fp@667: /******************************************************************************* fp@667: fp@667: fp@667: Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved. fp@667: fp@667: This program is free software; you can redistribute it and/or modify it fp@667: under the terms of the GNU General Public License as published by the Free fp@667: Software Foundation; either version 2 of the License, or (at your option) fp@667: any later version. fp@667: fp@667: This program is distributed in the hope that it will be useful, but WITHOUT fp@667: ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or fp@667: FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for fp@667: more details. fp@667: fp@667: You should have received a copy of the GNU General Public License along with fp@667: this program; if not, write to the Free Software Foundation, Inc., 59 fp@667: Temple Place - Suite 330, Boston, MA 02111-1307, USA. fp@667: fp@667: The full GNU General Public License is included in this distribution in the fp@667: file called LICENSE. fp@667: fp@667: Contact Information: fp@667: Linux NICS fp@667: e1000-devel Mailing List fp@667: Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 fp@667: fp@667: *******************************************************************************/ fp@667: fp@667: #include "e1000.h" fp@667: fp@667: char e1000_driver_name[] = "e1000"; fp@667: static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver"; fp@667: #ifndef CONFIG_E1000_NAPI fp@667: #define DRIVERNAPI fp@667: #else fp@667: #define DRIVERNAPI "-NAPI" fp@667: #endif fp@667: #define DRV_VERSION "7.1.9-k4"DRIVERNAPI fp@667: char e1000_driver_version[] = DRV_VERSION; fp@667: static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation."; fp@667: fp@667: /* e1000_pci_tbl - PCI Device ID Table fp@667: * fp@667: * Last entry must be all 0s fp@667: * fp@667: * Macro expands to... fp@667: * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)} fp@667: */ fp@667: static struct pci_device_id e1000_pci_tbl[] = { fp@667: INTEL_E1000_ETHERNET_DEVICE(0x1000), fp@667: INTEL_E1000_ETHERNET_DEVICE(0x1001), fp@667: INTEL_E1000_ETHERNET_DEVICE(0x1004), fp@667: INTEL_E1000_ETHERNET_DEVICE(0x1008), fp@667: INTEL_E1000_ETHERNET_DEVICE(0x1009), fp@667: INTEL_E1000_ETHERNET_DEVICE(0x100C), fp@667: INTEL_E1000_ETHERNET_DEVICE(0x100D), fp@667: INTEL_E1000_ETHERNET_DEVICE(0x100E), fp@667: INTEL_E1000_ETHERNET_DEVICE(0x100F), fp@667: INTEL_E1000_ETHERNET_DEVICE(0x1010), fp@667: INTEL_E1000_ETHERNET_DEVICE(0x1011), fp@667: INTEL_E1000_ETHERNET_DEVICE(0x1012), fp@667: INTEL_E1000_ETHERNET_DEVICE(0x1013), fp@667: INTEL_E1000_ETHERNET_DEVICE(0x1014), fp@667: INTEL_E1000_ETHERNET_DEVICE(0x1015), fp@667: INTEL_E1000_ETHERNET_DEVICE(0x1016), fp@667: INTEL_E1000_ETHERNET_DEVICE(0x1017), fp@667: INTEL_E1000_ETHERNET_DEVICE(0x1018), fp@667: INTEL_E1000_ETHERNET_DEVICE(0x1019), fp@667: INTEL_E1000_ETHERNET_DEVICE(0x101A), fp@667: INTEL_E1000_ETHERNET_DEVICE(0x101D), fp@667: INTEL_E1000_ETHERNET_DEVICE(0x101E), fp@667: INTEL_E1000_ETHERNET_DEVICE(0x1026), fp@667: INTEL_E1000_ETHERNET_DEVICE(0x1027), fp@667: INTEL_E1000_ETHERNET_DEVICE(0x1028), fp@667: INTEL_E1000_ETHERNET_DEVICE(0x1049), fp@667: INTEL_E1000_ETHERNET_DEVICE(0x104A), fp@667: INTEL_E1000_ETHERNET_DEVICE(0x104B), fp@667: INTEL_E1000_ETHERNET_DEVICE(0x104C), fp@667: INTEL_E1000_ETHERNET_DEVICE(0x104D), fp@667: INTEL_E1000_ETHERNET_DEVICE(0x105E), fp@667: INTEL_E1000_ETHERNET_DEVICE(0x105F), fp@667: INTEL_E1000_ETHERNET_DEVICE(0x1060), fp@667: INTEL_E1000_ETHERNET_DEVICE(0x1075), fp@667: INTEL_E1000_ETHERNET_DEVICE(0x1076), fp@667: INTEL_E1000_ETHERNET_DEVICE(0x1077), fp@667: INTEL_E1000_ETHERNET_DEVICE(0x1078), fp@667: INTEL_E1000_ETHERNET_DEVICE(0x1079), fp@667: INTEL_E1000_ETHERNET_DEVICE(0x107A), fp@667: INTEL_E1000_ETHERNET_DEVICE(0x107B), fp@667: INTEL_E1000_ETHERNET_DEVICE(0x107C), fp@667: INTEL_E1000_ETHERNET_DEVICE(0x107D), fp@667: INTEL_E1000_ETHERNET_DEVICE(0x107E), fp@667: INTEL_E1000_ETHERNET_DEVICE(0x107F), fp@667: INTEL_E1000_ETHERNET_DEVICE(0x108A), fp@667: INTEL_E1000_ETHERNET_DEVICE(0x108B), fp@667: INTEL_E1000_ETHERNET_DEVICE(0x108C), fp@667: INTEL_E1000_ETHERNET_DEVICE(0x1096), fp@667: INTEL_E1000_ETHERNET_DEVICE(0x1098), fp@667: INTEL_E1000_ETHERNET_DEVICE(0x1099), fp@667: INTEL_E1000_ETHERNET_DEVICE(0x109A), fp@667: INTEL_E1000_ETHERNET_DEVICE(0x10B5), fp@667: INTEL_E1000_ETHERNET_DEVICE(0x10B9), fp@667: INTEL_E1000_ETHERNET_DEVICE(0x10BA), fp@667: INTEL_E1000_ETHERNET_DEVICE(0x10BB), fp@667: /* required last entry */ fp@667: {0,} fp@667: }; fp@667: fp@667: MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); fp@667: fp@667: static int e1000_setup_tx_resources(struct e1000_adapter *adapter, fp@667: struct e1000_tx_ring *txdr); fp@667: static int e1000_setup_rx_resources(struct e1000_adapter *adapter, fp@667: struct e1000_rx_ring *rxdr); fp@667: static void e1000_free_tx_resources(struct e1000_adapter *adapter, fp@667: struct e1000_tx_ring *tx_ring); fp@667: static void e1000_free_rx_resources(struct e1000_adapter *adapter, fp@667: struct e1000_rx_ring *rx_ring); fp@667: fp@667: /* Local Function Prototypes */ fp@667: fp@667: static int e1000_init_module(void); fp@667: static void e1000_exit_module(void); fp@667: static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent); fp@667: static void __devexit e1000_remove(struct pci_dev *pdev); fp@667: static int e1000_alloc_queues(struct e1000_adapter *adapter); fp@667: static int e1000_sw_init(struct e1000_adapter *adapter); fp@667: static int e1000_open(struct net_device *netdev); fp@667: static int e1000_close(struct net_device *netdev); fp@667: static void e1000_configure_tx(struct e1000_adapter *adapter); fp@667: static void e1000_configure_rx(struct e1000_adapter *adapter); fp@667: static void e1000_setup_rctl(struct e1000_adapter *adapter); fp@667: static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter); fp@667: static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter); fp@667: static void e1000_clean_tx_ring(struct e1000_adapter *adapter, fp@667: struct e1000_tx_ring *tx_ring); fp@667: static void e1000_clean_rx_ring(struct e1000_adapter *adapter, fp@667: struct e1000_rx_ring *rx_ring); fp@667: static void e1000_set_multi(struct net_device *netdev); fp@667: static void e1000_update_phy_info(unsigned long data); fp@667: static void e1000_watchdog(unsigned long data); fp@667: static void e1000_82547_tx_fifo_stall(unsigned long data); fp@667: static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev); fp@667: static struct net_device_stats * e1000_get_stats(struct net_device *netdev); fp@667: static int e1000_change_mtu(struct net_device *netdev, int new_mtu); fp@667: static int e1000_set_mac(struct net_device *netdev, void *p); fp@667: static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs); fp@667: static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter, fp@667: struct e1000_tx_ring *tx_ring); fp@667: #ifdef CONFIG_E1000_NAPI fp@667: static int e1000_clean(struct net_device *poll_dev, int *budget); fp@667: static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter, fp@667: struct e1000_rx_ring *rx_ring, fp@667: int *work_done, int work_to_do); fp@667: static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, fp@667: struct e1000_rx_ring *rx_ring, fp@667: int *work_done, int work_to_do); fp@667: #else fp@667: static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter, fp@667: struct e1000_rx_ring *rx_ring); fp@667: static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, fp@667: struct e1000_rx_ring *rx_ring); fp@667: #endif fp@667: static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, fp@667: struct e1000_rx_ring *rx_ring, fp@667: int cleaned_count); fp@667: static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter, fp@667: struct e1000_rx_ring *rx_ring, fp@667: int cleaned_count); fp@667: static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd); fp@667: static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, fp@667: int cmd); fp@667: static void e1000_enter_82542_rst(struct e1000_adapter *adapter); fp@667: static void e1000_leave_82542_rst(struct e1000_adapter *adapter); fp@667: static void e1000_tx_timeout(struct net_device *dev); fp@667: static void e1000_reset_task(struct net_device *dev); fp@667: static void e1000_smartspeed(struct e1000_adapter *adapter); fp@667: static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, fp@667: struct sk_buff *skb); fp@667: fp@667: static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp); fp@667: static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid); fp@667: static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid); fp@667: static void e1000_restore_vlan(struct e1000_adapter *adapter); fp@667: fp@667: static int e1000_suspend(struct pci_dev *pdev, pm_message_t state); fp@667: #ifdef CONFIG_PM fp@667: static int e1000_resume(struct pci_dev *pdev); fp@667: #endif fp@667: static void e1000_shutdown(struct pci_dev *pdev); fp@667: fp@667: #ifdef CONFIG_NET_POLL_CONTROLLER fp@667: /* for netdump / net console */ fp@667: static void e1000_netpoll (struct net_device *netdev); fp@667: #endif fp@667: fp@667: static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, fp@667: pci_channel_state_t state); fp@667: static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev); fp@667: static void e1000_io_resume(struct pci_dev *pdev); fp@667: fp@667: static struct pci_error_handlers e1000_err_handler = { fp@667: .error_detected = e1000_io_error_detected, fp@667: .slot_reset = e1000_io_slot_reset, fp@667: .resume = e1000_io_resume, fp@667: }; fp@667: fp@667: static struct pci_driver e1000_driver = { fp@667: .name = e1000_driver_name, fp@667: .id_table = e1000_pci_tbl, fp@667: .probe = e1000_probe, fp@667: .remove = __devexit_p(e1000_remove), fp@667: /* Power Managment Hooks */ fp@667: .suspend = e1000_suspend, fp@667: #ifdef CONFIG_PM fp@667: .resume = e1000_resume, fp@667: #endif fp@667: .shutdown = e1000_shutdown, fp@667: .err_handler = &e1000_err_handler fp@667: }; fp@667: fp@667: MODULE_AUTHOR("Intel Corporation, "); fp@667: MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); fp@667: MODULE_LICENSE("GPL"); fp@667: MODULE_VERSION(DRV_VERSION); fp@667: fp@667: static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE; fp@667: module_param(debug, int, 0); fp@667: MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); fp@667: fp@667: /** fp@667: * e1000_init_module - Driver Registration Routine fp@667: * fp@667: * e1000_init_module is the first routine called when the driver is fp@667: * loaded. All it does is register with the PCI subsystem. fp@667: **/ fp@667: fp@667: static int __init fp@667: e1000_init_module(void) fp@667: { fp@667: int ret; fp@667: printk(KERN_INFO "%s - version %s\n", fp@667: e1000_driver_string, e1000_driver_version); fp@667: fp@667: printk(KERN_INFO "%s\n", e1000_copyright); fp@667: fp@667: ret = pci_module_init(&e1000_driver); fp@667: fp@667: return ret; fp@667: } fp@667: fp@667: module_init(e1000_init_module); fp@667: fp@667: /** fp@667: * e1000_exit_module - Driver Exit Cleanup Routine fp@667: * fp@667: * e1000_exit_module is called just before the driver is removed fp@667: * from memory. fp@667: **/ fp@667: fp@667: static void __exit fp@667: e1000_exit_module(void) fp@667: { fp@667: pci_unregister_driver(&e1000_driver); fp@667: } fp@667: fp@667: module_exit(e1000_exit_module); fp@667: fp@667: static int e1000_request_irq(struct e1000_adapter *adapter) fp@667: { fp@667: struct net_device *netdev = adapter->netdev; fp@667: int flags, err = 0; fp@667: fp@667: flags = IRQF_SHARED; fp@667: #ifdef CONFIG_PCI_MSI fp@667: if (adapter->hw.mac_type > e1000_82547_rev_2) { fp@667: adapter->have_msi = TRUE; fp@667: if ((err = pci_enable_msi(adapter->pdev))) { fp@667: DPRINTK(PROBE, ERR, fp@667: "Unable to allocate MSI interrupt Error: %d\n", err); fp@667: adapter->have_msi = FALSE; fp@667: } fp@667: } fp@667: if (adapter->have_msi) fp@667: flags &= ~IRQF_SHARED; fp@667: #endif fp@667: if ((err = request_irq(adapter->pdev->irq, &e1000_intr, flags, fp@667: netdev->name, netdev))) fp@667: DPRINTK(PROBE, ERR, fp@667: "Unable to allocate interrupt Error: %d\n", err); fp@667: fp@667: return err; fp@667: } fp@667: fp@667: static void e1000_free_irq(struct e1000_adapter *adapter) fp@667: { fp@667: struct net_device *netdev = adapter->netdev; fp@667: fp@667: free_irq(adapter->pdev->irq, netdev); fp@667: fp@667: #ifdef CONFIG_PCI_MSI fp@667: if (adapter->have_msi) fp@667: pci_disable_msi(adapter->pdev); fp@667: #endif fp@667: } fp@667: fp@667: /** fp@667: * e1000_irq_disable - Mask off interrupt generation on the NIC fp@667: * @adapter: board private structure fp@667: **/ fp@667: fp@667: static void fp@667: e1000_irq_disable(struct e1000_adapter *adapter) fp@667: { fp@667: atomic_inc(&adapter->irq_sem); fp@667: E1000_WRITE_REG(&adapter->hw, IMC, ~0); fp@667: E1000_WRITE_FLUSH(&adapter->hw); fp@667: synchronize_irq(adapter->pdev->irq); fp@667: } fp@667: fp@667: /** fp@667: * e1000_irq_enable - Enable default interrupt generation settings fp@667: * @adapter: board private structure fp@667: **/ fp@667: fp@667: static void fp@667: e1000_irq_enable(struct e1000_adapter *adapter) fp@667: { fp@667: if (likely(atomic_dec_and_test(&adapter->irq_sem))) { fp@667: E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK); fp@667: E1000_WRITE_FLUSH(&adapter->hw); fp@667: } fp@667: } fp@667: fp@667: static void fp@667: e1000_update_mng_vlan(struct e1000_adapter *adapter) fp@667: { fp@667: struct net_device *netdev = adapter->netdev; fp@667: uint16_t vid = adapter->hw.mng_cookie.vlan_id; fp@667: uint16_t old_vid = adapter->mng_vlan_id; fp@667: if (adapter->vlgrp) { fp@667: if (!adapter->vlgrp->vlan_devices[vid]) { fp@667: if (adapter->hw.mng_cookie.status & fp@667: E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) { fp@667: e1000_vlan_rx_add_vid(netdev, vid); fp@667: adapter->mng_vlan_id = vid; fp@667: } else fp@667: adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; fp@667: fp@667: if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) && fp@667: (vid != old_vid) && fp@667: !adapter->vlgrp->vlan_devices[old_vid]) fp@667: e1000_vlan_rx_kill_vid(netdev, old_vid); fp@667: } else fp@667: adapter->mng_vlan_id = vid; fp@667: } fp@667: } fp@667: fp@667: /** fp@667: * e1000_release_hw_control - release control of the h/w to f/w fp@667: * @adapter: address of board private structure fp@667: * fp@667: * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit. fp@667: * For ASF and Pass Through versions of f/w this means that the fp@667: * driver is no longer loaded. For AMT version (only with 82573) i fp@667: * of the f/w this means that the netowrk i/f is closed. fp@667: * fp@667: **/ fp@667: fp@667: static void fp@667: e1000_release_hw_control(struct e1000_adapter *adapter) fp@667: { fp@667: uint32_t ctrl_ext; fp@667: uint32_t swsm; fp@667: uint32_t extcnf; fp@667: fp@667: /* Let firmware taken over control of h/w */ fp@667: switch (adapter->hw.mac_type) { fp@667: case e1000_82571: fp@667: case e1000_82572: fp@667: case e1000_80003es2lan: fp@667: ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT); fp@667: E1000_WRITE_REG(&adapter->hw, CTRL_EXT, fp@667: ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); fp@667: break; fp@667: case e1000_82573: fp@667: swsm = E1000_READ_REG(&adapter->hw, SWSM); fp@667: E1000_WRITE_REG(&adapter->hw, SWSM, fp@667: swsm & ~E1000_SWSM_DRV_LOAD); fp@667: case e1000_ich8lan: fp@667: extcnf = E1000_READ_REG(&adapter->hw, CTRL_EXT); fp@667: E1000_WRITE_REG(&adapter->hw, CTRL_EXT, fp@667: extcnf & ~E1000_CTRL_EXT_DRV_LOAD); fp@667: break; fp@667: default: fp@667: break; fp@667: } fp@667: } fp@667: fp@667: /** fp@667: * e1000_get_hw_control - get control of the h/w from f/w fp@667: * @adapter: address of board private structure fp@667: * fp@667: * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit. fp@667: * For ASF and Pass Through versions of f/w this means that fp@667: * the driver is loaded. For AMT version (only with 82573) fp@667: * of the f/w this means that the netowrk i/f is open. fp@667: * fp@667: **/ fp@667: fp@667: static void fp@667: e1000_get_hw_control(struct e1000_adapter *adapter) fp@667: { fp@667: uint32_t ctrl_ext; fp@667: uint32_t swsm; fp@667: uint32_t extcnf; fp@667: /* Let firmware know the driver has taken over */ fp@667: switch (adapter->hw.mac_type) { fp@667: case e1000_82571: fp@667: case e1000_82572: fp@667: case e1000_80003es2lan: fp@667: ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT); fp@667: E1000_WRITE_REG(&adapter->hw, CTRL_EXT, fp@667: ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); fp@667: break; fp@667: case e1000_82573: fp@667: swsm = E1000_READ_REG(&adapter->hw, SWSM); fp@667: E1000_WRITE_REG(&adapter->hw, SWSM, fp@667: swsm | E1000_SWSM_DRV_LOAD); fp@667: break; fp@667: case e1000_ich8lan: fp@667: extcnf = E1000_READ_REG(&adapter->hw, EXTCNF_CTRL); fp@667: E1000_WRITE_REG(&adapter->hw, EXTCNF_CTRL, fp@667: extcnf | E1000_EXTCNF_CTRL_SWFLAG); fp@667: break; fp@667: default: fp@667: break; fp@667: } fp@667: } fp@667: fp@667: int fp@667: e1000_up(struct e1000_adapter *adapter) fp@667: { fp@667: struct net_device *netdev = adapter->netdev; fp@667: int i; fp@667: fp@667: /* hardware has been reset, we need to reload some things */ fp@667: fp@667: e1000_set_multi(netdev); fp@667: fp@667: e1000_restore_vlan(adapter); fp@667: fp@667: e1000_configure_tx(adapter); fp@667: e1000_setup_rctl(adapter); fp@667: e1000_configure_rx(adapter); fp@667: /* call E1000_DESC_UNUSED which always leaves fp@667: * at least 1 descriptor unused to make sure fp@667: * next_to_use != next_to_clean */ fp@667: for (i = 0; i < adapter->num_rx_queues; i++) { fp@667: struct e1000_rx_ring *ring = &adapter->rx_ring[i]; fp@667: adapter->alloc_rx_buf(adapter, ring, fp@667: E1000_DESC_UNUSED(ring)); fp@667: } fp@667: fp@667: adapter->tx_queue_len = netdev->tx_queue_len; fp@667: fp@667: mod_timer(&adapter->watchdog_timer, jiffies); fp@667: fp@667: #ifdef CONFIG_E1000_NAPI fp@667: netif_poll_enable(netdev); fp@667: #endif fp@667: e1000_irq_enable(adapter); fp@667: fp@667: return 0; fp@667: } fp@667: fp@667: /** fp@667: * e1000_power_up_phy - restore link in case the phy was powered down fp@667: * @adapter: address of board private structure fp@667: * fp@667: * The phy may be powered down to save power and turn off link when the fp@667: * driver is unloaded and wake on lan is not enabled (among others) fp@667: * *** this routine MUST be followed by a call to e1000_reset *** fp@667: * fp@667: **/ fp@667: fp@667: static void e1000_power_up_phy(struct e1000_adapter *adapter) fp@667: { fp@667: uint16_t mii_reg = 0; fp@667: fp@667: /* Just clear the power down bit to wake the phy back up */ fp@667: if (adapter->hw.media_type == e1000_media_type_copper) { fp@667: /* according to the manual, the phy will retain its fp@667: * settings across a power-down/up cycle */ fp@667: e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg); fp@667: mii_reg &= ~MII_CR_POWER_DOWN; fp@667: e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg); fp@667: } fp@667: } fp@667: fp@667: static void e1000_power_down_phy(struct e1000_adapter *adapter) fp@667: { fp@667: boolean_t mng_mode_enabled = (adapter->hw.mac_type >= e1000_82571) && fp@667: e1000_check_mng_mode(&adapter->hw); fp@667: /* Power down the PHY so no link is implied when interface is down fp@667: * The PHY cannot be powered down if any of the following is TRUE fp@667: * (a) WoL is enabled fp@667: * (b) AMT is active fp@667: * (c) SoL/IDER session is active */ fp@667: if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 && fp@667: adapter->hw.mac_type != e1000_ich8lan && fp@667: adapter->hw.media_type == e1000_media_type_copper && fp@667: !