fp@1414: /***************************************************************************** fp@1414: * fp@1414: * $Id$ fp@1414: * fp@1414: * Copyright (C) 2007-2009 Florian Pose, Ingenieurgemeinschaft IgH fp@1414: * fp@1414: * This file is part of the IgH EtherCAT Master. fp@1414: * fp@1414: * The IgH EtherCAT Master is free software; you can redistribute it and/or fp@1414: * modify it under the terms of the GNU General Public License version 2, as fp@1414: * published by the Free Software Foundation. fp@1414: * fp@1414: * The IgH EtherCAT Master is distributed in the hope that it will be useful, fp@1414: * but WITHOUT ANY WARRANTY; without even the implied warranty of fp@1414: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General fp@1414: * Public License for more details. fp@1414: * fp@1414: * You should have received a copy of the GNU General Public License along fp@1414: * with the IgH EtherCAT Master; if not, write to the Free Software fp@1414: * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA fp@1414: * fp@1414: * --- fp@1414: * fp@1414: * The license mentioned above concerns the source code only. Using the fp@1414: * EtherCAT technology and brand is only permitted in compliance with the fp@1414: * industrial property and similar rights of Beckhoff Automation GmbH. fp@1414: * fp@1414: ****************************************************************************/ fp@1414: fp@1414: #include fp@1414: #include fp@1414: #include fp@1414: #include fp@1414: #include fp@1414: #include fp@1414: #include fp@1414: #include fp@1970: #include fp@1970: #include fp@1970: #include Florian@2698: #include /* sched_setscheduler() */ fp@1414: fp@1414: /****************************************************************************/ fp@1414: fp@1414: #include "ecrt.h" fp@1414: fp@1414: /****************************************************************************/ fp@1414: fp@1414: // Application parameters fp@1970: #define FREQUENCY 1000 Florian@2698: #define CLOCK_TO_USE CLOCK_MONOTONIC fp@1970: #define MEASURE_TIMING fp@1970: fp@1970: /****************************************************************************/ fp@1970: fp@1970: #define NSEC_PER_SEC (1000000000L) fp@1970: #define PERIOD_NS (NSEC_PER_SEC / FREQUENCY) fp@1970: fp@1970: #define DIFF_NS(A, B) (((B).tv_sec - (A).tv_sec) * NSEC_PER_SEC + \ fp@1970: (B).tv_nsec - (A).tv_nsec) fp@1970: fp@1970: #define TIMESPEC2NS(T) ((uint64_t) (T).tv_sec * NSEC_PER_SEC + (T).tv_nsec) fp@2421: fp@1414: /****************************************************************************/ fp@1414: fp@1414: // EtherCAT fp@1414: static ec_master_t *master = NULL; fp@1414: static ec_master_state_t master_state = {}; fp@1414: fp@1414: static ec_domain_t *domain1 = NULL; fp@1414: static ec_domain_state_t domain1_state = {}; fp@1414: fp@1414: /****************************************************************************/ fp@1414: fp@1414: // process data fp@1414: static uint8_t *domain1_pd = NULL; fp@1414: fp@1414: #define BusCouplerPos 0, 0 fp@1414: #define DigOutSlavePos 0, 1 fp@1414: #define CounterSlavePos 0, 2 fp@1414: fp@1414: #define Beckhoff_EK1100 0x00000002, 0x044c2c52 fp@1414: #define Beckhoff_EL2008 0x00000002, 0x07d83052 fp@1414: #define IDS_Counter 0x000012ad, 0x05de3052 fp@1414: fp@1414: // offsets for PDO entries fp@1414: static int off_dig_out; fp@1414: static int off_counter_in; fp@1414: static int off_counter_out; fp@1414: fp@1414: static unsigned int counter = 0; fp@1414: static unsigned int blink = 0; fp@1414: static unsigned int sync_ref_counter = 0; fp@1970: const struct timespec cycletime = {0, PERIOD_NS}; fp@1970: fp@1970: /*****************************************************************************/ fp@1970: fp@1970: struct timespec timespec_add(struct timespec time1, struct