fp@2586: /******************************************************************************* fp@2586: fp@2586: Intel PRO/1000 Linux driver fp@2586: Copyright(c) 1999 - 2013 Intel Corporation. fp@2586: fp@2586: This program is free software; you can redistribute it and/or modify it fp@2586: under the terms and conditions of the GNU General Public License, fp@2586: version 2, as published by the Free Software Foundation. fp@2586: fp@2586: This program is distributed in the hope it will be useful, but WITHOUT fp@2586: ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or fp@2586: FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for fp@2586: more details. fp@2586: fp@2586: You should have received a copy of the GNU General Public License along with fp@2586: this program; if not, write to the Free Software Foundation, Inc., fp@2586: 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. fp@2586: fp@2586: The full GNU General Public License is included in this distribution in fp@2586: the file called "COPYING". fp@2586: fp@2586: Contact Information: fp@2586: Linux NICS <linux.nics@intel.com> fp@2586: e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> fp@2586: Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 fp@2586: fp@2586: *******************************************************************************/ fp@2586: fp@2586: #include "e1000.h" fp@2586: fp@2586: static s32 e1000_wait_autoneg(struct e1000_hw *hw); fp@2586: static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset, fp@2586: u16 *data, bool read, bool page_set); fp@2586: static u32 e1000_get_phy_addr_for_hv_page(u32 page); fp@2586: static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset, fp@2586: u16 *data, bool read); fp@2586: fp@2586: /* Cable length tables */ fp@2586: static const u16 e1000_m88_cable_length_table[] = { fp@2586: 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED fp@2586: }; fp@2586: fp@2586: #define M88E1000_CABLE_LENGTH_TABLE_SIZE \ fp@2586: ARRAY_SIZE(e1000_m88_cable_length_table) fp@2586: fp@2586: static const u16 e1000_igp_2_cable_length_table[] = { fp@2586: 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3, fp@2586: 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22, fp@2586: 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40, fp@2586: 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61, fp@2586: 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82, fp@2586: 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95, fp@2586: 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121, fp@2586: 124 fp@2586: }; fp@2586: fp@2586: #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \ fp@2586: ARRAY_SIZE(e1000_igp_2_cable_length_table) fp@2586: fp@2586: /** fp@2586: * e1000e_check_reset_block_generic - Check if PHY reset is blocked fp@2586: * @hw: pointer to the HW structure fp@2586: * fp@2586: * Read the PHY management control register and check whether a PHY reset fp@2586: * is blocked. If a reset is not blocked return 0, otherwise fp@2586: * return E1000_BLK_PHY_RESET (12). fp@2586: **/ fp@2586: s32 e1000e_check_reset_block_generic(struct e1000_hw *hw) fp@2586: { fp@2586: u32 manc; fp@2586: fp@2586: manc = er32(MANC); fp@2586: fp@2586: return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0; fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000e_get_phy_id - Retrieve the PHY ID and revision fp@2586: * @hw: pointer to the HW structure fp@2586: * fp@2586: * Reads the PHY registers and stores the PHY ID and possibly the PHY fp@2586: * revision in the hardware structure. fp@2586: **/ fp@2586: s32 e1000e_get_phy_id(struct e1000_hw *hw) fp@2586: { fp@2586: struct e1000_phy_info *phy = &hw->phy; fp@2586: s32 ret_val = 0; fp@2586: u16 phy_id; fp@2586: u16 retry_count = 0; fp@2586: fp@2586: if (!phy->ops.read_reg) fp@2586: return 0; fp@2586: fp@2586: while (retry_count < 2) { fp@2586: ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: phy->id = (u32)(phy_id << 16); fp@2586: usleep_range(20, 40); fp@2586: ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: phy->id |= (u32)(phy_id & PHY_REVISION_MASK); fp@2586: phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); fp@2586: fp@2586: if (phy->id != 0 && phy->id != PHY_REVISION_MASK) fp@2586: return 0; fp@2586: fp@2586: retry_count++; fp@2586: } fp@2586: fp@2586: return 0; fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000e_phy_reset_dsp - Reset PHY DSP fp@2586: * @hw: pointer to the HW structure fp@2586: * fp@2586: * Reset the digital signal processor. fp@2586: **/ fp@2586: s32 e1000e_phy_reset_dsp(struct e1000_hw *hw) fp@2586: { fp@2586: s32 ret_val; fp@2586: fp@2586: ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0); fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000e_read_phy_reg_mdic - Read MDI control register fp@2586: * @hw: pointer to the HW structure fp@2586: * @offset: register offset to be read fp@2586: * @data: pointer to the read data fp@2586: * fp@2586: * Reads the MDI control register in the PHY at offset and stores the fp@2586: * information read to data. fp@2586: **/ fp@2586: s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data) fp@2586: { fp@2586: struct e1000_phy_info *phy = &hw->phy; fp@2586: u32 i, mdic = 0; fp@2586: fp@2586: if (offset > MAX_PHY_REG_ADDRESS) { fp@2586: e_dbg("PHY Address %d is out of range\n", offset); fp@2586: return -E1000_ERR_PARAM; fp@2586: } fp@2586: fp@2586: /* Set up Op-code, Phy Address, and register offset in the MDI fp@2586: * Control register. The MAC will take care of interfacing with the fp@2586: * PHY to retrieve the desired data. fp@2586: */ fp@2586: mdic = ((offset << E1000_MDIC_REG_SHIFT) | fp@2586: (phy->addr << E1000_MDIC_PHY_SHIFT) | fp@2586: (E1000_MDIC_OP_READ)); fp@2586: fp@2586: ew32(MDIC, mdic); fp@2586: fp@2586: /* Poll the ready bit to see if the MDI read completed fp@2586: * Increasing the time out as testing showed failures with fp@2586: * the lower time out fp@2586: */ fp@2586: for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { fp@2586: udelay(50); fp@2586: mdic = er32(MDIC); fp@2586: if (mdic & E1000_MDIC_READY) fp@2586: break; fp@2586: } fp@2586: if (!(mdic & E1000_MDIC_READY)) { fp@2586: e_dbg("MDI Read did not complete\n"); fp@2586: return -E1000_ERR_PHY; fp@2586: } fp@2586: if (mdic & E1000_MDIC_ERROR) { fp@2586: e_dbg("MDI Error\n"); fp@2586: return -E1000_ERR_PHY; fp@2586: } fp@2586: if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) { fp@2586: e_dbg("MDI Read offset error - requested %d, returned %d\n", fp@2586: offset, fp@2586: (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT); fp@2586: return -E1000_ERR_PHY; fp@2586: } fp@2586: *data = (u16)mdic; fp@2586: fp@2586: /* Allow some time after each MDIC transaction to avoid fp@2586: * reading duplicate data in the next MDIC transaction. fp@2586: */ fp@2586: if (hw->mac.type == e1000_pch2lan) fp@2586: udelay(100); fp@2586: fp@2586: return 0; fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000e_write_phy_reg_mdic - Write MDI control register fp@2586: * @hw: pointer to the HW structure fp@2586: * @offset: register offset to write to fp@2586: * @data: data to write to register at offset fp@2586: * fp@2586: * Writes data to MDI control register in the PHY at offset. fp@2586: **/ fp@2586: s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data) fp@2586: { fp@2586: struct e1000_phy_info *phy = &hw->phy; fp@2586: u32 i, mdic = 0; fp@2586: fp@2586: if (offset > MAX_PHY_REG_ADDRESS) { fp@2586: e_dbg("PHY Address %d is out of range\n", offset); fp@2586: return -E1000_ERR_PARAM; fp@2586: } fp@2586: fp@2586: /* Set up Op-code, Phy Address, and register offset in the MDI fp@2586: * Control register. The MAC will take care of interfacing with the fp@2586: * PHY to retrieve the desired data. fp@2586: */ fp@2586: mdic = (((u32)data) | fp@2586: (offset << E1000_MDIC_REG_SHIFT) | fp@2586: (phy->addr << E1000_MDIC_PHY_SHIFT) | fp@2586: (E1000_MDIC_OP_WRITE)); fp@2586: fp@2586: ew32(MDIC, mdic); fp@2586: fp@2586: /* Poll the ready bit to see if the MDI read completed fp@2586: * Increasing the time out as testing showed failures with fp@2586: * the lower time out fp@2586: */ fp@2586: for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { fp@2586: udelay(50); fp@2586: mdic = er32(MDIC); fp@2586: if (mdic & E1000_MDIC_READY) fp@2586: break; fp@2586: } fp@2586: if (!(mdic & E1000_MDIC_READY)) { fp@2586: e_dbg("MDI Write did not complete\n"); fp@2586: return -E1000_ERR_PHY; fp@2586: } fp@2586: if (mdic & E1000_MDIC_ERROR) { fp@2586: e_dbg("MDI Error\n"); fp@2586: return -E1000_ERR_PHY; fp@2586: } fp@2586: if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) { fp@2586: e_dbg("MDI Write offset error - requested %d, returned %d\n", fp@2586: offset, fp@2586: (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT); fp@2586: return -E1000_ERR_PHY; fp@2586: } fp@2586: fp@2586: /* Allow some time after each MDIC transaction to avoid fp@2586: * reading duplicate data in the next MDIC transaction. fp@2586: */ fp@2586: if (hw->mac.type == e1000_pch2lan) fp@2586: udelay(100); fp@2586: fp@2586: return 0; fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000e_read_phy_reg_m88 - Read m88 PHY register fp@2586: * @hw: pointer to the HW structure fp@2586: * @offset: register offset to be read fp@2586: * @data: pointer to the read data fp@2586: * fp@2586: * Acquires semaphore, if necessary, then reads the PHY register at offset fp@2586: * and storing the retrieved information in data. Release any acquired fp@2586: * semaphores before exiting. fp@2586: **/ fp@2586: s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data) fp@2586: { fp@2586: s32 ret_val; fp@2586: fp@2586: ret_val = hw->phy.ops.acquire(hw); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, fp@2586: data); fp@2586: fp@2586: hw->phy.ops.release(hw); fp@2586: fp@2586: return ret_val; fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000e_write_phy_reg_m88 - Write m88 PHY register fp@2586: * @hw: pointer to the HW structure fp@2586: * @offset: register offset to write to fp@2586: * @data: data to write at register offset fp@2586: * fp@2586: * Acquires semaphore, if necessary, then writes the data to PHY register fp@2586: * at the offset. Release any acquired semaphores before exiting. fp@2586: **/ fp@2586: s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data) fp@2586: { fp@2586: s32 ret_val; fp@2586: fp@2586: ret_val = hw->phy.ops.acquire(hw); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, fp@2586: data); fp@2586: fp@2586: hw->phy.ops.release(hw); fp@2586: fp@2586: return ret_val; fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000_set_page_igp - Set page as on IGP-like PHY(s) fp@2586: * @hw: pointer to the HW structure fp@2586: * @page: page to set (shifted left when necessary) fp@2586: * fp@2586: * Sets PHY page required for PHY register access. Assumes semaphore is fp@2586: * already acquired. Note, this function sets phy.addr to 1 so the caller fp@2586: * must set it appropriately (if necessary) after this function returns. fp@2586: **/ fp@2586: s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page) fp@2586: { fp@2586: e_dbg("Setting page 0x%x\n", page); fp@2586: fp@2586: hw->phy.addr = 1; fp@2586: fp@2586: return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page); fp@2586: } fp@2586: fp@2586: /** fp@2586: * __e1000e_read_phy_reg_igp - Read igp PHY register fp@2586: * @hw: pointer to the HW structure fp@2586: * @offset: register offset to be read fp@2586: * @data: pointer to the read data fp@2586: * @locked: semaphore has already been acquired or not fp@2586: * fp@2586: * Acquires semaphore, if necessary, then reads the PHY register at offset fp@2586: * and stores the retrieved information in data. Release any acquired fp@2586: * semaphores before exiting. fp@2586: **/ fp@2586: static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data, fp@2586: bool locked) fp@2586: { fp@2586: s32 ret_val = 0; fp@2586: fp@2586: if (!locked) { fp@2586: if (!hw->phy.ops.acquire) fp@2586: return 0; fp@2586: fp@2586: ret_val = hw->phy.ops.acquire(hw); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: } fp@2586: fp@2586: if (offset > MAX_PHY_MULTI_PAGE_REG) fp@2586: ret_val = e1000e_write_phy_reg_mdic(hw, fp@2586: IGP01E1000_PHY_PAGE_SELECT, fp@2586: (u16)offset); fp@2586: if (!ret_val) fp@2586: ret_val = e1000e_read_phy_reg_mdic(hw, fp@2586: MAX_PHY_REG_ADDRESS & offset, fp@2586: data); fp@2586: if (!locked) fp@2586: hw->phy.ops.release(hw); fp@2586: fp@2586: return ret_val; fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000e_read_phy_reg_igp - Read igp PHY register fp@2586: * @hw: pointer to the HW structure fp@2586: * @offset: register offset to be read fp@2586: * @data: pointer to the read data fp@2586: * fp@2586: * Acquires semaphore then reads the PHY register at offset and stores the fp@2586: * retrieved information in data. fp@2586: * Release the acquired semaphore before exiting. fp@2586: **/ fp@2586: s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data) fp@2586: { fp@2586: return __e1000e_read_phy_reg_igp(hw, offset, data, false); fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000e_read_phy_reg_igp_locked - Read igp PHY register fp@2586: * @hw: pointer to the HW structure fp@2586: * @offset: register offset to be read fp@2586: * @data: pointer to the read data fp@2586: * fp@2586: * Reads the PHY register at offset and stores the retrieved information fp@2586: * in data. Assumes semaphore already