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN) && fp@667: !mng_mode_enabled && fp@667: !e1000_check_phy_reset_block(&adapter->hw)) { fp@667: uint16_t mii_reg = 0; fp@667: e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg); fp@667: mii_reg |= MII_CR_POWER_DOWN; fp@667: e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg); fp@667: mdelay(1); fp@667: } fp@667: } fp@667: fp@667: void fp@667: e1000_down(struct e1000_adapter *adapter) fp@667: { fp@667: struct net_device *netdev = adapter->netdev; fp@667: fp@667: e1000_irq_disable(adapter); fp@667: fp@667: del_timer_sync(&adapter->tx_fifo_stall_timer); fp@667: del_timer_sync(&adapter->watchdog_timer); fp@667: del_timer_sync(&adapter->phy_info_timer); fp@667: fp@667: #ifdef CONFIG_E1000_NAPI fp@667: netif_poll_disable(netdev); fp@667: #endif fp@667: netdev->tx_queue_len = adapter->tx_queue_len; fp@667: adapter->link_speed = 0; fp@667: adapter->link_duplex = 0; fp@667: netif_carrier_off(netdev); fp@667: netif_stop_queue(netdev); fp@667: fp@667: e1000_reset(adapter); fp@667: e1000_clean_all_tx_rings(adapter); fp@667: e1000_clean_all_rx_rings(adapter); fp@667: } fp@667: fp@667: void fp@667: e1000_reinit_locked(struct e1000_adapter *adapter) fp@667: { fp@667: WARN_ON(in_interrupt()); fp@667: while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) fp@667: msleep(1); fp@667: e1000_down(adapter); fp@667: e1000_up(adapter); fp@667: clear_bit(__E1000_RESETTING, &adapter->flags); fp@667: } fp@667: fp@667: void fp@667: e1000_reset(struct e1000_adapter *adapter) fp@667: { fp@667: uint32_t pba, manc; fp@667: uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF; fp@667: fp@667: /* Repartition Pba for greater than 9k mtu fp@667: * To take effect CTRL.RST is required. fp@667: */ fp@667: fp@667: switch (adapter->hw.mac_type) { fp@667: case e1000_82547: fp@667: case e1000_82547_rev_2: fp@667: pba = E1000_PBA_30K; fp@667: break; fp@667: case e1000_82571: fp@667: case e1000_82572: fp@667: case e1000_80003es2lan: fp@667: pba = E1000_PBA_38K; fp@667: break; fp@667: case e1000_82573: fp@667: pba = E1000_PBA_12K; fp@667: break; fp@667: case e1000_ich8lan: fp@667: pba = E1000_PBA_8K; fp@667: break; fp@667: default: fp@667: pba = E1000_PBA_48K; fp@667: break; fp@667: } fp@667: fp@667: if ((adapter->hw.mac_type != e1000_82573) && fp@667: (adapter->netdev->mtu > E1000_RXBUFFER_8192)) fp@667: pba -= 8; /* allocate more FIFO for Tx */ fp@667: fp@667: fp@667: if (adapter->hw.mac_type == e1000_82547) { fp@667: adapter->tx_fifo_head = 0; fp@667: adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT; fp@667: adapter->tx_fifo_size = fp@667: (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT; fp@667: atomic_set(&adapter->tx_fifo_stall, 0); fp@667: } fp@667: fp@667: E1000_WRITE_REG(&adapter->hw, PBA, pba); fp@667: fp@667: /* flow control settings */ fp@667: /* Set the FC high water mark to 90% of the FIFO size. fp@667: * Required to clear last 3 LSB */ fp@667: fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8; fp@667: /* We can't use 90% on small FIFOs because the remainder fp@667: * would be less than 1 full frame. In this case, we size fp@667: * it to allow at least a full frame above the high water fp@667: * mark. */ fp@667: if (pba < E1000_PBA_16K) fp@667: fc_high_water_mark = (pba * 1024) - 1600; fp@667: fp@667: adapter->hw.fc_high_water = fc_high_water_mark; fp@667: adapter->hw.fc_low_water = fc_high_water_mark - 8; fp@667: if (adapter->hw.mac_type == e1000_80003es2lan) fp@667: adapter->hw.fc_pause_time = 0xFFFF; fp@667: else fp@667: adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME; fp@667: adapter->hw.fc_send_xon = 1; fp@667: adapter->hw.fc = adapter->hw.original_fc; fp@667: fp@667: /* Allow time for pending master requests to run */ fp@667: e1000_reset_hw(&adapter->hw); fp@667: if (adapter->hw.mac_type >= e1000_82544) fp@667: E1000_WRITE_REG(&adapter->hw, WUC, 0); fp@667: if (e1000_init_hw(&adapter->hw)) fp@667: DPRINTK(PROBE, ERR, "Hardware Error\n"); fp@667: e1000_update_mng_vlan(adapter); fp@667: /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ fp@667: E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE); fp@667: fp@667: e1000_reset_adaptive(&adapter->hw); fp@667: e1000_phy_get_info(&adapter->hw, &adapter->phy_info); fp@667: fp@667: if (!adapter->smart_power_down && fp@667: (adapter->hw.mac_type == e1000_82571 || fp@667: adapter->hw.mac_type == e1000_82572)) { fp@667: uint16_t phy_data = 0; fp@667: /* speed up time to link by disabling smart power down, ignore fp@667: * the return value of this function because there is nothing fp@667: * different we would do if it failed */ fp@667: e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT, fp@667: &phy_data); fp@667: phy_data &= ~IGP02E1000_PM_SPD; fp@667: e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT, fp@667: phy_data); fp@667: } fp@667: fp@667: if (adapter->hw.mac_type < e1000_ich8lan) fp@667: /* FIXME: this code is duplicate and wrong for PCI Express */ fp@667: if (adapter->en_mng_pt) { fp@667: manc = E1000_READ_REG(&adapter->hw, MANC); fp@667: manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST); fp@667: E1000_WRITE_REG(&adapter->hw, MANC, manc); fp@667: } fp@667: } fp@667: fp@667: /** fp@667: * e1000_probe - Device Initialization Routine fp@667: * @pdev: PCI device information struct fp@667: * @ent: entry in e1000_pci_tbl fp@667: * fp@667: * Returns 0 on success, negative on failure fp@667: * fp@667: * e1000_probe initializes an adapter identified by a pci_dev structure. fp@667: * The OS initialization, configuring of the adapter private structure, fp@667: * and a hardware reset occur. fp@667: **/ fp@667: fp@667: static int __devinit fp@667: e1000_probe(struct pci_dev *pdev, fp@667: const struct pci_device_id *ent) fp@667: { fp@667: struct net_device *netdev; fp@667: struct e1000_adapter *adapter; fp@667: unsigned long mmio_start, mmio_len; fp@667: unsigned long flash_start, flash_len; fp@667: fp@667: static int cards_found = 0; fp@667: static int e1000_ksp3_port_a = 0; /* global ksp3 port a indication */ fp@667: int i, err, pci_using_dac; fp@667: uint16_t eeprom_data; fp@667: uint16_t eeprom_apme_mask = E1000_EEPROM_APME; fp@667: if ((err = pci_enable_device(pdev))) fp@667: return err; fp@667: fp@667: if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) && fp@667: !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) { fp@667: pci_using_dac = 1; fp@667: } else { fp@667: if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) && fp@667: (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) { fp@667: E1000_ERR("No usable DMA configuration, aborting\n"); fp@667: return err; fp@667: } fp@667: pci_using_dac = 0; fp@667: } fp@667: fp@667: if ((err = pci_request_regions(pdev, e1000_driver_name))) fp@667: return err; fp@667: fp@667: pci_set_master(pdev); fp@667: fp@667: netdev = alloc_etherdev(sizeof(struct e1000_adapter)); fp@667: if (!netdev) { fp@667: err = -ENOMEM; fp@667: goto err_alloc_etherdev; fp@667: } fp@667: fp@667: SET_MODULE_OWNER(netdev); fp@667: SET_NETDEV_DEV(netdev, &pdev->dev); fp@667: fp@667: pci_set_drvdata(pdev, netdev); fp@667: adapter = netdev_priv(netdev); fp@667: adapter->netdev = netdev; fp@667: adapter->pdev = pdev; fp@667: adapter->hw.back = adapter; fp@667: adapter->msg_enable = (1 << debug) - 1; fp@667: fp@667: mmio_start = pci_resource_start(pdev, BAR_0); fp@667: mmio_len = pci_resource_len(pdev, BAR_0); fp@667: fp@667: adapter->hw.hw_addr = ioremap(mmio_start, mmio_len); fp@667: if (!adapter->hw.hw_addr) { fp@667: err = -EIO; fp@667: goto err_ioremap; fp@667: } fp@667: fp@667: for (i = BAR_1; i <= BAR_5; i++) { fp@667: if (pci_resource_len(pdev, i) == 0) fp@667: continue; fp@667: if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { fp@667: adapter->hw.io_base = pci_resource_start(pdev, i); fp@667: break; fp@667: } fp@667: } fp@667: fp@667: netdev->open = &e1000_open; fp@667: netdev->stop = &e1000_close; fp@667: netdev->hard_start_xmit = &e1000_xmit_frame; fp@667: netdev->get_stats = &e1000_get_stats; fp@667: netdev->set_multicast_list = &e1000_set_multi; fp@667: netdev->set_mac_address = &e1000_set_mac; fp@667: netdev->change_mtu = &e1000_change_mtu; fp@667: netdev->do_ioctl = &e1000_ioctl; fp@667: e1000_set_ethtool_ops(netdev); fp@667: netdev->tx_timeout = &e1000_tx_timeout; fp@667: netdev->watchdog_timeo = 5 * HZ; fp@667: #ifdef CONFIG_E1000_NAPI fp@667: netdev->poll = &e1000_clean; fp@667: netdev->weight = 64; fp@667: #endif fp@667: netdev->vlan_rx_register = e1000_vlan_rx_register; fp@667: netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid; fp@667: netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid; fp@667: #ifdef CONFIG_NET_POLL_CONTROLLER fp@667: netdev->poll_controller = e1000_netpoll; fp@667: #endif fp@667: strcpy(netdev->name, pci_name(pdev)); fp@667: fp@667: netdev->mem_start = mmio_start; fp@667: netdev->mem_end = mmio_start + mmio_len; fp@667: netdev->base_addr = adapter->hw.io_base; fp@667: fp@667: adapter->bd_number = cards_found; fp@667: fp@667: /* setup the private structure */ fp@667: fp@667: if ((err = e1000_sw_init(adapter))) fp@667: goto err_sw_init; fp@667: fp@667: /* Flash BAR mapping must happen after e1000_sw_init fp@667: * because it depends on mac_type */ fp@667: if ((adapter->hw.mac_type == e1000_ich8lan) && fp@667: (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) { fp@667: flash_start = pci_resource_start(pdev, 1); fp@667: flash_len = pci_resource_len(pdev, 1); fp@667: adapter->hw.flash_address = ioremap(flash_start, flash_len); fp@667: if (!adapter->hw.flash_address) { fp@667: err = -EIO; fp@667: goto err_flashmap; fp@667: } fp@667: } fp@667: fp@667: if ((err = e1000_check_phy_reset_block(&adapter->hw))) fp@667: DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n"); fp@667: fp@667: /* if ksp3, indicate if it's port a being setup */ fp@667: if (pdev->device == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 && fp@667: e1000_ksp3_port_a == 0) fp@667: adapter->ksp3_port_a = 1; fp@667: e1000_ksp3_port_a++; fp@667: /* Reset for multiple KP3 adapters */ fp@667: if (e1000_ksp3_port_a == 4) fp@667: e1000_ksp3_port_a = 0; fp@667: fp@667: if (adapter->hw.mac_type >= e1000_82543) { fp@667: netdev->features = NETIF_F_SG | fp@667: NETIF_F_HW_CSUM | fp@667: NETIF_F_HW_VLAN_TX | fp@667: NETIF_F_HW_VLAN_RX | fp@667: NETIF_F_HW_VLAN_FILTER; fp@667: if (adapter->hw.mac_type == e1000_ich8lan) fp@667: netdev->features &= ~NETIF_F_HW_VLAN_FILTER; fp@667: } fp@667: fp@667: #ifdef NETIF_F_TSO fp@667: if ((adapter->hw.mac_type >= e1000_82544) && fp@667: (adapter->hw.mac_type != e1000_82547)) fp@667: netdev->features |= NETIF_F_TSO; fp@667: fp@667: #ifdef NETIF_F_TSO_IPV6 fp@667: if (adapter->hw.mac_type > e1000_82547_rev_2) fp@667: netdev->features |= NETIF_F_TSO_IPV6; fp@667: #endif fp@667: #endif fp@667: if (pci_using_dac) fp@667: netdev->features |= NETIF_F_HIGHDMA; fp@667: fp@667: netdev->features |= NETIF_F_LLTX; fp@667: fp@667: adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw); fp@667: fp@667: /* initialize eeprom parameters */ fp@667: fp@667: if (e1000_init_eeprom_params(&adapter->hw)) { fp@667: E1000_ERR("EEPROM initialization failed\n"); fp@667: return -EIO; fp@667: } fp@667: fp@667: /* before reading the EEPROM, reset the controller to fp@667: * put the device in a known good starting state */ fp@667: fp@667: e1000_reset_hw(&adapter->hw); fp@667: fp@667: /* make sure the EEPROM is good */ fp@667: fp@667: if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) { fp@667: /* On some hardware the first attemp fails */ fp@667: if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) { fp@667: DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n"); fp@667: err = -EIO; fp@667: goto err_eeprom; fp@667: } else fp@667: DPRINTK(PROBE, INFO, "The EEPROM Checksum failed in the first read, now OK\n"); fp@667: } fp@667: fp@667: /* copy the MAC address out of the EEPROM */ fp@667: fp@667: if (e1000_read_mac_addr(&adapter->hw)) fp@667: DPRINTK(PROBE, ERR, "EEPROM Read Error\n"); fp@667: memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len); fp@667: memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len); fp@667: fp@667: if (!is_valid_ether_addr(netdev->perm_addr)) { fp@667: DPRINTK(PROBE, ERR, "Invalid MAC Address\n"); fp@667: err = -EIO; fp@667: goto err_eeprom; fp@667: } fp@667: fp@667: e1000_read_part_num(&adapter->hw, &(adapter->part_num)); fp@667: fp@667: e1000_get_bus_info(&adapter->hw); fp@667: fp@667: init_timer(&adapter->tx_fifo_stall_timer); fp@667: adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall; fp@667: adapter->tx_fifo_stall_timer.data = (unsigned long) adapter; fp@667: fp@667: init_timer(&adapter->watchdog_timer); fp@667: adapter->watchdog_timer.function = &e1000_watchdog; fp@667: adapter->watchdog_timer.data = (unsigned long) adapter; fp@667: fp@667: init_timer(&adapter->phy_info_timer); fp@667: adapter->phy_info_timer.function = &e1000_update_phy_info; fp@667: adapter->phy_info_timer.data = (unsigned long) adapter; fp@667: fp@667: INIT_WORK(&adapter->reset_task, fp@667: (void (*)(void *))e1000_reset_task, netdev); fp@667: fp@667: /* we're going to reset, so assume we have no link for now */ fp@667: fp@667: netif_carrier_off(netdev); fp@667: netif_stop_queue(netdev); fp@667: fp@667: e1000_check_options(adapter); fp@667: fp@667: /* Initial Wake on LAN setting fp@667: * If APM wake is enabled in the EEPROM, fp@667: * enable the ACPI Magic Packet filter fp@667: */ fp@667: fp@667: switch (adapter->hw.mac_type) { fp@667: case e1000_82542_rev2_0: fp@667: case e1000_82542_rev2_1: fp@667: case e1000_82543: fp@667: break; fp@667: case e1000_82544: fp@667: e1000_read_eeprom(&adapter->hw, fp@667: EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data); fp@667: eeprom_apme_mask = E1000_EEPROM_82544_APM; fp@667: break; fp@667: case e1000_ich8lan: fp@667: e1000_read_eeprom(&adapter->hw, fp@667: EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data); fp@667: eeprom_apme_mask = E1000_EEPROM_ICH8_APME; fp@667: break; fp@667: case e1000_82546: fp@667: case e1000_82546_rev_3: fp@667: case e1000_82571: fp@667: case e1000_80003es2lan: fp@667: if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){ fp@667: e1000_read_eeprom(&adapter->hw, fp@667: EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); fp@667: break; fp@667: } fp@667: /* Fall Through */ fp@667: default: fp@667: e1000_read_eeprom(&adapter->hw, fp@667: EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); fp@667: break; fp@667: } fp@667: if (eeprom_data & eeprom_apme_mask) fp@667: adapter->wol |= E1000_WUFC_MAG; fp@667: fp@667: /* print bus type/speed/width info */ fp@667: { fp@667: struct e1000_hw *hw = &adapter->hw; fp@667: DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ", fp@667: ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : fp@667: (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")), fp@667: ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" : fp@667: (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" : fp@667: (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" : fp@667: (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" : fp@667: (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"), fp@667: ((hw->bus_width == e1000_bus_width_64) ? "64-bit" : fp@667: (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" : fp@667: (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" : fp@667: "32-bit")); fp@667: } fp@667: fp@667: for (i = 0; i < 6; i++) fp@667: printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':'); fp@667: fp@667: /* reset the hardware with the new settings */ fp@667: e1000_reset(adapter); fp@667: fp@667: /* If the controller is 82573 and f/w is AMT, do not set fp@667: * DRV_LOAD until the interface is up. For all other cases, fp@667: * let the f/w know that the h/w is now under the control fp@667: * of the driver. */ fp@667: if (adapter->hw.mac_type != e1000_82573 || fp@667: !e1000_check_mng_mode(&adapter->hw)) fp@667: e1000_get_hw_control(adapter); fp@667: fp@667: strcpy(netdev->name, "eth%d"); fp@667: if ((err = register_netdev(netdev))) fp@667: goto err_register; fp@667: fp@667: DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n"); fp@667: fp@667: cards_found++; fp@667: return 0; fp@667: fp@667: err_register: fp@667: if (adapter->hw.flash_address) fp@667: iounmap(adapter->hw.flash_address); fp@667: err_flashmap: fp@667: err_sw_init: fp@667: err_eeprom: fp@667: iounmap(adapter->hw.hw_addr); fp@667: err_ioremap: fp@667: free_netdev(netdev); fp@667: err_alloc_etherdev: fp@667: pci_release_regions(pdev); fp@667: return err; fp@667: } fp@667: fp@667: /** fp@667: * e1000_remove - Device Removal Routine fp@667: * @pdev: PCI device information struct fp@667: * fp@667: * e1000_remove is called by the PCI subsystem to alert the driver fp@667: * that it should release a PCI device. The could be caused by a fp@667: * Hot-Plug event, or because the driver is going to be removed from fp@667: * memory. fp@667: **/ fp@667: fp@667: static void __devexit fp@667: e1000_remove(struct pci_dev *pdev) fp@667: { fp@667: struct net_device *netdev = pci_get_drvdata(pdev); fp@667: struct e1000_adapter *adapter = netdev_priv(netdev); fp@667: uint32_t manc; fp@667: #ifdef CONFIG_E1000_NAPI fp@667: int i; fp@667: #endif fp@667: fp@667: flush_scheduled_work(); fp@667: fp@667: if (adapter->hw.mac_type >= e1000_82540 && fp@667: adapter->hw.mac_type != e1000_ich8lan && fp@667: adapter->hw.media_type == e1000_media_type_copper) { fp@667: manc = E1000_READ_REG(&adapter->hw, MANC); fp@667: if (manc & E1000_MANC_SMBUS_EN) { fp@667: manc |= E1000_MANC_ARP_EN; fp@667: E1000_WRITE_REG(&adapter->hw, MANC, manc); fp@667: } fp@667: } fp@667: fp@667: /* Release control of h/w to f/w. If f/w is AMT enabled, this fp@667: * would have already happened in close and is redundant. */ fp@667: e1000_release_hw_control(adapter); fp@667: fp@667: unregister_netdev(netdev); fp@667: #ifdef CONFIG_E1000_NAPI fp@667: for (i = 0; i < adapter->num_rx_queues; i++) fp@667: dev_put(&adapter->polling_netdev[i]); fp@667: #endif fp@667: fp@667: if (!e1000_check_phy_reset_block(&adapter->hw)) fp@667: e1000_phy_hw_reset(&adapter->hw); fp@667: fp@667: kfree(adapter->tx_ring); fp@667: kfree(adapter->rx_ring); fp@667: #ifdef CONFIG_E1000_NAPI fp@667: kfree(adapter->polling_netdev); fp@667: #endif fp@667: fp@667: iounmap(adapter->hw.hw_addr); fp@667: if (adapter->hw.flash_address) fp@667: iounmap(adapter->hw.flash_address); fp@667: pci_release_regions(pdev); fp@667: fp@667: free_netdev(netdev); fp@667: fp@667: pci_disable_device(pdev); fp@667: } fp@667: fp@667: /** fp@667: * e1000_sw_init - Initialize general software structures (struct e1000_adapter) fp@667: * @adapter: board private structure to initialize fp@667: * fp@667: * e1000_sw_init initializes the Adapter private data structure. fp@667: * Fields are initialized based on PCI device information and fp@667: * OS network device settings (MTU size). fp@667: **/ fp@667: fp@667: static int __devinit fp@667: e1000_sw_init(struct e1000_adapter *adapter) fp@667: { fp@667: struct e1000_hw *hw = &adapter->hw; fp@667: struct net_device *netdev = adapter->netdev; fp@667: struct pci_dev *pdev = adapter->pdev; fp@667: #ifdef CONFIG_E1000_NAPI fp@667: int i; fp@667: #endif fp@667: fp@667: /* PCI config space info */ fp@667: fp@667: hw->vendor_id = pdev->vendor; fp@667: hw->device_id = pdev->device; fp@667: hw->subsystem_vendor_id = pdev->subsystem_vendor; fp@667: hw->subsystem_id = pdev->subsystem_device; fp@667: fp@667: pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); fp@667: fp@667: pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word); fp@667: fp@667: adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; fp@667: adapter->rx_ps_bsize0 = E1000_RXBUFFER_128; fp@667: hw->max_frame_size = netdev->mtu + fp@667: ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; fp@667: hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE; fp@667: fp@667: /* identify the MAC */ fp@667: fp@667: if (e1000_set_mac_type(hw)) { fp@667: DPRINTK(PROBE, ERR, "Unknown MAC Type\n"); fp@667: return -EIO; fp@667: } fp@667: fp@667: switch (hw->mac_type) { fp@667: default: fp@667: break; fp@667: case e1000_82541: fp@667: case e1000_82547: fp@667: case e1000_82541_rev_2: fp@667: case e1000_82547_rev_2: fp@667: hw->phy_init_script = 1; fp@667: break; fp@667: } fp@667: fp@667: e1000_set_media_type(hw); fp@667: fp@667: hw->wait_autoneg_complete = FALSE; fp@667: hw->tbi_compatibility_en = TRUE; fp@667: hw->adaptive_ifs = TRUE; fp@667: fp@667: /* Copper options */ fp@667: fp@667: if (hw->media_type == e1000_media_type_copper) { fp@667: hw->mdix = AUTO_ALL_MODES; fp@667: hw->disable_polarity_correction = FALSE; fp@667: hw->master_slave = E1000_MASTER_SLAVE; fp@667: } fp@667: fp@667: adapter->num_tx_queues = 1; fp@667: adapter->num_rx_queues = 1; fp@667: fp@667: if (e1000_alloc_queues(adapter)) { fp@667: DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n"); fp@667: return -ENOMEM; fp@667: } fp@667: fp@667: #ifdef CONFIG_E1000_NAPI fp@667: for (i = 0; i < adapter->num_rx_queues; i++) { fp@667: adapter->polling_netdev[i].priv = adapter; fp@667: adapter->polling_netdev[i].poll = &e1000_clean; fp@667: adapter->polling_netdev[i].weight = 64; fp@667: dev_hold(&adapter->polling_netdev[i]); fp@667: set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state); fp@667: } fp@667: spin_lock_init(&adapter->tx_queue_lock); fp@667: #endif fp@667: fp@667: atomic_set(&adapter->irq_sem, 1); fp@667: spin_lock_init(&adapter->stats_lock); fp@667: fp@667: return 0; fp@667: } fp@667: fp@667: /** fp@667: * e1000_alloc_queues - Allocate memory for all rings fp@667: * @adapter: board private structure to initialize fp@667: * fp@667: * We allocate one ring per queue at run-time since we don't know the fp@667: * number of queues at compile-time. The polling_netdev array is fp@667: * intended for Multiqueue, but should work fine with a single queue. fp@667: **/ fp@667: fp@667: static int __devinit fp@667: e1000_alloc_queues(struct e1000_adapter *adapter) fp@667: { fp@667: int size; fp@667: fp@667: size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues; fp@667: adapter->tx_ring = kmalloc(size, GFP_KERNEL); fp@667: if (!adapter->tx_ring) fp@667: return -ENOMEM; fp@667: memset(adapter->tx_ring, 0, size); fp@667: fp@667: size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues; fp@667: adapter->rx_ring = kmalloc(size, GFP_KERNEL); fp@667: if (!adapter->rx_ring) { fp@667: kfree(adapter->tx_ring); fp@667: return -ENOMEM; fp@667: } fp@667: memset(adapter->rx_ring, 0, size); fp@667: fp@667: #ifdef CONFIG_E1000_NAPI fp@667: size = sizeof(struct net_device) * adapter->num_rx_queues; fp@667: adapter->polling_netdev = kmalloc(size, GFP_KERNEL); fp@667: if (!adapter->polling_netdev) { fp@667: kfree(adapter->tx_ring); fp@667: kfree(adapter->rx_ring); fp@667: return -ENOMEM; fp@667: } fp@667: memset(adapter->polling_netdev, 0, size); fp@667: #endif fp@667: fp@667: return E1000_SUCCESS; fp@667: } fp@667: fp@667: /** fp@667: * e1000_open - Called when a network interface is made active fp@667: * @netdev: network interface device structure fp@667: * fp@667: * Returns 0 on success, negative value on failure fp@667: * fp@667: * The open entry point is called when a network interface is made fp@667: * active by the system (IFF_UP). At this point all resources needed fp@667: * for transmit and receive operations are allocated, the interrupt fp@667: * handler is registered with the OS, the watchdog timer is started, fp@667: * and the stack is notified that the interface is ready. fp@667: **/ fp@667: fp@667: static int fp@667: e1000_open(struct net_device *netdev) fp@667: { fp@667: struct e1000_adapter *adapter = netdev_priv(netdev); fp@667: int err; fp@667: fp@667: /* disallow open during test */ fp@667: if (test_bit(__E1000_DRIVER_TESTING, &adapter->flags)) fp@667: return -EBUSY; fp@667: fp@667: /* allocate transmit descriptors */ fp@667: fp@667: if ((err = e1000_setup_all_tx_resources(adapter))) fp@667: goto err_setup_tx; fp@667: fp@667: /* allocate receive descriptors */ fp@667: fp@667: if ((err = e1000_setup_all_rx_resources(adapter))) fp@667: goto err_setup_rx; fp@667: fp@667: err = e1000_request_irq(adapter); fp@667: if (err) fp@667: goto err_up; fp@667: fp@667: e1000_power_up_phy(adapter); fp@667: fp@667: if ((err = e1000_up(adapter))) fp@667: goto err_up; fp@667: adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; fp@667: if ((adapter->hw.mng_cookie.status & fp@667: E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) { fp@667: e1000_update_mng_vlan(adapter); fp@667: } fp@667: fp@667: /* If AMT is enabled, let the firmware know that the network fp@667: * interface is now open */ fp@667: if (adapter->hw.mac_type == e1000_82573 && fp@667: e1000_check_mng_mode(&adapter->hw)) fp@667: e1000_get_hw_control(adapter); fp@667: fp@667: return E1000_SUCCESS; fp@667: fp@667: err_up: fp@667: e1000_free_all_rx_resources(adapter); fp@667: err_setup_rx: fp@667: e1000_free_all_tx_resources(adapter); fp@667: err_setup_tx: fp@667: e1000_reset(adapter); fp@667: fp@667: return err; fp@667: } fp@667: fp@667: /** fp@667: * e1000_close - Disables a network interface fp@667: * @netdev: network interface device structure fp@667: * fp@667: * Returns 0, this is not allowed to fail fp@667: * fp@667: * The close entry point is called when an interface is de-activated fp@667: * by the OS. The hardware is still under the drivers control, but fp@667: * needs to be disabled. A global MAC reset is issued to stop the fp@667: * hardware, and all transmit and receive resources are freed. fp@667: **/ fp@667: fp@667: static int fp@667: e1000_close(struct net_device *netdev) fp@667: { fp@667: struct e1000_adapter *adapter = netdev_priv(netdev); fp@667: fp@667: WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); fp@667: e1000_down(adapter); fp@667: e1000_power_down_phy(adapter); fp@667: e1000_free_irq(adapter); fp@667: fp@667: e1000_free_all_tx_resources(adapter); fp@667: e1000_free_all_rx_resources(adapter); fp@667: fp@667: if ((adapter->hw.mng_cookie.status & fp@667: E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) { fp@667: e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); fp@667: } fp@667: fp@667: /* If AMT is enabled, let the firmware know that the network fp@667: * interface is now closed */ fp@667: if (adapter->hw.mac_type == e1000_82573 && fp@667: e1000_check_mng_mode(&adapter->hw)) fp@667: e1000_release_hw_control(adapter); fp@667: fp@667: return 0; fp@667: } fp@667: fp@667: /** fp@667: * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary fp@667: * @adapter: address of board private structure fp@667: * @start: address of beginning of memory fp@667: * @len: length of memory fp@667: **/ fp@667: static boolean_t fp@667: e1000_check_64k_bound(struct e1000_adapter *adapter, fp@667: void *start, unsigned long len) fp@667: { fp@667: unsigned long begin = (unsigned long) start; fp@667: unsigned long end = begin + len; fp@667: fp@667: /* First rev 82545 and 82546 need to not allow any memory fp@667: * write location to cross 64k boundary due to errata 23 */ fp@667: if (adapter->hw.mac_type == e1000_82545 || fp@667: adapter->hw.mac_type == e1000_82546) { fp@667: return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE; fp@667: } fp@667: fp@667: return TRUE; fp@667: } fp@667: fp@667: /** fp@667: * e1000_setup_tx_resources - allocate Tx resources (Descriptors) fp@667: * @adapter: board private structure fp@667: * @txdr: tx descriptor ring (for a specific queue) to setup fp@667: * fp@667: * Return 0 on success, negative on failure fp@667: **/ fp@667: fp@667: static int fp@667: e1000_setup_tx_resources(struct e1000_adapter *adapter, fp@667: struct e1000_tx_ring *txdr) fp@667: { fp@667: struct pci_dev *pdev = adapter->pdev; fp@667: int size; fp@667: fp@667: size = sizeof(struct e1000_buffer) * txdr->count; fp@667: txdr->buffer_info = vmalloc(size); fp@667: if (!txdr->buffer_info) { fp@667: DPRINTK(PROBE, ERR, fp@667: "Unable to allocate memory for the transmit descriptor ring\n"); fp@667: return -ENOMEM; fp@667: } fp@667: memset(txdr->buffer_info, 0, size); fp@667: fp@667: /* round up to nearest 4K */ fp@667: fp@667: txdr->size = txdr->count * sizeof(struct e1000_tx_desc); fp@667: E1000_ROUNDUP(txdr->size, 4096); fp@667: fp@667: txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma); fp@667: if (!txdr->desc) { fp@667: setup_tx_desc_die: fp@667: vfree(txdr->buffer_info); fp@667: DPRINTK(PROBE, ERR, fp@667: "Unable to allocate memory for the transmit descriptor ring\n"); fp@667: return -ENOMEM; fp@667: } fp@667: fp@667: /* Fix for errata 23, can't cross 64kB boundary */ fp@667: if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { fp@667: void *olddesc = txdr->desc; fp@667: dma_addr_t olddma = txdr->dma; fp@667: DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes " fp@667: "at %p\n", txdr->size, txdr->desc); fp@667: /* Try again, without freeing the previous */ fp@667: txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma); fp@667: /* Failed allocation, critical failure */ fp@667: if (!txdr->desc) { fp@667: pci_free_consistent(pdev, txdr->size, olddesc, olddma); fp@667: goto setup_tx_desc_die; fp@667: } fp@667: fp@667: if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { fp@667: /* give up */ fp@667: pci_free_consistent(pdev, txdr->size, txdr->desc, fp@667: txdr->dma); fp@667: pci_free_consistent(pdev, txdr->size, olddesc, olddma); fp@667: DPRINTK(PROBE, ERR, fp@667: "Unable to allocate aligned memory " fp@667: "for the transmit descriptor ring\n"); fp@667: vfree(txdr->buffer_info); fp@667: return -ENOMEM; fp@667: } else { fp@667: /* Free old allocation, new allocation was successful */ fp@667: pci_free_consistent(pdev, txdr->size, olddesc, olddma); fp@667: } fp@667: } fp@667: memset(txdr->desc, 0, txdr->size); fp@667: fp@667: txdr->next_to_use = 0; fp@667: txdr->next_to_clean = 0; fp@667: spin_lock_init(&txdr->tx_lock); fp@667: fp@667: return 0; fp@667: } fp@667: fp@667: /** fp@667: * e1000_setup_all_tx_resources - wrapper to allocate Tx resources fp@667: * (Descriptors) for all queues fp@667: * @adapter: board private structure fp@667: * fp@667: * If this function returns with an error, then it's possible one or fp@667: * more of the rings is populated (while the rest are not). It is the fp@667: * callers duty to clean those orphaned rings. fp@667: * fp@667: * Return 0 on success, negative on failure fp@667: **/ fp@667: fp@667: int fp@667: e1000_setup_all_tx_resources(struct e1000_adapter *adapter) fp@667: { fp@667: int i, err = 0; fp@667: fp@667: for (i = 0; i < adapter->num_tx_queues; i++) { fp@667: err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]); fp@667: if (err) { fp@667: DPRINTK(PROBE, ERR, fp@667: "Allocation for Tx Queue %u failed\n", i); fp@667: break; fp@667: } fp@667: } fp@667: fp@667: return err; fp@667: } fp@667: fp@667: /** fp@667: * e1000_configure_tx - Configure 8254x Transmit Unit after Reset fp@667: * @adapter: board private structure fp@667: * fp@667: * Configure the Tx unit of the MAC after a reset. fp@667: **/ fp@667: fp@667: static void fp@667: e1000_configure_tx(struct e1000_adapter *adapter) fp@667: { fp@667: uint64_t tdba; fp@667: struct e1000_hw *hw = &adapter->hw; fp@667: uint32_t tdlen, tctl, tipg, tarc; fp@667: uint32_t ipgr1, ipgr2; fp@667: fp@667: /* Setup the HW Tx Head and Tail descriptor pointers */ fp@667: fp@667: switch (adapter->num_tx_queues) { fp@667: case 1: fp@667: default: fp@667: tdba = adapter->tx_ring[0].dma; fp@667: tdlen = adapter->tx_ring[0].count * fp@667: sizeof(struct e1000_tx_desc); fp@667: E1000_WRITE_REG(hw, TDLEN, tdlen); fp@667: E1000_WRITE_REG(hw, TDBAH, (tdba >> 32)); fp@667: E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL)); fp@667: E1000_WRITE_REG(hw, TDT, 0); fp@667: E1000_WRITE_REG(hw, TDH, 0); fp@667: adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH); fp@667: adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT); fp@667: break; fp@667: } fp@667: fp@667: /* Set the default values for the Tx Inter Packet Gap timer */ fp@667: fp@667: if (hw->media_type == e1000_media_type_fiber || fp@667: hw->media_type == e1000_media_type_internal_serdes) fp@667: tipg = DEFAULT_82543_TIPG_IPGT_FIBER; fp@667: else fp@667: tipg = DEFAULT_82543_TIPG_IPGT_COPPER; fp@667: fp@667: switch (hw->mac_type) { fp@667: case e1000_82542_rev2_0: fp@667: case e1000_82542_rev2_1: fp@667: tipg = DEFAULT_82542_TIPG_IPGT; fp@667: ipgr1 = DEFAULT_82542_TIPG_IPGR1; fp@667: ipgr2 = DEFAULT_82542_TIPG_IPGR2; fp@667: break; fp@667: case e1000_80003es2lan: fp@667: ipgr1 = DEFAULT_82543_TIPG_IPGR1; fp@667: ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; fp@667: break; fp@667: default: fp@667: ipgr1 = DEFAULT_82543_TIPG_IPGR1; fp@667: ipgr2 = DEFAULT_82543_TIPG_IPGR2; fp@667: break; fp@667: } fp@667: tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; fp@667: tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; fp@667: E1000_WRITE_REG(hw, TIPG, tipg); fp@667: fp@667: /* Set the Tx Interrupt Delay register */ fp@667: fp@667: E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay); fp@667: if (hw->mac_type >= e1000_82540) fp@667: E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay); fp@667: fp@667: /* Program the Transmit Control Register */ fp@667: fp@667: tctl = E1000_READ_REG(hw, TCTL); fp@667: fp@667: tctl &= ~E1000_TCTL_CT; fp@667: tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | fp@667: (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); fp@667: fp@667: #ifdef DISABLE_MULR fp@667: /* disable Multiple Reads for debugging */ fp@667: tctl &= ~E1000_TCTL_MULR; fp@667: #endif fp@667: fp@667: if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) { fp@667: tarc = E1000_READ_REG(hw, TARC0); fp@667: tarc |= ((1 << 25) | (1 << 21)); fp@667: E1000_WRITE_REG(hw, TARC0, tarc); fp@667: tarc = E1000_READ_REG(hw, TARC1); fp@667: tarc |= (1 << 25); fp@667: if (tctl & E1000_TCTL_MULR) fp@667: tarc &= ~(1 << 28); fp@667: else fp@667: tarc |= (1 << 28); fp@667: E1000_WRITE_REG(hw, TARC1, tarc); fp@667: } else if (hw->mac_type == e1000_80003es2lan) { fp@667: tarc = E1000_READ_REG(hw, TARC0); fp@667: tarc |= 1; fp@667: if (hw->media_type == e1000_media_type_internal_serdes) fp@667: tarc |= (1 << 20); fp@667: E1000_WRITE_REG(hw, TARC0, tarc); fp@667: tarc = E1000_READ_REG(hw, TARC1); fp@667: tarc |= 1; fp@667: E1000_WRITE_REG(hw, TARC1, tarc); fp@667: } fp@667: fp@667: e1000_config_collision_dist(hw); fp@667: fp@667: /* Setup Transmit Descriptor Settings for eop descriptor */ fp@667: adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP | fp@667: E1000_TXD_CMD_IFCS; fp@667: fp@667: if (hw->mac_type < e1000_82543) fp@667: adapter->txd_cmd |= E1000_TXD_CMD_RPS; fp@667: else fp@667: adapter->txd_cmd |= E1000_TXD_CMD_RS; fp@667: fp@667: /* Cache if we're 82544 running in PCI-X because we'll fp@667: * need this to apply a workaround later in the send path. */ fp@667: if (hw->mac_type == e1000_82544 && fp@667: hw->bus_type == e1000_bus_type_pcix) fp@667: adapter->pcix_82544 = 1; fp@667: fp@667: E1000_WRITE_REG(hw, TCTL, tctl); fp@667: fp@667: } fp@667: fp@667: /** fp@667: * e1000_setup_rx_resources - allocate Rx resources (Descriptors) fp@667: * @adapter: board private structure fp@667: * @rxdr: rx descriptor ring (for a specific queue) to setup fp@667: * fp@667: * Returns 0 on success, negative on failure fp@667: **/ fp@667: fp@667: static int fp@667: e1000_setup_rx_resources(struct e1000_adapter *adapter, fp@667: struct e1000_rx_ring *rxdr) fp@667: { fp@667: struct pci_dev *pdev = adapter->pdev; fp@667: int size, desc_len; fp@667: fp@667: size = sizeof(struct e1000_buffer) * rxdr->count; fp@667: rxdr->buffer_info = vmalloc(size); fp@667: if (!rxdr->buffer_info) { fp@667: DPRINTK(PROBE, ERR, fp@667: "Unable to allocate memory for the receive descriptor ring\n"); fp@667: return -ENOMEM; fp@667: } fp@667: memset(rxdr->buffer_info, 0, size); fp@667: fp@667: size = sizeof(struct e1000_ps_page) * rxdr->count; fp@667: rxdr->ps_page = kmalloc(size, GFP_KERNEL); fp@667: if (!rxdr->ps_page) { fp@667: vfree(rxdr->buffer_info); fp@667: DPRINTK(PROBE, ERR, fp@667: "Unable to allocate memory for the receive descriptor ring\n"); fp@667: return -ENOMEM; fp@667: } fp@667: memset(rxdr->ps_page, 0, size); fp@667: fp@667: size = sizeof(struct e1000_ps_page_dma) * rxdr->count; fp@667: rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL); fp@667: if (!rxdr->ps_page_dma) { fp@667: vfree(rxdr->buffer_info); fp@667: kfree(rxdr->ps_page); fp@667: DPRINTK(PROBE, ERR, fp@667: "Unable to allocate memory for the receive descriptor ring\n"); fp@667: return -ENOMEM; fp@667: } fp@667: memset(rxdr->ps_page_dma, 0, size); fp@667: fp@667: if (adapter->hw.mac_type <= e1000_82547_rev_2) fp@667: desc_len = sizeof(struct e1000_rx_desc); fp@667: else fp@667: desc_len = sizeof(union e1000_rx_desc_packet_split); fp@667: fp@667: /* Round up to nearest 4K */ fp@667: fp@667: rxdr->size = rxdr->count * desc_len; fp@667: E1000_ROUNDUP(rxdr->size, 4096); fp@667: fp@667: rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma); fp@667: fp@667: if (!rxdr->desc) { fp@667: DPRINTK(PROBE, ERR, fp@667: "Unable to allocate memory for the receive descriptor ring\n"); fp@667: setup_rx_desc_die: fp@667: vfree(rxdr->buffer_info); fp@667: kfree(rxdr->ps_page); fp@667: kfree(rxdr->ps_page_dma); fp@667: return -ENOMEM; fp@667: } fp@667: fp@667: /* Fix for errata 23, can't cross 64kB boundary */ fp@667: if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { fp@667: void *olddesc = rxdr->desc; fp@667: dma_addr_t olddma = rxdr->dma; fp@667: DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes " fp@667: "at %p\n", rxdr->size, rxdr->desc); fp@667: /* Try again, without freeing the previous */ fp@667: rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma); fp@667: /* Failed allocation, critical failure */ fp@667: if (!rxdr->desc) { fp@667: pci_free_consistent(pdev, rxdr->size, olddesc, olddma); fp@667: DPRINTK(PROBE, ERR, fp@667: "Unable to allocate memory " fp@667: "for the receive descriptor ring\n"); fp@667: goto setup_rx_desc_die; fp@667: } fp@667: fp@667: if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { fp@667: /* give up */ fp@667: pci_free_consistent(pdev, rxdr->size, rxdr->desc, fp@667: rxdr->dma); fp@667: pci_free_consistent(pdev, rxdr->size, olddesc, olddma); fp@667: DPRINTK(PROBE, ERR, fp@667: "Unable to allocate aligned memory " fp@667: "for the receive descriptor ring\n"); fp@667: goto setup_rx_desc_die; fp@667: } else { fp@667: /* Free old allocation, new allocation was successful */ fp@667: pci_free_consistent(pdev, rxdr->size, olddesc, olddma); fp@667: } fp@667: } fp@667: memset(rxdr->desc, 0, rxdr->size); fp@667: fp@667: rxdr->next_to_clean = 0; fp@667: rxdr->next_to_use = 0; fp@667: fp@667: return 0; fp@667: } fp@667: fp@667: /** fp@667: * e1000_setup_all_rx_resources - wrapper to allocate Rx resources fp@667: * (Descriptors) for all queues fp@667: * @adapter: board private structure fp@667: * fp@667: * If this function returns with an error, then it's possible one or fp@667: * more of the rings is populated (while the rest are not). It is the fp@667: * callers duty to clean those orphaned rings. fp@667: * fp@667: * Return 0 on success, negative on failure fp@667: **/ fp@667: fp@667: int fp@667: e1000_setup_all_rx_resources(struct e1000_adapter *adapter) fp@667: { fp@667: int i, err = 0; fp@667: fp@667: for (i = 0; i < adapter->num_rx_queues; i++) { fp@667: err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]); fp@667: if (err) { fp@667: DPRINTK(PROBE, ERR, fp@667: "Allocation for Rx Queue %u failed\n", i); fp@667: break; fp@667: } fp@667: } fp@667: fp@667: return err; fp@667: } fp@667: fp@667: /** fp@667: * e1000_setup_rctl - configure the receive control registers fp@667: * @adapter: Board private structure fp@667: **/ fp@667: #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \ fp@667: (((S) & (PAGE_SIZE - 1)) ? 1 : 0)) fp@667: static void fp@667: e1000_setup_rctl(struct e1000_adapter *adapter) fp@667: { fp@667: uint32_t rctl, rfctl; fp@667: uint32_t psrctl = 0; fp@667: #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT fp@667: uint32_t pages = 0; fp@667: #endif fp@667: fp@667: rctl = E1000_READ_REG(&adapter->hw, RCTL); fp@667: fp@667: rctl &= ~(3 << E1000_RCTL_MO_SHIFT); fp@667: fp@667: rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | fp@667: E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | fp@667: (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT); fp@667: fp@667: if (adapter->hw.tbi_compatibility_on == 1) fp@667: rctl |= E1000_RCTL_SBP; fp@667: else fp@667: rctl &= ~E1000_RCTL_SBP; fp@667: fp@667: if (adapter->netdev->mtu <= ETH_DATA_LEN) fp@667: rctl &= ~E1000_RCTL_LPE; fp@667: else fp@667: rctl |= E1000_RCTL_LPE; fp@667: fp@667: /* Setup buffer sizes */ fp@667: rctl &= ~E1000_RCTL_SZ_4096; fp@667: rctl |= E1000_RCTL_BSEX; fp@667: switch (adapter->rx_buffer_len) { fp@667: case E1000_RXBUFFER_256: fp@667: rctl |= E1000_RCTL_SZ_256; fp@667: rctl &= ~E1000_RCTL_BSEX; fp@667: break; fp@667: case E1000_RXBUFFER_512: fp@667: rctl |= E1000_RCTL_SZ_512; fp@667: rctl &= ~E1000_RCTL_BSEX; fp@667: break; fp@667: case E1000_RXBUFFER_1024: fp@667: rctl |= E1000_RCTL_SZ_1024; fp@667: rctl &= ~E1000_RCTL_BSEX; fp@667: break; fp@667: case E1000_RXBUFFER_2048: fp@667: default: fp@667: rctl |= E1000_RCTL_SZ_2048; fp@667: rctl &= ~E1000_RCTL_BSEX; fp@667: break; fp@667: case E1000_RXBUFFER_4096: fp@667: rctl |= E1000_RCTL_SZ_4096; fp@667: break; fp@667: case E1000_RXBUFFER_8192: fp@667: rctl |= E1000_RCTL_SZ_8192; fp@667: break; fp@667: case E1000_RXBUFFER_16384: fp@667: rctl |= E1000_RCTL_SZ_16384; fp@667: break; fp@667: } fp@667: fp@667: #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT fp@667: /* 82571 and greater support packet-split where the protocol fp@667: * header is placed in skb->data and the packet data is fp@667: * placed in pages hanging off of skb_shinfo(skb)->nr_frags. fp@667: * In the case of a non-split, skb->data is linearly filled, fp@667: * followed by the page buffers. Therefore, skb->data is fp@667: * sized to hold the largest protocol header. fp@667: */ fp@667: pages = PAGE_USE_COUNT(adapter->netdev->mtu); fp@667: if ((adapter->hw.mac_type > e1000_82547_rev_2) && (pages <= 3) && fp@667: PAGE_SIZE <= 16384) fp@667: adapter->rx_ps_pages = pages; fp@667: else fp@667: adapter->rx_ps_pages = 0; fp@667: #endif fp@667: if (adapter->rx_ps_pages) { fp@667: /* Configure extra packet-split registers */ fp@667: rfctl = E1000_READ_REG(&adapter->hw, RFCTL); fp@667: rfctl |= E1000_RFCTL_EXTEN; fp@667: /* disable IPv6 packet split support */ fp@667: rfctl |= E1000_RFCTL_IPV6_DIS; fp@667: E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl); fp@667: fp@667: rctl |= E1000_RCTL_DTYP_PS; fp@667: fp@667: psrctl |= adapter->rx_ps_bsize0 >> fp@667: E1000_PSRCTL_BSIZE0_SHIFT; fp@667: fp@667: switch (adapter->rx_ps_pages) { fp@667: case 3: fp@667: psrctl |= PAGE_SIZE << fp@667: E1000_PSRCTL_BSIZE3_SHIFT; fp@667: case 2: fp@667: psrctl |= PAGE_SIZE << fp@667: E1000_PSRCTL_BSIZE2_SHIFT; fp@667: case 1: fp@667: psrctl |= PAGE_SIZE >> fp@667: E1000_PSRCTL_BSIZE1_SHIFT; fp@667: break; fp@667: } fp@667: fp@667: E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl); fp@667: } fp@667: fp@667: E1000_WRITE_REG(&adapter->hw, RCTL, rctl); fp@667: } fp@667: fp@667: /** fp@667: * e1000_configure_rx - Configure 8254x Receive Unit after Reset fp@667: * @adapter: board private structure fp@667: * fp@667: * Configure the Rx unit of the MAC after a reset. fp@667: **/ fp@667: fp@667: static void fp@667: e1000_configure_rx(struct e1000_adapter *adapter) fp@667: { fp@667: uint64_t rdba; fp@667: struct e1000_hw *hw = &adapter->hw; fp@667: uint32_t rdlen, rctl, rxcsum, ctrl_ext; fp@667: fp@667: if (adapter->rx_ps_pages) { fp@667: /* this is a 32 byte descriptor */ fp@667: rdlen = adapter->rx_ring[0].count * fp@667: sizeof(union e1000_rx_desc_packet_split); fp@667: adapter->clean_rx = e1000_clean_rx_irq_ps; fp@667: adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps; fp@667: } else { fp@667: rdlen = adapter->rx_ring[0].count * fp@667: sizeof(struct e1000_rx_desc); fp@667: adapter->clean_rx = e1000_clean_rx_irq; fp@667: adapter->alloc_rx_buf = e1000_alloc_rx_buffers; fp@667: } fp@667: fp@667: /* disable receives while setting up the descriptors */ fp@667: rctl = E1000_READ_REG(hw, RCTL); fp@667: E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN); fp@667: fp@667: /* set the Receive Delay Timer Register */ fp@667: E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay); fp@667: fp@667: if (hw->mac_type >= e1000_82540) { fp@667: E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay); fp@667: if (adapter->itr > 1) fp@667: E1000_WRITE_REG(hw, ITR, fp@667: 1000000000 / (adapter->itr * 256)); fp@667: } fp@667: fp@667: if (hw->mac_type >= e1000_82571) { fp@667: ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); fp@667: /* Reset delay timers after every interrupt */ fp@667: ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR; fp@667: #ifdef CONFIG_E1000_NAPI fp@667: /* Auto-Mask interrupts upon ICR read. */ fp@667: ctrl_ext |= E1000_CTRL_EXT_IAME; fp@667: #endif fp@667: E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); fp@667: E1000_WRITE_REG(hw, IAM, ~0); fp@667: E1000_WRITE_FLUSH(hw); fp@667: } fp@667: fp@667: /* Setup the HW Rx Head and Tail Descriptor Pointers and fp@667: * the Base and Length of the Rx Descriptor Ring */ fp@667: switch (adapter->num_rx_queues) { fp@667: case 1: fp@667: default: fp@667: rdba = adapter->rx_ring[0].dma; fp@667: E1000_WRITE_REG(hw, RDLEN, rdlen); fp@667: E1000_WRITE_REG(hw, RDBAH, (rdba >> 32)); fp@667: E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL)); fp@667: E1000_WRITE_REG(hw, RDT, 0); fp@667: E1000_WRITE_REG(hw, RDH, 0); fp@667: adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH); fp@667: adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT); fp@667: break; fp@667: } fp@667: fp@667: /* Enable 82543 Receive Checksum Offload for TCP and UDP */ fp@667: if (hw->mac_type >= e1000_82543) { fp@667: rxcsum = E1000_READ_REG(hw, RXCSUM); fp@667: if (adapter->rx_csum == TRUE) { fp@667: rxcsum |= E1000_RXCSUM_TUOFL; fp@667: fp@667: /* Enable 82571 IPv4 payload checksum for UDP fragments fp@667: * Must be used in conjunction with packet-split. */ fp@667: if ((hw->mac_type >= e1000_82571) && fp@667: (adapter->rx_ps_pages)) { fp@667: rxcsum |= E1000_RXCSUM_IPPCSE; fp@667: } fp@667: } else { fp@667: rxcsum &= ~E1000_RXCSUM_TUOFL; fp@667: /* don't need to clear IPPCSE as it defaults to 0 */ fp@667: } fp@667: E1000_WRITE_REG(hw, RXCSUM, rxcsum); fp@667: } fp@667: fp@667: /* Enable Receives */ fp@667: E1000_WRITE_REG(hw, RCTL, rctl); fp@667: } fp@667: fp@667: /** fp@667: * e1000_free_tx_resources - Free Tx Resources per Queue fp@667: * @adapter: board private structure fp@667: * @tx_ring: Tx descriptor ring for a specific queue fp@667: * fp@667: * Free all transmit software resources fp@667: **/ fp@667: fp@667: static void fp@667: e1000_free_tx_resources(struct e1000_adapter *adapter, fp@667: struct e1000_tx_ring *tx_ring) fp@667: { fp@667: struct pci_dev *pdev = adapter->pdev; fp@667: fp@667: e1000_clean_tx_ring(adapter, tx_ring); fp@667: fp@667: vfree(tx_ring->buffer_info); fp@667: tx_ring->buffer_info = NULL; fp@667: fp@667: pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma); fp@667: fp@667: tx_ring->desc = NULL; fp@667: } fp@667: fp@667: /** fp@667: * e1000_free_all_tx_resources - Free Tx Resources for All Queues fp@667: * @adapter: board private structure fp@667: * fp@667: * Free all transmit software resources fp@667: **/ fp@667: fp@667: void fp@667: e1000_free_all_tx_resources(struct e1000_adapter *adapter) fp@667: { fp@667: int i; fp@667: fp@667: for (i = 0; i < adapter->num_tx_queues; i++) fp@667: e1000_free_tx_resources(adapter, &adapter->tx_ring[i]); fp@667: } fp@667: fp@667: static void fp@667: e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter, fp@667: struct e1000_buffer *buffer_info) fp@667: { fp@667: if (buffer_info->dma) { fp@667: pci_unmap_page(adapter->pdev, fp@667: buffer_info->dma, fp@667: buffer_info->length, fp@667: PCI_DMA_TODEVICE); fp@667: } fp@667: if (buffer_info->skb) fp@667: dev_kfree_skb_any(buffer_info->skb); fp@667: memset(buffer_info, 0, sizeof(struct e1000_buffer)); fp@667: } fp@667: fp@667: /** fp@667: * e1000_clean_tx_ring - Free Tx Buffers fp@667: * @adapter: board private structure fp@667: * @tx_ring: ring to be cleaned fp@667: **/ fp@667: fp@667: static void fp@667: e1000_clean_tx_ring(struct e1000_adapter *adapter, fp@667: struct e1000_tx_ring *tx_ring) fp@667: { fp@667: struct e1000_buffer *buffer_info; fp@667: unsigned long size; fp@667: unsigned int i; fp@667: fp@667: /* Free all the Tx ring sk_buffs */ fp@667: fp@667: for (i = 0; i < tx_ring->count; i++) { fp@667: buffer_info = &tx_ring->buffer_info[i]; fp@667: e1000_unmap_and_free_tx_resource(adapter, buffer_info); fp@667: } fp@667: fp@667: size = sizeof(struct e1000_buffer) * tx_ring->count; fp@667: memset(tx_ring->buffer_info, 0, size); fp@667: fp@667: /* Zero out the descriptor ring */ fp@667: fp@667: memset(tx_ring->desc, 0, tx_ring->size); fp@667: fp@667: tx_ring->next_to_use = 0; fp@667: tx_ring->next_to_clean = 0; fp@667: tx_ring->last_tx_tso = 0; fp@667: fp@667: writel(0, adapter->hw.hw_addr + tx_ring->tdh); fp@667: writel(0, adapter->hw.hw_addr + tx_ring->tdt); fp@667: } fp@667: fp@667: /** fp@667: * e1000_clean_all_tx_rings - Free Tx Buffers for all queues fp@667: * @adapter: board private structure fp@667: **/ fp@667: fp@667: static void fp@667: e1000_clean_all_tx_rings(struct e1000_adapter *adapter) fp@667: { fp@667: int i; fp@667: fp@667: for (i = 0; i < adapter->num_tx_queues; i++) fp@667: e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]); fp@667: } fp@667: fp@667: /** fp@667: * e1000_free_rx_resources - Free Rx Resources fp@667: * @adapter: board private structure fp@667: * @rx_ring: ring to clean the resources from fp@667: * fp@667: * Free all receive software resources fp@667: **/ fp@667: fp@667: static void fp@667: e1000_free_rx_resources(struct e1000_adapter *adapter, fp@667: struct e1000_rx_ring *rx_ring) fp@667: { fp@667: struct pci_dev *pdev = adapter->pdev; fp@667: fp@667: e1000_clean_rx_ring(adapter, rx_ring); fp@667: fp@667: vfree(rx_ring->buffer_info); fp@667: rx_ring->buffer_info = NULL; fp@667: kfree(rx_ring->ps_page); fp@667: rx_ring->ps_page = NULL; fp@667: kfree(rx_ring->ps_page_dma); fp@667: rx_ring->ps_page_dma = NULL; fp@667: fp@667: pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma); fp@667: fp@667: rx_ring->desc = NULL; fp@667: } fp@667: fp@667: /** fp@667: * e1000_free_all_rx_resources - Free Rx Resources for All Queues fp@667: * @adapter: board private structure fp@667: * fp@667: * Free all receive software resources fp@667: **/ fp@667: fp@667: void fp@667: e1000_free_all_rx_resources(struct e1000_adapter *adapter) fp@667: { fp@667: int i; fp@667: fp@667: for (i = 0; i < adapter->num_rx_queues; i++) fp@667: e1000_free_rx_resources(adapter, &adapter->rx_ring[i]); fp@667: } fp@667: fp@667: /** fp@667: * e1000_clean_rx_ring - Free Rx Buffers per Queue fp@667: * @adapter: board private structure fp@667: * @rx_ring: ring to free buffers from fp@667: **/ fp@667: fp@667: static void fp@667: e1000_clean_rx_ring(struct e1000_adapter *adapter, fp@667: struct e1000_rx_ring *rx_ring) fp@667: { fp@667: struct e1000_buffer *buffer_info; fp@667: struct e1000_ps_page *ps_page; fp@667: struct e1000_ps_page_dma *ps_page_dma; fp@667: struct pci_dev *pdev = adapter->pdev; fp@667: unsigned long size; fp@667: unsigned int i, j; fp@667: fp@667: /* Free all the Rx ring sk_buffs */ fp@667: for (i = 0; i < rx_ring->count; i++) { fp@667: buffer_info = &rx_ring->buffer_info[i]; fp@667: if (buffer_info->skb) { fp@667: pci_unmap_single(pdev, fp@667: buffer_info->dma, fp@667: buffer_info->length, fp@667: PCI_DMA_FROMDEVICE); fp@667: fp@667: dev_kfree_skb(buffer_info->skb); fp@667: buffer_info->skb = NULL; fp@667: } fp@667: ps_page = &rx_ring->ps_page[i]; fp@667: ps_page_dma = &rx_ring->ps_page_dma[i]; fp@667: for (j = 0; j < adapter->rx_ps_pages; j++) { fp@667: if (!ps_page->ps_page[j]) break; fp@667: pci_unmap_page(pdev, fp@667: ps_page_dma->ps_page_dma[j], fp@667: PAGE_SIZE, PCI_DMA_FROMDEVICE); fp@667: ps_page_dma->ps_page_dma[j] = 0; fp@667: put_page(ps_page->ps_page[j]); fp@667: ps_page->ps_page[j] = NULL; fp@667: } fp@667: } fp@667: fp@667: size = sizeof(struct e1000_buffer) * rx_ring->count; fp@667: memset(rx_ring->buffer_info, 0, size); fp@667: size = sizeof(struct e1000_ps_page) * rx_ring->count; fp@667: memset(rx_ring->ps_page, 0, size); fp@667: size = sizeof(struct e1000_ps_page_dma) * rx_ring->count; fp@667: memset(rx_ring->ps_page_dma, 0, size); fp@667: fp@667: /* Zero out the descriptor ring */ fp@667: fp@667: memset(rx_ring->desc, 0, rx_ring->size); fp@667: fp@667: rx_ring->next_to_clean = 0; fp@667: rx_ring->next_to_use = 0; fp@667: fp@667: writel(0, adapter->hw.hw_addr + rx_ring->rdh); fp@667: writel(0, adapter->hw.hw_addr + rx_ring->rdt); fp@667: } fp@667: fp@667: /** fp@667: * e1000_clean_all_rx_rings - Free Rx Buffers for all queues fp@667: * @adapter: board private structure fp@667: **/ fp@667: fp@667: static void fp@667: e1000_clean_all_rx_rings(struct e1000_adapter *adapter) fp@667: { fp@667: int i; fp@667: fp@667: for (i = 0; i < adapter->num_rx_queues; i++) fp@667: e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]); fp@667: } fp@667: fp@667: /* The 82542 2.0 (revision 2) needs to have the receive unit in reset fp@667: * and memory write and invalidate disabled for certain operations fp@667: */ fp@667: static void fp@667: e1000_enter_82542_rst(struct e1000_adapter *adapter) fp@667: { fp@667: struct net_device *netdev = adapter->netdev; fp@667: uint32_t rctl; fp@667: fp@667: e1000_pci_clear_mwi(&adapter->hw); fp@667: fp@667: rctl = E1000_READ_REG(&adapter->hw, RCTL); fp@667: rctl |= E1000_RCTL_RST; fp@667: E1000_WRITE_REG(&adapter->hw, RCTL, rctl); fp@667: E1000_WRITE_FLUSH(&adapter->hw); fp@667: mdelay(5); fp@667: fp@667: if (netif_running(netdev)) fp@667: e1000_clean_all_rx_rings(adapter); fp@667: } fp@667: fp@667: static void fp@667: e1000_leave_82542_rst(struct e1000_adapter *adapter) fp@667: { fp@667: struct net_device *netdev = adapter->netdev; fp@667: uint32_t rctl; fp@667: fp@667: rctl = E1000_READ_REG(&adapter->hw, RCTL); fp@667: rctl &= ~E1000_RCTL_RST; fp@667: E1000_WRITE_REG(&adapter->hw, RCTL, rctl); fp@667: E1000_WRITE_FLUSH(&adapter->hw); fp@667: mdelay(5); fp@667: fp@667: if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE) fp@667: e1000_pci_set_mwi(&adapter->hw); fp@667: fp@667: if (netif_running(netdev)) { fp@667: /* No need to loop, because 82542 supports only 1 queue */ fp@667: struct e1000_rx_ring *ring = &adapter->rx_ring[0]; fp@667: e1000_configure_rx(adapter); fp@667: adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring)); fp@667: } fp@667: } fp@667: fp@667: /** fp@667: * e1000_set_mac - Change the Ethernet Address of the NIC fp@667: * @netdev: network interface device structure fp@667: * @p: pointer to an address structure fp@667: * fp@667: * Returns 0 on success, negative on failure fp@667: **/ fp@667: fp@667: static int fp@667: e1000_set_mac(struct net_device *netdev, void *p) fp@667: { fp@667: struct e1000_adapter *adapter = netdev_priv(netdev); fp@667: struct sockaddr *addr = p; fp@667: fp@667: if (!is_valid_ether_addr(addr->sa_data)) fp@667: return -EADDRNOTAVAIL; fp@667: fp@667: /* 82542 2.0 needs to be in reset to write receive address registers */ fp@667: fp@667: if (adapter->hw.mac_type == e1000_82542_rev2_0) fp@667: e1000_enter_82542_rst(adapter); fp@667: fp@667: memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); fp@667: memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len); fp@667: fp@667: e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0); fp@667: fp@667: /* With 82571 controllers, LAA may be overwritten (with the default) fp@667: * due to controller reset from the other port. */ fp@667: if (adapter->hw.mac_type == e1000_82571) { fp@667: /* activate the work around */ fp@667: adapter->hw.laa_is_present = 1; fp@667: fp@667: /* Hold a copy of the LAA in RAR[14] This is done so that fp@667: * between the time RAR[0] gets clobbered and the time it fp@667: * gets fixed (in e1000_watchdog), the actual LAA is in one fp@667: * of the RARs and no incoming packets directed to this port fp@667: * are dropped. Eventaully the LAA will be in RAR[0] and fp@667: * RAR[14] */ fp@667: e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, fp@667: E1000_RAR_ENTRIES - 1); fp@667: } fp@667: fp@667: if (adapter->hw.mac_type == e1000_82542_rev2_0) fp@667: e1000_leave_82542_rst(adapter); fp@667: fp@667: return 0; fp@667: } fp@667: fp@667: /** fp@667: * e1000_set_multi - Multicast and Promiscuous mode set fp@667: * @netdev: network interface device structure fp@667: * fp@667: * The set_multi entry point is called whenever the multicast address fp@667: * list or the network interface flags are updated. This routine is fp@667: * responsible for configuring the hardware for proper multicast, fp@667: * promiscuous mode, and all-multi behavior. fp@667: **/ fp@667: fp@667: static void fp@667: e1000_set_multi(struct net_device *netdev) fp@667: { fp@667: struct e1000_adapter *adapter = netdev_priv(netdev); fp@667: struct e1000_hw *hw = &adapter->hw; fp@667: struct dev_mc_list *mc_ptr; fp@667: uint32_t rctl; fp@667: uint32_t hash_value; fp@667: int i, rar_entries = E1000_RAR_ENTRIES; fp@667: int mta_reg_count = (hw->mac_type == e1000_ich8lan) ? fp@667: E1000_NUM_MTA_REGISTERS_ICH8LAN : fp@667: E1000_NUM_MTA_REGISTERS; fp@667: fp@667: if (adapter->hw.mac_type == e1000_ich8lan) fp@667: rar_entries = E1000_RAR_ENTRIES_ICH8LAN; fp@667: fp@667: /* reserve RAR[14] for LAA over-write work-around */ fp@667: if (adapter->hw.mac_type == e1000_82571) fp@667: rar_entries--; fp@667: fp@667: /* Check for Promiscuous and All Multicast modes */ fp@667: fp@667: rctl = E1000_READ_REG(hw, RCTL); fp@667: fp@667: if (netdev->flags & IFF_PROMISC) { fp@667: rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); fp@667: } else if (netdev->flags & IFF_ALLMULTI) { fp@667: rctl |= E1000_RCTL_MPE; fp@667: rctl &= ~E1000_RCTL_UPE; fp@667: } else { fp@667: rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE); fp@667: } fp@667: fp@667: E1000_WRITE_REG(hw, RCTL, rctl); fp@667: fp@667: /* 82542 2.0 needs to be in reset to write receive address registers */ fp@667: fp@667: if (hw->mac_type == e1000_82542_rev2_0) fp@667: e1000_enter_82542_rst(adapter); fp@667: fp@667: /* load the first 14 multicast address into the exact filters 1-14 fp@667: * RAR 0 is used for the station MAC adddress fp@667: * if there are not 14 addresses, go ahead and clear the filters fp@667: * -- with 82571 controllers only 0-13 entries are filled here fp@667: */ fp@667: mc_ptr = netdev->mc_list; fp@667: fp@667: for (i = 1; i < rar_entries; i++) { fp@667: if (mc_ptr) { fp@667: e1000_rar_set(hw, mc_ptr->dmi_addr, i); fp@667: mc_ptr = mc_ptr->next; fp@667: } else { fp@667: E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0); fp@667: E1000_WRITE_FLUSH(hw); fp@667: E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0); fp@667: E1000_WRITE_FLUSH(hw); fp@667: } fp@667: } fp@667: fp@667: /* clear the old settings from the multicast hash table */ fp@667: fp@667: for (i = 0; i < mta_reg_count; i++) { fp@667: E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); fp@667: E1000_WRITE_FLUSH(hw); fp@667: } fp@667: fp@667: /* load any remaining addresses into the hash table */ fp@667: fp@667: for (; mc_ptr; mc_ptr = mc_ptr->next) { fp@667: hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr); fp@667: e1000_mta_set(hw, hash_value); fp@667: } fp@667: fp@667: if (hw->mac_type == e1000_82542_rev2_0) fp@667: e1000_leave_82542_rst(adapter); fp@667: } fp@667: fp@667: /* Need to wait a few seconds after link up to get diagnostic information from fp@667: * the phy */ fp@667: fp@667: static void fp@667: e1000_update_phy_info(unsigned long data) fp@667: { fp@667: struct e1000_adapter *adapter = (struct e1000_adapter *) data; fp@667: e1000_phy_get_info(&adapter->hw, &adapter->phy_info); fp@667: } fp@667: fp@667: /** fp@667: * e1000_82547_tx_fifo_stall - Timer Call-back fp@667: * @data: pointer to adapter cast into an unsigned long fp@667: **/ fp@667: fp@667: static void fp@667: e1000_82547_tx_fifo_stall(unsigned long data) fp@667: { fp@667: struct e1000_adapter *adapter = (struct e1000_adapter *) data; fp@667: struct net_device *netdev = adapter->netdev; fp@667: uint32_t tctl; fp@667: fp@667: if (atomic_read(&adapter->tx_fifo_stall)) { fp@667: if ((E1000_READ_REG(&adapter->hw, TDT) == fp@667: E1000_READ_REG(&adapter->hw, TDH)) && fp@667: (E1000_READ_REG(&adapter->hw, TDFT) == fp@667: E1000_READ_REG(&adapter->hw, TDFH)) && fp@667: (E1000_READ_REG(&adapter->hw, TDFTS) == fp@667: E1000_READ_REG(&adapter->hw, TDFHS))) { fp@667: tctl = E1000_READ_REG(&adapter->hw, TCTL); fp@667: E1000_WRITE_REG(&adapter->hw, TCTL, fp@667: tctl & ~E1000_TCTL_EN); fp@667: E1000_WRITE_REG(&adapter->hw, TDFT, fp@667: adapter->tx_head_addr); fp@667: E1000_WRITE_REG(&adapter->hw, TDFH, fp@667: adapter->tx_head_addr); fp@667: E1000_WRITE_REG(&adapter->hw, TDFTS, fp@667: adapter->tx_head_addr); fp@667: E1000_WRITE_REG(&adapter->hw, TDFHS, fp@667: adapter->tx_head_addr); fp@667: E1000_WRITE_REG(&adapter->hw, TCTL, tctl); fp@667: E1000_WRITE_FLUSH(&adapter->hw); fp@667: fp@667: adapter->tx_fifo_head = 0; fp@667: atomic_set(&adapter->tx_fifo_stall, 0); fp@667: netif_wake_queue(netdev); fp@667: } else { fp@667: mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1); fp@667: } fp@667: } fp@667: } fp@667: fp@667: /** fp@667: * e1000_watchdog - Timer Call-back fp@667: * @data: pointer to adapter cast into an unsigned long fp@667: **/ fp@667: static void fp@667: e1000_watchdog(unsigned long data) fp@667: { fp@667: struct e1000_adapter *adapter = (struct e1000_adapter *) data; fp@667: struct net_device *netdev = adapter->netdev; fp@667: struct e1000_tx_ring *txdr = adapter->tx_ring; fp@667: uint32_t link, tctl; fp@667: int32_t ret_val; fp@667: fp@667: ret_val = e1000_check_for_link(&adapter->hw); fp@667: if ((ret_val == E1000_ERR_PHY) && fp@667: (adapter->hw.phy_type == e1000_phy_igp_3) && fp@667: (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) { fp@667: /* See e1000_kumeran_lock_loss_workaround() */ fp@667: DPRINTK(LINK, INFO, fp@667: "Gigabit has been disabled, downgrading speed\n"); fp@667: } fp@667: if (adapter->hw.mac_type == e1000_82573) { fp@667: e1000_enable_tx_pkt_filtering(&adapter->hw); fp@667: if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id) fp@667: e1000_update_mng_vlan(adapter); fp@667: } fp@667: fp@667: if ((adapter->hw.media_type == e1000_media_type_internal_serdes) && fp@667: !