ab@2201: /******************************************************************************* ab@2201: ab@2201: Intel PRO/100 Linux driver ab@2201: Copyright(c) 1999 - 2006 Intel Corporation. ab@2201: ab@2201: This program is free software; you can redistribute it and/or modify it ab@2201: under the terms and conditions of the GNU General Public License, ab@2201: version 2, as published by the Free Software Foundation. ab@2201: ab@2201: This program is distributed in the hope it will be useful, but WITHOUT ab@2201: ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ab@2201: FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for ab@2201: more details. ab@2201: ab@2201: You should have received a copy of the GNU General Public License along with ab@2201: this program; if not, write to the Free Software Foundation, Inc., ab@2201: 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. ab@2201: ab@2201: The full GNU General Public License is included in this distribution in ab@2201: the file called "COPYING". ab@2201: ab@2201: Contact Information: ab@2201: Linux NICS ab@2201: e1000-devel Mailing List ab@2201: Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 ab@2201: ab@2201: *******************************************************************************/ ab@2201: ab@2201: /* ab@2201: * e100.c: Intel(R) PRO/100 ethernet driver ab@2201: * ab@2201: * (Re)written 2003 by scott.feldman@intel.com. Based loosely on ab@2201: * original e100 driver, but better described as a munging of ab@2201: * e100, e1000, eepro100, tg3, 8139cp, and other drivers. ab@2201: * ab@2201: * References: ab@2201: * Intel 8255x 10/100 Mbps Ethernet Controller Family, ab@2201: * Open Source Software Developers Manual, ab@2201: * http://sourceforge.net/projects/e1000 ab@2201: * ab@2201: * ab@2201: * Theory of Operation ab@2201: * ab@2201: * I. General ab@2201: * ab@2201: * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet ab@2201: * controller family, which includes the 82557, 82558, 82559, 82550, ab@2201: * 82551, and 82562 devices. 82558 and greater controllers ab@2201: * integrate the Intel 82555 PHY. The controllers are used in ab@2201: * server and client network interface cards, as well as in ab@2201: * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx ab@2201: * configurations. 8255x supports a 32-bit linear addressing ab@2201: * mode and operates at 33Mhz PCI clock rate. ab@2201: * ab@2201: * II. Driver Operation ab@2201: * ab@2201: * Memory-mapped mode is used exclusively to access the device's ab@2201: * shared-memory structure, the Control/Status Registers (CSR). All ab@2201: * setup, configuration, and control of the device, including queuing ab@2201: * of Tx, Rx, and configuration commands is through the CSR. ab@2201: * cmd_lock serializes accesses to the CSR command register. cb_lock ab@2201: * protects the shared Command Block List (CBL). ab@2201: * ab@2201: * 8255x is highly MII-compliant and all access to the PHY go ab@2201: * through the Management Data Interface (MDI). Consequently, the ab@2201: * driver leverages the mii.c library shared with other MII-compliant ab@2201: * devices. ab@2201: * ab@2201: * Big- and Little-Endian byte order as well as 32- and 64-bit ab@2201: * archs are supported. Weak-ordered memory and non-cache-coherent ab@2201: * archs are supported. ab@2201: * ab@2201: * III. Transmit ab@2201: * ab@2201: * A Tx skb is mapped and hangs off of a TCB. TCBs are linked ab@2201: * together in a fixed-size ring (CBL) thus forming the flexible mode ab@2201: * memory structure. A TCB marked with the suspend-bit indicates ab@2201: * the end of the ring. The last TCB processed suspends the ab@2201: * controller, and the controller can be restarted by issue a CU ab@2201: * resume command to continue from the suspend point, or a CU start ab@2201: * command to start at a given position in the ring. ab@2201: * ab@2201: * Non-Tx commands (config, multicast setup, etc) are linked ab@2201: * into the CBL ring along with Tx commands. The common structure ab@2201: * used for both Tx and non-Tx commands is the Command Block (CB). ab@2201: * ab@2201: * cb_to_use is the next CB to use for queuing a command; cb_to_clean ab@2201: * is the next CB to check for completion; cb_to_send is the first ab@2201: * CB to start on in case of a previous failure to resume. CB clean ab@2201: * up happens in interrupt context in response to a CU interrupt. ab@2201: * cbs_avail keeps track of number of free CB resources available. ab@2201: * ab@2201: * Hardware padding of short packets to minimum packet size is ab@2201: * enabled. 82557 pads with 7Eh, while the later controllers pad ab@2201: * with 00h. ab@2201: * ab@2201: * IV. Receive ab@2201: * ab@2201: * The Receive Frame Area (RFA) comprises a ring of Receive Frame ab@2201: * Descriptors (RFD) + data buffer, thus forming the simplified mode ab@2201: * memory structure. Rx skbs are allocated to contain both the RFD ab@2201: * and the data buffer, but the RFD is pulled off before the skb is ab@2201: * indicated. The data buffer is aligned such that encapsulated ab@2201: * protocol headers are u32-aligned. Since the RFD is part of the ab@2201: * mapped shared memory, and completion status is contained within ab@2201: * the RFD, the RFD must be dma_sync'ed to maintain a consistent ab@2201: * view from software and hardware. ab@2201: * ab@2201: * In order to keep updates to the RFD link field from colliding with ab@2201: * hardware writes to mark packets complete, we use the feature that ab@2201: * hardware will not write to a size 0 descriptor and mark the previous ab@2201: * packet as end-of-list (EL). After updating the link, we remove EL ab@2201: * and only then restore the size such that hardware may use the ab@2201: * previous-to-end RFD. ab@2201: * ab@2201: * Under typical operation, the receive unit (RU) is start once, ab@2201: * and the controller happily fills RFDs as frames arrive. If ab@2201: * replacement RFDs cannot be allocated, or the RU goes non-active, ab@2201: * the RU must be restarted. Frame arrival generates an interrupt, ab@2201: * and Rx indication and re-allocation happen in the same context, ab@2201: * therefore no locking is required. A software-generated interrupt ab@2201: * is generated from the watchdog to recover from a failed allocation ab@2201: * scenario where all Rx resources have been indicated and none re- ab@2201: * placed. ab@2201: * ab@2201: * V. Miscellaneous ab@2201: * ab@2201: * VLAN offloading of tagging, stripping and filtering is not ab@2201: * supported, but driver will accommodate the extra 4-byte VLAN tag ab@2201: * for processing by upper layers. Tx/Rx Checksum offloading is not ab@2201: * supported. Tx Scatter/Gather is not supported. Jumbo Frames is ab@2201: * not supported (hardware limitation). ab@2201: * ab@2201: * MagicPacket(tm) WoL support is enabled/disabled via ethtool. ab@2201: * ab@2201: * Thanks to JC (jchapman@katalix.com) for helping with ab@2201: * testing/troubleshooting the development driver. ab@2201: * ab@2201: * TODO: ab@2201: * o several entry points race with dev->close ab@2201: * o check for tx-no-resources/stop Q races with tx clean/wake Q ab@2201: * ab@2201: * FIXES: ab@2201: * 2005/12/02 - Michael O'Donnell ab@2201: * - Stratus87247: protect MDI control register manipulations ab@2201: * 2009/06/01 - Andreas Mohr ab@2201: * - add clean lowlevel I/O emulation for cards with MII-lacking PHYs ab@2201: */ ab@2201: ab@2201: #include ab@2201: #include ab@2201: #include ab@2201: #include ab@2201: #include ab@2201: #include ab@2201: #include ab@2201: #include ab@2201: #include ab@2201: #include ab@2201: #include ab@2201: #include ab@2201: #include ab@2201: #include ab@2201: #include ab@2201: #include ab@2201: #include ab@2201: #include ab@2201: #include ab@2201: #include ab@2201: ab@2201: ab@2201: #define DRV_NAME "e100" ab@2201: #define DRV_EXT "-NAPI" ab@2201: #define DRV_VERSION "3.5.24-k2"DRV_EXT ab@2201: #define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver" ab@2201: #define DRV_COPYRIGHT "Copyright(c) 1999-2006 Intel Corporation" ab@2201: #define PFX DRV_NAME ": " ab@2201: ab@2201: #define E100_WATCHDOG_PERIOD (2 * HZ) ab@2201: #define E100_NAPI_WEIGHT 16 ab@2201: ab@2201: #define FIRMWARE_D101M "e100/d101m_ucode.bin" ab@2201: #define FIRMWARE_D101S "e100/d101s_ucode.bin" ab@2201: #define FIRMWARE_D102E "e100/d102e_ucode.bin" ab@2201: ab@2201: MODULE_DESCRIPTION(DRV_DESCRIPTION); ab@2201: MODULE_AUTHOR(DRV_COPYRIGHT); ab@2201: MODULE_LICENSE("GPL"); ab@2201: MODULE_VERSION(DRV_VERSION); ab@2201: MODULE_FIRMWARE(FIRMWARE_D101M); ab@2201: MODULE_FIRMWARE(FIRMWARE_D101S); ab@2201: MODULE_FIRMWARE(FIRMWARE_D102E); ab@2201: ab@2201: static int debug = 3; ab@2201: static int eeprom_bad_csum_allow = 0; ab@2201: static int use_io = 0; ab@2201: module_param(debug, int, 0); ab@2201: module_param(eeprom_bad_csum_allow, int, 0); ab@2201: module_param(use_io, int, 0); ab@2201: MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); ab@2201: MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums"); ab@2201: MODULE_PARM_DESC(use_io, "Force use of i/o access mode"); ab@2201: #define DPRINTK(nlevel, klevel, fmt, args...) \ ab@2201: (void)((NETIF_MSG_##nlevel & nic->msg_enable) && \ ab@2201: printk(KERN_##klevel PFX "%s: %s: " fmt, nic->netdev->name, \ ab@2201: __func__ , ## args)) ab@2201: ab@2201: #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\ ab@2201: PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \ ab@2201: PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich } ab@2201: static struct pci_device_id e100_id_table[] = { ab@2201: INTEL_8255X_ETHERNET_DEVICE(0x1029, 0), ab@2201: INTEL_8255X_ETHERNET_DEVICE(0x1030, 0), ab@2201: INTEL_8255X_ETHERNET_DEVICE(0x1031, 3), ab@2201: INTEL_8255X_ETHERNET_DEVICE(0x1032, 3), ab@2201: INTEL_8255X_ETHERNET_DEVICE(0x1033, 3), ab@2201: INTEL_8255X_ETHERNET_DEVICE(0x1034, 3), ab@2201: INTEL_8255X_ETHERNET_DEVICE(0x1038, 3), ab@2201: INTEL_8255X_ETHERNET_DEVICE(0x1039, 4), ab@2201: INTEL_8255X_ETHERNET_DEVICE(0x103A, 4), ab@2201: INTEL_8255X_ETHERNET_DEVICE(0x103B, 4), ab@2201: INTEL_8255X_ETHERNET_DEVICE(0x103C, 4), ab@2201: INTEL_8255X_ETHERNET_DEVICE(0x103D, 4), ab@2201: INTEL_8255X_ETHERNET_DEVICE(0x103E, 4), ab@2201: INTEL_8255X_ETHERNET_DEVICE(0x1050, 5), ab@2201: INTEL_8255X_ETHERNET_DEVICE(0x1051, 5), ab@2201: INTEL_8255X_ETHERNET_DEVICE(0x1052, 5), ab@2201: INTEL_8255X_ETHERNET_DEVICE(0x1053, 5), ab@2201: INTEL_8255X_ETHERNET_DEVICE(0x1054, 5), ab@2201: INTEL_8255X_ETHERNET_DEVICE(0x1055, 5), ab@2201: INTEL_8255X_ETHERNET_DEVICE(0x1056, 5), ab@2201: INTEL_8255X_ETHERNET_DEVICE(0x1057, 5), ab@2201: INTEL_8255X_ETHERNET_DEVICE(0x1059, 0), ab@2201: INTEL_8255X_ETHERNET_DEVICE(0x1064, 6), ab@2201: INTEL_8255X_ETHERNET_DEVICE(0x1065, 6), ab@2201: INTEL_8255X_ETHERNET_DEVICE(0x1066, 6), ab@2201: INTEL_8255X_ETHERNET_DEVICE(0x1067, 6), ab@2201: INTEL_8255X_ETHERNET_DEVICE(0x1068, 6), ab@2201: INTEL_8255X_ETHERNET_DEVICE(0x1069, 6), ab@2201: INTEL_8255X_ETHERNET_DEVICE(0x106A, 6), ab@2201: INTEL_8255X_ETHERNET_DEVICE(0x106B, 6), ab@2201: INTEL_8255X_ETHERNET_DEVICE(0x1091, 7), ab@2201: INTEL_8255X_ETHERNET_DEVICE(0x1092, 7), ab@2201: INTEL_8255X_ETHERNET_DEVICE(0x1093, 7), ab@2201: INTEL_8255X_ETHERNET_DEVICE(0x1094, 7), ab@2201: INTEL_8255X_ETHERNET_DEVICE(0x1095, 7), ab@2201: INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7), ab@2201: INTEL_8255X_ETHERNET_DEVICE(0x1209, 0), ab@2201: INTEL_8255X_ETHERNET_DEVICE(0x1229, 0), ab@2201: INTEL_8255X_ETHERNET_DEVICE(0x2449, 2), ab@2201: INTEL_8255X_ETHERNET_DEVICE(0x2459, 2), ab@2201: INTEL_8255X_ETHERNET_DEVICE(0x245D, 2), ab@2201: INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7), ab@2201: { 0, } ab@2201: }; ab@2201: MODULE_DEVICE_TABLE(pci, e100_id_table); ab@2201: ab@2201: enum mac { ab@2201: mac_82557_D100_A = 0, ab@2201: mac_82557_D100_B = 1, ab@2201: mac_82557_D100_C = 2, ab@2201: mac_82558_D101_A4 = 4, ab@2201: mac_82558_D101_B0 = 5, ab@2201: mac_82559_D101M = 8, ab@2201: mac_82559_D101S = 9, ab@2201: mac_82550_D102 = 12, ab@2201: mac_82550_D102_C = 13, ab@2201: mac_82551_E = 14, ab@2201: mac_82551_F = 15, ab@2201: mac_82551_10 = 16, ab@2201: mac_unknown = 0xFF, ab@2201: }; ab@2201: ab@2201: enum phy { ab@2201: phy_100a = 0x000003E0, ab@2201: phy_100c = 0x035002A8, ab@2201: phy_82555_tx = 0x015002A8, ab@2201: phy_nsc_tx = 0x5C002000, ab@2201: phy_82562_et = 0x033002A8, ab@2201: phy_82562_em = 0x032002A8, ab@2201: phy_82562_ek = 0x031002A8, ab@2201: phy_82562_eh = 0x017002A8, ab@2201: phy_82552_v = 0xd061004d, ab@2201: phy_unknown = 0xFFFFFFFF, ab@2201: }; ab@2201: ab@2201: /* CSR (Control/Status Registers) */ ab@2201: struct csr { ab@2201: struct { ab@2201: u8 status; ab@2201: u8 stat_ack; ab@2201: u8 cmd_lo; ab@2201: u8 cmd_hi; ab@2201: u32 gen_ptr; ab@2201: } scb; ab@2201: u32 port; ab@2201: u16 flash_ctrl; ab@2201: u8 eeprom_ctrl_lo; ab@2201: u8 eeprom_ctrl_hi; ab@2201: u32 mdi_ctrl; ab@2201: u32 rx_dma_count; ab@2201: }; ab@2201: ab@2201: enum scb_status { ab@2201: rus_no_res = 0x08, ab@2201: rus_ready = 0x10, ab@2201: rus_mask = 0x3C, ab@2201: }; ab@2201: ab@2201: enum ru_state { ab@2201: RU_SUSPENDED = 0, ab@2201: RU_RUNNING = 1, ab@2201: RU_UNINITIALIZED = -1, ab@2201: }; ab@2201: ab@2201: enum scb_stat_ack { ab@2201: stat_ack_not_ours = 0x00, ab@2201: stat_ack_sw_gen = 0x04, ab@2201: stat_ack_rnr = 0x10, ab@2201: stat_ack_cu_idle = 0x20, ab@2201: stat_ack_frame_rx = 0x40, ab@2201: stat_ack_cu_cmd_done = 0x80, ab@2201: stat_ack_not_present = 0xFF, ab@2201: stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx), ab@2201: stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done), ab@2201: }; ab@2201: ab@2201: enum scb_cmd_hi { ab@2201: irq_mask_none = 0x00, ab@2201: irq_mask_all = 0x01, ab@2201: irq_sw_gen = 0x02, ab@2201: }; ab@2201: ab@2201: enum scb_cmd_lo { ab@2201: cuc_nop = 0x00, ab@2201: ruc_start = 0x01, ab@2201: ruc_load_base = 0x06, ab@2201: cuc_start = 0x10, ab@2201: cuc_resume = 0x20, ab@2201: cuc_dump_addr = 0x40, ab@2201: cuc_dump_stats = 0x50, ab@2201: cuc_load_base = 0x60, ab@2201: cuc_dump_reset = 0x70, ab@2201: }; ab@2201: ab@2201: enum cuc_dump { ab@2201: cuc_dump_complete = 0x0000A005, ab@2201: cuc_dump_reset_complete = 0x0000A007, ab@2201: }; ab@2201: ab@2201: enum port { ab@2201: software_reset = 0x0000, ab@2201: selftest = 0x0001, ab@2201: selective_reset = 0x0002, ab@2201: }; ab@2201: ab@2201: enum eeprom_ctrl_lo { ab@2201: eesk = 0x01, ab@2201: eecs = 0x02, ab@2201: eedi = 0x04, ab@2201: eedo = 0x08, ab@2201: }; ab@2201: ab@2201: enum mdi_ctrl { ab@2201: mdi_write = 0x04000000, ab@2201: mdi_read = 0x08000000, ab@2201: mdi_ready = 0x10000000, ab@2201: }; ab@2201: ab@2201: enum eeprom_op { ab@2201: op_write = 0x05, ab@2201: op_read = 0x06, ab@2201: op_ewds = 0x10, ab@2201: op_ewen = 0x13, ab@2201: }; ab@2201: ab@2201: enum eeprom_offsets { ab@2201: eeprom_cnfg_mdix = 0x03, ab@2201: eeprom_phy_iface = 0x06, ab@2201: eeprom_id = 0x0A, ab@2201: eeprom_config_asf = 0x0D, ab@2201: eeprom_smbus_addr = 0x90, ab@2201: }; ab@2201: ab@2201: enum eeprom_cnfg_mdix { ab@2201: eeprom_mdix_enabled = 0x0080, ab@2201: }; ab@2201: ab@2201: enum eeprom_phy_iface { ab@2201: NoSuchPhy = 0, ab@2201: I82553AB, ab@2201: I82553C, ab@2201: I82503, ab@2201: DP83840, ab@2201: S80C240, ab@2201: S80C24, ab@2201: I82555, ab@2201: DP83840A = 10, ab@2201: }; ab@2201: ab@2201: enum eeprom_id { ab@2201: eeprom_id_wol = 0x0020, ab@2201: }; ab@2201: ab@2201: enum eeprom_config_asf { ab@2201: eeprom_asf = 0x8000, ab@2201: eeprom_gcl = 0x4000, ab@2201: }; ab@2201: ab@2201: enum cb_status { ab@2201: cb_complete = 0x8000, ab@2201: cb_ok = 0x2000, ab@2201: }; ab@2201: ab@2201: enum cb_command { ab@2201: cb_nop = 0x0000, ab@2201: cb_iaaddr = 0x0001, ab@2201: cb_config = 0x0002, ab@2201: cb_multi = 0x0003, ab@2201: cb_tx = 0x0004, ab@2201: cb_ucode = 0x0005, ab@2201: cb_dump = 0x0006, ab@2201: cb_tx_sf = 0x0008, ab@2201: cb_cid = 0x1f00, ab@2201: cb_i = 0x2000, ab@2201: cb_s = 0x4000, ab@2201: cb_el = 0x8000, ab@2201: }; ab@2201: ab@2201: struct rfd { ab@2201: __le16 status; ab@2201: __le16 command; ab@2201: __le32 link; ab@2201: __le32 rbd; ab@2201: __le16 actual_size; ab@2201: __le16 size; ab@2201: }; ab@2201: ab@2201: struct rx { ab@2201: struct rx *next, *prev; ab@2201: struct sk_buff *skb; ab@2201: dma_addr_t dma_addr; ab@2201: }; ab@2201: ab@2201: #if defined(__BIG_ENDIAN_BITFIELD) ab@2201: #define X(a,b) b,a ab@2201: #else ab@2201: #define X(a,b) a,b ab@2201: #endif ab@2201: struct config { ab@2201: /*0*/ u8 X(byte_count:6, pad0:2); ab@2201: /*1*/ u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1); ab@2201: /*2*/ u8 adaptive_ifs; ab@2201: /*3*/ u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1), ab@2201: term_write_cache_line:1), pad3:4); ab@2201: /*4*/ u8 X(rx_dma_max_count:7, pad4:1); ab@2201: /*5*/ u8 X(tx_dma_max_count:7, dma_max_count_enable:1); ab@2201: /*6*/ u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1), ab@2201: tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1), ab@2201: rx_discard_overruns:1), rx_save_bad_frames:1); ab@2201: /*7*/ u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2), ab@2201: pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1), ab@2201: tx_dynamic_tbd:1); ab@2201: /*8*/ u8 X(X(mii_mode:1, pad8:6), csma_disabled:1); ab@2201: /*9*/ u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1), ab@2201: link_status_wake:1), arp_wake:1), mcmatch_wake:1); ab@2201: /*10*/ u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2), ab@2201: loopback:2); ab@2201: /*11*/ u8 X(linear_priority:3, pad11:5); ab@2201: /*12*/ u8 X(X(linear_priority_mode:1, pad12:3), ifs:4); ab@2201: /*13*/ u8 ip_addr_lo; ab@2201: /*14*/ u8 ip_addr_hi; ab@2201: /*15*/ u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1), ab@2201: wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1), ab@2201: pad15_2:1), crs_or_cdt:1); ab@2201: /*16*/ u8 fc_delay_lo; ab@2201: /*17*/ u8 fc_delay_hi; ab@2201: /*18*/ u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1), ab@2201: rx_long_ok:1), fc_priority_threshold:3), pad18:1); ab@2201: /*19*/ u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1), ab@2201: fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1), ab@2201: full_duplex_force:1), full_duplex_pin:1); ab@2201: /*20*/ u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1); ab@2201: /*21*/ u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4); ab@2201: /*22*/ u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6); ab@2201: u8 pad_d102[9]; ab@2201: }; ab@2201: ab@2201: #define E100_MAX_MULTICAST_ADDRS 64 ab@2201: struct multi { ab@2201: __le16 count; ab@2201: u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/]; ab@2201: }; ab@2201: ab@2201: /* Important: keep total struct u32-aligned */ ab@2201: #define UCODE_SIZE 134 ab@2201: struct cb { ab@2201: __le16 status; ab@2201: __le16 command; ab@2201: __le32 link; ab@2201: union { ab@2201: u8 iaaddr[ETH_ALEN]; ab@2201: __le32 ucode[UCODE_SIZE]; ab@2201: struct config config; ab@2201: struct multi multi; ab@2201: struct { ab@2201: u32 tbd_array; ab@2201: u16 tcb_byte_count; ab@2201: u8 threshold; ab@2201: u8 tbd_count; ab@2201: struct { ab@2201: __le32 buf_addr; ab@2201: __le16 size; ab@2201: u16 eol; ab@2201: } tbd; ab@2201: } tcb; ab@2201: __le32 dump_buffer_addr; ab@2201: } u; ab@2201: struct cb *next, *prev; ab@2201: dma_addr_t dma_addr; ab@2201: struct sk_buff *skb; ab@2201: }; ab@2201: ab@2201: enum loopback { ab@2201: lb_none = 0, lb_mac = 1, lb_phy = 3, ab@2201: }; ab@2201: ab@2201: struct stats { ab@2201: __le32 tx_good_frames, tx_max_collisions, tx_late_collisions, ab@2201: tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions, ab@2201: tx_multiple_collisions, tx_total_collisions; ab@2201: __le32 rx_good_frames, rx_crc_errors, rx_alignment_errors, ab@2201: rx_resource_errors, rx_overrun_errors, rx_cdt_errors, ab@2201: rx_short_frame_errors; ab@2201: __le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported; ab@2201: __le16 xmt_tco_frames, rcv_tco_frames; ab@2201: __le32 complete; ab@2201: }; ab@2201: ab@2201: struct mem { ab@2201: struct { ab@2201: u32 signature; ab@2201: u32 result; ab@2201: } selftest; ab@2201: struct stats stats; ab@2201: u8 dump_buf[596]; ab@2201: }; ab@2201: ab@2201: struct param_range { ab@2201: u32 min; ab@2201: u32 max; ab@2201: u32 count; ab@2201: }; ab@2201: ab@2201: struct params { ab@2201: struct param_range rfds; ab@2201: struct param_range cbs; ab@2201: }; ab@2201: ab@2201: struct nic { ab@2201: /* Begin: frequently used values: keep adjacent for cache effect */ ab@2201: u32 msg_enable ____cacheline_aligned; ab@2201: struct net_device *netdev; ab@2201: struct pci_dev *pdev; ab@2201: u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data); ab@2201: ab@2201: struct rx *rxs ____cacheline_aligned; ab@2201: struct rx *rx_to_use; ab@2201: struct rx *rx_to_clean; ab@2201: struct rfd blank_rfd; ab@2201: enum ru_state ru_running; ab@2201: ab@2201: spinlock_t cb_lock ____cacheline_aligned; ab@2201: spinlock_t cmd_lock; ab@2201: struct csr __iomem *csr; ab@2201: enum scb_cmd_lo cuc_cmd; ab@2201: unsigned int cbs_avail; ab@2201: struct napi_struct napi; ab@2201: struct cb *cbs; ab@2201: struct cb *cb_to_use; ab@2201: struct cb *cb_to_send; ab@2201: struct cb *cb_to_clean; ab@2201: __le16 tx_command; ab@2201: /* End: frequently used values: keep adjacent for cache effect */ ab@2201: ab@2201: enum { ab@2201: ich = (1 << 0), ab@2201: promiscuous = (1 << 1), ab@2201: multicast_all = (1 << 2), ab@2201: wol_magic = (1 << 3), ab@2201: ich_10h_workaround = (1 << 4), ab@2201: } flags ____cacheline_aligned; ab@2201: ab@2201: enum mac mac; ab@2201: enum phy phy; ab@2201: struct params params; ab@2201: struct timer_list watchdog; ab@2201: struct timer_list blink_timer; ab@2201: struct mii_if_info mii; ab@2201: struct work_struct tx_timeout_task; ab@2201: enum loopback loopback; ab@2201: ab@2201: struct mem *mem; ab@2201: dma_addr_t dma_addr; ab@2201: ab@2201: struct pci_pool *cbs_pool; ab@2201: dma_addr_t cbs_dma_addr; ab@2201: u8 adaptive_ifs; ab@2201: u8 tx_threshold; ab@2201: u32 tx_frames; ab@2201: u32 tx_collisions; ab@2201: u32 tx_deferred; ab@2201: u32 tx_single_collisions; ab@2201: u32 tx_multiple_collisions; ab@2201: u32 tx_fc_pause; ab@2201: u32 tx_tco_frames; ab@2201: ab@2201: u32 rx_fc_pause; ab@2201: u32 rx_fc_unsupported; ab@2201: u32 rx_tco_frames; ab@2201: u32 rx_over_length_errors; ab@2201: ab@2201: u16 leds; ab@2201: u16 eeprom_wc; ab@2201: __le16 eeprom[256]; ab@2201: spinlock_t mdio_lock; ab@2201: const struct firmware *fw; ab@2201: }; ab@2201: ab@2201: static inline void e100_write_flush(struct nic *nic) ab@2201: { ab@2201: /* Flush previous PCI writes through intermediate bridges ab@2201: * by doing a benign read */ ab@2201: (void)ioread8(&nic->csr->scb.status); ab@2201: } ab@2201: ab@2201: static void e100_enable_irq(struct nic *nic) ab@2201: { ab@2201: unsigned long flags; ab@2201: ab@2201: spin_lock_irqsave(&nic->cmd_lock, flags); ab@2201: iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi); ab@2201: e100_write_flush(nic); ab@2201: spin_unlock_irqrestore(&nic->cmd_lock, flags); ab@2201: } ab@2201: ab@2201: static void e100_disable_irq(struct nic *nic) ab@2201: { ab@2201: unsigned long flags; ab@2201: ab@2201: spin_lock_irqsave(&nic->cmd_lock, flags); ab@2201: iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi); ab@2201: e100_write_flush(nic); ab@2201: spin_unlock_irqrestore(&nic->cmd_lock, flags); ab@2201: } ab@2201: ab@2201: static void e100_hw_reset(struct nic *nic) ab@2201: { ab@2201: /* Put CU and RU into idle with a selective reset to get ab@2201: * device off of PCI bus */ ab@2201: iowrite32(selective_reset, &nic->csr->port); ab@2201: e100_write_flush(nic); udelay(20); ab@2201: ab@2201: /* Now fully reset device */ ab@2201: iowrite32(software_reset, &nic->csr->port); ab@2201: e100_write_flush(nic); udelay(20); ab@2201: ab@2201: /* Mask off our interrupt line - it's unmasked after reset */ ab@2201: e100_disable_irq(nic); ab@2201: } ab@2201: ab@2201: static int e100_self_test(struct nic *nic) ab@2201: { ab@2201: u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest); ab@2201: ab@2201: /* Passing the self-test is a pretty good indication ab@2201: * that the device can DMA to/from host memory */ ab@2201: ab@2201: nic->mem->selftest.signature = 0; ab@2201: nic->mem->selftest.result = 0xFFFFFFFF; ab@2201: ab@2201: iowrite32(selftest | dma_addr, &nic->csr->port); ab@2201: e100_write_flush(nic); ab@2201: /* Wait 10 msec for self-test to complete */ ab@2201: msleep(10); ab@2201: ab@2201: /* Interrupts are enabled after self-test */ ab@2201: e100_disable_irq(nic); ab@2201: ab@2201: /* Check results of self-test */ ab@2201: if (nic->mem->selftest.result != 0) { ab@2201: DPRINTK(HW, ERR, "Self-test failed: result=0x%08X\n", ab@2201: nic->mem->selftest.result); ab@2201: return -ETIMEDOUT; ab@2201: } ab@2201: if (nic->mem->selftest.signature == 0) { ab@2201: DPRINTK(HW, ERR, "Self-test failed: timed out\n"); ab@2201: return -ETIMEDOUT; ab@2201: } ab@2201: ab@2201: return 0; ab@2201: } ab@2201: ab@2201: static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data) ab@2201: { ab@2201: u32 cmd_addr_data[3]; ab@2201: u8 ctrl; ab@2201: int i, j; ab@2201: ab@2201: /* Three cmds: write/erase enable, write data, write/erase disable */ ab@2201: cmd_addr_data[0] = op_ewen << (addr_len - 2); ab@2201: cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) | ab@2201: le16_to_cpu(data); ab@2201: cmd_addr_data[2] = op_ewds << (addr_len - 2); ab@2201: ab@2201: /* Bit-bang cmds to write word to eeprom */ ab@2201: for (j = 0; j < 3; j++) { ab@2201: ab@2201: /* Chip select */ ab@2201: iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo); ab@2201: e100_write_flush(nic); udelay(4); ab@2201: ab@2201: for (i = 31; i >= 0; i--) { ab@2201: ctrl = (cmd_addr_data[j] & (1 << i)) ? ab@2201: eecs | eedi : eecs; ab@2201: iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo); ab@2201: e100_write_flush(nic); udelay(4); ab@2201: ab@2201: iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo); ab@2201: e100_write_flush(nic); udelay(4); ab@2201: } ab@2201: /* Wait 10 msec for cmd to complete */ ab@2201: msleep(10); ab@2201: ab@2201: /* Chip deselect */ ab@2201: iowrite8(0, &nic->csr->eeprom_ctrl_lo); ab@2201: e100_write_flush(nic); udelay(4); ab@2201: } ab@2201: }; ab@2201: ab@2201: /* General technique stolen from the eepro100 driver - very clever */ ab@2201: static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr) ab@2201: { ab@2201: u32 cmd_addr_data; ab@2201: u16 data = 0; ab@2201: u8 ctrl; ab@2201: int i; ab@2201: ab@2201: cmd_addr_data = ((op_read << *addr_len) | addr) << 16; ab@2201: ab@2201: /* Chip select */ ab@2201: iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo); ab@2201: e100_write_flush(nic); udelay(4); ab@2201: ab@2201: /* Bit-bang to read word from eeprom */ ab@2201: for (i = 31; i >= 0; i--) { ab@2201: ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs; ab@2201: iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo); ab@2201: e100_write_flush(nic); udelay(4); ab@2201: ab@2201: iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo); ab@2201: e100_write_flush(nic); udelay(4); ab@2201: ab@2201: /* Eeprom drives a dummy zero to EEDO after receiving ab@2201: * complete address. Use this to adjust addr_len. */ ab@2201: ctrl = ioread8(&nic->csr->eeprom_ctrl_lo); ab@2201: if (!(ctrl & eedo) && i > 16) { ab@2201: *addr_len -= (i - 16); ab@2201: i = 17; ab@2201: } ab@2201: ab@2201: data = (data << 1) | (ctrl & eedo ? 