fp@673: /******************************************************************************* fp@673: fp@673: fp@673: Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. fp@673: fp@673: This program is free software; you can redistribute it and/or modify it fp@673: under the terms of the GNU General Public License as published by the Free fp@673: Software Foundation; either version 2 of the License, or (at your option) fp@673: any later version. fp@673: fp@673: This program is distributed in the hope that it will be useful, but WITHOUT fp@673: ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or fp@673: FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for fp@673: more details. fp@673: fp@673: You should have received a copy of the GNU General Public License along with fp@673: this program; if not, write to the Free Software Foundation, Inc., 59 fp@673: Temple Place - Suite 330, Boston, MA 02111-1307, USA. fp@673: fp@673: The full GNU General Public License is included in this distribution in the fp@673: file called LICENSE. fp@673: fp@673: Contact Information: fp@673: Linux NICS fp@673: Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 fp@673: fp@673: *******************************************************************************/ fp@673: fp@673: #include "e1000.h" fp@673: fp@673: /* Change Log fp@673: * 6.0.58 4/20/05 fp@673: * o Accepted ethtool cleanup patch from Stephen Hemminger fp@673: * 6.0.44+ 2/15/05 fp@673: * o applied Anton's patch to resolve tx hang in hardware fp@673: * o Applied Andrew Mortons patch - e1000 stops working after resume fp@673: */ fp@673: fp@673: char e1000_driver_name[] = "e1000"; fp@673: char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver"; fp@673: #ifndef CONFIG_E1000_NAPI fp@673: #define DRIVERNAPI fp@673: #else fp@673: #define DRIVERNAPI "-NAPI" fp@673: #endif fp@673: #define DRV_VERSION "6.0.60-k2"DRIVERNAPI fp@673: char e1000_driver_version[] = DRV_VERSION; fp@673: char e1000_copyright[] = "Copyright (c) 1999-2005 Intel Corporation."; fp@673: fp@673: /* e1000_pci_tbl - PCI Device ID Table fp@673: * fp@673: * Last entry must be all 0s fp@673: * fp@673: * Macro expands to... fp@673: * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)} fp@673: */ fp@673: static struct pci_device_id e1000_pci_tbl[] = { fp@673: INTEL_E1000_ETHERNET_DEVICE(0x1000), fp@673: INTEL_E1000_ETHERNET_DEVICE(0x1001), fp@673: INTEL_E1000_ETHERNET_DEVICE(0x1004), fp@673: INTEL_E1000_ETHERNET_DEVICE(0x1008), fp@673: INTEL_E1000_ETHERNET_DEVICE(0x1009), fp@673: INTEL_E1000_ETHERNET_DEVICE(0x100C), fp@673: INTEL_E1000_ETHERNET_DEVICE(0x100D), fp@673: INTEL_E1000_ETHERNET_DEVICE(0x100E), fp@673: INTEL_E1000_ETHERNET_DEVICE(0x100F), fp@673: INTEL_E1000_ETHERNET_DEVICE(0x1010), fp@673: INTEL_E1000_ETHERNET_DEVICE(0x1011), fp@673: INTEL_E1000_ETHERNET_DEVICE(0x1012), fp@673: INTEL_E1000_ETHERNET_DEVICE(0x1013), fp@673: INTEL_E1000_ETHERNET_DEVICE(0x1014), fp@673: INTEL_E1000_ETHERNET_DEVICE(0x1015), fp@673: INTEL_E1000_ETHERNET_DEVICE(0x1016), fp@673: INTEL_E1000_ETHERNET_DEVICE(0x1017), fp@673: INTEL_E1000_ETHERNET_DEVICE(0x1018), fp@673: INTEL_E1000_ETHERNET_DEVICE(0x1019), fp@673: INTEL_E1000_ETHERNET_DEVICE(0x101A), fp@673: INTEL_E1000_ETHERNET_DEVICE(0x101D), fp@673: INTEL_E1000_ETHERNET_DEVICE(0x101E), fp@673: INTEL_E1000_ETHERNET_DEVICE(0x1026), fp@673: INTEL_E1000_ETHERNET_DEVICE(0x1027), fp@673: INTEL_E1000_ETHERNET_DEVICE(0x1028), fp@673: INTEL_E1000_ETHERNET_DEVICE(0x1075), fp@673: INTEL_E1000_ETHERNET_DEVICE(0x1076), fp@673: INTEL_E1000_ETHERNET_DEVICE(0x1077), fp@673: INTEL_E1000_ETHERNET_DEVICE(0x1078), fp@673: INTEL_E1000_ETHERNET_DEVICE(0x1079), fp@673: INTEL_E1000_ETHERNET_DEVICE(0x107A), fp@673: INTEL_E1000_ETHERNET_DEVICE(0x107B), fp@673: INTEL_E1000_ETHERNET_DEVICE(0x107C), fp@673: INTEL_E1000_ETHERNET_DEVICE(0x108A), fp@673: INTEL_E1000_ETHERNET_DEVICE(0x108B), fp@673: INTEL_E1000_ETHERNET_DEVICE(0x108C), fp@673: INTEL_E1000_ETHERNET_DEVICE(0x1099), fp@673: /* required last entry */ fp@673: {0,} fp@673: }; fp@673: fp@673: MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); fp@673: fp@673: int e1000_up(struct e1000_adapter *adapter); fp@673: void e1000_down(struct e1000_adapter *adapter); fp@673: void e1000_reset(struct e1000_adapter *adapter); fp@673: int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx); fp@673: int e1000_setup_tx_resources(struct e1000_adapter *adapter); fp@673: int e1000_setup_rx_resources(struct e1000_adapter *adapter); fp@673: void e1000_free_tx_resources(struct e1000_adapter *adapter); fp@673: void e1000_free_rx_resources(struct e1000_adapter *adapter); fp@673: void e1000_update_stats(struct e1000_adapter *adapter); fp@673: fp@673: /* Local Function Prototypes */ fp@673: fp@673: static int e1000_init_module(void); fp@673: static void e1000_exit_module(void); fp@673: static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent); fp@673: static void __devexit e1000_remove(struct pci_dev *pdev); fp@673: static int e1000_sw_init(struct e1000_adapter *adapter); fp@673: static int e1000_open(struct net_device *netdev); fp@673: static int e1000_close(struct net_device *netdev); fp@673: static void e1000_configure_tx(struct e1000_adapter *adapter); fp@673: static void e1000_configure_rx(struct e1000_adapter *adapter); fp@673: static void e1000_setup_rctl(struct e1000_adapter *adapter); fp@673: static void e1000_clean_tx_ring(struct e1000_adapter *adapter); fp@673: static void e1000_clean_rx_ring(struct e1000_adapter *adapter); fp@673: static void e1000_set_multi(struct net_device *netdev); fp@673: static void e1000_update_phy_info(unsigned long data); fp@673: static void e1000_watchdog(unsigned long data); fp@673: static void e1000_watchdog_task(struct e1000_adapter *adapter); fp@673: static void e1000_82547_tx_fifo_stall(unsigned long data); fp@673: static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev); fp@673: static struct net_device_stats * e1000_get_stats(struct net_device *netdev); fp@673: static int e1000_change_mtu(struct net_device *netdev, int new_mtu); fp@673: static int e1000_set_mac(struct net_device *netdev, void *p); fp@673: static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs); fp@673: static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter); fp@673: #ifdef CONFIG_E1000_NAPI fp@673: static int e1000_clean(struct net_device *netdev, int *budget); fp@673: static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter, fp@673: int *work_done, int work_to_do); fp@673: static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, fp@673: int *work_done, int work_to_do); fp@673: #else fp@673: static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter); fp@673: static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter); fp@673: #endif fp@673: static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter); fp@673: static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter); fp@673: static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd); fp@673: static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, fp@673: int cmd); fp@673: void e1000_set_ethtool_ops(struct net_device *netdev); fp@673: static void e1000_enter_82542_rst(struct e1000_adapter *adapter); fp@673: static void e1000_leave_82542_rst(struct e1000_adapter *adapter); fp@673: static void e1000_tx_timeout(struct net_device *dev); fp@673: static void e1000_tx_timeout_task(struct net_device *dev); fp@673: static void e1000_smartspeed(struct e1000_adapter *adapter); fp@673: static inline int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, fp@673: struct sk_buff *skb); fp@673: fp@673: static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp); fp@673: static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid); fp@673: static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid); fp@673: static void e1000_restore_vlan(struct e1000_adapter *adapter); fp@673: fp@673: static int e1000_suspend(struct pci_dev *pdev, uint32_t state); fp@673: #ifdef CONFIG_PM fp@673: static int e1000_resume(struct pci_dev *pdev); fp@673: #endif fp@673: fp@673: #ifdef CONFIG_NET_POLL_CONTROLLER fp@673: /* for netdump / net console */ fp@673: static void e1000_netpoll (struct net_device *netdev); fp@673: #endif fp@673: fp@673: /* Exported from other modules */ fp@673: fp@673: extern void e1000_check_options(struct e1000_adapter *adapter); fp@673: fp@673: static struct pci_driver e1000_driver = { fp@673: .name = e1000_driver_name, fp@673: .id_table = e1000_pci_tbl, fp@673: .probe = e1000_probe, fp@673: .remove = __devexit_p(e1000_remove), fp@673: /* Power Managment Hooks */ fp@673: #ifdef CONFIG_PM fp@673: .suspend = e1000_suspend, fp@673: .resume = e1000_resume fp@673: #endif fp@673: }; fp@673: fp@673: MODULE_AUTHOR("Intel Corporation, "); fp@673: MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); fp@673: MODULE_LICENSE("GPL"); fp@673: MODULE_VERSION(DRV_VERSION); fp@673: fp@673: static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE; fp@673: module_param(debug, int, 0); fp@673: MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); fp@673: fp@673: /** fp@673: * e1000_init_module - Driver Registration Routine fp@673: * fp@673: * e1000_init_module is the first routine called when the driver is fp@673: * loaded. All it does is register with the PCI subsystem. fp@673: **/ fp@673: fp@673: static int __init fp@673: e1000_init_module(void) fp@673: { fp@673: int ret; fp@673: printk(KERN_INFO "%s - version %s\n", fp@673: e1000_driver_string, e1000_driver_version); fp@673: fp@673: printk(KERN_INFO "%s\n", e1000_copyright); fp@673: fp@673: ret = pci_module_init(&e1000_driver); fp@673: fp@673: return ret; fp@673: } fp@673: fp@673: module_init(e1000_init_module); fp@673: fp@673: /** fp@673: * e1000_exit_module - Driver Exit Cleanup Routine fp@673: * fp@673: * e1000_exit_module is called just before the driver is removed fp@673: * from memory. fp@673: **/ fp@673: fp@673: static void __exit fp@673: e1000_exit_module(void) fp@673: { fp@673: pci_unregister_driver(&e1000_driver); fp@673: } fp@673: fp@673: module_exit(e1000_exit_module); fp@673: fp@673: /** fp@673: * e1000_irq_disable - Mask off interrupt generation on the NIC fp@673: * @adapter: board private structure fp@673: **/ fp@673: fp@673: static inline void fp@673: e1000_irq_disable(struct e1000_adapter *adapter) fp@673: { fp@673: atomic_inc(&adapter->irq_sem); fp@673: E1000_WRITE_REG(&adapter->hw, IMC, ~0); fp@673: E1000_WRITE_FLUSH(&adapter->hw); fp@673: synchronize_irq(adapter->pdev->irq); fp@673: } fp@673: fp@673: /** fp@673: * e1000_irq_enable - Enable default interrupt generation settings fp@673: * @adapter: board private structure fp@673: **/ fp@673: fp@673: static inline void fp@673: e1000_irq_enable(struct e1000_adapter *adapter) fp@673: { fp@673: if(likely(atomic_dec_and_test(&adapter->irq_sem))) { fp@673: E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK); fp@673: E1000_WRITE_FLUSH(&adapter->hw); fp@673: } fp@673: } fp@673: void fp@673: e1000_update_mng_vlan(struct e1000_adapter *adapter) fp@673: { fp@673: struct net_device *netdev = adapter->netdev; fp@673: uint16_t vid = adapter->hw.mng_cookie.vlan_id; fp@673: uint16_t old_vid = adapter->mng_vlan_id; fp@673: if(adapter->vlgrp) { fp@673: if(!adapter->vlgrp->vlan_devices[vid]) { fp@673: if(adapter->hw.mng_cookie.status & fp@673: E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) { fp@673: e1000_vlan_rx_add_vid(netdev, vid); fp@673: adapter->mng_vlan_id = vid; fp@673: } else fp@673: adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; fp@673: fp@673: if((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) && fp@673: (vid != old_vid) && fp@673: !adapter->vlgrp->vlan_devices[old_vid]) fp@673: e1000_vlan_rx_kill_vid(netdev, old_vid); fp@673: } fp@673: } fp@673: } fp@673: fp@673: int fp@673: e1000_up(struct e1000_adapter *adapter) fp@673: { fp@673: struct net_device *netdev = adapter->netdev; fp@673: int err; fp@673: fp@673: /* hardware has been reset, we need to reload some things */ fp@673: fp@673: /* Reset the PHY if it was previously powered down */ fp@673: if(adapter->hw.media_type == e1000_media_type_copper) { fp@673: uint16_t mii_reg; fp@673: e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg); fp@673: if(mii_reg & MII_CR_POWER_DOWN) fp@673: e1000_phy_reset(&adapter->hw); fp@673: } fp@673: fp@673: e1000_set_multi(netdev); fp@673: fp@673: e1000_restore_vlan(adapter); fp@673: fp@673: e1000_configure_tx(adapter); fp@673: e1000_setup_rctl(adapter); fp@673: e1000_configure_rx(adapter); fp@673: adapter->alloc_rx_buf(adapter); fp@673: fp@673: #ifdef CONFIG_PCI_MSI fp@673: if(adapter->hw.mac_type > e1000_82547_rev_2) { fp@673: adapter->have_msi = TRUE; fp@673: if((err = pci_enable_msi(adapter->pdev))) { fp@673: DPRINTK(PROBE, ERR, fp@673: "Unable to allocate MSI interrupt Error: %d\n", err); fp@673: adapter->have_msi = FALSE; fp@673: } fp@673: } fp@673: #endif fp@673: if((err = request_irq(adapter->pdev->irq, &e1000_intr, fp@673: SA_SHIRQ | SA_SAMPLE_RANDOM, fp@673: netdev->name, netdev))) { fp@673: DPRINTK(PROBE, ERR, fp@673: "Unable to allocate interrupt Error: %d\n", err); fp@673: return err; fp@673: } fp@673: fp@673: mod_timer(&adapter->watchdog_timer, jiffies); fp@673: fp@673: #ifdef CONFIG_E1000_NAPI fp@673: netif_poll_enable(netdev); fp@673: #endif fp@673: e1000_irq_enable(adapter); fp@673: fp@673: return 0; fp@673: } fp@673: fp@673: void fp@673: e1000_down(struct e1000_adapter *adapter) fp@673: { fp@673: struct net_device *netdev = adapter->netdev; fp@673: fp@673: e1000_irq_disable(adapter); fp@673: free_irq(adapter->pdev->irq, netdev); fp@673: #ifdef CONFIG_PCI_MSI fp@673: if(adapter->hw.mac_type > e1000_82547_rev_2 && fp@673: adapter->have_msi == TRUE) fp@673: pci_disable_msi(adapter->pdev); fp@673: #endif fp@673: del_timer_sync(&adapter->tx_fifo_stall_timer); fp@673: del_timer_sync(&adapter->watchdog_timer); fp@673: del_timer_sync(&adapter->phy_info_timer); fp@673: fp@673: #ifdef CONFIG_E1000_NAPI fp@673: netif_poll_disable(netdev); fp@673: #endif fp@673: adapter->link_speed = 0; fp@673: adapter->link_duplex = 0; fp@673: netif_carrier_off(netdev); fp@673: netif_stop_queue(netdev); fp@673: fp@673: e1000_reset(adapter); fp@673: e1000_clean_tx_ring(adapter); fp@673: e1000_clean_rx_ring(adapter); fp@673: fp@673: /* If WoL is not enabled fp@673: * and management mode is not IAMT fp@673: * Power down the PHY so no link is implied when interface is down */ fp@673: if(!adapter->wol && adapter->hw.mac_type >= e1000_82540 && fp@673: adapter->hw.media_type == e1000_media_type_copper && fp@673: !e1000_check_mng_mode(&adapter->hw) && fp@673: !