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE)) fp@667: link = !adapter->hw.serdes_link_down; fp@667: else fp@667: link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU; fp@667: fp@667: if (link) { fp@667: if (!netif_carrier_ok(netdev)) { fp@667: boolean_t txb2b = 1; fp@667: e1000_get_speed_and_duplex(&adapter->hw, fp@667: &adapter->link_speed, fp@667: &adapter->link_duplex); fp@667: fp@667: DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n", fp@667: adapter->link_speed, fp@667: adapter->link_duplex == FULL_DUPLEX ? fp@667: "Full Duplex" : "Half Duplex"); fp@667: fp@667: /* tweak tx_queue_len according to speed/duplex fp@667: * and adjust the timeout factor */ fp@667: netdev->tx_queue_len = adapter->tx_queue_len; fp@667: adapter->tx_timeout_factor = 1; fp@667: switch (adapter->link_speed) { fp@667: case SPEED_10: fp@667: txb2b = 0; fp@667: netdev->tx_queue_len = 10; fp@667: adapter->tx_timeout_factor = 8; fp@667: break; fp@667: case SPEED_100: fp@667: txb2b = 0; fp@667: netdev->tx_queue_len = 100; fp@667: /* maybe add some timeout factor ? */ fp@667: break; fp@667: } fp@667: fp@667: if ((adapter->hw.mac_type == e1000_82571 || fp@667: adapter->hw.mac_type == e1000_82572) && fp@667: txb2b == 0) { fp@667: #define SPEED_MODE_BIT (1 << 21) fp@667: uint32_t tarc0; fp@667: tarc0 = E1000_READ_REG(&adapter->hw, TARC0); fp@667: tarc0 &= ~SPEED_MODE_BIT; fp@667: E1000_WRITE_REG(&adapter->hw, TARC0, tarc0); fp@667: } fp@667: fp@667: #ifdef NETIF_F_TSO fp@667: /* disable TSO for pcie and 10/100 speeds, to avoid fp@667: * some hardware issues */ fp@667: if (!adapter->tso_force && fp@667: adapter->hw.bus_type == e1000_bus_type_pci_express){ fp@667: switch (adapter->link_speed) { fp@667: case SPEED_10: fp@667: case SPEED_100: fp@667: DPRINTK(PROBE,INFO, fp@667: "10/100 speed: disabling TSO\n"); fp@667: netdev->features &= ~NETIF_F_TSO; fp@667: break; fp@667: case SPEED_1000: fp@667: netdev->features |= NETIF_F_TSO; fp@667: break; fp@667: default: fp@667: /* oops */ fp@667: break; fp@667: } fp@667: } fp@667: #endif fp@667: fp@667: /* enable transmits in the hardware, need to do this fp@667: * after setting TARC0 */ fp@667: tctl = E1000_READ_REG(&adapter->hw, TCTL); fp@667: tctl |= E1000_TCTL_EN; fp@667: E1000_WRITE_REG(&adapter->hw, TCTL, tctl); fp@667: fp@667: netif_carrier_on(netdev); fp@667: netif_wake_queue(netdev); fp@667: mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ); fp@667: adapter->smartspeed = 0; fp@667: } fp@667: } else { fp@667: if (netif_carrier_ok(netdev)) { fp@667: adapter->link_speed = 0; fp@667: adapter->link_duplex = 0; fp@667: DPRINTK(LINK, INFO, "NIC Link is Down\n"); fp@667: netif_carrier_off(netdev); fp@667: netif_stop_queue(netdev); fp@667: mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ); fp@667: fp@667: /* 80003ES2LAN workaround-- fp@667: * For packet buffer work-around on link down event; fp@667: * disable receives in the ISR and fp@667: * reset device here in the watchdog fp@667: */ fp@667: if (adapter->hw.mac_type == e1000_80003es2lan) { fp@667: /* reset device */ fp@667: schedule_work(&adapter->reset_task); fp@667: } fp@667: } fp@667: fp@667: e1000_smartspeed(adapter); fp@667: } fp@667: fp@667: e1000_update_stats(adapter); fp@667: fp@667: adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; fp@667: adapter->tpt_old = adapter->stats.tpt; fp@667: adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old; fp@667: adapter->colc_old = adapter->stats.colc; fp@667: fp@667: adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old; fp@667: adapter->gorcl_old = adapter->stats.gorcl; fp@667: adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old; fp@667: adapter->gotcl_old = adapter->stats.gotcl; fp@667: fp@667: e1000_update_adaptive(&adapter->hw); fp@667: fp@667: if (!netif_carrier_ok(netdev)) { fp@667: if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) { fp@667: /* We've lost link, so the controller stops DMA, fp@667: * but we've got queued Tx work that's never going fp@667: * to get done, so reset controller to flush Tx. fp@667: * (Do the reset outside of interrupt context). */ fp@667: adapter->tx_timeout_count++; fp@667: schedule_work(&adapter->reset_task); fp@667: } fp@667: } fp@667: fp@667: /* Dynamic mode for Interrupt Throttle Rate (ITR) */ fp@667: if (adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) { fp@667: /* Symmetric Tx/Rx gets a reduced ITR=2000; Total fp@667: * asymmetrical Tx or Rx gets ITR=8000; everyone fp@667: * else is between 2000-8000. */ fp@667: uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000; fp@667: uint32_t dif = (adapter->gotcl > adapter->gorcl ? fp@667: adapter->gotcl - adapter->gorcl : fp@667: adapter->gorcl - adapter->gotcl) / 10000; fp@667: uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000; fp@667: E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256)); fp@667: } fp@667: fp@667: /* Cause software interrupt to ensure rx ring is cleaned */ fp@667: E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0); fp@667: fp@667: /* Force detection of hung controller every watchdog period */ fp@667: adapter->detect_tx_hung = TRUE; fp@667: fp@667: /* With 82571 controllers, LAA may be overwritten due to controller fp@667: * reset from the other port. Set the appropriate LAA in RAR[0] */ fp@667: if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present) fp@667: e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0); fp@667: fp@667: /* Reset the timer */ fp@667: mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ); fp@667: } fp@667: fp@667: #define E1000_TX_FLAGS_CSUM 0x00000001 fp@667: #define E1000_TX_FLAGS_VLAN 0x00000002 fp@667: #define E1000_TX_FLAGS_TSO 0x00000004 fp@667: #define E1000_TX_FLAGS_IPV4 0x00000008 fp@667: #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 fp@667: #define E1000_TX_FLAGS_VLAN_SHIFT 16 fp@667: fp@667: static int fp@667: e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring, fp@667: struct sk_buff *skb) fp@667: { fp@667: #ifdef NETIF_F_TSO fp@667: struct e1000_context_desc *context_desc; fp@667: struct e1000_buffer *buffer_info; fp@667: unsigned int i; fp@667: uint32_t cmd_length = 0; fp@667: uint16_t ipcse = 0, tucse, mss; fp@667: uint8_t ipcss, ipcso, tucss, tucso, hdr_len; fp@667: int err; fp@667: fp@667: if (skb_is_gso(skb)) { fp@667: if (skb_header_cloned(skb)) { fp@667: err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); fp@667: if (err) fp@667: return err; fp@667: } fp@667: fp@667: hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2)); fp@667: mss = skb_shinfo(skb)->gso_size; fp@667: if (skb->protocol == htons(ETH_P_IP)) { fp@667: skb->nh.iph->tot_len = 0; fp@667: skb->nh.iph->check = 0; fp@667: skb->h.th->check = fp@667: ~csum_tcpudp_magic(skb->nh.iph->saddr, fp@667: skb->nh.iph->daddr, fp@667: 0, fp@667: IPPROTO_TCP, fp@667: 0); fp@667: cmd_length = E1000_TXD_CMD_IP; fp@667: ipcse = skb->h.raw - skb->data - 1; fp@667: #ifdef NETIF_F_TSO_IPV6 fp@667: } else if (skb->protocol == ntohs(ETH_P_IPV6)) { fp@667: skb->nh.ipv6h->payload_len = 0; fp@667: skb->h.th->check = fp@667: ~csum_ipv6_magic(&skb->nh.ipv6h->saddr, fp@667: &skb->nh.ipv6h->daddr, fp@667: 0, fp@667: IPPROTO_TCP, fp@667: 0); fp@667: ipcse = 0; fp@667: #endif fp@667: } fp@667: ipcss = skb->nh.raw - skb->data; fp@667: ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data; fp@667: tucss = skb->h.raw - skb->data; fp@667: tucso = (void *)&(skb->h.th->check) - (void *)skb->data; fp@667: tucse = 0; fp@667: fp@667: cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | fp@667: E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); fp@667: fp@667: i = tx_ring->next_to_use; fp@667: context_desc = E1000_CONTEXT_DESC(*tx_ring, i); fp@667: buffer_info = &tx_ring->buffer_info[i]; fp@667: fp@667: context_desc->lower_setup.ip_fields.ipcss = ipcss; fp@667: context_desc->lower_setup.ip_fields.ipcso = ipcso; fp@667: context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); fp@667: context_desc->upper_setup.tcp_fields.tucss = tucss; fp@667: context_desc->upper_setup.tcp_fields.tucso = tucso; fp@667: context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); fp@667: context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); fp@667: context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; fp@667: context_desc->cmd_and_length = cpu_to_le32(cmd_length); fp@667: fp@667: buffer_info->time_stamp = jiffies; fp@667: fp@667: if (++i == tx_ring->count) i = 0; fp@667: tx_ring->next_to_use = i; fp@667: fp@667: return TRUE; fp@667: } fp@667: #endif fp@667: fp@667: return FALSE; fp@667: } fp@667: fp@667: static boolean_t fp@667: e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring, fp@667: struct sk_buff *skb) fp@667: { fp@667: struct e1000_context_desc *context_desc; fp@667: struct e1000_buffer *buffer_info; fp@667: unsigned int i; fp@667: uint8_t css; fp@667: fp@667: if (likely(skb->ip_summed == CHECKSUM_HW)) { fp@667: css = skb->h.raw - skb->data; fp@667: fp@667: i = tx_ring->next_to_use; fp@667: buffer_info = &tx_ring->buffer_info[i]; fp@667: context_desc = E1000_CONTEXT_DESC(*tx_ring, i); fp@667: fp@667: context_desc->upper_setup.tcp_fields.tucss = css; fp@667: context_desc->upper_setup.tcp_fields.tucso = css + skb->csum; fp@667: context_desc->upper_setup.tcp_fields.tucse = 0; fp@667: context_desc->tcp_seg_setup.data = 0; fp@667: context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT); fp@667: fp@667: buffer_info->time_stamp = jiffies; fp@667: fp@667: if (unlikely(++i == tx_ring->count)) i = 0; fp@667: tx_ring->next_to_use = i; fp@667: fp@667: return TRUE; fp@667: } fp@667: fp@667: return FALSE; fp@667: } fp@667: fp@667: #define E1000_MAX_TXD_PWR 12 fp@667: #define E1000_MAX_DATA_PER_TXD (1<len; fp@667: unsigned int offset = 0, size, count = 0, i; fp@667: unsigned int f; fp@667: len -= skb->data_len; fp@667: fp@667: i = tx_ring->next_to_use; fp@667: fp@667: while (len) { fp@667: buffer_info = &tx_ring->buffer_info[i]; fp@667: size = min(len, max_per_txd); fp@667: #ifdef NETIF_F_TSO fp@667: /* Workaround for Controller erratum -- fp@667: * descriptor for non-tso packet in a linear SKB that follows a fp@667: * tso gets written back prematurely before the data is fully fp@667: * DMA'd to the controller */ fp@667: if (!skb->data_len && tx_ring->last_tx_tso && fp@667: !skb_is_gso(skb)) { fp@667: tx_ring->last_tx_tso = 0; fp@667: size -= 4; fp@667: } fp@667: fp@667: /* Workaround for premature desc write-backs fp@667: * in TSO mode. Append 4-byte sentinel desc */ fp@667: if (unlikely(mss && !nr_frags && size == len && size > 8)) fp@667: size -= 4; fp@667: #endif fp@667: /* work-around for errata 10 and it applies fp@667: * to all controllers in PCI-X mode fp@667: * The fix is to make sure that the first descriptor of a fp@667: * packet is smaller than 2048 - 16 - 16 (or 2016) bytes fp@667: */ fp@667: if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) && fp@667: (size > 2015) && count == 0)) fp@667: size = 2015; fp@667: fp@667: /* Workaround for potential 82544 hang in PCI-X. Avoid fp@667: * terminating buffers within evenly-aligned dwords. */ fp@667: if (unlikely(adapter->pcix_82544 && fp@667: !((unsigned long)(skb->data + offset + size - 1) & 4) && fp@667: size > 4)) fp@667: size -= 4; fp@667: fp@667: buffer_info->length = size; fp@667: buffer_info->dma = fp@667: pci_map_single(adapter->pdev, fp@667: skb->data + offset, fp@667: size, fp@667: PCI_DMA_TODEVICE); fp@667: buffer_info->time_stamp = jiffies; fp@667: fp@667: len -= size; fp@667: offset += size; fp@667: count++; fp@667: if (unlikely(++i == tx_ring->count)) i = 0; fp@667: } fp@667: fp@667: for (f = 0; f < nr_frags; f++) { fp@667: struct skb_frag_struct *frag; fp@667: fp@667: frag = &skb_shinfo(skb)->frags[f]; fp@667: len = frag->size; fp@667: offset = frag->page_offset; fp@667: fp@667: while (len) { fp@667: buffer_info = &tx_ring->buffer_info[i]; fp@667: size = min(len, max_per_txd); fp@667: #ifdef NETIF_F_TSO fp@667: /* Workaround for premature desc write-backs fp@667: * in TSO mode. Append 4-byte sentinel desc */ fp@667: if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8)) fp@667: size -= 4; fp@667: #endif fp@667: /* Workaround for potential 82544 hang in PCI-X. fp@667: * Avoid terminating buffers within evenly-aligned fp@667: * dwords. */ fp@667: if (unlikely(adapter->pcix_82544 && fp@667: !((unsigned long)(frag->page+offset+size-1) & 4) && fp@667: size > 4)) fp@667: size -= 4; fp@667: fp@667: buffer_info->length = size; fp@667: buffer_info->dma = fp@667: pci_map_page(adapter->pdev, fp@667: frag->page, fp@667: offset, fp@667: size, fp@667: PCI_DMA_TODEVICE); fp@667: buffer_info->time_stamp = jiffies; fp@667: fp@667: len -= size; fp@667: offset += size; fp@667: count++; fp@667: if (unlikely(++i == tx_ring->count)) i = 0; fp@667: } fp@667: } fp@667: fp@667: i = (i == 0) ? tx_ring->count - 1 : i - 1; fp@667: tx_ring->buffer_info[i].skb = skb; fp@667: tx_ring->buffer_info[first].next_to_watch = i; fp@667: fp@667: return count; fp@667: } fp@667: fp@667: static void fp@667: e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring, fp@667: int tx_flags, int count) fp@667: { fp@667: struct e1000_tx_desc *tx_desc = NULL; fp@667: struct e1000_buffer *buffer_info; fp@667: uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; fp@667: unsigned int i; fp@667: fp@667: if (likely(tx_flags & E1000_TX_FLAGS_TSO)) { fp@667: txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | fp@667: E1000_TXD_CMD_TSE; fp@667: txd_upper |= E1000_TXD_POPTS_TXSM << 8; fp@667: fp@667: if (likely(tx_flags & E1000_TX_FLAGS_IPV4)) fp@667: txd_upper |= E1000_TXD_POPTS_IXSM << 8; fp@667: } fp@667: fp@667: if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) { fp@667: txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; fp@667: txd_upper |= E1000_TXD_POPTS_TXSM << 8; fp@667: } fp@667: fp@667: if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) { fp@667: txd_lower |= E1000_TXD_CMD_VLE; fp@667: txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); fp@667: } fp@667: fp@667: i = tx_ring->next_to_use; fp@667: fp@667: while (count--) { fp@667: buffer_info = &tx_ring->buffer_info[i]; fp@667: tx_desc = E1000_TX_DESC(*tx_ring, i); fp@667: tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); fp@667: tx_desc->lower.data = fp@667: cpu_to_le32(txd_lower | buffer_info->length); fp@667: tx_desc->upper.data = cpu_to_le32(txd_upper); fp@667: if (unlikely(++i == tx_ring->count)) i = 0; fp@667: } fp@667: fp@667: tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); fp@667: fp@667: /* Force memory writes to complete before letting h/w fp@667: * know there are new descriptors to fetch. (Only fp@667: * applicable for weak-ordered memory model archs, fp@667: * such as IA-64). */ fp@667: wmb(); fp@667: fp@667: tx_ring->next_to_use = i; fp@667: writel(i, adapter->hw.hw_addr + tx_ring->tdt); fp@667: } fp@667: fp@667: /** fp@667: * 82547 workaround to avoid controller hang in half-duplex environment. fp@667: * The workaround is to avoid queuing a large packet that would span fp@667: * the internal Tx FIFO ring boundary by notifying the stack to resend fp@667: * the packet at a later time. This gives the Tx FIFO an opportunity to fp@667: * flush all packets. When that occurs, we reset the Tx FIFO pointers fp@667: * to the beginning of the Tx FIFO. fp@667: **/ fp@667: fp@667: #define E1000_FIFO_HDR 0x10 fp@667: #define E1000_82547_PAD_LEN 0x3E0 fp@667: fp@667: static int fp@667: e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb) fp@667: { fp@667: uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head; fp@667: uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR; fp@667: fp@667: E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR); fp@667: fp@667: if (adapter->link_duplex != HALF_DUPLEX) fp@667: goto no_fifo_stall_required; fp@667: fp@667: if (atomic_read(&adapter->tx_fifo_stall)) fp@667: return 1; fp@667: fp@667: if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) { fp@667: atomic_set(&adapter->tx_fifo_stall, 1); fp@667: return 1; fp@667: } fp@667: fp@667: no_fifo_stall_required: fp@667: adapter->tx_fifo_head += skb_fifo_len; fp@667: if (adapter->tx_fifo_head >= adapter->tx_fifo_size) fp@667: adapter->tx_fifo_head -= adapter->tx_fifo_size; fp@667: return 0; fp@667: } fp@667: fp@667: #define MINIMUM_DHCP_PACKET_SIZE 282 fp@667: static int fp@667: e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb) fp@667: { fp@667: struct e1000_hw *hw = &adapter->hw; fp@667: uint16_t length, offset; fp@667: if (vlan_tx_tag_present(skb)) { fp@667: if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) && fp@667: ( adapter->hw.mng_cookie.status & fp@667: E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) ) fp@667: return 0; fp@667: } fp@667: if (skb->len > MINIMUM_DHCP_PACKET_SIZE) { fp@667: struct ethhdr *eth = (struct ethhdr *) skb->data; fp@667: if ((htons(ETH_P_IP) == eth->h_proto)) { fp@667: const struct iphdr *ip = fp@667: (struct iphdr *)((uint8_t *)skb->data+14); fp@667: if (IPPROTO_UDP == ip->protocol) { fp@667: struct udphdr *udp = fp@667: (struct udphdr *)((uint8_t *)ip + fp@667: (ip->ihl << 2)); fp@667: if (ntohs(udp->dest) == 67) { fp@667: offset = (uint8_t *)udp + 8 - skb->data; fp@667: length = skb->len - offset; fp@667: fp@667: return e1000_mng_write_dhcp_info(hw, fp@667: (uint8_t *)udp + 8, fp@667: length); fp@667: } fp@667: } fp@667: } fp@667: } fp@667: return 0; fp@667: } fp@667: fp@667: #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 ) fp@667: static int fp@667: e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev) fp@667: { fp@667: struct e1000_adapter *adapter = netdev_priv(netdev); fp@667: struct e1000_tx_ring *tx_ring; fp@667: unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD; fp@667: unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; fp@667: unsigned int tx_flags = 0; fp@667: unsigned int len = skb->len; fp@667: unsigned long flags; fp@667: unsigned int nr_frags = 0; fp@667: unsigned int mss = 0; fp@667: int count = 0; fp@667: int tso; fp@667: unsigned int f; fp@667: len -= skb->data_len; fp@667: fp@667: tx_ring = adapter->tx_ring; fp@667: fp@667: if (unlikely(skb->len <= 0)) { fp@667: dev_kfree_skb_any(skb); fp@667: return NETDEV_TX_OK; fp@667: } fp@667: fp@667: #ifdef NETIF_F_TSO fp@667: mss = skb_shinfo(skb)->gso_size; fp@667: /* The controller does a simple calculation to fp@667: * make sure there is enough room in the FIFO before fp@667: * initiating the DMA for each buffer. The calc is: fp@667: * 4 = ceil(buffer len/mss). To make sure we don't fp@667: * overrun the FIFO, adjust the max buffer len if mss fp@667: * drops. */ fp@667: if (mss) { fp@667: uint8_t hdr_len; fp@667: max_per_txd = min(mss << 2, max_per_txd); fp@667: max_txd_pwr = fls(max_per_txd) - 1; fp@667: fp@667: /* TSO Workaround for 82571/2/3 Controllers -- if skb->data fp@667: * points to just header, pull a few bytes of payload from fp@667: * frags into skb->data */ fp@667: hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2)); fp@667: if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) { fp@667: switch (adapter->hw.mac_type) { fp@667: unsigned int pull_size; fp@667: case e1000_82571: fp@667: case e1000_82572: fp@667: case e1000_82573: fp@667: case e1000_ich8lan: fp@667: pull_size = min((unsigned int)4, skb->data_len); fp@667: if (!__pskb_pull_tail(skb, pull_size)) { fp@667: DPRINTK(DRV, ERR, fp@667: "__pskb_pull_tail failed.\n"); fp@667: dev_kfree_skb_any(skb); fp@667: return NETDEV_TX_OK; fp@667: } fp@667: len = skb->len - skb->data_len; fp@667: break; fp@667: default: fp@667: /* do nothing */ fp@667: break; fp@667: } fp@667: } fp@667: } fp@667: fp@667: /* reserve a descriptor for the offload context */ fp@667: if ((mss) || (skb->ip_summed == CHECKSUM_HW)) fp@667: count++; fp@667: count++; fp@667: #else fp@667: if (skb->ip_summed == CHECKSUM_HW) fp@667: count++; fp@667: #endif fp@667: fp@667: #ifdef NETIF_F_TSO fp@667: /* Controller Erratum workaround */ fp@667: if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb)) fp@667: count++; fp@667: #endif fp@667: fp@667: count += TXD_USE_COUNT(len, max_txd_pwr); fp@667: fp@667: if (adapter->pcix_82544) fp@667: count++; fp@667: fp@667: /* work-around for errata 10 and it applies to all controllers fp@667: * in PCI-X mode, so add one more descriptor to the count fp@667: */ fp@667: if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) && fp@667: (len > 2015))) fp@667: count++; fp@667: fp@667: nr_frags = skb_shinfo(skb)->nr_frags; fp@667: for (f = 0; f < nr_frags; f++) fp@667: count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size, fp@667: max_txd_pwr); fp@667: if (adapter->pcix_82544) fp@667: count += nr_frags; fp@667: fp@667: fp@667: if (adapter->hw.tx_pkt_filtering && fp@667: (adapter->hw.mac_type == e1000_82573)) fp@667: e1000_transfer_dhcp_info(adapter, skb); fp@667: fp@667: local_irq_save(flags); fp@667: if (!spin_trylock(&tx_ring->tx_lock)) { fp@667: /* Collision - tell upper layer to requeue */ fp@667: local_irq_restore(flags); fp@667: return NETDEV_TX_LOCKED; fp@667: } fp@667: fp@667: /* need: count + 2 desc gap to keep tail from touching fp@667: * head, otherwise try next time */ fp@667: if (unlikely(E1000_DESC_UNUSED(tx_ring) < count + 2)) { fp@667: netif_stop_queue(netdev); fp@667: spin_unlock_irqrestore(&tx_ring->tx_lock, flags); fp@667: return NETDEV_TX_BUSY; fp@667: } fp@667: fp@667: if (unlikely(adapter->hw.mac_type == e1000_82547)) { fp@667: if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) { fp@667: netif_stop_queue(netdev); fp@667: mod_timer(&adapter->tx_fifo_stall_timer, jiffies); fp@667: spin_unlock_irqrestore(&tx_ring->tx_lock, flags); fp@667: return NETDEV_TX_BUSY; fp@667: } fp@667: } fp@667: fp@667: if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) { fp@667: tx_flags |= E1000_TX_FLAGS_VLAN; fp@667: tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT); fp@667: } fp@667: fp@667: first = tx_ring->next_to_use; fp@667: fp@667: tso = e1000_tso(adapter, tx_ring, skb); fp@667: if (tso < 0) { fp@667: dev_kfree_skb_any(skb); fp@667: spin_unlock_irqrestore(&tx_ring->tx_lock, flags); fp@667: return NETDEV_TX_OK; fp@667: } fp@667: fp@667: if (likely(tso)) { fp@667: tx_ring->last_tx_tso = 1; fp@667: tx_flags |= E1000_TX_FLAGS_TSO; fp@667: } else if (likely(e1000_tx_csum(adapter, tx_ring, skb))) fp@667: tx_flags |= E1000_TX_FLAGS_CSUM; fp@667: fp@667: /* Old method was to assume IPv4 packet by default if TSO was enabled. fp@667: * 82571 hardware supports TSO capabilities for IPv6 as well... fp@667: * no longer assume, we must. */ fp@667: if (likely(skb->protocol == htons(ETH_P_IP))) fp@667: tx_flags |= E1000_TX_FLAGS_IPV4; fp@667: fp@667: e1000_tx_queue(adapter, tx_ring, tx_flags, fp@667: e1000_tx_map(adapter, tx_ring, skb, first, fp@667: max_per_txd, nr_frags, mss)); fp@667: fp@667: netdev->trans_start = jiffies; fp@667: fp@667: /* Make sure there is space in the ring for the next send. */ fp@667: if (unlikely(E1000_DESC_UNUSED(tx_ring) < MAX_SKB_FRAGS + 2)) fp@667: netif_stop_queue(netdev); fp@667: fp@667: spin_unlock_irqrestore(&tx_ring->tx_lock, flags); fp@667: return NETDEV_TX_OK; fp@667: } fp@667: fp@667: /** fp@667: * e1000_tx_timeout - Respond to a Tx Hang fp@667: * @netdev: network interface device structure fp@667: **/ fp@667: fp@667: static void fp@667: e1000_tx_timeout(struct net_device *netdev) fp@667: { fp@667: struct e1000_adapter *adapter = netdev_priv(netdev); fp@667: fp@667: /* Do the reset outside of interrupt context */ fp@667: adapter->tx_timeout_count++; fp@667: schedule_work(&adapter->reset_task); fp@667: } fp@667: fp@667: static void fp@667: e1000_reset_task(struct net_device *netdev) fp@667: { fp@667: struct e1000_adapter *adapter = netdev_priv(netdev); fp@667: fp@667: e1000_reinit_locked(adapter); fp@667: } fp@667: fp@667: /** fp@667: * e1000_get_stats - Get System Network Statistics fp@667: * @netdev: network interface device structure fp@667: * fp@667: * Returns the address of the device statistics structure. fp@667: * The statistics are actually updated from the timer callback. fp@667: **/ fp@667: fp@667: static struct net_device_stats * fp@667: e1000_get_stats(struct net_device *netdev) fp@667: { fp@667: struct e1000_adapter *adapter = netdev_priv(netdev); fp@667: fp@667: /* only return the current stats */ fp@667: return &adapter->net_stats; fp@667: } fp@667: fp@667: /** fp@667: * e1000_change_mtu - Change the Maximum Transfer Unit fp@667: * @netdev: network interface device structure fp@667: * @new_mtu: new value for maximum frame size fp@667: * fp@667: * Returns 0 on success, negative on failure fp@667: **/ fp@667: fp@667: static int fp@667: e1000_change_mtu(struct net_device *netdev, int new_mtu) fp@667: { fp@667: struct e1000_adapter *adapter = netdev_priv(netdev); fp@667: int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; fp@667: uint16_t eeprom_data = 0; fp@667: fp@667: if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) || fp@667: (max_frame > MAX_JUMBO_FRAME_SIZE)) { fp@667: DPRINTK(PROBE, ERR, "Invalid MTU setting\n"); fp@667: return -EINVAL; fp@667: } fp@667: fp@667: /* Adapter-specific max frame size limits. */ fp@667: switch (adapter->hw.mac_type) { fp@667: case e1000_undefined ... e1000_82542_rev2_1: fp@667: case e1000_ich8lan: fp@667: if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) { fp@667: DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n"); fp@667: return -EINVAL; fp@667: } fp@667: break; fp@667: case e1000_82573: fp@667: /* only enable jumbo frames if ASPM is disabled completely fp@667: * this means both bits must be zero in 0x1A bits 3:2 */ fp@667: e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1, fp@667: &eeprom_data); fp@667: if (eeprom_data & EEPROM_WORD1A_ASPM_MASK) { fp@667: if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) { fp@667: DPRINTK(PROBE, ERR, fp@667: "Jumbo Frames not supported.