fp@104: /****************************************************************************** fp@104: * fp@1341: * $Id$ fp@1341: * fp@1341: * Copyright (C) 2006-2008 Florian Pose, Ingenieurgemeinschaft IgH fp@1341: * fp@1341: * This file is part of the IgH EtherCAT master userspace library. fp@1341: * fp@1341: * The IgH EtherCAT master userspace library is free software; you can fp@1341: * redistribute it and/or modify it under the terms of the GNU Lesser General fp@1341: * Public License as published by the Free Software Foundation; version 2.1 fp@1341: * of the License. fp@1341: * fp@1341: * The IgH EtherCAT master userspace library is distributed in the hope that fp@1341: * it will be useful, but WITHOUT ANY WARRANTY; without even the implied fp@1341: * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the fp@1341: * GNU Lesser General Public License for more details. fp@1341: * fp@1341: * You should have received a copy of the GNU Lesser General Public License fp@1341: * along with the IgH EtherCAT master userspace library. If not, see fp@1341: * . fp@1341: * fp@1363: * --- fp@1363: * fp@1363: * The license mentioned above concerns the source code only. Using the fp@1363: * EtherCAT technology and brand is only permitted in compliance with the fp@1363: * industrial property and similar rights of Beckhoff Automation GmbH. fp@246: * fp@104: *****************************************************************************/ fp@104: fp@786: /** \file fp@786: * fp@1182: * EtherCAT master application interface. fp@1182: * fp@1182: * \defgroup ApplicationInterface EtherCAT Application Interface fp@786: * fp@879: * EtherCAT interface for realtime applications. This interface is designed fp@879: * for realtime modules that want to use EtherCAT. There are functions to fp@879: * request a master, to map process data, to communicate with slaves via CoE fp@879: * and to configure and activate the bus. fp@792: * fp@1239: * Changes in version 1.5: fp@1239: * fp@1392: * - Added the distributed clocks feature and the respective methods fp@1411: * ecrt_slave_config_dc_assign_activate(), fp@1411: * ecrt_slave_config_dc_sync_cycle_times() and fp@1411: * ecrt_slave_config_dc_sync_shift_times() to configure a slave for cyclic fp@1410: * operation, and ecrt_master_sync_reference_clock() and fp@1410: * ecrt_master_sync_slave_clocks() for drift compensation. fp@1313: * - Changed the meaning of the negative return values of fp@1313: * ecrt_slave_config_reg_pdo_entry() and ecrt_slave_config_sdo*(). fp@1341: * - Imlemented the Vendor-specific over EtherCAT mailbox protocol. See fp@1341: * ecrt_slave_config_create_voe_handler(). fp@1341: * - Renamed ec_sdo_request_state_t to ec_request_state_t, because it is also fp@1341: * used by VoE handlers. fp@1341: * - Added ecrt_master_slave() to get information about a certain slave. fp@1352: * - Removed 'const' from argument of ecrt_sdo_request_state(), because the fp@1352: * userspace library has to modify object internals. fp@1384: * - Added 64-bit data access macros. fp@1239: * fp@792: * @{ fp@786: */ fp@199: fp@199: /*****************************************************************************/ fp@199: fp@125: #ifndef __ECRT_H__ fp@125: #define __ECRT_H__ fp@104: fp@1254: #ifdef __KERNEL__ fp@104: #include fp@110: #include fp@1396: #include fp@110: #else fp@1254: #include // for size_t fp@110: #include fp@1396: #include // for struct timeval fp@110: #endif fp@110: fp@779: /****************************************************************************** fp@779: * Global definitions fp@779: *****************************************************************************/ fp@779: fp@864: /** EtherCAT realtime interface major version number. fp@758: */ fp@637: #define ECRT_VER_MAJOR 1 fp@758: fp@864: /** EtherCAT realtime interface minor version number. fp@779: */ fp@1209: #define ECRT_VER_MINOR 5 fp@779: fp@864: /** EtherCAT realtime interface version word generator. fp@779: */ fp@779: #define ECRT_VERSION(a, b) (((a) << 8) + (b)) fp@779: fp@864: /** EtherCAT realtime interface version word. fp@758: */ fp@541: #define ECRT_VERSION_MAGIC ECRT_VERSION(ECRT_VER_MAJOR, ECRT_VER_MINOR) fp@541: fp@878: /*****************************************************************************/ fp@878: fp@1082: /** End of list marker. fp@1082: * fp@1082: * This can be used with ecrt_slave_config_pdos(). fp@879: */ fp@879: #define EC_END ~0U fp@878: fp@1082: /** Maximum number of sync managers per slave. fp@1082: */ fp@1082: #define EC_MAX_SYNC_MANAGERS 16 fp@1082: fp@1341: /** Maximum string length. fp@1341: * fp@1341: * Used in ec_slave_info_t. fp@1341: */ fp@1341: #define EC_MAX_STRING_LENGTH 64 fp@1341: fp@779: /****************************************************************************** fp@779: * Data types fp@779: *****************************************************************************/ fp@541: fp@104: struct ec_master; fp@286: typedef struct ec_master ec_master_t; /**< \see ec_master */ fp@104: fp@792: struct ec_slave_config; fp@792: typedef struct ec_slave_config ec_slave_config_t; /**< \see ec_slave_config */ fp@792: fp@104: struct ec_domain; fp@286: typedef struct ec_domain ec_domain_t; /**< \see ec_domain */ fp@104: fp@858: struct ec_sdo_request; fp@858: typedef struct ec_sdo_request ec_sdo_request_t; /**< \see ec_sdo_request. */ fp@858: fp@1209: struct ec_voe_handler; fp@1209: typedef struct ec_voe_handler ec_voe_handler_t; /**< \see ec_voe_handler. */ fp@1209: fp@792: /*****************************************************************************/ fp@792: fp@792: /** Master state. fp@792: * fp@792: * This is used for the output parameter of ecrt_master_state(). fp@1020: * fp@1020: * \see ecrt_master_state(). fp@612: */ fp@612: typedef struct { fp@792: unsigned int slaves_responding; /**< Number of slaves in the bus. */ fp@1022: unsigned int al_states : 4; /**< Application-layer states of all slaves. fp@1022: The states are coded in the lower 4 bits. fp@1022: If a bit is set, it means that at least one fp@1022: slave in the bus is in the corresponding fp@1022: state: fp@1022: - Bit 0: \a INIT fp@1022: - Bit 1: \a PREOP fp@1022: - Bit 2: \a SAFEOP fp@1022: - Bit 3: \a OP */ fp@1022: unsigned int link_up : 1; /**< \a true, if the network link is up. */ fp@792: } ec_master_state_t; fp@792: fp@792: /*****************************************************************************/ fp@792: fp@792: /** Slave configuration state. fp@792: * fp@1020: * This is used as an output parameter of ecrt_slave_config_state(). fp@1020: * fp@792: * \see ecrt_slave_config_state(). fp@792: */ fp@792: typedef struct { fp@792: unsigned int online : 1; /**< The slave is online. */ fp@1020: unsigned int operational : 1; /**< The slave was brought into \a OP state fp@1020: using the specified configuration. */ fp@1022: unsigned int al_state : 4; /**< The application-layer state of the slave. fp@1022: - 1: \a INIT fp@1022: - 2: \a PREOP fp@1022: - 4: \a SAFEOP fp@1022: - 8: \a OP fp@1022: fp@1022: Note that each state