fp@39: /****************************************************************************** fp@0: * fp@39: * $Id$ fp@0: * fp@197: * Copyright (C) 2006 Florian Pose, Ingenieurgemeinschaft IgH fp@197: * fp@197: * This file is part of the IgH EtherCAT Master. fp@197: * fp@197: * The IgH EtherCAT Master is free software; you can redistribute it fp@197: * and/or modify it under the terms of the GNU General Public License fp@246: * as published by the Free Software Foundation; either version 2 of the fp@246: * License, or (at your option) any later version. fp@197: * fp@197: * The IgH EtherCAT Master is distributed in the hope that it will be fp@197: * useful, but WITHOUT ANY WARRANTY; without even the implied warranty of fp@197: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the fp@197: * GNU General Public License for more details. fp@197: * fp@197: * You should have received a copy of the GNU General Public License fp@197: * along with the IgH EtherCAT Master; if not, write to the Free Software fp@197: * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA fp@197: * fp@246: * The right to use EtherCAT Technology is granted and comes free of fp@246: * charge under condition of compatibility of product made by fp@246: * Licensee. People intending to distribute/sell products based on the fp@246: * code, have to sign an agreement to guarantee that products using fp@246: * software based on IgH EtherCAT master stay compatible with the actual fp@246: * EtherCAT specification (which are released themselves as an open fp@246: * standard) as the (only) precondition to have the right to use EtherCAT fp@246: * Technology, IP and trade marks. fp@246: * fp@39: *****************************************************************************/ fp@0: fp@199: /** fp@199: \file fp@199: EtherCAT master methods. fp@199: */ fp@199: fp@199: /*****************************************************************************/ fp@199: fp@24: #include fp@0: #include fp@0: #include fp@0: #include fp@0: #include fp@0: fp@104: #include "../include/ecrt.h" fp@54: #include "globals.h" fp@54: #include "master.h" fp@55: #include "slave.h" fp@54: #include "device.h" fp@293: #include "datagram.h" fp@145: #include "ethernet.h" fp@0: fp@39: /*****************************************************************************/ fp@0: fp@448: void ec_master_destroy_domains(ec_master_t *); fp@325: void ec_master_sync_io(ec_master_t *); fp@637: static int ec_master_idle_thread(ec_master_t *); fp@637: static int ec_master_operation_thread(ec_master_t *); fp@251: void ec_master_eoe_run(unsigned long); fp@441: void ec_master_check_sdo(unsigned long); fp@446: int ec_master_measure_bus_time(ec_master_t *); fp@179: ssize_t ec_show_master_attribute(struct kobject *, struct attribute *, char *); fp@268: ssize_t ec_store_master_attribute(struct kobject *, struct attribute *, fp@268: const char *, size_t); fp@179: fp@179: /*****************************************************************************/ fp@179: fp@199: /** \cond */ fp@199: fp@334: EC_SYSFS_READ_ATTR(info); fp@303: EC_SYSFS_READ_WRITE_ATTR(debug_level); fp@178: fp@178: static struct attribute *ec_def_attrs[] = { fp@334: &attr_info, fp@303: &attr_debug_level, fp@178: NULL, fp@178: }; fp@178: fp@178: static struct sysfs_ops ec_sysfs_ops = { fp@178: .show = &ec_show_master_attribute, fp@268: .store = ec_store_master_attribute fp@178: }; fp@178: fp@178: static struct kobj_type ktype_ec_master = { fp@639: .release = NULL, fp@178: .sysfs_ops = &ec_sysfs_ops, fp@178: .default_attrs = ec_def_attrs fp@178: }; fp@178: fp@199: /** \endcond */ fp@199: fp@178: /*****************************************************************************/ fp@178: fp@0: /** fp@195: Master constructor. fp@195: \return 0 in case of success, else < 0 fp@195: */ fp@195: fp@195: int ec_master_init(ec_master_t *master, /**< EtherCAT master */ fp@576: struct kobject *module_kobj, /**< kobject of the master module */ fp@576: unsigned int index, /**< master index */ fp@639: const uint8_t *main_mac, /**< MAC address of main device */ fp@639: const uint8_t *backup_mac /**< MAC address of backup device */ fp@576: ) fp@178: { fp@251: unsigned int i; fp@251: fp@178: master->index = index; fp@647: master->reserved = 0; fp@446: fp@639: master->main_mac = main_mac; fp@639: master->backup_mac = backup_mac; fp@381: init_MUTEX(&master->device_sem); fp@446: fp@446: master->mode = EC_MASTER_MODE_ORPHANED; fp@637: master->injection_seq_fsm = 0; fp@637: master->injection_seq_rt = 0; fp@446: fp@182: INIT_LIST_HEAD(&master->slaves); fp@446: master->slave_count = 0; fp@656: fp@656: master->scan_state = EC_REQUEST_IN_PROGRESS; fp@656: master->allow_scan = 1; fp@656: init_MUTEX(&master->scan_sem); fp@656: init_waitqueue_head(&master->scan_queue); fp@656: fp@656: master->config_state = EC_REQUEST_COMPLETE; fp@656: master->allow_config = 1; fp@656: init_MUTEX(&master->config_sem); fp@656: init_waitqueue_head(&master->config_queue); fp@656: fp@293: INIT_LIST_HEAD(&master->datagram_queue); fp@446: master->datagram_index = 0; fp@446: fp@95: INIT_LIST_HEAD(&master->domains); fp@446: master->debug_level = 0; fp@446: fp@446: master->stats.timeouts = 0; fp@446: master->stats.corrupted = 0; fp@446: master->stats.skipped = 0; fp@446: master->stats.unmatched = 0; fp@446: master->stats.output_jiffies = 0; fp@446: fp@446: for (i = 0; i < HZ; i++) { fp@446: master->idle_cycle_times[i] = 0; fp@446: master->eoe_cycle_times[i] = 0; fp@446: } fp@446: master->idle_cycle_time_pos = 0; fp@446: master->eoe_cycle_time_pos = 0; fp@446: fp@226: init_timer(&master->eoe_timer); fp@251: master->eoe_timer.function = ec_master_eoe_run; fp@226: master->eoe_timer.data = (unsigned long) master; fp@251: master->eoe_running = 0; fp@446: INIT_LIST_HEAD(&master->eoe_handlers); fp@446: fp@446: master->internal_lock = SPIN_LOCK_UNLOCKED; fp@446: master->request_cb = NULL; fp@446: master->release_cb = NULL; fp@446: master->cb_data = NULL; fp@446: fp@601: INIT_LIST_HEAD(&master->eeprom_requests); fp@601: init_MUTEX(&master->eeprom_sem); fp@601: init_waitqueue_head(&master->eeprom_queue); fp@601: fp@646: INIT_LIST_HEAD(&master->sdo_requests); fp@441: init_MUTEX(&master->sdo_sem); fp@646: init_waitqueue_head(&master->sdo_queue); fp@251: fp@579: // init devices fp@579: if (ec_device_init(&master->main_device, master)) fp@579: goto out_return; fp@579: fp@579: if (ec_device_init(&master->backup_device, master)) fp@579: goto out_clear_main; fp@579: fp@528: // init state machine datagram fp@528: ec_datagram_init(&master->fsm_datagram); fp@528: if (ec_datagram_prealloc(&master->fsm_datagram, EC_MAX_DATA_SIZE)) { fp@528: EC_ERR("Failed to allocate FSM datagram.