\n"); fp@667: return -EINVAL; fp@667: } fp@667: break; fp@667: } fp@667: /* fall through to get support */ fp@667: case e1000_82571: fp@667: case e1000_82572: fp@667: case e1000_80003es2lan: fp@667: #define MAX_STD_JUMBO_FRAME_SIZE 9234 fp@667: if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) { fp@667: DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n"); fp@667: return -EINVAL; fp@667: } fp@667: break; fp@667: default: fp@667: /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */ fp@667: break; fp@667: } fp@667: fp@667: /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN fp@667: * means we reserve 2 more, this pushes us to allocate from the next fp@667: * larger slab size fp@667: * i.e. RXBUFFER_2048 --> size-4096 slab */ fp@667: fp@667: if (max_frame <= E1000_RXBUFFER_256) fp@667: adapter->rx_buffer_len = E1000_RXBUFFER_256; fp@667: else if (max_frame <= E1000_RXBUFFER_512) fp@667: adapter->rx_buffer_len = E1000_RXBUFFER_512; fp@667: else if (max_frame <= E1000_RXBUFFER_1024) fp@667: adapter->rx_buffer_len = E1000_RXBUFFER_1024; fp@667: else if (max_frame <= E1000_RXBUFFER_2048) fp@667: adapter->rx_buffer_len = E1000_RXBUFFER_2048; fp@667: else if (max_frame <= E1000_RXBUFFER_4096) fp@667: adapter->rx_buffer_len = E1000_RXBUFFER_4096; fp@667: else if (max_frame <= E1000_RXBUFFER_8192) fp@667: adapter->rx_buffer_len = E1000_RXBUFFER_8192; fp@667: else if (max_frame <= E1000_RXBUFFER_16384) fp@667: adapter->rx_buffer_len = E1000_RXBUFFER_16384; fp@667: fp@667: /* adjust allocation if LPE protects us, and we aren't using SBP */ fp@667: if (!adapter->hw.tbi_compatibility_on && fp@667: ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) || fp@667: (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))) fp@667: adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; fp@667: fp@667: netdev->mtu = new_mtu; fp@667: fp@667: if (netif_running(netdev)) fp@667: e1000_reinit_locked(adapter); fp@667: fp@667: adapter->hw.max_frame_size = max_frame; fp@667: fp@667: return 0; fp@667: } fp@667: fp@667: /** fp@667: * e1000_update_stats - Update the board statistics counters fp@667: * @adapter: board private structure fp@667: **/ fp@667: fp@667: void fp@667: e1000_update_stats(struct e1000_adapter *adapter) fp@667: { fp@667: struct e1000_hw *hw = &adapter->hw; fp@667: struct pci_dev *pdev = adapter->pdev; fp@667: unsigned long flags; fp@667: uint16_t phy_tmp; fp@667: fp@667: #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF fp@667: fp@667: /* fp@667: * Prevent stats update while adapter is being reset, or if the pci fp@667: * connection is down. fp@667: */ fp@667: if (adapter->link_speed == 0) fp@667: return; fp@667: if (pdev->error_state && pdev->error_state != pci_channel_io_normal) fp@667: return; fp@667: fp@667: spin_lock_irqsave(&adapter->stats_lock, flags); fp@667: fp@667: /* these counters are modified from e1000_adjust_tbi_stats, fp@667: * called from the interrupt context, so they must only fp@667: * be written while holding adapter->stats_lock fp@667: */ fp@667: fp@667: adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS); fp@667: adapter->stats.gprc += E1000_READ_REG(hw, GPRC); fp@667: adapter->stats.gorcl += E1000_READ_REG(hw, GORCL); fp@667: adapter->stats.gorch += E1000_READ_REG(hw, GORCH); fp@667: adapter->stats.bprc += E1000_READ_REG(hw, BPRC); fp@667: adapter->stats.mprc += E1000_READ_REG(hw, MPRC); fp@667: adapter->stats.roc += E1000_READ_REG(hw, ROC); fp@667: fp@667: if (adapter->hw.mac_type != e1000_ich8lan) { fp@667: adapter->stats.prc64 += E1000_READ_REG(hw, PRC64); fp@667: adapter->stats.prc127 += E1000_READ_REG(hw, PRC127); fp@667: adapter->stats.prc255 += E1000_READ_REG(hw, PRC255); fp@667: adapter->stats.prc511 += E1000_READ_REG(hw, PRC511); fp@667: adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023); fp@667: adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522); fp@667: } fp@667: fp@667: adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS); fp@667: adapter->stats.mpc += E1000_READ_REG(hw, MPC); fp@667: adapter->stats.scc += E1000_READ_REG(hw, SCC); fp@667: adapter->stats.ecol += E1000_READ_REG(hw, ECOL); fp@667: adapter->stats.mcc += E1000_READ_REG(hw, MCC); fp@667: adapter->stats.latecol += E1000_READ_REG(hw, LATECOL); fp@667: adapter->stats.dc += E1000_READ_REG(hw, DC); fp@667: adapter->stats.sec += E1000_READ_REG(hw, SEC); fp@667: adapter->stats.rlec += E1000_READ_REG(hw, RLEC); fp@667: adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC); fp@667: adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC); fp@667: adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC); fp@667: adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC); fp@667: adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC); fp@667: adapter->stats.gptc += E1000_READ_REG(hw, GPTC); fp@667: adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL); fp@667: adapter->stats.gotch += E1000_READ_REG(hw, GOTCH); fp@667: adapter->stats.rnbc += E1000_READ_REG(hw, RNBC); fp@667: adapter->stats.ruc += E1000_READ_REG(hw, RUC); fp@667: adapter->stats.rfc += E1000_READ_REG(hw, RFC); fp@667: adapter->stats.rjc += E1000_READ_REG(hw, RJC); fp@667: adapter->stats.torl += E1000_READ_REG(hw, TORL); fp@667: adapter->stats.torh += E1000_READ_REG(hw, TORH); fp@667: adapter->stats.totl += E1000_READ_REG(hw, TOTL); fp@667: adapter->stats.toth += E1000_READ_REG(hw, TOTH); fp@667: adapter->stats.tpr += E1000_READ_REG(hw, TPR); fp@667: fp@667: if (adapter->hw.mac_type != e1000_ich8lan) { fp@667: adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64); fp@667: adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127); fp@667: adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255); fp@667: adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511); fp@667: adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023); fp@667: adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522); fp@667: } fp@667: fp@667: adapter->stats.mptc += E1000_READ_REG(hw, MPTC); fp@667: adapter->stats.bptc += E1000_READ_REG(hw, BPTC); fp@667: fp@667: /* used for adaptive IFS */ fp@667: fp@667: hw->tx_packet_delta = E1000_READ_REG(hw, TPT); fp@667: adapter->stats.tpt += hw->tx_packet_delta; fp@667: hw->collision_delta = E1000_READ_REG(hw, COLC); fp@667: adapter->stats.colc += hw->collision_delta; fp@667: fp@667: if (hw->mac_type >= e1000_82543) { fp@667: adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC); fp@667: adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC); fp@667: adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS); fp@667: adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR); fp@667: adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC); fp@667: adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC); fp@667: } fp@667: if (hw->mac_type > e1000_82547_rev_2) { fp@667: adapter->stats.iac += E1000_READ_REG(hw, IAC); fp@667: adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC); fp@667: fp@667: if (adapter->hw.mac_type != e1000_ich8lan) { fp@667: adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC); fp@667: adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC); fp@667: adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC); fp@667: adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC); fp@667: adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC); fp@667: adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC); fp@667: adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC); fp@667: } fp@667: } fp@667: fp@667: /* Fill out the OS statistics structure */ fp@667: fp@667: adapter->net_stats.rx_packets = adapter->stats.gprc; fp@667: adapter->net_stats.tx_packets = adapter->stats.gptc; fp@667: adapter->net_stats.rx_bytes = adapter->stats.gorcl; fp@667: adapter->net_stats.tx_bytes = adapter->stats.gotcl; fp@667: adapter->net_stats.multicast = adapter->stats.mprc; fp@667: adapter->net_stats.collisions = adapter->stats.colc; fp@667: fp@667: /* Rx Errors */ fp@667: fp@667: /* RLEC on some newer hardware can be incorrect so build fp@667: * our own version based on RUC and ROC */ fp@667: adapter->net_stats.rx_errors = adapter->stats.rxerrc + fp@667: adapter->stats.crcerrs + adapter->stats.algnerrc + fp@667: adapter->stats.ruc + adapter->stats.roc + fp@667: adapter->stats.cexterr; fp@667: adapter->net_stats.rx_length_errors = adapter->stats.ruc + fp@667: adapter->stats.roc; fp@667: adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs; fp@667: adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc; fp@667: adapter->net_stats.rx_missed_errors = adapter->stats.mpc; fp@667: fp@667: /* Tx Errors */ fp@667: fp@667: adapter->net_stats.tx_errors = adapter->stats.ecol + fp@667: adapter->stats.latecol; fp@667: adapter->net_stats.tx_aborted_errors = adapter->stats.ecol; fp@667: adapter->net_stats.tx_window_errors = adapter->stats.latecol; fp@667: adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs; fp@667: fp@667: /* Tx Dropped needs to be maintained elsewhere */ fp@667: fp@667: /* Phy Stats */ fp@667: fp@667: if (hw->media_type == e1000_media_type_copper) { fp@667: if ((adapter->link_speed == SPEED_1000) && fp@667: (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) { fp@667: phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; fp@667: adapter->phy_stats.idle_errors += phy_tmp; fp@667: } fp@667: fp@667: if ((hw->mac_type <= e1000_82546) && fp@667: (hw->phy_type == e1000_phy_m88) && fp@667: !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp)) fp@667: adapter->phy_stats.receive_errors += phy_tmp; fp@667: } fp@667: fp@667: spin_unlock_irqrestore(&adapter->stats_lock, flags); fp@667: } fp@667: fp@667: /** fp@667: * e1000_intr - Interrupt Handler fp@667: * @irq: interrupt number fp@667: * @data: pointer to a network interface device structure fp@667: * @pt_regs: CPU registers structure fp@667: **/ fp@667: fp@667: static irqreturn_t fp@667: e1000_intr(int irq, void *data, struct pt_regs *regs) fp@667: { fp@667: struct net_device *netdev = data; fp@667: struct e1000_adapter *adapter = netdev_priv(netdev); fp@667: struct e1000_hw *hw = &adapter->hw; fp@667: uint32_t rctl, icr = E1000_READ_REG(hw, ICR); fp@667: #ifndef CONFIG_E1000_NAPI fp@667: int i; fp@667: #else fp@667: /* Interrupt Auto-Mask...upon reading ICR, fp@667: * interrupts are masked. No need for the fp@667: * IMC write, but it does mean we should fp@667: * account for it ASAP. */ fp@667: if (likely(hw->mac_type >= e1000_82571)) fp@667: atomic_inc(&adapter->irq_sem); fp@667: #endif fp@667: fp@667: if (unlikely(!icr)) { fp@667: #ifdef CONFIG_E1000_NAPI fp@667: if (hw->mac_type >= e1000_82571) fp@667: e1000_irq_enable(adapter); fp@667: #endif fp@667: return IRQ_NONE; /* Not our interrupt */ fp@667: } fp@667: fp@667: if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) { fp@667: hw->get_link_status = 1; fp@667: /* 80003ES2LAN workaround-- fp@667: * For packet buffer work-around on link down event; fp@667: * disable receives here in the ISR and fp@667: * reset adapter in watchdog fp@667: */ fp@667: if (netif_carrier_ok(netdev) && fp@667: (adapter->hw.mac_type == e1000_80003es2lan)) { fp@667: /* disable receives */ fp@667: rctl = E1000_READ_REG(hw, RCTL); fp@667: E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN); fp@667: } fp@667: mod_timer(&adapter->watchdog_timer, jiffies); fp@667: } fp@667: fp@667: #ifdef CONFIG_E1000_NAPI fp@667: if (unlikely(hw->mac_type < e1000_82571)) { fp@667: atomic_inc(&adapter->irq_sem); fp@667: E1000_WRITE_REG(hw, IMC, ~0); fp@667: E1000_WRITE_FLUSH(hw); fp@667: } fp@667: if (likely(netif_rx_schedule_prep(netdev))) fp@667: __netif_rx_schedule(netdev); fp@667: else fp@667: e1000_irq_enable(adapter); fp@667: #else fp@667: /* Writing IMC and IMS is needed for 82547. fp@667: * Due to Hub Link bus being occupied, an interrupt fp@667: * de-assertion message is not able to be sent. fp@667: * When an interrupt assertion message is generated later, fp@667: * two messages are re-ordered and sent out. fp@667: * That causes APIC to think 82547 is in de-assertion fp@667: * state, while 82547 is in assertion state, resulting fp@667: * in dead lock. Writing IMC forces 82547 into fp@667: * de-assertion state. fp@667: */ fp@667: if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) { fp@667: atomic_inc(&adapter->irq_sem); fp@667: E1000_WRITE_REG(hw, IMC, ~0); fp@667: } fp@667: fp@667: for (i = 0; i < E1000_MAX_INTR; i++) fp@667: if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) & fp@667: !e1000_clean_tx_irq(adapter, adapter->tx_ring))) fp@667: break; fp@667: fp@667: if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) fp@667: e1000_irq_enable(adapter); fp@667: fp@667: #endif fp@667: fp@667: return IRQ_HANDLED; fp@667: } fp@667: fp@667: #ifdef CONFIG_E1000_NAPI fp@667: /** fp@667: * e1000_clean - NAPI Rx polling callback fp@667: * @adapter: board private structure fp@667: **/ fp@667: fp@667: static int fp@667: e1000_clean(struct net_device *poll_dev, int *budget) fp@667: { fp@667: struct e1000_adapter *adapter; fp@667: int work_to_do = min(*budget, poll_dev->quota); fp@667: int tx_cleaned = 0, work_done = 0; fp@667: fp@667: /* Must NOT use netdev_priv macro here. */ fp@667: adapter = poll_dev->priv; fp@667: fp@667: /* Keep link state information with original netdev */ fp@667: if (!netif_carrier_ok(poll_dev)) fp@667: goto quit_polling; fp@667: fp@667: /* e1000_clean is called per-cpu. This lock protects fp@667: * tx_ring[0] from being cleaned by multiple cpus fp@667: * simultaneously. A failure obtaining the lock means fp@667: * tx_ring[0] is currently being cleaned anyway. */ fp@667: if (spin_trylock(&adapter->tx_queue_lock)) { fp@667: tx_cleaned = e1000_clean_tx_irq(adapter, fp@667: &adapter->tx_ring[0]); fp@667: spin_unlock(&adapter->tx_queue_lock); fp@667: } fp@667: fp@667: adapter->clean_rx(adapter, &adapter->rx_ring[0], fp@667: &work_done, work_to_do); fp@667: fp@667: *budget -= work_done; fp@667: poll_dev->quota -= work_done; fp@667: fp@667: /* If no Tx and not enough Rx work done, exit the polling mode */ fp@667: if ((!tx_cleaned && (work_done == 0)) || fp@667: !netif_running(poll_dev)) { fp@667: quit_polling: fp@667: netif_rx_complete(poll_dev); fp@667: e1000_irq_enable(adapter); fp@667: return 0; fp@667: } fp@667: fp@667: return 1; fp@667: } fp@667: fp@667: #endif fp@667: /** fp@667: * e1000_clean_tx_irq - Reclaim resources after transmit completes fp@667: * @adapter: board private structure fp@667: **/ fp@667: fp@667: static boolean_t fp@667: e1000_clean_tx_irq(struct e1000_adapter *adapter, fp@667: struct e1000_tx_ring *tx_ring) fp@667: { fp@667: struct net_device *netdev = adapter->netdev; fp@667: struct e1000_tx_desc *tx_desc, *eop_desc; fp@667: struct e1000_buffer *buffer_info; fp@667: unsigned int i, eop; fp@667: #ifdef CONFIG_E1000_NAPI fp@667: unsigned int count = 0; fp@667: #endif fp@667: boolean_t cleaned = FALSE; fp@667: fp@667: i = tx_ring->next_to_clean; fp@667: eop = tx_ring->buffer_info[i].next_to_watch; fp@667: eop_desc = E1000_TX_DESC(*tx_ring, eop); fp@667: fp@667: while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) { fp@667: for (cleaned = FALSE; !cleaned; ) { fp@667: tx_desc = E1000_TX_DESC(*tx_ring, i); fp@667: buffer_info = &tx_ring->buffer_info[i]; fp@667: cleaned = (i == eop); fp@667: fp@667: e1000_unmap_and_free_tx_resource(adapter, buffer_info); fp@667: memset(tx_desc, 0, sizeof(struct e1000_tx_desc)); fp@667: fp@667: if (unlikely(++i == tx_ring->count)) i = 0; fp@667: } fp@667: fp@667: fp@667: eop = tx_ring->buffer_info[i].next_to_watch; fp@667: eop_desc = E1000_TX_DESC(*tx_ring, eop); fp@667: #ifdef CONFIG_E1000_NAPI fp@667: #define E1000_TX_WEIGHT 64 fp@667: /* weight of a sort for tx, to avoid endless transmit cleanup */ fp@667: if (count++ == E1000_TX_WEIGHT) break; fp@667: #endif fp@667: } fp@667: fp@667: tx_ring->next_to_clean = i; fp@667: fp@667: #define TX_WAKE_THRESHOLD 32 fp@667: if (unlikely(cleaned && netif_queue_stopped(netdev) && fp@667: netif_carrier_ok(netdev))) { fp@667: spin_lock(&tx_ring->tx_lock); fp@667: if (netif_queue_stopped(netdev) && fp@667: (E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) fp@667: netif_wake_queue(netdev); fp@667: spin_unlock(&tx_ring->tx_lock); fp@667: } fp@667: fp@667: if (adapter->detect_tx_hung) { fp@667: /* Detect a transmit hang in hardware, this serializes the fp@667: * check with the clearing of time_stamp and movement of i */ fp@667: adapter->detect_tx_hung = FALSE; fp@667: if (tx_ring->buffer_info[eop].dma && fp@667: time_after(jiffies, tx_ring->buffer_info[eop].time_stamp + fp@667: (adapter->tx_timeout_factor * HZ)) fp@667: && !(E1000_READ_REG(&adapter->hw, STATUS) & fp@667: E1000_STATUS_TXOFF)) { fp@667: fp@667: /* detected Tx unit hang */ fp@667: DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n" fp@667: " Tx Queue <%lu>\n" fp@667: " TDH <%x>\n" fp@667: " TDT <%x>\n" fp@667: " next_to_use <%x>\n" fp@667: " next_to_clean <%x>\n" fp@667: "buffer_info[next_to_clean]\n" fp@667: " time_stamp <%lx>\n" fp@667: " next_to_watch <%x>\n" fp@667: " jiffies <%lx>\n" fp@667: " next_to_watch.status <%x>\n", fp@667: (unsigned long)((tx_ring - adapter->tx_ring) / fp@667: sizeof(struct e1000_tx_ring)), fp@667: readl(adapter->hw.hw_addr + tx_ring->tdh), fp@667: readl(adapter->hw.hw_addr + tx_ring->tdt), fp@667: tx_ring->next_to_use, fp@667: tx_ring->next_to_clean, fp@667: tx_ring->buffer_info[eop].time_stamp, fp@667: eop, fp@667: jiffies, fp@667: eop_desc->upper.fields.status); fp@667: netif_stop_queue(netdev); fp@667: } fp@667: } fp@667: return cleaned; fp@667: } fp@667: fp@667: /** fp@667: * e1000_rx_checksum - Receive Checksum Offload for 82543 fp@667: * @adapter: board private structure fp@667: * @status_err: receive descriptor status and error fields fp@667: * @csum: receive descriptor csum field fp@667: * @sk_buff: socket buffer with received data fp@667: **/ fp@667: fp@667: static void fp@667: e1000_rx_checksum(struct e1000_adapter *adapter, fp@667: uint32_t status_err, uint32_t csum, fp@667: struct sk_buff *skb) fp@667: { fp@667: uint16_t status = (uint16_t)status_err; fp@667: uint8_t errors = (uint8_t)(status_err >> 24); fp@667: skb->ip_summed = CHECKSUM_NONE; fp@667: fp@667: /* 82543 or newer only */ fp@667: if (unlikely(adapter->hw.mac_type < e1000_82543)) return; fp@667: /* Ignore Checksum bit is set */ fp@667: if (unlikely(status & E1000_RXD_STAT_IXSM)) return; fp@667: /* TCP/UDP checksum error bit is set */ fp@667: if (unlikely(errors & E1000_RXD_ERR_TCPE)) { fp@667: /* let the stack verify checksum errors */ fp@667: adapter->hw_csum_err++; fp@667: return; fp@667: } fp@667: /* TCP/UDP Checksum has not been calculated */ fp@667: if (adapter->hw.mac_type <= e1000_82547_rev_2) { fp@667: if (!