is coded in a different fp@1022: bit! */ fp@792: } ec_slave_config_state_t; fp@792: fp@792: /*****************************************************************************/ fp@792: fp@1341: /** Slave information. fp@1341: * fp@1341: * This is used as an output parameter of ecrt_master_slave(). fp@1341: * fp@1341: * \see ecrt_master_slave(). fp@1341: */ fp@1341: typedef struct { fp@1341: uint16_t position; /**< Offset of the slave in the ring. */ fp@1341: uint32_t vendor_id; /**< Vendor-ID stored on the slave. */ fp@1341: uint32_t product_code; /**< Product-Code stored on the slave. */ fp@1341: uint32_t revision_number; /**< Revision-Number stored on the slave. */ fp@1341: uint32_t serial_number; /**< Serial-Number stored on the slave. */ fp@1341: uint16_t alias; /**< The slaves alias if not equal to 0. */ fp@1341: int16_t current_on_ebus; fp@1341: uint8_t al_state; /**< Current state of the slave. */ fp@1341: uint8_t error_flag; /**< Error flag for that slave. */ fp@1341: uint8_t sync_count; /**< Number of sync managers. */ fp@1341: uint16_t sdo_count; /**< Number of SDO's. */ fp@1341: char name[EC_MAX_STRING_LENGTH]; /**< Name of the slave. */ fp@1341: } ec_slave_info_t; fp@1341: fp@1341: /*****************************************************************************/ fp@1341: fp@792: /** Domain working counter interpretation. fp@792: * fp@792: * This is used in ec_domain_state_t. fp@792: */ fp@792: typedef enum { fp@925: EC_WC_ZERO = 0, /**< No registered process data were exchanged. */ fp@925: EC_WC_INCOMPLETE, /**< Some of the registered process data were fp@925: exchanged. */ fp@925: EC_WC_COMPLETE /**< All registered process data were exchanged. */ fp@792: } ec_wc_state_t; fp@792: fp@792: /*****************************************************************************/ fp@792: fp@792: /** Domain state. fp@792: * fp@792: * This is used for the output parameter of ecrt_domain_state(). fp@640: */ fp@640: typedef struct { fp@792: unsigned int working_counter; /**< Value of the last working counter. */ fp@792: ec_wc_state_t wc_state; /**< Working counter interpretation. */ fp@792: } ec_domain_state_t; fp@792: fp@792: /*****************************************************************************/ fp@792: fp@1327: /** Direction type for PDO assignment functions. fp@779: */ fp@635: typedef enum { fp@1055: EC_DIR_INVALID, /**< Invalid direction. Do not use this value. */ fp@792: EC_DIR_OUTPUT, /**< Values written by the master. */ fp@1055: EC_DIR_INPUT, /**< Values read by the master. */ fp@1055: EC_DIR_COUNT /**< Number of directions. For internal use only. */ fp@792: } ec_direction_t; fp@792: fp@792: /*****************************************************************************/ fp@792: fp@1327: /** PDO entry configuration information. fp@1055: * fp@1055: * This is the data type of the \a entries field in ec_pdo_info_t. fp@1055: * fp@1082: * \see ecrt_slave_config_pdos(). fp@792: */ fp@792: typedef struct { fp@1327: uint16_t index; /**< PDO entry index. */ fp@1327: uint8_t subindex; /**< PDO entry subindex. */ fp@1327: uint8_t bit_length; /**< Size of the PDO entry in bit. */ fp@792: } ec_pdo_entry_info_t; fp@792: fp@792: /*****************************************************************************/ fp@792: fp@1327: /** PDO configuration information. fp@1055: * fp@1055: * This is the data type of the \a pdos field in ec_sync_info_t. fp@1055: * fp@1082: * \see ecrt_slave_config_pdos(). fp@792: */ fp@792: typedef struct { fp@1327: uint16_t index; /**< PDO index. */ fp@1327: unsigned int n_entries; /**< Number of PDO entries in \a entries to map. fp@879: Zero means, that the default mapping shall be fp@925: used (this can only be done if the slave is fp@925: present at bus configuration time). */ fp@1327: ec_pdo_entry_info_t *entries; /**< Array of PDO entries to map. Can either fp@1055: be \a NULL, or must contain at fp@1055: least \a n_entries values. */ fp@792: } ec_pdo_info_t; fp@792: fp@792: /*****************************************************************************/ fp@792: fp@1055: /** Sync manager configuration information. fp@1055: * fp@1327: * This can be use to configure multiple sync managers including the PDO fp@1327: * assignment and PDO mapping. It is used as an input parameter type in fp@1082: * ecrt_slave_config_pdos(). fp@1055: */ fp@1055: typedef struct { fp@1083: uint8_t index; /**< Sync manager index. Must be less fp@1083: than #EC_MAX_SYNC_MANAGERS for a valid sync manager, fp@1083: but can also be \a 0xff to mark the end of the list. */ fp@1055: ec_direction_t dir; /**< Sync manager direction. */ fp@1327: unsigned int n_pdos; /**< Number of PDOs in \a pdos. */ fp@1327: ec_pdo_info_t *pdos; /**< Array with PDOs to assign. This must contain fp@1327: at least \a n_pdos PDOs. */ fp@1055: } ec_sync_info_t; fp@1055: fp@1055: /*****************************************************************************/ fp@1055: fp@1327: /** List record type for PDO entry mass-registration. fp@792: * fp@792: * This type is used for the array parameter of the ha@923: * ecrt_domain_reg_pdo_entry_list() fp@792: */ fp@792: typedef struct { fp@792: uint16_t alias; /**< Slave alias address. */ fp@792: uint16_t position; /**< Slave position. */ fp@792: uint32_t vendor_id; /**< Slave vendor ID. */ fp@792: uint32_t product_code; /**< Slave product code. */ fp@1327: uint16_t index; /**< PDO entry index. */ fp@1327: uint8_t subindex; /**< PDO entry subindex. */ fp@1327: unsigned int *offset; /**< Pointer to a variable to store the PDO entry's fp@925: (byte-)offset in the process data. */ fp@1092: unsigned int *bit_position; /**< Pointer to a variable to store a bit fp@1092: position (0-7) within the \a offset. Can be fp@1092: NULL, in which case an error is raised if the fp@1327: PDO entry does not byte-align. */ fp@792: } ec_pdo_entry_reg_t; fp@416: fp@858: /*****************************************************************************/ fp@858: fp@1209: /** Request state. fp@1209: * fp@1209: * This is used as return type for ecrt_sdo_request_state() and fp@1209: * ecrt_voe_handler_state(). fp@858: */ fp@858: typedef enum { fp@1209: EC_REQUEST_UNUSED, /**< Not requested. */ fp@1209: EC_REQUEST_BUSY, /**< Request is being processed. */ fp@1209: EC_REQUEST_SUCCESS, /**< Request was processed successfully. */ fp@1209: EC_REQUEST_ERROR, /**< Request processing failed. */ fp@1209: } ec_request_state_t; fp@858: fp@199: /****************************************************************************** fp@779: * Global functions fp@199: *****************************************************************************/ fp@104: fp@1288: #ifdef __cplusplus fp@1288: extern "C" { fp@1288: #endif fp@1288: fp@792: /** Returns the version magic of the realtime interface. fp@792: * fp@792: * \return Value of ECRT_VERSION_MAGIC() at EtherCAT master compile time. fp@792: */ fp@541: unsigned int ecrt_version_magic(void); fp@541: fp@792: /** Requests an EtherCAT master for realtime operation. fp@792: * fp@1092: * Before an application