\n"); fp@659: goto out_clear_backup; fp@528: } fp@528: fp@251: // create state machine object fp@528: ec_fsm_master_init(&master->fsm, master, &master->fsm_datagram); fp@226: fp@195: // init kobject and add it to the hierarchy fp@178: memset(&master->kobj, 0x00, sizeof(struct kobject)); fp@178: kobject_init(&master->kobj); fp@178: master->kobj.ktype = &ktype_ec_master; fp@576: master->kobj.parent = module_kobj; fp@576: fp@576: if (kobject_set_name(&master->kobj, "master%i", index)) { fp@576: EC_ERR("Failed to set master kobject name.\n"); fp@238: kobject_put(&master->kobj); fp@659: goto out_clear_fsm; fp@226: } fp@576: fp@484: if (kobject_add(&master->kobj)) { fp@576: EC_ERR("Failed to add master kobject.\n"); fp@484: kobject_put(&master->kobj); fp@659: goto out_clear_fsm; fp@484: } fp@144: fp@178: return 0; fp@226: fp@659: out_clear_fsm: fp@659: ec_fsm_master_clear(&master->fsm); fp@659: out_clear_backup: fp@579: ec_device_clear(&master->backup_device); fp@579: out_clear_main: fp@579: ec_device_clear(&master->main_device); fp@579: out_return: fp@226: return -1; fp@0: } fp@0: fp@39: /*****************************************************************************/ fp@0: fp@0: /** fp@448: Clear and free master. fp@448: This method is called by the kobject, fp@448: once there are no more references to it. fp@195: */ fp@195: fp@639: void ec_master_clear( fp@639: ec_master_t *master /**< EtherCAT master */ fp@639: ) fp@639: { fp@661: ec_master_clear_eoe_handlers(master); fp@639: ec_master_destroy_slaves(master); fp@639: ec_master_destroy_domains(master); fp@528: ec_fsm_master_clear(&master->fsm); fp@528: ec_datagram_clear(&master->fsm_datagram); fp@661: ec_device_clear(&master->backup_device); fp@661: ec_device_clear(&master->main_device); fp@661: fp@661: // destroy self fp@661: kobject_del(&master->kobj); fp@661: kobject_put(&master->kobj); fp@661: } fp@661: fp@661: /*****************************************************************************/ fp@661: fp@661: /** fp@661: * Clear and free all EoE handlers. fp@661: */ fp@661: fp@661: void ec_master_clear_eoe_handlers( fp@661: ec_master_t *master /**< EtherCAT master */ fp@661: ) fp@661: { fp@661: ec_eoe_t *eoe, *next; fp@661: fp@661: list_for_each_entry_safe(eoe, next, &master->eoe_handlers, list) { fp@251: list_del(&eoe->list); fp@251: ec_eoe_clear(eoe); fp@251: kfree(eoe); fp@251: } fp@73: } fp@73: fp@73: /*****************************************************************************/ fp@73: fp@73: /** fp@448: Destroy all slaves. fp@448: */ fp@448: fp@448: void ec_master_destroy_slaves(ec_master_t *master) fp@238: { fp@238: ec_slave_t *slave, *next_slave; fp@238: fp@238: list_for_each_entry_safe(slave, next_slave, &master->slaves, list) { fp@238: list_del(&slave->list); fp@448: ec_slave_destroy(slave); fp@238: } fp@446: fp@238: master->slave_count = 0; fp@74: } fp@74: fp@74: /*****************************************************************************/ fp@74: fp@74: /** fp@448: Destroy all domains. fp@448: */ fp@448: fp@448: void ec_master_destroy_domains(ec_master_t *master) fp@448: { fp@448: ec_domain_t *domain, *next_d; fp@448: fp@448: list_for_each_entry_safe(domain, next_d, &master->domains, list) { fp@448: list_del(&domain->list); fp@448: ec_domain_destroy(domain); fp@448: } fp@448: } fp@448: fp@448: /*****************************************************************************/ fp@448: fp@448: /** fp@515: Internal locking callback. fp@515: */ fp@515: fp@515: int ec_master_request_cb(void *master /**< callback data */) fp@515: { fp@515: spin_lock(&((ec_master_t *) master)->internal_lock); fp@515: return 0; fp@515: } fp@515: fp@515: /*****************************************************************************/ fp@515: fp@515: /** fp@515: Internal unlocking callback. fp@515: */ fp@515: fp@515: void ec_master_release_cb(void *master /**< callback data */) fp@515: { fp@515: spin_unlock(&((ec_master_t *) master)->internal_lock); fp@515: } fp@515: fp@515: /*****************************************************************************/ fp@515: fp@515: /** fp@525: * Starts the master thread. fp@656: */ fp@656: fp@656: int ec_master_thread_start( fp@656: ec_master_t *master, /**< EtherCAT master */ fp@656: int (*thread_func)(ec_master_t *) /**< thread function to start */ fp@656: ) fp@656: { fp@525: init_completion(&master->thread_exit); fp@637: fp@540: EC_INFO("Starting master thread.\n"); fp@637: if (!(master->thread_id = kernel_thread((int (*)(void *)) thread_func, fp@637: master, CLONE_KERNEL))) fp@525: return -1; fp@525: fp@525: return 0; fp@525: } fp@525: fp@525: /*****************************************************************************/ fp@525: fp@525: /** fp@525: * Stops the master thread. fp@656: */ fp@525: fp@525: void ec_master_thread_stop(ec_master_t *master /**< EtherCAT master */) fp@525: { fp@656: if (!master->thread_id) { fp@656: EC_WARN("ec_master_thread_stop: Already finished!\n"); fp@656: return; fp@656: } fp@656: fp@656: kill_proc(master->thread_id, SIGTERM, 1); fp@656: wait_for_completion(&master->thread_exit); fp@656: EC_INFO("Master thread exited.