1 : 0); ab@2201: } ab@2201: ab@2201: /* Chip deselect */ ab@2201: iowrite8(0, &nic->csr->eeprom_ctrl_lo); ab@2201: e100_write_flush(nic); udelay(4); ab@2201: ab@2201: return cpu_to_le16(data); ab@2201: }; ab@2201: ab@2201: /* Load entire EEPROM image into driver cache and validate checksum */ ab@2201: static int e100_eeprom_load(struct nic *nic) ab@2201: { ab@2201: u16 addr, addr_len = 8, checksum = 0; ab@2201: ab@2201: /* Try reading with an 8-bit addr len to discover actual addr len */ ab@2201: e100_eeprom_read(nic, &addr_len, 0); ab@2201: nic->eeprom_wc = 1 << addr_len; ab@2201: ab@2201: for (addr = 0; addr < nic->eeprom_wc; addr++) { ab@2201: nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr); ab@2201: if (addr < nic->eeprom_wc - 1) ab@2201: checksum += le16_to_cpu(nic->eeprom[addr]); ab@2201: } ab@2201: ab@2201: /* The checksum, stored in the last word, is calculated such that ab@2201: * the sum of words should be 0xBABA */ ab@2201: if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) { ab@2201: DPRINTK(PROBE, ERR, "EEPROM corrupted\n"); ab@2201: if (!eeprom_bad_csum_allow) ab@2201: return -EAGAIN; ab@2201: } ab@2201: ab@2201: return 0; ab@2201: } ab@2201: ab@2201: /* Save (portion of) driver EEPROM cache to device and update checksum */ ab@2201: static int e100_eeprom_save(struct nic *nic, u16 start, u16 count) ab@2201: { ab@2201: u16 addr, addr_len = 8, checksum = 0; ab@2201: ab@2201: /* Try reading with an 8-bit addr len to discover actual addr len */ ab@2201: e100_eeprom_read(nic, &addr_len, 0); ab@2201: nic->eeprom_wc = 1 << addr_len; ab@2201: ab@2201: if (start + count >= nic->eeprom_wc) ab@2201: return -EINVAL; ab@2201: ab@2201: for (addr = start; addr < start + count; addr++) ab@2201: e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]); ab@2201: ab@2201: /* The checksum, stored in the last word, is calculated such that ab@2201: * the sum of words should be 0xBABA */ ab@2201: for (addr = 0; addr < nic->eeprom_wc - 1; addr++) ab@2201: checksum += le16_to_cpu(nic->eeprom[addr]); ab@2201: nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum); ab@2201: e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1, ab@2201: nic->eeprom[nic->eeprom_wc - 1]); ab@2201: ab@2201: return 0; ab@2201: } ab@2201: ab@2201: #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */ ab@2201: #define E100_WAIT_SCB_FAST 20 /* delay like the old code */ ab@2201: static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr) ab@2201: { ab@2201: unsigned long flags; ab@2201: unsigned int i; ab@2201: int err = 0; ab@2201: ab@2201: spin_lock_irqsave(&nic->cmd_lock, flags); ab@2201: ab@2201: /* Previous command is accepted when SCB clears */ ab@2201: for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) { ab@2201: if (likely(!ioread8(&nic->csr->scb.cmd_lo))) ab@2201: break; ab@2201: cpu_relax(); ab@2201: if (unlikely(i > E100_WAIT_SCB_FAST)) ab@2201: udelay(5); ab@2201: } ab@2201: if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) { ab@2201: err = -EAGAIN; ab@2201: goto err_unlock; ab@2201: } ab@2201: ab@2201: if (unlikely(cmd != cuc_resume)) ab@2201: iowrite32(dma_addr, &nic->csr->scb.gen_ptr); ab@2201: iowrite8(cmd, &nic->csr->scb.cmd_lo); ab@2201: ab@2201: err_unlock: ab@2201: spin_unlock_irqrestore(&nic->cmd_lock, flags); ab@2201: ab@2201: return err; ab@2201: } ab@2201: ab@2201: static int e100_exec_cb(struct nic *nic, struct sk_buff *skb, ab@2201: void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *)) ab@2201: { ab@2201: struct cb *cb; ab@2201: unsigned long flags; ab@2201: int err = 0; ab@2201: ab@2201: spin_lock_irqsave(&nic->cb_lock, flags); ab@2201: ab@2201: if (unlikely(!nic->cbs_avail)) { ab@2201: err = -ENOMEM; ab@2201: goto err_unlock; ab@2201: } ab@2201: ab@2201: cb = nic->cb_to_use; ab@2201: nic->cb_to_use = cb->next; ab@2201: nic->cbs_avail--; ab@2201: cb->skb = skb; ab@2201: ab@2201: if (unlikely(!nic->cbs_avail)) ab@2201: err = -ENOSPC; ab@2201: ab@2201: cb_prepare(nic, cb, skb); ab@2201: ab@2201: /* Order is important otherwise we'll be in a race with h/w: ab@2201: * set S-bit in current first, then clear S-bit in previous. */ ab@2201: cb->command |= cpu_to_le16(cb_s); ab@2201: wmb(); ab@2201: cb->prev->command &= cpu_to_le16(~cb_s); ab@2201: ab@2201: while (nic->cb_to_send != nic->cb_to_use) { ab@2201: if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd, ab@2201: nic->cb_to_send->dma_addr))) { ab@2201: /* Ok, here's where things get sticky. It's ab@2201: * possible that we can't schedule the command ab@2201: * because the controller is too busy, so ab@2201: * let's just queue the command and try again ab@2201: * when another command is scheduled. */ ab@2201: if (err == -ENOSPC) { ab@2201: //request a reset ab@2201: schedule_work(&nic->tx_timeout_task); ab@2201: } ab@2201: break; ab@2201: } else { ab@2201: nic->cuc_cmd = cuc_resume; ab@2201: nic->cb_to_send = nic->cb_to_send->next; ab@2201: } ab@2201: } ab@2201: ab@2201: err_unlock: ab@2201: spin_unlock_irqrestore(&nic->cb_lock, flags); ab@2201: ab@2201: return err; ab@2201: } ab@2201: ab@2201: static int mdio_read(struct net_device *netdev, int addr, int reg) ab@2201: { ab@2201: struct nic *nic = netdev_priv(netdev); ab@2201: return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0); ab@2201: } ab@2201: ab@2201: static void mdio_write(struct net_device *netdev, int addr, int reg, int data) ab@2201: { ab@2201: struct nic *nic = netdev_priv(netdev); ab@2201: ab@2201: nic->mdio_ctrl(nic, addr, mdi_write, reg, data); ab@2201: } ab@2201: ab@2201: /* the standard mdio_ctrl() function for usual MII-compliant hardware */ ab@2201: static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data) ab@2201: { ab@2201: u32 data_out = 0; ab@2201: unsigned int i; ab@2201: unsigned long flags; ab@2201: ab@2201: ab@2201: /* ab@2201: * Stratus87247: we shouldn't be writing the MDI control ab@2201: * register until the Ready bit shows True. Also, since ab@2201: * manipulation of the MDI control registers is a multi-step ab@2201: * procedure it should be done under lock. ab@2201: */ ab@2201: spin_lock_irqsave(&nic->mdio_lock, flags); ab@2201: for (i = 100; i; --i) { ab@2201: if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready) ab@2201: break; ab@2201: udelay(20); ab@2201: } ab@2201: if (unlikely(!i)) { ab@2201: printk("e100.mdio_ctrl(%s) won't go Ready\n", ab@2201: nic->netdev->name ); ab@2201: spin_unlock_irqrestore(&nic->mdio_lock, flags); ab@2201: return 0; /* No way to indicate timeout error */ ab@2201: } ab@2201: iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl); ab@2201: ab@2201: for (i = 0; i < 100; i++) { ab@2201: udelay(20); ab@2201: if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready) ab@2201: break; ab@2201: } ab@2201: spin_unlock_irqrestore(&nic->mdio_lock, flags); ab@2201: DPRINTK(HW, DEBUG, ab@2201: "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n", ab@2201: dir == mdi_read ? "READ" : "WRITE", addr, reg, data, data_out); ab@2201: return (u16)data_out; ab@2201: } ab@2201: ab@2201: /* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */ ab@2201: static u16 mdio_ctrl_phy_82552_v(struct nic *nic, ab@2201: u32 addr, ab@2201: u32 dir, ab@2201: u32 reg, ab@2201: u16 data) ab@2201: { ab@2201: if ((reg == MII_BMCR) && (dir == mdi_write)) { ab@2201: if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) { ab@2201: u16 advert = mdio_read(nic->netdev, nic->mii.phy_id, ab@2201: MII_ADVERTISE); ab@2201: ab@2201: /* ab@2201: * Workaround Si issue where sometimes the part will not ab@2201: * autoneg to 100Mbps even when advertised. ab@2201: */ ab@2201: if (advert & ADVERTISE_100FULL) ab@2201: data |= BMCR_SPEED100 | BMCR_FULLDPLX; ab@2201: else if (advert & ADVERTISE_100HALF) ab@2201: data |= BMCR_SPEED100; ab@2201: } ab@2201: } ab@2201: return mdio_ctrl_hw(nic, addr, dir, reg, data); ab@2201: } ab@2201: ab@2201: /* Fully software-emulated mdio_ctrl() function for cards without ab@2201: * MII-compliant PHYs. ab@2201: * For now, this is mainly geared towards 80c24 support; in case of further ab@2201: * requirements for other types (i82503, ...?) either extend this mechanism ab@2201: * or split it, whichever is cleaner. ab@2201: */ ab@2201: static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic, ab@2201: u32 addr, ab@2201: u32 dir, ab@2201: u32 reg, ab@2201: u16 data) ab@2201: { ab@2201: /* might need to allocate a netdev_priv'ed register array eventually ab@2201: * to be able to record state changes, but for now ab@2201: * some fully hardcoded register handling ought to be ok I guess. */ ab@2201: ab@2201: if (dir == mdi_read) { ab@2201: switch (reg) { ab@2201: case MII_BMCR: ab@2201: /* Auto-negotiation, right? */ ab@2201: return BMCR_ANENABLE | ab@2201: BMCR_FULLDPLX; ab@2201: case MII_BMSR: ab@2201: return BMSR_LSTATUS /* for mii_link_ok() */ | ab@2201: BMSR_ANEGCAPABLE | ab@2201: BMSR_10FULL; ab@2201: case MII_ADVERTISE: ab@2201: /* 80c24 is a "combo card" PHY, right? */ ab@2201: return ADVERTISE_10HALF | ab@2201: ADVERTISE_10FULL; ab@2201: default: ab@2201: DPRINTK(HW, DEBUG, ab@2201: "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n", ab@2201: dir == mdi_read ? "READ" : "WRITE", addr, reg, data); ab@2201: return 0xFFFF; ab@2201: } ab@2201: } else { ab@2201: switch (reg) { ab@2201: default: ab@2201: DPRINTK(HW, DEBUG, ab@2201: "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n", ab@2201: dir == mdi_read ? "READ" : "WRITE", addr, reg, data); ab@2201: return 0xFFFF; ab@2201: } ab@2201: } ab@2201: } ab@2201: static inline int e100_phy_supports_mii(struct nic *nic) ab@2201: { ab@2201: /* for now, just check it by comparing whether we ab@2201: are using MII software emulation. ab@2201: */ ab@2201: return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated); ab@2201: } ab@2201: ab@2201: static void e100_get_defaults(struct nic *nic) ab@2201: { ab@2201: struct param_range rfds = { .min = 16, .max = 256, .count = 256 }; ab@2201: struct param_range cbs = { .min = 64, .max = 256, .count = 128 }; ab@2201: ab@2201: /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */ ab@2201: nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision; ab@2201: if (nic->mac == mac_unknown) ab@2201: nic->mac = mac_82557_D100_A; ab@2201: ab@2201: nic->params.rfds = rfds; ab@2201: nic->params.cbs = cbs; ab@2201: ab@2201: /* Quadwords to DMA into FIFO before starting frame transmit */ ab@2201: nic->tx_threshold = 0xE0; ab@2201: ab@2201: /* no interrupt for every tx completion, delay = 256us if not 557 */ ab@2201: nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf | ab@2201: ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i)); ab@2201: ab@2201: /* Template for a freshly allocated RFD */ ab@2201: nic->blank_rfd.command = 0; ab@2201: nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF); ab@2201: nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN); ab@2201: ab@2201: /* MII setup */ ab@2201: nic->mii.phy_id_mask = 0x1F; ab@2201: nic->mii.reg_num_mask = 0x1F; ab@2201: nic->mii.dev = nic->netdev; ab@2201: nic->mii.mdio_read = mdio_read; ab@2201: nic->mii.mdio_write = mdio_write; ab@2201: } ab@2201: ab@2201: static void e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb) ab@2201: { ab@2201: struct config *config = &cb->u.config; ab@2201: u8 *c = (u8 *)config; ab@2201: ab@2201: cb->command = cpu_to_le16(cb_config); ab@2201: ab@2201: memset(config, 0, sizeof(struct config)); ab@2201: ab@2201: config->byte_count = 0x16; /* bytes in this struct */ ab@2201: config->rx_fifo_limit = 0x8; /* bytes in FIFO before DMA */ ab@2201: config->direct_rx_dma = 0x1; /* reserved */ ab@2201: config->standard_tcb = 0x1; /* 1=standard, 0=extended */ ab@2201: config->standard_stat_counter = 0x1; /* 1=standard, 0=extended */ ab@2201: config->rx_discard_short_frames = 0x1; /* 1=discard, 0=pass */ ab@2201: config->tx_underrun_retry = 0x3; /* # of underrun retries */ ab@2201: if (e100_phy_supports_mii(nic)) ab@2201: config->mii_mode = 1; /* 1=MII mode, 0=i82503 mode */ ab@2201: config->pad10 = 0x6; ab@2201: config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */ ab@2201: config->preamble_length = 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */ ab@2201: config->ifs = 0x6; /* x16 = inter frame spacing */ ab@2201: config->ip_addr_hi = 0xF2; /* ARP IP filter - not used */ ab@2201: config->pad15_1 = 0x1; ab@2201: config->pad15_2 = 0x1; ab@2201: config->crs_or_cdt = 0x0; /* 0=CRS only, 1=CRS or CDT */ ab@2201: config->fc_delay_hi = 0x40; /* time delay for fc frame */ ab@2201: config->tx_padding = 0x1; /* 1=pad short frames */ ab@2201: config->fc_priority_threshold = 0x7; /* 7=priority fc disabled */ ab@2201: config->pad18 = 0x1; ab@2201: config->full_duplex_pin = 0x1; /* 1=examine FDX# pin */ ab@2201: config->pad20_1 = 0x1F; ab@2201: config->fc_priority_location = 0x1; /* 1=byte#31, 0=byte#19 */ ab@2201: config->pad21_1 = 0x5; ab@2201: ab@2201: config->adaptive_ifs = nic->adaptive_ifs; ab@2201: config->loopback = nic->loopback; ab@2201: ab@2201: if (nic->mii.force_media && nic->mii.full_duplex) ab@2201: config->full_duplex_force = 0x1; /* 1=force, 0=auto */ ab@2201: ab@2201: if (nic->flags & promiscuous || nic->loopback) { ab@2201: config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */ ab@2201: config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */ ab@2201: config->promiscuous_mode = 0x1; /* 1=on, 0=off */ ab@2201: } ab@2201: ab@2201: if (nic->flags & multicast_all) ab@2201: config->multicast_all = 0x1; /* 1=accept, 0=no */ ab@2201: ab@2201: /* disable WoL when up */ ab@2201: if (netif_running(nic->netdev) || !