can access an EtherCAT master, it has to reserve one fp@1092: * for exclusive use. fp@1092: * fp@1092: * This function has to be the first function an application has to call to fp@1092: * use EtherCAT. The function takes the index of the master as its argument. fp@1092: * The first master has index 0, the n-th master has index n - 1. The number fp@1092: * of masters has to be specified when loading the master module. fp@1092: * fp@1312: * \return Pointer to the reserved master, otherwise \a NULL. fp@792: */ fp@792: ec_master_t *ecrt_request_master( fp@792: unsigned int master_index /**< Index of the master to request. */ fp@792: ); fp@792: fp@792: /** Releases a requested EtherCAT master. fp@1092: * fp@1092: * After use, a master it has to be released to make it available for other fp@1092: * applications. fp@792: */ fp@792: void ecrt_release_master( fp@792: ec_master_t *master /**< EtherCAT master */ fp@792: ); fp@792: fp@199: /****************************************************************************** fp@779: * Master methods fp@199: *****************************************************************************/ fp@104: fp@1244: #ifdef __KERNEL__ fp@1244: fp@792: /** Sets the locking callbacks. fp@792: * fp@1092: * For concurrent master access, the application has to provide a locking fp@1092: * mechanism (see section FIXME in the docs). The method takes two function fp@1092: * pointers and a data value as its parameters. The arbitrary \a cb_data value fp@1092: * will be passed as argument on every callback. Asynchronous master access fp@1092: * (like EoE processing) is only possible if the callbacks have been set. fp@1092: * fp@792: * The request_cb function must return zero, to allow another instance fp@1092: * (an EoE process for example) to access the master. Non-zero means, fp@1092: * that access is currently forbidden. fp@792: */ fp@792: void ecrt_master_callbacks( fp@792: ec_master_t *master, /**< EtherCAT master */ fp@792: int (*request_cb)(void *), /**< Lock request function. */ fp@792: void (*release_cb)(void *), /**< Lock release function. */ fp@792: void *cb_data /**< Arbitrary user data. */ fp@792: ); fp@792: fp@1244: #endif /* __KERNEL__ */ fp@1244: fp@1092: /** Creates a new process data domain. fp@1092: * fp@1092: * For process data exchange, at least one process data domain is needed. fp@1092: * This method creates a new process data domain and returns a pointer to the fp@1327: * new domain object. This object can be used for registering PDOs and fp@1092: * exchanging them in cyclic operation. fp@792: * fp@792: * \return Pointer to the new domain on success, else NULL. fp@792: */ fp@792: ec_domain_t *ecrt_master_create_domain( fp@792: ec_master_t *master /**< EtherCAT master. */ fp@792: ); fp@792: fp@792: /** Obtains a slave configuration. fp@792: * fp@792: * Creates a slave configuration object for the given \a alias and \a position fp@792: * tuple and returns it. If a configuration with the same \a alias and \a fp@792: * position already exists, it will be re-used. In the latter case, the given fp@792: * vendor ID and product code are compared to the stored ones. On mismatch, an fp@792: * error message is raised and the function returns \a NULL. fp@792: * fp@792: * Slaves are addressed with the \a alias and \a position parameters. fp@792: * - If \a alias is zero, \a position is interpreted as the desired slave's fp@792: * ring position. fp@792: * - If \a alias is non-zero, it matches a slave with the given alias. In this fp@792: * case, \a position is interpreted as ring offset, starting from the fp@792: * aliased slave, so a position of zero means the aliased slave itself and a fp@792: * positive value matches the n-th slave behind the aliased one. fp@792: * fp@792: * If the slave with the given address is found during the bus configuration, fp@792: * its vendor ID and product code are matched against the given value. On fp@792: * mismatch, the slave is not configured and an error message is raised. fp@792: * fp@792: * If different slave configurations are pointing to the same slave during bus fp@792: * configuration, a warning is raised and only the first configuration is fp@792: * applied. fp@792: * fp@792: * \retval >0 Pointer to the slave configuration structure. fp@792: * \retval NULL in the error case. fp@792: */ fp@792: ec_slave_config_t *ecrt_master_slave_config( fp@792: ec_master_t *master, /**< EtherCAT master */ fp@792: uint16_t alias, /**< Slave alias. */ fp@792: uint16_t position, /**< Slave position. */ fp@792: uint32_t vendor_id, /**< Expected vendor ID. */ fp@1010: uint32_t product_code /**< Expected product code. */ fp@792: ); fp@792: fp@1341: /** Obtains slave information. fp@1341: * fp@1341: * Tries to find the slave with the given ring position. The obtained fp@1341: * information is stored in a structure. No memory is allocated on the heap in fp@1341: * this function. fp@1341: * fp@1341: * \attention The pointer to this structure must point to a valid variable. fp@1341: * fp@1341: * \return 0 in case of success, else < 0 fp@1341: */ fp@1341: int ecrt_master_slave( fp@1341: ec_master_t *master, /**< EtherCAT master */ fp@1341: uint16_t position, /**< Slave position. */ fp@1341: ec_slave_info_t *slave_info /**< Structure that will output the fp@1341: information */ fp@1341: ); fp@1341: fp@1096: /** Finishes the configuration phase and prepares for cyclic operation. fp@879: * fp@925: * This function tells the master that the configuration phase is finished and fp@925: * the realtime operation will begin. The function allocates internal memory fp@925: * for the domains and calculates the logical FMMU addresses for domain fp@925: * members. It tells the master state machine that the bus configuration is fp@925: * now to be applied. fp@879: * fp@879: * \attention After this function has been called, the realtime application is fp@879: * in charge of cyclically calling ecrt_master_send() and fp@879: * ecrt_master_receive() to ensure bus communication. Before calling this fp@879: * function, the master thread is responsible for that, so these functions may fp@879: * not be called! fp@792: * fp@792: * \return 0 in case of success, else < 0 fp@792: */ fp@1007: int ecrt_master_activate( fp@1007: ec_master_t *master /**< EtherCAT master. */ fp@1007: ); fp@792: fp@792: /** Sends all datagrams in the queue. fp@792: * fp@1092: * This method takes all datagrams, that have been queued for transmission, fp@1092: * puts them into frames, and passes them to the Ethernet device for sending. fp@1092: * fp@1092: * Has to be called cyclically by the application after ecrt_master_activate() fp@1092: * has returned. fp@792: */ fp@792: void ecrt_master_send( fp@792: ec_master_t *master /**< EtherCAT master. */ fp@792: ); fp@792: fp@792: /** Fetches received frames from the hardware and processes the datagrams. fp@879: * fp@1092: * Queries the network device for received frames by calling the interrupt fp@1092: * service routine. Extracts received datagrams and