\n"); fp@656: fp@656: if (master->fsm_datagram.state != EC_DATAGRAM_SENT) return; fp@656: fp@656: // wait for FSM datagram fp@656: while (get_cycles() - master->fsm_datagram.cycles_sent fp@656: < (cycles_t) EC_IO_TIMEOUT /* us */ * (cpu_khz / 1000)) fp@656: schedule(); fp@525: } fp@525: fp@525: /*****************************************************************************/ fp@525: fp@525: /** fp@527: * Transition function from ORPHANED to IDLE mode. fp@656: */ fp@446: fp@446: int ec_master_enter_idle_mode(ec_master_t *master /**< EtherCAT master */) fp@446: { fp@515: master->request_cb = ec_master_request_cb; fp@515: master->release_cb = ec_master_release_cb; fp@515: master->cb_data = master; fp@637: fp@446: master->mode = EC_MASTER_MODE_IDLE; fp@656: if (ec_master_thread_start(master, ec_master_idle_thread)) { fp@525: master->mode = EC_MASTER_MODE_ORPHANED; fp@525: return -1; fp@525: } fp@525: fp@446: return 0; fp@446: } fp@446: fp@446: /*****************************************************************************/ fp@446: fp@446: /** fp@527: * Transition function from IDLE to ORPHANED mode. fp@656: */ fp@446: fp@446: void ec_master_leave_idle_mode(ec_master_t *master /**< EtherCAT master */) fp@446: { fp@525: master->mode = EC_MASTER_MODE_ORPHANED; fp@525: fp@446: ec_master_eoe_stop(master); fp@525: ec_master_thread_stop(master); fp@589: ec_master_destroy_slaves(master); fp@446: } fp@446: fp@446: /*****************************************************************************/ fp@446: fp@446: /** fp@527: * Transition function from IDLE to OPERATION mode. fp@656: */ fp@446: fp@446: int ec_master_enter_operation_mode(ec_master_t *master /**< EtherCAT master */) fp@446: { fp@446: ec_slave_t *slave; fp@661: ec_eoe_t *eoe; fp@446: fp@656: down(&master->config_sem); fp@656: master->allow_config = 0; // temporarily disable slave configuration fp@656: up(&master->config_sem); fp@656: fp@656: // wait for slave configuration to complete fp@656: if (wait_event_interruptible(master->config_queue, fp@656: master->config_state != EC_REQUEST_IN_PROGRESS)) { fp@656: EC_INFO("Finishing slave configuration interrupted by signal.\n"); fp@656: goto out_allow; fp@656: } fp@656: fp@656: if (master->debug_level) fp@656: EC_DBG("Waiting for pending slave configuration returned.\n"); fp@656: fp@656: down(&master->scan_sem); fp@656: master->allow_scan = 0; // 'lock' the slave list fp@656: up(&master->scan_sem); fp@656: fp@656: // wait for slave scan to complete fp@656: if (wait_event_interruptible(master->scan_queue, fp@656: master->scan_state != EC_REQUEST_IN_PROGRESS)) { fp@656: EC_INFO("Waiting for slave scan interrupted by signal.\n"); fp@656: goto out_allow; fp@656: } fp@656: fp@656: if (master->debug_level) fp@656: EC_DBG("Waiting for pending slave scan returned.\n"); fp@656: fp@656: // set states for all slaves fp@446: list_for_each_entry(slave, &master->slaves, list) { fp@643: ec_slave_request_state(slave, EC_SLAVE_STATE_PREOP); fp@446: } fp@661: // ... but set EoE slaves to OP fp@661: list_for_each_entry(eoe, &master->eoe_handlers, list) { fp@661: if (ec_eoe_is_open(eoe)) fp@661: ec_slave_request_state(eoe->slave, EC_SLAVE_STATE_OP); fp@661: } fp@446: fp@656: if (master->debug_level) fp@656: EC_DBG("Switching to operation mode.\n"); fp@656: fp@656: master->mode = EC_MASTER_MODE_OPERATION; fp@612: master->pdo_slaves_offline = 0; // assume all PDO slaves online fp@664: master->frames_timed_out = 0; fp@661: master->ext_request_cb = NULL; fp@661: master->ext_release_cb = NULL; fp@661: master->ext_cb_data = NULL; fp@446: return 0; fp@656: fp@656: out_allow: fp@656: master->allow_scan = 1; fp@656: master->allow_config = 1; fp@446: return -1; fp@446: } fp@446: fp@446: /*****************************************************************************/ fp@446: fp@446: /** fp@527: * Transition function from OPERATION to IDLE mode. fp@656: */ fp@446: fp@446: void ec_master_leave_operation_mode(ec_master_t *master fp@446: /**< EtherCAT master */) fp@446: { fp@446: ec_slave_t *slave; fp@661: ec_eoe_t *eoe; fp@656: fp@656: master->mode = EC_MASTER_MODE_IDLE; fp@656: fp@656: ec_master_eoe_stop(master); fp@656: ec_master_thread_stop(master); fp@656: fp@656: master->request_cb = ec_master_request_cb; fp@656: master->release_cb = ec_master_release_cb; fp@656: master->cb_data = master; fp@528: fp@449: // set states for all slaves fp@449: list_for_each_entry(slave, &master->slaves, list) { fp@467: ec_slave_reset(slave); fp@449: ec_slave_request_state(slave, EC_SLAVE_STATE_PREOP); fp@656: } fp@661: // ... but leave EoE slaves in OP fp@661: list_for_each_entry(eoe, &master->eoe_handlers, list) { fp@661: if (ec_eoe_is_open(eoe)) fp@661: ec_slave_request_state(eoe->slave, EC_SLAVE_STATE_OP); fp@661: } fp@448: fp@448: ec_master_destroy_domains(master); fp@656: fp@661: if (ec_master_thread_start(master, ec_master_idle_thread)) fp@661: EC_WARN("Failed to restart master thread!\n"); fp@661: ec_master_eoe_start(master); fp@661: fp@656: master->allow_scan = 1; fp@656: master->allow_config = 1; fp@446: } fp@446: fp@446: /*****************************************************************************/ fp@446: fp@446: /** fp@293: Places a datagram in the datagram queue. fp@293: */ fp@293: fp@293: void ec_master_queue_datagram(ec_master_t *master, /**< EtherCAT master */ fp@293: ec_datagram_t *datagram /**< datagram */ fp@293: ) fp@293: { fp@293: ec_datagram_t *queued_datagram; fp@293: fp@293: // check, if the datagram is already queued fp@293: list_for_each_entry(queued_datagram, &master->datagram_queue, queue) { fp@293: if (queued_datagram == datagram) { fp@332: master->stats.skipped++; fp@637: if (master->debug_level) fp@637: EC_DBG("skipping datagram %x.