acquired. fp@2586: **/ fp@2586: s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data) fp@2586: { fp@2586: return __e1000e_read_phy_reg_igp(hw, offset, data, true); fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000e_write_phy_reg_igp - Write igp PHY register fp@2586: * @hw: pointer to the HW structure fp@2586: * @offset: register offset to write to fp@2586: * @data: data to write at register offset fp@2586: * @locked: semaphore has already been acquired or not fp@2586: * fp@2586: * Acquires semaphore, if necessary, then writes the data to PHY register fp@2586: * at the offset. Release any acquired semaphores before exiting. fp@2586: **/ fp@2586: static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data, fp@2586: bool locked) fp@2586: { fp@2586: s32 ret_val = 0; fp@2586: fp@2586: if (!locked) { fp@2586: if (!hw->phy.ops.acquire) fp@2586: return 0; fp@2586: fp@2586: ret_val = hw->phy.ops.acquire(hw); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: } fp@2586: fp@2586: if (offset > MAX_PHY_MULTI_PAGE_REG) fp@2586: ret_val = e1000e_write_phy_reg_mdic(hw, fp@2586: IGP01E1000_PHY_PAGE_SELECT, fp@2586: (u16)offset); fp@2586: if (!ret_val) fp@2586: ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & fp@2586: offset, data); fp@2586: if (!locked) fp@2586: hw->phy.ops.release(hw); fp@2586: fp@2586: return ret_val; fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000e_write_phy_reg_igp - Write igp PHY register fp@2586: * @hw: pointer to the HW structure fp@2586: * @offset: register offset to write to fp@2586: * @data: data to write at register offset fp@2586: * fp@2586: * Acquires semaphore then writes the data to PHY register fp@2586: * at the offset. Release any acquired semaphores before exiting. fp@2586: **/ fp@2586: s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data) fp@2586: { fp@2586: return __e1000e_write_phy_reg_igp(hw, offset, data, false); fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000e_write_phy_reg_igp_locked - Write igp PHY register fp@2586: * @hw: pointer to the HW structure fp@2586: * @offset: register offset to write to fp@2586: * @data: data to write at register offset fp@2586: * fp@2586: * Writes the data to PHY register at the offset. fp@2586: * Assumes semaphore already acquired. fp@2586: **/ fp@2586: s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data) fp@2586: { fp@2586: return __e1000e_write_phy_reg_igp(hw, offset, data, true); fp@2586: } fp@2586: fp@2586: /** fp@2586: * __e1000_read_kmrn_reg - Read kumeran register fp@2586: * @hw: pointer to the HW structure fp@2586: * @offset: register offset to be read fp@2586: * @data: pointer to the read data fp@2586: * @locked: semaphore has already been acquired or not fp@2586: * fp@2586: * Acquires semaphore, if necessary. Then reads the PHY register at offset fp@2586: * using the kumeran interface. The information retrieved is stored in data. fp@2586: * Release any acquired semaphores before exiting. fp@2586: **/ fp@2586: static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data, fp@2586: bool locked) fp@2586: { fp@2586: u32 kmrnctrlsta; fp@2586: fp@2586: if (!locked) { fp@2586: s32 ret_val = 0; fp@2586: fp@2586: if (!hw->phy.ops.acquire) fp@2586: return 0; fp@2586: fp@2586: ret_val = hw->phy.ops.acquire(hw); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: } fp@2586: fp@2586: kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & fp@2586: E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN; fp@2586: ew32(KMRNCTRLSTA, kmrnctrlsta); fp@2586: e1e_flush(); fp@2586: fp@2586: udelay(2); fp@2586: fp@2586: kmrnctrlsta = er32(KMRNCTRLSTA); fp@2586: *data = (u16)kmrnctrlsta; fp@2586: fp@2586: if (!locked) fp@2586: hw->phy.ops.release(hw); fp@2586: fp@2586: return 0; fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000e_read_kmrn_reg - Read kumeran register fp@2586: * @hw: pointer to the HW structure fp@2586: * @offset: register offset to be read fp@2586: * @data: pointer to the read data fp@2586: * fp@2586: * Acquires semaphore then reads the PHY register at offset using the fp@2586: * kumeran interface. The information retrieved is stored in data. fp@2586: * Release the acquired semaphore before exiting. fp@2586: **/ fp@2586: s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data) fp@2586: { fp@2586: return __e1000_read_kmrn_reg(hw, offset, data, false); fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000e_read_kmrn_reg_locked - Read kumeran register fp@2586: * @hw: pointer to the HW structure fp@2586: * @offset: register offset to be read fp@2586: * @data: pointer to the read data fp@2586: * fp@2586: * Reads the PHY register at offset using the kumeran interface. The fp@2586: * information retrieved is stored in data. fp@2586: * Assumes semaphore already acquired. fp@2586: **/ fp@2586: s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data) fp@2586: { fp@2586: return __e1000_read_kmrn_reg(hw, offset, data, true); fp@2586: } fp@2586: fp@2586: /** fp@2586: * __e1000_write_kmrn_reg - Write kumeran register fp@2586: * @hw: pointer to the HW structure fp@2586: * @offset: register offset to write to fp@2586: * @data: data to write at register offset fp@2586: * @locked: semaphore has already been acquired or not fp@2586: * fp@2586: * Acquires semaphore, if necessary. Then write the data to PHY register fp@2586: * at the offset using the kumeran interface. Release any acquired semaphores fp@2586: * before exiting. fp@2586: **/ fp@2586: static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data, fp@2586: bool locked) fp@2586: { fp@2586: u32 kmrnctrlsta; fp@2586: fp@2586: if (!locked) { fp@2586: s32 ret_val = 0; fp@2586: fp@2586: if (!hw->phy.ops.acquire) fp@2586: return 0; fp@2586: fp@2586: ret_val = hw->phy.ops.acquire(hw); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: } fp@2586: fp@2586: kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & fp@2586: E1000_KMRNCTRLSTA_OFFSET) | data; fp@2586: ew32(KMRNCTRLSTA, kmrnctrlsta); fp@2586: e1e_flush(); fp@2586: fp@2586: udelay(2); fp@2586: fp@2586: if (!locked) fp@2586: hw->phy.ops.release(hw); fp@2586: fp@2586: return 0; fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000e_write_kmrn_reg - Write kumeran register fp@2586: * @hw: pointer to the HW structure fp@2586: * @offset: register offset to write to fp@2586: * @data: data to write at register offset fp@2586: * fp@2586: * Acquires semaphore then writes the data to the PHY register at the offset fp@2586: * using the kumeran interface. Release the acquired semaphore before exiting. fp@2586: **/ fp@2586: s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data) fp@2586: { fp@2586: return __e1000_write_kmrn_reg(hw, offset, data, false); fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000e_write_kmrn_reg_locked - Write kumeran register fp@2586: * @hw: pointer to the HW structure fp@2586: * @offset: register offset to write to fp@2586: * @data: data to write at register offset fp@2586: * fp@2586: * Write the data to PHY register at the offset using the kumeran interface. fp@2586: * Assumes semaphore already acquired. fp@2586: **/ fp@2586: s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data) fp@2586: { fp@2586: return __e1000_write_kmrn_reg(hw, offset, data, true); fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000_set_master_slave_mode - Setup PHY for Master/slave mode fp@2586: * @hw: pointer to the HW structure fp@2586: * fp@2586: * Sets up Master/slave mode fp@2586: **/ fp@2586: static s32 e1000_set_master_slave_mode(struct e1000_hw *hw) fp@2586: { fp@2586: s32 ret_val; fp@2586: u16 phy_data; fp@2586: fp@2586: /* Resolve Master/Slave mode */ fp@2586: ret_val = e1e_rphy(hw, MII_CTRL1000, &phy_data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: /* load defaults for future use */ fp@2586: hw->phy.original_ms_type = (phy_data & CTL1000_ENABLE_MASTER) ? fp@2586: ((phy_data & CTL1000_AS_MASTER) ? fp@2586: e1000_ms_force_master : e1000_ms_force_slave) : e1000_ms_auto; fp@2586: fp@2586: switch (hw->phy.ms_type) { fp@2586: case e1000_ms_force_master: fp@2586: phy_data |= (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER); fp@2586: break; fp@2586: case e1000_ms_force_slave: fp@2586: phy_data |= CTL1000_ENABLE_MASTER; fp@2586: phy_data &= ~(CTL1000_AS_MASTER); fp@2586: break; fp@2586: case e1000_ms_auto: fp@2586: phy_data &= ~CTL1000_ENABLE_MASTER; fp@2586: /* fall-through */ fp@2586: default: fp@2586: break; fp@2586: } fp@2586: fp@2586: return e1e_wphy(hw, MII_CTRL1000, phy_data); fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link fp@2586: * @hw: pointer to the HW structure fp@2586: * fp@2586: * Sets up Carrier-sense on Transmit and downshift values. fp@2586: **/ fp@2586: s32 e1000_copper_link_setup_82577(struct e1000_hw *hw) fp@2586: { fp@2586: s32 ret_val; fp@2586: u16 phy_data; fp@2586: fp@2586: /* Enable CRS on Tx. This must be set for half-duplex operation. */ fp@2586: ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: phy_data |= I82577_CFG_ASSERT_CRS_ON_TX; fp@2586: fp@2586: /* Enable downshift */ fp@2586: phy_data |= I82577_CFG_ENABLE_DOWNSHIFT; fp@2586: fp@2586: ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: /* Set MDI/MDIX mode */ fp@2586: ret_val = e1e_rphy(hw, I82577_PHY_CTRL_2, &phy_data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK; fp@2586: /* Options: fp@2586: * 0 - Auto (default) fp@2586: * 1 - MDI mode fp@2586: * 2 - MDI-X mode fp@2586: */ fp@2586: switch (hw->phy.mdix) { fp@2586: case 1: fp@2586: break; fp@2586: case 2: fp@2586: phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX; fp@2586: break; fp@2586: case 0: fp@2586: default: fp@2586: phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX; fp@2586: break; fp@2586: } fp@2586: ret_val = e1e_wphy(hw, I82577_PHY_CTRL_2, phy_data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: return e1000_set_master_slave_mode(hw); fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link fp@2586: * @hw: pointer to the HW structure fp@2586: * fp@2586: * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock fp@2586: * and downshift values are set also. fp@2586: **/ fp@2586: s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw) fp@2586: { fp@2586: struct e1000_phy_info *phy = &hw->phy; fp@2586: s32 ret_val; fp@2586: u16 phy_data; fp@2586: fp@2586: /* Enable CRS on Tx. This must be set for half-duplex operation. */ fp@2586: ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: /* For BM PHY this bit is downshift enable */ fp@2586: if (phy->type != e1000_phy_bm) fp@2586: phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; fp@2586: fp@2586: /* Options: fp@2586: * MDI/MDI-X = 0 (default) fp@2586: * 0 - Auto for all speeds fp@2586: * 1 - MDI mode fp@2586: * 2 - MDI-X mode fp@2586: * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) fp@2586: */ fp@2586: phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; fp@2586: fp@2586: switch (phy->mdix) { fp@2586: case 1: fp@2586: phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; fp@2586: break; fp@2586: case 2: fp@2586: phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; fp@2586: break; fp@2586: case 3: fp@2586: phy_data |= M88E1000_PSCR_AUTO_X_1000T; fp@2586: break; fp@2586: case 0: fp@2586: default: fp@2586: phy_data |= M88E1000_PSCR_AUTO_X_MODE; fp@2586: break; fp@2586: } fp@2586: fp@2586: /* Options: fp@2586: * disable_polarity_correction = 0 (default) fp@2586: * Automatic Correction for Reversed Cable Polarity fp@2586: * 0 - Disabled fp@2586: * 1 - Enabled fp@2586: */ fp@2586: phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; fp@2586: if (phy->disable_polarity_correction) fp@2586: phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; fp@2586: fp@2586: /* Enable downshift on BM (disabled by default) */ fp@2586: if (phy->type == e1000_phy_bm) { fp@2586: /* For 82574/82583, first disable then enable downshift */ fp@2586: if (phy->id == BME1000_E_PHY_ID_R2) { fp@2586: phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT; fp@2586: ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, fp@2586: phy_data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: /* Commit the changes. */ fp@2586: ret_val = phy->ops.commit(hw); fp@2586: if (ret_val) { fp@2586: e_dbg("Error committing the PHY changes\n"); fp@2586: return ret_val; fp@2586: } fp@2586: } fp@2586: fp@2586: phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT; fp@2586: } fp@2586: fp@2586: ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: if ((phy->type == e1000_phy_m88) && fp@2586: (phy->revision < E1000_REVISION_4) && fp@2586: (phy->id != BME1000_E_PHY_ID_R2)) { fp@2586: /* Force TX_CLK in the Extended PHY Specific Control Register fp@2586: * to 25MHz clock. fp@2586: */ fp@2586: ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: phy_data |= M88E1000_EPSCR_TX_CLK_25; fp@2586: fp@2586: if ((phy->revision == 2) && (phy->id == M88E1111_I_PHY_ID)) { fp@2586: /* 82573L PHY - set the downshift counter to 5x. */ fp@2586: phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK; fp@2586: phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; fp@2586: } else { fp@2586: /* Configure Master and Slave downshift values */ fp@2586: phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | fp@2586: M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); fp@2586: phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | fp@2586: M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); fp@2586: } fp@2586: ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: } fp@2586: fp@2586: if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) { fp@2586: /* Set PHY page 0, register 29 to 0x0003 */ fp@2586: ret_val = e1e_wphy(hw, 29, 0x0003); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: /* Set PHY page 0, register 30 to 0x0000 */ fp@2586: ret_val = e1e_wphy(hw, 30, 0x0000); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: } fp@2586: fp@2586: /* Commit the changes. */ fp@2586: if (phy->ops.commit) { fp@2586: ret_val = phy->ops.commit(hw); fp@2586: if (ret_val) { fp@2586: e_dbg("Error committing the PHY changes\n"); fp@2586: return ret_val; fp@2586: } fp@2586: } fp@2586: fp@2586: if (phy->type == e1000_phy_82578) { fp@2586: ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: /* 82578 PHY - set the downshift count to 1x. */ fp@2586: phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE; fp@2586: phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK; fp@2586: ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: } fp@2586: fp@2586: return 0; fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000e_copper_link_setup_igp - Setup igp PHY's for copper link fp@2586: * @hw: pointer to the HW structure fp@2586: * fp@2586: * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for fp@2586: * igp PHY's. fp@2586: **/ fp@2586: s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw) fp@2586: { fp@2586: struct e1000_phy_info *phy = &hw->phy; fp@2586: s32 ret_val; fp@2586: u16 data; fp@2586: fp@2586: ret_val = e1000_phy_hw_reset(hw); fp@2586: if (ret_val) { fp@2586: e_dbg("Error resetting the PHY.