dispatches the results to fp@1092: * the datagram objects in the queue. Received datagrams, and the ones that fp@1092: * timed out, will be marked, and dequeued. fp@1092: * fp@1092: * Has to be called cyclically by the realtime application after fp@879: * ecrt_master_activate() has returned. fp@792: */ fp@792: void ecrt_master_receive( fp@792: ec_master_t *master /**< EtherCAT master. */ fp@792: ); fp@792: fp@792: /** Reads the current master state. fp@792: * fp@792: * Stores the master state information in the given \a state structure. fp@792: */ fp@792: void ecrt_master_state( fp@792: const ec_master_t *master, /**< EtherCAT master. */ fp@792: ec_master_state_t *state /**< Structure to store the information. */ fp@792: ); fp@792: fp@1410: /** Queues the DC reference clock drift compensation datagram for sending. fp@1410: * fp@1410: * The reference clock will by synchronized to the \a app_time. fp@1410: */ fp@1410: void ecrt_master_sync_reference_clock( fp@1396: ec_master_t *master, /**< EtherCAT master. */ fp@1396: const struct timeval *app_time /**< Application time. */ fp@1394: ); fp@1394: fp@1410: /** Queues the DC clock drift compensation datagram for sending. fp@1410: * fp@1410: * All slave clocks synchronized to the reference clock. fp@1410: */ fp@1410: void ecrt_master_sync_slave_clocks( fp@1410: ec_master_t *master /**< EtherCAT master. */ fp@1410: ); fp@1410: fp@792: /****************************************************************************** fp@792: * Slave configuration methods fp@792: *****************************************************************************/ fp@792: fp@1055: /** Configure a sync manager. fp@1055: * fp@1082: * Sets the direction of a sync manager. This overrides the direction bits fp@1082: * from the default control register from SII. fp@1055: * fp@1055: * \return zero on success, else non-zero fp@1055: */ fp@1055: int ecrt_slave_config_sync_manager( fp@1055: ec_slave_config_t *sc, /**< Slave configuration. */ fp@1083: uint8_t sync_index, /**< Sync manager index. Must be less fp@1082: than #EC_MAX_SYNC_MANAGERS. */ fp@1055: ec_direction_t dir /**< Input/Output. */ fp@1055: ); fp@1055: fp@1327: /** Add a PDO to a sync manager's PDO assignment. fp@879: * fp@1082: * \see ecrt_slave_config_pdos() fp@842: * \return zero on success, else non-zero fp@842: */ fp@879: int ecrt_slave_config_pdo_assign_add( fp@842: ec_slave_config_t *sc, /**< Slave configuration. */ fp@1083: uint8_t sync_index, /**< Sync manager index. Must be less fp@1083: than #EC_MAX_SYNC_MANAGERS. */ fp@1327: uint16_t index /**< Index of the PDO to assign. */ fp@1327: ); fp@1327: fp@1327: /** Clear a sync manager's PDO assignment. fp@1327: * fp@1327: * This can be called before assigning PDOs via fp@1055: * ecrt_slave_config_pdo_assign_add(), to clear the default assignment of a fp@1055: * sync manager. fp@1055: * fp@1082: * \see ecrt_slave_config_pdos() fp@879: */ fp@879: void ecrt_slave_config_pdo_assign_clear( fp@879: ec_slave_config_t *sc, /**< Slave configuration. */ fp@1083: uint8_t sync_index /**< Sync manager index. Must be less fp@1083: than #EC_MAX_SYNC_MANAGERS. */ fp@879: ); fp@879: fp@1327: /** Add a PDO entry to the given PDO's mapping. fp@879: * fp@1082: * \see ecrt_slave_config_pdos() fp@842: * \return zero on success, else non-zero fp@842: */ fp@879: int ecrt_slave_config_pdo_mapping_add( fp@842: ec_slave_config_t *sc, /**< Slave configuration. */ fp@1327: uint16_t pdo_index, /**< Index of the PDO. */ fp@1327: uint16_t entry_index, /**< Index of the PDO entry to add to the PDO's fp@879: mapping. */ fp@1327: uint8_t entry_subindex, /**< Subindex of the PDO entry to add to the fp@1327: PDO's mapping. */ fp@1327: uint8_t entry_bit_length /**< Size of the PDO entry in bit. */ fp@1327: ); fp@1327: fp@1327: /** Clear the mapping of a given PDO. fp@1327: * fp@1327: * This can be called before mapping PDO entries via fp@879: * ecrt_slave_config_pdo_mapping_add(), to clear the default mapping. fp@1055: * fp@1082: * \see ecrt_slave_config_pdos() fp@879: */ fp@879: void ecrt_slave_config_pdo_mapping_clear( fp@879: ec_slave_config_t *sc, /**< Slave configuration. */ fp@1327: uint16_t pdo_index /**< Index of the PDO. */ fp@1327: ); fp@1327: fp@1327: /** Specify a complete PDO configuration. fp@879: * fp@879: * This function is a convenience wrapper for the functions fp@1055: * ecrt_slave_config_sync_manager(), ecrt_slave_config_pdo_assign_clear(), fp@1055: * ecrt_slave_config_pdo_assign_add(), ecrt_slave_config_pdo_mapping_clear() fp@1055: * and ecrt_slave_config_pdo_mapping_add(), that are better suitable for fp@1055: * automatic code generation. fp@1055: * fp@1055: * The following example shows, how to specify a complete configuration, fp@1327: * including the PDO mappings. With this information, the master is able to fp@879: * reserve the complete process data, even if the slave is not present at fp@879: * configuration time: fp@792: * fp@792: * \code fp@1082: * ec_pdo_entry_info_t el3162_channel1[] = { fp@842: * {0x3101, 1, 8}, // status fp@842: * {0x3101, 2, 16} // value fp@792: * }; fp@792: * fp@1082: * ec_pdo_entry_info_t el3162_channel2[] = { fp@842: * {0x3102, 1, 8}, // status fp@842: * {0x3102, 2, 16} // value fp@842: * }; fp@842: * fp@1082: * ec_pdo_info_t el3162_pdos[] = { fp@1055: * {0x1A00, 2, el3162_channel1}, fp@1082: * {0x1A01, 2, el3162_channel2} fp@842: * }; fp@842: * fp@1082: * ec_sync_info_t el3162_syncs[] = { fp@1082: * {2, EC_DIR_OUTPUT}, fp@1082: * {3, EC_DIR_INPUT, 2, el3162_pdos}, fp@1082: * {0xff} fp@1055: * }; fp@1055: * fp@1082: * if (ecrt_slave_config_pdos(sc_ana_in, EC_END, el3162_syncs)) { fp@1082: * // handle error fp@1082: * } fp@792: * \endcode fp@879: * fp@1327: * The next example shows, how to configure the PDO assignment only. The fp@1327: * entries for each assigned PDO are taken from the PDO's default mapping. fp@1327: * Please note, that PDO entry registration will fail, if the PDO fp@879: * configuration is left empty and the slave is offline. fp@792: * fp@792: * \code fp@1082: * ec_pdo_info_t pdos[] = { fp@1055: * {0x1600}, // Channel 1 fp@1055: * {0x1601} // Channel 2 fp@792: * }; fp@792: * fp@1082: * ec_sync_info_t syncs[] = { fp@1082: * {3, EC_DIR_INPUT, 2, pdos}, fp@1055: * }; fp@1055: * fp@1082: * if (ecrt_slave_config_pdos(slave_config_ana_in, 1, syncs)) { fp@1082: * // handle error fp@1082: * } fp@792: * \endcode fp@792: * fp@1055: * Processing of \a syncs will stop, if fp@1055: * - the number of processed items reaches \a n_syncs, or fp@1055: * - the \a index member of an ec_sync_info_t item is 0xff. In this case, fp@1055: * \a n_syncs should set to a number greater than the number of list items; fp@879: * using EC_END is recommended. fp@878: * fp@792: * \return zero on success, else non-zero fp@792: */ fp@1082: int ecrt_slave_config_pdos( fp@792: ec_slave_config_t *sc, /**< Slave configuration. */ fp@1055: unsigned int n_syncs, /**< Number of sync manager configurations in fp@1055: \a syncs. */ fp@1055: const ec_sync_info_t syncs[] /**< Array