\n", (unsigned int) datagram); fp@332: ec_master_output_stats(master); fp@325: datagram->state = EC_DATAGRAM_QUEUED; fp@98: return; fp@98: } fp@98: } fp@98: fp@293: list_add_tail(&datagram->queue, &master->datagram_queue); fp@325: datagram->state = EC_DATAGRAM_QUEUED; fp@293: } fp@293: fp@293: /*****************************************************************************/ fp@293: fp@293: /** fp@293: Sends the datagrams in the queue. fp@195: \return 0 in case of success, else < 0 fp@195: */ fp@195: fp@293: void ec_master_send_datagrams(ec_master_t *master /**< EtherCAT master */) fp@293: { fp@398: ec_datagram_t *datagram, *next; fp@293: size_t datagram_size; fp@98: uint8_t *frame_data, *cur_data; fp@98: void *follows_word; fp@398: cycles_t cycles_start, cycles_sent, cycles_end; fp@398: unsigned long jiffies_sent; fp@293: unsigned int frame_count, more_datagrams_waiting; fp@398: struct list_head sent_datagrams; fp@398: fp@398: cycles_start = get_cycles(); fp@176: frame_count = 0; fp@398: INIT_LIST_HEAD(&sent_datagrams); fp@208: fp@303: if (unlikely(master->debug_level > 1)) fp@293: EC_DBG("ec_master_send_datagrams\n"); fp@98: fp@176: do { fp@195: // fetch pointer to transmit socket buffer fp@579: frame_data = ec_device_tx_data(&master->main_device); fp@176: cur_data = frame_data + EC_FRAME_HEADER_SIZE; fp@176: follows_word = NULL; fp@293: more_datagrams_waiting = 0; fp@293: fp@293: // fill current frame with datagrams fp@293: list_for_each_entry(datagram, &master->datagram_queue, queue) { fp@325: if (datagram->state != EC_DATAGRAM_QUEUED) continue; fp@293: fp@293: // does the current datagram fit in the frame? fp@293: datagram_size = EC_DATAGRAM_HEADER_SIZE + datagram->data_size fp@293: + EC_DATAGRAM_FOOTER_SIZE; fp@293: if (cur_data - frame_data + datagram_size > ETH_DATA_LEN) { fp@293: more_datagrams_waiting = 1; fp@176: break; fp@176: } fp@176: fp@398: list_add_tail(&datagram->sent, &sent_datagrams); fp@293: datagram->index = master->datagram_index++; fp@176: fp@303: if (unlikely(master->debug_level > 1)) fp@293: EC_DBG("adding datagram 0x%02X\n", datagram->index); fp@293: fp@293: // set "datagram following" flag in previous frame fp@176: if (follows_word) fp@176: EC_WRITE_U16(follows_word, EC_READ_U16(follows_word) | 0x8000); fp@176: fp@293: // EtherCAT datagram header fp@293: EC_WRITE_U8 (cur_data, datagram->type); fp@293: EC_WRITE_U8 (cur_data + 1, datagram->index); fp@293: EC_WRITE_U32(cur_data + 2, datagram->address.logical); fp@293: EC_WRITE_U16(cur_data + 6, datagram->data_size & 0x7FF); fp@176: EC_WRITE_U16(cur_data + 8, 0x0000); fp@176: follows_word = cur_data + 6; fp@293: cur_data += EC_DATAGRAM_HEADER_SIZE; fp@293: fp@293: // EtherCAT datagram data fp@293: memcpy(cur_data, datagram->data, datagram->data_size); fp@293: cur_data += datagram->data_size; fp@293: fp@293: // EtherCAT datagram footer fp@195: EC_WRITE_U16(cur_data, 0x0000); // reset working counter fp@293: cur_data += EC_DATAGRAM_FOOTER_SIZE; fp@176: } fp@176: fp@398: if (list_empty(&sent_datagrams)) { fp@303: if (unlikely(master->debug_level > 1)) fp@176: EC_DBG("nothing to send.\n"); fp@176: break; fp@176: } fp@176: fp@176: // EtherCAT frame header fp@176: EC_WRITE_U16(frame_data, ((cur_data - frame_data fp@176: - EC_FRAME_HEADER_SIZE) & 0x7FF) | 0x1000); fp@176: fp@195: // pad frame fp@211: while (cur_data - frame_data < ETH_ZLEN - ETH_HLEN) fp@176: EC_WRITE_U8(cur_data++, 0x00); fp@98: fp@303: if (unlikely(master->debug_level > 1)) fp@176: EC_DBG("frame size: %i\n", cur_data - frame_data); fp@176: fp@195: // send frame fp@579: ec_device_send(&master->main_device, cur_data - frame_data); fp@398: cycles_sent = get_cycles(); fp@398: jiffies_sent = jiffies; fp@398: fp@398: // set datagram states and sending timestamps fp@398: list_for_each_entry_safe(datagram, next, &sent_datagrams, sent) { fp@398: datagram->state = EC_DATAGRAM_SENT; fp@398: datagram->cycles_sent = cycles_sent; fp@398: datagram->jiffies_sent = jiffies_sent; fp@398: list_del_init(&datagram->sent); // empty list of sent datagrams fp@398: } fp@398: fp@176: frame_count++; fp@176: } fp@293: while (more_datagrams_waiting); fp@98: fp@303: if (unlikely(master->debug_level > 1)) { fp@344: cycles_end = get_cycles(); fp@293: EC_DBG("ec_master_send_datagrams sent %i frames in %ius.\n", fp@344: frame_count, fp@344: (unsigned int) (cycles_end - cycles_start) * 1000 / cpu_khz); fp@176: } fp@176: } fp@176: fp@176: /*****************************************************************************/ fp@176: fp@176: /** fp@176: Processes a received frame. fp@176: This function is called by the network driver for every received frame. fp@195: \return 0 in case of success, else < 0 fp@195: */ fp@195: fp@331: void ec_master_receive_datagrams(ec_master_t *master, /**< EtherCAT master */ fp@331: const uint8_t *frame_data, /**< frame data */ fp@331: size_t size /**< size of the received data */ fp@331: ) fp@98: { fp@98: size_t frame_size, data_size; fp@293: uint8_t datagram_type, datagram_index; fp@98: unsigned int cmd_follows, matched; fp@98: const uint8_t *cur_data; fp@293: ec_datagram_t *datagram; fp@98: fp@98: if (unlikely(size < EC_FRAME_HEADER_SIZE)) { fp@98: master->stats.corrupted++; fp@98: ec_master_output_stats(master); fp@98: return; fp@98: } fp@98: fp@98: cur_data = frame_data; fp@98: fp@195: // check length of entire frame fp@98: frame_size = EC_READ_U16(cur_data) & 0x07FF; fp@98: cur_data += EC_FRAME_HEADER_SIZE; fp@98: fp@98: if (unlikely(frame_size > size)) { fp@98: master->stats.corrupted++; fp@98: ec_master_output_stats(master); fp@98: return; fp@98: } fp@98: fp@98: cmd_follows = 1; fp@98: while (cmd_follows) { fp@293: // process datagram header fp@293: datagram_type = EC_READ_U8 (cur_data); fp@293: datagram_index = EC_READ_U8 (cur_data + 1); fp@293: data_size = EC_READ_U16(cur_data + 6) & 0x07FF; fp@293: cmd_follows = EC_READ_U16(cur_data + 6) & 0x8000; fp@293: cur_data += EC_DATAGRAM_HEADER_SIZE; fp@98: fp@98: if (unlikely(cur_data - frame_data fp@293: + data_size + EC_DATAGRAM_FOOTER_SIZE > size)) { fp@98: master->stats.corrupted++; fp@98: ec_master_output_stats(master); fp@98: return; fp@98: } fp@98: fp@293: // search for matching datagram in the queue fp@98: matched = 0; fp@293: list_for_each_entry(datagram, &master->datagram_queue, queue) { fp@325: if (datagram->state == EC_DATAGRAM_SENT fp@293: && datagram->type == datagram_type