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN)) { fp@673: uint16_t mii_reg; fp@673: e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg); fp@673: mii_reg |= MII_CR_POWER_DOWN; fp@673: e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg); fp@673: mdelay(1); fp@673: } fp@673: } fp@673: fp@673: void fp@673: e1000_reset(struct e1000_adapter *adapter) fp@673: { fp@673: struct net_device *netdev = adapter->netdev; fp@673: uint32_t pba, manc; fp@673: uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF; fp@673: uint16_t fc_low_water_mark = E1000_FC_LOW_DIFF; fp@673: fp@673: /* Repartition Pba for greater than 9k mtu fp@673: * To take effect CTRL.RST is required. fp@673: */ fp@673: fp@673: switch (adapter->hw.mac_type) { fp@673: case e1000_82547: fp@673: case e1000_82547_rev_2: fp@673: pba = E1000_PBA_30K; fp@673: break; fp@673: case e1000_82573: fp@673: pba = E1000_PBA_12K; fp@673: break; fp@673: default: fp@673: pba = E1000_PBA_48K; fp@673: break; fp@673: } fp@673: fp@673: if((adapter->hw.mac_type != e1000_82573) && fp@673: (adapter->rx_buffer_len > E1000_RXBUFFER_8192)) { fp@673: pba -= 8; /* allocate more FIFO for Tx */ fp@673: /* send an XOFF when there is enough space in the fp@673: * Rx FIFO to hold one extra full size Rx packet fp@673: */ fp@673: fc_high_water_mark = netdev->mtu + ENET_HEADER_SIZE + fp@673: ETHERNET_FCS_SIZE + 1; fp@673: fc_low_water_mark = fc_high_water_mark + 8; fp@673: } fp@673: fp@673: fp@673: if(adapter->hw.mac_type == e1000_82547) { fp@673: adapter->tx_fifo_head = 0; fp@673: adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT; fp@673: adapter->tx_fifo_size = fp@673: (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT; fp@673: atomic_set(&adapter->tx_fifo_stall, 0); fp@673: } fp@673: fp@673: E1000_WRITE_REG(&adapter->hw, PBA, pba); fp@673: fp@673: /* flow control settings */ fp@673: adapter->hw.fc_high_water = (pba << E1000_PBA_BYTES_SHIFT) - fp@673: fc_high_water_mark; fp@673: adapter->hw.fc_low_water = (pba << E1000_PBA_BYTES_SHIFT) - fp@673: fc_low_water_mark; fp@673: adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME; fp@673: adapter->hw.fc_send_xon = 1; fp@673: adapter->hw.fc = adapter->hw.original_fc; fp@673: fp@673: /* Allow time for pending master requests to run */ fp@673: e1000_reset_hw(&adapter->hw); fp@673: if(adapter->hw.mac_type >= e1000_82544) fp@673: E1000_WRITE_REG(&adapter->hw, WUC, 0); fp@673: if(e1000_init_hw(&adapter->hw)) fp@673: DPRINTK(PROBE, ERR, "Hardware Error\n"); fp@673: e1000_update_mng_vlan(adapter); fp@673: /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ fp@673: E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE); fp@673: fp@673: e1000_reset_adaptive(&adapter->hw); fp@673: e1000_phy_get_info(&adapter->hw, &adapter->phy_info); fp@673: if (adapter->en_mng_pt) { fp@673: manc = E1000_READ_REG(&adapter->hw, MANC); fp@673: manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST); fp@673: E1000_WRITE_REG(&adapter->hw, MANC, manc); fp@673: } fp@673: } fp@673: fp@673: /** fp@673: * e1000_probe - Device Initialization Routine fp@673: * @pdev: PCI device information struct fp@673: * @ent: entry in e1000_pci_tbl fp@673: * fp@673: * Returns 0 on success, negative on failure fp@673: * fp@673: * e1000_probe initializes an adapter identified by a pci_dev structure. fp@673: * The OS initialization, configuring of the adapter private structure, fp@673: * and a hardware reset occur. fp@673: **/ fp@673: fp@673: static int __devinit fp@673: e1000_probe(struct pci_dev *pdev, fp@673: const struct pci_device_id *ent) fp@673: { fp@673: struct net_device *netdev; fp@673: struct e1000_adapter *adapter; fp@673: unsigned long mmio_start, mmio_len; fp@673: uint32_t swsm; fp@673: fp@673: static int cards_found = 0; fp@673: int i, err, pci_using_dac; fp@673: uint16_t eeprom_data; fp@673: uint16_t eeprom_apme_mask = E1000_EEPROM_APME; fp@673: if((err = pci_enable_device(pdev))) fp@673: return err; fp@673: fp@673: if(!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) { fp@673: pci_using_dac = 1; fp@673: } else { fp@673: if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) { fp@673: E1000_ERR("No usable DMA configuration, aborting\n"); fp@673: return err; fp@673: } fp@673: pci_using_dac = 0; fp@673: } fp@673: fp@673: if((err = pci_request_regions(pdev, e1000_driver_name))) fp@673: return err; fp@673: fp@673: pci_set_master(pdev); fp@673: fp@673: netdev = alloc_etherdev(sizeof(struct e1000_adapter)); fp@673: if(!netdev) { fp@673: err = -ENOMEM; fp@673: goto err_alloc_etherdev; fp@673: } fp@673: fp@673: SET_MODULE_OWNER(netdev); fp@673: SET_NETDEV_DEV(netdev, &pdev->dev); fp@673: fp@673: pci_set_drvdata(pdev, netdev); fp@673: adapter = netdev_priv(netdev); fp@673: adapter->netdev = netdev; fp@673: adapter->pdev = pdev; fp@673: adapter->hw.back = adapter; fp@673: adapter->msg_enable = (1 << debug) - 1; fp@673: fp@673: mmio_start = pci_resource_start(pdev, BAR_0); fp@673: mmio_len = pci_resource_len(pdev, BAR_0); fp@673: fp@673: adapter->hw.hw_addr = ioremap(mmio_start, mmio_len); fp@673: if(!adapter->hw.hw_addr) { fp@673: err = -EIO; fp@673: goto err_ioremap; fp@673: } fp@673: fp@673: for(i = BAR_1; i <= BAR_5; i++) { fp@673: if(pci_resource_len(pdev, i) == 0) fp@673: continue; fp@673: if(pci_resource_flags(pdev, i) & IORESOURCE_IO) { fp@673: adapter->hw.io_base = pci_resource_start(pdev, i); fp@673: break; fp@673: } fp@673: } fp@673: fp@673: netdev->open = &e1000_open; fp@673: netdev->stop = &e1000_close; fp@673: netdev->hard_start_xmit = &e1000_xmit_frame; fp@673: netdev->get_stats = &e1000_get_stats; fp@673: netdev->set_multicast_list = &e1000_set_multi; fp@673: netdev->set_mac_address = &e1000_set_mac; fp@673: netdev->change_mtu = &e1000_change_mtu; fp@673: netdev->do_ioctl = &e1000_ioctl; fp@673: e1000_set_ethtool_ops(netdev); fp@673: netdev->tx_timeout = &e1000_tx_timeout; fp@673: netdev->watchdog_timeo = 5 * HZ; fp@673: #ifdef CONFIG_E1000_NAPI fp@673: netdev->poll = &e1000_clean; fp@673: netdev->weight = 64; fp@673: #endif fp@673: netdev->vlan_rx_register = e1000_vlan_rx_register; fp@673: netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid; fp@673: netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid; fp@673: #ifdef CONFIG_NET_POLL_CONTROLLER fp@673: netdev->poll_controller = e1000_netpoll; fp@673: #endif fp@673: strcpy(netdev->name, pci_name(pdev)); fp@673: fp@673: netdev->mem_start = mmio_start; fp@673: netdev->mem_end = mmio_start + mmio_len; fp@673: netdev->base_addr = adapter->hw.io_base; fp@673: fp@673: adapter->bd_number = cards_found; fp@673: fp@673: /* setup the private structure */ fp@673: fp@673: if((err = e1000_sw_init(adapter))) fp@673: goto err_sw_init; fp@673: fp@673: if((err = e1000_check_phy_reset_block(&adapter->hw))) fp@673: DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n"); fp@673: fp@673: if(adapter->hw.mac_type >= e1000_82543) { fp@673: netdev->features = NETIF_F_SG | fp@673: NETIF_F_HW_CSUM | fp@673: NETIF_F_HW_VLAN_TX | fp@673: NETIF_F_HW_VLAN_RX | fp@673: NETIF_F_HW_VLAN_FILTER; fp@673: } fp@673: fp@673: #ifdef NETIF_F_TSO fp@673: if((adapter->hw.mac_type >= e1000_82544) && fp@673: (adapter->hw.mac_type != e1000_82547)) fp@673: netdev->features |= NETIF_F_TSO; fp@673: fp@673: #ifdef NETIF_F_TSO_IPV6 fp@673: if(adapter->hw.mac_type > e1000_82547_rev_2) fp@673: netdev->features |= NETIF_F_TSO_IPV6; fp@673: #endif fp@673: #endif fp@673: if(pci_using_dac) fp@673: netdev->features |= NETIF_F_HIGHDMA; fp@673: fp@673: /* hard_start_xmit is safe against parallel locking */ fp@673: netdev->features |= NETIF_F_LLTX; fp@673: fp@673: adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw); fp@673: fp@673: /* before reading the EEPROM, reset the controller to fp@673: * put the device in a known good starting state */ fp@673: fp@673: e1000_reset_hw(&adapter->hw); fp@673: fp@673: /* make sure the EEPROM is good */ fp@673: fp@673: if(e1000_validate_eeprom_checksum(&adapter->hw) < 0) { fp@673: DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n"); fp@673: err = -EIO; fp@673: goto err_eeprom; fp@673: } fp@673: fp@673: /* copy the MAC address out of the EEPROM */ fp@673: fp@673: if(e1000_read_mac_addr(&adapter->hw)) fp@673: DPRINTK(PROBE, ERR, "EEPROM Read Error\n"); fp@673: memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len); fp@673: fp@673: if(!is_valid_ether_addr(netdev->dev_addr)) { fp@673: DPRINTK(PROBE, ERR, "Invalid MAC Address\n"); fp@673: err = -EIO; fp@673: goto err_eeprom; fp@673: } fp@673: fp@673: e1000_read_part_num(&adapter->hw, &(adapter->part_num)); fp@673: fp@673: e1000_get_bus_info(&adapter->hw); fp@673: fp@673: init_timer(&adapter->tx_fifo_stall_timer); fp@673: adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall; fp@673: adapter->tx_fifo_stall_timer.data = (unsigned long) adapter; fp@673: fp@673: init_timer(&adapter->watchdog_timer); fp@673: adapter->watchdog_timer.function = &e1000_watchdog; fp@673: adapter->watchdog_timer.data = (unsigned long) adapter; fp@673: fp@673: INIT_WORK(&adapter->watchdog_task, fp@673: (void (*)(void *))e1000_watchdog_task, adapter); fp@673: fp@673: init_timer(&adapter->phy_info_timer); fp@673: adapter->phy_info_timer.function = &e1000_update_phy_info; fp@673: adapter->phy_info_timer.data = (unsigned long) adapter; fp@673: fp@673: INIT_WORK(&adapter->tx_timeout_task, fp@673: (void (*)(void *))e1000_tx_timeout_task, netdev); fp@673: fp@673: /* we're going to reset, so assume we have no link for now */ fp@673: fp@673: netif_carrier_off(netdev); fp@673: netif_stop_queue(netdev); fp@673: fp@673: e1000_check_options(adapter); fp@673: fp@673: /* Initial Wake on LAN setting fp@673: * If APM wake is enabled in the EEPROM, fp@673: * enable the ACPI Magic Packet filter fp@673: */ fp@673: fp@673: switch(adapter->hw.mac_type) { fp@673: case e1000_82542_rev2_0: fp@673: case e1000_82542_rev2_1: fp@673: case e1000_82543: fp@673: break; fp@673: case e1000_82544: fp@673: e1000_read_eeprom(&adapter->hw, fp@673: EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data); fp@673: eeprom_apme_mask = E1000_EEPROM_82544_APM; fp@673: break; fp@673: case e1000_82546: fp@673: case e1000_82546_rev_3: fp@673: if((E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1) fp@673: && (adapter->hw.media_type == e1000_media_type_copper)) { fp@673: e1000_read_eeprom(&adapter->hw, fp@673: EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); fp@673: break; fp@673: } fp@673: /* Fall Through */ fp@673: default: fp@673: e1000_read_eeprom(&adapter->hw, fp@673: EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); fp@673: break; fp@673: } fp@673: if(eeprom_data & eeprom_apme_mask) fp@673: adapter->wol |= E1000_WUFC_MAG; fp@673: fp@673: /* reset the hardware with the new settings */ fp@673: e1000_reset(adapter); fp@673: fp@673: /* Let firmware know the driver has taken over */ fp@673: switch(adapter->hw.mac_type) { fp@673: case e1000_82573: fp@673: swsm = E1000_READ_REG(&adapter->hw, SWSM); fp@673: E1000_WRITE_REG(&adapter->hw, SWSM, fp@673: swsm | E1000_SWSM_DRV_LOAD); fp@673: break; fp@673: default: fp@673: break; fp@673: } fp@673: fp@673: strcpy(netdev->name, "eth%d"); fp@673: if((err = register_netdev(netdev))) fp@673: goto err_register; fp@673: fp@673: DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n"); fp@673: fp@673: cards_found++; fp@673: return 0; fp@673: fp@673: err_register: fp@673: err_sw_init: fp@673: err_eeprom: fp@673: iounmap(adapter->hw.hw_addr); fp@673: err_ioremap: fp@673: free_netdev(netdev); fp@673: err_alloc_etherdev: fp@673: pci_release_regions(pdev); fp@673: return err; fp@673: } fp@673: fp@673: /** fp@673: * e1000_remove - Device Removal Routine fp@673: * @pdev: PCI device information struct fp@673: * fp@673: * e1000_remove is called by the PCI subsystem to alert the driver fp@673: * that it should release a PCI device. The could be caused by a fp@673: * Hot-Plug event, or because the driver is going to be removed from fp@673: * memory. fp@673: **/ fp@673: fp@673: static void __devexit fp@673: e1000_remove(struct pci_dev *pdev) fp@673: { fp@673: struct net_device *netdev = pci_get_drvdata(pdev); fp@673: struct e1000_adapter *adapter = netdev_priv(netdev); fp@673: uint32_t manc, swsm; fp@673: fp@673: flush_scheduled_work(); fp@673: fp@673: if(adapter->hw.mac_type >= e1000_82540 && fp@673: adapter->hw.media_type == e1000_media_type_copper) { fp@673: manc = E1000_READ_REG(&adapter->hw, MANC); fp@673: if(manc & E1000_MANC_SMBUS_EN) { fp@673: manc |= E1000_MANC_ARP_EN; fp@673: E1000_WRITE_REG(&adapter->hw, MANC, manc); fp@673: } fp@673: } fp@673: fp@673: switch(adapter->hw.mac_type) { fp@673: case e1000_82573: fp@673: swsm = E1000_READ_REG(&adapter->hw, SWSM); fp@673: E1000_WRITE_REG(&adapter->hw, SWSM, fp@673: swsm & ~E1000_SWSM_DRV_LOAD); fp@673: break; fp@673: fp@673: default: fp@673: break; fp@673: } fp@673: fp@673: unregister_netdev(netdev); fp@673: fp@673: if(!e1000_check_phy_reset_block(&adapter->hw)) fp@673: e1000_phy_hw_reset(&adapter->hw); fp@673: fp@673: iounmap(adapter->hw.hw_addr); fp@673: pci_release_regions(pdev); fp@673: fp@673: free_netdev(netdev); fp@673: fp@673: pci_disable_device(pdev); fp@673: } fp@673: fp@673: /** fp@673: * e1000_sw_init - Initialize general software structures (struct e1000_adapter) fp@673: * @adapter: board private structure to initialize fp@673: * fp@673: * e1000_sw_init initializes the Adapter private data structure. fp@673: * Fields are initialized based on PCI device information and fp@673: * OS network device settings (MTU size). fp@673: **/ fp@673: fp@673: static int __devinit fp@673: e1000_sw_init(struct e1000_adapter *adapter) fp@673: { fp@673: struct e1000_hw *hw = &adapter->hw; fp@673: struct net_device *netdev = adapter->netdev; fp@673: struct pci_dev *pdev = adapter->pdev; fp@673: fp@673: /* PCI config space info */ fp@673: fp@673: hw->vendor_id = pdev->vendor; fp@673: hw->device_id = pdev->device; fp@673: hw->subsystem_vendor_id = pdev->subsystem_vendor; fp@673: hw->subsystem_id = pdev->subsystem_device; fp@673: fp@673: pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); fp@673: fp@673: pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word); fp@673: fp@673: adapter->rx_buffer_len = E1000_RXBUFFER_2048; fp@673: adapter->rx_ps_bsize0 = E1000_RXBUFFER_256; fp@673: hw->max_frame_size = netdev->mtu + fp@673: ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; fp@673: hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE; fp@673: fp@673: /* identify the MAC */ fp@673: fp@673: if(e1000_set_mac_type(hw)) { fp@673: DPRINTK(PROBE, ERR, "Unknown MAC Type\n"); fp@673: return -EIO; fp@673: } fp@673: fp@673: /* initialize eeprom parameters */ fp@673: fp@673: if(e1000_init_eeprom_params(hw)) { fp@673: E1000_ERR("EEPROM initialization failed\n"); fp@673: return -EIO; fp@673: } fp@673: fp@673: switch(hw->mac_type) { fp@673: default: fp@673: break; fp@673: case e1000_82541: fp@673: case e1000_82547: fp@673: case e1000_82541_rev_2: fp@673: case e1000_82547_rev_2: fp@673: hw->phy_init_script = 1; fp@673: break; fp@673: } fp@673: fp@673: e1000_set_media_type(hw); fp@673: fp@673: hw->wait_autoneg_complete = FALSE; fp@673: hw->tbi_compatibility_en = TRUE; fp@673: hw->adaptive_ifs = TRUE; fp@673: fp@673: /* Copper options */ fp@673: fp@673: if(hw->media_type == e1000_media_type_copper) { fp@673: hw->mdix = AUTO_ALL_MODES; fp@673: hw->disable_polarity_correction = FALSE; fp@673: hw->master_slave = E1000_MASTER_SLAVE; fp@673: } fp@673: fp@673: atomic_set(&adapter->irq_sem, 1); fp@673: spin_lock_init(&adapter->stats_lock); fp@673: spin_lock_init(&adapter->tx_lock); fp@673: fp@673: return 0; fp@673: } fp@673: fp@673: /** fp@673: * e1000_open - Called when a network interface is made active fp@673: * @netdev: network interface device structure fp@673: * fp@673: * Returns 0 on success, negative value on failure fp@673: * fp@673: * The open entry point is called when a network interface is made fp@673: * active by the system (IFF_UP). At this point all resources needed fp@673: * for transmit and receive operations are allocated, the interrupt fp@673: * handler is registered with the OS, the watchdog timer is started, fp@673: * and the stack is notified that the interface is ready. fp@673: **/ fp@673: fp@673: static int fp@673: e1000_open(struct net_device *netdev) fp@673: { fp@673: struct e1000_adapter *adapter = netdev_priv(netdev); fp@673: int err; fp@673: fp@673: /* allocate transmit descriptors */ fp@673: fp@673: if((err = e1000_setup_tx_resources(adapter))) fp@673: goto err_setup_tx; fp@673: fp@673: /* allocate receive descriptors */ fp@673: fp@673: if((err = e1000_setup_rx_resources(adapter))) fp@673: goto err_setup_rx; fp@673: fp@673: if((err = e1000_up(adapter))) fp@673: goto err_up; fp@673: adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; fp@673: if((adapter->hw.mng_cookie.status & fp@673: E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) { fp@673: e1000_update_mng_vlan(adapter); fp@673: } fp@673: fp@673: return E1000_SUCCESS; fp@673: fp@673: err_up: fp@673: e1000_free_rx_resources(adapter); fp@673: err_setup_rx: fp@673: e1000_free_tx_resources(adapter); fp@673: err_setup_tx: fp@673: e1000_reset(adapter); fp@673: fp@673: return err; fp@673: } fp@673: fp@673: /** fp@673: * e1000_close - Disables a network interface fp@673: * @netdev: network interface device structure fp@673: * fp@673: * Returns 0, this is not allowed to fail fp@673: * fp@673: * The close entry point is called when an interface is de-activated fp@673: * by the OS. The hardware is still under the drivers control, but fp@673: * needs to be disabled. A global MAC reset is issued to stop the fp@673: * hardware, and all transmit and receive resources are freed. fp@673: **/ fp@673: fp@673: static int fp@673: e1000_close(struct net_device *netdev) fp@673: { fp@673: struct e1000_adapter *adapter = netdev_priv(netdev); fp@673: fp@673: e1000_down(adapter); fp@673: fp@673: e1000_free_tx_resources(adapter); fp@673: e1000_free_rx_resources(adapter); fp@673: fp@673: if((adapter->hw.mng_cookie.status & fp@673: E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) { fp@673: e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); fp@673: } fp@673: return 0; fp@673: } fp@673: fp@673: /** fp@673: * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary fp@673: * @adapter: address of board private structure fp@673: * @start: address of beginning of memory fp@673: * @len: length of memory fp@673: **/ fp@673: static inline boolean_t fp@673: e1000_check_64k_bound(struct e1000_adapter *adapter, fp@673: void *start, unsigned long len) fp@673: { fp@673: unsigned long begin = (unsigned long) start; fp@673: unsigned long end = begin + len; fp@673: fp@673: /* First rev 82545 and 82546 need to not allow any memory fp@673: * write location to cross 64k boundary due to errata 23 */ fp@673: if (adapter->hw.mac_type == e1000_82545 || fp@673: adapter->hw.mac_type == e1000_82546) { fp@673: return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE; fp@673: } fp@673: fp@673: return TRUE; fp@673: } fp@673: fp@673: /** fp@673: * e1000_setup_tx_resources - allocate Tx resources (Descriptors) fp@673: * @adapter: board private structure fp@673: * fp@673: * Return 0 on success, negative on failure fp@673: **/ fp@673: fp@673: int fp@673: e1000_setup_tx_resources(struct e1000_adapter *adapter) fp@673: { fp@673: struct e1000_desc_ring *txdr = &adapter->tx_ring; fp@673: struct pci_dev *pdev = adapter->pdev; fp@673: int size; fp@673: fp@673: size = sizeof(struct e1000_buffer) * txdr->count; fp@673: txdr->buffer_info = vmalloc(size); fp@673: if(!txdr->buffer_info) { fp@673: DPRINTK(PROBE, ERR, fp@673: "Unable to allocate memory for the transmit descriptor ring\n"); fp@673: return -ENOMEM; fp@673: } fp@673: memset(txdr->buffer_info, 0, size); fp@673: fp@673: /* round up to nearest 4K */ fp@673: fp@673: txdr->size = txdr->count * sizeof(struct e1000_tx_desc); fp@673: E1000_ROUNDUP(txdr->size, 4096); fp@673: fp@673: txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma); fp@673: if(!txdr->desc) { fp@673: setup_tx_desc_die: fp@673: vfree(txdr->buffer_info); fp@673: DPRINTK(PROBE, ERR, fp@673: "Unable to allocate memory for the transmit descriptor ring\n"); fp@673: return -ENOMEM; fp@673: } fp@673: fp@673: /* Fix for errata 23, can't cross 64kB boundary */ fp@673: if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { fp@673: void *olddesc = txdr->desc; fp@673: dma_addr_t olddma = txdr->dma; fp@673: DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes " fp@673: "at %p\n", txdr->size, txdr->desc); fp@673: /* Try again, without freeing the previous */ fp@673: txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma); fp@673: if(!txdr->desc) { fp@673: /* Failed allocation, critical failure */ fp@673: pci_free_consistent(pdev, txdr->size, olddesc, olddma); fp@673: goto setup_tx_desc_die; fp@673: } fp@673: fp@673: if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { fp@673: /* give up */ fp@673: pci_free_consistent(pdev, txdr->size, txdr->desc, fp@673: txdr->dma); fp@673: pci_free_consistent(pdev, txdr->size, olddesc, olddma); fp@673: DPRINTK(PROBE, ERR, fp@673: "Unable to allocate aligned memory " fp@673: "for the transmit descriptor ring\n"); fp@673: vfree(txdr->buffer_info); fp@673: return -ENOMEM; fp@673: } else { fp@673: /* Free old allocation, new allocation was successful */ fp@673: pci_free_consistent(pdev, txdr->size, olddesc, olddma); fp@673: } fp@673: } fp@673: memset(txdr->desc, 0, txdr->size); fp@673: fp@673: txdr->next_to_use = 0; fp@673: txdr->next_to_clean = 0; fp@673: fp@673: return 0; fp@673: } fp@673: fp@673: /** fp@673: * e1000_configure_tx - Configure 8254x Transmit Unit after Reset fp@673: * @adapter: board private structure fp@673: * fp@673: * Configure the Tx unit of the MAC after a reset. fp@673: **/ fp@673: fp@673: static void fp@673: e1000_configure_tx(struct e1000_adapter *adapter) fp@673: { fp@673: uint64_t tdba = adapter->tx_ring.dma; fp@673: uint32_t tdlen = adapter->tx_ring.count * sizeof(struct e1000_tx_desc); fp@673: uint32_t tctl, tipg; fp@673: fp@673: E1000_WRITE_REG(&adapter->hw, TDBAL, (tdba & 0x00000000ffffffffULL)); fp@673: E1000_WRITE_REG(&adapter->hw, TDBAH, (tdba >> 32)); fp@673: fp@673: E1000_WRITE_REG(&adapter->hw, TDLEN, tdlen); fp@673: fp@673: /* Setup the HW Tx Head and Tail descriptor pointers */ fp@673: fp@673: E1000_WRITE_REG(&adapter->hw, TDH, 0); fp@673: E1000_WRITE_REG(&adapter->hw, TDT, 0); fp@673: fp@673: /* Set the default values for the Tx Inter Packet Gap timer */ fp@673: fp@673: switch (adapter->hw.mac_type) { fp@673: case e1000_82542_rev2_0: fp@673: case e1000_82542_rev2_1: fp@673: tipg = DEFAULT_82542_TIPG_IPGT; fp@673: tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT; fp@673: tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; fp@673: break; fp@673: default: fp@673: if(adapter->hw.media_type == e1000_media_type_fiber || fp@673: adapter->hw.media_type == e1000_media_type_internal_serdes) fp@673: tipg = DEFAULT_82543_TIPG_IPGT_FIBER; fp@673: else fp@673: tipg = DEFAULT_82543_TIPG_IPGT_COPPER; fp@673: tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT; fp@673: tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; fp@673: } fp@673: E1000_WRITE_REG(&adapter->hw, TIPG, tipg); fp@673: fp@673: /* Set the Tx Interrupt Delay register */ fp@673: fp@673: E1000_WRITE_REG(&adapter->hw, TIDV, adapter->tx_int_delay); fp@673: if(adapter->hw.mac_type >= e1000_82540) fp@673: E1000_WRITE_REG(&adapter->hw, TADV, adapter->tx_abs_int_delay); fp@673: fp@673: /* Program the Transmit Control Register */ fp@673: fp@673: tctl = E1000_READ_REG(&adapter->hw, TCTL); fp@673: fp@673: tctl &= ~E1000_TCTL_CT; fp@673: tctl |= E1000_TCTL_EN | E1000_TCTL_PSP | fp@673: (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); fp@673: fp@673: E1000_WRITE_REG(&adapter->hw, TCTL, tctl); fp@673: fp@673: e1000_config_collision_dist(&adapter->hw); fp@673: fp@673: /* Setup Transmit Descriptor Settings for eop descriptor */ fp@673: adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP | fp@673: E1000_TXD_CMD_IFCS; fp@673: fp@673: if(adapter->hw.mac_type < e1000_82543) fp@673: adapter->txd_cmd |= E1000_TXD_CMD_RPS; fp@673: else fp@673: adapter->txd_cmd |= E1000_TXD_CMD_RS; fp@673: fp@673: /* Cache if we're 82544 running in PCI-X because we'll fp@673: * need this to apply a workaround later in the send path. */ fp@673: if(adapter->hw.mac_type == e1000_82544 && fp@673: adapter->hw.bus_type == e1000_bus_type_pcix) fp@673: adapter->pcix_82544 = 1; fp@673: } fp@673: fp@673: /** fp@673: * e1000_setup_rx_resources - allocate Rx resources (Descriptors) fp@673: * @adapter: board private structure fp@673: * fp@673: * Returns 0 on success, negative on failure fp@673: **/ fp@673: fp@673: int fp@673: e1000_setup_rx_resources(struct e1000_adapter *adapter) fp@673: { fp@673: struct e1000_desc_ring *rxdr = &adapter->rx_ring; fp@673: struct pci_dev *pdev = adapter->pdev; fp@673: int size, desc_len; fp@673: fp@673: size = sizeof(struct e1000_buffer) * rxdr->count; fp@673: rxdr->buffer_info = vmalloc(size); fp@673: if(!rxdr->buffer_info) { fp@673: DPRINTK(PROBE, ERR, fp@673: "Unable to allocate memory for the receive descriptor ring\n"); fp@673: return -ENOMEM; fp@673: } fp@673: memset(rxdr->buffer_info, 0, size); fp@673: fp@673: size = sizeof(struct e1000_ps_page) * rxdr->count; fp@673: rxdr->ps_page = kmalloc(size, GFP_KERNEL); fp@673: if(!rxdr->ps_page) { fp@673: vfree(rxdr->buffer_info); fp@673: DPRINTK(PROBE, ERR, fp@673: "Unable to allocate memory for the receive descriptor ring\n"); fp@673: return -ENOMEM; fp@673: } fp@673: memset(rxdr->ps_page, 0, size); fp@673: fp@673: size = sizeof(struct e1000_ps_page_dma) * rxdr->count; fp@673: rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL); fp@673: if(!rxdr->ps_page_dma) { fp@673: vfree(rxdr->buffer_info); fp@673: kfree(rxdr->ps_page); fp@673: DPRINTK(PROBE, ERR, fp@673: "Unable to allocate memory for the receive descriptor ring\n"); fp@673: return -ENOMEM; fp@673: } fp@673: memset(rxdr->ps_page_dma, 0, size); fp@673: fp@673: if(adapter->hw.mac_type <= e1000_82547_rev_2) fp@673: desc_len = sizeof(struct e1000_rx_desc); fp@673: else fp@673: desc_len = sizeof(union e1000_rx_desc_packet_split); fp@673: fp@673: /* Round up to nearest 4K */ fp@673: fp@673: rxdr->size = rxdr->count * desc_len; fp@673: E1000_ROUNDUP(rxdr->size, 4096); fp@673: fp@673: rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma); fp@673: fp@673: if(!rxdr->desc) { fp@673: setup_rx_desc_die: fp@673: vfree(rxdr->buffer_info); fp@673: kfree(rxdr->ps_page); fp@673: kfree(rxdr->ps_page_dma); fp@673: DPRINTK(PROBE, ERR, fp@673: "Unable to allocate memory for the receive descriptor ring\n"); fp@673: return -ENOMEM; fp@673: } fp@673: fp@673: /* Fix for errata 23, can't cross 64kB boundary */ fp@673: if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { fp@673: void *olddesc = rxdr->desc; fp@673: dma_addr_t olddma = rxdr->dma; fp@673: DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes " fp@673: "at %p\n", rxdr->size, rxdr->desc); fp@673: /* Try again, without freeing the previous */ fp@673: rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma); fp@673: if(!rxdr->desc) { fp@673: /* Failed allocation, critical failure */ fp@673: pci_free_consistent(pdev, rxdr->size, olddesc, olddma); fp@673: goto setup_rx_desc_die; fp@673: } fp@673: fp@673: if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { fp@673: /* give up */ fp@673: pci_free_consistent(pdev, rxdr->size, rxdr->desc, fp@673: rxdr->dma); fp@673: pci_free_consistent(pdev, rxdr->size, olddesc, olddma); fp@673: DPRINTK(PROBE, ERR, fp@673: "Unable to allocate aligned memory " fp@673: "for the receive descriptor ring\n"); fp@673: vfree(rxdr->buffer_info); fp@673: kfree(rxdr->ps_page); fp@673: kfree(rxdr->ps_page_dma); fp@673: return -ENOMEM; fp@673: } else { fp@673: /* Free old allocation, new allocation was successful */ fp@673: pci_free_consistent(pdev, rxdr->size, olddesc, olddma); fp@673: } fp@673: } fp@673: memset(rxdr->desc, 0, rxdr->size); fp@673: fp@673: rxdr->next_to_clean = 0; fp@673: rxdr->next_to_use = 0; fp@673: fp@673: return 0; fp@673: } fp@673: fp@673: /** fp@673: * e1000_setup_rctl - configure the receive control registers fp@673: * @adapter: Board private structure fp@673: **/ fp@673: fp@673: static void fp@673: e1000_setup_rctl(struct e1000_adapter *adapter) fp@673: { fp@673: uint32_t rctl, rfctl; fp@673: uint32_t psrctl = 0; fp@673: fp@673: rctl = E1000_READ_REG(&adapter->hw, RCTL); fp@673: fp@673: rctl &= ~(3 << E1000_RCTL_MO_SHIFT); fp@673: fp@673: rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | fp@673: E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | fp@673: (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT); fp@673: fp@673: if(adapter->hw.tbi_compatibility_on == 1) fp@673: rctl |= E1000_RCTL_SBP; fp@673: else fp@673: rctl &= ~E1000_RCTL_SBP; fp@673: fp@673: if (adapter->netdev->mtu <= ETH_DATA_LEN) fp@673: rctl &= ~E1000_RCTL_LPE; fp@673: else fp@673: rctl |= E1000_RCTL_LPE; fp@673: fp@673: /* Setup buffer sizes */ fp@673: if(adapter->hw.mac_type == e1000_82573) { fp@673: /* We can now specify buffers in 1K increments. fp@673: * BSIZE and BSEX are ignored in this case. */ fp@673: rctl |= adapter->rx_buffer_len << 0x11; fp@673: } else { fp@673: rctl &= ~E1000_RCTL_SZ_4096; fp@673: rctl |= E1000_RCTL_BSEX; fp@673: switch (adapter->rx_buffer_len) { fp@673: case E1000_RXBUFFER_2048: fp@673: default: fp@673: rctl |= E1000_RCTL_SZ_2048; fp@673: rctl &= ~E1000_RCTL_BSEX; fp@673: break; fp@673: case E1000_RXBUFFER_4096: fp@673: rctl |= E1000_RCTL_SZ_4096; fp@673: break; fp@673: case E1000_RXBUFFER_8192: fp@673: rctl |= E1000_RCTL_SZ_8192; fp@673: break; fp@673: case E1000_RXBUFFER_16384: fp@673: rctl |= E1000_RCTL_SZ_16384; fp@673: break; fp@673: } fp@673: } fp@673: fp@673: #ifdef CONFIG_E1000_PACKET_SPLIT fp@673: /* 82571 and greater support packet-split where the protocol fp@673: * header is placed in skb->data and the packet data is fp@673: * placed in pages hanging off of skb_shinfo(skb)->nr_frags. fp@673: * In the case of a non-split, skb->data is linearly filled, fp@673: * followed by the page buffers. Therefore, skb->data is fp@673: * sized to hold the largest protocol header. fp@673: */ fp@673: adapter->rx_ps = (adapter->hw.mac_type > e1000_82547_rev_2) fp@673: && (adapter->netdev->mtu fp@673: < ((3 * PAGE_SIZE) + adapter->rx_ps_bsize0)); fp@673: #endif fp@673: if(adapter->rx_ps) { fp@673: /* Configure extra packet-split registers */ fp@673: rfctl = E1000_READ_REG(&adapter->hw, RFCTL); fp@673: rfctl |= E1000_RFCTL_EXTEN; fp@673: /* disable IPv6 packet split support */ fp@673: rfctl |= E1000_RFCTL_IPV6_DIS; fp@673: E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl); fp@673: fp@673: rctl |= E1000_RCTL_DTYP_PS | E1000_RCTL_SECRC; fp@673: fp@673: psrctl |= adapter->rx_ps_bsize0 >> fp@673: E1000_PSRCTL_BSIZE0_SHIFT; fp@673: psrctl |= PAGE_SIZE >> fp@673: E1000_PSRCTL_BSIZE1_SHIFT; fp@673: psrctl |= PAGE_SIZE << fp@673: E1000_PSRCTL_BSIZE2_SHIFT; fp@673: psrctl |= PAGE_SIZE << fp@673: E1000_PSRCTL_BSIZE3_SHIFT; fp@673: fp@673: E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl); fp@673: } fp@673: fp@673: E1000_WRITE_REG(&adapter->hw, RCTL, rctl); fp@673: } fp@673: fp@673: /** fp@673: * e1000_configure_rx - Configure 8254x Receive Unit after Reset fp@673: * @adapter: board private structure fp@673: * fp@673: * Configure the Rx unit of the MAC after a reset. fp@673: **/ fp@673: fp@673: static void fp@673: e1000_configure_rx(struct e1000_adapter *adapter) fp@673: { fp@673: uint64_t rdba = adapter->rx_ring.dma; fp@673: uint32_t rdlen, rctl, rxcsum; fp@673: fp@673: if(adapter->rx_ps) { fp@673: rdlen = adapter->rx_ring.count * fp@673: sizeof(union e1000_rx_desc_packet_split); fp@673: adapter->clean_rx = e1000_clean_rx_irq_ps; fp@673: adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps; fp@673: } else { fp@673: rdlen = adapter->rx_ring.count * sizeof(struct e1000_rx_desc); fp@673: adapter->clean_rx = e1000_clean_rx_irq; fp@673: adapter->alloc_rx_buf = e1000_alloc_rx_buffers; fp@673: } fp@673: fp@673: /* disable receives while setting up the descriptors */ fp@673: rctl = E1000_READ_REG(&adapter->hw, RCTL); fp@673: E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN); fp@673: fp@673: /* set the Receive Delay Timer Register */ fp@673: E1000_WRITE_REG(&adapter->hw, RDTR, adapter->rx_int_delay); fp@673: fp@673: if(adapter->hw.mac_type >= e1000_82540) { fp@673: E1000_WRITE_REG(&adapter->hw, RADV, adapter->rx_abs_int_delay); fp@673: if(adapter->itr > 1) fp@673: E1000_WRITE_REG(&adapter->hw, ITR, fp@673: 1000000000 / (adapter->itr * 256)); fp@673: } fp@673: fp@673: /* Setup the Base and Length of the Rx Descriptor Ring */ fp@673: E1000_WRITE_REG(&adapter->hw, RDBAL, (rdba & 0x00000000ffffffffULL)); fp@673: E1000_WRITE_REG(&adapter->hw, RDBAH, (rdba >> 32)); fp@673: fp@673: E1000_WRITE_REG(&adapter->hw, RDLEN, rdlen); fp@673: fp@673: /* Setup the HW Rx Head and Tail Descriptor Pointers */ fp@673: E1000_WRITE_REG(&adapter->hw, RDH, 0); fp@673: E1000_WRITE_REG(&adapter->hw, RDT, 0); fp@673: fp@673: /* Enable 82543 Receive Checksum Offload for TCP and UDP */ fp@673: if(adapter->hw.mac_type >= e1000_82543) { fp@673: rxcsum = E1000_READ_REG(&adapter->hw, RXCSUM); fp@673: if(adapter->rx_csum == TRUE) { fp@673: rxcsum |= E1000_RXCSUM_TUOFL; fp@673: fp@673: /* Enable 82573 IPv4 payload checksum for UDP fragments fp@673: * Must be used in conjunction with packet-split. */ fp@673: if((adapter->hw.mac_type > e1000_82547_rev_2) && fp@673: (adapter->rx_ps)) { fp@673: rxcsum |= E1000_RXCSUM_IPPCSE; fp@673: } fp@673: } else { fp@673: rxcsum &= ~E1000_RXCSUM_TUOFL; fp@673: /* don't need to clear IPPCSE as it defaults to 0 */ fp@673: } fp@673: E1000_WRITE_REG(&adapter->hw, RXCSUM, rxcsum); fp@673: } fp@673: fp@673: if (adapter->hw.mac_type == e1000_82573) fp@673: E1000_WRITE_REG(&adapter->hw, ERT, 0x0100); fp@673: fp@673: /* Enable Receives */ fp@673: E1000_WRITE_REG(&adapter->hw, RCTL, rctl); fp@673: } fp@673: fp@673: /** fp@673: * e1000_free_tx_resources - Free Tx Resources fp@673: * @adapter: board private structure fp@673: * fp@673: * Free all transmit software resources fp@673: **/ fp@673: fp@673: void fp@673: e1000_free_tx_resources(struct e1000_adapter *adapter) fp@673: { fp@673: struct pci_dev *pdev = adapter->pdev; fp@673: fp@673: e1000_clean_tx_ring(adapter); fp@673: fp@673: vfree(adapter->tx_ring.buffer_info); fp@673: adapter->tx_ring.buffer_info = NULL; fp@673: fp@673: pci_free_consistent(pdev, adapter->tx_ring.size, fp@673: adapter->tx_ring.desc, adapter->tx_ring.dma); fp@673: fp@673: adapter->tx_ring.desc = NULL; fp@673: } fp@673: fp@673: static inline void fp@673: e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter, fp@673: struct e1000_buffer *buffer_info) fp@673: { fp@673: if(buffer_info->dma) { fp@673: pci_unmap_page(adapter->pdev, fp@673: buffer_info->dma, fp@673: buffer_info->length, fp@673: PCI_DMA_TODEVICE); fp@673: buffer_info->dma = 0; fp@673: } fp@673: if(buffer_info->skb) { fp@673: dev_kfree_skb_any(buffer_info->skb); fp@673: buffer_info->skb = NULL; fp@673: } fp@673: } fp@673: fp@673: /** fp@673: * e1000_clean_tx_ring - Free Tx Buffers fp@673: * @adapter: board private structure fp@673: **/ fp@673: fp@673: static void fp@673: e1000_clean_tx_ring(struct e1000_adapter *adapter) fp@673: { fp@673: struct e1000_desc_ring *tx_ring = &adapter->tx_ring; fp@673: struct e1000_buffer *buffer_info; fp@673: unsigned long size; fp@673: unsigned int i; fp@673: fp@673: /* Free all the Tx ring sk_buffs */ fp@673: fp@673: if (likely(adapter->previous_buffer_info.skb != NULL)) { fp@673: e1000_unmap_and_free_tx_resource(adapter, fp@673: &adapter->previous_buffer_info); fp@673: } fp@673: fp@673: for(i = 0; i < tx_ring->count; i++) { fp@673: buffer_info = &tx_ring->buffer_info[i]; fp@673: e1000_unmap_and_free_tx_resource(adapter, buffer_info); fp@673: } fp@673: fp@673: size = sizeof(struct e1000_buffer) * tx_ring->count; fp@673: memset(tx_ring->buffer_info, 0, size); fp@673: fp@673: /* Zero out the descriptor ring */ fp@673: fp@673: memset(tx_ring->desc, 0, tx_ring->size); fp@673: fp@673: tx_ring->next_to_use = 0; fp@673: tx_ring->next_to_clean = 0; fp@673: fp@673: E1000_WRITE_REG(&adapter->hw, TDH, 0); fp@673: E1000_WRITE_REG(&adapter->hw, TDT, 0); fp@673: } fp@673: fp@673: /** fp@673: * e1000_free_rx_resources - Free Rx Resources fp@673: * @adapter: board private structure fp@673: * fp@673: * Free all receive software resources fp@673: **/ fp@673: fp@673: void fp@673: e1000_free_rx_resources(struct e1000_adapter *adapter) fp@673: { fp@673: struct e1000_desc_ring *rx_ring = &adapter->rx_ring; fp@673: struct pci_dev *pdev = adapter->pdev; fp@673: fp@673: e1000_clean_rx_ring(adapter); fp@673: fp@673: vfree(rx_ring->buffer_info); fp@673: rx_ring->buffer_info = NULL; fp@673: kfree(rx_ring->ps_page); fp@673: rx_ring->ps_page = NULL; fp@673: kfree(rx_ring->ps_page_dma); fp@673: rx_ring->ps_page_dma = NULL; fp@673: fp@673: pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma); fp@673: fp@673: rx_ring->desc = NULL; fp@673: } fp@673: fp@673: /** fp@673: * e1000_clean_rx_ring - Free Rx Buffers fp@673: * @adapter: board private structure fp@673: **/ fp@673: fp@673: static void fp@673: e1000_clean_rx_ring(struct e1000_adapter *adapter) fp@673: { fp@673: struct e1000_desc_ring *rx_ring = &adapter->rx_ring; fp@673: struct e1000_buffer *buffer_info; fp@673: struct e1000_ps_page *ps_page; fp@673: struct e1000_ps_page_dma *ps_page_dma; fp@673: struct pci_dev *pdev = adapter->pdev; fp@673: unsigned long size; fp@673: unsigned int i, j; fp@673: fp@673: /* Free all the Rx ring sk_buffs */ fp@673: fp@673: for(i = 0; i < rx_ring->count; i++) { fp@673: buffer_info = &rx_ring->buffer_info[i]; fp@673: if(buffer_info->skb) { fp@673: ps_page = &rx_ring->ps_page[i]; fp@673: ps_page_dma = &rx_ring->ps_page_dma[i]; fp@673: pci_unmap_single(pdev, fp@673: buffer_info->dma, fp@673: buffer_info->length, fp@673: PCI_DMA_FROMDEVICE); fp@673: fp@673: dev_kfree_skb(buffer_info->skb); fp@673: buffer_info->skb = NULL; fp@673: fp@673: for(j = 0; j < PS_PAGE_BUFFERS; j++) { fp@673: if(!ps_page->ps_page[j]) break; fp@673: pci_unmap_single(pdev, fp@673: ps_page_dma->ps_page_dma[j], fp@673: PAGE_SIZE, PCI_DMA_FROMDEVICE); fp@673: ps_page_dma->ps_page_dma[j] = 0; fp@673: put_page(ps_page->ps_page[j]); fp@673: ps_page->ps_page[j] = NULL; fp@673: } fp@673: } fp@673: } fp@673: fp@673: size = sizeof(struct e1000_buffer) * rx_ring->count; fp@673: memset(rx_ring->buffer_info, 0, size); fp@673: size = sizeof(struct e1000_ps_page) * rx_ring->count; fp@673: memset(rx_ring->ps_page, 0, size); fp@673: size = sizeof(struct e1000_ps_page_dma) * rx_ring->count; fp@673: memset(rx_ring->ps_page_dma, 0, size); fp@673: fp@673: /* Zero out the descriptor ring */ fp@673: fp@673: memset(rx_ring->desc, 0, rx_ring->size); fp@673: fp@673: rx_ring->next_to_clean = 0; fp@673: rx_ring->next_to_use = 0; fp@673: fp@673: E1000_WRITE_REG(&adapter->hw, RDH, 0); fp@673: E1000_WRITE_REG(&adapter->hw, RDT, 0); fp@673: } fp@673: fp@673: /* The 82542 2.0 (revision 2) needs to have the receive unit in reset fp@673: * and memory write and invalidate disabled for certain operations fp@673: */ fp@673: static void fp@673: e1000_enter_82542_rst(struct e1000_adapter *adapter) fp@673: { fp@673: struct net_device *netdev = adapter->netdev; fp@673: uint32_t rctl; fp@673: fp@673: e1000_pci_clear_mwi(&adapter->hw); fp@673: fp@673: rctl = E1000_READ_REG(&adapter->hw, RCTL); fp@673: rctl |= E1000_RCTL_RST; fp@673: E1000_WRITE_REG(&adapter->hw, RCTL, rctl); fp@673: E1000_WRITE_FLUSH(&adapter->hw); fp@673: mdelay(5); fp@673: fp@673: if(netif_running(netdev)) fp@673: e1000_clean_rx_ring(adapter); fp@673: } fp@673: fp@673: static void fp@673: e1000_leave_82542_rst(struct e1000_adapter *adapter) fp@673: { fp@673: struct net_device *netdev = adapter->netdev; fp@673: uint32_t rctl; fp@673: fp@673: rctl = E1000_READ_REG(&adapter->hw, RCTL); fp@673: rctl &= ~E1000_RCTL_RST; fp@673: E1000_WRITE_REG(&adapter->hw, RCTL, rctl); fp@673: E1000_WRITE_FLUSH(&adapter->hw); fp@673: mdelay(5); fp@673: fp@673: if(adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE) fp@673: e1000_pci_set_mwi(&adapter->hw); fp@673: fp@673: if(netif_running(netdev)) { fp@673: e1000_configure_rx(adapter); fp@673: e1000_alloc_rx_buffers(adapter); fp@673: } fp@673: } fp@673: fp@673: /** fp@673: * e1000_set_mac - Change the Ethernet Address of the NIC fp@673: * @netdev: network interface device structure fp@673: * @p: pointer to an address structure fp@673: * fp@673: * Returns 0 on success, negative on failure fp@673: **/ fp@673: fp@673: static int fp@673: e1000_set_mac(struct net_device *netdev, void *p) fp@673: { fp@673: struct e1000_adapter *adapter = netdev_priv(netdev); fp@673: struct sockaddr *addr = p; fp@673: fp@673: if(!is_valid_ether_addr(addr->sa_data)) fp@673: return -EADDRNOTAVAIL; fp@673: fp@673: /* 82542 2.0 needs to be in reset to write receive address registers */ fp@673: fp@673: if(adapter->hw.mac_type == e1000_82542_rev2_0) fp@673: e1000_enter_82542_rst(adapter); fp@673: fp@673: memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); fp@673: memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len); fp@673: fp@673: e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0); fp@673: fp@673: if(adapter->hw.mac_type == e1000_82542_rev2_0) fp@673: e1000_leave_82542_rst(adapter); fp@673: fp@673: return 0; fp@673: } fp@673: fp@673: /** fp@673: * e1000_set_multi - Multicast and Promiscuous mode set fp@673: * @netdev: network interface device structure fp@673: * fp@673: * The set_multi entry point is called whenever the multicast address fp@673: * list or the network interface flags are updated. This routine is fp@673: * responsible for configuring the hardware for proper multicast, fp@673: * promiscuous mode, and all-multi behavior. fp@673: **/ fp@673: fp@673: static void fp@673: e1000_set_multi(struct net_device *netdev) fp@673: { fp@673: struct e1000_adapter *adapter = netdev_priv(netdev); fp@673: struct e1000_hw *hw = &adapter->hw; fp@673: struct dev_mc_list *mc_ptr; fp@673: unsigned long flags; fp@673: uint32_t rctl; fp@673: uint32_t hash_value; fp@673: int i; fp@673: fp@673: spin_lock_irqsave(&adapter->tx_lock, flags); fp@673: fp@673: /* Check for Promiscuous and All Multicast modes */ fp@673: fp@673: rctl = E1000_READ_REG(hw, RCTL); fp@673: fp@673: if(netdev->flags & IFF_PROMISC) { fp@673: rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); fp@673: } else if(netdev->flags & IFF_ALLMULTI) { fp@673: rctl |= E1000_RCTL_MPE; fp@673: rctl &= ~E1000_RCTL_UPE; fp@673: } else { fp@673: rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE); fp@673: } fp@673: fp@673: E1000_WRITE_REG(hw, RCTL, rctl); fp@673: fp@673: /* 82542 2.0 needs to be in reset to write receive address registers */ fp@673: fp@673: if(hw->mac_type == e1000_82542_rev2_0) fp@673: e1000_enter_82542_rst(adapter); fp@673: fp@673: /* load the first 14 multicast address into the exact filters 1-14 fp@673: * RAR 0 is used for the station MAC adddress fp@673: * if there are not 14 addresses, go ahead and clear the filters fp@673: */ fp@673: mc_ptr = netdev->mc_list; fp@673: fp@673: for(i = 1; i < E1000_RAR_ENTRIES; i++) { fp@673: if(mc_ptr) { fp@673: e1000_rar_set(hw, mc_ptr->dmi_addr, i); fp@673: mc_ptr = mc_ptr->next; fp@673: } else { fp@673: E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0); fp@673: E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0); fp@673: } fp@673: } fp@673: fp@673: /* clear the old settings from the multicast hash table */ fp@673: fp@673: for(i = 0; i < E1000_NUM_MTA_REGISTERS; i++) fp@673: E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); fp@673: fp@673: /* load any remaining addresses into the hash table */ fp@673: fp@673: for(; mc_ptr; mc_ptr = mc_ptr->next) { fp@673: hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr); fp@673: e1000_mta_set(hw, hash_value); fp@673: } fp@673: fp@673: if(hw->mac_type == e1000_82542_rev2_0) fp@673: e1000_leave_82542_rst(adapter); fp@673: fp@673: spin_unlock_irqrestore(&adapter->tx_lock, flags); fp@673: } fp@673: fp@673: /* Need to wait a few seconds after link up to get diagnostic information from fp@673: * the phy */ fp@673: fp@673: static void fp@673: e1000_update_phy_info(unsigned long data) fp@673: { fp@673: struct e1000_adapter *adapter = (struct e1000_adapter *) data; fp@673: e1000_phy_get_info(&adapter->hw, &adapter->phy_info); fp@673: } fp@673: fp@673: /** fp@673: * e1000_82547_tx_fifo_stall - Timer Call-back fp@673: * @data: pointer to adapter cast into an unsigned long fp@673: **/ fp@673: fp@673: static void fp@673: e1000_82547_tx_fifo_stall(unsigned long data) fp@673: { fp@673: struct e1000_adapter *adapter = (struct e1000_adapter *) data; fp@673: struct net_device *netdev = adapter->netdev; fp@673: uint32_t tctl; fp@673: fp@673: if(atomic_read(&adapter->tx_fifo_stall)) { fp@673: if((E1000_READ_REG(&adapter->hw, TDT) == fp@673: E1000_READ_REG(&adapter->hw, TDH)) && fp@673: (E1000_READ_REG(&adapter->hw, TDFT) == fp@673: E1000_READ_REG(&adapter->hw, TDFH)) && fp@673: (E1000_READ_REG(&adapter->hw, TDFTS) == fp@673: E1000_READ_REG(&adapter->hw, TDFHS))) { fp@673: tctl = E1000_READ_REG(&adapter->hw, TCTL); fp@673: E1000_WRITE_REG(&adapter->hw, TCTL, fp@673: tctl & ~E1000_TCTL_EN); fp@673: E1000_WRITE_REG(&adapter->hw, TDFT, fp@673: adapter->tx_head_addr); fp@673: E1000_WRITE_REG(&adapter->hw, TDFH, fp@673: adapter->tx_head_addr); fp@673: E1000_WRITE_REG(&adapter->hw, TDFTS, fp@673: adapter->tx_head_addr); fp@673: E1000_WRITE_REG(&adapter->hw, TDFHS, fp@673: adapter->tx_head_addr); fp@673: E1000_WRITE_REG(&adapter->hw, TCTL, tctl); fp@673: E1000_WRITE_FLUSH(&adapter->hw); fp@673: fp@673: adapter->tx_fifo_head = 0; fp@673: atomic_set(&adapter->tx_fifo_stall, 0); fp@673: netif_wake_queue(netdev); fp@673: } else { fp@673: mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1); fp@673: } fp@673: } fp@673: } fp@673: fp@673: /** fp@673: * e1000_watchdog - Timer Call-back fp@673: * @data: pointer to adapter cast into an unsigned long fp@673: **/ fp@673: static void fp@673: e1000_watchdog(unsigned long data) fp@673: { fp@673: struct e1000_adapter *adapter = (struct e1000_adapter *) data; fp@673: fp@673: /* Do the rest outside of interrupt context */ fp@673: schedule_work(&adapter->watchdog_task); fp@673: } fp@673: fp@673: static void fp@673: e1000_watchdog_task(struct e1000_adapter *adapter) fp@673: { fp@673: struct net_device *netdev = adapter->netdev; fp@673: struct e1000_desc_ring *txdr = &adapter->tx_ring; fp@673: uint32_t link; fp@673: fp@673: e1000_check_for_link(&adapter->hw); fp@673: if (adapter->hw.mac_type == e1000_82573) { fp@673: e1000_enable_tx_pkt_filtering(&adapter->hw); fp@673: if(adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id) fp@673: e1000_update_mng_vlan(adapter); fp@673: } fp@673: fp@673: if((adapter->hw.media_type == e1000_media_type_internal_serdes) && fp@673: !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE)) fp@673: link = !adapter->hw.serdes_link_down; fp@673: else fp@673: link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU; fp@673: fp@673: if(link) { fp@673: if(!netif_carrier_ok(netdev)) { fp@673: e1000_get_speed_and_duplex(&adapter->hw, fp@673: &adapter->link_speed, fp@673: &adapter->link_duplex); fp@673: fp@673: DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n", fp@673: adapter->link_speed, fp@673: adapter->link_duplex == FULL_DUPLEX ? fp@673: "Full Duplex" : "Half Duplex"); fp@673: fp@673: netif_carrier_on(netdev); fp@673: netif_wake_queue(netdev); fp@673: mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ); fp@673: adapter->smartspeed = 0; fp@673: } fp@673: } else { fp@673: if(netif_carrier_ok(netdev)) { fp@673: adapter->link_speed = 0; fp@673: adapter->link_duplex = 0; fp@673: DPRINTK(LINK, INFO, "NIC Link is Down\n"); fp@673: netif_carrier_off(netdev); fp@673: netif_stop_queue(netdev); fp@673: mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ); fp@673: } fp@673: fp@673: e1000_smartspeed(adapter); fp@673: } fp@673: fp@673: e1000_update_stats(adapter); fp@673: fp@673: adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; fp@673: adapter->tpt_old = adapter->stats.tpt; fp@673: adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old; fp@673: adapter->colc_old = adapter->stats.colc; fp@673: fp@673: adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old; fp@673: adapter->gorcl_old = adapter->stats.gorcl; fp@673: adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old; fp@673: adapter->gotcl_old = adapter->stats.gotcl; fp@673: fp@673: e1000_update_adaptive(&adapter->hw); fp@673: fp@673: if(!netif_carrier_ok(netdev)) { fp@673: if(E1000_DESC_UNUSED(txdr) + 1 < txdr->count) { fp@673: /* We've lost link, so the controller stops DMA, fp@673: * but we've got queued Tx work that's never going fp@673: * to get done, so reset controller to flush Tx. fp@673: * (Do the reset outside of interrupt context). */ fp@673: schedule_work(&adapter->tx_timeout_task); fp@673: } fp@673: } fp@673: fp@673: /* Dynamic mode for Interrupt Throttle Rate (ITR) */ fp@673: if(adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) { fp@673: /* Symmetric Tx/Rx gets a reduced ITR=2000; Total fp@673: * asymmetrical Tx or Rx gets ITR=8000; everyone fp@673: * else is between 2000-8000. */ fp@673: uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000; fp@673: uint32_t dif = (adapter->gotcl > adapter->gorcl ? fp@673: adapter->gotcl - adapter->gorcl : fp@673: adapter->gorcl - adapter->gotcl) / 10000; fp@673: uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000; fp@673: E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256)); fp@673: } fp@673: fp@673: /* Cause software interrupt to ensure rx ring is cleaned */ fp@673: E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0); fp@673: fp@673: /* Force detection of hung controller every watchdog period */ fp@673: adapter->detect_tx_hung = TRUE; fp@673: fp@673: /* Reset the timer */ fp@673: mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ); fp@673: } fp@673: fp@673: #define E1000_TX_FLAGS_CSUM 0x00000001 fp@673: #define E1000_TX_FLAGS_VLAN 0x00000002 fp@673: #define E1000_TX_FLAGS_TSO 0x00000004 fp@673: #define E1000_TX_FLAGS_IPV4 0x00000008 fp@673: #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 fp@673: #define E1000_TX_FLAGS_VLAN_SHIFT 16 fp@673: fp@673: static inline int fp@673: e1000_tso(struct e1000_adapter *adapter, struct sk_buff *skb) fp@673: { fp@673: #ifdef NETIF_F_TSO fp@673: struct e1000_context_desc *context_desc; fp@673: unsigned int i; fp@673: uint32_t cmd_length = 0; fp@673: uint16_t ipcse = 0, tucse, mss; fp@673: uint8_t ipcss, ipcso, tucss, tucso, hdr_len; fp@673: int err; fp@673: fp@673: if(skb_shinfo(skb)->tso_size) { fp@673: if (skb_header_cloned(skb)) { fp@673: err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); fp@673: if (err) fp@673: return err; fp@673: } fp@673: fp@673: hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2)); fp@673: mss = skb_shinfo(skb)->tso_size; fp@673: if(skb->protocol == ntohs(ETH_P_IP)) { fp@673: skb->nh.iph->tot_len = 0; fp@673: skb->nh.iph->check = 0; fp@673: skb->h.th->check = fp@673: ~csum_tcpudp_magic(skb->nh.iph->saddr, fp@673: skb->nh.iph->daddr, fp@673: 0, fp@673: IPPROTO_TCP, fp@673: 0); fp@673: cmd_length = E1000_TXD_CMD_IP; fp@673: ipcse = skb->h.raw - skb->data - 1; fp@673: #ifdef NETIF_F_TSO_IPV6 fp@673: } else if(skb->protocol == ntohs(ETH_P_IPV6)) { fp@673: skb->nh.ipv6h->payload_len = 0; fp@673: skb->h.th->check = fp@673: ~csum_ipv6_magic(&skb->nh.ipv6h->saddr, fp@673: &skb->nh.ipv6h->daddr, fp@673: 0, fp@673: IPPROTO_TCP, fp@673: 0); fp@673: ipcse = 0; fp@673: #endif fp@673: } fp@673: ipcss = skb->nh.raw - skb->data; fp@673: ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data; fp@673: tucss = skb->h.raw - skb->data; fp@673: tucso = (void *)&(skb->h.th->check) - (void *)skb->data; fp@673: tucse = 0; fp@673: fp@673: cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | fp@673: E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); fp@673: fp@673: i = adapter->tx_ring.next_to_use; fp@673: context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i); fp@673: fp@673: context_desc->lower_setup.ip_fields.ipcss = ipcss; fp@673: context_desc->lower_setup.ip_fields.ipcso = ipcso; fp@673: context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); fp@673: context_desc->upper_setup.tcp_fields.tucss = tucss; fp@673: context_desc->upper_setup.tcp_fields.tucso = tucso; fp@673: context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); fp@673: context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); fp@673: context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; fp@673: context_desc->cmd_and_length = cpu_to_le32(cmd_length); fp@673: fp@673: if(++i == adapter->tx_ring.count) i = 0; fp@673: adapter->tx_ring.next_to_use = i; fp@673: fp@673: return 1; fp@673: } fp@673: #endif fp@673: fp@673: return 0; fp@673: } fp@673: fp@673: static inline boolean_t fp@673: e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb) fp@673: { fp@673: struct e1000_context_desc *context_desc; fp@673: unsigned int i; fp@673: uint8_t css; fp@673: fp@673: if(likely(skb->ip_summed == CHECKSUM_HW)) { fp@673: css = skb->h.raw - skb->data; fp@673: fp@673: i = adapter->tx_ring.next_to_use; fp@673: context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i); fp@673: fp@673: context_desc->upper_setup.tcp_fields.tucss = css; fp@673: context_desc->upper_setup.tcp_fields.tucso = css + skb->csum; fp@673: context_desc->upper_setup.tcp_fields.tucse = 0; fp@673: context_desc->tcp_seg_setup.data = 0; fp@673: context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT); fp@673: fp@673: if(unlikely(++i == adapter->tx_ring.count)) i = 0; fp@673: adapter->tx_ring.next_to_use = i; fp@673: fp@673: return TRUE; fp@673: } fp@673: fp@673: return FALSE; fp@673: } fp@673: fp@673: #define E1000_MAX_TXD_PWR 12 fp@673: #define E1000_MAX_DATA_PER_TXD (1<tx_ring; fp@673: struct e1000_buffer *buffer_info; fp@673: unsigned int len = skb->len; fp@673: unsigned int offset = 0, size, count = 0, i; fp@673: unsigned int f; fp@673: len -= skb->data_len; fp@673: fp@673: i = tx_ring->next_to_use; fp@673: fp@673: while(len) { fp@673: buffer_info = &tx_ring->buffer_info[i]; fp@673: size = min(len, max_per_txd); fp@673: #ifdef NETIF_F_TSO fp@673: /* Workaround for premature desc write-backs fp@673: * in TSO mode. Append 4-byte sentinel desc */ fp@673: if(unlikely(mss && !nr_frags && size == len && size > 8)) fp@673: size -= 4; fp@673: #endif fp@673: /* work-around for errata 10 and it applies fp@673: * to all controllers in PCI-X mode fp@673: * The fix is to make sure that the first descriptor of a fp@673: * packet is smaller than 2048 - 16 - 16 (or 2016) bytes fp@673: */ fp@673: if(unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) && fp@673: (size > 2015) && count == 0)) fp@673: size = 2015; fp@673: fp@673: /* Workaround for potential 82544 hang in PCI-X. Avoid fp@673: * terminating buffers within evenly-aligned dwords. */ fp@673: if(unlikely(adapter->pcix_82544 && fp@673: !((unsigned long)(skb->data + offset + size - 1) & 4) && fp@673: size > 4)) fp@673: size -= 4; fp@673: fp@673: buffer_info->length = size; fp@673: buffer_info->dma = fp@673: pci_map_single(adapter->pdev, fp@673: skb->data + offset, fp@673: size, fp@673: PCI_DMA_TODEVICE); fp@673: buffer_info->time_stamp = jiffies; fp@673: fp@673: len -= size; fp@673: offset += size; fp@673: count++; fp@673: if(unlikely(++i == tx_ring->count)) i = 0; fp@673: } fp@673: fp@673: for(f = 0; f < nr_frags; f++) { fp@673: struct skb_frag_struct *frag; fp@673: fp@673: frag = &skb_shinfo(skb)->frags[f]; fp@673: len = frag->size; fp@673: offset = frag->page_offset; fp@673: fp@673: while(len) { fp@673: buffer_info = &tx_ring->buffer_info[i]; fp@673: size = min(len, max_per_txd); fp@673: #ifdef NETIF_F_TSO fp@673: /* Workaround for premature desc write-backs fp@673: * in TSO mode. Append 4-byte sentinel desc */ fp@673: if(unlikely(mss && f == (nr_frags-1) && size == len && size > 8)) fp@673: size -= 4; fp@673: #endif fp@673: /* Workaround for potential 82544 hang in PCI-X. fp@673: * Avoid terminating buffers within evenly-aligned fp@673: * dwords. */ fp@673: if(unlikely(adapter->pcix_82544 && fp@673: !((unsigned long)(frag->page+offset+size-1) & 4) && fp@673: size > 4)) fp@673: size -= 4; fp@673: fp@673: buffer_info->length = size; fp@673: buffer_info->dma = fp@673: pci_map_page(adapter->pdev, fp@673: frag->page, fp@673: offset, fp@673: size, fp@673: PCI_DMA_TODEVICE); fp@673: buffer_info->time_stamp = jiffies; fp@673: fp@673: len -= size; fp@673: offset += size; fp@673: count++; fp@673: if(unlikely(++i == tx_ring->count)) i = 0; fp@673: } fp@673: } fp@673: fp@673: i = (i == 0) ? tx_ring->count - 1 : i - 1; fp@673: tx_ring->buffer_info[i].skb = skb; fp@673: tx_ring->buffer_info[first].next_to_watch = i; fp@673: fp@673: return count; fp@673: } fp@673: fp@673: static inline void fp@673: e1000_tx_queue(struct e1000_adapter *adapter, int count, int tx_flags) fp@673: { fp@673: struct e1000_desc_ring *tx_ring = &adapter->tx_ring; fp@673: struct e1000_tx_desc *tx_desc = NULL; fp@673: struct e1000_buffer *buffer_info; fp@673: uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; fp@673: unsigned int i; fp@673: fp@673: if(likely(tx_flags & E1000_TX_FLAGS_TSO)) { fp@673: txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | fp@673: E1000_TXD_CMD_TSE; fp@673: txd_upper |= E1000_TXD_POPTS_TXSM << 8; fp@673: fp@673: if(likely(tx_flags & E1000_TX_FLAGS_IPV4)) fp@673: txd_upper |= E1000_TXD_POPTS_IXSM << 8; fp@673: } fp@673: fp@673: if(likely(tx_flags & E1000_TX_FLAGS_CSUM)) { fp@673: txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; fp@673: txd_upper |= E1000_TXD_POPTS_TXSM << 8; fp@673: } fp@673: fp@673: if(unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) { fp@673: txd_lower |= E1000_TXD_CMD_VLE; fp@673: txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); fp@673: } fp@673: fp@673: i = tx_ring->next_to_use; fp@673: fp@673: while(count--) { fp@673: buffer_info = &tx_ring->buffer_info[i]; fp@673: tx_desc = E1000_TX_DESC(*tx_ring, i); fp@673: tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); fp@673: tx_desc->lower.data = fp@673: cpu_to_le32(txd_lower | buffer_info->length); fp@673: tx_desc->upper.data = cpu_to_le32(txd_upper); fp@673: if(unlikely(++i == tx_ring->count)) i = 0; fp@673: } fp@673: fp@673: tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); fp@673: fp@673: /* Force memory writes to complete before letting h/w fp@673: * know there are new descriptors to fetch. (Only fp@673: * applicable for weak-ordered memory model archs, fp@673: * such as IA-64). */ fp@673: wmb(); fp@673: fp@673: tx_ring->next_to_use = i; fp@673: E1000_WRITE_REG(&adapter->hw, TDT, i); fp@673: } fp@673: fp@673: /** fp@673: * 82547 workaround to avoid controller hang in half-duplex environment. fp@673: * The workaround is to avoid queuing a large packet that would span fp@673: * the internal Tx FIFO ring boundary by notifying the stack to resend fp@673: * the packet at a later time. This gives the Tx FIFO an opportunity to fp@673: * flush all packets. When that occurs, we reset the Tx FIFO pointers fp@673: * to the beginning of the Tx FIFO. fp@673: **/ fp@673: fp@673: #define E1000_FIFO_HDR 0x10 fp@673: #define E1000_82547_PAD_LEN 0x3E0 fp@673: fp@673: static inline int fp@673: e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb) fp@673: { fp@673: uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head; fp@673: uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR; fp@673: fp@673: E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR); fp@673: fp@673: if(adapter->link_duplex != HALF_DUPLEX) fp@673: goto no_fifo_stall_required; fp@673: fp@673: if(atomic_read(&adapter->tx_fifo_stall)) fp@673: return 1; fp@673: fp@673: if(skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) { fp@673: atomic_set(&adapter->tx_fifo_stall, 1); fp@673: return 1; fp@673: } fp@673: fp@673: no_fifo_stall_required: fp@673: adapter->tx_fifo_head += skb_fifo_len; fp@673: if(adapter->tx_fifo_head >= adapter->tx_fifo_size) fp@673: adapter->tx_fifo_head -= adapter->tx_fifo_size; fp@673: return 0; fp@673: } fp@673: fp@673: #define MINIMUM_DHCP_PACKET_SIZE 282 fp@673: static inline int fp@673: e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb) fp@673: { fp@673: struct e1000_hw *hw = &adapter->hw; fp@673: uint16_t length, offset; fp@673: if(vlan_tx_tag_present(skb)) { fp@673: if(!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) && fp@673: ( adapter->hw.mng_cookie.status & fp@673: E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) ) fp@673: return 0; fp@673: } fp@673: if(htons(ETH_P_IP) == skb->protocol) { fp@673: const struct iphdr *ip = skb->nh.iph; fp@673: if(IPPROTO_UDP == ip->protocol) { fp@673: struct udphdr *udp = (struct udphdr *)(skb->h.uh); fp@673: if(ntohs(udp->dest) == 67) { fp@673: offset = (uint8_t *)udp + 8 - skb->data; fp@673: length = skb->len - offset; fp@673: fp@673: return e1000_mng_write_dhcp_info(hw, fp@673: (uint8_t *)udp + 8, length); fp@673: } fp@673: } fp@673: } else if((skb->len > MINIMUM_DHCP_PACKET_SIZE) && (!skb->protocol)) { fp@673: struct ethhdr *eth = (struct ethhdr *) skb->data; fp@673: if((htons(ETH_P_IP) == eth->h_proto)) { fp@673: const struct iphdr *ip = fp@673: (struct iphdr *)((uint8_t *)skb->data+14); fp@673: if(IPPROTO_UDP == ip->protocol) { fp@673: struct udphdr *udp = fp@673: (struct udphdr *)((uint8_t *)ip + fp@673: (ip->ihl << 2)); fp@673: if(ntohs(udp->dest) == 67) { fp@673: offset = (uint8_t *)udp + 8 - skb->data; fp@673: length = skb->len - offset; fp@673: fp@673: return e1000_mng_write_dhcp_info(hw, fp@673: (uint8_t *)udp + 8, fp@673: length); fp@673: } fp@673: } fp@673: } fp@673: } fp@673: return 0; fp@673: } fp@673: fp@673: #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 ) fp@673: static int fp@673: e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev) fp@673: { fp@673: struct e1000_adapter *adapter = netdev_priv(netdev); fp@673: unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD; fp@673: unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; fp@673: unsigned int tx_flags = 0; fp@673: unsigned int len = skb->len; fp@673: unsigned long flags; fp@673: unsigned int nr_frags = 0; fp@673: unsigned int mss = 0; fp@673: int count = 0; fp@673: int tso; fp@673: unsigned int f; fp@673: len -= skb->data_len; fp@673: fp@673: if(unlikely(skb->len <= 0)) { fp@673: dev_kfree_skb_any(skb); fp@673: return NETDEV_TX_OK; fp@673: } fp@673: fp@673: #ifdef NETIF_F_TSO fp@673: mss = skb_shinfo(skb)->tso_size; fp@673: /* The controller does a simple calculation to fp@673: * make sure there is enough room in the FIFO before fp@673: * initiating the DMA for each buffer. The calc is: fp@673: * 4 = ceil(buffer len/mss). To make sure we don't fp@673: * overrun the FIFO, adjust the max buffer len if mss fp@673: * drops. */ fp@673: if(mss) { fp@673: max_per_txd = min(mss << 2, max_per_txd); fp@673: max_txd_pwr = fls(max_per_txd) - 1; fp@673: } fp@673: fp@673: if((mss) || (skb->ip_summed == CHECKSUM_HW)) fp@673: count++; fp@673: count++; fp@673: #else fp@673: if(skb->ip_summed == CHECKSUM_HW) fp@673: count++; fp@673: #endif fp@673: count += TXD_USE_COUNT(len, max_txd_pwr); fp@673: fp@673: if(adapter->pcix_82544) fp@673: count++; fp@673: fp@673: /* work-around for errata 10 and it applies to all controllers fp@673: * in PCI-X mode, so add one more descriptor to the count fp@673: */ fp@673: if(unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) && fp@673: (len > 2015))) fp@673: count++; fp@673: fp@673: nr_frags = skb_shinfo(skb)->nr_frags; fp@673: for(f = 0; f < nr_frags; f++) fp@673: count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size, fp@673: max_txd_pwr); fp@673: if(adapter->pcix_82544) fp@673: count += nr_frags; fp@673: fp@673: local_irq_save(flags); fp@673: if (!spin_trylock(&adapter->tx_lock)) { fp@673: /* Collision - tell upper layer to requeue */ fp@673: local_irq_restore(flags); fp@673: return NETDEV_TX_LOCKED; fp@673: } fp@673: if(adapter->hw.tx_pkt_filtering && (adapter->hw.mac_type == e1000_82573) ) fp@673: e1000_transfer_dhcp_info(adapter, skb); fp@673: fp@673: fp@673: /* need: count + 2 desc gap to keep tail from touching fp@673: * head, otherwise try next time */ fp@673: if(unlikely(E1000_DESC_UNUSED(&adapter->tx_ring) < count + 2)) { fp@673: netif_stop_queue(netdev); fp@673: spin_unlock_irqrestore(&adapter->tx_lock, flags); fp@673: return NETDEV_TX_BUSY; fp@673: } fp@673: fp@673: if(unlikely(adapter->hw.mac_type == e1000_82547)) { fp@673: if(unlikely(e1000_82547_fifo_workaround(adapter, skb))) { fp@673: netif_stop_queue(netdev); fp@673: mod_timer(&adapter->tx_fifo_stall_timer, jiffies); fp@673: spin_unlock_irqrestore(&adapter->tx_lock, flags); fp@673: return NETDEV_TX_BUSY; fp@673: } fp@673: } fp@673: fp@673: if(unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) { fp@673: tx_flags |= E1000_TX_FLAGS_VLAN; fp@673: tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT); fp@673: } fp@673: fp@673: first = adapter->tx_ring.next_to_use; fp@673: fp@673: tso = e1000_tso(adapter, skb); fp@673: if (tso < 0) { fp@673: dev_kfree_skb_any(skb); fp@673: spin_unlock_irqrestore(&adapter->tx_lock, flags); fp@673: return NETDEV_TX_OK; fp@673: } fp@673: fp@673: if (likely(tso)) fp@673: tx_flags |= E1000_TX_FLAGS_TSO; fp@673: else if(likely(e1000_tx_csum(adapter, skb))) fp@673: tx_flags |= E1000_TX_FLAGS_CSUM; fp@673: fp@673: /* Old method was to assume IPv4 packet by default if TSO was enabled. fp@673: * 82573 hardware supports TSO capabilities for IPv6 as well... fp@673: * no longer assume, we must. */ fp@673: if(likely(skb->protocol == ntohs(ETH_P_IP))) fp@673: tx_flags |= E1000_TX_FLAGS_IPV4; fp@673: fp@673: e1000_tx_queue(adapter, fp@673: e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss), fp@673: tx_flags); fp@673: fp@673: netdev->trans_start = jiffies; fp@673: fp@673: /* Make sure there is space in the ring for the next send. */ fp@673: if(unlikely(E1000_DESC_UNUSED(&adapter->tx_ring) < MAX_SKB_FRAGS + 2)) fp@673: netif_stop_queue(netdev); fp@673: fp@673: spin_unlock_irqrestore(&adapter->tx_lock, flags); fp@673: return NETDEV_TX_OK; fp@673: } fp@673: fp@673: /** fp@673: * e1000_tx_timeout - Respond to a Tx Hang fp@673: * @netdev: network interface device structure fp@673: **/ fp@673: fp@673: static void fp@673: e1000_tx_timeout(struct net_device *netdev) fp@673: { fp@673: struct e1000_adapter *adapter = netdev_priv(netdev); fp@673: fp@673: /* Do the reset outside of interrupt context */ fp@673: schedule_work(&adapter->tx_timeout_task); fp@673: } fp@673: fp@673: static void fp@673: e1000_tx_timeout_task(struct net_device *netdev) fp@673: { fp@673: struct e1000_adapter *adapter = netdev_priv(netdev); fp@673: fp@673: e1000_down(adapter); fp@673: e1000_up(adapter); fp@673: } fp@673: fp@673: /** fp@673: * e1000_get_stats - Get System Network Statistics fp@673: * @netdev: network interface device structure fp@673: * fp@673: * Returns the address of the device statistics structure. fp@673: * The statistics are actually updated from the timer callback. fp@673: **/ fp@673: fp@673: static struct net_device_stats * fp@673: e1000_get_stats(struct net_device *netdev) fp@673: { fp@673: struct e1000_adapter *adapter = netdev_priv(netdev); fp@673: fp@673: e1000_update_stats(adapter); fp@673: return &adapter->net_stats; fp@673: } fp@673: fp@673: /** fp@673: * e1000_change_mtu - Change the Maximum Transfer Unit fp@673: * @netdev: network interface device structure fp@673: * @new_mtu: new value for maximum frame size fp@673: * fp@673: * Returns 0 on success, negative on failure fp@673: **/ fp@673: fp@673: static int fp@673: e1000_change_mtu(struct net_device *netdev, int new_mtu) fp@673: { fp@673: struct e1000_adapter *adapter = netdev_priv(netdev); fp@673: int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; fp@673: fp@673: if((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) || fp@673: (max_frame > MAX_JUMBO_FRAME_SIZE)) { fp@673: DPRINTK(PROBE, ERR, "Invalid MTU setting\n"); fp@673: return -EINVAL; fp@673: } fp@673: fp@673: #define MAX_STD_JUMBO_FRAME_SIZE 9216 fp@673: /* might want this to be bigger enum check... */ fp@673: if (adapter->hw.mac_type == e1000_82573 && fp@673: max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) { fp@673: DPRINTK(PROBE, ERR, "Jumbo Frames not supported " fp@673: "on 82573\n"); fp@673: return -EINVAL; fp@673: } fp@673: fp@673: if(adapter->hw.mac_type > e1000_82547_rev_2) { fp@673: adapter->rx_buffer_len = max_frame; fp@673: E1000_ROUNDUP(adapter->rx_buffer_len, 1024); fp@673: } else { fp@673: if(unlikely((adapter->hw.mac_type < e1000_82543) && fp@673: (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE))) { fp@673: DPRINTK(PROBE, ERR, "Jumbo Frames not supported " fp@673: "on 82542\n"); fp@673: return -EINVAL; fp@673: fp@673: } else { fp@673: if(max_frame <= E1000_RXBUFFER_2048) { fp@673: adapter->rx_buffer_len = E1000_RXBUFFER_2048; fp@673: } else if(max_frame <= E1000_RXBUFFER_4096) { fp@673: adapter->rx_buffer_len = E1000_RXBUFFER_4096; fp@673: } else if(max_frame <= E1000_RXBUFFER_8192) { fp@673: adapter->rx_buffer_len = E1000_RXBUFFER_8192; fp@673: } else if(max_frame <= E1000_RXBUFFER_16384) { fp@673: adapter->rx_buffer_len = E1000_RXBUFFER_16384; fp@673: } fp@673: } fp@673: } fp@673: fp@673: netdev->mtu = new_mtu; fp@673: fp@673: if(netif_running(netdev)) { fp@673: e1000_down(adapter); fp@673: e1000_up(adapter); fp@673: } fp@673: fp@673: adapter->hw.max_frame_size = max_frame; fp@673: fp@673: return 0; fp@673: } fp@673: fp@673: /** fp@673: * e1000_update_stats - Update the board statistics counters fp@673: * @adapter: board private structure fp@673: **/ fp@673: fp@673: void fp@673: e1000_update_stats(struct e1000_adapter *adapter) fp@673: { fp@673: struct e1000_hw *hw = &adapter->hw; fp@673: unsigned long flags; fp@673: uint16_t phy_tmp; fp@673: fp@673: #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF fp@673: fp@673: spin_lock_irqsave(&adapter->stats_lock, flags); fp@673: fp@673: /* these counters are modified from e1000_adjust_tbi_stats, fp@673: * called from the interrupt context, so they must only fp@673: * be written while holding adapter->stats_lock fp@673: */ fp@673: fp@673: adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS); fp@673: adapter->stats.gprc += E1000_READ_REG(hw, GPRC); fp@673: adapter->stats.gorcl += E1000_READ_REG(hw, GORCL); fp@673: adapter->stats.gorch += E1000_READ_REG(hw, GORCH); fp@673: adapter->stats.bprc += E1000_READ_REG(hw, BPRC); fp@673: adapter->stats.mprc += E1000_READ_REG(hw, MPRC); fp@673: adapter->stats.roc += E1000_READ_REG(hw, ROC); fp@673: adapter->stats.prc64 += E1000_READ_REG(hw, PRC64); fp@673: adapter->stats.prc127 += E1000_READ_REG(hw, PRC127); fp@673: adapter->stats.prc255 += E1000_READ_REG(hw, PRC255); fp@673: adapter->stats.prc511 += E1000_READ_REG(hw, PRC511); fp@673: adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023); fp@673: adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522); fp@673: fp@673: adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS); fp@673: adapter->stats.mpc += E1000_READ_REG(hw, MPC); fp@673: adapter->stats.scc += E1000_READ_REG(hw, SCC); fp@673: adapter->stats.ecol += E1000_READ_REG(hw, ECOL); fp@673: adapter->stats.mcc += E1000_READ_REG(hw, MCC); fp@673: adapter->stats.latecol += E1000_READ_REG(hw, LATECOL); fp@673: adapter->stats.dc += E1000_READ_REG(hw, DC); fp@673: adapter->stats.sec += E1000_READ_REG(hw, SEC); fp@673: adapter->stats.rlec += E1000_READ_REG(hw, RLEC); fp@673: adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC); fp@673: adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC); fp@673: adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC); fp@673: adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC); fp@673: adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC); fp@673: adapter->stats.gptc += E1000_READ_REG(hw, GPTC); fp@673: adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL); fp@673: adapter->stats.gotch += E1000_READ_REG(hw, GOTCH); fp@673: adapter->stats.rnbc += E1000_READ_REG(hw, RNBC); fp@673: adapter->stats.ruc += E1000_READ_REG(hw, RUC); fp@673: adapter->stats.rfc += E1000_READ_REG(hw, RFC); fp@673: adapter->stats.rjc += E1000_READ_REG(hw, RJC); fp@673: adapter->stats.torl += E1000_READ_REG(hw, TORL); fp@673: adapter->stats.torh += E1000_READ_REG(hw, TORH); fp@673: adapter->stats.totl += E1000_READ_REG(hw, TOTL); fp@673: adapter->stats.toth += E1000_READ_REG(hw, TOTH); fp@673: adapter->stats.tpr += E1000_READ_REG(hw, TPR); fp@673: adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64); fp@673: adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127); fp@673: adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255); fp@673: adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511); fp@673: adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023); fp@673: adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522); fp@673: adapter->stats.mptc += E1000_READ_REG(hw, MPTC); fp@673: adapter->stats.bptc += E1000_READ_REG(hw, BPTC); fp@673: fp@673: /* used for adaptive IFS */ fp@673: fp@673: hw->tx_packet_delta = E1000_READ_REG(hw, TPT); fp@673: adapter->stats.tpt += hw->tx_packet_delta; fp@673: hw->collision_delta = E1000_READ_REG(hw, COLC); fp@673: adapter->stats.colc += hw->collision_delta; fp@673: fp@673: if(hw->mac_type >= e1000_82543) { fp@673: adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC); fp@673: adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC); fp@673: adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS); fp@673: adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR); fp@673: adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC); fp@673: adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC); fp@673: } fp@673: if(hw->mac_type > e1000_82547_rev_2) { fp@673: adapter->stats.iac += E1000_READ_REG(hw, IAC); fp@673: adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC); fp@673: adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC); fp@673: adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC); fp@673: adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC); fp@673: adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC); fp@673: adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC); fp@673: adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC); fp@673: adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC); fp@673: } fp@673: fp@673: /* Fill out the OS statistics structure */ fp@673: fp@673: adapter->net_stats.rx_packets = adapter->stats.gprc; fp@673: adapter->net_stats.tx_packets = adapter->stats.gptc; fp@673: adapter->net_stats.rx_bytes = adapter->stats.gorcl; fp@673: adapter->net_stats.tx_bytes = adapter->stats.gotcl; fp@673: adapter->net_stats.multicast = adapter->stats.mprc; fp@673: adapter->net_stats.collisions = adapter->stats.colc; fp@673: fp@673: /* Rx Errors */ fp@673: fp@673: adapter->net_stats.rx_errors = adapter->stats.rxerrc + fp@673: adapter->stats.crcerrs + adapter->stats.algnerrc + fp@673: adapter->stats.rlec + adapter->stats.mpc + fp@673: adapter->stats.cexterr; fp@673: adapter->net_stats.rx_dropped = adapter->stats.mpc; fp@673: adapter->net_stats.rx_length_errors = adapter->stats.rlec; fp@673: adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs; fp@673: adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc; fp@673: adapter->net_stats.rx_fifo_errors = adapter->stats.mpc; fp@673: adapter->net_stats.rx_missed_errors = adapter->stats.mpc; fp@673: fp@673: /* Tx Errors */ fp@673: fp@673: adapter->net_stats.tx_errors = adapter->stats.ecol + fp@673: adapter->stats.latecol; fp@673: adapter->net_stats.tx_aborted_errors = adapter->stats.ecol; fp@673: adapter->net_stats.tx_window_errors = adapter->stats.latecol; fp@673: adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs; fp@673: fp@673: /* Tx Dropped needs to be maintained elsewhere */ fp@673: fp@673: /* Phy Stats */ fp@673: fp@673: if(hw->media_type == e1000_media_type_copper) { fp@673: if((adapter->link_speed == SPEED_1000) && fp@673: (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) { fp@673: phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; fp@673: adapter->phy_stats.idle_errors += phy_tmp; fp@673: } fp@673: fp@673: if((hw->mac_type <= e1000_82546) && fp@673: (hw->phy_type == e1000_phy_m88) && fp@673: !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp)) fp@673: adapter->phy_stats.receive_errors += phy_tmp; fp@673: } fp@673: fp@673: spin_unlock_irqrestore(&adapter->stats_lock, flags); fp@673: } fp@673: fp@673: /** fp@673: * e1000_intr - Interrupt Handler fp@673: * @irq: interrupt number fp@673: * @data: pointer to a network interface device structure fp@673: * @pt_regs: CPU registers structure fp@673: **/ fp@673: fp@673: static irqreturn_t fp@673: e1000_intr(int irq, void *data, struct pt_regs *regs) fp@673: { fp@673: struct net_device *netdev = data; fp@673: struct e1000_adapter *adapter = netdev_priv(netdev); fp@673: struct e1000_hw *hw = &adapter->hw; fp@673: uint32_t icr = E1000_READ_REG(hw, ICR); fp@673: #ifndef CONFIG_E1000_NAPI fp@673: unsigned int i; fp@673: #endif fp@673: fp@673: if(unlikely(!icr)) fp@673: return IRQ_NONE; /* Not our interrupt */ fp@673: fp@673: if(unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) { fp@673: hw->get_link_status = 1; fp@673: mod_timer(&adapter->watchdog_timer, jiffies); fp@673: } fp@673: fp@673: #ifdef CONFIG_E1000_NAPI fp@673: if(likely(netif_rx_schedule_prep(netdev))) { fp@673: fp@673: /* Disable interrupts and register for poll. The flush fp@673: of the posted write is intentionally left out. fp@673: */ fp@673: fp@673: atomic_inc(&adapter->irq_sem); fp@673: E1000_WRITE_REG(hw, IMC, ~0); fp@673: __netif_rx_schedule(netdev); fp@673: } fp@673: #else fp@673: /* Writing IMC and IMS is needed for 82547. fp@673: Due to Hub Link bus being occupied, an interrupt fp@673: de-assertion message is not able to be sent. fp@673: When an interrupt assertion message is generated later, fp@673: two messages are re-ordered and sent out. fp@673: That causes APIC to think 82547 is in de-assertion fp@673: state, while 82547 is in assertion state, resulting fp@673: in dead lock. Writing IMC forces 82547 into fp@673: de-assertion state. fp@673: */ fp@673: if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2){ fp@673: atomic_inc(&adapter->irq_sem); fp@673: E1000_WRITE_REG(hw, IMC, ~0); fp@673: } fp@673: fp@673: for(i = 0; i < E1000_MAX_INTR; i++) fp@673: if(unlikely(!adapter->clean_rx(adapter) & fp@673: !e1000_clean_tx_irq(adapter))) fp@673: break; fp@673: fp@673: if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) fp@673: e1000_irq_enable(adapter); fp@673: #endif fp@673: fp@673: return IRQ_HANDLED; fp@673: } fp@673: fp@673: #ifdef CONFIG_E1000_NAPI fp@673: /** fp@673: * e1000_clean - NAPI Rx polling callback fp@673: * @adapter: board private structure fp@673: **/ fp@673: fp@673: static int fp@673: e1000_clean(struct net_device *netdev, int *budget) fp@673: { fp@673: struct e1000_adapter *adapter = netdev_priv(netdev); fp@673: int work_to_do = min(*budget, netdev->quota); fp@673: int tx_cleaned; fp@673: int work_done = 0; fp@673: fp@673: tx_cleaned = e1000_clean_tx_irq(adapter); fp@673: adapter->clean_rx(adapter, &work_done, work_to_do); fp@673: fp@673: *budget -= work_done; fp@673: netdev->quota -= work_done; fp@673: fp@673: if ((!tx_cleaned && (work_done == 0)) || !netif_running(netdev)) { fp@673: /* If no Tx and not enough Rx work done, exit the polling mode */ fp@673: netif_rx_complete(netdev); fp@673: e1000_irq_enable(adapter); fp@673: return 0; fp@673: } fp@673: fp@673: return 1; fp@673: } fp@673: fp@673: #endif fp@673: /** fp@673: * e1000_clean_tx_irq - Reclaim resources after transmit completes fp@673: * @adapter: board private structure fp@673: **/ fp@673: fp@673: static boolean_t fp@673: e1000_clean_tx_irq(struct e1000_adapter *adapter) fp@673: { fp@673: struct e1000_desc_ring *tx_ring = &adapter->tx_ring; fp@673: struct net_device *netdev = adapter->netdev; fp@673: struct e1000_tx_desc *tx_desc, *eop_desc; fp@673: struct e1000_buffer *buffer_info; fp@673: unsigned int i, eop; fp@673: boolean_t cleaned = FALSE; fp@673: fp@673: i = tx_ring->next_to_clean; fp@673: eop = tx_ring->buffer_info[i].next_to_watch; fp@673: eop_desc = E1000_TX_DESC(*tx_ring, eop); fp@673: fp@673: while(eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) { fp@673: /* Premature writeback of Tx descriptors clear (free buffers fp@673: * and unmap pci_mapping) previous_buffer_info */ fp@673: if (likely(adapter->previous_buffer_info.skb != NULL)) { fp@673: e1000_unmap_and_free_tx_resource(adapter, fp@673: &adapter->previous_buffer_info); fp@673: } fp@673: fp@673: for(cleaned = FALSE; !cleaned; ) { fp@673: tx_desc = E1000_TX_DESC(*tx_ring, i); fp@673: buffer_info = &tx_ring->buffer_info[i]; fp@673: cleaned = (i == eop); fp@673: fp@673: #ifdef NETIF_F_TSO fp@673: if (!(netdev->features & NETIF_F_TSO)) { fp@673: #endif fp@673: e1000_unmap_and_free_tx_resource(adapter, fp@673: buffer_info); fp@673: #ifdef NETIF_F_TSO fp@673: } else { fp@673: if (cleaned) { fp@673: memcpy(&adapter->previous_buffer_info, fp@673: buffer_info, fp@673: sizeof(struct e1000_buffer)); fp@673: memset(buffer_info, 0, fp@673: sizeof(struct e1000_buffer)); fp@673: } else { fp@673: e1000_unmap_and_free_tx_resource( fp@673: adapter, buffer_info); fp@673: } fp@673: } fp@673: #endif fp@673: fp@673: tx_desc->buffer_addr = 0; fp@673: tx_desc->lower.data = 0; fp@673: tx_desc->upper.data = 0; fp@673: fp@673: if(unlikely(++i == tx_ring->count)) i = 0; fp@673: } fp@673: fp@673: eop = tx_ring->buffer_info[i].next_to_watch; fp@673: eop_desc = E1000_TX_DESC(*tx_ring, eop); fp@673: } fp@673: fp@673: tx_ring->next_to_clean = i; fp@673: fp@673: spin_lock(&adapter->tx_lock); fp@673: fp@673: if(unlikely(cleaned && netif_queue_stopped(netdev) && fp@673: netif_carrier_ok(netdev))) fp@673: netif_wake_queue(netdev); fp@673: fp@673: spin_unlock(&adapter->tx_lock); fp@673: if(adapter->detect_tx_hung) { fp@673: fp@673: /* Detect a transmit hang in hardware, this serializes the fp@673: * check with the clearing of time_stamp and movement of i */ fp@673: adapter->detect_tx_hung = FALSE; fp@673: if (tx_ring->buffer_info[i].dma && fp@673: time_after(jiffies, tx_ring->buffer_info[i].time_stamp + HZ) fp@673: && !(E1000_READ_REG(&adapter->hw, STATUS) & fp@673: E1000_STATUS_TXOFF)) { fp@673: fp@673: /* detected Tx unit hang */ fp@673: i = tx_ring->next_to_clean; fp@673: eop = tx_ring->buffer_info[i].next_to_watch; fp@673: eop_desc = E1000_TX_DESC(*tx_ring, eop); fp@673: DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n" fp@673: " TDH <%x>\n" fp@673: " TDT <%x>\n" fp@673: " next_to_use <%x>\n" fp@673: " next_to_clean <%x>\n" fp@673: "buffer_info[next_to_clean]\n" fp@673: " dma <%zx>\n" fp@673: " time_stamp <%lx>\n" fp@673: " next_to_watch <%x>\n" fp@673: " jiffies <%lx>\n" fp@673: " next_to_watch.status <%x>\n", fp@673: E1000_READ_REG(&adapter->hw, TDH), fp@673: E1000_READ_REG(&adapter->hw, TDT), fp@673: tx_ring->next_to_use, fp@673: i, fp@673: tx_ring->buffer_info[i].dma, fp@673: tx_ring->buffer_info[i].time_stamp, fp@673: eop, fp@673: jiffies, fp@673: eop_desc->upper.fields.status); fp@673: netif_stop_queue(netdev); fp@673: } fp@673: } fp@673: #ifdef NETIF_F_TSO fp@673: fp@673: if( unlikely(!(eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) && fp@673: time_after(jiffies, adapter->previous_buffer_info.time_stamp + HZ))) fp@673: e1000_unmap_and_free_tx_resource( fp@673: adapter, &adapter->previous_buffer_info); fp@673: fp@673: #endif fp@673: return cleaned; fp@673: } fp@673: fp@673: /** fp@673: * e1000_rx_checksum - Receive Checksum Offload for 82543 fp@673: * @adapter: board private structure fp@673: * @status_err: receive descriptor status and error fields fp@673: * @csum: receive descriptor csum field fp@673: * @sk_buff: socket buffer with received data fp@673: **/ fp@673: fp@673: static inline void fp@673: e1000_rx_checksum(struct e1000_adapter *adapter, fp@673: uint32_t status_err, uint32_t csum, fp@673: struct sk_buff *skb) fp@673: { fp@673: uint16_t status = (uint16_t)status_err; fp@673: uint8_t errors = (uint8_t)(status_err >> 24); fp@673: skb->ip_summed = CHECKSUM_NONE; fp@673: fp@673: /* 82543 or newer only */ fp@673: if(unlikely(adapter->hw.mac_type < e1000_82543)) return; fp@673: /* Ignore Checksum bit is set */ fp@673: if(unlikely(status & E1000_RXD_STAT_IXSM)) return; fp@673: /* TCP/UDP checksum error bit is set */ fp@673: if(unlikely(errors & E1000_RXD_ERR_TCPE)) { fp@673: /* let the stack verify checksum errors */ fp@673: adapter->hw_csum_err++; fp@673: return; fp@673: } fp@673: /* TCP/UDP Checksum has not been calculated */ fp@673: if(adapter->hw.mac_type <= e1000_82547_rev_2) { fp@673: if(!(status & E1000_RXD_STAT_TCPCS)) fp@673: return; fp@673: } else { fp@673: if(!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))) fp@673: return; fp@673: } fp@673: /* It must be a TCP or UDP packet with a valid checksum */ fp@673: if (likely(status & E1000_RXD_STAT_TCPCS)) { fp@673: /* TCP checksum is good */ fp@673: skb->ip_summed = CHECKSUM_UNNECESSARY; fp@673: } else if (adapter->hw.mac_type > e1000_82547_rev_2) { fp@673: /* IP fragment with UDP payload */ fp@673: /* Hardware complements the payload checksum, so we undo it fp@673: * and then put the value in host order for further stack use. fp@673: */ fp@673: csum = ntohl(csum ^ 0xFFFF); fp@673: skb->csum = csum; fp@673: skb->ip_summed = CHECKSUM_HW; fp@673: } fp@673: adapter->hw_csum_good++; fp@673: } fp@673: fp@673: /** fp@673: * e1000_clean_rx_irq - Send received data up the network stack; legacy fp@673: * @adapter: board private structure fp@673: **/ fp@673: fp@673: static boolean_t fp@673: #ifdef CONFIG_E1000_NAPI fp@673: e1000_clean_rx_irq(struct e1000_adapter *adapter, int *work_done, fp@673: int work_to_do) fp@673: #else fp@673: e1000_clean_rx_irq(struct e1000_adapter *adapter) fp@673: #endif fp@673: { fp@673: struct e1000_desc_ring *rx_ring = &adapter->rx_ring; fp@673: struct net_device *netdev = adapter->netdev; fp@673: struct pci_dev *pdev = adapter->pdev; fp@673: struct e1000_rx_desc *rx_desc; fp@673: struct e1000_buffer *buffer_info; fp@673: struct sk_buff *skb; fp@673: unsigned long flags; fp@673: uint32_t length; fp@673: uint8_t last_byte; fp@673: unsigned int i; fp@673: boolean_t cleaned = FALSE; fp@673: fp@673: i = rx_ring->next_to_clean; fp@673: rx_desc = E1000_RX_DESC(*rx_ring, i); fp@673: fp@673: while(rx_desc->status & E1000_RXD_STAT_DD) { fp@673: buffer_info = &rx_ring->buffer_info[i]; fp@673: #ifdef CONFIG_E1000_NAPI fp@673: if(*work_done >= work_to_do) fp@673: break; fp@673: (*work_done)++; fp@673: #endif fp@673: cleaned = TRUE; fp@673: fp@673: pci_unmap_single(pdev, fp@673: buffer_info->dma, fp@673: buffer_info->length, fp@673: PCI_DMA_FROMDEVICE); fp@673: fp@673: skb = buffer_info->skb; fp@673: length = le16_to_cpu(rx_desc->length); fp@673: fp@673: if(unlikely(!(rx_desc->status & E1000_RXD_STAT_EOP))) { fp@673: /* All receives must fit into a single buffer */ fp@673: E1000_DBG("%s: Receive packet consumed multiple" fp@673: " buffers\n", netdev->name); fp@673: dev_kfree_skb_irq(skb); fp@673: goto next_desc; fp@673: } fp@673: fp@673: if(unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) { fp@673: last_byte = *(skb->data + length - 1); fp@673: if(TBI_ACCEPT(&adapter->hw, rx_desc->status, fp@673: rx_desc->errors, length, last_byte)) { fp@673: spin_lock_irqsave(&adapter->stats_lock, flags); fp@673: e1000_tbi_adjust_stats(&adapter->hw, fp@673: &adapter->stats, fp@673: length, skb->data); fp@673: spin_unlock_irqrestore(&adapter->stats_lock, fp@673: flags); fp@673: length--; fp@673: } else { fp@673: dev_kfree_skb_irq(skb); fp@673: goto next_desc; fp@673: } fp@673: } fp@673: fp@673: /* Good Receive */ fp@673: skb_put(skb, length - ETHERNET_FCS_SIZE); fp@673: fp@673: /* Receive Checksum Offload */ fp@673: e1000_rx_checksum(adapter, fp@673: (uint32_t)(rx_desc->status) | fp@673: ((uint32_t)(rx_desc->errors) << 24), fp@673: rx_desc->csum, skb); fp@673: skb->protocol = eth_type_trans(skb, netdev); fp@673: #ifdef CONFIG_E1000_NAPI fp@673: if(unlikely(adapter->vlgrp && fp@673: (rx_desc->status & E1000_RXD_STAT_VP))) { fp@673: vlan_hwaccel_receive_skb(skb, adapter->vlgrp, fp@673: le16_to_cpu(rx_desc->special) & fp@673: E1000_RXD_SPC_VLAN_MASK); fp@673: } else { fp@673: netif_receive_skb(skb); fp@673: } fp@673: #else /* CONFIG_E1000_NAPI */ fp@673: if(unlikely(adapter->vlgrp && fp@673: (rx_desc->status & E1000_RXD_STAT_VP))) { fp@673: vlan_hwaccel_rx(skb, adapter->vlgrp, fp@673: le16_to_cpu(rx_desc->special) & fp@673: E1000_RXD_SPC_VLAN_MASK); fp@673: } else { fp@673: netif_rx(skb); fp@673: } fp@673: #endif /* CONFIG_E1000_NAPI */ fp@673: netdev->last_rx = jiffies; fp@673: fp@673: next_desc: fp@673: rx_desc->status = 0; fp@673: buffer_info->skb = NULL; fp@673: if(unlikely(++i == rx_ring->count)) i = 0; fp@673: fp@673: rx_desc = E1000_RX_DESC(*rx_ring, i); fp@673: } fp@673: rx_ring->next_to_clean = i; fp@673: adapter->alloc_rx_buf(adapter); fp@673: fp@673: return cleaned; fp@673: } fp@673: fp@673: /** fp@673: * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split fp@673: * @adapter: board private structure fp@673: **/ fp@673: fp@673: static boolean_t fp@673: #ifdef CONFIG_E1000_NAPI fp@673: e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, int *work_done, fp@673: int work_to_do) fp@673: #else fp@673: e1000_clean_rx_irq_ps(struct e1000_adapter *adapter) fp@673: #endif fp@673: { fp@673: struct e1000_desc_ring *rx_ring = &adapter->rx_ring; fp@673: union e1000_rx_desc_packet_split *rx_desc; fp@673: struct net_device *netdev = adapter->netdev; fp@673: struct pci_dev *pdev = adapter->pdev; fp@673: struct e1000_buffer *buffer_info; fp@673: struct e1000_ps_page *ps_page; fp@673: struct e1000_ps_page_dma *ps_page_dma; fp@673: struct sk_buff *skb; fp@673: unsigned int i, j; fp@673: uint32_t length, staterr; fp@673: boolean_t cleaned = FALSE; fp@673: fp@673: i = rx_ring->next_to_clean; fp@673: rx_desc = E1000_RX_DESC_PS(*rx_ring, i); fp@673: staterr = le32_to_cpu(rx_desc->wb.middle.status_error); fp@673: fp@673: while(staterr & E1000_RXD_STAT_DD) { fp@673: buffer_info = &rx_ring->buffer_info[i]; fp@673: ps_page = &rx_ring->ps_page[i]; fp@673: ps_page_dma = &rx_ring->ps_page_dma[i]; fp@673: #ifdef CONFIG_E1000_NAPI fp@673: if(unlikely(*work_done >= work_to_do)) fp@673: break; fp@673: (*work_done)++; fp@673: #endif fp@673: cleaned = TRUE; fp@673: pci_unmap_single(pdev, buffer_info->dma, fp@673: buffer_info->length, fp@673: PCI_DMA_FROMDEVICE); fp@673: fp@673: skb = buffer_info->skb; fp@673: fp@673: if(unlikely(!(staterr & E1000_RXD_STAT_EOP))) { fp@673: E1000_DBG("%s: Packet Split buffers didn't pick up" fp@673: " the full packet\n", netdev->name); fp@673: dev_kfree_skb_irq(skb); fp@673: goto next_desc; fp@673: } fp@673: fp@673: if(unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) { fp@673: dev_kfree_skb_irq(skb); fp@673: goto next_desc; fp@673: } fp@673: fp@673: length = le16_to_cpu(rx_desc->wb.middle.length0); fp@673: fp@673: if(unlikely(!length)) { fp@673: E1000_DBG("%s: Last part of the packet spanning" fp@673: " multiple descriptors\n", netdev->name); fp@673: dev_kfree_skb_irq(skb); fp@673: goto next_desc; fp@673: } fp@673: fp@673: /* Good Receive */ fp@673: skb_put(skb, length); fp@673: fp@673: for(j = 0; j < PS_PAGE_BUFFERS; j++) { fp@673: if(!(length = le16_to_cpu(rx_desc->wb.upper.length[j]))) fp@673: break; fp@673: fp@673: pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j], fp@673: PAGE_SIZE, PCI_DMA_FROMDEVICE); fp@673: ps_page_dma->ps_page_dma[j] = 0; fp@673: skb_shinfo(skb)->frags[j].page = fp@673: ps_page->ps_page[j]; fp@673: ps_page->ps_page[j] = NULL; fp@673: skb_shinfo(skb)->frags[j].page_offset = 0; fp@673: skb_shinfo(skb)->frags[j].size = length; fp@673: skb_shinfo(skb)->nr_frags++; fp@673: skb->len += length; fp@673: skb->data_len += length; fp@673: } fp@673: fp@673: e1000_rx_checksum(adapter, staterr, fp@673: rx_desc->wb.lower.hi_dword.csum_ip.csum, skb); fp@673: skb->protocol = eth_type_trans(skb, netdev); fp@673: fp@673: #ifdef HAVE_RX_ZERO_COPY fp@673: if(likely(rx_desc->wb.upper.header_status & fp@673: E1000_RXDPS_HDRSTAT_HDRSP)) fp@673: skb_shinfo(skb)->zero_copy = TRUE; fp@673: #endif fp@673: #ifdef CONFIG_E1000_NAPI fp@673: if(unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) { fp@673: vlan_hwaccel_receive_skb(skb, adapter->vlgrp, fp@673: le16_to_cpu(rx_desc->wb.middle.vlan) & fp@673: E1000_RXD_SPC_VLAN_MASK); fp@673: } else { fp@673: netif_receive_skb(skb); fp@673: } fp@673: #else /* CONFIG_E1000_NAPI */ fp@673: if(unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) { fp@673: vlan_hwaccel_rx(skb, adapter->vlgrp, fp@673: le16_to_cpu(rx_desc->wb.middle.vlan) & fp@673: E1000_RXD_SPC_VLAN_MASK); fp@673: } else { fp@673: netif_rx(skb); fp@673: } fp@673: #endif /* CONFIG_E1000_NAPI */ fp@673: netdev->last_rx = jiffies; fp@673: fp@673: next_desc: fp@673: rx_desc->wb.middle.status_error &= ~0xFF; fp@673: buffer_info->skb = NULL; fp@673: if(unlikely(++i == rx_ring->count)) i = 0; fp@673: fp@673: rx_desc = E1000_RX_DESC_PS(*rx_ring, i); fp@673: staterr = le32_to_cpu(rx_desc->wb.middle.status_error); fp@673: } fp@673: rx_ring->next_to_clean = i; fp@673: adapter->alloc_rx_buf(adapter); fp@673: fp@673: return cleaned; fp@673: } fp@673: fp@673: /** fp@673: * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended fp@673: * @adapter: address of board private structure fp@673: **/ fp@673: fp@673: static void fp@673: e1000_alloc_rx_buffers(struct e1000_adapter *adapter) fp@673: { fp@673: struct e1000_desc_ring *rx_ring = &adapter->rx_ring; fp@673: struct net_device *netdev = adapter->netdev; fp@673: struct pci_dev *pdev = adapter->pdev; fp@673: struct e1000_rx_desc *rx_desc; fp@673: struct e1000_buffer *buffer_info; fp@673: struct sk_buff *skb; fp@673: unsigned int i; fp@673: unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN; fp@673: fp@673: i = rx_ring->next_to_use; fp@673: buffer_info = &rx_ring->buffer_info[i]; fp@673: fp@673: while(!buffer_info->skb) { fp@673: skb = dev_alloc_skb(bufsz); fp@673: fp@673: if(unlikely(!skb)) { fp@673: /* Better luck next round */ fp@673: break; fp@673: } fp@673: fp@673: /* Fix for errata 23, can't cross 64kB boundary */ fp@673: if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { fp@673: struct sk_buff *oldskb = skb; fp@673: DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes " fp@673: "at %p\n", bufsz, skb->data); fp@673: /* Try again, without freeing the previous */ fp@673: skb = dev_alloc_skb(bufsz); fp@673: /* Failed allocation, critical failure */ fp@673: if (!skb) { fp@673: dev_kfree_skb(oldskb); fp@673: break; fp@673: } fp@673: fp@673: if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { fp@673: /* give up */ fp@673: dev_kfree_skb(skb); fp@673: dev_kfree_skb(oldskb); fp@673: break; /* while !buffer_info->skb */ fp@673: } else { fp@673: /* Use new allocation */ fp@673: dev_kfree_skb(oldskb); fp@673: } fp@673: } fp@673: /* Make buffer alignment 2 beyond a 16 byte boundary fp@673: * this will result in a 16 byte aligned IP header after fp@673: * the 14 byte MAC header is removed fp@673: */ fp@673: skb_reserve(skb, NET_IP_ALIGN); fp@673: fp@673: skb->dev = netdev; fp@673: fp@673: buffer_info->skb = skb; fp@673: buffer_info->length = adapter->rx_buffer_len; fp@673: buffer_info->dma = pci_map_single(pdev, fp@673: skb->data, fp@673: adapter->rx_buffer_len, fp@673: PCI_DMA_FROMDEVICE); fp@673: fp@673: /* Fix for errata 23, can't cross 64kB boundary */ fp@673: if (!e1000_check_64k_bound(adapter, fp@673: (void *)(unsigned long)buffer_info->dma, fp@673: adapter->rx_buffer_len)) { fp@673: DPRINTK(RX_ERR, ERR, fp@673: "dma align check failed: %u bytes at %p\n", fp@673: adapter->rx_buffer_len, fp@673: (void *)(unsigned long)buffer_info->dma); fp@673: dev_kfree_skb(skb); fp@673: buffer_info->skb = NULL; fp@673: fp@673: pci_unmap_single(pdev, buffer_info->dma, fp@673: adapter->rx_buffer_len, fp@673: PCI_DMA_FROMDEVICE); fp@673: fp@673: break; /* while !buffer_info->skb */ fp@673: } fp@673: rx_desc = E1000_RX_DESC(*rx_ring, i); fp@673: rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); fp@673: fp@673: if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) { fp@673: /* Force memory writes to complete before letting h/w fp@673: * know there are new descriptors to fetch. (Only fp@673: * applicable for weak-ordered memory model archs, fp@673: * such as IA-64). */ fp@673: wmb(); fp@673: E1000_WRITE_REG(&adapter->hw, RDT, i); fp@673: } fp@673: fp@673: if(unlikely(++i == rx_ring->count)) i = 0; fp@673: buffer_info = &rx_ring->buffer_info[i]; fp@673: } fp@673: fp@673: rx_ring->next_to_use = i; fp@673: } fp@673: fp@673: /** fp@673: * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split fp@673: * @adapter: address of board private structure fp@673: **/ fp@673: fp@673: static void fp@673: e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter) fp@673: { fp@673: struct e1000_desc_ring *rx_ring = &adapter->rx_ring; fp@673: struct net_device *netdev = adapter->netdev; fp@673: struct pci_dev *pdev = adapter->pdev; fp@673: union e1000_rx_desc_packet_split *rx_desc; fp@673: struct e1000_buffer *buffer_info; fp@673: struct e1000_ps_page *ps_page; fp@673: struct e1000_ps_page_dma *ps_page_dma; fp@673: struct sk_buff *skb; fp@673: unsigned int i, j; fp@673: fp@673: i = rx_ring->next_to_use; fp@673: buffer_info = &rx_ring->buffer_info[i]; fp@673: ps_page = &rx_ring->ps_page[i]; fp@673: ps_page_dma = &rx_ring->ps_page_dma[i]; fp@673: fp@673: while(!buffer_info->skb) { fp@673: rx_desc = E1000_RX_DESC_PS(*rx_ring, i); fp@673: fp@673: for(j = 0; j < PS_PAGE_BUFFERS; j++) { fp@673: if(unlikely(!ps_page->ps_page[j])) { fp@673: ps_page->ps_page[j] = fp@673: alloc_page(GFP_ATOMIC); fp@673: if(unlikely(!ps_page->ps_page[j])) fp@673: goto no_buffers; fp@673: ps_page_dma->ps_page_dma[j] = fp@673: pci_map_page(pdev, fp@673: ps_page->ps_page[j], fp@673: 0, PAGE_SIZE, fp@673: PCI_DMA_FROMDEVICE); fp@673: } fp@673: /* Refresh the desc even if buffer_addrs didn't fp@673: * change because each write-back erases this info. fp@673: */ fp@673: rx_desc->read.buffer_addr[j+1] = fp@673: cpu_to_le64(ps_page_dma->ps_page_dma[j]); fp@673: } fp@673: fp@673: skb = dev_alloc_skb(adapter->rx_ps_bsize0 + NET_IP_ALIGN); fp@673: fp@673: if(unlikely(!skb)) fp@673: break; fp@673: fp@673: /* Make buffer alignment 2 beyond a 16 byte boundary fp@673: * this will result in a 16 byte aligned IP header after fp@673: * the 14 byte MAC header is removed fp@673: */ fp@673: skb_reserve(skb, NET_IP_ALIGN); fp@673: fp@673: skb->dev = netdev; fp@673: fp@673: buffer_info->skb = skb; fp@673: buffer_info->length = adapter->rx_ps_bsize0; fp@673: buffer_info->dma = pci_map_single(pdev, skb->data, fp@673: adapter->rx_ps_bsize0, fp@673: PCI_DMA_FROMDEVICE); fp@673: fp@673: rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma); fp@673: fp@673: if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) { fp@673: /* Force memory writes to complete before letting h/w fp@673: * know there are new descriptors to fetch. (Only fp@673: * applicable for weak-ordered memory model archs, fp@673: * such as IA-64). */ fp@673: wmb(); fp@673: /* Hardware increments by 16 bytes, but packet split fp@673: * descriptors are 32 bytes...so we increment tail fp@673: * twice as much. fp@673: */ fp@673: E1000_WRITE_REG(&adapter->hw, RDT, i<<1); fp@673: } fp@673: fp@673: if(unlikely(++i == rx_ring->count)) i = 0; fp@673: buffer_info = &rx_ring->buffer_info[i]; fp@673: ps_page = &rx_ring->ps_page[i]; fp@673: ps_page_dma = &rx_ring->ps_page_dma[i]; fp@673: } fp@673: fp@673: no_buffers: fp@673: rx_ring->next_to_use = i; fp@673: } fp@673: fp@673: /** fp@673: * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers. fp@673: * @adapter: fp@673: **/ fp@673: fp@673: static void fp@673: e1000_smartspeed(struct e1000_adapter *adapter) fp@673: { fp@673: uint16_t phy_status; fp@673: uint16_t phy_ctrl; fp@673: fp@673: if((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg || fp@673: !