(nic->flags & wol_magic)) ab@2201: config->magic_packet_disable = 0x1; /* 1=off, 0=on */ ab@2201: ab@2201: if (nic->mac >= mac_82558_D101_A4) { ab@2201: config->fc_disable = 0x1; /* 1=Tx fc off, 0=Tx fc on */ ab@2201: config->mwi_enable = 0x1; /* 1=enable, 0=disable */ ab@2201: config->standard_tcb = 0x0; /* 1=standard, 0=extended */ ab@2201: config->rx_long_ok = 0x1; /* 1=VLANs ok, 0=standard */ ab@2201: if (nic->mac >= mac_82559_D101M) { ab@2201: config->tno_intr = 0x1; /* TCO stats enable */ ab@2201: /* Enable TCO in extended config */ ab@2201: if (nic->mac >= mac_82551_10) { ab@2201: config->byte_count = 0x20; /* extended bytes */ ab@2201: config->rx_d102_mode = 0x1; /* GMRC for TCO */ ab@2201: } ab@2201: } else { ab@2201: config->standard_stat_counter = 0x0; ab@2201: } ab@2201: } ab@2201: ab@2201: DPRINTK(HW, DEBUG, "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", ab@2201: c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]); ab@2201: DPRINTK(HW, DEBUG, "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", ab@2201: c[8], c[9], c[10], c[11], c[12], c[13], c[14], c[15]); ab@2201: DPRINTK(HW, DEBUG, "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", ab@2201: c[16], c[17], c[18], c[19], c[20], c[21], c[22], c[23]); ab@2201: } ab@2201: ab@2201: /************************************************************************* ab@2201: * CPUSaver parameters ab@2201: * ab@2201: * All CPUSaver parameters are 16-bit literals that are part of a ab@2201: * "move immediate value" instruction. By changing the value of ab@2201: * the literal in the instruction before the code is loaded, the ab@2201: * driver can change the algorithm. ab@2201: * ab@2201: * INTDELAY - This loads the dead-man timer with its initial value. ab@2201: * When this timer expires the interrupt is asserted, and the ab@2201: * timer is reset each time a new packet is received. (see ab@2201: * BUNDLEMAX below to set the limit on number of chained packets) ab@2201: * The current default is 0x600 or 1536. Experiments show that ab@2201: * the value should probably stay within the 0x200 - 0x1000. ab@2201: * ab@2201: * BUNDLEMAX - ab@2201: * This sets the maximum number of frames that will be bundled. In ab@2201: * some situations, such as the TCP windowing algorithm, it may be ab@2201: * better to limit the growth of the bundle size than let it go as ab@2201: * high as it can, because that could cause too much added latency. ab@2201: * The default is six, because this is the number of packets in the ab@2201: * default TCP window size. A value of 1 would make CPUSaver indicate ab@2201: * an interrupt for every frame received. If you do not want to put ab@2201: * a limit on the bundle size, set this value to xFFFF. ab@2201: * ab@2201: * BUNDLESMALL - ab@2201: * This contains a bit-mask describing the minimum size frame that ab@2201: * will be bundled. The default masks the lower 7 bits, which means ab@2201: * that any frame less than 128 bytes in length will not be bundled, ab@2201: * but will instead immediately generate an interrupt. This does ab@2201: * not affect the current bundle in any way. Any frame that is 128 ab@2201: * bytes or large will be bundled normally. This feature is meant ab@2201: * to provide immediate indication of ACK frames in a TCP environment. ab@2201: * Customers were seeing poor performance when a machine with CPUSaver ab@2201: * enabled was sending but not receiving. The delay introduced when ab@2201: * the ACKs were received was enough to reduce total throughput, because ab@2201: * the sender would sit idle until the ACK was finally seen. ab@2201: * ab@2201: * The current default is 0xFF80, which masks out the lower 7 bits. ab@2201: * This means that any frame which is x7F (127) bytes or smaller ab@2201: * will cause an immediate interrupt. Because this value must be a ab@2201: * bit mask, there are only a few valid values that can be used. To ab@2201: * turn this feature off, the driver can write the value xFFFF to the ab@2201: * lower word of this instruction (in the same way that the other ab@2201: * parameters are used). Likewise, a value of 0xF800 (2047) would ab@2201: * cause an interrupt to be generated for every frame, because all ab@2201: * standard Ethernet frames are <= 2047 bytes in length. ab@2201: *************************************************************************/ ab@2201: ab@2201: /* if you wish to disable the ucode functionality, while maintaining the ab@2201: * workarounds it provides, set the following defines to: ab@2201: * BUNDLESMALL 0 ab@2201: * BUNDLEMAX 1 ab@2201: * INTDELAY 1 ab@2201: */ ab@2201: #define BUNDLESMALL 1 ab@2201: #define BUNDLEMAX (u16)6 ab@2201: #define INTDELAY (u16)1536 /* 0x600 */ ab@2201: ab@2201: /* Initialize firmware */ ab@2201: static const struct firmware *e100_request_firmware(struct nic *nic) ab@2201: { ab@2201: const char *fw_name; ab@2201: const struct firmware *fw = nic->fw; ab@2201: u8 timer, bundle, min_size; ab@2201: int err = 0; ab@2201: ab@2201: /* do not load u-code for ICH devices */ ab@2201: if (nic->flags & ich) ab@2201: return NULL; ab@2201: ab@2201: /* Search for ucode match against h/w revision */ ab@2201: if (nic->mac == mac_82559_D101M) ab@2201: fw_name = FIRMWARE_D101M; ab@2201: else if (nic->mac == mac_82559_D101S) ab@2201: fw_name = FIRMWARE_D101S; ab@2201: else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10) ab@2201: fw_name = FIRMWARE_D102E; ab@2201: else /* No ucode on other devices */ ab@2201: return NULL; ab@2201: ab@2201: /* If the firmware has not previously been loaded, request a pointer ab@2201: * to it. If it was previously loaded, we are reinitializing the ab@2201: * adapter, possibly in a resume from hibernate, in which case ab@2201: * request_firmware() cannot be used. ab@2201: */ ab@2201: if (!fw) ab@2201: err = request_firmware(&fw, fw_name, &nic->pdev->dev); ab@2201: ab@2201: if (err) { ab@2201: DPRINTK(PROBE, ERR, "Failed to load firmware \"%s\": %d\n", ab@2201: fw_name, err); ab@2201: return ERR_PTR(err); ab@2201: } ab@2201: ab@2201: /* Firmware should be precisely UCODE_SIZE (words) plus three bytes ab@2201: indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */ ab@2201: if (fw->size != UCODE_SIZE * 4 + 3) { ab@2201: DPRINTK(PROBE, ERR, "Firmware \"%s\" has wrong size %zu\n", ab@2201: fw_name, fw->size); ab@2201: release_firmware(fw); ab@2201: return ERR_PTR(-EINVAL); ab@2201: } ab@2201: ab@2201: /* Read timer, bundle and min_size from end of firmware blob */ ab@2201: timer = fw->data[UCODE_SIZE * 4]; ab@2201: bundle = fw->data[UCODE_SIZE * 4 + 1]; ab@2201: min_size = fw->data[UCODE_SIZE * 4 + 2]; ab@2201: ab@2201: if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE || ab@2201: min_size >= UCODE_SIZE) { ab@2201: DPRINTK(PROBE, ERR, ab@2201: "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n", ab@2201: fw_name, timer, bundle, min_size); ab@2201: release_firmware(fw); ab@2201: return ERR_PTR(-EINVAL); ab@2201: } ab@2201: ab@2201: /* OK, firmware is validated and ready to use. Save a pointer ab@2201: * to it in the nic */ ab@2201: nic->fw = fw; ab@2201: return fw; ab@2201: } ab@2201: ab@2201: static void e100_setup_ucode(struct nic *nic, struct cb *cb, ab@2201: struct sk_buff *skb) ab@2201: { ab@2201: const struct firmware *fw = (void *)skb; ab@2201: u8 timer, bundle, min_size; ab@2201: ab@2201: /* It's not a real skb; we just abused the fact that e100_exec_cb ab@2201: will pass it through to here... */ ab@2201: cb->skb = NULL; ab@2201: ab@2201: /* firmware is stored as little endian already */ ab@2201: memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4); ab@2201: ab@2201: /* Read timer, bundle and min_size from end of firmware blob */ ab@2201: timer = fw->data[UCODE_SIZE * 4]; ab@2201: bundle = fw->data[UCODE_SIZE * 4 + 1]; ab@2201: min_size = fw->data[UCODE_SIZE * 4 + 2]; ab@2201: ab@2201: /* Insert user-tunable settings in cb->u.ucode */ ab@2201: cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000); ab@2201: cb->u.ucode[timer] |= cpu_to_le32(INTDELAY); ab@2201: cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000); ab@2201: cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX); ab@2201: cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000); ab@2201: cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80); ab@2201: ab@2201: cb->command = cpu_to_le16(cb_ucode | cb_el); ab@2201: } ab@2201: ab@2201: static inline int e100_load_ucode_wait(struct nic *nic) ab@2201: { ab@2201: const struct firmware *fw; ab@2201: int err = 0, counter = 50; ab@2201: struct cb *cb = nic->cb_to_clean; ab@2201: ab@2201: fw = e100_request_firmware(nic); ab@2201: /* If it's NULL, then no ucode is required */ ab@2201: if (!fw || IS_ERR(fw)) ab@2201: return PTR_ERR(fw); ab@2201: ab@2201: if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode))) ab@2201: DPRINTK(PROBE,ERR, "ucode cmd failed with error %d\n", err); ab@2201: ab@2201: /* must restart cuc */ ab@2201: nic->cuc_cmd = cuc_start; ab@2201: ab@2201: /* wait for completion */ ab@2201: e100_write_flush(nic); ab@2201: udelay(10); ab@2201: ab@2201: /* wait for possibly (ouch) 500ms */ ab@2201: while (!(cb->status & cpu_to_le16(cb_complete))) { ab@2201: msleep(10); ab@2201: if (!--counter) break; ab@2201: } ab@2201: ab@2201: /* ack any interrupts, something could have been set */ ab@2201: iowrite8(~0, &nic->csr->scb.stat_ack); ab@2201: ab@2201: /* if the command failed, or is not OK, notify and return */ ab@2201: if (!counter || !(cb->status & cpu_to_le16(cb_ok))) { ab@2201: DPRINTK(PROBE,ERR, "ucode load failed\n"); ab@2201: err = -EPERM; ab@2201: } ab@2201: ab@2201: return err; ab@2201: } ab@2201: ab@2201: static void e100_setup_iaaddr(struct nic *nic, struct cb *cb, ab@2201: struct sk_buff *skb) ab@2201: { ab@2201: cb->command = cpu_to_le16(cb_iaaddr); ab@2201: memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN); ab@2201: } ab@2201: ab@2201: static void e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb) ab@2201: { ab@2201: cb->command = cpu_to_le16(cb_dump); ab@2201: cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr + ab@2201: offsetof(struct mem, dump_buf)); ab@2201: } ab@2201: ab@2201: static int e100_phy_check_without_mii(struct nic *nic) ab@2201: { ab@2201: u8 phy_type; ab@2201: int without_mii; ab@2201: ab@2201: phy_type = (nic->eeprom[eeprom_phy_iface] >> 8) & 0x0f; ab@2201: ab@2201: switch (phy_type) { ab@2201: case NoSuchPhy: /* Non-MII PHY; UNTESTED! */ ab@2201: case I82503: /* Non-MII PHY; UNTESTED! */ ab@2201: case S80C24: /* Non-MII PHY; tested and working */ ab@2201: /* paragraph from the FreeBSD driver, "FXP_PHY_80C24": ab@2201: * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter ab@2201: * doesn't have a programming interface of any sort. The ab@2201: * media is sensed automatically based on how the link partner ab@2201: * is configured. This is, in essence, manual configuration. ab@2201: */ ab@2201: DPRINTK(PROBE, INFO, ab@2201: "found MII-less i82503 or 80c24 or other PHY\n"); ab@2201: ab@2201: nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated; ab@2201: nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */ ab@2201: ab@2201: /* these might be needed for certain MII-less cards... ab@2201: * nic->flags |= ich; ab@2201: * nic->flags |= ich_10h_workaround; */ ab@2201: ab@2201: without_mii = 1; ab@2201: break; ab@2201: default: ab@2201: without_mii = 0; ab@2201: break; ab@2201: } ab@2201: return without_mii; ab@2201: } ab@2201: ab@2201: #define NCONFIG_AUTO_SWITCH 0x0080 ab@2201: #define MII_NSC_CONG MII_RESV1 ab@2201: #define NSC_CONG_ENABLE 0x0100 ab@2201: #define NSC_CONG_TXREADY 0x0400 ab@2201: #define ADVERTISE_FC_SUPPORTED 0x0400 ab@2201: static int e100_phy_init(struct nic *nic) ab@2201: { ab@2201: struct net_device *netdev = nic->netdev; ab@2201: u32 addr; ab@2201: u16 bmcr, stat, id_lo, id_hi, cong; ab@2201: ab@2201: /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */ ab@2201: for (addr = 0; addr < 32; addr++) { ab@2201: nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr; ab@2201: bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR); ab@2201: stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR); ab@2201: stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR); ab@2201: if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0)))) ab@2201: break; ab@2201: } ab@2201: if (addr == 32) { ab@2201: /* uhoh, no PHY detected: check whether we seem to be some ab@2201: * weird, rare variant which is *known* to not have any MII. ab@2201: * But do this AFTER MII checking only, since this does ab@2201: * lookup of EEPROM values which may easily be unreliable. */ ab@2201: if (e100_phy_check_without_mii(nic)) ab@2201: return 0; /* simply return and hope for the best */ ab@2201: else { ab@2201: /* for unknown cases log a fatal error */ ab@2201: DPRINTK(HW, ERR, ab@2201: "Failed to locate any known PHY, aborting.\n"); ab@2201: return -EAGAIN; ab@2201: } ab@2201: } else ab@2201: DPRINTK(HW, DEBUG, "phy_addr = %d\n", nic->mii.phy_id); ab@2201: ab@2201: /* Get phy ID */ ab@2201: id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1); ab@2201: id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2); ab@2201: nic->phy = (u32)id_hi << 16 | (u32)id_lo; ab@2201: DPRINTK(HW, DEBUG, "phy ID = 0x%08X\n", nic->phy); ab@2201: ab@2201: /* Select the phy and isolate the rest */ ab@2201: for (addr = 0; addr < 32; addr++) { ab@2201: if (addr != nic->mii.phy_id) { ab@2201: mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE); ab@2201: } else if (nic->phy != phy_82552_v) { ab@2201: bmcr = mdio_read(netdev, addr, MII_BMCR); ab@2201: mdio_write(netdev, addr, MII_BMCR, ab@2201: bmcr & ~BMCR_ISOLATE); ab@2201: } ab@2201: } ab@2201: /* ab@2201: * Workaround for 82552: ab@2201: * Clear the ISOLATE bit on selected phy_id last (mirrored on all ab@2201: * other phy_id's) using bmcr value from addr discovery loop above. ab@2201: */ ab@2201: if (nic->phy == phy_82552_v) ab@2201: mdio_write(netdev, nic->mii.phy_id, MII_BMCR, ab@2201: bmcr & ~BMCR_ISOLATE); ab@2201: ab@2201: /* Handle National tx phys */ ab@2201: #define NCS_PHY_MODEL_MASK 0xFFF0FFFF ab@2201: if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) { ab@2201: /* Disable congestion control */ ab@2201: cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG); ab@2201: cong |= NSC_CONG_TXREADY; ab@2201: cong &= ~NSC_CONG_ENABLE; ab@2201: mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong); ab@2201: } ab@2201: ab@2201: if (nic->phy == phy_82552_v) { ab@2201: u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE); ab@2201: ab@2201: /* assign special tweaked mdio_ctrl() function */ ab@2201: nic->mdio_ctrl = mdio_ctrl_phy_82552_v; ab@2201: ab@2201: /* Workaround Si not advertising flow-control during autoneg */ ab@2201: advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; ab@2201: mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert); ab@2201: ab@2201: /* Reset for the above changes to take effect */ ab@2201: bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR); ab@2201: bmcr |= BMCR_RESET; ab@2201: mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr); ab@2201: } else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) && ab@2201: (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) && ab@2201: !(nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))) { ab@2201: /* enable/disable MDI/MDI-X auto-switching. */ ab@2201: mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG, ab@2201: nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH); ab@2201: } ab@2201: ab@2201: return 0; ab@2201: } ab@2201: ab@2201: static int e100_hw_init(struct nic *nic) ab@2201: { ab@2201: int err; ab@2201: ab@2201: e100_hw_reset(nic); ab@2201: ab@2201: DPRINTK(HW, ERR, "e100_hw_init\n"); ab@2201: if (!in_interrupt() && (err = e100_self_test(nic))) ab@2201: return err; ab@2201: ab@2201: if ((err = e100_phy_init(nic))) ab@2201: return err; ab@2201: if ((err = e100_exec_cmd(nic, cuc_load_base, 0))) ab@2201: return err; ab@2201: if ((err = e100_exec_cmd(nic, ruc_load_base, 0))) ab@2201: return err; ab@2201: if ((err = e100_load_ucode_wait(nic))) ab@2201: return err; ab@2201: if ((err = e100_exec_cb(nic, NULL, e100_configure))) ab@2201: return err; ab@2201: if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr))) ab@2201: return err; ab@2201: if ((err = e100_exec_cmd(nic, cuc_dump_addr, ab@2201: nic->dma_addr + offsetof(struct mem, stats)))) ab@2201: return err; ab@2201: if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0))) ab@2201: return err; ab@2201: ab@2201: e100_disable_irq(nic); ab@2201: ab@2201: return 0; ab@2201: } ab@2201: ab@2201: static void e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb) ab@2201: { ab@2201: struct net_device *netdev = nic->netdev; ab@2201: struct dev_mc_list *list = netdev->mc_list; ab@2201: u16 i, count = min(netdev->mc_count, E100_MAX_MULTICAST_ADDRS); ab@2201: ab@2201: cb->command = cpu_to_le16(cb_multi); ab@2201: cb->u.multi.count = cpu_to_le16(count * ETH_ALEN); ab@2201: for (i = 0; list && i < count; i++, list = list->next) ab@2201: memcpy(&cb->u.multi.addr[i*ETH_ALEN], &list->dmi_addr, ab@2201: ETH_ALEN); ab@2201: } ab@2201: ab@2201: static void e100_set_multicast_list(struct net_device *netdev) ab@2201: { ab@2201: struct nic *nic = netdev_priv(netdev); ab@2201: ab@2201: DPRINTK(HW, DEBUG, "mc_count=%d, flags=0x%04X\n", ab@2201: netdev->mc_count, netdev->flags); ab@2201: ab@2201: if (netdev->flags & IFF_PROMISC) ab@2201: nic->flags |= promiscuous; ab@2201: else ab@2201: nic->flags &= ~promiscuous; ab@2201: ab@2201: if (netdev->flags & IFF_ALLMULTI || ab@2201: netdev->mc_count > E100_MAX_MULTICAST_ADDRS) ab@2201: nic->flags |= multicast_all; ab@2201: else ab@2201: nic->flags &= ~multicast_all; ab@2201: ab@2201: e100_exec_cb(nic, NULL, e100_configure); ab@2201: e100_exec_cb(nic, NULL, e100_multi); ab@2201: } ab@2201: ab@2201: static void e100_update_stats(struct nic *nic) ab@2201: { ab@2201: struct net_device *dev = nic->netdev; ab@2201: struct net_device_stats *ns = &dev->stats; ab@2201: struct stats *s = &nic->mem->stats; ab@2201: __le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause : ab@2201: (nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames : ab@2201: &s->complete; ab@2201: ab@2201: /* Device's stats reporting may take several microseconds to ab@2201: * complete, so we're always waiting for results of the ab@2201: * previous command. */ ab@2201: ab@2201: if (*complete == cpu_to_le32(cuc_dump_reset_complete)) { ab@2201: *complete = 0; ab@2201: nic->tx_frames = le32_to_cpu(s->tx_good_frames); ab@2201: nic->tx_collisions = le32_to_cpu(s->tx_total_collisions); ab@2201: ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions); ab@2201: ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions); ab@2201: ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs); ab@2201: ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns); ab@2201: ns->collisions += nic->tx_collisions; ab@2201: ns->tx_errors += le32_to_cpu(s->tx_max_collisions) + ab@2201: le32_to_cpu(s->tx_lost_crs); ab@2201: ns->rx_length_errors += le32_to_cpu(s->rx_short_frame_errors) + ab@2201: nic->rx_over_length_errors; ab@2201: ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors); ab@2201: ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors); ab@2201: ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors); ab@2201: ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors); ab@2201: ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors); ab@2201: ns->rx_errors += le32_to_cpu(s->rx_crc_errors) + ab@2201: le32_to_cpu(s->rx_alignment_errors) + ab@2201: le32_to_cpu(s->rx_short_frame_errors) + ab@2201: le32_to_cpu(s->rx_cdt_errors); ab@2201: nic->tx_deferred += le32_to_cpu(s->tx_deferred); ab@2201: nic->tx_single_collisions += ab@2201: le32_to_cpu(s->tx_single_collisions); ab@2201: nic->tx_multiple_collisions += ab@2201: le32_to_cpu(s->tx_multiple_collisions); ab@2201: if (nic->mac >= mac_82558_D101_A4) { ab@2201: nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause); ab@2201: nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause); ab@2201: nic->rx_fc_unsupported += ab@2201: le32_to_cpu(s->fc_rcv_unsupported); ab@2201: if (nic->mac >= mac_82559_D101M) { ab@2201: nic->tx_tco_frames += ab@2201: le16_to_cpu(s->xmt_tco_frames); ab@2201: nic->rx_tco_frames += ab@2201: le16_to_cpu(s->rcv_tco_frames); ab@2201: } ab@2201: } ab@2201: } ab@2201: ab@2201: ab@2201: if (e100_exec_cmd(nic, cuc_dump_reset, 0)) ab@2201: DPRINTK(TX_ERR, DEBUG, "exec cuc_dump_reset failed\n"); ab@2201: } ab@2201: ab@2201: static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex) ab@2201: { ab@2201: /* Adjust inter-frame-spacing (IFS) between two transmits if ab@2201: * we're getting collisions on a half-duplex connection. */ ab@2201: ab@2201: if (duplex == DUPLEX_HALF) { ab@2201: u32 prev = nic->adaptive_ifs; ab@2201: u32 min_frames = (speed == SPEED_100) ? 1000 : 100; ab@2201: ab@2201: if ((nic->tx_frames / 32 < nic->tx_collisions) && ab@2201: (nic->tx_frames > min_frames)) { ab@2201: if (nic->adaptive_ifs < 60) ab@2201: nic->adaptive_ifs += 5; ab@2201: } else if (nic->tx_frames < min_frames) { ab@2201: if (nic->adaptive_ifs >= 5) ab@2201: nic->adaptive_ifs -= 5; ab@2201: } ab@2201: if (nic->adaptive_ifs != prev) ab@2201: e100_exec_cb(nic, NULL, e100_configure); ab@2201: } ab@2201: } ab@2201: ab@2201: static void e100_watchdog(unsigned long data) ab@2201: { ab@2201: struct nic *nic = (struct nic *)data; ab@2201: struct ethtool_cmd cmd; ab@2201: ab@2201: DPRINTK(TIMER, DEBUG, "right now = %ld\n", jiffies); ab@2201: ab@2201: /* mii library handles link maintenance tasks */ ab@2201: ab@2201: mii_ethtool_gset(&nic->mii, &cmd); ab@2201: ab@2201: if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) { ab@2201: printk(KERN_INFO "e100: %s NIC Link is Up %s Mbps %s Duplex\n", ab@2201: nic->netdev->name, ab@2201: cmd.speed == SPEED_100 ? "100" : "10", ab@2201: cmd.duplex == DUPLEX_FULL ? "Full" : "Half"); ab@2201: } else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) { ab@2201: printk(KERN_INFO "e100: %s NIC Link is Down\n", ab@2201: nic->netdev->name); ab@2201: } ab@2201: ab@2201: mii_check_link(&nic->mii); ab@2201: ab@2201: /* Software generated interrupt to recover from (rare) Rx ab@2201: * allocation failure. ab@2201: * Unfortunately have to use a spinlock to not re-enable interrupts ab@2201: * accidentally, due to hardware that shares a register between the ab@2201: * interrupt mask bit and the SW Interrupt generation bit */ ab@2201: spin_lock_irq(&nic->cmd_lock); ab@2201: iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi); ab@2201: e100_write_flush(nic); ab@2201: spin_unlock_irq(&nic->cmd_lock); ab@2201: ab@2201: e100_update_stats(nic); ab@2201: e100_adjust_adaptive_ifs(nic, cmd.speed, cmd.duplex); ab@2201: ab@2201: if (nic->mac <= mac_82557_D100_C) ab@2201: /* Issue a multicast command to workaround a 557 lock up */ ab@2201: e100_set_multicast_list(nic->netdev); ab@2201: ab@2201: if (nic->flags & ich && cmd.speed==SPEED_10 && cmd.duplex==DUPLEX_HALF) ab@2201: /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */ ab@2201: nic->flags |= ich_10h_workaround; ab@2201: else ab@2201: nic->flags &= ~ich_10h_workaround; ab@2201: ab@2201: mod_timer(&nic->watchdog, ab@2201: round_jiffies(jiffies + E100_WATCHDOG_PERIOD)); ab@2201: } ab@2201: ab@2201: static void e100_xmit_prepare(struct nic *nic, struct cb *cb, ab@2201: struct sk_buff *skb) ab@2201: { ab@2201: cb->command = nic->tx_command; ab@2201: /* interrupt every 16 packets regardless of delay */ ab@2201: if ((nic->cbs_avail & ~15) == nic->cbs_avail) ab@2201: cb->command |= cpu_to_le16(cb_i); ab@2201: cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd); ab@2201: cb->u.tcb.tcb_byte_count = 0; ab@2201: cb->u.tcb.threshold = nic->tx_threshold; ab@2201: cb->u.tcb.tbd_count = 1; ab@2201: cb->u.tcb.tbd.buf_addr = cpu_to_le32(pci_map_single(nic->pdev, ab@2201: skb->data, skb->len, PCI_DMA_TODEVICE)); ab@2201: /* check for mapping failure? */ ab@2201: cb->u.tcb.tbd.size = cpu_to_le16(skb->len); ab@2201: } ab@2201: ab@2201: static netdev_tx_t e100_xmit_frame(struct sk_buff *skb, ab@2201: struct net_device *netdev) ab@2201: { ab@2201: struct nic *nic = netdev_priv(netdev); ab@2201: int err; ab@2201: ab@2201: if (nic->flags & ich_10h_workaround) { ab@2201: /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang. ab@2201: Issue a NOP command followed by a 1us delay before ab@2201: issuing the Tx command. */ ab@2201: if (e100_exec_cmd(nic, cuc_nop, 0)) ab@2201: DPRINTK(TX_ERR, DEBUG, "exec cuc_nop failed\n"); ab@2201: udelay(1); ab@2201: } ab@2201: ab@2201: err = e100_exec_cb(nic, skb, e100_xmit_prepare); ab@2201: ab@2201: switch (err) { ab@2201: case -ENOSPC: ab@2201: /* We queued the skb, but now we're out of space. */ ab@2201: DPRINTK(TX_ERR, DEBUG, "No space for CB\n"); ab@2201: netif_stop_queue(netdev); ab@2201: break; ab@2201: case -ENOMEM: ab@2201: /* This is a hard error - log it. */ ab@2201: DPRINTK(TX_ERR, DEBUG, "Out of Tx resources, returning skb\n"); ab@2201: netif_stop_queue(netdev); ab@2201: return NETDEV_TX_BUSY; ab@2201: } ab@2201: ab@2201: netdev->trans_start = jiffies; ab@2201: return NETDEV_TX_OK; ab@2201: } ab@2201: ab@2201: static int e100_tx_clean(struct nic *nic) ab@2201: { ab@2201: struct net_device *dev = nic->netdev; ab@2201: struct cb *cb; ab@2201: int tx_cleaned = 0; ab@2201: ab@2201: spin_lock(&nic->cb_lock); ab@2201: ab@2201: /* Clean CBs marked complete */ ab@2201: for (cb = nic->cb_to_clean; ab@2201: cb->status & cpu_to_le16(cb_complete); ab@2201: cb = nic->cb_to_clean = cb->next) { ab@2201: DPRINTK(TX_DONE, DEBUG, "cb[%d]->status = 0x%04X\n", ab@2201: (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)), ab@2201: cb->status); ab@2201: ab@2201: if (likely(cb->skb != NULL)) { ab@2201: dev->stats.tx_packets++; ab@2201: dev->stats.tx_bytes += cb->skb->len; ab@2201: ab@2201: pci_unmap_single(nic->pdev, ab@2201: le32_to_cpu(cb->u.tcb.tbd.buf_addr), ab@2201: le16_to_cpu(cb->u.tcb.tbd.size), ab@2201: PCI_DMA_TODEVICE); ab@2201: dev_kfree_skb_any(cb->skb); ab@2201: cb->skb = NULL; ab@2201: tx_cleaned = 1; ab@2201: } ab@2201: cb->status = 0; ab@2201: nic->cbs_avail++; ab@2201: } ab@2201: ab@2201: spin_unlock(&nic->cb_lock); ab@2201: ab@2201: /* Recover from running out of Tx resources in xmit_frame */ ab@2201: if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev))) ab@2201: netif_wake_queue(nic->netdev); ab@2201: ab@2201: return tx_cleaned; ab@2201: } ab@2201: ab@2201: static void e100_clean_cbs(struct nic *nic) ab@2201: { ab@2201: if (nic->cbs) { ab@2201: while (nic->cbs_avail != nic->params.cbs.count) { ab@2201: struct cb *cb = nic->cb_to_clean; ab@2201: if (cb->skb) { ab@2201: pci_unmap_single(nic->pdev, ab@2201: le32_to_cpu(cb->u.tcb.tbd.buf_addr), ab@2201: le16_to_cpu(cb->u.tcb.tbd.size), ab@2201: PCI_DMA_TODEVICE); ab@2201: dev_kfree_skb(cb->skb); ab@2201: } ab@2201: nic->cb_to_clean = nic->cb_to_clean->next; ab@2201: nic->cbs_avail++; ab@2201: } ab@2201: pci_pool_free(nic->cbs_pool, nic->cbs, nic->cbs_dma_addr); ab@2201: nic->cbs = NULL; ab@2201: nic->cbs_avail = 0; ab@2201: } ab@2201: nic->cuc_cmd = cuc_start; ab@2201: nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = ab@2201: nic->cbs; ab@2201: } ab@2201: ab@2201: static int e100_alloc_cbs(struct nic *nic) ab@2201: { ab@2201: struct cb *cb; ab@2201: unsigned int i, count = nic->params.cbs.count; ab@2201: ab@2201: nic->cuc_cmd = cuc_start; ab@2201: nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL; ab@2201: nic->cbs_avail = 0; ab@2201: ab@2201: nic->cbs = pci_pool_alloc(nic->cbs_pool, GFP_KERNEL, ab@2201: &nic->cbs_dma_addr); ab@2201: if (!nic->cbs) ab@2201: return -ENOMEM; ab@2201: memset(nic->cbs, 0, count * sizeof(struct cb)); ab@2201: ab@2201: for (cb = nic->cbs, i = 0; i < count; cb++, i++) { ab@2201: cb->next = (i + 1 < count) ? cb + 1 : nic->cbs; ab@2201: cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1; ab@2201: ab@2201: cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb); ab@2201: cb->link = cpu_to_le32(nic->cbs_dma_addr + ab@2201: ((i+1) % count) * sizeof(struct cb)); ab@2201: } ab@2201: ab@2201: nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs; ab@2201: nic->cbs_avail = count; ab@2201: ab@2201: return 0; ab@2201: } ab@2201: ab@2201: static inline void e100_start_receiver(struct nic *nic, struct rx *rx) ab@2201: { ab@2201: if (!nic->rxs) return; ab@2201: if (RU_SUSPENDED != nic->ru_running) return; ab@2201: ab@2201: /* handle init time starts */ ab@2201: if (!rx) rx = nic->rxs; ab@2201: ab@2201: /* (Re)start RU if suspended or idle and RFA is non-NULL */ ab@2201: if (rx->skb) { ab@2201: e100_exec_cmd(nic, ruc_start, rx->dma_addr); ab@2201: nic->ru_running = RU_RUNNING; ab@2201: } ab@2201: } ab@2201: ab@2201: #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN) ab@2201: static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx) ab@2201: { ab@2201: if (!