of sync manager fp@1055: configurations. */ fp@792: ); fp@792: fp@1327: /** Registers a PDO entry for process data exchange in a domain. fp@1327: * fp@1327: * Searches the assigned PDOs for the given PDO entry. An error is raised, if fp@925: * the given entry is not mapped. Otherwise, the corresponding sync manager fp@925: * and FMMU configurations are provided for slave configuration and the fp@1327: * respective sync manager's assigned PDOs are appended to the given domain, fp@1327: * if not already done. The offset of the requested PDO entry's data inside fp@1327: * the domain's process data is returned. Optionally, the PDO entry bit fp@925: * position (0-7) can be retrieved via the \a bit_position output parameter. fp@1327: * This pointer may be \a NULL, in this case an error is raised if the PDO fp@925: * entry does not byte-align. fp@842: * fp@1327: * \retval >=0 Success: Offset of the PDO entry's process data. fp@1313: * \retval <0 Error code. fp@807: */ fp@807: int ecrt_slave_config_reg_pdo_entry( fp@807: ec_slave_config_t *sc, /**< Slave configuration. */ fp@1327: uint16_t entry_index, /**< Index of the PDO entry to register. */ fp@1327: uint8_t entry_subindex, /**< Subindex of the PDO entry to register. */ ha@923: ec_domain_t *domain, /**< Domain. */ fp@925: unsigned int *bit_position /**< Optional address if bit addressing ha@923: is desired */ fp@916: ); fp@916: fp@1392: /** Sets the AssignActivate word necessary for DC operation. fp@1392: * fp@1392: * The AssignActivate word is vendor-specific and can be taken from the XML fp@1392: * device description file (Device -> Dc -> AssignActivate). Set this to zero, fp@1396: * if the slave shall be operated without distributed clocks (default). fp@1392: */ fp@1392: void ecrt_slave_config_dc_assign_activate( fp@1392: ec_slave_config_t *sc, /**< Slave configuration. */ fp@1392: uint16_t assign_activate /**< AssignActivate word. */ fp@1392: ); fp@1392: fp@1396: /** Sets the cycle times for the SYNC0 and SYNC1 signals. fp@1392: */ fp@1392: void ecrt_slave_config_dc_sync_cycle_times( fp@1392: ec_slave_config_t *sc, /**< Slave configuration. */ fp@1392: uint32_t sync0_cycle_time, /**< SYNC0 cycle time [ns]. */ fp@1392: uint32_t sync1_cycle_time /**< SYNC1 cycle time [ns]. */ fp@1392: ); fp@1392: fp@1411: /** Sets the shift times for the SYNC0 and SYNC1 signals. fp@1411: */ fp@1411: void ecrt_slave_config_dc_sync_shift_times( fp@1411: ec_slave_config_t *sc, /**< Slave configuration. */ fp@1411: uint32_t sync0_shift_time, /**< SYNC0 shift time [ns]. */ fp@1411: uint32_t sync1_shift_time /**< SYNC1 shift time [ns]. */ fp@1411: ); fp@1411: fp@1327: /** Add an SDO configuration. fp@1327: * fp@1327: * An SDO configuration is stored in the slave configuration object and is fp@893: * downloaded to the slave whenever the slave is being configured by the fp@893: * master. This usually happens once on master activation, but can be repeated fp@893: * subsequently, for example after the slave's power supply failed. fp@893: * fp@1327: * \attention The SDOs for PDO assignment (\p 0x1C10 - \p 0x1C2F) and PDO fp@1104: * mapping (\p 0x1600 - \p 0x17FF and \p 0x1A00 - \p 0x1BFF) should not be fp@1104: * configured with this function, because they are part of the slave fp@1104: * configuration done by the master. Please use ecrt_slave_config_pdos() and fp@1104: * friends instead. fp@1104: * fp@1327: * This is the generic function for adding an SDO configuration. Please note fp@893: * that the this function does not do any endianess correction. If fp@893: * datatype-specific functions are needed (that automatically correct the fp@893: * endianess), have a look at ecrt_slave_config_sdo8(), fp@893: * ecrt_slave_config_sdo16() and ecrt_slave_config_sdo32(). fp@893: * fp@1313: * \retval 0 Success. fp@1313: * \retval <0 Error code. fp@893: */ fp@893: int ecrt_slave_config_sdo( fp@893: ec_slave_config_t *sc, /**< Slave configuration. */ fp@1327: uint16_t index, /**< Index of the SDO to configure. */ fp@1327: uint8_t subindex, /**< Subindex of the SDO to configure. */ fp@893: const uint8_t *data, /**< Pointer to the data. */ fp@893: size_t size /**< Size of the \a data. */ fp@893: ); fp@893: fp@792: /** Add a configuration value for an 8-bit SDO. fp@792: * fp@893: * \see ecrt_slave_config_sdo(). fp@1313: * fp@1313: * \retval 0 Success. fp@1313: * \retval <0 Error code. fp@792: */ fp@792: int ecrt_slave_config_sdo8( fp@792: ec_slave_config_t *sc, /**< Slave configuration */ fp@792: uint16_t sdo_index, /**< Index of the SDO to configure. */ fp@792: uint8_t sdo_subindex, /**< Subindex of the SDO to configure. */ fp@792: uint8_t value /**< Value to set. */ fp@792: ); fp@792: fp@792: /** Add a configuration value for a 16-bit SDO. fp@792: * fp@893: * \see ecrt_slave_config_sdo(). fp@1313: * fp@1313: * \retval 0 Success. fp@1313: * \retval <0 Error code. fp@792: */ fp@792: int ecrt_slave_config_sdo16( fp@792: ec_slave_config_t *sc, /**< Slave configuration */ fp@792: uint16_t sdo_index, /**< Index of the SDO to configure. */ fp@792: uint8_t sdo_subindex, /**< Subindex of the SDO to configure. */ fp@792: uint16_t value /**< Value to set. */ fp@792: ); fp@792: fp@792: /** Add a configuration value for a 32-bit SDO. fp@792: * fp@893: * \see ecrt_slave_config_sdo(). fp@1313: * fp@1313: * \retval 0 Success. fp@1313: * \retval <0 Error code. fp@792: */ fp@792: int ecrt_slave_config_sdo32( fp@792: ec_slave_config_t *sc, /**< Slave configuration */ fp@792: uint16_t sdo_index, /**< Index of the SDO to configure. */ fp@792: uint8_t sdo_subindex, /**< Subindex of the SDO to configure. */ fp@792: uint32_t value /**< Value to set. */ fp@792: ); fp@792: fp@1327: /** Create an SDO request to exchange SDOs during realtime operation. fp@1327: * fp@1327: * The created SDO request object is freed automatically when the master is fp@858: * released. fp@858: */ fp@858: ec_sdo_request_t *ecrt_slave_config_create_sdo_request( fp@858: ec_slave_config_t *sc, /**< Slave configuration. */ fp@1327: uint16_t index, /**< SDO index. */ fp@1327: uint8_t subindex, /**< SDO subindex. */ fp@858: size_t size /**< Data size to reserve. */ fp@858: ); fp@858: fp@1209: /** Create an VoE handler to exchange vendor-specific data during realtime fp@1209: * operation. fp@1209: * fp@1267: * The number of VoE handlers per slave configuration is not limited, but fp@1267: * usually it is enough to create one for sending and one for receiving, if fp@1267: * both can be done simultaneously. fp@1267: * fp@1209: * The created VoE handler object is freed automatically when the master is fp@1209: * released. fp@1209: */ fp@1209: ec_voe_handler_t *ecrt_slave_config_create_voe_handler( fp@1209: ec_slave_config_t *sc, /**< Slave configuration. */ fp@1209: size_t size /**< Data size to reserve. */ fp@1209: ); fp@1209: fp@792: /** Outputs the state of the slave configuration. fp@792: * fp@792: * Stores the state information in the given \a state structure. fp@792: */ fp@792: void ecrt_slave_config_state( fp@792: const ec_slave_config_t *sc, /**< Slave configuration */ fp@792: ec_slave_config_state_t *state /**< State object to write to. */ fp@792: ); fp@325: fp@199: /****************************************************************************** fp@779: * Domain methods fp@199: *****************************************************************************/ fp@104: fp@1327: /** Registers a bunch of PDO entries for a domain. fp@792: * fp@792: * \todo doc fp@792: * \attention The registration array has to be terminated with an empty fp@792: * structure, or one with the \a index field set to zero! fp@792: * \return 0 on success, else non-zero. fp@792: */ fp@792: int ecrt_domain_reg_pdo_entry_list( fp@792: ec_domain_t *domain, /**< Domain. */ fp@1327: const ec_pdo_entry_reg_t *pdo_entry_regs /**< Array of PDO fp@792: registrations. */ fp@792: ); fp@792: fp@1258: #ifdef __KERNEL__ fp@1258: fp@792: /** Returns the current size of the domain's process data. fp@792: * fp@792: * \return Size of the process data image. fp@792: */ fp@792: size_t ecrt_domain_size( fp@1257: const ec_domain_t *domain /**< Domain. */ fp@792: ); fp@792: fp@809: /** Provide external memory to store the domain's process data. fp@809: * fp@1327: * Call this after all PDO entries have been registered and before activating fp@809: * the master. fp@809: * fp@809: * The size of the allocated memory must be at least ecrt_domain_size(), after fp@1327: * all PDO entries have been registered. fp@809: */ fp@809: void ecrt_domain_external_memory( fp@792: ec_domain_t *domain, /**< Domain. */ fp@792: uint8_t *memory /**< Address of the memory to store the process fp@792: data in. */ fp@792: ); fp@792: fp@1248: #endif /* __KERNEL__ */ fp@1248: fp@809: /** Returns the domain's process data. fp@809: * fp@1258: * - In kernel context: If external memory was provided with fp@1258: * ecrt_domain_external_memory(), the returned pointer will contain the fp@1258: * address of that memory. Otherwise it will point to the internally allocated fp@1258: * memory. In the latter case, this method may not be called before fp@1258: * ecrt_master_activate(). fp@1258: * fp@1258: * - In userspace context: This method has to be called after fp@1258: * ecrt_master_activate() to get the mapped domain process data memory. fp@1256: * fp@809: * \return Pointer to the process data memory. fp@809: */ fp@809: uint8_t *ecrt_domain_data( fp@809: ec_domain_t *domain /**< Domain. */ fp@809: ); fp@809: fp@886: /** Determines the states of the domain's datagrams. fp@886: * fp@886: * Evaluates the working counters of the received datagrams and outputs fp@886: * statistics, if necessary. This must be called after ecrt_master_receive() fp@886: * is expected to receive the domain datagrams in order to make fp@886: * ecrt_domain_state() return the result of the last process data exchange. fp@792: */ fp@792: void ecrt_domain_process( fp@792: ec_domain_t *domain /**< Domain. */ fp@792: ); fp@792: fp@792: /** (Re-)queues all domain datagrams in the master's datagram queue. fp@792: * fp@886: * Call this function to mark the domain's datagrams for exchanging at the fp@886: * next call of ecrt_master_send(). fp@792: */ fp@792: void ecrt_domain_queue( fp@792: ec_domain_t *domain /**< Domain. */ fp@792: ); fp@792: fp@792: /** Reads the state of a domain. fp@792: * fp@886: * Stores the domain state in the given \a state structure. fp@792: */ fp@792: void ecrt_domain_state( fp@792: const ec_domain_t *domain, /**< Domain. */ fp@792: ec_domain_state_t *state /**< Pointer to a state object to store the fp@792: information. */ fp@792: ); fp@635: fp@858: /***************************************************************************** fp@1327: * SDO request methods. fp@858: ****************************************************************************/ fp@858: fp@1327: /** Set the timeout for an SDO request. fp@858: * fp@858: * If the request cannot be processed in the specified time, if will be marked fp@858: * as failed. fp@1113: * fp@1113: * The timeout is permanently stored in the request object and is valid until fp@1113: * the next call of this method. fp@858: */ fp@858: void ecrt_sdo_request_timeout( fp@1327: ec_sdo_request_t *req, /**< SDO request. */ fp@880: uint32_t timeout /**< Timeout in milliseconds. Zero means no fp@880: timeout. */ fp@858: ); fp@858: fp@1327: /** Access to the SDO request's data. fp@1327: * fp@1327: * This function returns a pointer to the request's internal SDO data memory. fp@868: * fp@868: * - After a read operation was successful, integer data can be evaluated using fp@868: * the EC_READ_*() macros as usual. Example: fp@868: * \code fp@868: * uint16_t value = EC_READ_U16(ecrt_sdo_request_data(sdo))); fp@868: * \endcode fp@868: * - If a write operation shall be triggered, the data have to be written to fp@868: * the internal memory. Use the EC_WRITE_*() macros, if you are writing fp@868: * integer data. Be sure, that the data fit into the memory. The memory size fp@868: * is a parameter of ecrt_slave_config_create_sdo_request(). fp@868: * \code fp@868: * EC_WRITE_U16(ecrt_sdo_request_data(sdo), 0xFFFF); fp@868: * \endcode fp@868: * fp@864: * \attention The return value can be invalid during a read operation, because fp@1327: * the internal SDO data memory could be re-allocated if the read SDO data do fp@864: * not fit inside. fp@858: * fp@1327: * \return Pointer to the internal SDO data memory. fp@858: */ fp@858: uint8_t *ecrt_sdo_request_data( fp@1327: ec_sdo_request_t *req /**< SDO request. */ fp@1327: ); fp@1327: fp@1327: /** Returns the current SDO data size. fp@1327: * fp@1327: * When the SDO request is created, the data size is set to the size of the fp@869: * reserved memory. After a read operation the size is set to the size of the fp@869: * read data. The size is not modified in any other situation. fp@869: * fp@1327: * \return SDO data size in bytes. fp@869: */ fp@869: size_t ecrt_sdo_request_data_size( fp@1327: const ec_sdo_request_t *req /**< SDO request. */ fp@1327: ); fp@1327: fp@1327: /** Get the current state of the SDO request. fp@858: * fp@858: * \return Request state. fp@858: */ fp@1352: #ifdef __KERNEL__ fp@1209: ec_request_state_t ecrt_sdo_request_state( fp@1352: const ec_sdo_request_t *req /**< SDO request. */ fp@858: ); fp@1352: #else fp@1352: ec_request_state_t ecrt_sdo_request_state( fp@1352: ec_sdo_request_t *req /**< SDO request. */ fp@1352: ); fp@1352: #endif fp@858: fp@1327: /** Schedule an SDO write operation. fp@864: * fp@864: * \attention This method may not be called while ecrt_sdo_request_state() fp@864: * returns EC_SDO_REQUEST_BUSY. fp@858: */ fp@858: void ecrt_sdo_request_write( fp@1327: ec_sdo_request_t *req /**< SDO request. */ fp@1327: ); fp@1327: fp@1327: /** Schedule an SDO read operation. fp@864: * fp@864: * \attention This method may not be called while ecrt_sdo_request_state() fp@864: * returns EC_SDO_REQUEST_BUSY. fp@858: * fp@858: * \attention After calling this function, the return value of fp@864: * ecrt_sdo_request_data() must be considered