fp@293: && datagram->index == datagram_index fp@293: && datagram->data_size == data_size) { fp@98: matched = 1; fp@98: break; fp@98: } fp@98: } fp@98: fp@293: // no matching datagram was found fp@98: if (!matched) { fp@98: master->stats.unmatched++; fp@98: ec_master_output_stats(master); fp@684: fp@684: if (unlikely(master->debug_level > 0)) { fp@684: EC_DBG("UNMATCHED datagram:\n"); fp@684: ec_print_data(cur_data - EC_DATAGRAM_HEADER_SIZE, fp@684: EC_DATAGRAM_HEADER_SIZE + data_size fp@684: + EC_DATAGRAM_FOOTER_SIZE); fp@684: } fp@684: fp@293: cur_data += data_size + EC_DATAGRAM_FOOTER_SIZE; fp@98: continue; fp@98: } fp@98: fp@345: // copy received data into the datagram memory fp@293: memcpy(datagram->data, cur_data, data_size); fp@98: cur_data += data_size; fp@98: fp@293: // set the datagram's working counter fp@293: datagram->working_counter = EC_READ_U16(cur_data); fp@293: cur_data += EC_DATAGRAM_FOOTER_SIZE; fp@293: fp@293: // dequeue the received datagram fp@325: datagram->state = EC_DATAGRAM_RECEIVED; fp@579: datagram->cycles_received = master->main_device.cycles_poll; fp@579: datagram->jiffies_received = master->main_device.jiffies_poll; fp@293: list_del_init(&datagram->queue); fp@293: } fp@293: } fp@293: fp@293: /*****************************************************************************/ fp@293: fp@293: /** fp@195: Output statistics in cyclic mode. fp@195: This function outputs statistical data on demand, but not more often than fp@195: necessary. The output happens at most once a second. fp@195: */ fp@195: fp@195: void ec_master_output_stats(ec_master_t *master /**< EtherCAT master */) fp@98: { fp@344: if (unlikely(jiffies - master->stats.output_jiffies >= HZ)) { fp@344: master->stats.output_jiffies = jiffies; fp@344: fp@98: if (master->stats.timeouts) { fp@396: EC_WARN("%i datagram%s TIMED OUT!\n", master->stats.timeouts, fp@396: master->stats.timeouts == 1 ? "" : "s"); fp@98: master->stats.timeouts = 0; fp@98: } fp@98: if (master->stats.corrupted) { fp@396: EC_WARN("%i frame%s CORRUPTED!\n", master->stats.corrupted, fp@396: master->stats.corrupted == 1 ? "" : "s"); fp@98: master->stats.corrupted = 0; fp@98: } fp@332: if (master->stats.skipped) { fp@396: EC_WARN("%i datagram%s SKIPPED!\n", master->stats.skipped, fp@396: master->stats.skipped == 1 ? "" : "s"); fp@332: master->stats.skipped = 0; fp@332: } fp@98: if (master->stats.unmatched) { fp@396: EC_WARN("%i datagram%s UNMATCHED!\n", master->stats.unmatched, fp@396: master->stats.unmatched == 1 ? "" : "s"); fp@98: master->stats.unmatched = 0; fp@98: } fp@73: } fp@54: } fp@54: fp@68: /*****************************************************************************/ fp@68: fp@68: /** fp@637: * Master kernel thread function for IDLE mode. fp@637: */ fp@637: fp@637: static int ec_master_idle_thread(ec_master_t *master) fp@637: { fp@344: cycles_t cycles_start, cycles_end; fp@251: fp@637: daemonize("EtherCAT-IDLE"); fp@525: allow_signal(SIGTERM); fp@525: fp@656: while (!signal_pending(current)) { fp@525: cycles_start = get_cycles(); fp@525: fp@637: if (ec_fsm_master_running(&master->fsm)) { fp@637: // receive fp@637: spin_lock_bh(&master->internal_lock); fp@637: ecrt_master_receive(master); fp@637: spin_unlock_bh(&master->internal_lock); fp@637: } fp@525: fp@651: if (master->fsm_datagram.state == EC_DATAGRAM_SENT) fp@651: goto schedule; fp@651: fp@525: // execute master state machine fp@637: if (ec_fsm_master_exec(&master->fsm)) { fp@637: // queue and send fp@637: ec_master_queue_datagram(master, &master->fsm_datagram); fp@637: spin_lock_bh(&master->internal_lock); fp@637: ecrt_master_send(master); fp@637: spin_unlock_bh(&master->internal_lock); fp@637: } fp@525: fp@525: cycles_end = get_cycles(); fp@525: master->idle_cycle_times[master->idle_cycle_time_pos] fp@525: = (u32) (cycles_end - cycles_start) * 1000 / cpu_khz; fp@525: master->idle_cycle_time_pos++; fp@525: master->idle_cycle_time_pos %= HZ; fp@525: fp@651: schedule: fp@650: if (ec_fsm_master_idle(&master->fsm)) { fp@650: set_current_state(TASK_INTERRUPTIBLE); fp@650: schedule_timeout(1); fp@650: } fp@650: else { fp@650: schedule(); fp@650: } fp@525: } fp@518: fp@525: master->thread_id = 0; fp@656: if (master->debug_level) fp@656: EC_DBG("Master IDLE thread exiting...\n"); fp@525: complete_and_exit(&master->thread_exit, 0); fp@191: } fp@191: fp@637: /*****************************************************************************/ fp@637: fp@637: /** fp@637: * Master kernel thread function for IDLE mode. fp@637: */ fp@637: fp@637: static int ec_master_operation_thread(ec_master_t *master) fp@637: { fp@637: cycles_t cycles_start, cycles_end; fp@637: fp@637: daemonize("EtherCAT-OP"); fp@637: allow_signal(SIGTERM); fp@637: fp@656: while (!signal_pending(current)) { fp@637: if (master->injection_seq_rt != master->injection_seq_fsm || fp@637: master->fsm_datagram.state == EC_DATAGRAM_SENT || fp@637: master->fsm_datagram.state == EC_DATAGRAM_QUEUED) fp@637: goto schedule; fp@637: fp@637: cycles_start = get_cycles(); fp@637: fp@637: // output statistics fp@637: ec_master_output_stats(master); fp@637: fp@637: // execute master state machine fp@637: if (ec_fsm_master_exec(&master->fsm)) { fp@637: // inject datagram fp@637: master->injection_seq_fsm++; fp@637: } fp@637: fp@637: cycles_end = get_cycles(); fp@637: master->idle_cycle_times[master->idle_cycle_time_pos] fp@637: = (u32) (cycles_end - cycles_start) * 1000 / cpu_khz; fp@637: master->idle_cycle_time_pos++; fp@637: master->idle_cycle_time_pos %= HZ; fp@637: fp@637: schedule: fp@650: if (ec_fsm_master_idle(&master->fsm)) { fp@650: set_current_state(TASK_INTERRUPTIBLE); fp@650: schedule_timeout(1); fp@650: } fp@650: else { fp@650: schedule(); fp@650: } fp@637: } fp@637: fp@637: master->thread_id = 0; fp@656: if (master->debug_level) fp@656: EC_DBG("Master OP thread exiting...