(rx->skb = netdev_alloc_skb_ip_align(nic->netdev, RFD_BUF_LEN))) ab@2201: return -ENOMEM; ab@2201: ab@2201: /* Init, and map the RFD. */ ab@2201: skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd)); ab@2201: rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data, ab@2201: RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); ab@2201: ab@2201: if (pci_dma_mapping_error(nic->pdev, rx->dma_addr)) { ab@2201: dev_kfree_skb_any(rx->skb); ab@2201: rx->skb = NULL; ab@2201: rx->dma_addr = 0; ab@2201: return -ENOMEM; ab@2201: } ab@2201: ab@2201: /* Link the RFD to end of RFA by linking previous RFD to ab@2201: * this one. We are safe to touch the previous RFD because ab@2201: * it is protected by the before last buffer's el bit being set */ ab@2201: if (rx->prev->skb) { ab@2201: struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data; ab@2201: put_unaligned_le32(rx->dma_addr, &prev_rfd->link); ab@2201: pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr, ab@2201: sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL); ab@2201: } ab@2201: ab@2201: return 0; ab@2201: } ab@2201: ab@2201: static int e100_rx_indicate(struct nic *nic, struct rx *rx, ab@2201: unsigned int *work_done, unsigned int work_to_do) ab@2201: { ab@2201: struct net_device *dev = nic->netdev; ab@2201: struct sk_buff *skb = rx->skb; ab@2201: struct rfd *rfd = (struct rfd *)skb->data; ab@2201: u16 rfd_status, actual_size; ab@2201: ab@2201: if (unlikely(work_done && *work_done >= work_to_do)) ab@2201: return -EAGAIN; ab@2201: ab@2201: /* Need to sync before taking a peek at cb_complete bit */ ab@2201: pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr, ab@2201: sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL); ab@2201: rfd_status = le16_to_cpu(rfd->status); ab@2201: ab@2201: DPRINTK(RX_STATUS, DEBUG, "status=0x%04X\n", rfd_status); ab@2201: ab@2201: /* If data isn't ready, nothing to indicate */ ab@2201: if (unlikely(!(rfd_status & cb_complete))) { ab@2201: /* If the next buffer has the el bit, but we think the receiver ab@2201: * is still running, check to see if it really stopped while ab@2201: * we had interrupts off. ab@2201: * This allows for a fast restart without re-enabling ab@2201: * interrupts */ ab@2201: if ((le16_to_cpu(rfd->command) & cb_el) && ab@2201: (RU_RUNNING == nic->ru_running)) ab@2201: ab@2201: if (ioread8(&nic->csr->scb.status) & rus_no_res) ab@2201: nic->ru_running = RU_SUSPENDED; ab@2201: pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr, ab@2201: sizeof(struct rfd), ab@2201: PCI_DMA_FROMDEVICE); ab@2201: return -ENODATA; ab@2201: } ab@2201: ab@2201: /* Get actual data size */ ab@2201: actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF; ab@2201: if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd))) ab@2201: actual_size = RFD_BUF_LEN - sizeof(struct rfd); ab@2201: ab@2201: /* Get data */ ab@2201: pci_unmap_single(nic->pdev, rx->dma_addr, ab@2201: RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); ab@2201: ab@2201: /* If this buffer has the el bit, but we think the receiver ab@2201: * is still running, check to see if it really stopped while ab@2201: * we had interrupts off. ab@2201: * This allows for a fast restart without re-enabling interrupts. ab@2201: * This can happen when the RU sees the size change but also sees ab@2201: * the el bit set. */ ab@2201: if ((le16_to_cpu(rfd->command) & cb_el) && ab@2201: (RU_RUNNING == nic->ru_running)) { ab@2201: ab@2201: if (ioread8(&nic->csr->scb.status) & rus_no_res) ab@2201: nic->ru_running = RU_SUSPENDED; ab@2201: } ab@2201: ab@2201: /* Pull off the RFD and put the actual data (minus eth hdr) */ ab@2201: skb_reserve(skb, sizeof(struct rfd)); ab@2201: skb_put(skb, actual_size); ab@2201: skb->protocol = eth_type_trans(skb, nic->netdev); ab@2201: ab@2201: if (unlikely(!(rfd_status & cb_ok))) { ab@2201: /* Don't indicate if hardware indicates errors */ ab@2201: dev_kfree_skb_any(skb); ab@2201: } else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN) { ab@2201: /* Don't indicate oversized frames */ ab@2201: nic->rx_over_length_errors++; ab@2201: dev_kfree_skb_any(skb); ab@2201: } else { ab@2201: dev->stats.rx_packets++; ab@2201: dev->stats.rx_bytes += actual_size; ab@2201: netif_receive_skb(skb); ab@2201: if (work_done) ab@2201: (*work_done)++; ab@2201: } ab@2201: ab@2201: rx->skb = NULL; ab@2201: ab@2201: return 0; ab@2201: } ab@2201: ab@2201: static void e100_rx_clean(struct nic *nic, unsigned int *work_done, ab@2201: unsigned int work_to_do) ab@2201: { ab@2201: struct rx *rx; ab@2201: int restart_required = 0, err = 0; ab@2201: struct rx *old_before_last_rx, *new_before_last_rx; ab@2201: struct rfd *old_before_last_rfd, *new_before_last_rfd; ab@2201: ab@2201: /* Indicate newly arrived packets */ ab@2201: for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) { ab@2201: err = e100_rx_indicate(nic, rx, work_done, work_to_do); ab@2201: /* Hit quota or no more to clean */ ab@2201: if (-EAGAIN == err || -ENODATA == err) ab@2201: break; ab@2201: } ab@2201: ab@2201: ab@2201: /* On EAGAIN, hit quota so have more work to do, restart once ab@2201: * cleanup is complete. ab@2201: * Else, are we already rnr? then pay attention!!! this ensures that ab@2201: * the state machine progression never allows a start with a ab@2201: * partially cleaned list, avoiding a race between hardware ab@2201: * and rx_to_clean when in NAPI mode */ ab@2201: if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running) ab@2201: restart_required = 1; ab@2201: ab@2201: old_before_last_rx = nic->rx_to_use->prev->prev; ab@2201: old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data; ab@2201: ab@2201: /* Alloc new skbs to refill list */ ab@2201: for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) { ab@2201: if (unlikely(e100_rx_alloc_skb(nic, rx))) ab@2201: break; /* Better luck next time (see watchdog) */ ab@2201: } ab@2201: ab@2201: new_before_last_rx = nic->rx_to_use->prev->prev; ab@2201: if (new_before_last_rx != old_before_last_rx) { ab@2201: /* Set the el-bit on the buffer that is before the last buffer. ab@2201: * This lets us update the next pointer on the last buffer ab@2201: * without worrying about hardware touching it. ab@2201: * We set the size to 0 to prevent hardware from touching this ab@2201: * buffer. ab@2201: * When the hardware hits the before last buffer with el-bit ab@2201: * and size of 0, it will RNR interrupt, the RUS will go into ab@2201: * the No Resources state. It will not complete nor write to ab@2201: * this buffer. */ ab@2201: new_before_last_rfd = ab@2201: (struct rfd *)new_before_last_rx->skb->data; ab@2201: new_before_last_rfd->size = 0; ab@2201: new_before_last_rfd->command |= cpu_to_le16(cb_el); ab@2201: pci_dma_sync_single_for_device(nic->pdev, ab@2201: new_before_last_rx->dma_addr, sizeof(struct rfd), ab@2201: PCI_DMA_BIDIRECTIONAL); ab@2201: ab@2201: /* Now that we have a new stopping point, we can clear the old ab@2201: * stopping point. We must sync twice to get the proper ab@2201: * ordering on the hardware side of things. */ ab@2201: old_before_last_rfd->command &= ~cpu_to_le16(cb_el); ab@2201: pci_dma_sync_single_for_device(nic->pdev, ab@2201: old_before_last_rx->dma_addr, sizeof(struct rfd), ab@2201: PCI_DMA_BIDIRECTIONAL); ab@2201: old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN); ab@2201: pci_dma_sync_single_for_device(nic->pdev, ab@2201: old_before_last_rx->dma_addr, sizeof(struct rfd), ab@2201: PCI_DMA_BIDIRECTIONAL); ab@2201: } ab@2201: ab@2201: if (restart_required) { ab@2201: // ack the rnr? ab@2201: iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack); ab@2201: e100_start_receiver(nic, nic->rx_to_clean); ab@2201: if (work_done) ab@2201: (*work_done)++; ab@2201: } ab@2201: } ab@2201: ab@2201: static void e100_rx_clean_list(struct nic *nic) ab@2201: { ab@2201: struct rx *rx; ab@2201: unsigned int i, count = nic->params.rfds.count; ab@2201: ab@2201: nic->ru_running = RU_UNINITIALIZED; ab@2201: ab@2201: if (nic->rxs) { ab@2201: for (rx = nic->rxs, i = 0; i < count; rx++, i++) { ab@2201: if (rx->skb) { ab@2201: pci_unmap_single(nic->pdev, rx->dma_addr, ab@2201: RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); ab@2201: dev_kfree_skb(rx->skb); ab@2201: } ab@2201: } ab@2201: kfree(nic->rxs); ab@2201: nic->rxs = NULL; ab@2201: } ab@2201: ab@2201: nic->rx_to_use = nic->rx_to_clean = NULL; ab@2201: } ab@2201: ab@2201: static int e100_rx_alloc_list(struct nic *nic) ab@2201: { ab@2201: struct rx *rx; ab@2201: unsigned int i, count = nic->params.rfds.count; ab@2201: struct rfd *before_last; ab@2201: ab@2201: nic->rx_to_use = nic->rx_to_clean = NULL; ab@2201: nic->ru_running = RU_UNINITIALIZED; ab@2201: ab@2201: if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_ATOMIC))) ab@2201: return -ENOMEM; ab@2201: ab@2201: for (rx = nic->rxs, i = 0; i < count; rx++, i++) { ab@2201: rx->next = (i + 1 < count) ? rx + 1 : nic->rxs; ab@2201: rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1; ab@2201: if (e100_rx_alloc_skb(nic, rx)) { ab@2201: e100_rx_clean_list(nic); ab@2201: return -ENOMEM; ab@2201: } ab@2201: } ab@2201: /* Set the el-bit on the buffer that is before the last buffer. ab@2201: * This lets us update the next pointer on the last buffer without ab@2201: * worrying about hardware touching it. ab@2201: * We set the size to 0 to prevent hardware from touching this buffer. ab@2201: * When the hardware hits the before last buffer with el-bit and size ab@2201: * of 0, it will RNR interrupt, the RU will go into the No Resources ab@2201: * state. It will not complete nor write to this buffer. */ ab@2201: rx = nic->rxs->prev->prev; ab@2201: before_last = (struct rfd *)rx->skb->data; ab@2201: before_last->command |= cpu_to_le16(cb_el); ab@2201: before_last->size = 0; ab@2201: pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr, ab@2201: sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL); ab@2201: ab@2201: nic->rx_to_use = nic->rx_to_clean = nic->rxs; ab@2201: nic->ru_running = RU_SUSPENDED; ab@2201: ab@2201: return 0; ab@2201: } ab@2201: ab@2201: static irqreturn_t e100_intr(int irq, void *dev_id) ab@2201: { ab@2201: struct net_device *netdev = dev_id; ab@2201: struct nic *nic = netdev_priv(netdev); ab@2201: u8 stat_ack = ioread8(&nic->csr->scb.stat_ack); ab@2201: ab@2201: DPRINTK(INTR, DEBUG, "stat_ack = 0x%02X\n", stat_ack); ab@2201: ab@2201: if (stat_ack == stat_ack_not_ours || /* Not our interrupt */ ab@2201: stat_ack == stat_ack_not_present) /* Hardware is ejected */ ab@2201: return IRQ_NONE; ab@2201: ab@2201: /* Ack interrupt(s) */ ab@2201: iowrite8(stat_ack, &nic->csr->scb.stat_ack); ab@2201: ab@2201: /* We hit Receive No Resource (RNR); restart RU after cleaning */ ab@2201: if (stat_ack & stat_ack_rnr) ab@2201: nic->ru_running = RU_SUSPENDED; ab@2201: ab@2201: if (likely(napi_schedule_prep(&nic->napi))) { ab@2201: e100_disable_irq(nic); ab@2201: __napi_schedule(&nic->napi); ab@2201: } ab@2201: ab@2201: return IRQ_HANDLED; ab@2201: } ab@2201: ab@2201: static int e100_poll(struct napi_struct *napi, int budget) ab@2201: { ab@2201: struct nic *nic = container_of(napi, struct nic, napi); ab@2201: unsigned int work_done = 0; ab@2201: ab@2201: e100_rx_clean(nic, &work_done, budget); ab@2201: e100_tx_clean(nic); ab@2201: ab@2201: /* If budget not fully consumed, exit the polling mode */ ab@2201: if (work_done < budget) { ab@2201: napi_complete(napi); ab@2201: e100_enable_irq(nic); ab@2201: } ab@2201: ab@2201: return work_done; ab@2201: } ab@2201: ab@2201: #ifdef CONFIG_NET_POLL_CONTROLLER ab@2201: static void e100_netpoll(struct net_device *netdev) ab@2201: { ab@2201: struct nic *nic = netdev_priv(netdev); ab@2201: ab@2201: e100_disable_irq(nic); ab@2201: e100_intr(nic->pdev->irq, netdev); ab@2201: e100_tx_clean(nic); ab@2201: e100_enable_irq(nic); ab@2201: } ab@2201: #endif ab@2201: ab@2201: static int e100_set_mac_address(struct net_device *netdev, void *p) ab@2201: { ab@2201: struct nic *nic = netdev_priv(netdev); ab@2201: struct sockaddr *addr = p; ab@2201: ab@2201: if (!is_valid_ether_addr(addr->sa_data)) ab@2201: return -EADDRNOTAVAIL; ab@2201: ab@2201: memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); ab@2201: e100_exec_cb(nic, NULL, e100_setup_iaaddr); ab@2201: ab@2201: return 0; ab@2201: } ab@2201: ab@2201: static int e100_change_mtu(struct net_device *netdev, int new_mtu) ab@2201: { ab@2201: if (new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN) ab@2201: return -EINVAL; ab@2201: netdev->mtu = new_mtu; ab@2201: return 0; ab@2201: } ab@2201: ab@2201: static int e100_asf(struct nic *nic) ab@2201: { ab@2201: /* ASF can be enabled from eeprom */ ab@2201: return((nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) && ab@2201: (nic->eeprom[eeprom_config_asf] & eeprom_asf) && ab@2201: !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) && ab@2201: ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE)); ab@2201: } ab@2201: ab@2201: static int e100_up(struct nic *nic) ab@2201: { ab@2201: int err; ab@2201: ab@2201: if ((err = e100_rx_alloc_list(nic))) ab@2201: return err; ab@2201: if ((err = e100_alloc_cbs(nic))) ab@2201: goto err_rx_clean_list; ab@2201: if ((err = e100_hw_init(nic))) ab@2201: goto err_clean_cbs; ab@2201: e100_set_multicast_list(nic->netdev); ab@2201: e100_start_receiver(nic, NULL); ab@2201: mod_timer(&nic->watchdog, jiffies); ab@2201: if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED, ab@2201: nic->netdev->name, nic->netdev))) ab@2201: goto err_no_irq; ab@2201: netif_wake_queue(nic->netdev); ab@2201: napi_enable(&nic->napi); ab@2201: /* enable ints _after_ enabling poll, preventing a race between ab@2201: * disable ints+schedule */ ab@2201: e100_enable_irq(nic); ab@2201: return 0; ab@2201: ab@2201: err_no_irq: ab@2201: del_timer_sync(&nic->watchdog); ab@2201: err_clean_cbs: ab@2201: e100_clean_cbs(nic); ab@2201: err_rx_clean_list: ab@2201: e100_rx_clean_list(nic); ab@2201: return err; ab@2201: } ab@2201: ab@2201: static void e100_down(struct nic *nic) ab@2201: { ab@2201: /* wait here for poll to complete */ ab@2201: napi_disable(&nic->napi); ab@2201: netif_stop_queue(nic->netdev); ab@2201: e100_hw_reset(nic); ab@2201: free_irq(nic->pdev->irq, nic->netdev); ab@2201: del_timer_sync(&nic->watchdog); ab@2201: netif_carrier_off(nic->netdev); ab@2201: e100_clean_cbs(nic); ab@2201: e100_rx_clean_list(nic); ab@2201: } ab@2201: ab@2201: static void e100_tx_timeout(struct net_device *netdev) ab@2201: { ab@2201: struct nic *nic = netdev_priv(netdev); ab@2201: ab@2201: /* Reset outside of interrupt context, to avoid request_irq ab@2201: * in interrupt context */ ab@2201: schedule_work(&nic->tx_timeout_task); ab@2201: } ab@2201: ab@2201: static void e100_tx_timeout_task(struct work_struct *work) ab@2201: { ab@2201: struct nic *nic = container_of(work, struct nic, tx_timeout_task); ab@2201: struct net_device *netdev = nic->netdev; ab@2201: ab@2201: DPRINTK(TX_ERR, DEBUG, "scb.status=0x%02X\n", ab@2201: ioread8(&nic->csr->scb.status)); ab@2201: e100_down(netdev_priv(netdev)); ab@2201: e100_up(netdev_priv(netdev)); ab@2201: } ab@2201: ab@2201: static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode) ab@2201: { ab@2201: int err; ab@2201: struct sk_buff *skb; ab@2201: ab@2201: /* Use driver resources to perform internal MAC or PHY ab@2201: * loopback test. A single packet is prepared and transmitted ab@2201: * in loopback mode, and the test passes if the received ab@2201: * packet compares byte-for-byte to the transmitted packet. */ ab@2201: ab@2201: if ((err = e100_rx_alloc_list(nic))) ab@2201: return err; ab@2201: if ((err = e100_alloc_cbs(nic))) ab@2201: goto err_clean_rx; ab@2201: ab@2201: /* ICH PHY loopback is broken so do MAC loopback instead */ ab@2201: if (nic->flags & ich && loopback_mode == lb_phy) ab@2201: loopback_mode = lb_mac; ab@2201: ab@2201: nic->loopback = loopback_mode; ab@2201: if ((err = e100_hw_init(nic))) ab@2201: goto err_loopback_none; ab@2201: ab@2201: if (loopback_mode == lb_phy) ab@2201: mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, ab@2201: BMCR_LOOPBACK); ab@2201: ab@2201: e100_start_receiver(nic, NULL); ab@2201: ab@2201: if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) { ab@2201: err = -ENOMEM; ab@2201: goto err_loopback_none; ab@2201: } ab@2201: skb_put(skb, ETH_DATA_LEN); ab@2201: memset(skb->data, 0xFF, ETH_DATA_LEN); ab@2201: e100_xmit_frame(skb, nic->netdev); ab@2201: ab@2201: msleep(10); ab@2201: ab@2201: pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr, ab@2201: RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); ab@2201: ab@2201: if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd), ab@2201: skb->data, ETH_DATA_LEN)) ab@2201: err = -EAGAIN; ab@2201: ab@2201: err_loopback_none: ab@2201: mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0); ab@2201: nic->loopback = lb_none; ab@2201: e100_clean_cbs(nic); ab@2201: e100_hw_reset(nic); ab@2201: err_clean_rx: ab@2201: e100_rx_clean_list(nic); ab@2201: return err; ab@2201: } ab@2201: ab@2201: #define MII_LED_CONTROL 0x1B ab@2201: #define E100_82552_LED_OVERRIDE 0x19 ab@2201: #define E100_82552_LED_ON 0x000F /* LEDTX and LED_RX both on */ ab@2201: #define E100_82552_LED_OFF 0x000A /* LEDTX and LED_RX both off */ ab@2201: static void e100_blink_led(unsigned long data) ab@2201: { ab@2201: struct nic *nic = (struct nic *)data; ab@2201: enum led_state { ab@2201: led_on = 0x01, ab@2201: led_off = 0x04, ab@2201: led_on_559 = 0x05, ab@2201: led_on_557 = 0x07, ab@2201: }; ab@2201: u16 led_reg = MII_LED_CONTROL; ab@2201: ab@2201: if (nic->phy == phy_82552_v) { ab@2201: led_reg = E100_82552_LED_OVERRIDE; ab@2201: ab@2201: nic->leds = (nic->leds == E100_82552_LED_ON) ? ab@2201: E100_82552_LED_OFF : E100_82552_LED_ON; ab@2201: } else { ab@2201: nic->leds = (nic->leds & led_on) ? led_off : ab@2201: (nic->mac < mac_82559_D101M) ? led_on_557 : ab@2201: led_on_559; ab@2201: } ab@2201: mdio_write(nic->netdev, nic->mii.phy_id, led_reg, nic->leds); ab@2201: mod_timer(&nic->blink_timer, jiffies + HZ / 4); ab@2201: } ab@2201: ab@2201: static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd) ab@2201: { ab@2201: struct nic *nic = netdev_priv(netdev); ab@2201: return mii_ethtool_gset(&nic->mii, cmd); ab@2201: } ab@2201: ab@2201: static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd) ab@2201: { ab@2201: struct nic *nic = netdev_priv(netdev); ab@2201: int err; ab@2201: ab@2201: mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET); ab@2201: err = mii_ethtool_sset(&nic->mii, cmd); ab@2201: e100_exec_cb(nic, NULL, e100_configure); ab@2201: ab@2201: return err; ab@2201: } ab@2201: ab@2201: static void e100_get_drvinfo(struct net_device *netdev, ab@2201: struct ethtool_drvinfo *info) ab@2201: { ab@2201: struct nic *nic = netdev_priv(netdev); ab@2201: strcpy(info->driver, DRV_NAME); ab@2201: strcpy(info->version, DRV_VERSION); ab@2201: strcpy(info->fw_version, "N/A"); ab@2201: strcpy(info->bus_info, pci_name(nic->pdev)); ab@2201: } ab@2201: ab@2201: #define E100_PHY_REGS 0x1C ab@2201: static int e100_get_regs_len(struct net_device *netdev) ab@2201: { ab@2201: struct nic *nic = netdev_priv(netdev); ab@2201: return 1 + E100_PHY_REGS + sizeof(nic->mem->dump_buf); ab@2201: } ab@2201: ab@2201: static void e100_get_regs(struct net_device *netdev, ab@2201: struct ethtool_regs *regs, void *p) ab@2201: { ab@2201: struct nic *nic = netdev_priv(netdev); ab@2201: u32 *buff = p; ab@2201: int i; ab@2201: ab@2201: regs->version = (1 << 24) | nic->pdev->revision; ab@2201: buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 | ab@2201: ioread8(&nic->csr->scb.cmd_lo) << 16 | ab@2201: ioread16(&nic->csr->scb.status); ab@2201: for (i = E100_PHY_REGS; i >= 0; i--) ab@2201: buff[1 + E100_PHY_REGS - i] = ab@2201: mdio_read(netdev, nic->mii.phy_id, i); ab@2201: memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf)); ab@2201: e100_exec_cb(nic, NULL, e100_dump); ab@2201: msleep(10); ab@2201: memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf, ab@2201: sizeof(nic->mem->dump_buf)); ab@2201: } ab@2201: ab@2201: static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) ab@2201: { ab@2201: struct nic *nic = netdev_priv(netdev); ab@2201: wol->supported = (nic->mac >= mac_82558_D101_A4) ? WAKE_MAGIC : 0; ab@2201: wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0; ab@2201: } ab@2201: ab@2201: static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) ab@2201: { ab@2201: struct nic *nic = netdev_priv(netdev); ab@2201: ab@2201: if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) || ab@2201: !device_can_wakeup(&nic->pdev->dev)) ab@2201: return -EOPNOTSUPP; ab@2201: ab@2201: if (wol->wolopts) ab@2201: nic->flags |= wol_magic; ab@2201: else ab@2201: nic->flags &= ~wol_magic; ab@2201: ab@2201: device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts); ab@2201: ab@2201: e100_exec_cb(nic, NULL, e100_configure); ab@2201: ab@2201: return 0; ab@2201: } ab@2201: ab@2201: static u32 e100_get_msglevel(struct net_device *netdev) ab@2201: { ab@2201: struct nic *nic = netdev_priv(netdev); ab@2201: return nic->msg_enable; ab@2201: } ab@2201: ab@2201: static void e100_set_msglevel(struct net_device *netdev, u32 value) ab@2201: { ab@2201: struct nic *nic = netdev_priv(netdev); ab@2201: nic->msg_enable = value; ab@2201: } ab@2201: ab@2201: static int e100_nway_reset(struct net_device *netdev) ab@2201: { ab@2201: struct nic *nic = netdev_priv(netdev); ab@2201: return mii_nway_restart(&nic->mii); ab@2201: } ab@2201: ab@2201: static u32 e100_get_link(struct net_device *netdev) ab@2201: { ab@2201: struct nic *nic = netdev_priv(netdev); ab@2201: return mii_link_ok(&nic->mii); ab@2201: } ab@2201: ab@2201: static int e100_get_eeprom_len(struct net_device *netdev) ab@2201: { ab@2201: struct nic *nic = netdev_priv(netdev); ab@2201: return nic->eeprom_wc << 1; ab@2201: } ab@2201: ab@2201: #define E100_EEPROM_MAGIC 0x1234 ab@2201: static int e100_get_eeprom(struct net_device *netdev, ab@2201: struct ethtool_eeprom *eeprom, u8 *bytes) ab@2201: { ab@2201: struct nic *nic = netdev_priv(netdev); ab@2201: ab@2201: eeprom->magic = E100_EEPROM_MAGIC; ab@2201: memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len); ab@2201: ab@2201: return 0; ab@2201: } ab@2201: ab@2201: static int e100_set_eeprom(struct net_device *netdev, ab@2201: struct ethtool_eeprom *eeprom, u8 *bytes) ab@2201: { ab@2201: struct nic *nic = netdev_priv(netdev); ab@2201: ab@2201: if (eeprom->magic != E100_EEPROM_MAGIC) ab@2201: return -EINVAL; ab@2201: ab@2201: memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len); ab@2201: ab@2201: return e100_eeprom_save(nic, eeprom->offset >> 1, ab@2201: (eeprom->len >> 1) + 1); ab@2201: } ab@2201: ab@2201: static void e100_get_ringparam(struct net_device *netdev, ab@2201: struct ethtool_ringparam *ring) ab@2201: { ab@2201: struct nic *nic = netdev_priv(netdev); ab@2201: struct param_range *rfds = &nic->params.rfds; ab@2201: struct param_range *cbs = &nic->params.cbs; ab@2201: ab@2201: ring->rx_max_pending = rfds->max; ab@2201: ring->tx_max_pending = cbs->max; ab@2201: ring->rx_mini_max_pending = 0; ab@2201: ring->rx_jumbo_max_pending = 0; ab@2201: ring->rx_pending = rfds->count; ab@2201: ring->tx_pending = cbs->count; ab@2201: ring->rx_mini_pending = 0; ab@2201: ring->rx_jumbo_pending = 0; ab@2201: } ab@2201: ab@2201: static int e100_set_ringparam(struct net_device *netdev, ab@2201: struct ethtool_ringparam *ring) ab@2201: { ab@2201: struct nic *nic = netdev_priv(netdev); ab@2201: struct param_range *rfds = &nic->params.rfds; ab@2201: struct param_range *cbs = &nic->params.cbs; ab@2201: ab@2201: if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) ab@2201: return -EINVAL; ab@2201: ab@2201: if (netif_running(netdev)) ab@2201: e100_down(nic); ab@2201: rfds->count = max(ring->rx_pending, rfds->min); ab@2201: rfds->count = min(rfds->count, rfds->max); ab@2201: cbs->count = max(ring->tx_pending, cbs->min); ab@2201: cbs->count = min(cbs->count, cbs->max); ab@2201: DPRINTK(DRV, INFO, "Ring Param settings: rx: %d, tx %d\n", ab@2201: rfds->count, cbs->count); ab@2201: if (netif_running(netdev)) ab@2201: e100_up(nic); ab@2201: ab@2201: return 0; ab@2201: } ab@2201: ab@2201: static const char e100_gstrings_test[][ETH_GSTRING_LEN] = { ab@2201: "Link test (on/offline)", ab@2201: "Eeprom test (on/offline)", ab@2201: "Self test (offline)", ab@2201: "Mac loopback (offline)", ab@2201: "Phy loopback (offline)", ab@2201: }; ab@2201: #define E100_TEST_LEN ARRAY_SIZE(e100_gstrings_test) ab@2201: ab@2201: static void e100_diag_test(struct net_device *netdev, ab@2201: struct ethtool_test *test, u64 *data) ab@2201: { ab@2201: struct ethtool_cmd cmd; ab@2201: struct nic *nic = netdev_priv(netdev); ab@2201: int i, err; ab@2201: ab@2201: memset(data, 0, E100_TEST_LEN * sizeof(u64)); ab@2201: data[0] = !mii_link_ok(&nic->mii); ab@2201: data[1] = e100_eeprom_load(nic); ab@2201: if (test->flags & ETH_TEST_FL_OFFLINE) { ab@2201: ab@2201: /* save speed, duplex & autoneg settings */ ab@2201: err = mii_ethtool_gset(&nic->mii, &cmd); ab@2201: ab@2201: if (netif_running(netdev)) ab@2201: e100_down(nic); ab@2201: data[2] = e100_self_test(nic); ab@2201: data[3] = e100_loopback_test(nic, lb_mac); ab@2201: data[4] = e100_loopback_test(nic, lb_phy); ab@2201: ab@2201: /* restore speed, duplex & autoneg settings */ ab@2201: err = mii_ethtool_sset(&nic->mii, &cmd); ab@2201: ab@2201: if (netif_running(netdev)) ab@2201: e100_up(nic); ab@2201: } ab@2201: for (i = 0; i < E100_TEST_LEN; i++) ab@2201: test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0; ab@2201: ab@2201: msleep_interruptible(4 * 1000); ab@2201: } ab@2201: ab@2201: static int e100_phys_id(struct net_device *netdev, u32 data) ab@2201: { ab@2201: struct nic *nic = netdev_priv(netdev); ab@2201: u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE : ab@2201: MII_LED_CONTROL; ab@2201: ab@2201: if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ)) ab@2201: data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ); ab@2201: mod_timer(&nic->blink_timer, jiffies); ab@2201: msleep_interruptible(data * 1000); ab@2201: del_timer_sync(&nic->blink_timer); ab@2201: mdio_write(netdev, nic->mii.phy_id, led_reg, 0); ab@2201: ab@2201: return 0; ab@2201: } ab@2201: ab@2201: static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = { ab@2201: "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors", ab@2201: "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions", ab@2201: "rx_length_errors", "rx_over_errors", "rx_crc_errors", ab@2201: "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors", ab@2201: "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors", ab@2201: "tx_heartbeat_errors", "tx_window_errors", ab@2201: /* device-specific stats */ ab@2201: "tx_deferred", "tx_single_collisions", "tx_multi_collisions", ab@2201: "tx_flow_control_pause", "rx_flow_control_pause", ab@2201: "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets", ab@2201: }; ab@2201: #define E100_NET_STATS_LEN 21 ab@2201: #define E100_STATS_LEN ARRAY_SIZE(e100_gstrings_stats) ab@2201: ab@2201: static int e100_get_sset_count(struct net_device *netdev, int sset) ab@2201: { ab@2201: switch (sset) { ab@2201: case ETH_SS_TEST: ab@2201: return E100_TEST_LEN; ab@2201: case ETH_SS_STATS: ab@2201: return E100_STATS_LEN; ab@2201: default: ab@2201: return -EOPNOTSUPP; ab@2201: } ab@2201: } ab@2201: ab@2201: static void e100_get_ethtool_stats(struct net_device *netdev, ab@2201: struct ethtool_stats *stats, u64 *data) ab@2201: { ab@2201: struct nic *nic = netdev_priv(netdev); ab@2201: int i; ab@2201: ab@2201: for (i = 0; i < E100_NET_STATS_LEN; i++) ab@2201: data[i] = ((unsigned long *)&netdev->stats)[i]; ab@2201: ab@2201: data[i++] = nic->tx_deferred; ab@2201: data[i++] = nic->tx_single_collisions; ab@2201: data[i++] = nic->tx_multiple_collisions; ab@2201: data[i++] = nic->tx_fc_pause; ab@2201: data[i++] = nic->rx_fc_pause; ab@2201: data[i++] = nic->rx_fc_unsupported; ab@2201: data[i++] = nic->tx_tco_frames; ab@2201: data[i++] = nic->rx_tco_frames; ab@2201: } ab@2201: ab@2201: static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data) ab@2201: { ab@2201: switch (stringset) { ab@2201: case ETH_SS_TEST: ab@2201: memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test)); ab@2201: break; ab@2201: case ETH_SS_STATS: ab@2201: memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats)); ab@2201: break; ab@2201: } ab@2201: } ab@2201: ab@2201: static const struct ethtool_ops e100_ethtool_ops = { ab@2201: .get_settings = e100_get_settings, ab@2201: .set_settings = e100_set_settings, ab@2201: .get_drvinfo = e100_get_drvinfo, ab@2201: .get_regs_len = e100_get_regs_len, ab@2201: .get_regs = e100_get_regs, ab@2201: .get_wol = e100_get_wol, ab@2201: .set_wol = e100_set_wol, ab@2201: .get_msglevel = e100_get_msglevel, ab@2201: .set_msglevel = e100_set_msglevel, ab@2201: .nway_reset = e100_nway_reset, ab@2201: .get_link = e100_get_link, ab@2201: .get_eeprom_len = e100_get_eeprom_len, ab@2201: .get_eeprom = e100_get_eeprom, ab@2201: .set_eeprom = e100_set_eeprom, ab@2201: .get_ringparam = e100_get_ringparam, ab@2201: .set_ringparam = e100_set_ringparam, ab@2201: .self_test = e100_diag_test, ab@2201: .get_strings = e100_get_strings, ab@2201: .phys_id = e100_phys_id, ab@2201: .get_ethtool_stats = e100_get_ethtool_stats, ab@2201: .get_sset_count = e100_get_sset_count, ab@2201: }; ab@2201: ab@2201: static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) ab@2201: { ab@2201: struct nic *nic = netdev_priv(netdev); ab@2201: ab@2201: return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL); ab@2201: } ab@2201: ab@2201: static int e100_alloc(struct nic *nic) ab@2201: { ab@2201: nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem), ab@2201: &nic->dma_addr); ab@2201: return nic->mem ? 