\n"); fp@2586: return ret_val; fp@2586: } fp@2586: fp@2586: /* Wait 100ms for MAC to configure PHY from NVM settings, to avoid fp@2586: * timeout issues when LFS is enabled. fp@2586: */ fp@2586: msleep(100); fp@2586: fp@2586: /* disable lplu d0 during driver init */ fp@2586: if (hw->phy.ops.set_d0_lplu_state) { fp@2586: ret_val = hw->phy.ops.set_d0_lplu_state(hw, false); fp@2586: if (ret_val) { fp@2586: e_dbg("Error Disabling LPLU D0\n"); fp@2586: return ret_val; fp@2586: } fp@2586: } fp@2586: /* Configure mdi-mdix settings */ fp@2586: ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: data &= ~IGP01E1000_PSCR_AUTO_MDIX; fp@2586: fp@2586: switch (phy->mdix) { fp@2586: case 1: fp@2586: data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; fp@2586: break; fp@2586: case 2: fp@2586: data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; fp@2586: break; fp@2586: case 0: fp@2586: default: fp@2586: data |= IGP01E1000_PSCR_AUTO_MDIX; fp@2586: break; fp@2586: } fp@2586: ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: /* set auto-master slave resolution settings */ fp@2586: if (hw->mac.autoneg) { fp@2586: /* when autonegotiation advertisement is only 1000Mbps then we fp@2586: * should disable SmartSpeed and enable Auto MasterSlave fp@2586: * resolution as hardware default. fp@2586: */ fp@2586: if (phy->autoneg_advertised == ADVERTISE_1000_FULL) { fp@2586: /* Disable SmartSpeed */ fp@2586: ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, fp@2586: &data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: data &= ~IGP01E1000_PSCFR_SMART_SPEED; fp@2586: ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, fp@2586: data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: /* Set auto Master/Slave resolution process */ fp@2586: ret_val = e1e_rphy(hw, MII_CTRL1000, &data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: data &= ~CTL1000_ENABLE_MASTER; fp@2586: ret_val = e1e_wphy(hw, MII_CTRL1000, data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: } fp@2586: fp@2586: ret_val = e1000_set_master_slave_mode(hw); fp@2586: } fp@2586: fp@2586: return ret_val; fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation fp@2586: * @hw: pointer to the HW structure fp@2586: * fp@2586: * Reads the MII auto-neg advertisement register and/or the 1000T control fp@2586: * register and if the PHY is already setup for auto-negotiation, then fp@2586: * return successful. Otherwise, setup advertisement and flow control to fp@2586: * the appropriate values for the wanted auto-negotiation. fp@2586: **/ fp@2586: static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw) fp@2586: { fp@2586: struct e1000_phy_info *phy = &hw->phy; fp@2586: s32 ret_val; fp@2586: u16 mii_autoneg_adv_reg; fp@2586: u16 mii_1000t_ctrl_reg = 0; fp@2586: fp@2586: phy->autoneg_advertised &= phy->autoneg_mask; fp@2586: fp@2586: /* Read the MII Auto-Neg Advertisement Register (Address 4). */ fp@2586: ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_autoneg_adv_reg); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: if (phy->autoneg_mask & ADVERTISE_1000_FULL) { fp@2586: /* Read the MII 1000Base-T Control Register (Address 9). */ fp@2586: ret_val = e1e_rphy(hw, MII_CTRL1000, &mii_1000t_ctrl_reg); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: } fp@2586: fp@2586: /* Need to parse both autoneg_advertised and fc and set up fp@2586: * the appropriate PHY registers. First we will parse for fp@2586: * autoneg_advertised software override. Since we can advertise fp@2586: * a plethora of combinations, we need to check each bit fp@2586: * individually. fp@2586: */ fp@2586: fp@2586: /* First we clear all the 10/100 mb speed bits in the Auto-Neg fp@2586: * Advertisement Register (Address 4) and the 1000 mb speed bits in fp@2586: * the 1000Base-T Control Register (Address 9). fp@2586: */ fp@2586: mii_autoneg_adv_reg &= ~(ADVERTISE_100FULL | fp@2586: ADVERTISE_100HALF | fp@2586: ADVERTISE_10FULL | ADVERTISE_10HALF); fp@2586: mii_1000t_ctrl_reg &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL); fp@2586: fp@2586: e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised); fp@2586: fp@2586: /* Do we want to advertise 10 Mb Half Duplex? */ fp@2586: if (phy->autoneg_advertised & ADVERTISE_10_HALF) { fp@2586: e_dbg("Advertise 10mb Half duplex\n"); fp@2586: mii_autoneg_adv_reg |= ADVERTISE_10HALF; fp@2586: } fp@2586: fp@2586: /* Do we want to advertise 10 Mb Full Duplex? */ fp@2586: if (phy->autoneg_advertised & ADVERTISE_10_FULL) { fp@2586: e_dbg("Advertise 10mb Full duplex\n"); fp@2586: mii_autoneg_adv_reg |= ADVERTISE_10FULL; fp@2586: } fp@2586: fp@2586: /* Do we want to advertise 100 Mb Half Duplex? */ fp@2586: if (phy->autoneg_advertised & ADVERTISE_100_HALF) { fp@2586: e_dbg("Advertise 100mb Half duplex\n"); fp@2586: mii_autoneg_adv_reg |= ADVERTISE_100HALF; fp@2586: } fp@2586: fp@2586: /* Do we want to advertise 100 Mb Full Duplex? */ fp@2586: if (phy->autoneg_advertised & ADVERTISE_100_FULL) { fp@2586: e_dbg("Advertise 100mb Full duplex\n"); fp@2586: mii_autoneg_adv_reg |= ADVERTISE_100FULL; fp@2586: } fp@2586: fp@2586: /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ fp@2586: if (phy->autoneg_advertised & ADVERTISE_1000_HALF) fp@2586: e_dbg("Advertise 1000mb Half duplex request denied!\n"); fp@2586: fp@2586: /* Do we want to advertise 1000 Mb Full Duplex? */ fp@2586: if (phy->autoneg_advertised & ADVERTISE_1000_FULL) { fp@2586: e_dbg("Advertise 1000mb Full duplex\n"); fp@2586: mii_1000t_ctrl_reg |= ADVERTISE_1000FULL; fp@2586: } fp@2586: fp@2586: /* Check for a software override of the flow control settings, and fp@2586: * setup the PHY advertisement registers accordingly. If fp@2586: * auto-negotiation is enabled, then software will have to set the fp@2586: * "PAUSE" bits to the correct value in the Auto-Negotiation fp@2586: * Advertisement Register (MII_ADVERTISE) and re-start auto- fp@2586: * negotiation. fp@2586: * fp@2586: * The possible values of the "fc" parameter are: fp@2586: * 0: Flow control is completely disabled fp@2586: * 1: Rx flow control is enabled (we can receive pause frames fp@2586: * but not send pause frames). fp@2586: * 2: Tx flow control is enabled (we can send pause frames fp@2586: * but we do not support receiving pause frames). fp@2586: * 3: Both Rx and Tx flow control (symmetric) are enabled. fp@2586: * other: No software override. The flow control configuration fp@2586: * in the EEPROM is used. fp@2586: */ fp@2586: switch (hw->fc.current_mode) { fp@2586: case e1000_fc_none: fp@2586: /* Flow control (Rx & Tx) is completely disabled by a fp@2586: * software over-ride. fp@2586: */ fp@2586: mii_autoneg_adv_reg &= fp@2586: ~(ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP); fp@2586: break; fp@2586: case e1000_fc_rx_pause: fp@2586: /* Rx Flow control is enabled, and Tx Flow control is fp@2586: * disabled, by a software over-ride. fp@2586: * fp@2586: * Since there really isn't a way to advertise that we are fp@2586: * capable of Rx Pause ONLY, we will advertise that we fp@2586: * support both symmetric and asymmetric Rx PAUSE. Later fp@2586: * (in e1000e_config_fc_after_link_up) we will disable the fp@2586: * hw's ability to send PAUSE frames. fp@2586: */ fp@2586: mii_autoneg_adv_reg |= fp@2586: (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP); fp@2586: break; fp@2586: case e1000_fc_tx_pause: fp@2586: /* Tx Flow control is enabled, and Rx Flow control is fp@2586: * disabled, by a software over-ride. fp@2586: */ fp@2586: mii_autoneg_adv_reg |= ADVERTISE_PAUSE_ASYM; fp@2586: mii_autoneg_adv_reg &= ~ADVERTISE_PAUSE_CAP; fp@2586: break; fp@2586: case e1000_fc_full: fp@2586: /* Flow control (both Rx and Tx) is enabled by a software fp@2586: * over-ride. fp@2586: */ fp@2586: mii_autoneg_adv_reg |= fp@2586: (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP); fp@2586: break; fp@2586: default: fp@2586: e_dbg("Flow control param set incorrectly\n"); fp@2586: return -E1000_ERR_CONFIG; fp@2586: } fp@2586: fp@2586: ret_val = e1e_wphy(hw, MII_ADVERTISE, mii_autoneg_adv_reg); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); fp@2586: fp@2586: if (phy->autoneg_mask & ADVERTISE_1000_FULL) fp@2586: ret_val = e1e_wphy(hw, MII_CTRL1000, mii_1000t_ctrl_reg); fp@2586: fp@2586: return ret_val; fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link fp@2586: * @hw: pointer to the HW structure fp@2586: * fp@2586: * Performs initial bounds checking on autoneg advertisement parameter, then fp@2586: * configure to advertise the full capability. Setup the PHY to autoneg fp@2586: * and restart the negotiation process between the link partner. If fp@2586: * autoneg_wait_to_complete, then wait for autoneg to complete before exiting. fp@2586: **/ fp@2586: static s32 e1000_copper_link_autoneg(struct e1000_hw *hw) fp@2586: { fp@2586: struct e1000_phy_info *phy = &hw->phy; fp@2586: s32 ret_val; fp@2586: u16 phy_ctrl; fp@2586: fp@2586: /* Perform some bounds checking on the autoneg advertisement fp@2586: * parameter. fp@2586: */ fp@2586: phy->autoneg_advertised &= phy->autoneg_mask; fp@2586: fp@2586: /* If autoneg_advertised is zero, we assume it was not defaulted fp@2586: * by the calling code so we set to advertise full capability. fp@2586: */ fp@2586: if (!phy->autoneg_advertised) fp@2586: phy->autoneg_advertised = phy->autoneg_mask; fp@2586: fp@2586: e_dbg("Reconfiguring auto-neg advertisement params\n"); fp@2586: ret_val = e1000_phy_setup_autoneg(hw); fp@2586: if (ret_val) { fp@2586: e_dbg("Error Setting up Auto-Negotiation\n"); fp@2586: return ret_val; fp@2586: } fp@2586: e_dbg("Restarting Auto-Neg\n"); fp@2586: fp@2586: /* Restart auto-negotiation by setting the Auto Neg Enable bit and fp@2586: * the Auto Neg Restart bit in the PHY control register. fp@2586: */ fp@2586: ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: phy_ctrl |= (BMCR_ANENABLE | BMCR_ANRESTART); fp@2586: ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: /* Does the user want to wait for Auto-Neg to complete here, or fp@2586: * check at a later time (for example, callback routine). fp@2586: */ fp@2586: if (phy->autoneg_wait_to_complete) { fp@2586: ret_val = e1000_wait_autoneg(hw); fp@2586: if (ret_val) { fp@2586: e_dbg("Error while waiting for autoneg to complete\n"); fp@2586: return ret_val; fp@2586: } fp@2586: } fp@2586: fp@2586: hw->mac.get_link_status = true; fp@2586: fp@2586: return ret_val; fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000e_setup_copper_link - Configure copper link settings fp@2586: * @hw: pointer to the HW structure fp@2586: * fp@2586: * Calls the appropriate function to configure the link for auto-neg or forced fp@2586: * speed and duplex. Then we check for link, once link is established calls fp@2586: * to configure collision distance and flow control are called. If link is fp@2586: * not established, we return -E1000_ERR_PHY (-2). fp@2586: **/ fp@2586: s32 e1000e_setup_copper_link(struct e1000_hw *hw) fp@2586: { fp@2586: s32 ret_val; fp@2586: bool link; fp@2586: fp@2586: if (hw->mac.autoneg) { fp@2586: /* Setup autoneg and flow control advertisement and perform fp@2586: * autonegotiation. fp@2586: */ fp@2586: ret_val = e1000_copper_link_autoneg(hw); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: } else { fp@2586: /* PHY will be set to 10H, 10F, 100H or 100F fp@2586: * depending on user settings. fp@2586: */ fp@2586: e_dbg("Forcing Speed and Duplex\n"); fp@2586: ret_val = hw->phy.ops.force_speed_duplex(hw); fp@2586: if (ret_val) { fp@2586: e_dbg("Error Forcing Speed and Duplex\n"); fp@2586: return ret_val; fp@2586: } fp@2586: } fp@2586: fp@2586: /* Check link status. Wait up to 100 microseconds for link to become fp@2586: * valid. fp@2586: */ fp@2586: ret_val = e1000e_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10, fp@2586: &link); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: if (link) { fp@2586: e_dbg("Valid link established!!!