(status & E1000_RXD_STAT_TCPCS)) fp@667: return; fp@667: } else { fp@667: if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))) fp@667: return; fp@667: } fp@667: /* It must be a TCP or UDP packet with a valid checksum */ fp@667: if (likely(status & E1000_RXD_STAT_TCPCS)) { fp@667: /* TCP checksum is good */ fp@667: skb->ip_summed = CHECKSUM_UNNECESSARY; fp@667: } else if (adapter->hw.mac_type > e1000_82547_rev_2) { fp@667: /* IP fragment with UDP payload */ fp@667: /* Hardware complements the payload checksum, so we undo it fp@667: * and then put the value in host order for further stack use. fp@667: */ fp@667: csum = ntohl(csum ^ 0xFFFF); fp@667: skb->csum = csum; fp@667: skb->ip_summed = CHECKSUM_HW; fp@667: } fp@667: adapter->hw_csum_good++; fp@667: } fp@667: fp@667: /** fp@667: * e1000_clean_rx_irq - Send received data up the network stack; legacy fp@667: * @adapter: board private structure fp@667: **/ fp@667: fp@667: static boolean_t fp@667: #ifdef CONFIG_E1000_NAPI fp@667: e1000_clean_rx_irq(struct e1000_adapter *adapter, fp@667: struct e1000_rx_ring *rx_ring, fp@667: int *work_done, int work_to_do) fp@667: #else fp@667: e1000_clean_rx_irq(struct e1000_adapter *adapter, fp@667: struct e1000_rx_ring *rx_ring) fp@667: #endif fp@667: { fp@667: struct net_device *netdev = adapter->netdev; fp@667: struct pci_dev *pdev = adapter->pdev; fp@667: struct e1000_rx_desc *rx_desc, *next_rxd; fp@667: struct e1000_buffer *buffer_info, *next_buffer; fp@667: unsigned long flags; fp@667: uint32_t length; fp@667: uint8_t last_byte; fp@667: unsigned int i; fp@667: int cleaned_count = 0; fp@667: boolean_t cleaned = FALSE; fp@667: fp@667: i = rx_ring->next_to_clean; fp@667: rx_desc = E1000_RX_DESC(*rx_ring, i); fp@667: buffer_info = &rx_ring->buffer_info[i]; fp@667: fp@667: while (rx_desc->status & E1000_RXD_STAT_DD) { fp@667: struct sk_buff *skb; fp@667: u8 status; fp@667: #ifdef CONFIG_E1000_NAPI fp@667: if (*work_done >= work_to_do) fp@667: break; fp@667: (*work_done)++; fp@667: #endif fp@667: status = rx_desc->status; fp@667: skb = buffer_info->skb; fp@667: buffer_info->skb = NULL; fp@667: fp@667: prefetch(skb->data - NET_IP_ALIGN); fp@667: fp@667: if (++i == rx_ring->count) i = 0; fp@667: next_rxd = E1000_RX_DESC(*rx_ring, i); fp@667: prefetch(next_rxd); fp@667: fp@667: next_buffer = &rx_ring->buffer_info[i]; fp@667: fp@667: cleaned = TRUE; fp@667: cleaned_count++; fp@667: pci_unmap_single(pdev, fp@667: buffer_info->dma, fp@667: buffer_info->length, fp@667: PCI_DMA_FROMDEVICE); fp@667: fp@667: length = le16_to_cpu(rx_desc->length); fp@667: fp@667: /* adjust length to remove Ethernet CRC */ fp@667: length -= 4; fp@667: fp@667: if (unlikely(!(status & E1000_RXD_STAT_EOP))) { fp@667: /* All receives must fit into a single buffer */ fp@667: E1000_DBG("%s: Receive packet consumed multiple" fp@667: " buffers\n", netdev->name); fp@667: /* recycle */ fp@667: buffer_info-> skb = skb; fp@667: goto next_desc; fp@667: } fp@667: fp@667: if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) { fp@667: last_byte = *(skb->data + length - 1); fp@667: if (TBI_ACCEPT(&adapter->hw, status, fp@667: rx_desc->errors, length, last_byte)) { fp@667: spin_lock_irqsave(&adapter->stats_lock, flags); fp@667: e1000_tbi_adjust_stats(&adapter->hw, fp@667: &adapter->stats, fp@667: length, skb->data); fp@667: spin_unlock_irqrestore(&adapter->stats_lock, fp@667: flags); fp@667: length--; fp@667: } else { fp@667: /* recycle */ fp@667: buffer_info->skb = skb; fp@667: goto next_desc; fp@667: } fp@667: } fp@667: fp@667: /* code added for copybreak, this should improve fp@667: * performance for small packets with large amounts fp@667: * of reassembly being done in the stack */ fp@667: #define E1000_CB_LENGTH 256 fp@667: if (length < E1000_CB_LENGTH) { fp@667: struct sk_buff *new_skb = fp@667: netdev_alloc_skb(netdev, length + NET_IP_ALIGN); fp@667: if (new_skb) { fp@667: skb_reserve(new_skb, NET_IP_ALIGN); fp@667: new_skb->dev = netdev; fp@667: memcpy(new_skb->data - NET_IP_ALIGN, fp@667: skb->data - NET_IP_ALIGN, fp@667: length + NET_IP_ALIGN); fp@667: /* save the skb in buffer_info as good */ fp@667: buffer_info->skb = skb; fp@667: skb = new_skb; fp@667: skb_put(skb, length); fp@667: } fp@667: } else fp@667: skb_put(skb, length); fp@667: fp@667: /* end copybreak code */ fp@667: fp@667: /* Receive Checksum Offload */ fp@667: e1000_rx_checksum(adapter, fp@667: (uint32_t)(status) | fp@667: ((uint32_t)(rx_desc->errors) << 24), fp@667: le16_to_cpu(rx_desc->csum), skb); fp@667: fp@667: skb->protocol = eth_type_trans(skb, netdev); fp@667: #ifdef CONFIG_E1000_NAPI fp@667: if (unlikely(adapter->vlgrp && fp@667: (status & E1000_RXD_STAT_VP))) { fp@667: vlan_hwaccel_receive_skb(skb, adapter->vlgrp, fp@667: le16_to_cpu(rx_desc->special) & fp@667: E1000_RXD_SPC_VLAN_MASK); fp@667: } else { fp@667: netif_receive_skb(skb); fp@667: } fp@667: #else /* CONFIG_E1000_NAPI */ fp@667: if (unlikely(adapter->vlgrp && fp@667: (status & E1000_RXD_STAT_VP))) { fp@667: vlan_hwaccel_rx(skb, adapter->vlgrp, fp@667: le16_to_cpu(rx_desc->special) & fp@667: E1000_RXD_SPC_VLAN_MASK); fp@667: } else { fp@667: netif_rx(skb); fp@667: } fp@667: #endif /* CONFIG_E1000_NAPI */ fp@667: netdev->last_rx = jiffies; fp@667: fp@667: next_desc: fp@667: rx_desc->status = 0; fp@667: fp@667: /* return some buffers to hardware, one at a time is too slow */ fp@667: if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { fp@667: adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); fp@667: cleaned_count = 0; fp@667: } fp@667: fp@667: /* use prefetched values */ fp@667: rx_desc = next_rxd; fp@667: buffer_info = next_buffer; fp@667: } fp@667: rx_ring->next_to_clean = i; fp@667: fp@667: cleaned_count = E1000_DESC_UNUSED(rx_ring); fp@667: if (cleaned_count) fp@667: adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); fp@667: fp@667: return cleaned; fp@667: } fp@667: fp@667: /** fp@667: * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split fp@667: * @adapter: board private structure fp@667: **/ fp@667: fp@667: static boolean_t fp@667: #ifdef CONFIG_E1000_NAPI fp@667: e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, fp@667: struct e1000_rx_ring *rx_ring, fp@667: int *work_done, int work_to_do) fp@667: #else fp@667: e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, fp@667: struct e1000_rx_ring *rx_ring) fp@667: #endif fp@667: { fp@667: union e1000_rx_desc_packet_split *rx_desc, *next_rxd; fp@667: struct net_device *netdev = adapter->netdev; fp@667: struct pci_dev *pdev = adapter->pdev; fp@667: struct e1000_buffer *buffer_info, *next_buffer; fp@667: struct e1000_ps_page *ps_page; fp@667: struct e1000_ps_page_dma *ps_page_dma; fp@667: struct sk_buff *skb; fp@667: unsigned int i, j; fp@667: uint32_t length, staterr; fp@667: int cleaned_count = 0; fp@667: boolean_t cleaned = FALSE; fp@667: fp@667: i = rx_ring->next_to_clean; fp@667: rx_desc = E1000_RX_DESC_PS(*rx_ring, i); fp@667: staterr = le32_to_cpu(rx_desc->wb.middle.status_error); fp@667: buffer_info = &rx_ring->buffer_info[i]; fp@667: fp@667: while (staterr & E1000_RXD_STAT_DD) { fp@667: ps_page = &rx_ring->ps_page[i]; fp@667: ps_page_dma = &rx_ring->ps_page_dma[i]; fp@667: #ifdef CONFIG_E1000_NAPI fp@667: if (unlikely(*work_done >= work_to_do)) fp@667: break; fp@667: (*work_done)++; fp@667: #endif fp@667: skb = buffer_info->skb; fp@667: fp@667: /* in the packet split case this is header only */ fp@667: prefetch(skb->data - NET_IP_ALIGN); fp@667: fp@667: if (++i == rx_ring->count) i = 0; fp@667: next_rxd = E1000_RX_DESC_PS(*rx_ring, i); fp@667: prefetch(next_rxd); fp@667: fp@667: next_buffer = &rx_ring->buffer_info[i]; fp@667: fp@667: cleaned = TRUE; fp@667: cleaned_count++; fp@667: pci_unmap_single(pdev, buffer_info->dma, fp@667: buffer_info->length, fp@667: PCI_DMA_FROMDEVICE); fp@667: fp@667: if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) { fp@667: E1000_DBG("%s: Packet Split buffers didn't pick up" fp@667: " the full packet\n", netdev->name); fp@667: dev_kfree_skb_irq(skb); fp@667: goto next_desc; fp@667: } fp@667: fp@667: if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) { fp@667: dev_kfree_skb_irq(skb); fp@667: goto next_desc; fp@667: } fp@667: fp@667: length = le16_to_cpu(rx_desc->wb.middle.length0); fp@667: fp@667: if (unlikely(!length)) { fp@667: E1000_DBG("%s: Last part of the packet spanning" fp@667: " multiple descriptors\n", netdev->name); fp@667: dev_kfree_skb_irq(skb); fp@667: goto next_desc; fp@667: } fp@667: fp@667: /* Good Receive */ fp@667: skb_put(skb, length); fp@667: fp@667: { fp@667: /* this looks ugly, but it seems compiler issues make it fp@667: more efficient than reusing j */ fp@667: int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]); fp@667: fp@667: /* page alloc/put takes too long and effects small packet fp@667: * throughput, so unsplit small packets and save the alloc/put*/ fp@667: if (l1 && ((length + l1) <= adapter->rx_ps_bsize0)) { fp@667: u8 *vaddr; fp@667: /* there is no documentation about how to call fp@667: * kmap_atomic, so we can't hold the mapping fp@667: * very long */ fp@667: pci_dma_sync_single_for_cpu(pdev, fp@667: ps_page_dma->ps_page_dma[0], fp@667: PAGE_SIZE, fp@667: PCI_DMA_FROMDEVICE); fp@667: vaddr = kmap_atomic(ps_page->ps_page[0], fp@667: KM_SKB_DATA_SOFTIRQ); fp@667: memcpy(skb->tail, vaddr, l1); fp@667: kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ); fp@667: pci_dma_sync_single_for_device(pdev, fp@667: ps_page_dma->ps_page_dma[0], fp@667: PAGE_SIZE, PCI_DMA_FROMDEVICE); fp@667: /* remove the CRC */ fp@667: l1 -= 4; fp@667: skb_put(skb, l1); fp@667: goto copydone; fp@667: } /* if */ fp@667: } fp@667: fp@667: for (j = 0; j < adapter->rx_ps_pages; j++) { fp@667: if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j]))) fp@667: break; fp@667: pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j], fp@667: PAGE_SIZE, PCI_DMA_FROMDEVICE); fp@667: ps_page_dma->ps_page_dma[j] = 0; fp@667: skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0, fp@667: length); fp@667: ps_page->ps_page[j] = NULL; fp@667: skb->len += length; fp@667: skb->data_len += length; fp@667: skb->truesize += length; fp@667: } fp@667: fp@667: /* strip the ethernet crc, problem is we're using pages now so fp@667: * this whole operation can get a little cpu intensive */ fp@667: pskb_trim(skb, skb->len - 4); fp@667: fp@667: copydone: fp@667: e1000_rx_checksum(adapter, staterr, fp@667: le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb); fp@667: skb->protocol = eth_type_trans(skb, netdev); fp@667: fp@667: if (likely(rx_desc->wb.upper.header_status & fp@667: cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))) fp@667: adapter->rx_hdr_split++; fp@667: #ifdef CONFIG_E1000_NAPI fp@667: if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) { fp@667: vlan_hwaccel_receive_skb(skb, adapter->vlgrp, fp@667: le16_to_cpu(rx_desc->wb.middle.vlan) & fp@667: E1000_RXD_SPC_VLAN_MASK); fp@667: } else { fp@667: netif_receive_skb(skb); fp@667: } fp@667: #else /* CONFIG_E1000_NAPI */ fp@667: if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) { fp@667: vlan_hwaccel_rx(skb, adapter->vlgrp, fp@667: le16_to_cpu(rx_desc->wb.middle.vlan) & fp@667: E1000_RXD_SPC_VLAN_MASK); fp@667: } else { fp@667: netif_rx(skb); fp@667: } fp@667: #endif /* CONFIG_E1000_NAPI */ fp@667: netdev->last_rx = jiffies; fp@667: fp@667: next_desc: fp@667: rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF); fp@667: buffer_info->skb = NULL; fp@667: fp@667: /* return some buffers to hardware, one at a time is too slow */ fp@667: if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { fp@667: adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); fp@667: cleaned_count = 0; fp@667: } fp@667: fp@667: /* use prefetched values */ fp@667: rx_desc = next_rxd; fp@667: buffer_info = next_buffer; fp@667: fp@667: staterr = le32_to_cpu(rx_desc->wb.middle.status_error); fp@667: } fp@667: rx_ring->next_to_clean = i; fp@667: fp@667: cleaned_count = E1000_DESC_UNUSED(rx_ring); fp@667: if (cleaned_count) fp@667: adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); fp@667: fp@667: return cleaned; fp@667: } fp@667: fp@667: /** fp@667: * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended fp@667: * @adapter: address of board private structure fp@667: **/ fp@667: fp@667: static void fp@667: e1000_alloc_rx_buffers(struct e1000_adapter *adapter, fp@667: struct e1000_rx_ring *rx_ring, fp@667: int cleaned_count) fp@667: { fp@667: struct net_device *netdev = adapter->netdev; fp@667: struct pci_dev *pdev = adapter->pdev; fp@667: struct e1000_rx_desc *rx_desc; fp@667: struct e1000_buffer *buffer_info; fp@667: struct sk_buff *skb; fp@667: unsigned int i; fp@667: unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN; fp@667: fp@667: i = rx_ring->next_to_use; fp@667: buffer_info = &rx_ring->buffer_info[i]; fp@667: fp@667: while (cleaned_count--) { fp@667: if (!(skb = buffer_info->skb)) fp@667: skb = netdev_alloc_skb(netdev, bufsz); fp@667: else { fp@667: skb_trim(skb, 0); fp@667: goto map_skb; fp@667: } fp@667: fp@667: if (unlikely(!skb)) { fp@667: /* Better luck next round */ fp@667: adapter->alloc_rx_buff_failed++; fp@667: break; fp@667: } fp@667: fp@667: /* Fix for errata 23, can't cross 64kB boundary */ fp@667: if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { fp@667: struct sk_buff *oldskb = skb; fp@667: DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes " fp@667: "at %p\n", bufsz, skb->data); fp@667: /* Try again, without freeing the previous */ fp@667: skb = netdev_alloc_skb(netdev, bufsz); fp@667: /* Failed allocation, critical failure */ fp@667: if (!skb) { fp@667: dev_kfree_skb(oldskb); fp@667: break; fp@667: } fp@667: fp@667: if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { fp@667: /* give up */ fp@667: dev_kfree_skb(skb); fp@667: dev_kfree_skb(oldskb); fp@667: break; /* while !buffer_info->skb */ fp@667: } else { fp@667: /* Use new allocation */ fp@667: dev_kfree_skb(oldskb); fp@667: } fp@667: } fp@667: /* Make buffer alignment 2 beyond a 16 byte boundary fp@667: * this will result in a 16 byte aligned IP header after fp@667: * the 14 byte MAC header is removed fp@667: */ fp@667: skb_reserve(skb, NET_IP_ALIGN); fp@667: fp@667: skb->dev = netdev; fp@667: fp@667: buffer_info->skb = skb; fp@667: buffer_info->length = adapter->rx_buffer_len; fp@667: map_skb: fp@667: buffer_info->dma = pci_map_single(pdev, fp@667: skb->data, fp@667: adapter->rx_buffer_len, fp@667: PCI_DMA_FROMDEVICE); fp@667: fp@667: /* Fix for errata 23, can't cross 64kB boundary */ fp@667: if (!e1000_check_64k_bound(adapter, fp@667: (void *)(unsigned long)buffer_info->dma, fp@667: adapter->rx_buffer_len)) { fp@667: DPRINTK(RX_ERR, ERR, fp@667: "dma align check failed: %u bytes at %p\n", fp@667: adapter->rx_buffer_len, fp@667: (void *)(unsigned long)buffer_info->dma); fp@667: dev_kfree_skb(skb); fp@667: buffer_info->skb = NULL; fp@667: fp@667: pci_unmap_single(pdev, buffer_info->dma, fp@667: adapter->rx_buffer_len, fp@667: PCI_DMA_FROMDEVICE); fp@667: fp@667: break; /* while !buffer_info->skb */ fp@667: } fp@667: rx_desc = E1000_RX_DESC(*rx_ring, i); fp@667: rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); fp@667: fp@667: if (unlikely(++i == rx_ring->count)) fp@667: i = 0; fp@667: buffer_info = &rx_ring->buffer_info[i]; fp@667: } fp@667: fp@667: if (likely(rx_ring->next_to_use != i)) { fp@667: rx_ring->next_to_use = i; fp@667: if (unlikely(i-- == 0)) fp@667: i = (rx_ring->count - 1); fp@667: fp@667: /* Force memory writes to complete before letting h/w fp@667: * know there are new descriptors to fetch. (Only fp@667: * applicable for weak-ordered memory model archs, fp@667: * such as IA-64). */ fp@667: wmb(); fp@667: writel(i, adapter->hw.hw_addr + rx_ring->rdt); fp@667: } fp@667: } fp@667: fp@667: /** fp@667: * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split fp@667: * @adapter: address of board private structure fp@667: **/ fp@667: fp@667: static void fp@667: e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter, fp@667: struct e1000_rx_ring *rx_ring, fp@667: int cleaned_count) fp@667: { fp@667: struct net_device *netdev = adapter->netdev; fp@667: struct pci_dev *pdev = adapter->pdev; fp@667: union e1000_rx_desc_packet_split *rx_desc; fp@667: struct e1000_buffer *buffer_info; fp@667: struct e1000_ps_page *ps_page; fp@667: struct e1000_ps_page_dma *ps_page_dma; fp@667: struct sk_buff *skb; fp@667: unsigned int i, j; fp@667: fp@667: i = rx_ring->next_to_use; fp@667: buffer_info = &rx_ring->buffer_info[i]; fp@667: ps_page = &rx_ring->ps_page[i]; fp@667: ps_page_dma = &rx_ring->ps_page_dma[i]; fp@667: fp@667: while (cleaned_count--) { fp@667: rx_desc = E1000_RX_DESC_PS(*rx_ring, i); fp@667: fp@667: for (j = 0; j < PS_PAGE_BUFFERS; j++) { fp@667: if (j < adapter->rx_ps_pages) { fp@667: if (likely(!ps_page->ps_page[j])) { fp@667: ps_page->ps_page[j] = fp@667: alloc_page(GFP_ATOMIC); fp@667: if (unlikely(!ps_page->ps_page[j])) { fp@667: adapter->alloc_rx_buff_failed++; fp@667: goto no_buffers; fp@667: } fp@667: ps_page_dma->ps_page_dma[j] = fp@667: pci_map_page(pdev, fp@667: ps_page->ps_page[j], fp@667: 0, PAGE_SIZE, fp@667: PCI_DMA_FROMDEVICE); fp@667: } fp@667: /* Refresh the desc even if buffer_addrs didn't fp@667: * change because each write-back erases fp@667: * this info. fp@667: */ fp@667: rx_desc->read.buffer_addr[j+1] = fp@667: cpu_to_le64(ps_page_dma->ps_page_dma[j]); fp@667: } else fp@667: rx_desc->read.buffer_addr[j+1] = ~0; fp@667: } fp@667: fp@667: skb = netdev_alloc_skb(netdev, fp@667: adapter->rx_ps_bsize0 + NET_IP_ALIGN); fp@667: fp@667: if (unlikely(!skb)) { fp@667: adapter->alloc_rx_buff_failed++; fp@667: break; fp@667: } fp@667: fp@667: /* Make buffer alignment 2 beyond a 16 byte boundary fp@667: * this will result in a 16 byte aligned IP header after fp@667: * the 14 byte MAC header is removed fp@667: */ fp@667: skb_reserve(skb, NET_IP_ALIGN); fp@667: fp@667: skb->dev = netdev; fp@667: fp@667: buffer_info->skb = skb; fp@667: buffer_info->length = adapter->rx_ps_bsize0; fp@667: buffer_info->dma = pci_map_single(pdev, skb->data, fp@667: adapter->rx_ps_bsize0, fp@667: PCI_DMA_FROMDEVICE); fp@667: fp@667: rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma); fp@667: fp@667: if (unlikely(++i == rx_ring->count)) i = 0; fp@667: buffer_info = &rx_ring->buffer_info[i]; fp@667: ps_page = &rx_ring->ps_page[i]; fp@667: ps_page_dma = &rx_ring->ps_page_dma[i]; fp@667: } fp@667: fp@667: no_buffers: fp@667: if (likely(rx_ring->next_to_use != i)) { fp@667: rx_ring->next_to_use = i; fp@667: if (unlikely(i-- == 0)) i = (rx_ring->count - 1); fp@667: fp@667: /* Force memory writes to complete before letting h/w fp@667: * know there are new descriptors to fetch. (Only fp@667: * applicable for weak-ordered memory model archs, fp@667: * such as IA-64). */ fp@667: wmb(); fp@667: /* Hardware increments by 16 bytes, but packet split fp@667: * descriptors are 32 bytes...so we increment tail fp@667: * twice as much. fp@667: */ fp@667: writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt); fp@667: } fp@667: } fp@667: fp@667: /** fp@667: * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers. fp@667: * @adapter: fp@667: **/ fp@667: fp@667: static void fp@667: e1000_smartspeed(struct e1000_adapter *adapter) fp@667: { fp@667: uint16_t phy_status; fp@667: uint16_t phy_ctrl; fp@667: fp@667: if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg || fp@667: !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL)) fp@667: return; fp@667: fp@667: if (adapter->smartspeed == 0) { fp@667: /* If Master/Slave config fault is asserted twice, fp@667: * we assume back-to-back */ fp@667: e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status); fp@667: if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return; fp@667: e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status); fp@667: if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return; fp@667: e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl); fp@667: if (phy_ctrl & CR_1000T_MS_ENABLE) { fp@667: phy_ctrl &= ~CR_1000T_MS_ENABLE; fp@667: e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, fp@667: phy_ctrl); fp@667: adapter->smartspeed++; fp@667: if (!e1000_phy_setup_autoneg(&adapter->hw) && fp@667: !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, fp@667: &phy_ctrl)) { fp@667: phy_ctrl |= (MII_CR_AUTO_NEG_EN | fp@667: MII_CR_RESTART_AUTO_NEG); fp@667: e1000_write_phy_reg(&adapter->hw, PHY_CTRL, fp@667: phy_ctrl); fp@667: } fp@667: } fp@667: return; fp@667: } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) { fp@667: /* If still no link, perhaps using 2/3 pair cable */ fp@667: e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl); fp@667: phy_ctrl |= CR_1000T_MS_ENABLE; fp@667: e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl); fp@667: if (!e1000_phy_setup_autoneg(&adapter->hw) && fp@667: !