0 : -ENOMEM; ab@2201: } ab@2201: ab@2201: static void e100_free(struct nic *nic) ab@2201: { ab@2201: if (nic->mem) { ab@2201: pci_free_consistent(nic->pdev, sizeof(struct mem), ab@2201: nic->mem, nic->dma_addr); ab@2201: nic->mem = NULL; ab@2201: } ab@2201: } ab@2201: ab@2201: static int e100_open(struct net_device *netdev) ab@2201: { ab@2201: struct nic *nic = netdev_priv(netdev); ab@2201: int err = 0; ab@2201: ab@2201: netif_carrier_off(netdev); ab@2201: if ((err = e100_up(nic))) ab@2201: DPRINTK(IFUP, ERR, "Cannot open interface, aborting.\n"); ab@2201: return err; ab@2201: } ab@2201: ab@2201: static int e100_close(struct net_device *netdev) ab@2201: { ab@2201: e100_down(netdev_priv(netdev)); ab@2201: return 0; ab@2201: } ab@2201: ab@2201: static const struct net_device_ops e100_netdev_ops = { ab@2201: .ndo_open = e100_open, ab@2201: .ndo_stop = e100_close, ab@2201: .ndo_start_xmit = e100_xmit_frame, ab@2201: .ndo_validate_addr = eth_validate_addr, ab@2201: .ndo_set_multicast_list = e100_set_multicast_list, ab@2201: .ndo_set_mac_address = e100_set_mac_address, ab@2201: .ndo_change_mtu = e100_change_mtu, ab@2201: .ndo_do_ioctl = e100_do_ioctl, ab@2201: .ndo_tx_timeout = e100_tx_timeout, ab@2201: #ifdef CONFIG_NET_POLL_CONTROLLER ab@2201: .ndo_poll_controller = e100_netpoll, ab@2201: #endif ab@2201: }; ab@2201: ab@2201: static int __devinit e100_probe(struct pci_dev *pdev, ab@2201: const struct pci_device_id *ent) ab@2201: { ab@2201: struct net_device *netdev; ab@2201: struct nic *nic; ab@2201: int err; ab@2201: ab@2201: if (!(netdev = alloc_etherdev(sizeof(struct nic)))) { ab@2201: if (((1 << debug) - 1) & NETIF_MSG_PROBE) ab@2201: printk(KERN_ERR PFX "Etherdev alloc failed, abort.\n"); ab@2201: return -ENOMEM; ab@2201: } ab@2201: ab@2201: netdev->netdev_ops = &e100_netdev_ops; ab@2201: SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops); ab@2201: netdev->watchdog_timeo = E100_WATCHDOG_PERIOD; ab@2201: strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); ab@2201: ab@2201: nic = netdev_priv(netdev); ab@2201: netif_napi_add(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT); ab@2201: nic->netdev = netdev; ab@2201: nic->pdev = pdev; ab@2201: nic->msg_enable = (1 << debug) - 1; ab@2201: nic->mdio_ctrl = mdio_ctrl_hw; ab@2201: pci_set_drvdata(pdev, netdev); ab@2201: ab@2201: if ((err = pci_enable_device(pdev))) { ab@2201: DPRINTK(PROBE, ERR, "Cannot enable PCI device, aborting.\n"); ab@2201: goto err_out_free_dev; ab@2201: } ab@2201: ab@2201: if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { ab@2201: DPRINTK(PROBE, ERR, "Cannot find proper PCI device " ab@2201: "base address, aborting.\n"); ab@2201: err = -ENODEV; ab@2201: goto err_out_disable_pdev; ab@2201: } ab@2201: ab@2201: if ((err = pci_request_regions(pdev, DRV_NAME))) { ab@2201: DPRINTK(PROBE, ERR, "Cannot obtain PCI resources, aborting.\n"); ab@2201: goto err_out_disable_pdev; ab@2201: } ab@2201: ab@2201: if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) { ab@2201: DPRINTK(PROBE, ERR, "No usable DMA configuration, aborting.\n"); ab@2201: goto err_out_free_res; ab@2201: } ab@2201: ab@2201: SET_NETDEV_DEV(netdev, &pdev->dev); ab@2201: ab@2201: if (use_io) ab@2201: DPRINTK(PROBE, INFO, "using i/o access mode\n"); ab@2201: ab@2201: nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr)); ab@2201: if (!nic->csr) { ab@2201: DPRINTK(PROBE, ERR, "Cannot map device registers, aborting.\n"); ab@2201: err = -ENOMEM; ab@2201: goto err_out_free_res; ab@2201: } ab@2201: ab@2201: if (ent->driver_data) ab@2201: nic->flags |= ich; ab@2201: else ab@2201: nic->flags &= ~ich; ab@2201: ab@2201: e100_get_defaults(nic); ab@2201: ab@2201: /* locks must be initialized before calling hw_reset */ ab@2201: spin_lock_init(&nic->cb_lock); ab@2201: spin_lock_init(&nic->cmd_lock); ab@2201: spin_lock_init(&nic->mdio_lock); ab@2201: ab@2201: /* Reset the device before pci_set_master() in case device is in some ab@2201: * funky state and has an interrupt pending - hint: we don't have the ab@2201: * interrupt handler registered yet. */ ab@2201: e100_hw_reset(nic); ab@2201: ab@2201: pci_set_master(pdev); ab@2201: ab@2201: init_timer(&nic->watchdog); ab@2201: nic->watchdog.function = e100_watchdog; ab@2201: nic->watchdog.data = (unsigned long)nic; ab@2201: init_timer(&nic->blink_timer); ab@2201: nic->blink_timer.function = e100_blink_led; ab@2201: nic->blink_timer.data = (unsigned long)nic; ab@2201: ab@2201: INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task); ab@2201: ab@2201: if ((err = e100_alloc(nic))) { ab@2201: DPRINTK(PROBE, ERR, "Cannot alloc driver memory, aborting.\n"); ab@2201: goto err_out_iounmap; ab@2201: } ab@2201: ab@2201: if ((err = e100_eeprom_load(nic))) ab@2201: goto err_out_free; ab@2201: ab@2201: e100_phy_init(nic); ab@2201: ab@2201: memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN); ab@2201: memcpy(netdev->perm_addr, nic->eeprom, ETH_ALEN); ab@2201: if (!is_valid_ether_addr(netdev->perm_addr)) { ab@2201: if (!eeprom_bad_csum_allow) { ab@2201: DPRINTK(PROBE, ERR, "Invalid MAC address from " ab@2201: "EEPROM, aborting.\n"); ab@2201: err = -EAGAIN; ab@2201: goto err_out_free; ab@2201: } else { ab@2201: DPRINTK(PROBE, ERR, "Invalid MAC address from EEPROM, " ab@2201: "you MUST configure one.\n"); ab@2201: } ab@2201: } ab@2201: ab@2201: /* Wol magic packet can be enabled from eeprom */ ab@2201: if ((nic->mac >= mac_82558_D101_A4) && ab@2201: (nic->eeprom[eeprom_id] & eeprom_id_wol)) { ab@2201: nic->flags |= wol_magic; ab@2201: device_set_wakeup_enable(&pdev->dev, true); ab@2201: } ab@2201: ab@2201: /* ack any pending wake events, disable PME */ ab@2201: pci_pme_active(pdev, false); ab@2201: ab@2201: strcpy(netdev->name, "eth%d"); ab@2201: if ((err = register_netdev(netdev))) { ab@2201: DPRINTK(PROBE, ERR, "Cannot register net device, aborting.\n"); ab@2201: goto err_out_free; ab@2201: } ab@2201: nic->cbs_pool = pci_pool_create(netdev->name, ab@2201: nic->pdev, ab@2201: nic->params.cbs.max * sizeof(struct cb), ab@2201: sizeof(u32), ab@2201: 0); ab@2201: DPRINTK(PROBE, INFO, "addr 0x%llx, irq %d, MAC addr %pM\n", ab@2201: (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0), ab@2201: pdev->irq, netdev->dev_addr); ab@2201: ab@2201: return 0; ab@2201: ab@2201: err_out_free: ab@2201: e100_free(nic); ab@2201: err_out_iounmap: ab@2201: pci_iounmap(pdev, nic->csr); ab@2201: err_out_free_res: ab@2201: pci_release_regions(pdev); ab@2201: err_out_disable_pdev: ab@2201: pci_disable_device(pdev); ab@2201: err_out_free_dev: ab@2201: pci_set_drvdata(pdev, NULL); ab@2201: free_netdev(netdev); ab@2201: return err; ab@2201: } ab@2201: ab@2201: static void __devexit e100_remove(struct pci_dev *pdev) ab@2201: { ab@2201: struct net_device *netdev = pci_get_drvdata(pdev); ab@2201: ab@2201: if (netdev) { ab@2201: struct nic *nic = netdev_priv(netdev); ab@2201: unregister_netdev(netdev); ab@2201: e100_free(nic); ab@2201: pci_iounmap(pdev, nic->csr); ab@2201: pci_pool_destroy(nic->cbs_pool); ab@2201: free_netdev(netdev); ab@2201: pci_release_regions(pdev); ab@2201: pci_disable_device(pdev); ab@2201: pci_set_drvdata(pdev, NULL); ab@2201: } ab@2201: } ab@2201: ab@2201: #define E100_82552_SMARTSPEED 0x14 /* SmartSpeed Ctrl register */ ab@2201: #define E100_82552_REV_ANEG 0x0200 /* Reverse auto-negotiation */ ab@2201: #define E100_82552_ANEG_NOW 0x0400 /* Auto-negotiate now */ ab@2201: static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake) ab@2201: { ab@2201: struct net_device *netdev = pci_get_drvdata(pdev); ab@2201: struct nic *nic = netdev_priv(netdev); ab@2201: ab@2201: if (netif_running(netdev)) ab@2201: e100_down(nic); ab@2201: netif_device_detach(netdev); ab@2201: ab@2201: pci_save_state(pdev); ab@2201: ab@2201: if ((nic->flags & wol_magic) | e100_asf(nic)) { ab@2201: /* enable reverse auto-negotiation */ ab@2201: if (nic->phy == phy_82552_v) { ab@2201: u16 smartspeed = mdio_read(netdev, nic->mii.phy_id, ab@2201: E100_82552_SMARTSPEED); ab@2201: ab@2201: mdio_write(netdev, nic->mii.phy_id, ab@2201: E100_82552_SMARTSPEED, smartspeed | ab@2201: E100_82552_REV_ANEG | E100_82552_ANEG_NOW); ab@2201: } ab@2201: *enable_wake = true; ab@2201: } else { ab@2201: *enable_wake = false; ab@2201: } ab@2201: ab@2201: pci_disable_device(pdev); ab@2201: } ab@2201: ab@2201: static int __e100_power_off(struct pci_dev *pdev, bool wake) ab@2201: { ab@2201: if (wake) ab@2201: return pci_prepare_to_sleep(pdev); ab@2201: ab@2201: pci_wake_from_d3(pdev, false); ab@2201: pci_set_power_state(pdev, PCI_D3hot); ab@2201: ab@2201: return 0; ab@2201: } ab@2201: ab@2201: #ifdef CONFIG_PM ab@2201: static int e100_suspend(struct pci_dev *pdev, pm_message_t state) ab@2201: { ab@2201: bool wake; ab@2201: __e100_shutdown(pdev, &wake); ab@2201: return __e100_power_off(pdev, wake); ab@2201: } ab@2201: ab@2201: static int e100_resume(struct pci_dev *pdev) ab@2201: { ab@2201: struct net_device *netdev = pci_get_drvdata(pdev); ab@2201: struct nic *nic = netdev_priv(netdev); ab@2201: ab@2201: pci_set_power_state(pdev, PCI_D0); ab@2201: pci_restore_state(pdev); ab@2201: /* ack any pending wake events, disable PME */ ab@2201: pci_enable_wake(pdev, 0, 0); ab@2201: ab@2201: /* disable reverse auto-negotiation */ ab@2201: if (nic->phy == phy_82552_v) { ab@2201: u16 smartspeed = mdio_read(netdev, nic->mii.phy_id, ab@2201: E100_82552_SMARTSPEED); ab@2201: ab@2201: mdio_write(netdev, nic->mii.phy_id, ab@2201: E100_82552_SMARTSPEED, ab@2201: smartspeed & ~(E100_82552_REV_ANEG)); ab@2201: } ab@2201: ab@2201: netif_device_attach(netdev); ab@2201: if (netif_running(netdev)) ab@2201: e100_up(nic); ab@2201: ab@2201: return 0; ab@2201: } ab@2201: #endif /* CONFIG_PM */ ab@2201: ab@2201: static void e100_shutdown(struct pci_dev *pdev) ab@2201: { ab@2201: bool wake; ab@2201: __e100_shutdown(pdev, &wake); ab@2201: if (system_state == SYSTEM_POWER_OFF) ab@2201: __e100_power_off(pdev, wake); ab@2201: } ab@2201: ab@2201: /* ------------------ PCI Error Recovery infrastructure -------------- */ ab@2201: /** ab@2201: * e100_io_error_detected - called when PCI error is detected. ab@2201: * @pdev: Pointer to PCI device ab@2201: * @state: The current pci connection state ab@2201: */ ab@2201: static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) ab@2201: { ab@2201: struct net_device *netdev = pci_get_drvdata(pdev); ab@2201: struct nic *nic = netdev_priv(netdev); ab@2201: ab@2201: netif_device_detach(netdev); ab@2201: ab@2201: if (state == pci_channel_io_perm_failure) ab@2201: return PCI_ERS_RESULT_DISCONNECT; ab@2201: ab@2201: if (netif_running(netdev)) ab@2201: e100_down(nic); ab@2201: pci_disable_device(pdev); ab@2201: ab@2201: /* Request a slot reset. */ ab@2201: return PCI_ERS_RESULT_NEED_RESET; ab@2201: } ab@2201: ab@2201: /** ab@2201: * e100_io_slot_reset - called after the pci bus has been reset. ab@2201: * @pdev: Pointer to PCI device ab@2201: * ab@2201: * Restart the card from scratch. ab@2201: */ ab@2201: static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev) ab@2201: { ab@2201: struct net_device *netdev = pci_get_drvdata(pdev); ab@2201: struct nic *nic = netdev_priv(netdev); ab@2201: ab@2201: if (pci_enable_device(pdev)) { ab@2201: printk(KERN_ERR "e100: Cannot re-enable PCI device after reset.\n"); ab@2201: return PCI_ERS_RESULT_DISCONNECT; ab@2201: } ab@2201: pci_set_master(pdev); ab@2201: ab@2201: /* Only one device per card can do a reset */ ab@2201: if (0 != PCI_FUNC(pdev->devfn)) ab@2201: return PCI_ERS_RESULT_RECOVERED; ab@2201: e100_hw_reset(nic); ab@2201: e100_phy_init(nic); ab@2201: ab@2201: return PCI_ERS_RESULT_RECOVERED; ab@2201: } ab@2201: ab@2201: /** ab@2201: * e100_io_resume - resume normal operations ab@2201: * @pdev: Pointer to PCI device ab@2201: * ab@2201: * Resume normal operations after an error recovery ab@2201: * sequence has been completed. ab@2201: */ ab@2201: static void e100_io_resume(struct pci_dev *pdev) ab@2201: { ab@2201: struct net_device *netdev = pci_get_drvdata(pdev); ab@2201: struct nic *nic = netdev_priv(netdev); ab@2201: ab@2201: /* ack any pending wake events, disable PME */ ab@2201: pci_enable_wake(pdev, 0, 0); ab@2201: ab@2201: netif_device_attach(netdev); ab@2201: if (netif_running(netdev)) { ab@2201: e100_open(netdev); ab@2201: mod_timer(&nic->watchdog, jiffies); ab@2201: } ab@2201: } ab@2201: ab@2201: static struct pci_error_handlers e100_err_handler = { ab@2201: .error_detected = e100_io_error_detected, ab@2201: .slot_reset = e100_io_slot_reset, ab@2201: .resume = e100_io_resume, ab@2201: }; ab@2201: ab@2201: static struct pci_driver e100_driver = { ab@2201: .name = DRV_NAME, ab@2201: .id_table = e100_id_table, ab@2201: .probe = e100_probe, ab@2201: .remove = __devexit_p(e100_remove), ab@2201: #ifdef CONFIG_PM ab@2201: /* Power Management hooks */ ab@2201: .suspend = e100_suspend, ab@2201: .resume = e100_resume, ab@2201: #endif ab@2201: .shutdown = e100_shutdown, ab@2201: .err_handler = &e100_err_handler, ab@2201: }; ab@2201: ab@2201: static int __init e100_init_module(void) ab@2201: { ab@2201: if (((1 << debug) - 1) & NETIF_MSG_DRV) { ab@2201: printk(KERN_INFO PFX "%s, %s\n", DRV_DESCRIPTION, DRV_VERSION); ab@2201: printk(KERN_INFO PFX "%s\n", DRV_COPYRIGHT); ab@2201: } ab@2201: return pci_register_driver(&e100_driver); ab@2201: } ab@2201: ab@2201: static void __exit e100_cleanup_module(void) ab@2201: { ab@2201: pci_unregister_driver(&e100_driver); ab@2201: } ab@2201: ab@2201: module_init(e100_init_module); ab@2201: module_exit(e100_cleanup_module);