\n"); fp@2586: hw->mac.ops.config_collision_dist(hw); fp@2586: ret_val = e1000e_config_fc_after_link_up(hw); fp@2586: } else { fp@2586: e_dbg("Unable to establish link!!!\n"); fp@2586: } fp@2586: fp@2586: return ret_val; fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY fp@2586: * @hw: pointer to the HW structure fp@2586: * fp@2586: * Calls the PHY setup function to force speed and duplex. Clears the fp@2586: * auto-crossover to force MDI manually. Waits for link and returns fp@2586: * successful if link up is successful, else -E1000_ERR_PHY (-2). fp@2586: **/ fp@2586: s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw) fp@2586: { fp@2586: struct e1000_phy_info *phy = &hw->phy; fp@2586: s32 ret_val; fp@2586: u16 phy_data; fp@2586: bool link; fp@2586: fp@2586: ret_val = e1e_rphy(hw, MII_BMCR, &phy_data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: e1000e_phy_force_speed_duplex_setup(hw, &phy_data); fp@2586: fp@2586: ret_val = e1e_wphy(hw, MII_BMCR, phy_data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: /* Clear Auto-Crossover to force MDI manually. IGP requires MDI fp@2586: * forced whenever speed and duplex are forced. fp@2586: */ fp@2586: ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; fp@2586: phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; fp@2586: fp@2586: ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: e_dbg("IGP PSCR: %X\n", phy_data); fp@2586: fp@2586: udelay(1); fp@2586: fp@2586: if (phy->autoneg_wait_to_complete) { fp@2586: e_dbg("Waiting for forced speed/duplex link on IGP phy.\n"); fp@2586: fp@2586: ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, fp@2586: 100000, &link); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: if (!link) fp@2586: e_dbg("Link taking longer than expected.\n"); fp@2586: fp@2586: /* Try once more */ fp@2586: ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, fp@2586: 100000, &link); fp@2586: } fp@2586: fp@2586: return ret_val; fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY fp@2586: * @hw: pointer to the HW structure fp@2586: * fp@2586: * Calls the PHY setup function to force speed and duplex. Clears the fp@2586: * auto-crossover to force MDI manually. Resets the PHY to commit the fp@2586: * changes. If time expires while waiting for link up, we reset the DSP. fp@2586: * After reset, TX_CLK and CRS on Tx must be set. Return successful upon fp@2586: * successful completion, else return corresponding error code. fp@2586: **/ fp@2586: s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw) fp@2586: { fp@2586: struct e1000_phy_info *phy = &hw->phy; fp@2586: s32 ret_val; fp@2586: u16 phy_data; fp@2586: bool link; fp@2586: fp@2586: /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI fp@2586: * forced whenever speed and duplex are forced. fp@2586: */ fp@2586: ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; fp@2586: ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: e_dbg("M88E1000 PSCR: %X\n", phy_data); fp@2586: fp@2586: ret_val = e1e_rphy(hw, MII_BMCR, &phy_data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: e1000e_phy_force_speed_duplex_setup(hw, &phy_data); fp@2586: fp@2586: ret_val = e1e_wphy(hw, MII_BMCR, phy_data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: /* Reset the phy to commit changes. */ fp@2586: if (hw->phy.ops.commit) { fp@2586: ret_val = hw->phy.ops.commit(hw); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: } fp@2586: fp@2586: if (phy->autoneg_wait_to_complete) { fp@2586: e_dbg("Waiting for forced speed/duplex link on M88 phy.\n"); fp@2586: fp@2586: ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, fp@2586: 100000, &link); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: if (!link) { fp@2586: if (hw->phy.type != e1000_phy_m88) { fp@2586: e_dbg("Link taking longer than expected.\n"); fp@2586: } else { fp@2586: /* We didn't get link. fp@2586: * Reset the DSP and cross our fingers. fp@2586: */ fp@2586: ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT, fp@2586: 0x001d); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: ret_val = e1000e_phy_reset_dsp(hw); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: } fp@2586: } fp@2586: fp@2586: /* Try once more */ fp@2586: ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, fp@2586: 100000, &link); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: } fp@2586: fp@2586: if (hw->phy.type != e1000_phy_m88) fp@2586: return 0; fp@2586: fp@2586: ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: /* Resetting the phy means we need to re-force TX_CLK in the fp@2586: * Extended PHY Specific Control Register to 25MHz clock from fp@2586: * the reset value of 2.5MHz. fp@2586: */ fp@2586: phy_data |= M88E1000_EPSCR_TX_CLK_25; fp@2586: ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: /* In addition, we must re-enable CRS on Tx for both half and full fp@2586: * duplex. fp@2586: */ fp@2586: ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; fp@2586: ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data); fp@2586: fp@2586: return ret_val; fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex fp@2586: * @hw: pointer to the HW structure fp@2586: * fp@2586: * Forces the speed and duplex settings of the PHY. fp@2586: * This is a function pointer entry point only called by fp@2586: * PHY setup routines. fp@2586: **/ fp@2586: s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw) fp@2586: { fp@2586: struct e1000_phy_info *phy = &hw->phy; fp@2586: s32 ret_val; fp@2586: u16 data; fp@2586: bool link; fp@2586: fp@2586: ret_val = e1e_rphy(hw, MII_BMCR, &data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: e1000e_phy_force_speed_duplex_setup(hw, &data); fp@2586: fp@2586: ret_val = e1e_wphy(hw, MII_BMCR, data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: /* Disable MDI-X support for 10/100 */ fp@2586: ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: data &= ~IFE_PMC_AUTO_MDIX; fp@2586: data &= ~IFE_PMC_FORCE_MDIX; fp@2586: fp@2586: ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: e_dbg("IFE PMC: %X\n", data); fp@2586: fp@2586: udelay(1); fp@2586: fp@2586: if (phy->autoneg_wait_to_complete) { fp@2586: e_dbg("Waiting for forced speed/duplex link on IFE phy.\n"); fp@2586: fp@2586: ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, fp@2586: 100000, &link); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: if (!link) fp@2586: e_dbg("Link taking longer than expected.\n"); fp@2586: fp@2586: /* Try once more */ fp@2586: ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, fp@2586: 100000, &link); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: } fp@2586: fp@2586: return 0; fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex fp@2586: * @hw: pointer to the HW structure fp@2586: * @phy_ctrl: pointer to current value of MII_BMCR fp@2586: * fp@2586: * Forces speed and duplex on the PHY by doing the following: disable flow fp@2586: * control, force speed/duplex on the MAC, disable auto speed detection, fp@2586: * disable auto-negotiation, configure duplex, configure speed, configure fp@2586: * the collision distance, write configuration to CTRL register. The fp@2586: * caller must write to the MII_BMCR register for these settings to fp@2586: * take affect. fp@2586: **/ fp@2586: void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl) fp@2586: { fp@2586: struct e1000_mac_info *mac = &hw->mac; fp@2586: u32 ctrl; fp@2586: fp@2586: /* Turn off flow control when forcing speed/duplex */ fp@2586: hw->fc.current_mode = e1000_fc_none; fp@2586: fp@2586: /* Force speed/duplex on the mac */ fp@2586: ctrl = er32(CTRL); fp@2586: ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); fp@2586: ctrl &= ~E1000_CTRL_SPD_SEL; fp@2586: fp@2586: /* Disable Auto Speed Detection */ fp@2586: ctrl &= ~E1000_CTRL_ASDE; fp@2586: fp@2586: /* Disable autoneg on the phy */ fp@2586: *phy_ctrl &= ~BMCR_ANENABLE; fp@2586: fp@2586: /* Forcing Full or Half Duplex? */ fp@2586: if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) { fp@2586: ctrl &= ~E1000_CTRL_FD; fp@2586: *phy_ctrl &= ~BMCR_FULLDPLX; fp@2586: e_dbg("Half Duplex\n"); fp@2586: } else { fp@2586: ctrl |= E1000_CTRL_FD; fp@2586: *phy_ctrl |= BMCR_FULLDPLX; fp@2586: e_dbg("Full Duplex\n"); fp@2586: } fp@2586: fp@2586: /* Forcing 10mb or 100mb? */ fp@2586: if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) { fp@2586: ctrl |= E1000_CTRL_SPD_100; fp@2586: *phy_ctrl |= BMCR_SPEED100; fp@2586: *phy_ctrl &= ~BMCR_SPEED1000; fp@2586: e_dbg("Forcing 100mb\n"); fp@2586: } else { fp@2586: ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); fp@2586: *phy_ctrl &= ~(BMCR_SPEED1000 | BMCR_SPEED100); fp@2586: e_dbg("Forcing 10mb\n"); fp@2586: } fp@2586: fp@2586: hw->mac.ops.config_collision_dist(hw); fp@2586: fp@2586: ew32(CTRL, ctrl); fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000e_set_d3_lplu_state - Sets low power link up state for D3 fp@2586: * @hw: pointer to the HW structure fp@2586: * @active: boolean used to enable/disable lplu fp@2586: * fp@2586: * Success returns 0, Failure returns 1 fp@2586: * fp@2586: * The low power link up (lplu) state is set to the power management level D3 fp@2586: * and SmartSpeed is disabled when active is true, else clear lplu for D3 fp@2586: * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU fp@2586: * is used during Dx states where the power conservation is most important. fp@2586: * During driver activity, SmartSpeed should be enabled so performance is fp@2586: * maintained. fp@2586: **/ fp@2586: s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active) fp@2586: { fp@2586: struct e1000_phy_info *phy = &hw->phy; fp@2586: s32 ret_val; fp@2586: u16 data; fp@2586: fp@2586: ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: if (!active) { fp@2586: data &= ~IGP02E1000_PM_D3_LPLU; fp@2586: ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: /* LPLU and SmartSpeed are mutually exclusive. LPLU is used fp@2586: * during Dx states where the power conservation is most fp@2586: * important. During driver activity we should enable fp@2586: * SmartSpeed, so performance is maintained. fp@2586: */ fp@2586: if (phy->smart_speed == e1000_smart_speed_on) { fp@2586: ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, fp@2586: &data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: data |= IGP01E1000_PSCFR_SMART_SPEED; fp@2586: ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, fp@2586: data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: } else if (phy->smart_speed == e1000_smart_speed_off) { fp@2586: ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, fp@2586: &data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: data &= ~IGP01E1000_PSCFR_SMART_SPEED; fp@2586: ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, fp@2586: data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: } fp@2586: } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || fp@2586: (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || fp@2586: (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { fp@2586: data |= IGP02E1000_PM_D3_LPLU; fp@2586: ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: /* When LPLU is enabled, we should disable SmartSpeed */ fp@2586: ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: data &= ~IGP01E1000_PSCFR_SMART_SPEED; fp@2586: ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); fp@2586: } fp@2586: fp@2586: return ret_val; fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000e_check_downshift - Checks whether a downshift in speed occurred fp@2586: * @hw: pointer to the HW structure fp@2586: * fp@2586: * Success returns 0, Failure returns 1 fp@2586: * fp@2586: * A downshift is detected by querying the PHY link health. fp@2586: **/ fp@2586: s32 e1000e_check_downshift(struct e1000_hw *hw) fp@2586: { fp@2586: struct e1000_phy_info *phy = &hw->phy; fp@2586: s32 ret_val; fp@2586: u16 phy_data, offset, mask; fp@2586: fp@2586: switch (phy->type) { fp@2586: case e1000_phy_m88: fp@2586: case e1000_phy_gg82563: fp@2586: case e1000_phy_bm: fp@2586: case e1000_phy_82578: fp@2586: offset = M88E1000_PHY_SPEC_STATUS; fp@2586: mask = M88E1000_PSSR_DOWNSHIFT; fp@2586: break; fp@2586: case e1000_phy_igp_2: fp@2586: case e1000_phy_igp_3: fp@2586: offset = IGP01E1000_PHY_LINK_HEALTH; fp@2586: mask = IGP01E1000_PLHR_SS_DOWNGRADE; fp@2586: break; fp@2586: default: fp@2586: /* speed downshift not supported */ fp@2586: phy->speed_downgraded = false; fp@2586: return 0; fp@2586: } fp@2586: fp@2586: ret_val = e1e_rphy(hw, offset, &phy_data); fp@2586: fp@2586: if (!ret_val) fp@2586: phy->speed_downgraded = !!