timespec time2) fp@1970: { fp@1970: struct timespec result; fp@1970: fp@1970: if ((time1.tv_nsec + time2.tv_nsec) >= NSEC_PER_SEC) { fp@1970: result.tv_sec = time1.tv_sec + time2.tv_sec + 1; fp@1970: result.tv_nsec = time1.tv_nsec + time2.tv_nsec - NSEC_PER_SEC; fp@1970: } else { fp@1970: result.tv_sec = time1.tv_sec + time2.tv_sec; fp@1970: result.tv_nsec = time1.tv_nsec + time2.tv_nsec; fp@1970: } fp@1970: fp@1970: return result; fp@1970: } fp@1414: fp@1414: /*****************************************************************************/ fp@1414: fp@1414: void check_domain1_state(void) fp@1414: { fp@1414: ec_domain_state_t ds; fp@1414: fp@1414: ecrt_domain_state(domain1, &ds); fp@1414: fp@1414: if (ds.working_counter != domain1_state.working_counter) fp@1414: printf("Domain1: WC %u.\n", ds.working_counter); fp@1414: if (ds.wc_state != domain1_state.wc_state) fp@1414: printf("Domain1: State %u.\n", ds.wc_state); fp@1414: fp@1414: domain1_state = ds; fp@1414: } fp@1414: fp@1414: /*****************************************************************************/ fp@1414: fp@1414: void check_master_state(void) fp@1414: { fp@1414: ec_master_state_t ms; fp@1414: fp@1414: ecrt_master_state(master, &ms); fp@1414: fp@1970: if (ms.slaves_responding != master_state.slaves_responding) fp@1414: printf("%u slave(s).\n", ms.slaves_responding); fp@1414: if (ms.al_states != master_state.al_states) fp@1414: printf("AL states: 0x%02X.\n", ms.al_states); fp@1414: if (ms.link_up != master_state.link_up) fp@1414: printf("Link is %s.\n", ms.link_up ? "up" : "down"); fp@1414: fp@1414: master_state = ms; fp@1414: } fp@1414: fp@1414: /****************************************************************************/ fp@1414: fp@1414: void cyclic_task() fp@1414: { fp@1970: struct timespec wakeupTime, time; fp@1970: #ifdef MEASURE_TIMING fp@1970: struct timespec startTime, endTime, lastStartTime = {}; fp@1970: uint32_t period_ns = 0, exec_ns = 0, latency_ns = 0, fp@1970: latency_min_ns = 0, latency_max_ns = 0, fp@1970: period_min_ns = 0, period_max_ns = 0, fp@1970: exec_min_ns = 0, exec_max_ns = 0; fp@1970: #endif fp@1970: fp@1970: // get current time fp@1970: clock_gettime(CLOCK_TO_USE, &wakeupTime); fp@1970: fp@1970: while(1) { fp@1970: wakeupTime = timespec_add(wakeupTime, cycletime); fp@1970: clock_nanosleep(CLOCK_TO_USE, TIMER_ABSTIME, &wakeupTime, NULL); fp@1970: fp@1970: #ifdef MEASURE_TIMING fp@1970: clock_gettime(CLOCK_TO_USE, &startTime); fp@1970: latency_ns = DIFF_NS(wakeupTime, startTime); fp@1970: period_ns = DIFF_NS(lastStartTime, startTime); fp@1970: exec_ns = DIFF_NS(lastStartTime, endTime); fp@1970: lastStartTime = startTime; fp@1970: fp@1970: if (latency_ns > latency_max_ns) { fp@1970: latency_max_ns = latency_ns; fp@1970: } fp@1970: if (latency_ns < latency_min_ns) { fp@1970: latency_min_ns = latency_ns; fp@1970: } fp@1970: if (period_ns > period_max_ns) { fp@1970: period_max_ns = period_ns; fp@1970: } fp@1970: if (period_ns < period_min_ns) { fp@1970: period_min_ns = period_ns; fp@1970: } fp@1970: if (exec_ns > exec_max_ns) { fp@1970: exec_max_ns = exec_ns; fp@1970: } fp@1970: if (exec_ns < exec_min_ns) { fp@1970: exec_min_ns = exec_ns; fp@1970: } fp@1970: #endif fp@1970: fp@1970: // receive process data fp@1970: ecrt_master_receive(master); fp@1970: ecrt_domain_process(domain1); fp@1970: fp@1970: // check process data state (optional) fp@1970: check_domain1_state(); fp@1970: fp@1970: if (counter) { fp@1970: counter--; fp@1970: } else { // do this at 1 Hz fp@1970: counter = FREQUENCY; fp@1970: fp@1970: // check for master state (optional) fp@1970: check_master_state(); fp@1970: fp@1970: #ifdef MEASURE_TIMING fp@1970: // output timing stats fp@1970: printf("period %10u ... %10u\n", fp@2421: period_min_ns, period_max_ns); fp@1970: printf("exec %10u ... %10u\n", fp@2421: exec_min_ns, exec_max_ns); fp@1970: printf("latency %10u ... %10u\n", fp@2421: latency_min_ns, latency_max_ns); fp@1970: period_max_ns = 0; fp@1970: period_min_ns = 0xffffffff; fp@1970: exec_max_ns = 0; fp@1970: exec_min_ns = 0xffffffff; fp@1970: latency_max_ns = 0; fp@1970: latency_min_ns = 0xffffffff; fp@1970: #endif fp@1970: fp@1970: // calculate new process data fp@1970: blink = !blink; fp@1970: } fp@1970: fp@1970: // write process data fp@1970: EC_WRITE_U8(domain1_pd + off_dig_out, blink ? 