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL)) fp@673: return; fp@673: fp@673: if(adapter->smartspeed == 0) { fp@673: /* If Master/Slave config fault is asserted twice, fp@673: * we assume back-to-back */ fp@673: e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status); fp@673: if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return; fp@673: e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status); fp@673: if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return; fp@673: e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl); fp@673: if(phy_ctrl & CR_1000T_MS_ENABLE) { fp@673: phy_ctrl &= ~CR_1000T_MS_ENABLE; fp@673: e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, fp@673: phy_ctrl); fp@673: adapter->smartspeed++; fp@673: if(!e1000_phy_setup_autoneg(&adapter->hw) && fp@673: !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, fp@673: &phy_ctrl)) { fp@673: phy_ctrl |= (MII_CR_AUTO_NEG_EN | fp@673: MII_CR_RESTART_AUTO_NEG); fp@673: e1000_write_phy_reg(&adapter->hw, PHY_CTRL, fp@673: phy_ctrl); fp@673: } fp@673: } fp@673: return; fp@673: } else if(adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) { fp@673: /* If still no link, perhaps using 2/3 pair cable */ fp@673: e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl); fp@673: phy_ctrl |= CR_1000T_MS_ENABLE; fp@673: e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl); fp@673: if(!e1000_phy_setup_autoneg(&adapter->hw) && fp@673: !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) { fp@673: phy_ctrl |= (MII_CR_AUTO_NEG_EN | fp@673: MII_CR_RESTART_AUTO_NEG); fp@673: e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl); fp@673: } fp@673: } fp@673: /* Restart process after E1000_SMARTSPEED_MAX iterations */ fp@673: if(adapter->smartspeed++ == E1000_SMARTSPEED_MAX) fp@673: adapter->smartspeed = 0; fp@673: } fp@673: fp@673: /** fp@673: * e1000_ioctl - fp@673: * @netdev: fp@673: * @ifreq: fp@673: * @cmd: fp@673: **/ fp@673: fp@673: static int fp@673: e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) fp@673: { fp@673: switch (cmd) { fp@673: case SIOCGMIIPHY: fp@673: case SIOCGMIIREG: fp@673: case SIOCSMIIREG: fp@673: return e1000_mii_ioctl(netdev, ifr, cmd); fp@673: default: fp@673: return -EOPNOTSUPP; fp@673: } fp@673: } fp@673: fp@673: /** fp@673: * e1000_mii_ioctl - fp@673: * @netdev: fp@673: * @ifreq: fp@673: * @cmd: fp@673: **/ fp@673: fp@673: static int fp@673: e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) fp@673: { fp@673: struct e1000_adapter *adapter = netdev_priv(netdev); fp@673: struct mii_ioctl_data *data = if_mii(ifr); fp@673: int retval; fp@673: uint16_t mii_reg; fp@673: uint16_t spddplx; fp@673: unsigned long flags; fp@673: fp@673: if(adapter->hw.media_type != e1000_media_type_copper) fp@673: return -EOPNOTSUPP; fp@673: fp@673: switch (cmd) { fp@673: case SIOCGMIIPHY: fp@673: data->phy_id = adapter->hw.phy_addr; fp@673: break; fp@673: case SIOCGMIIREG: fp@673: if(!capable(CAP_NET_ADMIN)) fp@673: return -EPERM; fp@673: spin_lock_irqsave(&adapter->stats_lock, flags); fp@673: if(e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F, fp@673: &data->val_out)) { fp@673: spin_unlock_irqrestore(&adapter->stats_lock, flags); fp@673: return -EIO; fp@673: } fp@673: spin_unlock_irqrestore(&adapter->stats_lock, flags); fp@673: break; fp@673: case SIOCSMIIREG: fp@673: if(!capable(CAP_NET_ADMIN)) fp@673: return -EPERM; fp@673: if(data->reg_num & ~(0x1F)) fp@673: return -EFAULT; fp@673: mii_reg = data->val_in; fp@673: spin_lock_irqsave(&adapter->stats_lock, flags); fp@673: if(e1000_write_phy_reg(&adapter->hw, data->reg_num, fp@673: mii_reg)) { fp@673: spin_unlock_irqrestore(&adapter->stats_lock, flags); fp@673: return -EIO; fp@673: } fp@673: if(adapter->hw.phy_type == e1000_phy_m88) { fp@673: switch (data->reg_num) { fp@673: case PHY_CTRL: fp@673: if(mii_reg & MII_CR_POWER_DOWN) fp@673: break; fp@673: if(mii_reg & MII_CR_AUTO_NEG_EN) { fp@673: adapter->hw.autoneg = 1; fp@673: adapter->hw.autoneg_advertised = 0x2F; fp@673: } else { fp@673: if (mii_reg & 0x40) fp@673: spddplx = SPEED_1000; fp@673: else if (mii_reg & 0x2000) fp@673: spddplx = SPEED_100; fp@673: else fp@673: spddplx = SPEED_10; fp@673: spddplx += (mii_reg & 0x100) fp@673: ? FULL_DUPLEX : fp@673: HALF_DUPLEX; fp@673: retval = e1000_set_spd_dplx(adapter, fp@673: spddplx); fp@673: if(retval) { fp@673: spin_unlock_irqrestore( fp@673: &adapter->stats_lock, fp@673: flags); fp@673: return retval; fp@673: } fp@673: } fp@673: if(netif_running(adapter->netdev)) { fp@673: e1000_down(adapter); fp@673: e1000_up(adapter); fp@673: } else fp@673: e1000_reset(adapter); fp@673: break; fp@673: case M88E1000_PHY_SPEC_CTRL: fp@673: case M88E1000_EXT_PHY_SPEC_CTRL: fp@673: if(e1000_phy_reset(&adapter->hw)) { fp@673: spin_unlock_irqrestore( fp@673: &adapter->stats_lock, flags); fp@673: return -EIO; fp@673: } fp@673: break; fp@673: } fp@673: } else { fp@673: switch (data->reg_num) { fp@673: case PHY_CTRL: fp@673: if(mii_reg & MII_CR_POWER_DOWN) fp@673: break; fp@673: if(netif_running(adapter->netdev)) { fp@673: e1000_down(adapter); fp@673: e1000_up(adapter); fp@673: } else fp@673: e1000_reset(adapter); fp@673: break; fp@673: } fp@673: } fp@673: spin_unlock_irqrestore(&adapter->stats_lock, flags); fp@673: break; fp@673: default: fp@673: return -EOPNOTSUPP; fp@673: } fp@673: return E1000_SUCCESS; fp@673: } fp@673: fp@673: void fp@673: e1000_pci_set_mwi(struct e1000_hw *hw) fp@673: { fp@673: struct e1000_adapter *adapter = hw->back; fp@673: int ret_val = pci_set_mwi(adapter->pdev); fp@673: fp@673: if(ret_val) fp@673: DPRINTK(PROBE, ERR, "Error in setting MWI\n"); fp@673: } fp@673: fp@673: void fp@673: e1000_pci_clear_mwi(struct e1000_hw *hw) fp@673: { fp@673: struct e1000_adapter *adapter = hw->back; fp@673: fp@673: pci_clear_mwi(adapter->pdev); fp@673: } fp@673: fp@673: void fp@673: e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value) fp@673: { fp@673: struct e1000_adapter *adapter = hw->back; fp@673: fp@673: pci_read_config_word(adapter->pdev, reg, value); fp@673: } fp@673: fp@673: void fp@673: e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value) fp@673: { fp@673: struct e1000_adapter *adapter = hw->back; fp@673: fp@673: pci_write_config_word(adapter->pdev, reg, *value); fp@673: } fp@673: fp@673: uint32_t fp@673: e1000_io_read(struct e1000_hw *hw, unsigned long port) fp@673: { fp@673: return inl(port); fp@673: } fp@673: fp@673: void fp@673: e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value) fp@673: { fp@673: outl(value, port); fp@673: } fp@673: fp@673: static void fp@673: e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp) fp@673: { fp@673: struct e1000_adapter *adapter = netdev_priv(netdev); fp@673: uint32_t ctrl, rctl; fp@673: fp@673: e1000_irq_disable(adapter); fp@673: adapter->vlgrp = grp; fp@673: fp@673: if(grp) { fp@673: /* enable VLAN tag insert/strip */ fp@673: ctrl = E1000_READ_REG(&adapter->hw, CTRL); fp@673: ctrl |= E1000_CTRL_VME; fp@673: E1000_WRITE_REG(&adapter->hw, CTRL, ctrl); fp@673: fp@673: /* enable VLAN receive filtering */ fp@673: rctl = E1000_READ_REG(&adapter->hw, RCTL); fp@673: rctl |= E1000_RCTL_VFE; fp@673: rctl &= ~E1000_RCTL_CFIEN; fp@673: E1000_WRITE_REG(&adapter->hw, RCTL, rctl); fp@673: e1000_update_mng_vlan(adapter); fp@673: } else { fp@673: /* disable VLAN tag insert/strip */ fp@673: ctrl = E1000_READ_REG(&adapter->hw, CTRL); fp@673: ctrl &= ~E1000_CTRL_VME; fp@673: E1000_WRITE_REG(&adapter->hw, CTRL, ctrl); fp@673: fp@673: /* disable VLAN filtering */ fp@673: rctl = E1000_READ_REG(&adapter->hw, RCTL); fp@673: rctl &= ~E1000_RCTL_VFE; fp@673: E1000_WRITE_REG(&adapter->hw, RCTL, rctl); fp@673: if(adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) { fp@673: e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); fp@673: adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; fp@673: } fp@673: } fp@673: fp@673: e1000_irq_enable(adapter); fp@673: } fp@673: fp@673: static void fp@673: e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid) fp@673: { fp@673: struct e1000_adapter *adapter = netdev_priv(netdev); fp@673: uint32_t vfta, index; fp@673: if((adapter->hw.mng_cookie.status & fp@673: E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && fp@673: (vid == adapter->mng_vlan_id)) fp@673: return; fp@673: /* add VID to filter table */ fp@673: index = (vid >> 5) & 0x7F; fp@673: vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index); fp@673: vfta |= (1 << (vid & 0x1F)); fp@673: e1000_write_vfta(&adapter->hw, index, vfta); fp@673: } fp@673: fp@673: static void fp@673: e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid) fp@673: { fp@673: struct e1000_adapter *adapter = netdev_priv(netdev); fp@673: uint32_t vfta, index; fp@673: fp@673: e1000_irq_disable(adapter); fp@673: fp@673: if(adapter->vlgrp) fp@673: adapter->vlgrp->vlan_devices[vid] = NULL; fp@673: fp@673: e1000_irq_enable(adapter); fp@673: fp@673: if((adapter->hw.mng_cookie.status & fp@673: E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && fp@673: (vid == adapter->mng_vlan_id)) fp@673: return; fp@673: /* remove VID from filter table */ fp@673: index = (vid >> 5) & 0x7F; fp@673: vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index); fp@673: vfta &= ~(1 << (vid & 0x1F)); fp@673: e1000_write_vfta(&adapter->hw, index, vfta); fp@673: } fp@673: fp@673: static void fp@673: e1000_restore_vlan(struct e1000_adapter *adapter) fp@673: { fp@673: e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp); fp@673: fp@673: if(adapter->vlgrp) { fp@673: uint16_t vid; fp@673: for(vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) { fp@673: if(!adapter->vlgrp->vlan_devices[vid]) fp@673: continue; fp@673: e1000_vlan_rx_add_vid(adapter->netdev, vid); fp@673: } fp@673: } fp@673: } fp@673: fp@673: int fp@673: e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx) fp@673: { fp@673: adapter->hw.autoneg = 0; fp@673: fp@673: /* Fiber NICs only allow 1000 gbps Full duplex */ fp@673: if((adapter->hw.media_type == e1000_media_type_fiber) && fp@673: spddplx != (SPEED_1000 + DUPLEX_FULL)) { fp@673: DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n"); fp@673: return -EINVAL; fp@673: } fp@673: fp@673: switch(spddplx) { fp@673: case SPEED_10 + DUPLEX_HALF: fp@673: adapter->hw.forced_speed_duplex = e1000_10_half; fp@673: break; fp@673: case SPEED_10 + DUPLEX_FULL: fp@673: adapter->hw.forced_speed_duplex = e1000_10_full; fp@673: break; fp@673: case SPEED_100 + DUPLEX_HALF: fp@673: adapter->hw.forced_speed_duplex = e1000_100_half; fp@673: break; fp@673: case SPEED_100 + DUPLEX_FULL: fp@673: adapter->hw.forced_speed_duplex = e1000_100_full; fp@673: break; fp@673: case SPEED_1000 + DUPLEX_FULL: fp@673: adapter->hw.autoneg = 1; fp@673: adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL; fp@673: break; fp@673: case SPEED_1000 + DUPLEX_HALF: /* not supported */ fp@673: default: fp@673: DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n"); fp@673: return -EINVAL; fp@673: } fp@673: return 0; fp@673: } fp@673: fp@673: static int fp@673: e1000_suspend(struct pci_dev *pdev, uint32_t state) fp@673: { fp@673: struct net_device *netdev = pci_get_drvdata(pdev); fp@673: struct e1000_adapter *adapter = netdev_priv(netdev); fp@673: uint32_t ctrl, ctrl_ext, rctl, manc, status, swsm; fp@673: uint32_t wufc = adapter->wol; fp@673: fp@673: netif_device_detach(netdev); fp@673: fp@673: if(netif_running(netdev)) fp@673: e1000_down(adapter); fp@673: fp@673: status = E1000_READ_REG(&adapter->hw, STATUS); fp@673: if(status & E1000_STATUS_LU) fp@673: wufc &= ~E1000_WUFC_LNKC; fp@673: fp@673: if(wufc) { fp@673: e1000_setup_rctl(adapter); fp@673: e1000_set_multi(netdev); fp@673: fp@673: /* turn on all-multi mode if wake on multicast is enabled */ fp@673: if(adapter->wol & E1000_WUFC_MC) { fp@673: rctl = E1000_READ_REG(&adapter->hw, RCTL); fp@673: rctl |= E1000_RCTL_MPE; fp@673: E1000_WRITE_REG(&adapter->hw, RCTL, rctl); fp@673: } fp@673: fp@673: if(adapter->hw.mac_type >= e1000_82540) { fp@673: ctrl = E1000_READ_REG(&adapter->hw, CTRL); fp@673: /* advertise wake from D3Cold */ fp@673: #define E1000_CTRL_ADVD3WUC 0x00100000 fp@673: /* phy power management enable */ fp@673: #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 fp@673: ctrl |= E1000_CTRL_ADVD3WUC | fp@673: E1000_CTRL_EN_PHY_PWR_MGMT; fp@673: E1000_WRITE_REG(&adapter->hw, CTRL, ctrl); fp@673: } fp@673: fp@673: if(adapter->hw.media_type == e1000_media_type_fiber || fp@673: adapter->hw.media_type == e1000_media_type_internal_serdes) { fp@673: /* keep the laser running in D3 */ fp@673: ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT); fp@673: ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA; fp@673: E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext); fp@673: } fp@673: fp@673: /* Allow time for pending master requests to run */ fp@673: e1000_disable_pciex_master(&adapter->hw); fp@673: fp@673: E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN); fp@673: E1000_WRITE_REG(&adapter->hw, WUFC, wufc); fp@673: pci_enable_wake(pdev, 3, 1); fp@673: pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */ fp@673: } else { fp@673: E1000_WRITE_REG(&adapter->hw, WUC, 0); fp@673: E1000_WRITE_REG(&adapter->hw, WUFC, 0); fp@673: pci_enable_wake(pdev, 3, 0); fp@673: pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */ fp@673: } fp@673: fp@673: pci_save_state(pdev); fp@673: fp@673: if(adapter->hw.mac_type >= e1000_82540 && fp@673: adapter->hw.media_type == e1000_media_type_copper) { fp@673: manc = E1000_READ_REG(&adapter->hw, MANC); fp@673: if(manc & E1000_MANC_SMBUS_EN) { fp@673: manc |= E1000_MANC_ARP_EN; fp@673: E1000_WRITE_REG(&adapter->hw, MANC, manc); fp@673: pci_enable_wake(pdev, 3, 1); fp@673: pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */ fp@673: } fp@673: } fp@673: fp@673: switch(adapter->hw.mac_type) { fp@673: case e1000_82573: fp@673: swsm = E1000_READ_REG(&adapter->hw, SWSM); fp@673: E1000_WRITE_REG(&adapter->hw, SWSM, fp@673: swsm & ~E1000_SWSM_DRV_LOAD); fp@673: break; fp@673: default: fp@673: break; fp@673: } fp@673: fp@673: pci_disable_device(pdev); fp@673: fp@673: state = (state > 0) ? 3 : 0; fp@673: pci_set_power_state(pdev, state); fp@673: fp@673: return 0; fp@673: } fp@673: fp@673: #ifdef CONFIG_PM fp@673: static int fp@673: e1000_resume(struct pci_dev *pdev) fp@673: { fp@673: struct net_device *netdev = pci_get_drvdata(pdev); fp@673: struct e1000_adapter *adapter = netdev_priv(netdev); fp@673: uint32_t manc, ret_val, swsm; fp@673: fp@673: pci_set_power_state(pdev, 0); fp@673: pci_restore_state(pdev); fp@673: ret_val = pci_enable_device(pdev); fp@673: pci_set_master(pdev); fp@673: fp@673: pci_enable_wake(pdev, 3, 0); fp@673: pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */ fp@673: fp@673: e1000_reset(adapter); fp@673: E1000_WRITE_REG(&adapter->hw, WUS, ~0); fp@673: fp@673: if(netif_running(netdev)) fp@673: e1000_up(adapter); fp@673: fp@673: netif_device_attach(netdev); fp@673: fp@673: if(adapter->hw.mac_type >= e1000_82540 && fp@673: adapter->hw.media_type == e1000_media_type_copper) { fp@673: manc = E1000_READ_REG(&adapter->hw, MANC); fp@673: manc &= ~(E1000_MANC_ARP_EN); fp@673: E1000_WRITE_REG(&adapter->hw, MANC, manc); fp@673: } fp@673: fp@673: switch(adapter->hw.mac_type) { fp@673: case e1000_82573: fp@673: swsm = E1000_READ_REG(&adapter->hw, SWSM); fp@673: E1000_WRITE_REG(&adapter->hw, SWSM, fp@673: swsm | E1000_SWSM_DRV_LOAD); fp@673: break; fp@673: default: fp@673: break; fp@673: } fp@673: fp@673: return 0; fp@673: } fp@673: #endif fp@673: #ifdef CONFIG_NET_POLL_CONTROLLER fp@673: /* fp@673: * Polling 'interrupt' - used by things like netconsole to send skbs fp@673: * without having to re-enable interrupts. It's not called while fp@673: * the interrupt routine is executing. fp@673: */ fp@673: static void fp@673: e1000_netpoll(struct net_device *netdev) fp@673: { fp@673: struct e1000_adapter *adapter = netdev_priv(netdev); fp@673: disable_irq(adapter->pdev->irq); fp@673: e1000_intr(adapter->pdev->irq, netdev, NULL); fp@673: e1000_clean_tx_irq(adapter); fp@673: enable_irq(adapter->pdev->irq); fp@673: } fp@673: #endif fp@673: fp@673: /* e1000_main.c */