(phy_data & mask); fp@2586: fp@2586: return ret_val; fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000_check_polarity_m88 - Checks the polarity. fp@2586: * @hw: pointer to the HW structure fp@2586: * fp@2586: * Success returns 0, Failure returns -E1000_ERR_PHY (-2) fp@2586: * fp@2586: * Polarity is determined based on the PHY specific status register. fp@2586: **/ fp@2586: s32 e1000_check_polarity_m88(struct e1000_hw *hw) fp@2586: { fp@2586: struct e1000_phy_info *phy = &hw->phy; fp@2586: s32 ret_val; fp@2586: u16 data; fp@2586: fp@2586: ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data); fp@2586: fp@2586: if (!ret_val) fp@2586: phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY) fp@2586: ? e1000_rev_polarity_reversed fp@2586: : e1000_rev_polarity_normal); fp@2586: fp@2586: return ret_val; fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000_check_polarity_igp - Checks the polarity. fp@2586: * @hw: pointer to the HW structure fp@2586: * fp@2586: * Success returns 0, Failure returns -E1000_ERR_PHY (-2) fp@2586: * fp@2586: * Polarity is determined based on the PHY port status register, and the fp@2586: * current speed (since there is no polarity at 100Mbps). fp@2586: **/ fp@2586: s32 e1000_check_polarity_igp(struct e1000_hw *hw) fp@2586: { fp@2586: struct e1000_phy_info *phy = &hw->phy; fp@2586: s32 ret_val; fp@2586: u16 data, offset, mask; fp@2586: fp@2586: /* Polarity is determined based on the speed of fp@2586: * our connection. fp@2586: */ fp@2586: ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: if ((data & IGP01E1000_PSSR_SPEED_MASK) == fp@2586: IGP01E1000_PSSR_SPEED_1000MBPS) { fp@2586: offset = IGP01E1000_PHY_PCS_INIT_REG; fp@2586: mask = IGP01E1000_PHY_POLARITY_MASK; fp@2586: } else { fp@2586: /* This really only applies to 10Mbps since fp@2586: * there is no polarity for 100Mbps (always 0). fp@2586: */ fp@2586: offset = IGP01E1000_PHY_PORT_STATUS; fp@2586: mask = IGP01E1000_PSSR_POLARITY_REVERSED; fp@2586: } fp@2586: fp@2586: ret_val = e1e_rphy(hw, offset, &data); fp@2586: fp@2586: if (!ret_val) fp@2586: phy->cable_polarity = ((data & mask) fp@2586: ? e1000_rev_polarity_reversed fp@2586: : e1000_rev_polarity_normal); fp@2586: fp@2586: return ret_val; fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000_check_polarity_ife - Check cable polarity for IFE PHY fp@2586: * @hw: pointer to the HW structure fp@2586: * fp@2586: * Polarity is determined on the polarity reversal feature being enabled. fp@2586: **/ fp@2586: s32 e1000_check_polarity_ife(struct e1000_hw *hw) fp@2586: { fp@2586: struct e1000_phy_info *phy = &hw->phy; fp@2586: s32 ret_val; fp@2586: u16 phy_data, offset, mask; fp@2586: fp@2586: /* Polarity is determined based on the reversal feature being enabled. fp@2586: */ fp@2586: if (phy->polarity_correction) { fp@2586: offset = IFE_PHY_EXTENDED_STATUS_CONTROL; fp@2586: mask = IFE_PESC_POLARITY_REVERSED; fp@2586: } else { fp@2586: offset = IFE_PHY_SPECIAL_CONTROL; fp@2586: mask = IFE_PSC_FORCE_POLARITY; fp@2586: } fp@2586: fp@2586: ret_val = e1e_rphy(hw, offset, &phy_data); fp@2586: fp@2586: if (!ret_val) fp@2586: phy->cable_polarity = ((phy_data & mask) fp@2586: ? e1000_rev_polarity_reversed fp@2586: : e1000_rev_polarity_normal); fp@2586: fp@2586: return ret_val; fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000_wait_autoneg - Wait for auto-neg completion fp@2586: * @hw: pointer to the HW structure fp@2586: * fp@2586: * Waits for auto-negotiation to complete or for the auto-negotiation time fp@2586: * limit to expire, which ever happens first. fp@2586: **/ fp@2586: static s32 e1000_wait_autoneg(struct e1000_hw *hw) fp@2586: { fp@2586: s32 ret_val = 0; fp@2586: u16 i, phy_status; fp@2586: fp@2586: /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */ fp@2586: for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) { fp@2586: ret_val = e1e_rphy(hw, MII_BMSR, &phy_status); fp@2586: if (ret_val) fp@2586: break; fp@2586: ret_val = e1e_rphy(hw, MII_BMSR, &phy_status); fp@2586: if (ret_val) fp@2586: break; fp@2586: if (phy_status & BMSR_ANEGCOMPLETE) fp@2586: break; fp@2586: msleep(100); fp@2586: } fp@2586: fp@2586: /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation fp@2586: * has completed. fp@2586: */ fp@2586: return ret_val; fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000e_phy_has_link_generic - Polls PHY for link fp@2586: * @hw: pointer to the HW structure fp@2586: * @iterations: number of times to poll for link fp@2586: * @usec_interval: delay between polling attempts fp@2586: * @success: pointer to whether polling was successful or not fp@2586: * fp@2586: * Polls the PHY status register for link, 'iterations' number of times. fp@2586: **/ fp@2586: s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations, fp@2586: u32 usec_interval, bool *success) fp@2586: { fp@2586: s32 ret_val = 0; fp@2586: u16 i, phy_status; fp@2586: fp@2586: for (i = 0; i < iterations; i++) { fp@2586: /* Some PHYs require the MII_BMSR register to be read fp@2586: * twice due to the link bit being sticky. No harm doing fp@2586: * it across the board. fp@2586: */ fp@2586: ret_val = e1e_rphy(hw, MII_BMSR, &phy_status); fp@2586: if (ret_val) { fp@2586: /* If the first read fails, another entity may have fp@2586: * ownership of the resources, wait and try again to fp@2586: * see if they have relinquished the resources yet. fp@2586: */ fp@2586: if (usec_interval >= 1000) fp@2586: msleep(usec_interval / 1000); fp@2586: else fp@2586: udelay(usec_interval); fp@2586: } fp@2586: ret_val = e1e_rphy(hw, MII_BMSR, &phy_status); fp@2586: if (ret_val) fp@2586: break; fp@2586: if (phy_status & BMSR_LSTATUS) fp@2586: break; fp@2586: if (usec_interval >= 1000) fp@2586: msleep(usec_interval / 1000); fp@2586: else fp@2586: udelay(usec_interval); fp@2586: } fp@2586: fp@2586: *success = (i < iterations); fp@2586: fp@2586: return ret_val; fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000e_get_cable_length_m88 - Determine cable length for m88 PHY fp@2586: * @hw: pointer to the HW structure fp@2586: * fp@2586: * Reads the PHY specific status register to retrieve the cable length fp@2586: * information. The cable length is determined by averaging the minimum and fp@2586: * maximum values to get the "average" cable length. The m88 PHY has four fp@2586: * possible cable length values, which are: fp@2586: * Register Value Cable Length fp@2586: * 0 < 50 meters fp@2586: * 1 50 - 80 meters fp@2586: * 2 80 - 110 meters fp@2586: * 3 110 - 140 meters fp@2586: * 4 > 140 meters fp@2586: **/ fp@2586: s32 e1000e_get_cable_length_m88(struct e1000_hw *hw) fp@2586: { fp@2586: struct e1000_phy_info *phy = &hw->phy; fp@2586: s32 ret_val; fp@2586: u16 phy_data, index; fp@2586: fp@2586: ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: index = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >> fp@2586: M88E1000_PSSR_CABLE_LENGTH_SHIFT); fp@2586: fp@2586: if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) fp@2586: return -E1000_ERR_PHY; fp@2586: fp@2586: phy->min_cable_length = e1000_m88_cable_length_table[index]; fp@2586: phy->max_cable_length = e1000_m88_cable_length_table[index + 1]; fp@2586: fp@2586: phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; fp@2586: fp@2586: return 0; fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY fp@2586: * @hw: pointer to the HW structure fp@2586: * fp@2586: * The automatic gain control (agc) normalizes the amplitude of the fp@2586: * received signal, adjusting for the attenuation produced by the fp@2586: * cable. By reading the AGC registers, which represent the fp@2586: * combination of coarse and fine gain value, the value can be put fp@2586: * into a lookup table to obtain the approximate cable length fp@2586: * for each channel. fp@2586: **/ fp@2586: s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw) fp@2586: { fp@2586: struct e1000_phy_info *phy = &hw->phy; fp@2586: s32 ret_val; fp@2586: u16 phy_data, i, agc_value = 0; fp@2586: u16 cur_agc_index, max_agc_index = 0; fp@2586: u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1; fp@2586: static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = { fp@2586: IGP02E1000_PHY_AGC_A, fp@2586: IGP02E1000_PHY_AGC_B, fp@2586: IGP02E1000_PHY_AGC_C, fp@2586: IGP02E1000_PHY_AGC_D fp@2586: }; fp@2586: fp@2586: /* Read the AGC registers for all channels */ fp@2586: for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) { fp@2586: ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: /* Getting bits 15:9, which represent the combination of fp@2586: * coarse and fine gain values. The result is a number fp@2586: * that can be put into the lookup table to obtain the fp@2586: * approximate cable length. fp@2586: */ fp@2586: cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & fp@2586: IGP02E1000_AGC_LENGTH_MASK); fp@2586: fp@2586: /* Array index bound check. */ fp@2586: if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) || fp@2586: (cur_agc_index == 0)) fp@2586: return -E1000_ERR_PHY; fp@2586: fp@2586: /* Remove min & max AGC values from calculation. */ fp@2586: if (e1000_igp_2_cable_length_table[min_agc_index] > fp@2586: e1000_igp_2_cable_length_table[cur_agc_index]) fp@2586: min_agc_index = cur_agc_index; fp@2586: if (e1000_igp_2_cable_length_table[max_agc_index] < fp@2586: e1000_igp_2_cable_length_table[cur_agc_index]) fp@2586: max_agc_index = cur_agc_index; fp@2586: fp@2586: agc_value += e1000_igp_2_cable_length_table[cur_agc_index]; fp@2586: } fp@2586: fp@2586: agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] + fp@2586: e1000_igp_2_cable_length_table[max_agc_index]); fp@2586: agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); fp@2586: fp@2586: /* Calculate cable length with the error range of +/- 10 meters. */ fp@2586: phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ? fp@2586: (agc_value - IGP02E1000_AGC_RANGE) : 0); fp@2586: phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE; fp@2586: fp@2586: phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; fp@2586: fp@2586: return 0; fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000e_get_phy_info_m88 - Retrieve PHY information fp@2586: * @hw: pointer to the HW structure fp@2586: * fp@2586: * Valid for only copper links. Read the PHY status register (sticky read) fp@2586: * to verify that link is up. Read the PHY special control register to fp@2586: * determine the polarity and 10base-T extended distance. Read the PHY fp@2586: * special status register to determine MDI/MDIx and current speed. If fp@2586: * speed is 1000, then determine cable length, local and remote receiver. fp@2586: **/ fp@2586: s32 e1000e_get_phy_info_m88(struct e1000_hw *hw) fp@2586: { fp@2586: struct e1000_phy_info *phy = &hw->phy; fp@2586: s32 ret_val; fp@2586: u16 phy_data; fp@2586: bool link; fp@2586: fp@2586: if (phy->media_type != e1000_media_type_copper) { fp@2586: e_dbg("Phy info is only valid for copper media\n"); fp@2586: return -E1000_ERR_CONFIG; fp@2586: } fp@2586: fp@2586: ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: if (!link) { fp@2586: e_dbg("Phy info is only valid if link is up\n"); fp@2586: return -E1000_ERR_CONFIG; fp@2586: } fp@2586: fp@2586: ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: phy->polarity_correction = !!(phy_data & fp@2586: M88E1000_PSCR_POLARITY_REVERSAL); fp@2586: fp@2586: ret_val = e1000_check_polarity_m88(hw); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX); fp@2586: fp@2586: if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { fp@2586: ret_val = hw->phy.ops.get_cable_length(hw); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: ret_val = e1e_rphy(hw, MII_STAT1000, &phy_data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: phy->local_rx = (phy_data & LPA_1000LOCALRXOK) fp@2586: ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; fp@2586: fp@2586: phy->remote_rx = (phy_data & LPA_1000REMRXOK) fp@2586: ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; fp@2586: } else { fp@2586: /* Set values to "undefined" */ fp@2586: phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; fp@2586: phy->local_rx = e1000_1000t_rx_status_undefined; fp@2586: phy->remote_rx = e1000_1000t_rx_status_undefined; fp@2586: } fp@2586: fp@2586: return ret_val; fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000e_get_phy_info_igp - Retrieve igp PHY information fp@2586: * @hw: pointer to the HW structure fp@2586: * fp@2586: * Read PHY status to determine if link is up. If link is up, then fp@2586: * set/determine 10base-T extended distance and polarity correction. Read fp@2586: * PHY port status to determine MDI/MDIx and speed. Based on the speed, fp@2586: * determine on the cable length, local and remote receiver. fp@2586: **/ fp@2586: s32 e1000e_get_phy_info_igp(struct e1000_hw *hw) fp@2586: { fp@2586: struct e1000_phy_info *phy = &hw->phy; fp@2586: s32 ret_val; fp@2586: u16 data; fp@2586: bool link; fp@2586: fp@2586: ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: if (!link) { fp@2586: e_dbg("Phy info is only valid if link is up\n"); fp@2586: return -E1000_ERR_CONFIG; fp@2586: } fp@2586: fp@2586: phy->polarity_correction = true; fp@2586: fp@2586: ret_val = e1000_check_polarity_igp(hw); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX); fp@2586: fp@2586: if ((data & IGP01E1000_PSSR_SPEED_MASK) == fp@2586: IGP01E1000_PSSR_SPEED_1000MBPS) { fp@2586: ret_val = phy->ops.get_cable_length(hw); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: ret_val = e1e_rphy(hw, MII_STAT1000, &data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: phy->local_rx = (data & LPA_1000LOCALRXOK) fp@2586: ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; fp@2586: fp@2586: phy->remote_rx = (data & LPA_1000REMRXOK) fp@2586: ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; fp@2586: } else { fp@2586: phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; fp@2586: phy->local_rx = e1000_1000t_rx_status_undefined; fp@2586: phy->remote_rx = e1000_1000t_rx_status_undefined; fp@2586: } fp@2586: fp@2586: return ret_val; fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000_get_phy_info_ife - Retrieves various IFE PHY states fp@2586: * @hw: pointer to the HW structure fp@2586: * fp@2586: * Populates "phy" structure with various feature states. fp@2586: **/ fp@2586: s32 e1000_get_phy_info_ife(struct e1000_hw *hw) fp@2586: { fp@2586: struct e1000_phy_info *phy = &hw->phy; fp@2586: s32 ret_val; fp@2586: u16 