as invalid while fp@864: * ecrt_sdo_request_state() returns EC_SDO_REQUEST_BUSY. fp@858: */ fp@858: void ecrt_sdo_request_read( fp@1327: ec_sdo_request_t *req /**< SDO request. */ fp@858: ); fp@858: fp@1209: /***************************************************************************** fp@1209: * VoE handler methods. fp@1209: ****************************************************************************/ fp@1209: fp@1226: /** Sets the VoE header for future send operations. fp@1218: * fp@1218: * A VoE message shall contain a 4-byte vendor ID, followed by a 2-byte vendor fp@1267: * type at as header. These numbers can be set with this function. The values fp@1267: * are valid and will be used for future send operations until the next call fp@1267: * of this method. fp@1218: */ fp@1226: void ecrt_voe_handler_send_header( fp@1218: ec_voe_handler_t *voe, /**< VoE handler. */ fp@1218: uint32_t vendor_id, /**< Vendor ID. */ fp@1218: uint16_t vendor_type /**< Vendor-specific type. */ fp@1218: ); fp@1218: fp@1226: /** Reads the header data of a received VoE message. fp@1226: * fp@1267: * This method can be used to get the received VoE header information after a fp@1267: * read operation has succeeded. fp@1226: * fp@1226: * The header information is stored at the memory given by the pointer fp@1226: * parameters. fp@1226: */ fp@1226: void ecrt_voe_handler_received_header( fp@1226: const ec_voe_handler_t *voe, /**< VoE handler. */ fp@1226: uint32_t *vendor_id, /**< Vendor ID. */ fp@1226: uint16_t *vendor_type /**< Vendor-specific type. */ fp@1226: ); fp@1226: fp@1209: /** Access to the VoE handler's data. fp@1209: * fp@1267: * This function returns a pointer to the VoE handler's internal memory, that fp@1267: * points to the actual VoE data right after the VoE header (see fp@1267: * ecrt_voe_handler_send_header()). fp@1209: * fp@1209: * - After a read operation was successful, the memory contains the received fp@1209: * data. The size of the received data can be determined via fp@1209: * ecrt_voe_handler_data_size(). fp@1267: * - Before a write operation is triggered, the data have to be written to the fp@1267: * internal memory. Be sure, that the data fit into the memory. The reserved fp@1209: * memory size is a parameter of ecrt_slave_config_create_voe_handler(). fp@1209: * fp@1267: * \attention The returned pointer is not necessarily persistent: After a read fp@1267: * operation, the internal memory may have been reallocated. This can be fp@1267: * avoided by reserving enough memory via the \a size parameter of fp@1267: * ecrt_slave_config_create_voe_handler(). fp@1267: * fp@1209: * \return Pointer to the internal memory. fp@1209: */ fp@1209: uint8_t *ecrt_voe_handler_data( fp@1209: ec_voe_handler_t *voe /**< VoE handler. */ fp@1209: ); fp@1209: fp@1209: /** Returns the current data size. fp@1209: * fp@1218: * The data size is the size of the VoE data without the header (see fp@1226: * ecrt_voe_handler_send_header()). fp@1218: * fp@1209: * When the VoE handler is created, the data size is set to the size of the fp@1209: * reserved memory. At a write operation, the data size is set to the number fp@1209: * of bytes to write. After a read operation the size is set to the size of fp@1209: * the read data. The size is not modified in any other situation. fp@1209: * fp@1209: * \return Data size in bytes. fp@1209: */ fp@1209: size_t ecrt_voe_handler_data_size( fp@1209: const ec_voe_handler_t *voe /**< VoE handler. */ fp@1209: ); fp@1209: fp@1209: /** Start a VoE write operation. fp@1209: * fp@1209: * After this function has been called, the ecrt_voe_handler_execute() method fp@1226: * must be called in every bus cycle as long as it returns EC_REQUEST_BUSY. No fp@1226: * other operation may be started while the handler is busy. fp@1209: */ fp@1209: void ecrt_voe_handler_write( fp@1209: ec_voe_handler_t *voe, /**< VoE handler. */ fp@1218: size_t size /**< Number of bytes to write (without the VoE header). */ fp@1209: ); fp@1209: fp@1209: /** Start a VoE read operation. fp@1209: * fp@1209: * After this function has been called, the ecrt_voe_handler_execute() method fp@1226: * must be called in every bus cycle as long as it returns EC_REQUEST_BUSY. No fp@1226: * other operation may be started while the handler is busy. fp@1209: * fp@1267: * The state machine queries the slave's send mailbox for new data to be send fp@1267: * to the master. If no data appear within the EC_VOE_RESPONSE_TIMEOUT fp@1267: * (defined in master/voe_handler.c), the operation fails. fp@1267: * fp@1209: * On success, the size of the read data can be determined via fp@1226: * ecrt_voe_handler_data_size(), while the VoE header of the received data fp@1226: * can be retrieved with ecrt_voe_handler_received_header(). fp@1209: */ fp@1209: void ecrt_voe_handler_read( fp@1209: ec_voe_handler_t *voe /**< VoE handler. */ fp@1209: ); fp@1209: fp@1314: /** Start a VoE read operation without querying the sync manager status. fp@1314: * fp@1314: * After this function has been called, the ecrt_voe_handler_execute() method fp@1314: * must be called in every bus cycle as long as it returns EC_REQUEST_BUSY. No fp@1314: * other operation may be started while the handler is busy. fp@1314: * fp@1314: * The state machine queries the slave by sending an empty mailbox. The slave fp@1314: * fills its data to the master in this mailbox. If no data appear within the fp@1314: * EC_VOE_RESPONSE_TIMEOUT (defined in master/voe_handler.c), the operation fp@1314: * fails. fp@1314: * fp@1314: * On success, the size of the read data can be determined via fp@1314: * ecrt_voe_handler_data_size(), while the VoE header of the received data fp@1314: * can be retrieved with ecrt_voe_handler_received_header(). fp@1314: */ fp@1314: void ecrt_voe_handler_read_nosync( fp@1314: ec_voe_handler_t *voe /**< VoE handler. */ fp@1314: ); fp@1314: fp@1209: /** Execute the handler. fp@1209: * fp@1209: * This method executes the VoE handler. It has to be called in every bus cycle fp@1209: * as long as it returns EC_REQUEST_BUSY. fp@1209: * fp@1209: * \return Handler state. fp@1209: */ fp@1209: ec_request_state_t ecrt_voe_handler_execute( fp@1209: ec_voe_handler_t *voe /**< VoE handler. */ fp@1209: ); fp@1209: fp@1288: /*****************************************************************************/ fp@1288: fp@1288: #ifdef __cplusplus fp@1288: } fp@1288: #endif fp@1288: fp@199: /****************************************************************************** fp@779: * Bitwise read/write macros fp@779: *****************************************************************************/ fp@779: fp@779: /** Read a certain bit of an EtherCAT data byte. fp@894: * fp@640: * \param DATA EtherCAT data pointer fp@640: * \param POS bit position fp@640: */ fp@199: #define EC_READ_BIT(DATA, POS) ((*((uint8_t *) (DATA)) >> (POS)) & 0x01) fp@199: fp@779: /** Write a certain bit of an EtherCAT data byte. fp@894: * fp@640: * \param DATA EtherCAT data pointer fp@640: * \param POS bit position fp@640: * \param