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) { fp@667: phy_ctrl |= (MII_CR_AUTO_NEG_EN | fp@667: MII_CR_RESTART_AUTO_NEG); fp@667: e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl); fp@667: } fp@667: } fp@667: /* Restart process after E1000_SMARTSPEED_MAX iterations */ fp@667: if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX) fp@667: adapter->smartspeed = 0; fp@667: } fp@667: fp@667: /** fp@667: * e1000_ioctl - fp@667: * @netdev: fp@667: * @ifreq: fp@667: * @cmd: fp@667: **/ fp@667: fp@667: static int fp@667: e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) fp@667: { fp@667: switch (cmd) { fp@667: case SIOCGMIIPHY: fp@667: case SIOCGMIIREG: fp@667: case SIOCSMIIREG: fp@667: return e1000_mii_ioctl(netdev, ifr, cmd); fp@667: default: fp@667: return -EOPNOTSUPP; fp@667: } fp@667: } fp@667: fp@667: /** fp@667: * e1000_mii_ioctl - fp@667: * @netdev: fp@667: * @ifreq: fp@667: * @cmd: fp@667: **/ fp@667: fp@667: static int fp@667: e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) fp@667: { fp@667: struct e1000_adapter *adapter = netdev_priv(netdev); fp@667: struct mii_ioctl_data *data = if_mii(ifr); fp@667: int retval; fp@667: uint16_t mii_reg; fp@667: uint16_t spddplx; fp@667: unsigned long flags; fp@667: fp@667: if (adapter->hw.media_type != e1000_media_type_copper) fp@667: return -EOPNOTSUPP; fp@667: fp@667: switch (cmd) { fp@667: case SIOCGMIIPHY: fp@667: data->phy_id = adapter->hw.phy_addr; fp@667: break; fp@667: case SIOCGMIIREG: fp@667: if (!capable(CAP_NET_ADMIN)) fp@667: return -EPERM; fp@667: spin_lock_irqsave(&adapter->stats_lock, flags); fp@667: if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F, fp@667: &data->val_out)) { fp@667: spin_unlock_irqrestore(&adapter->stats_lock, flags); fp@667: return -EIO; fp@667: } fp@667: spin_unlock_irqrestore(&adapter->stats_lock, flags); fp@667: break; fp@667: case SIOCSMIIREG: fp@667: if (!capable(CAP_NET_ADMIN)) fp@667: return -EPERM; fp@667: if (data->reg_num & ~(0x1F)) fp@667: return -EFAULT; fp@667: mii_reg = data->val_in; fp@667: spin_lock_irqsave(&adapter->stats_lock, flags); fp@667: if (e1000_write_phy_reg(&adapter->hw, data->reg_num, fp@667: mii_reg)) { fp@667: spin_unlock_irqrestore(&adapter->stats_lock, flags); fp@667: return -EIO; fp@667: } fp@667: if (adapter->hw.media_type == e1000_media_type_copper) { fp@667: switch (data->reg_num) { fp@667: case PHY_CTRL: fp@667: if (mii_reg & MII_CR_POWER_DOWN) fp@667: break; fp@667: if (mii_reg & MII_CR_AUTO_NEG_EN) { fp@667: adapter->hw.autoneg = 1; fp@667: adapter->hw.autoneg_advertised = 0x2F; fp@667: } else { fp@667: if (mii_reg & 0x40) fp@667: spddplx = SPEED_1000; fp@667: else if (mii_reg & 0x2000) fp@667: spddplx = SPEED_100; fp@667: else fp@667: spddplx = SPEED_10; fp@667: spddplx += (mii_reg & 0x100) fp@667: ? DUPLEX_FULL : fp@667: DUPLEX_HALF; fp@667: retval = e1000_set_spd_dplx(adapter, fp@667: spddplx); fp@667: if (retval) { fp@667: spin_unlock_irqrestore( fp@667: &adapter->stats_lock, fp@667: flags); fp@667: return retval; fp@667: } fp@667: } fp@667: if (netif_running(adapter->netdev)) fp@667: e1000_reinit_locked(adapter); fp@667: else fp@667: e1000_reset(adapter); fp@667: break; fp@667: case M88E1000_PHY_SPEC_CTRL: fp@667: case M88E1000_EXT_PHY_SPEC_CTRL: fp@667: if (e1000_phy_reset(&adapter->hw)) { fp@667: spin_unlock_irqrestore( fp@667: &adapter->stats_lock, flags); fp@667: return -EIO; fp@667: } fp@667: break; fp@667: } fp@667: } else { fp@667: switch (data->reg_num) { fp@667: case PHY_CTRL: fp@667: if (mii_reg & MII_CR_POWER_DOWN) fp@667: break; fp@667: if (netif_running(adapter->netdev)) fp@667: e1000_reinit_locked(adapter); fp@667: else fp@667: e1000_reset(adapter); fp@667: break; fp@667: } fp@667: } fp@667: spin_unlock_irqrestore(&adapter->stats_lock, flags); fp@667: break; fp@667: default: fp@667: return -EOPNOTSUPP; fp@667: } fp@667: return E1000_SUCCESS; fp@667: } fp@667: fp@667: void fp@667: e1000_pci_set_mwi(struct e1000_hw *hw) fp@667: { fp@667: struct e1000_adapter *adapter = hw->back; fp@667: int ret_val = pci_set_mwi(adapter->pdev); fp@667: fp@667: if (ret_val) fp@667: DPRINTK(PROBE, ERR, "Error in setting MWI\n"); fp@667: } fp@667: fp@667: void fp@667: e1000_pci_clear_mwi(struct e1000_hw *hw) fp@667: { fp@667: struct e1000_adapter *adapter = hw->back; fp@667: fp@667: pci_clear_mwi(adapter->pdev); fp@667: } fp@667: fp@667: void fp@667: e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value) fp@667: { fp@667: struct e1000_adapter *adapter = hw->back; fp@667: fp@667: pci_read_config_word(adapter->pdev, reg, value); fp@667: } fp@667: fp@667: void fp@667: e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value) fp@667: { fp@667: struct e1000_adapter *adapter = hw->back; fp@667: fp@667: pci_write_config_word(adapter->pdev, reg, *value); fp@667: } fp@667: fp@667: #if 0 fp@667: uint32_t fp@667: e1000_io_read(struct e1000_hw *hw, unsigned long port) fp@667: { fp@667: return inl(port); fp@667: } fp@667: #endif /* 0 */ fp@667: fp@667: void fp@667: e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value) fp@667: { fp@667: outl(value, port); fp@667: } fp@667: fp@667: static void fp@667: e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp) fp@667: { fp@667: struct e1000_adapter *adapter = netdev_priv(netdev); fp@667: uint32_t ctrl, rctl; fp@667: fp@667: e1000_irq_disable(adapter); fp@667: adapter->vlgrp = grp; fp@667: fp@667: if (grp) { fp@667: /* enable VLAN tag insert/strip */ fp@667: ctrl = E1000_READ_REG(&adapter->hw, CTRL); fp@667: ctrl |= E1000_CTRL_VME; fp@667: E1000_WRITE_REG(&adapter->hw, CTRL, ctrl); fp@667: fp@667: if (adapter->hw.mac_type != e1000_ich8lan) { fp@667: /* enable VLAN receive filtering */ fp@667: rctl = E1000_READ_REG(&adapter->hw, RCTL); fp@667: rctl |= E1000_RCTL_VFE; fp@667: rctl &= ~E1000_RCTL_CFIEN; fp@667: E1000_WRITE_REG(&adapter->hw, RCTL, rctl); fp@667: e1000_update_mng_vlan(adapter); fp@667: } fp@667: } else { fp@667: /* disable VLAN tag insert/strip */ fp@667: ctrl = E1000_READ_REG(&adapter->hw, CTRL); fp@667: ctrl &= ~E1000_CTRL_VME; fp@667: E1000_WRITE_REG(&adapter->hw, CTRL, ctrl); fp@667: fp@667: if (adapter->hw.mac_type != e1000_ich8lan) { fp@667: /* disable VLAN filtering */ fp@667: rctl = E1000_READ_REG(&adapter->hw, RCTL); fp@667: rctl &= ~E1000_RCTL_VFE; fp@667: E1000_WRITE_REG(&adapter->hw, RCTL, rctl); fp@667: if (adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) { fp@667: e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); fp@667: adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; fp@667: } fp@667: } fp@667: } fp@667: fp@667: e1000_irq_enable(adapter); fp@667: } fp@667: fp@667: static void fp@667: e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid) fp@667: { fp@667: struct e1000_adapter *adapter = netdev_priv(netdev); fp@667: uint32_t vfta, index; fp@667: fp@667: if ((adapter->hw.mng_cookie.status & fp@667: E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && fp@667: (vid == adapter->mng_vlan_id)) fp@667: return; fp@667: /* add VID to filter table */ fp@667: index = (vid >> 5) & 0x7F; fp@667: vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index); fp@667: vfta |= (1 << (vid & 0x1F)); fp@667: e1000_write_vfta(&adapter->hw, index, vfta); fp@667: } fp@667: fp@667: static void fp@667: e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid) fp@667: { fp@667: struct e1000_adapter *adapter = netdev_priv(netdev); fp@667: uint32_t vfta, index; fp@667: fp@667: e1000_irq_disable(adapter); fp@667: fp@667: if (adapter->vlgrp) fp@667: adapter->vlgrp->vlan_devices[vid] = NULL; fp@667: fp@667: e1000_irq_enable(adapter); fp@667: fp@667: if ((adapter->hw.mng_cookie.status & fp@667: E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && fp@667: (vid == adapter->mng_vlan_id)) { fp@667: /* release control to f/w */ fp@667: e1000_release_hw_control(adapter); fp@667: return; fp@667: } fp@667: fp@667: /* remove VID from filter table */ fp@667: index = (vid >> 5) & 0x7F; fp@667: vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index); fp@667: vfta &= ~(1 << (vid & 0x1F)); fp@667: e1000_write_vfta(&adapter->hw, index, vfta); fp@667: } fp@667: fp@667: static void fp@667: e1000_restore_vlan(struct e1000_adapter *adapter) fp@667: { fp@667: e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp); fp@667: fp@667: if (adapter->vlgrp) { fp@667: uint16_t vid; fp@667: for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) { fp@667: if (!adapter->vlgrp->vlan_devices[vid]) fp@667: continue; fp@667: e1000_vlan_rx_add_vid(adapter->netdev, vid); fp@667: } fp@667: } fp@667: } fp@667: fp@667: int fp@667: e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx) fp@667: { fp@667: adapter->hw.autoneg = 0; fp@667: fp@667: /* Fiber NICs only allow 1000 gbps Full duplex */ fp@667: if ((adapter->hw.media_type == e1000_media_type_fiber) && fp@667: spddplx != (SPEED_1000 + DUPLEX_FULL)) { fp@667: DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n"); fp@667: return -EINVAL; fp@667: } fp@667: fp@667: switch (spddplx) { fp@667: case SPEED_10 + DUPLEX_HALF: fp@667: adapter->hw.forced_speed_duplex = e1000_10_half; fp@667: break; fp@667: case SPEED_10 + DUPLEX_FULL: fp@667: adapter->hw.forced_speed_duplex = e1000_10_full; fp@667: break; fp@667: case SPEED_100 + DUPLEX_HALF: fp@667: adapter->hw.forced_speed_duplex = e1000_100_half; fp@667: break; fp@667: case SPEED_100 + DUPLEX_FULL: fp@667: adapter->hw.forced_speed_duplex = e1000_100_full; fp@667: break; fp@667: case SPEED_1000 + DUPLEX_FULL: fp@667: adapter->hw.autoneg = 1; fp@667: adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL; fp@667: break; fp@667: case SPEED_1000 + DUPLEX_HALF: /* not supported */ fp@667: default: fp@667: DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n"); fp@667: return -EINVAL; fp@667: } fp@667: return 0; fp@667: } fp@667: fp@667: #ifdef CONFIG_PM fp@667: /* Save/restore 16 or 64 dwords of PCI config space depending on which fp@667: * bus we're on (PCI(X) vs. PCI-E) fp@667: */ fp@667: #define PCIE_CONFIG_SPACE_LEN 256 fp@667: #define PCI_CONFIG_SPACE_LEN 64 fp@667: static int fp@667: e1000_pci_save_state(struct e1000_adapter *adapter) fp@667: { fp@667: struct pci_dev *dev = adapter->pdev; fp@667: int size; fp@667: int i; fp@667: fp@667: if (adapter->hw.mac_type >= e1000_82571) fp@667: size = PCIE_CONFIG_SPACE_LEN; fp@667: else fp@667: size = PCI_CONFIG_SPACE_LEN; fp@667: fp@667: WARN_ON(adapter->config_space != NULL); fp@667: fp@667: adapter->config_space = kmalloc(size, GFP_KERNEL); fp@667: if (!adapter->config_space) { fp@667: DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size); fp@667: return -ENOMEM; fp@667: } fp@667: for (i = 0; i < (size / 4); i++) fp@667: pci_read_config_dword(dev, i * 4, &adapter->config_space[i]); fp@667: return 0; fp@667: } fp@667: fp@667: static void fp@667: e1000_pci_restore_state(struct e1000_adapter *adapter) fp@667: { fp@667: struct pci_dev *dev = adapter->pdev; fp@667: int size; fp@667: int i; fp@667: fp@667: if (adapter->config_space == NULL) fp@667: return; fp@667: fp@667: if (adapter->hw.mac_type >= e1000_82571) fp@667: size = PCIE_CONFIG_SPACE_LEN; fp@667: else fp@667: size = PCI_CONFIG_SPACE_LEN; fp@667: for (i = 0; i < (size / 4); i++) fp@667: pci_write_config_dword(dev, i * 4, adapter->config_space[i]); fp@667: kfree(adapter->config_space); fp@667: adapter->config_space = NULL; fp@667: return; fp@667: } fp@667: #endif /* CONFIG_PM */ fp@667: fp@667: static int fp@667: e1000_suspend(struct pci_dev *pdev, pm_message_t state) fp@667: { fp@667: struct net_device *netdev = pci_get_drvdata(pdev); fp@667: struct e1000_adapter *adapter = netdev_priv(netdev); fp@667: uint32_t ctrl, ctrl_ext, rctl, manc, status; fp@667: uint32_t wufc = adapter->wol; fp@667: #ifdef CONFIG_PM fp@667: int retval = 0; fp@667: #endif fp@667: fp@667: netif_device_detach(netdev); fp@667: fp@667: if (netif_running(netdev)) { fp@667: WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); fp@667: e1000_down(adapter); fp@667: } fp@667: fp@667: #ifdef CONFIG_PM fp@667: /* Implement our own version of pci_save_state(pdev) because pci- fp@667: * express adapters have 256-byte config spaces. */ fp@667: retval = e1000_pci_save_state(adapter); fp@667: if (retval) fp@667: return retval; fp@667: #endif fp@667: fp@667: status = E1000_READ_REG(&adapter->hw, STATUS); fp@667: if (status & E1000_STATUS_LU) fp@667: wufc &= ~E1000_WUFC_LNKC; fp@667: fp@667: if (wufc) { fp@667: e1000_setup_rctl(adapter); fp@667: e1000_set_multi(netdev); fp@667: fp@667: /* turn on all-multi mode if wake on multicast is enabled */ fp@667: if (adapter->wol & E1000_WUFC_MC) { fp@667: rctl = E1000_READ_REG(&adapter->hw, RCTL); fp@667: rctl |= E1000_RCTL_MPE; fp@667: E1000_WRITE_REG(&adapter->hw, RCTL, rctl); fp@667: } fp@667: fp@667: if (adapter->hw.mac_type >= e1000_82540) { fp@667: ctrl = E1000_READ_REG(&adapter->hw, CTRL); fp@667: /* advertise wake from D3Cold */ fp@667: #define E1000_CTRL_ADVD3WUC 0x00100000 fp@667: /* phy power management enable */ fp@667: #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 fp@667: ctrl |= E1000_CTRL_ADVD3WUC | fp@667: E1000_CTRL_EN_PHY_PWR_MGMT; fp@667: E1000_WRITE_REG(&adapter->hw, CTRL, ctrl); fp@667: } fp@667: fp@667: if (adapter->hw.media_type == e1000_media_type_fiber || fp@667: adapter->hw.media_type == e1000_media_type_internal_serdes) { fp@667: /* keep the laser running in D3 */ fp@667: ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT); fp@667: ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA; fp@667: E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext); fp@667: } fp@667: fp@667: /* Allow time for pending master requests to run */ fp@667: e1000_disable_pciex_master(&adapter->hw); fp@667: fp@667: E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN); fp@667: E1000_WRITE_REG(&adapter->hw, WUFC, wufc); fp@667: pci_enable_wake(pdev, PCI_D3hot, 1); fp@667: pci_enable_wake(pdev, PCI_D3cold, 1); fp@667: } else { fp@667: E1000_WRITE_REG(&adapter->hw, WUC, 0); fp@667: E1000_WRITE_REG(&adapter->hw, WUFC, 0); fp@667: pci_enable_wake(pdev, PCI_D3hot, 0); fp@667: pci_enable_wake(pdev, PCI_D3cold, 0); fp@667: } fp@667: fp@667: /* FIXME: this code is incorrect for PCI Express */ fp@667: if (adapter->hw.mac_type >= e1000_82540 && fp@667: adapter->hw.mac_type != e1000_ich8lan && fp@667: adapter->hw.media_type == e1000_media_type_copper) { fp@667: manc = E1000_READ_REG(&adapter->hw, MANC); fp@667: if (manc & E1000_MANC_SMBUS_EN) { fp@667: manc |= E1000_MANC_ARP_EN; fp@667: E1000_WRITE_REG(&adapter->hw, MANC, manc); fp@667: pci_enable_wake(pdev, PCI_D3hot, 1); fp@667: pci_enable_wake(pdev, PCI_D3cold, 1); fp@667: } fp@667: } fp@667: fp@667: if (adapter->hw.phy_type == e1000_phy_igp_3) fp@667: e1000_phy_powerdown_workaround(&adapter->hw); fp@667: fp@667: if (netif_running(netdev)) fp@667: e1000_free_irq(adapter); fp@667: fp@667: /* Release control of h/w to f/w. If f/w is AMT enabled, this fp@667: * would have already happened in close and is redundant. */ fp@667: e1000_release_hw_control(adapter); fp@667: fp@667: pci_disable_device(pdev); fp@667: fp@667: pci_set_power_state(pdev, pci_choose_state(pdev, state)); fp@667: fp@667: return 0; fp@667: } fp@667: fp@667: #ifdef CONFIG_PM fp@667: static int fp@667: e1000_resume(struct pci_dev *pdev) fp@667: { fp@667: struct net_device *netdev = pci_get_drvdata(pdev); fp@667: struct e1000_adapter *adapter = netdev_priv(netdev); fp@667: uint32_t manc, ret_val; fp@667: fp@667: pci_set_power_state(pdev, PCI_D0); fp@667: e1000_pci_restore_state(adapter); fp@667: ret_val = pci_enable_device(pdev); fp@667: pci_set_master(pdev); fp@667: fp@667: pci_enable_wake(pdev, PCI_D3hot, 0); fp@667: pci_enable_wake(pdev, PCI_D3cold, 0); fp@667: fp@667: if (netif_running(netdev) && (ret_val = e1000_request_irq(adapter))) fp@667: return ret_val; fp@667: fp@667: e1000_power_up_phy(adapter); fp@667: e1000_reset(adapter); fp@667: E1000_WRITE_REG(&adapter->hw, WUS, ~0); fp@667: fp@667: if (netif_running(netdev)) fp@667: e1000_up(adapter); fp@667: fp@667: netif_device_attach(netdev); fp@667: fp@667: /* FIXME: this code is incorrect for PCI Express */ fp@667: if (adapter->hw.mac_type >= e1000_82540 && fp@667: adapter->hw.mac_type != e1000_ich8lan && fp@667: adapter->hw.media_type == e1000_media_type_copper) { fp@667: manc = E1000_READ_REG(&adapter->hw, MANC); fp@667: manc &= ~(E1000_MANC_ARP_EN); fp@667: E1000_WRITE_REG(&adapter->hw, MANC, manc); fp@667: } fp@667: fp@667: /* If the controller is 82573 and f/w is AMT, do not set fp@667: * DRV_LOAD until the interface is up. For all other cases, fp@667: * let the f/w know that the h/w is now under the control fp@667: * of the driver. */ fp@667: if (adapter->hw.mac_type != e1000_82573 || fp@667: !e1000_check_mng_mode(&adapter->hw)) fp@667: e1000_get_hw_control(adapter); fp@667: fp@667: return 0; fp@667: } fp@667: #endif fp@667: fp@667: static void e1000_shutdown(struct pci_dev *pdev) fp@667: { fp@667: e1000_suspend(pdev, PMSG_SUSPEND); fp@667: } fp@667: fp@667: #ifdef CONFIG_NET_POLL_CONTROLLER fp@667: /* fp@667: * Polling 'interrupt' - used by things like netconsole to send skbs fp@667: * without having to re-enable interrupts. It's not called while fp@667: * the interrupt routine is executing. fp@667: */ fp@667: static void fp@667: e1000_netpoll(struct net_device *netdev) fp@667: { fp@667: struct e1000_adapter *adapter = netdev_priv(netdev); fp@667: fp@667: disable_irq(adapter->pdev->irq); fp@667: e1000_intr(adapter->pdev->irq, netdev, NULL); fp@667: e1000_clean_tx_irq(adapter, adapter->tx_ring); fp@667: #ifndef CONFIG_E1000_NAPI fp@667: adapter->clean_rx(adapter, adapter->rx_ring); fp@667: #endif fp@667: enable_irq(adapter->pdev->irq); fp@667: } fp@667: #endif fp@667: fp@667: /** fp@667: * e1000_io_error_detected - called when PCI error is detected fp@667: * @pdev: Pointer to PCI device fp@667: * @state: The current pci conneection state fp@667: * fp@667: * This function is called after a PCI bus error affecting fp@667: * this device has been detected. fp@667: */ fp@667: static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) fp@667: { fp@667: struct net_device *netdev = pci_get_drvdata(pdev); fp@667: struct e1000_adapter *adapter = netdev->priv; fp@667: fp@667: netif_device_detach(netdev); fp@667: fp@667: if (netif_running(netdev)) fp@667: e1000_down(adapter); fp@667: fp@667: /* Request a slot slot reset. */ fp@667: return PCI_ERS_RESULT_NEED_RESET; fp@667: } fp@667: fp@667: /** fp@667: * e1000_io_slot_reset - called after the pci bus has been reset. fp@667: * @pdev: Pointer to PCI device fp@667: * fp@667: * Restart the card from scratch, as if from a cold-boot. Implementation fp@667: * resembles the first-half of the e1000_resume routine. fp@667: */ fp@667: static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) fp@667: { fp@667: struct net_device *netdev = pci_get_drvdata(pdev); fp@667: struct e1000_adapter *adapter = netdev->priv; fp@667: fp@667: if (pci_enable_device(pdev)) { fp@667: printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n"); fp@667: return PCI_ERS_RESULT_DISCONNECT; fp@667: } fp@667: pci_set_master(pdev); fp@667: fp@667: pci_enable_wake(pdev, 3, 0); fp@667: pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */ fp@667: fp@667: /* Perform card reset only on one instance of the card */ fp@667: if (PCI_FUNC (pdev->devfn) != 0) fp@667: return PCI_ERS_RESULT_RECOVERED; fp@667: fp@667: e1000_reset(adapter); fp@667: E1000_WRITE_REG(&adapter->hw, WUS, ~0); fp@667: fp@667: return PCI_ERS_RESULT_RECOVERED; fp@667: } fp@667: fp@667: /** fp@667: * e1000_io_resume - called when traffic can start flowing again. fp@667: * @pdev: Pointer to PCI device fp@667: * fp@667: * This callback is called when the error recovery driver tells us that fp@667: * its OK to resume normal operation. Implementation resembles the fp@667: * second-half of the e1000_resume routine. fp@667: */ fp@667: static void e1000_io_resume(struct pci_dev *pdev) fp@667: { fp@667: struct net_device *netdev = pci_get_drvdata(pdev); fp@667: struct e1000_adapter *adapter = netdev->priv; fp@667: uint32_t manc, swsm; fp@667: fp@667: if (netif_running(netdev)) { fp@667: if (e1000_up(adapter)) { fp@667: printk("e1000: can't bring device back up after reset\n"); fp@667: return; fp@667: } fp@667: } fp@667: fp@667: netif_device_attach(netdev); fp@667: fp@667: if (adapter->hw.mac_type >= e1000_82540 && fp@667: adapter->hw.media_type == e1000_media_type_copper) { fp@667: manc = E1000_READ_REG(&adapter->hw, MANC); fp@667: manc &= ~(E1000_MANC_ARP_EN); fp@667: E1000_WRITE_REG(&adapter->hw, MANC, manc); fp@667: } fp@667: fp@667: switch (adapter->hw.mac_type) { fp@667: case e1000_82573: fp@667: swsm = E1000_READ_REG(&adapter->hw, SWSM); fp@667: E1000_WRITE_REG(&adapter->hw, SWSM, fp@667: swsm | E1000_SWSM_DRV_LOAD); fp@667: break; fp@667: default: fp@667: break; fp@667: } fp@667: fp@667: if (netif_running(netdev)) fp@667: mod_timer(&adapter->watchdog_timer, jiffies); fp@667: } fp@667: fp@667: /* e1000_main.c */