDP checksum error bit is set */ fp@1900: if (unlikely(errors & E1000_RXD_ERR_TCPE)) { fp@1900: /* let the stack verify checksum errors */ fp@1900: adapter->hw_csum_err++; fp@1900: return; fp@1900: } fp@1900: /* TCP/UDP Checksum has not been calculated */ fp@1900: if (hw->mac_type <= e1000_82547_rev_2) { fp@1900: if (!(status & E1000_RXD_STAT_TCPCS)) fp@1900: return; fp@1900: } else { fp@1900: if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))) fp@1900: return; fp@1900: } fp@1900: /* It must be a TCP or UDP packet with a valid checksum */ fp@1900: if (likely(status & E1000_RXD_STAT_TCPCS)) { fp@1900: /* TCP checksum is good */ fp@1900: skb->ip_summed = CHECKSUM_UNNECESSARY; fp@1900: } else if (hw->mac_type > e1000_82547_rev_2) { fp@1900: /* IP fragment with UDP payload */ fp@1900: /* Hardware complements the payload checksum, so we undo it fp@1900: * and then put the value in host order for further stack use. fp@1900: */ fp@1900: __sum16 sum = (__force __sum16)htons(csum); fp@1900: skb->csum = csum_unfold(~sum); fp@1900: skb->ip_summed = CHECKSUM_COMPLETE; fp@1900: } fp@1900: adapter->hw_csum_good++; fp@1900: } fp@1900: fp@1900: /** fp@1900: * e1000_clean_rx_irq - Send received data up the network stack; legacy fp@1900: * @adapter: board private structure fp@1900: **/ fp@1900: static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, fp@1900: struct e1000_rx_ring *rx_ring, fp@1900: int *work_done, int work_to_do) fp@1900: { fp@1900: struct e1000_hw *hw = &adapter->hw; fp@1900: struct net_device *netdev = adapter->netdev; fp@1900: struct pci_dev *pdev = adapter->pdev; fp@1900: struct e1000_rx_desc *rx_desc, *next_rxd; fp@1900: struct e1000_buffer *buffer_info, *next_buffer; fp@1900: unsigned long flags; fp@1900: u32 length; fp@1900: u8 last_byte; fp@1900: unsigned int i; fp@1900: int cleaned_count = 0; fp@1900: bool cleaned = false; fp@1900: unsigned int total_rx_bytes=0, total_rx_packets=0; fp@1900: fp@1900: i = rx_ring->next_to_clean; fp@1900: rx_desc = E1000_RX_DESC(*rx_ring, i); fp@1900: buffer_info = &rx_ring->buffer_info[i]; fp@1900: fp@1900: while (rx_desc->status & E1000_RXD_STAT_DD) { fp@1900: struct sk_buff *skb; fp@1900: u8 status; fp@1900: fp@1900: if (*work_done >= work_to_do) fp@1900: break; fp@1900: (*work_done)++; fp@1900: fp@1900: status = rx_desc->status; fp@1900: skb = buffer_info->skb; fp@1900: if (!adapter->ecdev) buffer_info->skb = NULL; fp@1900: fp@1900: prefetch(skb->data - NET_IP_ALIGN); fp@1900: fp@1900: if (++i == rx_ring->count) i = 0; fp@1900: next_rxd = E1000_RX_DESC(*rx_ring, i); fp@1900: prefetch(next_rxd); fp@1900: fp@1900: next_buffer = &rx_ring->buffer_info[i]; fp@1900: fp@1900: cleaned = true; fp@1900: cleaned_count++; fp@1900: pci_unmap_single(pdev, fp@1900: buffer_info->dma, fp@1900: buffer_info->length, fp@1900: PCI_DMA_FROMDEVICE); fp@1900: fp@1900: length = le16_to_cpu(rx_desc->length); fp@1900: /* !EOP means multiple descriptors were used to store a single fp@2252: * packet, also make sure the frame isn't just CRC only */ fp@2252: if (unlikely(!(status & E1000_RXD_STAT_EOP) || (length <= 4))) { fp@1900: /* All receives must fit into a single buffer */ fp@1900: E1000_DBG("%s: Receive packet consumed multiple" fp@1900: " buffers\n", netdev->name); fp@1900: /* recycle */ fp@1900: buffer_info->skb = skb; fp@1900: goto next_desc; fp@1900: } fp@1900: fp@1900: if (!adapter->ecdev && fp@1900: unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) { fp@1900: last_byte = *(skb->data + length - 1); fp@1900: if (TBI_ACCEPT(hw, status, rx_desc->errors, length, fp@1900: last_byte)) { fp@1900: spin_lock_irqsave(&adapter->stats_lock, flags); fp@1900: e1000_tbi_adjust_stats(hw, &adapter->stats, fp@1900: length, skb->data); fp@1900: spin_unlock_irqrestore(&adapter->stats_lock, fp@1900: flags); fp@1900: length--; fp@1900: } else { fp@1900: /* recycle */ fp@1900: buffer_info->skb = skb; fp@1900: goto next_desc; fp@1900: } fp@1900: } fp@1900: fp@1900: /* adjust length to remove Ethernet CRC, this must be fp@1900: * done after the TBI_ACCEPT workaround above */ fp@1900: length -= 4; fp@1900: fp@1900: /* probably a little skewed due to removing CRC */ fp@1900: total_rx_bytes += length; fp@1900: total_rx_packets++; fp@1900: fp@1900: /* code added for copybreak, this should improve fp@1900: * performance for small packets with large amounts fp@1900: * of reassembly being done in the stack */ fp@1900: if (!adapter->ecdev && length < copybreak) { fp@1900: struct sk_buff *new_skb = fp@1900: netdev_alloc_skb(netdev, length + NET_IP_ALIGN); fp@1900: if (new_skb) { fp@1900: skb_reserve(new_skb, NET_IP_ALIGN); fp@1900: skb_copy_to_linear_data_offset(new_skb, fp@1900: -NET_IP_ALIGN, fp@1900: (skb->data - fp@1900: NET_IP_ALIGN), fp@1900: (length + fp@1900: NET_IP_ALIGN)); fp@1900: /* save the skb in buffer_info as good */ fp@1900: buffer_info->skb = skb; fp@1900: skb = new_skb; fp@1900: } fp@1900: /* else just continue with the old one */ fp@1900: } fp@1900: /* end copybreak code */ fp@1900: skb_put(skb, length); fp@1900: fp@1900: /* Receive Checksum Offload */ fp@1900: e1000_rx_checksum(adapter, fp@1900: (u32)(status) | fp@1900: ((u32)(rx_desc->errors) << 24), fp@1900: le16_to_cpu(rx_desc->csum), skb); fp@1900: fp@1900: if (adapter->ecdev) { fp@1900: ecdev_receive(adapter->ecdev, skb->data, length); fp@1900: fp@1900: // No need to detect link status as fp@1900: // long as frames are received: Reset watchdog. fp@1900: adapter->ec_watchdog_jiffies = jiffies; fp@1900: } else { fp@1900: skb->protocol = eth_type_trans(skb, netdev); fp@1900: fp@1900: if (unlikely(adapter->vlgrp && fp@1900: (status & E1000_RXD_STAT_VP))) { fp@1900: vlan_hwaccel_receive_skb(skb, adapter->vlgrp, fp@1900: le16_to_cpu(rx_desc->special)); fp@1900: } else { fp@1900: netif_receive_skb(skb); fp@1900: } fp@1900: } fp@1900: fp@1900: netdev->last_rx = jiffies; fp@1900: fp@1900: next_desc: fp@1900: rx_desc->status = 0; fp@1900: fp@1900: /* return some buffers to hardware, one at a time is too slow */ fp@1900: if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { fp@1900: adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); fp@1900: cleaned_count = 0; fp@1900: } fp@1900: fp@1900: /* use prefetched values */ fp@1900: rx_desc = next_rxd; fp@1900: buffer_info = next_buffer; fp@1900: } fp@1900: rx_ring->next_to_clean = i; fp@1900: fp@1900: cleaned_count = E1000_DESC_UNUSED(rx_ring); fp@1900: if (cleaned_count) fp@1900: adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); fp@1900: fp@1900: adapter->total_rx_packets += total_rx_packets; fp@1900: adapter->total_rx_bytes += total_rx_bytes; fp@1900: adapter->net_stats.rx_bytes += total_rx_bytes; fp@1900: adapter->net_stats.rx_packets += total_rx_packets; fp@1900: return cleaned; fp@1900: } fp@1900: fp@1900: /** fp@1900: * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split fp@1900: * @adapter: board private structure fp@1900: **/ fp@1900: fp@1900: static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, fp@1900: struct e1000_rx_ring *rx_ring, fp@1900: int *work_done, int work_to_do) fp@1900: { fp@1900: union e1000_rx_desc_packet_split *rx_desc, *next_rxd; fp@1900: struct net_device *netdev = adapter->netdev; fp@1900: struct pci_dev *pdev = adapter->pdev; fp@1900: struct e1000_buffer *buffer_info, *next_buffer; fp@1900: struct e1000_ps_page *ps_page; fp@1900: struct e1000_ps_page_dma *ps_page_dma; fp@1900: struct sk_buff *skb; fp@1900: unsigned int i, j; fp@1900: u32 length, staterr; fp@1900: int cleaned_count = 0; fp@1900: bool cleaned = false; fp@1900: unsigned int total_rx_bytes=0, total_rx_packets=0; fp@1900: fp@1900: i = rx_ring->next_to_clean; fp@1900: rx_desc = E1000_RX_DESC_PS(*rx_ring, i); fp@1900: staterr = le32_to_cpu(rx_desc->wb.middle.status_error); fp@1900: buffer_info = &rx_ring->buffer_info[i]; fp@1900: fp@1900: while (staterr & E1000_RXD_STAT_DD) { fp@1900: ps_page = &rx_ring->ps_page[i]; fp@1900: ps_page_dma = &rx_ring->ps_page_dma[i]; fp@1900: fp@1900: if (unlikely(*work_done >= work_to_do)) fp@1900: break; fp@1900: (*work_done)++; fp@1900: fp@1900: skb = buffer_info->skb; fp@1900: fp@1900: /* in the packet split case this is header only */ fp@1900: prefetch(skb->data - NET_IP_ALIGN); fp@1900: fp@1900: if (++i == rx_ring->count) i = 0; fp@1900: next_rxd = E1000_RX_DESC_PS(*rx_ring, i); fp@1900: prefetch(next_rxd); fp@1900: fp@1900: next_buffer = &rx_ring->buffer_info[i]; fp@1900: fp@1900: cleaned = true; fp@1900: cleaned_count++; fp@1900: pci_unmap_single(pdev, buffer_info->dma, fp@1900: buffer_info->length, fp@1900: PCI_DMA_FROMDEVICE); fp@1900: fp@1900: if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) { fp@1900: E1000_DBG("%s: Packet Split buffers didn't pick up" fp@1900: " the full packet\n", netdev->name); fp@1900: if (!adapter->ecdev) dev_kfree_skb_irq(skb); fp@1900: goto next_desc; fp@1900: } fp@1900: fp@1900: if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) { fp@1900: if (!adapter->ecdev) dev_kfree_skb_irq(skb); fp@1900: goto next_desc; fp@1900: } fp@1900: fp@1900: length = le16_to_cpu(rx_desc->wb.middle.length0); fp@1900: fp@1900: if (unlikely(!length)) { fp@1900: E1000_DBG("%s: Last part of the packet spanning" fp@1900: " multiple descriptors\n", netdev->name); fp@1900: if (!adapter->ecdev) dev_kfree_skb_irq(skb); fp@1900: goto next_desc; fp@1900: } fp@1900: fp@1900: /* Good Receive */ fp@1900: skb_put(skb, length); fp@1900: fp@1900: { fp@1900: /* this looks ugly, but it seems compiler issues make it fp@1900: more efficient than reusing j */ fp@1900: int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]); fp@1900: fp@1900: /* page alloc/put takes too long and effects small packet fp@1900: * throughput, so unsplit small packets and save the alloc/put*/ fp@1900: if (l1 && (l1 <= copybreak) && ((length + l1) <= adapter->rx_ps_bsize0)) { fp@1900: u8 *vaddr; fp@1900: /* there is no documentation about how to call fp@1900: * kmap_atomic, so we can't hold the mapping fp@1900: * very long */ fp@1900: pci_dma_sync_single_for_cpu(pdev, fp@1900: ps_page_dma->ps_page_dma[0], fp@1900: PAGE_SIZE, fp@1900: PCI_DMA_FROMDEVICE); fp@1900: vaddr = kmap_atomic(ps_page->ps_page[0], fp@1900: KM_SKB_DATA_SOFTIRQ); fp@1900: memcpy(skb_tail_pointer(skb), vaddr, l1); fp@1900: kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ); fp@1900: pci_dma_sync_single_for_device(pdev, fp@1900: ps_page_dma->ps_page_dma[0], fp@1900: PAGE_SIZE, PCI_DMA_FROMDEVICE); fp@1900: /* remove the CRC */ fp@1900: l1 -= 4; fp@1900: skb_put(skb, l1); fp@1900: goto copydone; fp@1900: } /* if */ fp@1900: } fp@1900: fp@1900: for (j = 0; j < adapter->rx_ps_pages; j++) { fp@1900: length = le16_to_cpu(rx_desc->wb.upper.length[j]); fp@1900: if (!length) fp@1900: break; fp@1900: pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j], fp@1900: PAGE_SIZE, PCI_DMA_FROMDEVICE); fp@1900: ps_page_dma->ps_page_dma[j] = 0; fp@2252: skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0, fp@2252: length); fp@1900: ps_page->ps_page[j] = NULL; fp@2252: skb->len += length; fp@2252: skb->data_len += length; fp@2252: skb->truesize += length; fp@1900: } fp@1900: fp@1900: /* strip the ethernet crc, problem is we're using pages now so fp@1900: * this whole operation can get a little cpu intensive */ fp@1900: pskb_trim(skb, skb->len - 4); fp@1900: fp@1900: copydone: fp@1900: total_rx_bytes += skb->len; fp@1900: total_rx_packets++; fp@1900: fp@1900: e1000_rx_checksum(adapter, staterr, fp@1900: le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb); fp@1900: if (adapter->ecdev) { fp@1900: ecdev_receive(adapter->ecdev, skb->data, length); fp@1900: } else { fp@1900: skb->protocol = eth_type_trans(skb, netdev); fp@1900: fp@1900: if (likely(rx_desc->wb.upper.header_status & fp@1900: cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))) fp@1900: adapter->rx_hdr_split++; fp@1900: fp@1900: if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) { fp@1900: vlan_hwaccel_receive_skb(skb, adapter->vlgrp, fp@1900: le16_to_cpu(rx_desc->wb.middle.vlan)); fp@1900: } else { fp@1900: netif_receive_skb(skb); fp@1900: } fp@1900: } fp@1900: fp@1900: netdev->last_rx = jiffies; fp@1900: fp@1900: next_desc: fp@1900: rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF); fp@1900: if (!adapter->ecdev) buffer_info->skb = NULL; fp@1900: fp@1900: /* return some buffers to hardware, one at a time is too slow */ fp@1900: if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { fp@1900: adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); fp@1900: cleaned_count = 0; fp@1900: } fp@1900: fp@1900: /* use prefetched values */ fp@1900: rx_desc = next_rxd; fp@1900: buffer_info = next_buffer; fp@1900: fp@1900: staterr = le32_to_cpu(rx_desc->wb.middle.status_error); fp@1900: } fp@1900: rx_ring->next_to_clean = i; fp@1900: fp@1900: cleaned_count = E1000_DESC_UNUSED(rx_ring); fp@1900: if (cleaned_count) fp@1900: adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); fp@1900: fp@1900: adapter->total_rx_packets += total_rx_packets; fp@1900: adapter->total_rx_bytes += total_rx_bytes; fp@1900: adapter->net_stats.rx_bytes += total_rx_bytes; fp@1900: adapter->net_stats.rx_packets += total_rx_packets; fp@1900: return cleaned; fp@1900: } fp@1900: fp@1900: /** fp@1900: * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended fp@1900: * @adapter: address of board private structure fp@1900: **/ fp@1900: fp@1900: static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, fp@1900: struct e1000_rx_ring *rx_ring, fp@1900: int cleaned_count) fp@1900: { fp@1900: struct e1000_hw *hw = &adapter->hw; fp@1900: struct net_device *netdev = adapter->netdev; fp@1900: struct pci_dev *pdev = adapter->pdev; fp@1900: struct e1000_rx_desc *rx_desc; fp@1900: struct e1000_buffer *buffer_info; fp@1900: struct sk_buff *skb; fp@1900: unsigned int i; fp@1900: unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN; fp@1900: fp@1900: i = rx_ring->next_to_use; fp@1900: buffer_info = &rx_ring->buffer_info[i]; fp@1900: fp@1900: while (cleaned_count--) { fp@1900: skb = buffer_info->skb; fp@1900: if (skb) { fp@1900: skb_trim(skb, 0); fp@1900: goto map_skb; fp@1900: } fp@1900: fp@1900: skb = netdev_alloc_skb(netdev, bufsz); fp@1900: if (unlikely(!skb)) { fp@1900: /* Better luck next round */ fp@1900: adapter->alloc_rx_buff_failed++; fp@1900: break; fp@1900: } fp@1900: fp@1900: /* Fix for errata 23, can't cross 64kB boundary */ fp@1900: if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { fp@1900: struct sk_buff *oldskb = skb; fp@1900: DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes " fp@1900: "at %p\n", bufsz, skb->data); fp@1900: /* Try again, without freeing the previous */ fp@1900: skb = netdev_alloc_skb(netdev, bufsz); fp@1900: /* Failed allocation, critical failure */ fp@1900: if (!skb) { fp@1900: dev_kfree_skb(oldskb); fp@1900: break; fp@1900: } fp@1900: fp@1900: if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { fp@1900: /* give up */ fp@1900: dev_kfree_skb(skb); fp@1900: dev_kfree_skb(oldskb); fp@1900: break; /* while !buffer_info->skb */ fp@1900: } fp@1900: fp@1900: /* Use new allocation */ fp@1900: dev_kfree_skb(oldskb); fp@1900: } fp@1900: /* Make buffer alignment 2 beyond a 16 byte boundary fp@1900: * this will result in a 16 byte aligned IP header after fp@1900: * the 14 byte MAC header is removed fp@1900: */ fp@1900: skb_reserve(skb, NET_IP_ALIGN); fp@1900: fp@1900: buffer_info->skb = skb; fp@1900: buffer_info->length = adapter->rx_buffer_len; fp@1900: map_skb: fp@1900: buffer_info->dma = pci_map_single(pdev, fp@1900: skb->data, fp@1900: adapter->rx_buffer_len, fp@1900: PCI_DMA_FROMDEVICE); fp@1900: fp@1900: /* Fix for errata 23, can't cross 64kB boundary */ fp@1900: if (!e1000_check_64k_bound(adapter, fp@1900: (void *)(unsigned long)buffer_info->dma, fp@1900: adapter->rx_buffer_len)) { fp@1900: DPRINTK(RX_ERR, ERR, fp@1900: "dma align check failed: %u bytes at %p\n", fp@1900: adapter->rx_buffer_len, fp@1900: (void *)(unsigned long)buffer_info->dma); fp@1900: if (!adapter->ecdev) { fp@1900: dev_kfree_skb(skb); fp@1900: buffer_info->skb = NULL; fp@1900: } fp@1900: fp@1900: pci_unmap_single(pdev, buffer_info->dma, fp@1900: adapter->rx_buffer_len, fp@1900: PCI_DMA_FROMDEVICE); fp@1900: fp@1900: break; /* while !buffer_info->skb */ fp@1900: } fp@1900: rx_desc = E1000_RX_DESC(*rx_ring, i); fp@1900: rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); fp@1900: fp@1900: if (unlikely(++i == rx_ring->count)) fp@1900: i = 0; fp@1900: buffer_info = &rx_ring->buffer_info[i]; fp@1900: } fp@1900: fp@1900: if (likely(rx_ring->next_to_use != i)) { fp@1900: rx_ring->next_to_use = i; fp@1900: if (unlikely(i-- == 0)) fp@1900: i = (rx_ring->count - 1); fp@1900: fp@1900: /* Force memory writes to complete before letting h/w fp@1900: * know there are new descriptors to fetch. (Only fp@1900: * applicable for weak-ordered memory model archs, fp@1900: * such as IA-64). */ fp@1900: wmb(); fp@1900: writel(i, hw->hw_addr + rx_ring->rdt); fp@1900: } fp@1900: } fp@1900: fp@1900: /** fp@1900: * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split fp@1900: * @adapter: address of board private structure fp@1900: **/ fp@1900: fp@1900: static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter, fp@1900: struct e1000_rx_ring *rx_ring, fp@1900: int cleaned_count) fp@1900: { fp@1900: struct e1000_hw *hw = &adapter->hw; fp@1900: struct net_device *netdev = adapter->netdev; fp@1900: struct pci_dev *pdev = adapter->pdev; fp@1900: union e1000_rx_desc_packet_split *rx_desc; fp@1900: struct e1000_buffer *buffer_info; fp@1900: struct e1000_ps_page *ps_page; fp@1900: struct e1000_ps_page_dma *ps_page_dma; fp@1900: struct sk_buff *skb; fp@1900: unsigned int i, j; fp@1900: fp@1900: i = rx_ring->next_to_use; fp@1900: buffer_info = &rx_ring->buffer_info[i]; fp@1900: ps_page = &rx_ring->ps_page[i]; fp@1900: ps_page_dma = &rx_ring->ps_page_dma[i]; fp@1900: fp@1900: while (cleaned_count--) { fp@1900: rx_desc = E1000_RX_DESC_PS(*rx_ring, i); fp@1900: fp@1900: for (j = 0; j < PS_PAGE_BUFFERS; j++) { fp@1900: if (j < adapter->rx_ps_pages) { fp@1900: if (likely(!ps_page->ps_page[j])) { fp@1900: ps_page->ps_page[j] = fp@2252: alloc_page(GFP_ATOMIC); fp@1900: if (unlikely(!ps_page->ps_page[j])) { fp@1900: adapter->alloc_rx_buff_failed++; fp@1900: goto no_buffers; fp@1900: } fp@1900: ps_page_dma->ps_page_dma[j] = fp@1900: pci_map_page(pdev, fp@1900: ps_page->ps_page[j], fp@1900: 0, PAGE_SIZE, fp@1900: PCI_DMA_FROMDEVICE); fp@1900: } fp@1900: /* Refresh the desc even if buffer_addrs didn't fp@1900: * change because each write-back erases fp@1900: * this info. fp@1900: */ fp@1900: rx_desc->read.buffer_addr[j+1] = fp@1900: cpu_to_le64(ps_page_dma->ps_page_dma[j]); fp@1900: } else fp@1900: rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0); fp@1900: } fp@1900: fp@1900: skb = netdev_alloc_skb(netdev, fp@1900: adapter->rx_ps_bsize0 + NET_IP_ALIGN); fp@1900: fp@1900: if (unlikely(!skb)) { fp@1900: adapter->alloc_rx_buff_failed++; fp@1900: break; fp@1900: } fp@1900: fp@1900: /* Make buffer alignment 2 beyond a 16 byte boundary fp@1900: * this will result in a 16 byte aligned IP header after fp@1900: * the 14 byte MAC header is removed fp@1900: */ fp@1900: skb_reserve(skb, NET_IP_ALIGN); fp@1900: fp@1900: buffer_info->skb = skb; fp@1900: buffer_info->length = adapter->rx_ps_bsize0; fp@1900: buffer_info->dma = pci_map_single(pdev, skb->data, fp@1900: adapter->rx_ps_bsize0, fp@1900: PCI_DMA_FROMDEVICE); fp@1900: fp@1900: rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma); fp@1900: fp@1900: if (unlikely(++i == rx_ring->count)) i = 0; fp@1900: buffer_info = &rx_ring->buffer_info[i]; fp@1900: ps_page = &rx_ring->ps_page[i]; fp@1900: ps_page_dma = &rx_ring->ps_page_dma[i]; fp@1900: } fp@1900: fp@1900: no_buffers: fp@1900: if (likely(rx_ring->next_to_use != i)) { fp@1900: rx_ring->next_to_use = i; fp@1900: if (unlikely(i-- == 0)) i = (rx_ring->count - 1); fp@1900: fp@1900: /* Force memory writes to complete before letting h/w fp@1900: * know there are new descriptors to fetch. (Only fp@1900: * applicable for weak-ordered memory model archs, fp@1900: * such as IA-64). */ fp@1900: wmb(); fp@1900: /* Hardware increments by 16 bytes, but packet split fp@1900: * descriptors are 32 bytes...so we increment tail fp@1900: * twice as much. fp@1900: */ fp@1900: writel(i<<1, hw->hw_addr + rx_ring->rdt); fp@1900: } fp@1900: } fp@1900: fp@1900: /** fp@1900: * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers. fp@1900: * @adapter: fp@1900: **/ fp@1900: fp@1900: static void e1000_smartspeed(struct e1000_adapter *adapter) fp@1900: { fp@1900: struct e1000_hw *hw = &adapter->hw; fp@1900: u16 phy_status; fp@1900: u16 phy_ctrl; fp@1900: fp@1900: if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg || fp@1900: !