VAL new bit value fp@640: */ fp@199: #define EC_WRITE_BIT(DATA, POS, VAL) \ fp@199: do { \ fp@199: if (VAL) *((uint8_t *) (DATA)) |= (1 << (POS)); \ fp@199: else *((uint8_t *) (DATA)) &= ~(1 << (POS)); \ fp@199: } while (0) fp@199: fp@199: /****************************************************************************** fp@1254: * Byte-swapping functions for user space fp@1254: *****************************************************************************/ fp@1254: fp@1254: #ifndef __KERNEL__ fp@1254: fp@1254: #if __BYTE_ORDER == __LITTLE_ENDIAN fp@1254: fp@1254: #define le16_to_cpu(x) x fp@1254: #define le32_to_cpu(x) x fp@1384: #define le64_to_cpu(x) x fp@1254: fp@1254: #define cpu_to_le16(x) x fp@1254: #define cpu_to_le32(x) x fp@1384: #define cpu_to_le64(x) x fp@1254: fp@1254: #elif __BYTE_ORDER == __BIG_ENDIAN fp@1254: fp@1254: #define swap16(x) \ fp@1254: ((uint16_t)( \ fp@1254: (((uint16_t)(x) & 0x00ffU) << 8) | \ fp@1254: (((uint16_t)(x) & 0xff00U) >> 8) )) fp@1254: #define swap32(x) \ fp@1254: ((uint32_t)( \ fp@1254: (((uint32_t)(x) & 0x000000ffUL) << 24) | \ fp@1254: (((uint32_t)(x) & 0x0000ff00UL) << 8) | \ fp@1254: (((uint32_t)(x) & 0x00ff0000UL) >> 8) | \ fp@1254: (((uint32_t)(x) & 0xff000000UL) >> 24) )) fp@1384: #define swap64(x) \ fp@1384: ((uint64_t)( \ fp@1384: (((uint64_t)(x) & 0x00000000000000ffULL) << 56) | \ fp@1384: (((uint64_t)(x) & 0x000000000000ff00ULL) << 40) | \ fp@1384: (((uint64_t)(x) & 0x0000000000ff0000ULL) << 24) | \ fp@1384: (((uint64_t)(x) & 0x00000000ff000000ULL) << 8) | \ fp@1384: (((uint64_t)(x) & 0x000000ff00000000ULL) >> 8) | \ fp@1384: (((uint64_t)(x) & 0x0000ff0000000000ULL) >> 24) | \ fp@1384: (((uint64_t)(x) & 0x00ff000000000000ULL) >> 40) | \ fp@1384: (((uint64_t)(x) & 0xff00000000000000ULL) >> 56) )) fp@1254: fp@1254: #define le16_to_cpu(x) swap16(x) fp@1254: #define le32_to_cpu(x) swap32(x) fp@1384: #define le64_to_cpu(x) swap64(x) fp@1254: fp@1254: #define cpu_to_le16(x) swap16(x) fp@1254: #define cpu_to_le32(x) swap32(x) fp@1384: #define cpu_to_le64(x) swap64(x) fp@1254: fp@1254: #endif fp@1254: fp@1254: #define le16_to_cpup(x) le16_to_cpu(*((uint16_t *)(x))) fp@1254: #define le32_to_cpup(x) le32_to_cpu(*((uint32_t *)(x))) fp@1384: #define le64_to_cpup(x) le64_to_cpu(*((uint64_t *)(x))) fp@1254: fp@1254: #endif /* ifndef __KERNEL__ */ fp@1254: fp@1254: /****************************************************************************** fp@779: * Read macros fp@779: *****************************************************************************/ fp@779: fp@779: /** Read an 8-bit unsigned value from EtherCAT data. fp@894: * fp@779: * \return EtherCAT data value fp@779: */ fp@199: #define EC_READ_U8(DATA) \ fp@199: ((uint8_t) *((uint8_t *) (DATA))) fp@199: fp@779: /** Read an 8-bit signed value from EtherCAT data. fp@894: * fp@779: * \param DATA EtherCAT data pointer fp@779: * \return EtherCAT data value fp@779: */ fp@199: #define EC_READ_S8(DATA) \ fp@288: ((int8_t) *((uint8_t *) (DATA))) fp@199: fp@779: /** Read a 16-bit unsigned value from EtherCAT data. fp@894: * fp@779: * \param DATA EtherCAT data pointer fp@779: * \return EtherCAT data value fp@779: */ fp@199: #define EC_READ_U16(DATA) \ fp@199: ((uint16_t) le16_to_cpup((void *) (DATA))) fp@199: fp@779: /** Read a 16-bit signed value from EtherCAT data. fp@894: * fp@779: * \param DATA EtherCAT data pointer fp@779: * \return EtherCAT data value fp@779: */ fp@199: #define EC_READ_S16(DATA) \ fp@288: ((int16_t) le16_to_cpup((void *) (DATA))) fp@199: fp@779: /** Read a 32-bit unsigned value from EtherCAT data. fp@894: * fp@779: * \param DATA EtherCAT data pointer fp@779: * \return EtherCAT data value fp@779: */ fp@199: #define EC_READ_U32(DATA) \ fp@199: ((uint32_t) le32_to_cpup((void *) (DATA))) fp@199: fp@779: /** Read a 32-bit signed value from EtherCAT data. fp@894: * fp@779: * \param DATA EtherCAT data pointer fp@779: * \return EtherCAT data value fp@779: */ fp@199: #define EC_READ_S32(DATA) \ fp@288: ((int32_t) le32_to_cpup((void *) (DATA))) fp@199: fp@1384: /** Read a 64-bit unsigned value from EtherCAT data. fp@1384: * fp@1384: * \param DATA EtherCAT data pointer fp@1384: * \return EtherCAT data value fp@1384: */ fp@1384: #define EC_READ_U64(DATA) \ fp@1384: ((uint64_t) le64_to_cpup((void *) (DATA))) fp@1384: fp@1384: /** Read a 64-bit signed value from EtherCAT data. fp@1384: * fp@1384: * \param DATA EtherCAT data pointer fp@1384: * \return EtherCAT data value fp@1384: */ fp@1384: #define EC_READ_S64(DATA) \ fp@1384: ((int64_t) le64_to_cpup((void *) (DATA))) fp@1384: fp@199: /****************************************************************************** fp@779: * Write macros fp@779: *****************************************************************************/ fp@779: fp@779: /** Write an 8-bit unsigned value to EtherCAT data. fp@894: * fp@779: * \param DATA EtherCAT data pointer fp@779: * \param VAL new value fp@779: */ fp@199: #define EC_WRITE_U8(DATA, VAL) \ fp@199: do { \ fp@199: *((uint8_t *)(DATA)) = ((uint8_t) (VAL)); \ fp@199: } while (0) fp@199: fp@779: /** Write an 8-bit signed value to EtherCAT data. fp@894: * fp@779: * \param DATA EtherCAT data pointer fp@779: * \param VAL new value fp@779: */ fp@199: #define EC_WRITE_S8(DATA, VAL) EC_WRITE_U8(DATA, VAL) fp@199: fp@779: /** Write a 16-bit unsigned value to EtherCAT data. fp@894: * fp@779: * \param DATA EtherCAT data pointer fp@779: * \param VAL new value fp@779: */ fp@199: #define EC_WRITE_U16(DATA, VAL) \ fp@199: do { \ fp@894: *((uint16_t *) (DATA)) = cpu_to_le16((uint16_t) (VAL)); \ fp@199: } while (0) fp@199: fp@779: /** Write a 16-bit signed value to EtherCAT data. fp@894: * fp@779: * \param DATA EtherCAT data pointer fp@779: * \param VAL new value fp@779: */ fp@199: #define EC_WRITE_S16(DATA, VAL) EC_WRITE_U16(DATA, VAL) fp@199: fp@779: /** Write a 32-bit unsigned value to EtherCAT data. fp@894: * fp@779: * \param DATA EtherCAT data pointer fp@779: * \param VAL new value fp@779: */ fp@199: #define EC_WRITE_U32(DATA, VAL) \ fp@199: do { \ fp@894: *((uint32_t *) (DATA)) = cpu_to_le32((uint32_t) (VAL)); \ fp@199: } while (0) fp@199: fp@779: /** Write a 32-bit signed value to EtherCAT data. fp@894: * fp@779: * \param DATA EtherCAT data pointer fp@779: * \param VAL new value fp@779: */ fp@199: #define EC_WRITE_S32(DATA, VAL) EC_WRITE_U32(DATA, VAL) fp@199: fp@1384: /** Write a 64-bit unsigned value to EtherCAT data. fp@1384: * fp@1384: * \param DATA EtherCAT data pointer fp@1384: * \param VAL new value fp@1384: */ fp@1384: #define EC_WRITE_U64(DATA, VAL) \ fp@1384: do { \ fp@1384: *((uint64_t *) (DATA)) = cpu_to_le64((uint64_t) (VAL)); \ fp@1384: } while (0) fp@1384: fp@1384: /** Write a 64-bit signed value to EtherCAT data. fp@1384: * fp@1384: * \param DATA EtherCAT data pointer fp@1384: * \param VAL new value fp@1384: */ fp@1384: #define EC_WRITE_S64(DATA, VAL) EC_WRITE_U64(DATA, VAL) fp@1384: fp@104: /*****************************************************************************/ fp@104: fp@792: /** @} */ fp@792: fp@104: #endif