data; fp@2586: bool link; fp@2586: fp@2586: ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: if (!link) { fp@2586: e_dbg("Phy info is only valid if link is up\n"); fp@2586: return -E1000_ERR_CONFIG; fp@2586: } fp@2586: fp@2586: ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE); fp@2586: fp@2586: if (phy->polarity_correction) { fp@2586: ret_val = e1000_check_polarity_ife(hw); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: } else { fp@2586: /* Polarity is forced */ fp@2586: phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY) fp@2586: ? e1000_rev_polarity_reversed fp@2586: : e1000_rev_polarity_normal); fp@2586: } fp@2586: fp@2586: ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS); fp@2586: fp@2586: /* The following parameters are undefined for 10/100 operation. */ fp@2586: phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; fp@2586: phy->local_rx = e1000_1000t_rx_status_undefined; fp@2586: phy->remote_rx = e1000_1000t_rx_status_undefined; fp@2586: fp@2586: return 0; fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000e_phy_sw_reset - PHY software reset fp@2586: * @hw: pointer to the HW structure fp@2586: * fp@2586: * Does a software reset of the PHY by reading the PHY control register and fp@2586: * setting/write the control register reset bit to the PHY. fp@2586: **/ fp@2586: s32 e1000e_phy_sw_reset(struct e1000_hw *hw) fp@2586: { fp@2586: s32 ret_val; fp@2586: u16 phy_ctrl; fp@2586: fp@2586: ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: phy_ctrl |= BMCR_RESET; fp@2586: ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: udelay(1); fp@2586: fp@2586: return ret_val; fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000e_phy_hw_reset_generic - PHY hardware reset fp@2586: * @hw: pointer to the HW structure fp@2586: * fp@2586: * Verify the reset block is not blocking us from resetting. Acquire fp@2586: * semaphore (if necessary) and read/set/write the device control reset fp@2586: * bit in the PHY. Wait the appropriate delay time for the device to fp@2586: * reset and release the semaphore (if necessary). fp@2586: **/ fp@2586: s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw) fp@2586: { fp@2586: struct e1000_phy_info *phy = &hw->phy; fp@2586: s32 ret_val; fp@2586: u32 ctrl; fp@2586: fp@2586: if (phy->ops.check_reset_block) { fp@2586: ret_val = phy->ops.check_reset_block(hw); fp@2586: if (ret_val) fp@2586: return 0; fp@2586: } fp@2586: fp@2586: ret_val = phy->ops.acquire(hw); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: ctrl = er32(CTRL); fp@2586: ew32(CTRL, ctrl | E1000_CTRL_PHY_RST); fp@2586: e1e_flush(); fp@2586: fp@2586: udelay(phy->reset_delay_us); fp@2586: fp@2586: ew32(CTRL, ctrl); fp@2586: e1e_flush(); fp@2586: fp@2586: usleep_range(150, 300); fp@2586: fp@2586: phy->ops.release(hw); fp@2586: fp@2586: return phy->ops.get_cfg_done(hw); fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000e_get_cfg_done_generic - Generic configuration done fp@2586: * @hw: pointer to the HW structure fp@2586: * fp@2586: * Generic function to wait 10 milli-seconds for configuration to complete fp@2586: * and return success. fp@2586: **/ fp@2586: s32 e1000e_get_cfg_done_generic(struct e1000_hw __always_unused *hw) fp@2586: { fp@2586: mdelay(10); fp@2586: fp@2586: return 0; fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000e_phy_init_script_igp3 - Inits the IGP3 PHY fp@2586: * @hw: pointer to the HW structure fp@2586: * fp@2586: * Initializes a Intel Gigabit PHY3 when an EEPROM is not present. fp@2586: **/ fp@2586: s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw) fp@2586: { fp@2586: e_dbg("Running IGP 3 PHY init script\n"); fp@2586: fp@2586: /* PHY init IGP 3 */ fp@2586: /* Enable rise/fall, 10-mode work in class-A */ fp@2586: e1e_wphy(hw, 0x2F5B, 0x9018); fp@2586: /* Remove all caps from Replica path filter */ fp@2586: e1e_wphy(hw, 0x2F52, 0x0000); fp@2586: /* Bias trimming for ADC, AFE and Driver (Default) */ fp@2586: e1e_wphy(hw, 0x2FB1, 0x8B24); fp@2586: /* Increase Hybrid poly bias */ fp@2586: e1e_wphy(hw, 0x2FB2, 0xF8F0); fp@2586: /* Add 4% to Tx amplitude in Gig mode */ fp@2586: e1e_wphy(hw, 0x2010, 0x10B0); fp@2586: /* Disable trimming (TTT) */ fp@2586: e1e_wphy(hw, 0x2011, 0x0000); fp@2586: /* Poly DC correction to 94.6% + 2% for all channels */ fp@2586: e1e_wphy(hw, 0x20DD, 0x249A); fp@2586: /* ABS DC correction to 95.9% */ fp@2586: e1e_wphy(hw, 0x20DE, 0x00D3); fp@2586: /* BG temp curve trim */ fp@2586: e1e_wphy(hw, 0x28B4, 0x04CE); fp@2586: /* Increasing ADC OPAMP stage 1 currents to max */ fp@2586: e1e_wphy(hw, 0x2F70, 0x29E4); fp@2586: /* Force 1000 ( required for enabling PHY regs configuration) */ fp@2586: e1e_wphy(hw, 0x0000, 0x0140); fp@2586: /* Set upd_freq to 6 */ fp@2586: e1e_wphy(hw, 0x1F30, 0x1606); fp@2586: /* Disable NPDFE */ fp@2586: e1e_wphy(hw, 0x1F31, 0xB814); fp@2586: /* Disable adaptive fixed FFE (Default) */ fp@2586: e1e_wphy(hw, 0x1F35, 0x002A); fp@2586: /* Enable FFE hysteresis */ fp@2586: e1e_wphy(hw, 0x1F3E, 0x0067); fp@2586: /* Fixed FFE for short cable lengths */ fp@2586: e1e_wphy(hw, 0x1F54, 0x0065); fp@2586: /* Fixed FFE for medium cable lengths */ fp@2586: e1e_wphy(hw, 0x1F55, 0x002A); fp@2586: /* Fixed FFE for long cable lengths */ fp@2586: e1e_wphy(hw, 0x1F56, 0x002A); fp@2586: /* Enable Adaptive Clip Threshold */ fp@2586: e1e_wphy(hw, 0x1F72, 0x3FB0); fp@2586: /* AHT reset limit to 1 */ fp@2586: e1e_wphy(hw, 0x1F76, 0xC0FF); fp@2586: /* Set AHT master delay to 127 msec */ fp@2586: e1e_wphy(hw, 0x1F77, 0x1DEC); fp@2586: /* Set scan bits for AHT */ fp@2586: e1e_wphy(hw, 0x1F78, 0xF9EF); fp@2586: /* Set AHT Preset bits */ fp@2586: e1e_wphy(hw, 0x1F79, 0x0210); fp@2586: /* Change integ_factor of channel A to 3 */ fp@2586: e1e_wphy(hw, 0x1895, 0x0003); fp@2586: /* Change prop_factor of channels BCD to 8 */ fp@2586: e1e_wphy(hw, 0x1796, 0x0008); fp@2586: /* Change cg_icount + enable integbp for channels BCD */ fp@2586: e1e_wphy(hw, 0x1798, 0xD008); fp@2586: /* Change cg_icount + enable integbp + change prop_factor_master fp@2586: * to 8 for channel A fp@2586: */ fp@2586: e1e_wphy(hw, 0x1898, 0xD918); fp@2586: /* Disable AHT in Slave mode on channel A */ fp@2586: e1e_wphy(hw, 0x187A, 0x0800); fp@2586: /* Enable LPLU and disable AN to 1000 in non-D0a states, fp@2586: * Enable SPD+B2B fp@2586: */ fp@2586: e1e_wphy(hw, 0x0019, 0x008D); fp@2586: /* Enable restart AN on an1000_dis change */ fp@2586: e1e_wphy(hw, 0x001B, 0x2080); fp@2586: /* Enable wh_fifo read clock in 10/100 modes */ fp@2586: e1e_wphy(hw, 0x0014, 0x0045); fp@2586: /* Restart AN, Speed selection is 1000 */ fp@2586: e1e_wphy(hw, 0x0000, 0x1340); fp@2586: fp@2586: return 0; fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000e_get_phy_type_from_id - Get PHY type from id fp@2586: * @phy_id: phy_id read from the phy fp@2586: * fp@2586: * Returns the phy type from the id. fp@2586: **/ fp@2586: enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id) fp@2586: { fp@2586: enum e1000_phy_type phy_type = e1000_phy_unknown; fp@2586: fp@2586: switch (phy_id) { fp@2586: case M88E1000_I_PHY_ID: fp@2586: case M88E1000_E_PHY_ID: fp@2586: case M88E1111_I_PHY_ID: fp@2586: case M88E1011_I_PHY_ID: fp@2586: phy_type = e1000_phy_m88; fp@2586: break; fp@2586: case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */ fp@2586: phy_type = e1000_phy_igp_2; fp@2586: break; fp@2586: case GG82563_E_PHY_ID: fp@2586: phy_type = e1000_phy_gg82563; fp@2586: break; fp@2586: case IGP03E1000_E_PHY_ID: fp@2586: phy_type = e1000_phy_igp_3; fp@2586: break; fp@2586: case IFE_E_PHY_ID: fp@2586: case IFE_PLUS_E_PHY_ID: fp@2586: case IFE_C_E_PHY_ID: fp@2586: phy_type = e1000_phy_ife; fp@2586: break; fp@2586: case BME1000_E_PHY_ID: fp@2586: case BME1000_E_PHY_ID_R2: fp@2586: phy_type = e1000_phy_bm; fp@2586: break; fp@2586: case I82578_E_PHY_ID: fp@2586: phy_type = e1000_phy_82578; fp@2586: break; fp@2586: case I82577_E_PHY_ID: fp@2586: phy_type = e1000_phy_82577; fp@2586: break; fp@2586: case I82579_E_PHY_ID: fp@2586: phy_type = e1000_phy_82579; fp@2586: break; fp@2586: case I217_E_PHY_ID: fp@2586: phy_type = e1000_phy_i217; fp@2586: break; fp@2586: default: fp@2586: phy_type = e1000_phy_unknown; fp@2586: break; fp@2586: } fp@2586: return phy_type; fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000e_determine_phy_address - Determines PHY address. fp@2586: * @hw: pointer to the HW structure fp@2586: * fp@2586: * This uses a trial and error method to loop through possible PHY fp@2586: * addresses. It tests each by reading the PHY ID registers and fp@2586: * checking for a match. fp@2586: **/ fp@2586: s32 e1000e_determine_phy_address(struct e1000_hw *hw) fp@2586: { fp@2586: u32 phy_addr = 0; fp@2586: u32 i; fp@2586: enum e1000_phy_type phy_type = e1000_phy_unknown; fp@2586: fp@2586: hw->phy.id = phy_type; fp@2586: fp@2586: for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) { fp@2586: hw->phy.addr = phy_addr; fp@2586: i = 0; fp@2586: fp@2586: do { fp@2586: e1000e_get_phy_id(hw); fp@2586: phy_type = e1000e_get_phy_type_from_id(hw->phy.id); fp@2586: fp@2586: /* If phy_type is valid, break - we found our fp@2586: * PHY address fp@2586: */ fp@2586: if (phy_type != e1000_phy_unknown) fp@2586: return 0; fp@2586: fp@2586: usleep_range(1000, 2000); fp@2586: i++; fp@2586: } while (i < 10); fp@2586: } fp@2586: fp@2586: return -E1000_ERR_PHY_TYPE; fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000_get_phy_addr_for_bm_page - Retrieve PHY page address fp@2586: * @page: page to access fp@2586: * fp@2586: * Returns the phy address for the page requested. fp@2586: **/ fp@2586: static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg) fp@2586: { fp@2586: u32 phy_addr = 2; fp@2586: fp@2586: if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31)) fp@2586: phy_addr = 1; fp@2586: fp@2586: return phy_addr; fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000e_write_phy_reg_bm - Write BM PHY register fp@2586: * @hw: pointer to the HW structure fp@2586: * @offset: register offset to write to fp@2586: * @data: data to write at register offset fp@2586: * fp@2586: * Acquires semaphore, if necessary, then writes the data to PHY register fp@2586: * at the offset. Release any acquired semaphores before exiting. fp@2586: **/ fp@2586: s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data) fp@2586: { fp@2586: s32 ret_val; fp@2586: u32 page = offset >> IGP_PAGE_SHIFT; fp@2586: fp@2586: ret_val = hw->phy.ops.acquire(hw); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: /* Page 800 works differently than the rest so it has its own func */ fp@2586: if (page == BM_WUC_PAGE) { fp@2586: ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data, fp@2586: false, false); fp@2586: goto release; fp@2586: } fp@2586: fp@2586: hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset); fp@2586: fp@2586: if (offset > MAX_PHY_MULTI_PAGE_REG) { fp@2586: u32 page_shift, page_select; fp@2586: fp@2586: /* Page select is register 31 for phy address 1 and 22 for fp@2586: * phy address 2 and 3. Page select is shifted only for fp@2586: * phy address 1. fp@2586: */ fp@2586: if (hw->phy.addr == 1) { fp@2586: page_shift = IGP_PAGE_SHIFT; fp@2586: page_select = IGP01E1000_PHY_PAGE_SELECT; fp@2586: } else { fp@2586: page_shift = 0; fp@2586: page_select = BM_PHY_PAGE_SELECT; fp@2586: } fp@2586: fp@2586: /* Page is shifted left, PHY expects (page x 32) */ fp@2586: ret_val = e1000e_write_phy_reg_mdic(hw, page_select, fp@2586: (page << page_shift)); fp@2586: if (ret_val) fp@2586: goto release; fp@2586: } fp@2586: fp@2586: ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, fp@2586: data); fp@2586: fp@2586: release: fp@2586: hw->phy.ops.release(hw); fp@2586: return ret_val; fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000e_read_phy_reg_bm - Read BM PHY register fp@2586: * @hw: pointer to the HW structure fp@2586: * @offset: register offset to be read fp@2586: * @data: pointer to the read data fp@2586: * fp@2586: * Acquires semaphore, if necessary, then reads the PHY register at offset fp@2586: * and storing the retrieved information in data. Release any acquired fp@2586: * semaphores before exiting. fp@2586: **/ fp@2586: s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data) fp@2586: { fp@2586: s32 ret_val; fp@2586: u32 page = offset >> IGP_PAGE_SHIFT; fp@2586: fp@2586: ret_val = hw->phy.ops.acquire(hw); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: /* Page 800 works differently than the rest so it has its own func */ fp@2586: if (page == BM_WUC_PAGE) { fp@2586: ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, fp@2586: true, false); fp@2586: goto release; fp@2586: } fp@2586: fp@2586: hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset); fp@2586: fp@2586: if (offset > MAX_PHY_MULTI_PAGE_REG) { fp@2586: u32 page_shift, page_select; fp@2586: fp@2586: /* Page select is register 31 for phy address 1 and 22 for fp@2586: * phy address 2 and 3. Page select is shifted only for fp@2586: * phy address 1. fp@2586: */ fp@2586: if (hw->phy.addr == 1) { fp@2586: page_shift = IGP_PAGE_SHIFT; fp@2586: page_select = IGP01E1000_PHY_PAGE_SELECT; fp@2586: } else { fp@2586: page_shift = 0; fp@2586: page_select = BM_PHY_PAGE_SELECT; fp@2586: } fp@2586: fp@2586: /* Page is shifted left, PHY expects (page x 32) */ fp@2586: ret_val = e1000e_write_phy_reg_mdic(hw, page_select, fp@2586: (page << page_shift)); fp@2586: if (ret_val) fp@2586: goto release; fp@2586: } fp@2586: fp@2586: ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, fp@2586: data); fp@2586: release: fp@2586: hw->phy.ops.release(hw); fp@2586: return ret_val; fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000e_read_phy_reg_bm2 - Read BM PHY register fp@2586: * @hw: pointer to the HW structure fp@2586: * @offset: register offset to be read fp@2586: * @data: pointer to the read data fp@2586: * fp@2586: * Acquires semaphore, if necessary, then reads the PHY register at offset fp@2586: * and storing the retrieved information in data. Release any acquired fp@2586: * semaphores before exiting. fp@2586: **/ fp@2586: s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data) fp@2586: { fp@2586: s32 ret_val; fp@2586: u16 page = (u16)(offset >> IGP_PAGE_SHIFT); fp@2586: fp@2586: ret_val = hw->phy.ops.acquire(hw); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: /* Page 800 works differently than the rest so it has its own func */ fp@2586: if (page == BM_WUC_PAGE) { fp@2586: ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, fp@2586: true, false); fp@2586: goto release; fp@2586: } fp@2586: fp@2586: hw->phy.addr = 1; fp@2586: fp@2586: if (offset > MAX_PHY_MULTI_PAGE_REG) { fp@2586: /* Page is shifted left, PHY expects (page x 32) */ fp@2586: ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT, fp@2586: page); fp@2586: fp@2586: if (ret_val) fp@2586: goto release; fp@2586: } fp@2586: fp@2586: ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, fp@2586: data); fp@2586: release: fp@2586: hw->phy.ops.release(hw); fp@2586: return ret_val; fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000e_write_phy_reg_bm2 - Write BM PHY register fp@2586: * @hw: pointer to the HW structure fp@2586: * @offset: register offset to write to fp@2586: * @data: data to write at register offset fp@2586: * fp@2586: * Acquires semaphore, if necessary, then writes the data to PHY register fp@2586: * at the offset. Release any acquired semaphores before exiting. fp@2586: **/ fp@2586: s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data) fp@2586: { fp@2586: s32 ret_val; fp@2586: u16 page = (u16)(offset >> IGP_PAGE_SHIFT); fp@2586: fp@2586: ret_val = hw->phy.ops.acquire(hw); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: /* Page 800 works differently than the rest so it has its own func */ fp@2586: if (page == BM_WUC_PAGE) { fp@2586: ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data, fp@2586: false, false); fp@2586: goto release; fp@2586: } fp@2586: fp@2586: hw->phy.addr = 1; fp@2586: fp@2586: if (offset > MAX_PHY_MULTI_PAGE_REG) { fp@2586: /* Page is shifted left, PHY expects (page x 32) */ fp@2586: ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT, fp@2586: page); fp@2586: fp@2586: if (ret_val) fp@2586: goto release; fp@2586: } fp@2586: fp@2586: ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, fp@2586: data); fp@2586: fp@2586: release: fp@2586: hw->phy.ops.release(hw); fp@2586: return ret_val; fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers fp@2586: * @hw: pointer to the HW structure fp@2586: * @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG fp@2586: * fp@2586: * Assumes semaphore already acquired and phy_reg points to a valid memory fp@2586: * address to store contents of the BM_WUC_ENABLE_REG register. fp@2586: **/ fp@2586: s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg) fp@2586: { fp@2586: s32 ret_val; fp@2586: u16 temp; fp@2586: fp@2586: /* All page select, port ctrl and wakeup registers use phy address 1 */ fp@2586: hw->phy.addr = 1; fp@2586: fp@2586: /* Select Port Control Registers page */ fp@2586: ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT)); fp@2586: if (ret_val) { fp@2586: e_dbg("Could not set Port Control page\n"); fp@2586: return ret_val; fp@2586: } fp@2586: fp@2586: ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg); fp@2586: if (ret_val) { fp@2586: e_dbg("Could not read PHY register %d.%d\n", fp@2586: BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG); fp@2586: return ret_val; fp@2586: } fp@2586: fp@2586: /* Enable both PHY wakeup mode and Wakeup register page writes. fp@2586: * Prevent a power state change by disabling ME and Host PHY wakeup. fp@2586: */ fp@2586: temp = *phy_reg; fp@2586: temp |= BM_WUC_ENABLE_BIT; fp@2586: temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT); fp@2586: fp@2586: ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp); fp@2586: if (ret_val) { fp@2586: e_dbg("Could not write PHY register %d.%d\n", fp@2586: BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG); fp@2586: return ret_val; fp@2586: } fp@2586: fp@2586: /* Select Host Wakeup Registers page - caller now able to write fp@2586: * registers on the Wakeup registers page fp@2586: */ fp@2586: return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT)); fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs fp@2586: * @hw: pointer to the HW structure fp@2586: * @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG fp@2586: * fp@2586: * Restore BM_WUC_ENABLE_REG to its original value. fp@2586: * fp@2586: * Assumes semaphore already acquired and *phy_reg is the contents of the fp@2586: * BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by fp@2586: * caller. fp@2586: **/ fp@2586: s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg) fp@2586: { fp@2586: s32 ret_val; fp@2586: fp@2586: /* Select Port Control Registers page */ fp@2586: ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT)); fp@2586: if (ret_val) { fp@2586: e_dbg("Could not set Port Control page\n"); fp@2586: return ret_val; fp@2586: } fp@2586: fp@2586: /* Restore 769.17 to its original value */ fp@2586: ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg); fp@2586: if (ret_val) fp@2586: e_dbg("Could not restore PHY register %d.%d\n", fp@2586: BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG); fp@2586: fp@2586: return ret_val; fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register fp@2586: * @hw: pointer to the HW structure fp@2586: * @offset: register offset to be read or written fp@2586: * @data: pointer to the data to read or write fp@2586: * @read: determines if operation is read or write fp@2586: * @page_set: BM_WUC_PAGE already set and access enabled fp@2586: * fp@2586: * Read the PHY register at offset and store the retrieved information in fp@2586: * data, or write data to PHY register at offset. Note the procedure to fp@2586: * access the PHY wakeup registers is different than reading the other PHY fp@2586: * registers. It works as such: fp@2586: * 1) Set 769.17.2 (page 769, register 17, bit 2) = 1 fp@2586: * 2) Set page to 800 for host (801 if we were manageability) fp@2586: * 3) Write the address using the address opcode (0x11) fp@2586: * 4) Read or write the data using the data opcode (0x12) fp@2586: * 5) Restore 769.17.2 to its original value fp@2586: * fp@2586: * Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and fp@2586: * step 5 is done by e1000_disable_phy_wakeup_reg_access_bm(). fp@2586: * fp@2586: * Assumes semaphore is already acquired. When page_set==true, assumes fp@2586: * the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack fp@2586: * is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()). fp@2586: **/ fp@2586: static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset, fp@2586: u16 *data, bool read, bool page_set) fp@2586: { fp@2586: s32 ret_val; fp@2586: u16 reg = BM_PHY_REG_NUM(offset); fp@2586: u16 page = BM_PHY_REG_PAGE(offset); fp@2586: u16 phy_reg = 0; fp@2586: fp@2586: /* Gig must be disabled for MDIO accesses to Host Wakeup reg page */ fp@2586: if ((hw->mac.type == e1000_pchlan) && fp@2586: (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE))) fp@2586: e_dbg("Attempting to access page %d while gig enabled.\n", fp@2586: page); fp@2586: fp@2586: if (!page_set) { fp@2586: /* Enable access to PHY wakeup registers */ fp@2586: ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg); fp@2586: if (ret_val) { fp@2586: e_dbg("Could not enable PHY wakeup reg access\n"); fp@2586: return ret_val; fp@2586: } fp@2586: } fp@2586: fp@2586: e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg); fp@2586: fp@2586: /* Write the Wakeup register page offset value using opcode 0x11 */ fp@2586: ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg); fp@2586: if (ret_val) { fp@2586: e_dbg("Could not write address opcode to page %d\n", page); fp@2586: return ret_val; fp@2586: } fp@2586: fp@2586: if (read) { fp@2586: /* Read the Wakeup register page value using opcode 0x12 */ fp@2586: ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE, fp@2586: data); fp@2586: } else { fp@2586: /* Write the Wakeup register page value using opcode 0x12 */ fp@2586: ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE, fp@2586: *data); fp@2586: } fp@2586: fp@2586: if (ret_val) { fp@2586: e_dbg("Could not access PHY reg %d.%d\n", page, reg); fp@2586: return ret_val; fp@2586: } fp@2586: fp@2586: if (!page_set) fp@2586: ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg); fp@2586: fp@2586: return ret_val; fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000_power_up_phy_copper - Restore copper link in case of PHY power down fp@2586: * @hw: pointer to the HW structure fp@2586: * fp@2586: * In the case of a PHY power down to save power, or to turn off link during a fp@2586: * driver unload, or wake on lan is not enabled, restore the link to previous fp@2586: * settings. fp@2586: **/ fp@2586: void e1000_power_up_phy_copper(struct e1000_hw *hw) fp@2586: { fp@2586: u16 mii_reg = 0; fp@2586: fp@2586: /* The PHY will retain its settings across a power down/up cycle */ fp@2586: e1e_rphy(hw, MII_BMCR, &mii_reg); fp@2586: mii_reg &= ~BMCR_PDOWN; fp@2586: e1e_wphy(hw, MII_BMCR, mii_reg); fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000_power_down_phy_copper - Restore copper link in case of PHY power down fp@2586: * @hw: pointer to the HW structure fp@2586: * fp@2586: * In the case of a PHY power down to save power, or to turn off link during a fp@2586: * driver unload, or wake on lan is not enabled, restore the link to previous fp@2586: * settings. fp@2586: **/ fp@2586: void e1000_power_down_phy_copper(struct e1000_hw *hw) fp@2586: { fp@2586: u16 mii_reg = 0; fp@2586: fp@2586: /* The PHY will retain its settings across a power down/up cycle */ fp@2586: e1e_rphy(hw, MII_BMCR, &mii_reg); fp@2586: mii_reg |= BMCR_PDOWN; fp@2586: e1e_wphy(hw, MII_BMCR, mii_reg); fp@2586: usleep_range(1000, 2000); fp@2586: } fp@2586: fp@2586: /** fp@2586: * __e1000_read_phy_reg_hv - Read HV PHY register fp@2586: * @hw: pointer to the HW structure fp@2586: * @offset: register offset to be read fp@2586: * @data: pointer to the read data fp@2586: * @locked: semaphore has already been acquired or not fp@2586: * fp@2586: * Acquires semaphore, if necessary, then reads the PHY register at offset fp@2586: * and stores the retrieved information in data. Release any acquired fp@2586: * semaphore before exiting. fp@2586: **/ fp@2586: static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data, fp@2586: bool locked, bool page_set) fp@2586: { fp@2586: s32 ret_val; fp@2586: u16 page = BM_PHY_REG_PAGE(offset); fp@2586: u16 reg = BM_PHY_REG_NUM(offset); fp@2586: u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page); fp@2586: fp@2586: if (!locked) { fp@2586: ret_val = hw->phy.ops.acquire(hw); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: } fp@2586: fp@2586: /* Page 800 works differently than the rest so it has its own func */ fp@2586: if (page == BM_WUC_PAGE) { fp@2586: ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, fp@2586: true, page_set); fp@2586: goto out; fp@2586: } fp@2586: fp@2586: if (page > 0 && page < HV_INTC_FC_PAGE_START) { fp@2586: ret_val = e1000_access_phy_debug_regs_hv(hw, offset, fp@2586: data, true); fp@2586: goto out; fp@2586: } fp@2586: fp@2586: if (!page_set) { fp@2586: if (page == HV_INTC_FC_PAGE_START) fp@2586: page = 0; fp@2586: fp@2586: if (reg > MAX_PHY_MULTI_PAGE_REG) { fp@2586: /* Page is shifted left, PHY expects (page x 32) */ fp@2586: ret_val = e1000_set_page_igp(hw, fp@2586: (page << IGP_PAGE_SHIFT)); fp@2586: fp@2586: hw->phy.addr = phy_addr; fp@2586: fp@2586: if (ret_val) fp@2586: goto out; fp@2586: } fp@2586: } fp@2586: fp@2586: e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page, fp@2586: page << IGP_PAGE_SHIFT, reg); fp@2586: fp@2586: ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, data); fp@2586: out: fp@2586: if (!locked) fp@2586: hw->phy.ops.release(hw); fp@2586: fp@2586: return ret_val; fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000_read_phy_reg_hv - Read HV PHY register fp@2586: * @hw: pointer to the HW structure fp@2586: * @offset: register offset to be read fp@2586: * @data: pointer to the read data fp@2586: * fp@2586: * Acquires semaphore then reads the PHY register at offset and stores fp@2586: * the retrieved information in data. Release the acquired semaphore fp@2586: * before exiting. fp@2586: **/ fp@2586: s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data) fp@2586: { fp@2586: return __e1000_read_phy_reg_hv(hw, offset, data, false, false); fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000_read_phy_reg_hv_locked - Read HV PHY register fp@2586: * @hw: pointer to the HW structure fp@2586: * @offset: register offset to be read fp@2586: * @data: pointer to the read data fp@2586: * fp@2586: * Reads the PHY register at offset and stores the retrieved information fp@2586: * in data. Assumes semaphore already acquired. fp@2586: **/ fp@2586: s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data) fp@2586: { fp@2586: return __e1000_read_phy_reg_hv(hw, offset, data, true, false); fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000_read_phy_reg_page_hv - Read HV PHY register fp@2586: * @hw: pointer to the HW structure fp@2586: * @offset: register offset to write to fp@2586: * @data: data to write at register offset fp@2586: * fp@2586: * Reads the PHY register at offset and stores the retrieved information fp@2586: * in data. Assumes semaphore already acquired and page already set. fp@2586: **/ fp@2586: s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data) fp@2586: { fp@2586: return __e1000_read_phy_reg_hv(hw, offset, data, true, true); fp@2586: } fp@2586: fp@2586: /** fp@2586: * __e1000_write_phy_reg_hv - Write HV PHY register fp@2586: * @hw: pointer to the HW structure fp@2586: * @offset: register offset to write to fp@2586: * @data: data to write at register offset fp@2586: * @locked: semaphore has already been acquired or not fp@2586: * fp@2586: * Acquires semaphore, if necessary, then writes the data to PHY register fp@2586: * at the offset. Release any acquired semaphores before exiting. fp@2586: **/ fp@2586: static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data, fp@2586: bool locked, bool page_set) fp@2586: { fp@2586: s32 ret_val; fp@2586: u16 page = BM_PHY_REG_PAGE(offset); fp@2586: u16 reg = BM_PHY_REG_NUM(offset); fp@2586: u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page); fp@2586: fp@2586: if (!locked) { fp@2586: ret_val = hw->phy.ops.acquire(hw); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: } fp@2586: fp@2586: /* Page 800 works differently than the rest so it has its own func */ fp@2586: if (page == BM_WUC_PAGE) { fp@2586: ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data, fp@2586: false, page_set); fp@2586: goto out; fp@2586: } fp@2586: fp@2586: if (page > 0 && page < HV_INTC_FC_PAGE_START) { fp@2586: ret_val = e1000_access_phy_debug_regs_hv(hw, offset, fp@2586: &data, false); fp@2586: goto out; fp@2586: } fp@2586: fp@2586: if (!page_set) { fp@2586: if (page == HV_INTC_FC_PAGE_START) fp@2586: page = 0; fp@2586: fp@2586: /* Workaround MDIO accesses being disabled after entering IEEE fp@2586: * Power Down (when bit 11 of the PHY Control register is set) fp@2586: */ fp@2586: if ((hw->phy.type == e1000_phy_82578) && fp@2586: (hw->phy.revision >= 1) && fp@2586: (hw->phy.addr == 2) && fp@2586: !(MAX_PHY_REG_ADDRESS & reg) && (data & (1 << 11))) { fp@2586: u16 data2 = 0x7EFF; fp@2586: ret_val = e1000_access_phy_debug_regs_hv(hw, fp@2586: (1 << 6) | 0x3, fp@2586: &data2, false); fp@2586: if (ret_val) fp@2586: goto out; fp@2586: } fp@2586: fp@2586: if (reg > MAX_PHY_MULTI_PAGE_REG) { fp@2586: /* Page is shifted left, PHY expects (page x 32) */ fp@2586: ret_val = e1000_set_page_igp(hw, fp@2586: (page << IGP_PAGE_SHIFT)); fp@2586: fp@2586: hw->phy.addr = phy_addr; fp@2586: fp@2586: if (ret_val) fp@2586: goto out; fp@2586: } fp@2586: } fp@2586: fp@2586: e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page, fp@2586: page << IGP_PAGE_SHIFT, reg); fp@2586: fp@2586: ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, fp@2586: data); fp@2586: fp@2586: out: fp@2586: if (!locked) fp@2586: hw->phy.ops.release(hw); fp@2586: fp@2586: return ret_val; fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000_write_phy_reg_hv - Write HV PHY register fp@2586: * @hw: pointer to the HW structure fp@2586: * @offset: register offset to write to fp@2586: * @data: data to write at register offset fp@2586: * fp@2586: * Acquires semaphore then writes the data to PHY register at the offset. fp@2586: * Release the acquired semaphores before exiting. fp@2586: **/ fp@2586: s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data) fp@2586: { fp@2586: return __e1000_write_phy_reg_hv(hw, offset, data, false, false); fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000_write_phy_reg_hv_locked - Write HV PHY register fp@2586: * @hw: pointer to the HW structure fp@2586: * @offset: register offset to write to fp@2586: * @data: data to write at register offset fp@2586: * fp@2586: * Writes the data to PHY register at the offset. Assumes semaphore fp@2586: * already acquired. fp@2586: **/ fp@2586: s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data) fp@2586: { fp@2586: return __e1000_write_phy_reg_hv(hw, offset, data, true, false); fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000_write_phy_reg_page_hv - Write HV PHY register fp@2586: * @hw: pointer to the HW structure fp@2586: * @offset: register offset to write to fp@2586: * @data: data to write at register offset fp@2586: * fp@2586: * Writes the data to PHY register at the offset. Assumes semaphore fp@2586: * already acquired and page already set. fp@2586: **/ fp@2586: s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data) fp@2586: { fp@2586: return __e1000_write_phy_reg_hv(hw, offset, data, true, true); fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000_get_phy_addr_for_hv_page - Get PHY address based on page fp@2586: * @page: page to be accessed fp@2586: **/ fp@2586: static u32 e1000_get_phy_addr_for_hv_page(u32 page) fp@2586: { fp@2586: u32 phy_addr = 2; fp@2586: fp@2586: if (page >= HV_INTC_FC_PAGE_START) fp@2586: phy_addr = 1; fp@2586: fp@2586: return phy_addr; fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers fp@2586: * @hw: pointer to the HW structure fp@2586: * @offset: register offset to be read or written fp@2586: * @data: pointer to the data to be read or written fp@2586: * @read: determines if operation is read or write fp@2586: * fp@2586: * Reads the PHY register at offset and stores the retreived information fp@2586: * in data. Assumes semaphore already acquired. Note that the procedure fp@2586: * to access these regs uses the address port and data port to read/write. fp@2586: * These accesses done with PHY address 2 and without using pages. fp@2586: **/ fp@2586: static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset, fp@2586: u16 *data, bool read) fp@2586: { fp@2586: s32 ret_val; fp@2586: u32 addr_reg; fp@2586: u32 data_reg; fp@2586: fp@2586: /* This takes care of the difference with desktop vs mobile phy */ fp@2586: addr_reg = ((hw->phy.type == e1000_phy_82578) ? fp@2586: I82578_ADDR_REG : I82577_ADDR_REG); fp@2586: data_reg = addr_reg + 1; fp@2586: fp@2586: /* All operations in this function are phy address 2 */ fp@2586: hw->phy.addr = 2; fp@2586: fp@2586: /* masking with 0x3F to remove the page from offset */ fp@2586: ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F); fp@2586: if (ret_val) { fp@2586: e_dbg("Could not write the Address Offset port register\n"); fp@2586: return ret_val; fp@2586: } fp@2586: fp@2586: /* Read or write the data value next */ fp@2586: if (read) fp@2586: ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data); fp@2586: else fp@2586: ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data); fp@2586: fp@2586: if (ret_val) fp@2586: e_dbg("Could not access the Data port register\n"); fp@2586: fp@2586: return ret_val; fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000_link_stall_workaround_hv - Si workaround fp@2586: * @hw: pointer to the HW structure fp@2586: * fp@2586: * This function works around a Si bug where the link partner can get fp@2586: * a link up indication before the PHY does. If small packets are sent fp@2586: * by the link partner they can be placed in the packet buffer without fp@2586: * being properly accounted for by the PHY and will stall preventing fp@2586: * further packets from being received. The workaround is to clear the fp@2586: * packet buffer after the PHY detects link up. fp@2586: **/ fp@2586: s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw) fp@2586: { fp@2586: s32 ret_val = 0; fp@2586: u16 data; fp@2586: fp@2586: if (hw->phy.type != e1000_phy_82578) fp@2586: return 0; fp@2586: fp@2586: /* Do not apply workaround if in PHY loopback bit 14 set */ fp@2586: e1e_rphy(hw, MII_BMCR, &data); fp@2586: if (data & BMCR_LOOPBACK) fp@2586: return 0; fp@2586: fp@2586: /* check if link is up and at 1Gbps */ fp@2586: ret_val = e1e_rphy(hw, BM_CS_STATUS, &data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: data &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED | fp@2586: BM_CS_STATUS_SPEED_MASK); fp@2586: fp@2586: if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED | fp@2586: BM_CS_STATUS_SPEED_1000)) fp@2586: return 0; fp@2586: fp@2586: msleep(200); fp@2586: fp@2586: /* flush the packets in the fifo buffer */ fp@2586: ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL, fp@2586: (HV_MUX_DATA_CTRL_GEN_TO_MAC | fp@2586: HV_MUX_DATA_CTRL_FORCE_SPEED)); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: return e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC); fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000_check_polarity_82577 - Checks the polarity. fp@2586: * @hw: pointer to the HW structure fp@2586: * fp@2586: * Success returns 0, Failure returns -E1000_ERR_PHY (-2) fp@2586: * fp@2586: * Polarity is determined based on the PHY specific status register. fp@2586: **/ fp@2586: s32 e1000_check_polarity_82577(struct e1000_hw *hw) fp@2586: { fp@2586: struct e1000_phy_info *phy = &hw->phy; fp@2586: s32 ret_val; fp@2586: u16 data; fp@2586: fp@2586: ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data); fp@2586: fp@2586: if (!ret_val) fp@2586: phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY) fp@2586: ? e1000_rev_polarity_reversed fp@2586: : e1000_rev_polarity_normal); fp@2586: fp@2586: return ret_val; fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY fp@2586: * @hw: pointer to the HW structure fp@2586: * fp@2586: * Calls the PHY setup function to force speed and duplex. fp@2586: **/ fp@2586: s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw) fp@2586: { fp@2586: struct e1000_phy_info *phy = &hw->phy; fp@2586: s32 ret_val; fp@2586: u16 phy_data; fp@2586: bool link; fp@2586: fp@2586: ret_val = e1e_rphy(hw, MII_BMCR, &phy_data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: e1000e_phy_force_speed_duplex_setup(hw, &phy_data); fp@2586: fp@2586: ret_val = e1e_wphy(hw, MII_BMCR, phy_data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: udelay(1); fp@2586: fp@2586: if (phy->autoneg_wait_to_complete) { fp@2586: e_dbg("Waiting for forced speed/duplex link on 82577 phy\n"); fp@2586: fp@2586: ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, fp@2586: 100000, &link); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: if (!link) fp@2586: e_dbg("Link taking longer than expected.\n"); fp@2586: fp@2586: /* Try once more */ fp@2586: ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, fp@2586: 100000, &link); fp@2586: } fp@2586: fp@2586: return ret_val; fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000_get_phy_info_82577 - Retrieve I82577 PHY information fp@2586: * @hw: pointer to the HW structure fp@2586: * fp@2586: * Read PHY status to determine if link is up. If link is up, then fp@2586: * set/determine 10base-T extended distance and polarity correction. Read fp@2586: * PHY port status to determine MDI/MDIx and speed. Based on the speed, fp@2586: * determine on the cable length, local and remote receiver. fp@2586: **/ fp@2586: s32 e1000_get_phy_info_82577(struct e1000_hw *hw) fp@2586: { fp@2586: struct e1000_phy_info *phy = &hw->phy; fp@2586: s32 ret_val; fp@2586: u16 data; fp@2586: bool link; fp@2586: fp@2586: ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: if (!link) { fp@2586: e_dbg("Phy info is only valid if link is up\n"); fp@2586: return -E1000_ERR_CONFIG; fp@2586: } fp@2586: fp@2586: phy->polarity_correction = true; fp@2586: fp@2586: ret_val = e1000_check_polarity_82577(hw); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX); fp@2586: fp@2586: if ((data & I82577_PHY_STATUS2_SPEED_MASK) == fp@2586: I82577_PHY_STATUS2_SPEED_1000MBPS) { fp@2586: ret_val = hw->phy.ops.get_cable_length(hw); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: ret_val = e1e_rphy(hw, MII_STAT1000, &data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: phy->local_rx = (data & LPA_1000LOCALRXOK) fp@2586: ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; fp@2586: fp@2586: phy->remote_rx = (data & LPA_1000REMRXOK) fp@2586: ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; fp@2586: } else { fp@2586: phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; fp@2586: phy->local_rx = e1000_1000t_rx_status_undefined; fp@2586: phy->remote_rx = e1000_1000t_rx_status_undefined; fp@2586: } fp@2586: fp@2586: return 0; fp@2586: } fp@2586: fp@2586: /** fp@2586: * e1000_get_cable_length_82577 - Determine cable length for 82577 PHY fp@2586: * @hw: pointer to the HW structure fp@2586: * fp@2586: * Reads the diagnostic status register and verifies result is valid before fp@2586: * placing it in the phy_cable_length field. fp@2586: **/ fp@2586: s32 e1000_get_cable_length_82577(struct e1000_hw *hw) fp@2586: { fp@2586: struct e1000_phy_info *phy = &hw->phy; fp@2586: s32 ret_val; fp@2586: u16 phy_data, length; fp@2586: fp@2586: ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data); fp@2586: if (ret_val) fp@2586: return ret_val; fp@2586: fp@2586: length = ((phy_data & I82577_DSTATUS_CABLE_LENGTH) >> fp@2586: I82577_DSTATUS_CABLE_LENGTH_SHIFT); fp@2586: fp@2586: if (length == E1000_CABLE_LENGTH_UNDEFINED) fp@2586: return -E1000_ERR_PHY; fp@2586: fp@2586: phy->cable_length = length; fp@2586: fp@2586: return 0; fp@2586: }