\n"); fp@637: complete_and_exit(&master->thread_exit, 0); fp@637: } fp@578: fp@578: /*****************************************************************************/ fp@578: fp@639: ssize_t ec_master_device_info( fp@639: const ec_device_t *device, fp@639: const uint8_t *mac, fp@639: char *buffer fp@639: ) fp@578: { fp@578: unsigned int frames_lost; fp@578: off_t off = 0; fp@578: fp@639: if (ec_mac_is_zero(mac)) { fp@639: off += sprintf(buffer + off, "none.\n"); fp@639: } fp@639: else { fp@639: off += ec_mac_print(mac, buffer + off); fp@578: fp@639: if (device->dev) { fp@639: off += sprintf(buffer + off, " (connected).\n"); fp@639: off += sprintf(buffer + off, " Frames sent: %u\n", fp@639: device->tx_count); fp@639: off += sprintf(buffer + off, " Frames received: %u\n", fp@639: device->rx_count); fp@639: frames_lost = device->tx_count - device->rx_count; fp@639: if (frames_lost) frames_lost--; fp@639: off += sprintf(buffer + off, " Frames lost: %u\n", frames_lost); fp@639: } fp@639: else { fp@639: off += sprintf(buffer + off, " (WAITING).\n"); fp@639: } fp@578: } fp@578: fp@578: return off; fp@578: } fp@578: fp@191: /*****************************************************************************/ fp@191: fp@191: /** fp@334: Formats master information for SysFS read access. fp@334: \return number of bytes written fp@334: */ fp@334: fp@334: ssize_t ec_master_info(ec_master_t *master, /**< EtherCAT master */ fp@334: char *buffer /**< memory to store data */ fp@334: ) fp@334: { fp@334: off_t off = 0; fp@336: ec_eoe_t *eoe; fp@335: uint32_t cur, sum, min, max, pos, i; fp@578: fp@334: off += sprintf(buffer + off, "\nMode: "); fp@334: switch (master->mode) { fp@334: case EC_MASTER_MODE_ORPHANED: fp@334: off += sprintf(buffer + off, "ORPHANED"); fp@335: break; fp@334: case EC_MASTER_MODE_IDLE: fp@334: off += sprintf(buffer + off, "IDLE"); fp@335: break; fp@334: case EC_MASTER_MODE_OPERATION: fp@334: off += sprintf(buffer + off, "OPERATION"); fp@335: break; fp@334: } fp@334: fp@339: off += sprintf(buffer + off, "\nSlaves: %i\n", fp@334: master->slave_count); fp@578: fp@578: off += sprintf(buffer + off, "\nDevices:\n"); fp@578: fp@648: down(&master->device_sem); fp@578: off += sprintf(buffer + off, " Main: "); fp@579: off += ec_master_device_info(&master->main_device, fp@639: master->main_mac, buffer + off); fp@578: off += sprintf(buffer + off, " Backup: "); fp@579: off += ec_master_device_info(&master->backup_device, fp@639: master->backup_mac, buffer + off); fp@578: up(&master->device_sem); fp@334: fp@335: off += sprintf(buffer + off, "\nTiming (min/avg/max) [us]:\n"); fp@335: fp@335: sum = 0; fp@335: min = 0xFFFFFFFF; fp@335: max = 0; fp@335: pos = master->idle_cycle_time_pos; fp@335: for (i = 0; i < HZ; i++) { fp@335: cur = master->idle_cycle_times[(i + pos) % HZ]; fp@335: sum += cur; fp@335: if (cur < min) min = cur; fp@335: if (cur > max) max = cur; fp@335: } fp@335: off += sprintf(buffer + off, " Idle cycle: %u / %u.%u / %u\n", fp@335: min, sum / HZ, (sum * 100 / HZ) % 100, max); fp@335: fp@335: sum = 0; fp@335: min = 0xFFFFFFFF; fp@335: max = 0; fp@335: pos = master->eoe_cycle_time_pos; fp@335: for (i = 0; i < HZ; i++) { fp@335: cur = master->eoe_cycle_times[(i + pos) % HZ]; fp@335: sum += cur; fp@335: if (cur < min) min = cur; fp@335: if (cur > max) max = cur; fp@335: } fp@335: off += sprintf(buffer + off, " EoE cycle: %u / %u.%u / %u\n", fp@335: min, sum / HZ, (sum * 100 / HZ) % 100, max); fp@334: fp@336: if (!list_empty(&master->eoe_handlers)) fp@339: off += sprintf(buffer + off, "\nEoE statistics (RX/TX) [bps]:\n"); fp@336: list_for_each_entry(eoe, &master->eoe_handlers, list) { fp@341: off += sprintf(buffer + off, " %s: %u / %u (%u KB/s)\n", fp@341: eoe->dev->name, eoe->rx_rate, eoe->tx_rate, fp@341: ((eoe->rx_rate + eoe->tx_rate) / 8 + 512) / 1024); fp@336: } fp@336: fp@334: off += sprintf(buffer + off, "\n"); fp@334: fp@334: return off; fp@334: } fp@334: fp@334: /*****************************************************************************/ fp@334: fp@334: /** fp@195: Formats attribute data for SysFS read access. fp@195: \return number of bytes to read fp@195: */ fp@195: fp@195: ssize_t ec_show_master_attribute(struct kobject *kobj, /**< kobject */ fp@195: struct attribute *attr, /**< attribute */ fp@195: char *buffer /**< memory to store data */ fp@178: ) fp@178: { fp@178: ec_master_t *master = container_of(kobj, ec_master_t, kobj); fp@178: fp@334: if (attr == &attr_info) { fp@334: return ec_master_info(master, buffer); fp@191: } fp@303: else if (attr == &attr_debug_level) { fp@303: return sprintf(buffer, "%i\n", master->debug_level); fp@303: } fp@178: fp@178: return 0; fp@178: } fp@178: fp@178: /*****************************************************************************/ fp@178: fp@178: /** fp@268: Formats attribute data for SysFS write access. fp@268: \return number of bytes processed, or negative error code fp@268: */ fp@268: fp@268: ssize_t ec_store_master_attribute(struct kobject *kobj, /**< slave's kobject */ fp@268: struct attribute *attr, /**< attribute */ fp@268: const char *buffer, /**< memory with data */ fp@268: size_t size /**< size of data to store */ fp@268: ) fp@268: { fp@268: ec_master_t *master = container_of(kobj, ec_master_t, kobj); fp@268: fp@597: if (attr == &attr_debug_level) { fp@303: if (!strcmp(buffer, "0\n")) { fp@303: master->debug_level = 0; fp@303: } fp@303: else if (!strcmp(buffer, "1\n")) { fp@303: master->debug_level = 1; fp@303: } fp@303: else if (!strcmp(buffer, "2\n")) { fp@303: master->debug_level = 2; fp@303: } fp@303: else { fp@303: EC_ERR("Invalid debug level value!\n"); fp@303: return -EINVAL; fp@303: } fp@303: fp@303: EC_INFO("Master debug level set to %i.\n", master->debug_level); fp@303: return size; fp@303: } fp@268: fp@268: return -EINVAL; fp@268: } fp@268: fp@268: /*****************************************************************************/ fp@268: fp@268: /** fp@326: Starts Ethernet-over-EtherCAT processing on demand. fp@251: */ fp@251: fp@251: void ec_master_eoe_start(ec_master_t *master /**< EtherCAT master */) fp@251: { fp@661: if (master->eoe_running) { fp@661: EC_WARN("EoE already running!