(hw->autoneg_advertised & ADVERTISE_1000_FULL)) fp@1900: return; fp@1900: fp@1900: if (adapter->smartspeed == 0) { fp@1900: /* If Master/Slave config fault is asserted twice, fp@1900: * we assume back-to-back */ fp@1900: e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); fp@1900: if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return; fp@1900: e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); fp@1900: if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return; fp@1900: e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); fp@1900: if (phy_ctrl & CR_1000T_MS_ENABLE) { fp@1900: phy_ctrl &= ~CR_1000T_MS_ENABLE; fp@1900: e1000_write_phy_reg(hw, PHY_1000T_CTRL, fp@1900: phy_ctrl); fp@1900: adapter->smartspeed++; fp@1900: if (!e1000_phy_setup_autoneg(hw) && fp@1900: !e1000_read_phy_reg(hw, PHY_CTRL, fp@1900: &phy_ctrl)) { fp@1900: phy_ctrl |= (MII_CR_AUTO_NEG_EN | fp@1900: MII_CR_RESTART_AUTO_NEG); fp@1900: e1000_write_phy_reg(hw, PHY_CTRL, fp@1900: phy_ctrl); fp@1900: } fp@1900: } fp@1900: return; fp@1900: } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) { fp@1900: /* If still no link, perhaps using 2/3 pair cable */ fp@1900: e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); fp@1900: phy_ctrl |= CR_1000T_MS_ENABLE; fp@1900: e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl); fp@1900: if (!e1000_phy_setup_autoneg(hw) && fp@1900: !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) { fp@1900: phy_ctrl |= (MII_CR_AUTO_NEG_EN | fp@1900: MII_CR_RESTART_AUTO_NEG); fp@1900: e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl); fp@1900: } fp@1900: } fp@1900: /* Restart process after E1000_SMARTSPEED_MAX iterations */ fp@1900: if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX) fp@1900: adapter->smartspeed = 0; fp@1900: } fp@1900: fp@1900: /** fp@1900: * e1000_ioctl - fp@1900: * @netdev: fp@1900: * @ifreq: fp@1900: * @cmd: fp@1900: **/ fp@1900: fp@1900: static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) fp@1900: { fp@1900: switch (cmd) { fp@1900: case SIOCGMIIPHY: fp@1900: case SIOCGMIIREG: fp@1900: case SIOCSMIIREG: fp@1900: return e1000_mii_ioctl(netdev, ifr, cmd); fp@1900: default: fp@1900: return -EOPNOTSUPP; fp@1900: } fp@1900: } fp@1900: fp@1900: /** fp@1900: * e1000_mii_ioctl - fp@1900: * @netdev: fp@1900: * @ifreq: fp@1900: * @cmd: fp@1900: **/ fp@1900: fp@1900: static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, fp@1900: int cmd) fp@1900: { fp@1900: struct e1000_adapter *adapter = netdev_priv(netdev); fp@1900: struct e1000_hw *hw = &adapter->hw; fp@1900: struct mii_ioctl_data *data = if_mii(ifr); fp@1900: int retval; fp@1900: u16 mii_reg; fp@1900: u16 spddplx; fp@1900: unsigned long flags; fp@1900: fp@1900: if (hw->media_type != e1000_media_type_copper) fp@1900: return -EOPNOTSUPP; fp@1900: fp@1900: switch (cmd) { fp@1900: case SIOCGMIIPHY: fp@1900: data->phy_id = hw->phy_addr; fp@1900: break; fp@1900: case SIOCGMIIREG: fp@1900: if (adapter->ecdev || !capable(CAP_NET_ADMIN)) fp@1900: return -EPERM; fp@1900: spin_lock_irqsave(&adapter->stats_lock, flags); fp@1900: if (e1000_read_phy_reg(hw, data->reg_num & 0x1F, fp@1900: &data->val_out)) { fp@1900: spin_unlock_irqrestore(&adapter->stats_lock, flags); fp@1900: return -EIO; fp@1900: } fp@1900: spin_unlock_irqrestore(&adapter->stats_lock, flags); fp@1900: break; fp@1900: case SIOCSMIIREG: fp@1900: if (adapter->ecdev || !capable(CAP_NET_ADMIN)) fp@1900: return -EPERM; fp@1900: if (data->reg_num & ~(0x1F)) fp@1900: return -EFAULT; fp@1900: mii_reg = data->val_in; fp@1900: spin_lock_irqsave(&adapter->stats_lock, flags); fp@1900: if (e1000_write_phy_reg(hw, data->reg_num, fp@1900: mii_reg)) { fp@1900: spin_unlock_irqrestore(&adapter->stats_lock, flags); fp@1900: return -EIO; fp@1900: } fp@1900: spin_unlock_irqrestore(&adapter->stats_lock, flags); fp@1900: if (hw->media_type == e1000_media_type_copper) { fp@1900: switch (data->reg_num) { fp@1900: case PHY_CTRL: fp@1900: if (mii_reg & MII_CR_POWER_DOWN) fp@1900: break; fp@1900: if (mii_reg & MII_CR_AUTO_NEG_EN) { fp@1900: hw->autoneg = 1; fp@1900: hw->autoneg_advertised = 0x2F; fp@1900: } else { fp@1900: if (mii_reg & 0x40) fp@1900: spddplx = SPEED_1000; fp@1900: else if (mii_reg & 0x2000) fp@1900: spddplx = SPEED_100; fp@1900: else fp@1900: spddplx = SPEED_10; fp@1900: spddplx += (mii_reg & 0x100) fp@1900: ? DUPLEX_FULL : fp@1900: DUPLEX_HALF; fp@1900: retval = e1000_set_spd_dplx(adapter, fp@1900: spddplx); fp@1900: if (retval) fp@1900: return retval; fp@1900: } fp@1900: if (netif_running(adapter->netdev)) fp@1900: e1000_reinit_locked(adapter); fp@1900: else fp@1900: e1000_reset(adapter); fp@1900: break; fp@1900: case M88E1000_PHY_SPEC_CTRL: fp@1900: case M88E1000_EXT_PHY_SPEC_CTRL: fp@1900: if (e1000_phy_reset(hw)) fp@1900: return -EIO; fp@1900: break; fp@1900: } fp@1900: } else { fp@1900: switch (data->reg_num) { fp@1900: case PHY_CTRL: fp@1900: if (mii_reg & MII_CR_POWER_DOWN) fp@1900: break; fp@1900: if (netif_running(adapter->netdev)) fp@1900: e1000_reinit_locked(adapter); fp@1900: else fp@1900: e1000_reset(adapter); fp@1900: break; fp@1900: } fp@1900: } fp@1900: break; fp@1900: default: fp@1900: return -EOPNOTSUPP; fp@1900: } fp@1900: return E1000_SUCCESS; fp@1900: } fp@1900: fp@1900: void e1000_pci_set_mwi(struct e1000_hw *hw) fp@1900: { fp@1900: struct e1000_adapter *adapter = hw->back; fp@1900: int ret_val = pci_set_mwi(adapter->pdev); fp@1900: fp@1900: if (ret_val) fp@1900: DPRINTK(PROBE, ERR, "Error in setting MWI\n"); fp@1900: } fp@1900: fp@1900: void e1000_pci_clear_mwi(struct e1000_hw *hw) fp@1900: { fp@1900: struct e1000_adapter *adapter = hw->back; fp@1900: fp@1900: pci_clear_mwi(adapter->pdev); fp@1900: } fp@1900: fp@1900: int e1000_pcix_get_mmrbc(struct e1000_hw *hw) fp@1900: { fp@1900: struct e1000_adapter *adapter = hw->back; fp@1900: return pcix_get_mmrbc(adapter->pdev); fp@1900: } fp@1900: fp@1900: void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc) fp@1900: { fp@1900: struct e1000_adapter *adapter = hw->back; fp@1900: pcix_set_mmrbc(adapter->pdev, mmrbc); fp@1900: } fp@1900: fp@1900: s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) fp@1900: { fp@1900: struct e1000_adapter *adapter = hw->back; fp@1900: u16 cap_offset; fp@1900: fp@1900: cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP); fp@1900: if (!cap_offset) fp@1900: return -E1000_ERR_CONFIG; fp@1900: fp@1900: pci_read_config_word(adapter->pdev, cap_offset + reg, value); fp@1900: fp@1900: return E1000_SUCCESS; fp@1900: } fp@1900: fp@1900: void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value) fp@1900: { fp@1900: outl(value, port); fp@1900: } fp@1900: fp@1900: static void e1000_vlan_rx_register(struct net_device *netdev, fp@1900: struct vlan_group *grp) fp@1900: { fp@1900: struct e1000_adapter *adapter = netdev_priv(netdev); fp@1900: struct e1000_hw *hw = &adapter->hw; fp@1900: u32 ctrl, rctl; fp@1900: fp@1900: if (!test_bit(__E1000_DOWN, &adapter->flags)) fp@1900: e1000_irq_disable(adapter); fp@1900: adapter->vlgrp = grp; fp@1900: fp@1900: if (grp) { fp@1900: /* enable VLAN tag insert/strip */ fp@1900: ctrl = er32(CTRL); fp@1900: ctrl |= E1000_CTRL_VME; fp@1900: ew32(CTRL, ctrl); fp@1900: fp@1900: if (adapter->hw.mac_type != e1000_ich8lan) { fp@1900: /* enable VLAN receive filtering */ fp@1900: rctl = er32(RCTL); fp@1900: rctl &= ~E1000_RCTL_CFIEN; fp@1900: ew32(RCTL, rctl); fp@1900: e1000_update_mng_vlan(adapter); fp@1900: } fp@1900: } else { fp@1900: /* disable VLAN tag insert/strip */ fp@1900: ctrl = er32(CTRL); fp@1900: ctrl &= ~E1000_CTRL_VME; fp@1900: ew32(CTRL, ctrl); fp@1900: fp@1900: if (adapter->hw.mac_type != e1000_ich8lan) { fp@1900: if (adapter->mng_vlan_id != fp@1900: (u16)E1000_MNG_VLAN_NONE) { fp@1900: e1000_vlan_rx_kill_vid(netdev, fp@1900: adapter->mng_vlan_id); fp@1900: adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; fp@1900: } fp@1900: } fp@1900: } fp@1900: fp@1900: if (!test_bit(__E1000_DOWN, &adapter->flags)) fp@1900: e1000_irq_enable(adapter); fp@1900: } fp@1900: fp@1900: static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid) fp@1900: { fp@1900: struct e1000_adapter *adapter = netdev_priv(netdev); fp@1900: struct e1000_hw *hw = &adapter->hw; fp@1900: u32 vfta, index; fp@1900: fp@1900: if ((hw->mng_cookie.status & fp@1900: E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && fp@1900: (vid == adapter->mng_vlan_id)) fp@1900: return; fp@1900: /* add VID to filter table */ fp@1900: index = (vid >> 5) & 0x7F; fp@1900: vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); fp@1900: vfta |= (1 << (vid & 0x1F)); fp@1900: e1000_write_vfta(hw, index, vfta); fp@1900: } fp@1900: fp@1900: static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) fp@1900: { fp@1900: struct e1000_adapter *adapter = netdev_priv(netdev); fp@1900: struct e1000_hw *hw = &adapter->hw; fp@1900: u32 vfta, index; fp@1900: fp@1900: if (!test_bit(__E1000_DOWN, &adapter->flags)) fp@1900: e1000_irq_disable(adapter); fp@1900: vlan_group_set_device(adapter->vlgrp, vid, NULL); fp@1900: if (!test_bit(__E1000_DOWN, &adapter->flags)) fp@1900: e1000_irq_enable(adapter); fp@1900: fp@1900: if ((hw->mng_cookie.status & fp@1900: E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && fp@1900: (vid == adapter->mng_vlan_id)) { fp@1900: /* release control to f/w */ fp@1900: e1000_release_hw_control(adapter); fp@1900: return; fp@1900: } fp@1900: fp@1900: /* remove VID from filter table */ fp@1900: index = (vid >> 5) & 0x7F; fp@1900: vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); fp@1900: vfta &= ~(1 << (vid & 0x1F)); fp@1900: e1000_write_vfta(hw, index, vfta); fp@1900: } fp@1900: fp@1900: static void e1000_restore_vlan(struct e1000_adapter *adapter) fp@1900: { fp@1900: e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp); fp@1900: fp@1900: if (adapter->vlgrp) { fp@1900: u16 vid; fp@1900: for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) { fp@1900: if (!vlan_group_get_device(adapter->vlgrp, vid)) fp@1900: continue; fp@1900: e1000_vlan_rx_add_vid(adapter->netdev, vid); fp@1900: } fp@1900: } fp@1900: } fp@1900: fp@1900: int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx) fp@1900: { fp@1900: struct e1000_hw *hw = &adapter->hw; fp@1900: fp@1900: hw->autoneg = 0; fp@1900: fp@1900: /* Fiber NICs only allow 1000 gbps Full duplex */ fp@1900: if ((hw->media_type == e1000_media_type_fiber) && fp@1900: spddplx != (SPEED_1000 + DUPLEX_FULL)) { fp@1900: DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n"); fp@1900: return -EINVAL; fp@1900: } fp@1900: fp@1900: switch (spddplx) { fp@1900: case SPEED_10 + DUPLEX_HALF: fp@1900: hw->forced_speed_duplex = e1000_10_half; fp@1900: break; fp@1900: case SPEED_10 + DUPLEX_FULL: fp@1900: hw->forced_speed_duplex = e1000_10_full; fp@1900: break; fp@1900: case SPEED_100 + DUPLEX_HALF: fp@1900: hw->forced_speed_duplex = e1000_100_half; fp@1900: break; fp@1900: case SPEED_100 + DUPLEX_FULL: fp@1900: hw->forced_speed_duplex = e1000_100_full; fp@1900: break; fp@1900: case SPEED_1000 + DUPLEX_FULL: fp@1900: hw->autoneg = 1; fp@1900: hw->autoneg_advertised = ADVERTISE_1000_FULL; fp@1900: break; fp@1900: case SPEED_1000 + DUPLEX_HALF: /* not supported */ fp@1900: default: fp@1900: DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n"); fp@1900: return -EINVAL; fp@1900: } fp@1900: return 0; fp@1900: } fp@1900: fp@1900: static int e1000_suspend(struct pci_dev *pdev, pm_message_t state) fp@1900: { fp@1900: struct net_device *netdev = pci_get_drvdata(pdev); fp@1900: struct e1000_adapter *adapter = netdev_priv(netdev); fp@1900: struct e1000_hw *hw = &adapter->hw; fp@1900: u32 ctrl, ctrl_ext, rctl, status; fp@1900: u32 wufc = adapter->wol; fp@1900: #ifdef CONFIG_PM fp@1900: int retval = 0; fp@1900: #endif fp@1900: fp@1900: if (adapter->ecdev) fp@1900: return -EBUSY; fp@1900: fp@1900: netif_device_detach(netdev); fp@1900: fp@1900: if (netif_running(netdev)) { fp@1900: WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); fp@1900: e1000_down(adapter); fp@1900: } fp@1900: fp@1900: #ifdef CONFIG_PM fp@1900: retval = pci_save_state(pdev); fp@1900: if (retval) fp@1900: return retval; fp@1900: #endif fp@1900: fp@1900: status = er32(STATUS); fp@1900: if (status & E1000_STATUS_LU) fp@1900: wufc &= ~E1000_WUFC_LNKC; fp@1900: fp@1900: if (wufc) { fp@1900: e1000_setup_rctl(adapter); fp@1900: e1000_set_rx_mode(netdev); fp@1900: fp@1900: /* turn on all-multi mode if wake on multicast is enabled */ fp@1900: if (wufc & E1000_WUFC_MC) { fp@1900: rctl = er32(RCTL); fp@1900: rctl |= E1000_RCTL_MPE; fp@1900: ew32(RCTL, rctl); fp@1900: } fp@1900: fp@1900: if (hw->mac_type >= e1000_82540) { fp@1900: ctrl = er32(CTRL); fp@1900: /* advertise wake from D3Cold */ fp@1900: #define E1000_CTRL_ADVD3WUC 0x00100000 fp@1900: /* phy power management enable */ fp@1900: #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 fp@1900: ctrl |= E1000_CTRL_ADVD3WUC | fp@1900: E1000_CTRL_EN_PHY_PWR_MGMT; fp@1900: ew32(CTRL, ctrl); fp@1900: } fp@1900: fp@1900: if (hw->media_type == e1000_media_type_fiber || fp@1900: hw->media_type == e1000_media_type_internal_serdes) { fp@1900: /* keep the laser running in D3 */ fp@1900: ctrl_ext = er32(CTRL_EXT); fp@1900: ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA; fp@1900: ew32(CTRL_EXT, ctrl_ext); fp@1900: } fp@1900: fp@1900: /* Allow time for pending master requests to run */ fp@1900: e1000_disable_pciex_master(hw); fp@1900: fp@1900: ew32(WUC, E1000_WUC_PME_EN); fp@1900: ew32(WUFC, wufc); fp@1900: pci_enable_wake(pdev, PCI_D3hot, 1); fp@1900: pci_enable_wake(pdev, PCI_D3cold, 1); fp@1900: } else { fp@1900: ew32(WUC, 0); fp@1900: ew32(WUFC, 0); fp@1900: pci_enable_wake(pdev, PCI_D3hot, 0); fp@1900: pci_enable_wake(pdev, PCI_D3cold, 0); fp@1900: } fp@1900: fp@1900: e1000_release_manageability(adapter); fp@1900: fp@1900: /* make sure adapter isn't asleep if manageability is enabled */ fp@1900: if (adapter->en_mng_pt) { fp@1900: pci_enable_wake(pdev, PCI_D3hot, 1); fp@1900: pci_enable_wake(pdev, PCI_D3cold, 1); fp@1900: } fp@1900: fp@1900: if (hw->phy_type == e1000_phy_igp_3) fp@1900: e1000_phy_powerdown_workaround(hw); fp@1900: fp@1900: if (netif_running(netdev)) fp@1900: e1000_free_irq(adapter); fp@1900: fp@1900: /* Release control of h/w to f/w. If f/w is AMT enabled, this fp@1900: * would have already happened in close and is redundant. */ fp@1900: e1000_release_hw_control(adapter); fp@1900: fp@1900: pci_disable_device(pdev); fp@1900: fp@1900: pci_set_power_state(pdev, pci_choose_state(pdev, state)); fp@1900: fp@1900: return 0; fp@1900: } fp@1900: fp@1900: #ifdef CONFIG_PM fp@1900: static int e1000_resume(struct pci_dev *pdev) fp@1900: { fp@1900: struct net_device *netdev = pci_get_drvdata(pdev); fp@1900: struct e1000_adapter *adapter = netdev_priv(netdev); fp@1900: struct e1000_hw *hw = &adapter->hw; fp@1900: u32 err; fp@1900: fp@1900: if (adapter->ecdev) fp@1900: return -EBUSY; fp@1900: fp@1900: pci_set_power_state(pdev, PCI_D0); fp@1900: pci_restore_state(pdev); fp@1900: fp@1900: if (adapter->need_ioport) fp@1900: err = pci_enable_device(pdev); fp@1900: else fp@1900: err = pci_enable_device_mem(pdev); fp@1900: if (err) { fp@1900: printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n"); fp@1900: return err; fp@1900: } fp@1900: pci_set_master(pdev); fp@1900: fp@1900: pci_enable_wake(pdev, PCI_D3hot, 0); fp@1900: pci_enable_wake(pdev, PCI_D3cold, 0); fp@1900: fp@1900: if (netif_running(netdev)) { fp@1900: err = e1000_request_irq(adapter); fp@1900: if (err) fp@1900: return err; fp@1900: } fp@1900: fp@1900: e1000_power_up_phy(adapter); fp@1900: e1000_reset(adapter); fp@1900: ew32(WUS, ~0); fp@1900: fp@1900: e1000_init_manageability(adapter); fp@1900: fp@1900: if (netif_running(netdev)) fp@1900: e1000_up(adapter); fp@1900: fp@1900: if (!adapter->ecdev) netif_device_attach(netdev); fp@1900: fp@1900: /* If the controller is 82573 and f/w is AMT, do not set fp@1900: * DRV_LOAD until the interface is up. For all other cases, fp@1900: * let the f/w know that the h/w is now under the control fp@1900: * of the driver. */ fp@1900: if (hw->mac_type != e1000_82573 || fp@1900: !e1000_check_mng_mode(hw)) fp@1900: e1000_get_hw_control(adapter); fp@1900: fp@1900: return 0; fp@1900: } fp@1900: #endif fp@1900: fp@1900: static void e1000_shutdown(struct pci_dev *pdev) fp@1900: { fp@1900: e1000_suspend(pdev, PMSG_SUSPEND); fp@1900: } fp@1900: fp@1900: #ifdef CONFIG_NET_POLL_CONTROLLER fp@1900: /* fp@1900: * Polling 'interrupt' - used by things like netconsole to send skbs fp@1900: * without having to re-enable interrupts. It's not called while fp@1900: * the interrupt routine is executing. fp@1900: */ fp@1900: static void e1000_netpoll(struct net_device *netdev) fp@1900: { fp@1900: struct e1000_adapter *adapter = netdev_priv(netdev); fp@1900: fp@1900: disable_irq(adapter->pdev->irq); fp@1900: e1000_intr(adapter->pdev->irq, netdev); fp@1900: enable_irq(adapter->pdev->irq); fp@1900: } fp@1900: #endif fp@1900: fp@1900: /** fp@1900: * e1000_io_error_detected - called when PCI error is detected fp@1900: * @pdev: Pointer to PCI device fp@1900: * @state: The current pci conneection state fp@1900: * fp@1900: * This function is called after a PCI bus error affecting fp@1900: * this device has been detected. fp@1900: */ fp@1900: static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, fp@1900: pci_channel_state_t state) fp@1900: { fp@1900: struct net_device *netdev = pci_get_drvdata(pdev); fp@1900: struct e1000_adapter *adapter = netdev->priv; fp@1900: fp@1900: netif_device_detach(netdev); fp@1900: fp@1900: if (netif_running(netdev)) fp@1900: e1000_down(adapter); fp@1900: pci_disable_device(pdev); fp@1900: fp@1900: /* Request a slot slot reset. */ fp@1900: return PCI_ERS_RESULT_NEED_RESET; fp@1900: } fp@1900: fp@1900: /** fp@1900: * e1000_io_slot_reset - called after the pci bus has been reset. fp@1900: * @pdev: Pointer to PCI device fp@1900: * fp@1900: * Restart the card from scratch, as if from a cold-boot. Implementation fp@1900: * resembles the first-half of the e1000_resume routine. fp@1900: */ fp@1900: static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) fp@1900: { fp@1900: struct net_device *netdev = pci_get_drvdata(pdev); fp@1900: struct e1000_adapter *adapter = netdev->priv; fp@1900: struct e1000_hw *hw = &adapter->hw; fp@1900: int err; fp@1900: fp@1900: if (adapter->need_ioport) fp@1900: err = pci_enable_device(pdev); fp@1900: else fp@1900: err = pci_enable_device_mem(pdev); fp@1900: if (err) { fp@1900: printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n"); fp@1900: return PCI_ERS_RESULT_DISCONNECT; fp@1900: } fp@1900: pci_set_master(pdev); fp@1900: fp@1900: pci_enable_wake(pdev, PCI_D3hot, 0); fp@1900: pci_enable_wake(pdev, PCI_D3cold, 0); fp@1900: fp@1900: e1000_reset(adapter); fp@1900: ew32(WUS, ~0); fp@1900: fp@1900: return PCI_ERS_RESULT_RECOVERED; fp@1900: } fp@1900: fp@1900: /** fp@1900: * e1000_io_resume - called when traffic can start flowing again. fp@1900: * @pdev: Pointer to PCI device fp@1900: * fp@1900: * This callback is called when the error recovery driver tells us that fp@1900: * its OK to resume normal operation. Implementation resembles the fp@1900: * second-half of the e1000_resume routine. fp@1900: */ fp@1900: static void e1000_io_resume(struct pci_dev *pdev) fp@1900: { fp@1900: struct net_device *netdev = pci_get_drvdata(pdev); fp@1900: struct e1000_adapter *adapter = netdev->priv; fp@1900: struct e1000_hw *hw = &adapter->hw; fp@1900: fp@1900: e1000_init_manageability(adapter); fp@1900: fp@1900: if (netif_running(netdev)) { fp@1900: if (e1000_up(adapter)) { fp@1900: printk("e1000: can't bring device back up after reset\n"); fp@1900: return; fp@1900: } fp@1900: } fp@1900: fp@1900: netif_device_attach(netdev); fp@1900: fp@1900: /* If the controller is 82573 and f/w is AMT, do not set fp@1900: * DRV_LOAD until the interface is up. For all other cases, fp@1900: * let the f/w know that the h/w is now under the control fp@1900: * of the driver. */ fp@1900: if (hw->mac_type != e1000_82573 || fp@1900: !e1000_check_mng_mode(hw)) fp@1900: e1000_get_hw_control(adapter); fp@1900: fp@1900: } fp@1900: fp@1900: /* e1000_main.c */