0x66 : 0x99); fp@1970: EC_WRITE_U8(domain1_pd + off_counter_out, blink ? 0x00 : 0x02); fp@1970: fp@1970: // write application time to master fp@1970: clock_gettime(CLOCK_TO_USE, &time); fp@1971: ecrt_master_application_time(master, TIMESPEC2NS(time)); fp@1970: fp@1970: if (sync_ref_counter) { fp@1970: sync_ref_counter--; fp@1970: } else { fp@1970: sync_ref_counter = 1; // sync every cycle fp@1970: ecrt_master_sync_reference_clock(master); fp@1970: } fp@1970: ecrt_master_sync_slave_clocks(master); fp@1970: fp@1970: // send process data fp@1970: ecrt_domain_queue(domain1); fp@1970: ecrt_master_send(master); fp@1970: fp@1970: #ifdef MEASURE_TIMING fp@1970: clock_gettime(CLOCK_TO_USE, &endTime); fp@1970: #endif fp@1970: } fp@1414: } fp@1414: fp@1414: /****************************************************************************/ fp@1414: fp@1414: int main(int argc, char **argv) fp@1414: { fp@1804: ec_slave_config_t *sc; fp@1970: fp@1970: if (mlockall(MCL_CURRENT | MCL_FUTURE) == -1) { fp@1970: perror("mlockall failed"); fp@1970: return -1; fp@1970: } fp@2421: fp@1414: master = ecrt_request_master(0); fp@1804: if (!master) fp@1804: return -1; fp@1414: fp@1414: domain1 = ecrt_master_create_domain(master); fp@1414: if (!domain1) fp@1414: return -1; fp@1414: fp@1414: // Create configuration for bus coupler fp@1414: sc = ecrt_master_slave_config(master, BusCouplerPos, Beckhoff_EK1100); fp@1414: if (!sc) fp@1414: return -1; fp@1414: fp@1414: if (!(sc = ecrt_master_slave_config(master, fp@1414: DigOutSlavePos, Beckhoff_EL2008))) { fp@1414: fprintf(stderr, "Failed to get slave configuration.\n"); fp@1414: return -1; fp@1414: } fp@1414: fp@1414: off_dig_out = ecrt_slave_config_reg_pdo_entry(sc, fp@1414: 0x7000, 1, domain1, NULL); fp@1414: if (off_dig_out < 0) fp@1414: return -1; fp@1414: fp@1414: if (!(sc = ecrt_master_slave_config(master, fp@1414: CounterSlavePos, IDS_Counter))) { fp@1414: fprintf(stderr, "Failed to get slave configuration.\n"); fp@1414: return -1; fp@1414: } fp@1414: fp@1414: off_counter_in = ecrt_slave_config_reg_pdo_entry(sc, fp@1414: 0x6020, 0x11, domain1, NULL); fp@1414: if (off_counter_in < 0) fp@1414: return -1; fp@1414: fp@1414: off_counter_out = ecrt_slave_config_reg_pdo_entry(sc, fp@1414: 0x7020, 1, domain1, NULL); fp@1414: if (off_counter_out < 0) fp@1414: return -1; fp@1414: fp@1414: // configure SYNC signals for this slave fp@1970: ecrt_slave_config_dc(sc, 0x0700, PERIOD_NS, 4400000, 0, 0); fp@1414: fp@1414: printf("Activating master...\n"); fp@1414: if (ecrt_master_activate(master)) fp@1414: return -1; fp@1414: fp@1414: if (!(domain1_pd = ecrt_domain_data(domain1))) { fp@1414: return -1; fp@1414: } fp@1414: Florian@2698: /* Set priority */ Florian@2698: Florian@2698: struct sched_param param = {}; Florian@2698: param.sched_priority = sched_get_priority_max(SCHED_FIFO); Florian@2698: Florian@2698: printf("Using priority %i.", param.sched_priority); Florian@2698: if (sched_setscheduler(0, SCHED_FIFO, ¶m) == -1) { Florian@2698: perror("sched_setscheduler failed"); Florian@2698: } fp@1970: fp@1970: printf("Starting cyclic function.\n"); fp@1970: cyclic_task(); fp@2421: fp@1970: return 0; fp@1970: } fp@1970: fp@1970: /****************************************************************************/