\n"); fp@661: return; fp@661: } fp@661: fp@661: if (list_empty(&master->eoe_handlers)) fp@661: return; fp@661: fp@661: if (!master->request_cb || !master->release_cb) { fp@661: EC_WARN("No EoE processing because of missing locking callbacks!\n"); fp@251: return; fp@251: } fp@251: fp@251: EC_INFO("Starting EoE processing.\n"); fp@251: master->eoe_running = 1; fp@251: fp@251: // start EoE processing fp@251: master->eoe_timer.expires = jiffies + 10; fp@251: add_timer(&master->eoe_timer); fp@251: } fp@251: fp@251: /*****************************************************************************/ fp@251: fp@251: /** fp@251: Stops the Ethernet-over-EtherCAT processing. fp@251: */ fp@251: fp@251: void ec_master_eoe_stop(ec_master_t *master /**< EtherCAT master */) fp@251: { fp@251: if (!master->eoe_running) return; fp@251: fp@251: EC_INFO("Stopping EoE processing.\n"); fp@251: fp@251: del_timer_sync(&master->eoe_timer); fp@251: master->eoe_running = 0; fp@251: } fp@251: fp@251: /*****************************************************************************/ fp@441: fp@251: /** fp@197: Does the Ethernet-over-EtherCAT processing. fp@197: */ fp@197: fp@251: void ec_master_eoe_run(unsigned long data /**< master pointer */) fp@206: { fp@206: ec_master_t *master = (ec_master_t *) data; fp@197: ec_eoe_t *eoe; fp@661: unsigned int none_open = 1; fp@344: cycles_t cycles_start, cycles_end; fp@344: unsigned long restart_jiffies; fp@235: fp@251: list_for_each_entry(eoe, &master->eoe_handlers, list) { fp@661: if (ec_eoe_is_open(eoe)) { fp@661: none_open = 0; fp@661: break; fp@661: } fp@661: } fp@661: if (none_open) fp@661: goto queue_timer; fp@251: fp@663: if (master->request_cb(master->cb_data)) goto queue_timer; fp@663: fp@515: // receive datagrams fp@344: cycles_start = get_cycles(); fp@325: ecrt_master_receive(master); fp@515: fp@515: // actual EoE processing fp@251: list_for_each_entry(eoe, &master->eoe_handlers, list) { fp@251: ec_eoe_run(eoe); fp@251: } fp@334: fp@515: // send datagrams fp@325: ecrt_master_send(master); fp@344: cycles_end = get_cycles(); fp@663: fp@515: master->release_cb(master->cb_data); fp@251: fp@335: master->eoe_cycle_times[master->eoe_cycle_time_pos] fp@344: = (u32) (cycles_end - cycles_start) * 1000 / cpu_khz; fp@335: master->eoe_cycle_time_pos++; fp@335: master->eoe_cycle_time_pos %= HZ; fp@334: fp@251: queue_timer: fp@344: restart_jiffies = HZ / EC_EOE_FREQUENCY; fp@344: if (!restart_jiffies) restart_jiffies = 1; fp@344: master->eoe_timer.expires += restart_jiffies; fp@208: add_timer(&master->eoe_timer); fp@197: } fp@197: fp@325: /*****************************************************************************/ fp@325: fp@325: /** fp@330: Measures the time, a frame is on the bus. fp@377: \return 0 in case of success, else < 0 fp@377: */ fp@377: fp@377: int ec_master_measure_bus_time(ec_master_t *master) fp@330: { fp@330: ec_datagram_t datagram; fp@398: uint32_t cur, sum, min, max, i; fp@330: fp@330: ec_datagram_init(&datagram); fp@330: fp@688: if (ec_datagram_brd(&datagram, 0x0130, 2)) { fp@330: EC_ERR("Failed to allocate datagram for bus time measuring.\n"); fp@330: ec_datagram_clear(&datagram); fp@377: return -1; fp@330: } fp@330: fp@398: ecrt_master_receive(master); fp@330: fp@330: sum = 0; fp@330: min = 0xFFFFFFFF; fp@330: max = 0; fp@330: fp@330: for (i = 0; i < 100; i++) { fp@330: ec_master_queue_datagram(master, &datagram); fp@330: ecrt_master_send(master); fp@398: fp@398: while (1) { fp@398: ecrt_master_receive(master); fp@330: fp@330: if (datagram.state == EC_DATAGRAM_RECEIVED) { fp@330: break; fp@330: } fp@330: else if (datagram.state == EC_DATAGRAM_ERROR) { fp@330: EC_WARN("Failed to measure bus time.\n"); fp@330: goto error; fp@330: } fp@398: else if (datagram.state == EC_DATAGRAM_TIMED_OUT) { fp@330: EC_WARN("Timeout while measuring bus time.\n"); fp@330: goto error; fp@330: } fp@330: } fp@330: fp@398: cur = (unsigned int) (datagram.cycles_received fp@398: - datagram.cycles_sent) * 1000 / cpu_khz; fp@398: sum += cur; fp@398: if (cur > max) max = cur; fp@398: if (cur < min) min = cur; fp@398: } fp@398: fp@459: EC_DBG("Bus time is (min/avg/max) %u / %u.%u / %u us.\n", fp@459: min, sum / 100, sum % 100, max); fp@398: ec_datagram_clear(&datagram); fp@377: return 0; fp@330: fp@330: error: fp@330: ec_datagram_clear(&datagram); fp@377: return -1; fp@330: } fp@330: fp@495: /*****************************************************************************/ fp@495: fp@495: /** fp@495: Prepares synchronous IO. fp@495: Queues all domain datagrams and sends them. Then waits a certain time, so fp@495: that ecrt_master_receive() can be called securely. fp@495: */ fp@495: fp@495: void ec_master_prepare(ec_master_t *master /**< EtherCAT master */) fp@495: { fp@495: ec_domain_t *domain; fp@495: cycles_t cycles_start, cycles_end, cycles_timeout; fp@495: fp@495: // queue datagrams of all domains fp@495: list_for_each_entry(domain, &master->domains, list) fp@495: ecrt_domain_queue(domain); fp@495: fp@495: ecrt_master_send(master); fp@495: fp@495: cycles_start = get_cycles(); fp@495: cycles_timeout = (cycles_t) EC_IO_TIMEOUT /* us */ * (cpu_khz / 1000); fp@495: fp@495: // active waiting fp@495: while (1) { fp@495: udelay(100); fp@495: cycles_end = get_cycles(); fp@495: if (cycles_end - cycles_start >= cycles_timeout) break; fp@495: } fp@495: } fp@495: fp@640: /*****************************************************************************/ fp@640: fp@640: /** fp@640: * Translates an ASCII coded bus-address to a slave pointer. fp@640: * These are the valid addressing schemes: fp@661: * - \a "X" = the Xth slave on the bus (ring position), fp@640: * - \a "#X" = the slave with alias X, fp@661: * - \a "#X:Y" = the Yth slave after the slave with alias X. fp@640: * X and Y are zero-based indices and may be provided in hexadecimal or octal fp@661: * notation (with appropriate prefix). fp@640: * \return pointer to the slave on success, else NULL fp@640: */ fp@640: fp@640: ec_slave_t *ec_master_parse_slave_address( fp@640: const ec_master_t *master, /**< EtherCAT master */ fp@640: const char *address /**< address string */ fp@640: ) fp@197: { fp@197: unsigned long first, second; fp@502: char *remainder, *remainder2; fp@502: const char *original; fp@643: unsigned int alias_requested = 0, alias_not_found = 1; fp@197: ec_slave_t *alias_slave = NULL, *slave; fp@197: fp@500: original = address; fp@500: fp@643: if (!address[0]) fp@643: goto out_invalid; fp@643: fp@197: if (address[0] == '#') { fp@197: alias_requested = 1; fp@197: address++; fp@197: } fp@197: fp@197: first = simple_strtoul(address, &remainder, 0); fp@643: if (remainder == address) fp@643: goto out_invalid; fp@197: fp@197: if (alias_requested) { fp@197: list_for_each_entry(alias_slave, &master->slaves, list) { fp@197: if (alias_slave->sii_alias == first) { fp@643: alias_not_found = 0; fp@197: break; fp@197: } fp@197: } fp@643: if (alias_not_found) { fp@643: EC_ERR("Alias not found!\n"); fp@643: goto out_invalid; fp@643: } fp@643: } fp@643: fp@643: if (!remainder[0]) { fp@643: if (alias_requested) { // alias addressing fp@197: return alias_slave; fp@197: } fp@643: else { // position addressing fp@197: list_for_each_entry(slave, &master->slaves, list) { fp@197: if (slave->ring_position == first) return slave; fp@197: } fp@643: EC_ERR("Slave index out of range!\n"); fp@643: goto out_invalid; fp@643: } fp@643: } fp@643: else if (alias_requested && remainder[0] == ':') { // field addressing fp@643: struct list_head *list; fp@197: remainder++; fp@197: second = simple_strtoul(remainder, &remainder2, 0); fp@197: fp@643: if (remainder2 == remainder || remainder2[0]) fp@643: goto out_invalid; fp@643: fp@643: list = &alias_slave->list; fp@643: while (second--) { fp@643: list = list->next; fp@643: if (list == &master->slaves) { // last slave exceeded fp@643: EC_ERR("Slave index out of range!\n"); fp@643: goto out_invalid; fp@197: } fp@643: } fp@643: return list_entry(list, ec_slave_t, list); fp@643: } fp@643: fp@643: out_invalid: fp@643: EC_ERR("Invalid slave address string \"%s\"!\n", original); fp@197: return NULL; fp@197: } fp@197: fp@640: /****************************************************************************** fp@640: * Realtime interface fp@640: *****************************************************************************/ fp@640: fp@640: /** fp@640: Creates a domain. fp@640: \return pointer to new domain on success, else NULL fp@640: \ingroup RealtimeInterface fp@640: */ fp@640: fp@640: ec_domain_t *ecrt_master_create_domain(ec_master_t *master /**< master */) fp@640: { fp@640: ec_domain_t *domain, *last_domain; fp@640: unsigned int index; fp@640: fp@640: if (!(domain = (ec_domain_t *) kmalloc(sizeof(ec_domain_t), GFP_KERNEL))) { fp@640: EC_ERR("Error allocating domain memory!\n"); fp@640: return NULL; fp@640: } fp@640: fp@640: if (list_empty(&master->domains)) index = 0; fp@640: else { fp@640: last_domain = list_entry(master->domains.prev, ec_domain_t, list); fp@640: index = last_domain->index + 1; fp@640: } fp@640: fp@640: if (ec_domain_init(domain, master, index)) { fp@640: EC_ERR("Failed to init domain.\n"); fp@640: return NULL; fp@640: } fp@640: fp@640: list_add_tail(&domain->list, &master->domains); fp@640: fp@640: return domain; fp@640: } fp@640: fp@640: /*****************************************************************************/ fp@640: fp@640: /** fp@640: Configures all slaves and leads them to the OP state. fp@640: Does the complete configuration and activation for all slaves. Sets sync fp@640: managers and FMMUs, and does the appropriate transitions, until the slave fp@640: is operational. fp@640: \return 0 in case of success, else < 0 fp@640: \ingroup RealtimeInterface fp@640: */ fp@640: fp@640: int ecrt_master_activate(ec_master_t *master /**< EtherCAT master */) fp@640: { fp@640: uint32_t domain_offset; fp@640: ec_domain_t *domain; fp@640: fp@640: // allocate all domains fp@640: domain_offset = 0; fp@640: list_for_each_entry(domain, &master->domains, list) { fp@640: if (ec_domain_alloc(domain, domain_offset)) { fp@640: EC_ERR("Failed to allocate domain %X!\n", (u32) domain); fp@640: return -1; fp@640: } fp@640: domain_offset += domain->data_size; fp@640: } fp@640: fp@656: // request slave configuration fp@656: down(&master->config_sem); fp@656: master->allow_config = 1; // request the current configuration fp@656: master->config_state = EC_REQUEST_IN_PROGRESS; fp@656: up(&master->config_sem); fp@656: fp@656: // wait for configuration to complete fp@656: if (wait_event_interruptible(master->config_queue, fp@656: master->config_state != EC_REQUEST_IN_PROGRESS)) { fp@656: EC_INFO("Waiting for configuration interrupted by signal.\n"); fp@656: return -1; fp@656: } fp@656: fp@656: if (master->config_state != EC_REQUEST_COMPLETE) { fp@656: EC_ERR("Failed to configure slaves.\n"); fp@656: return -1; fp@656: } fp@656: fp@656: // restart EoE process and master thread with new locking fp@656: ec_master_eoe_stop(master); fp@656: ec_master_thread_stop(master); fp@656: fp@640: ec_master_prepare(master); // prepare asynchronous IO fp@640: fp@640: if (master->debug_level) fp@640: EC_DBG("FSM datagram is %x.\n", (unsigned int) &master->fsm_datagram); fp@640: fp@656: master->injection_seq_fsm = 0; fp@656: master->injection_seq_rt = 0; fp@661: master->request_cb = master->ext_request_cb; fp@661: master->release_cb = master->ext_release_cb; fp@661: master->cb_data = master->ext_cb_data; fp@656: fp@656: if (ec_master_thread_start(master, ec_master_operation_thread)) { fp@640: EC_ERR("Failed to start master thread!\n"); fp@640: return -1; fp@640: } fp@661: ec_master_eoe_start(master); fp@640: return 0; fp@640: } fp@640: fp@640: /*****************************************************************************/ fp@640: fp@640: /** fp@640: Asynchronous sending of datagrams. fp@640: \ingroup RealtimeInterface fp@640: */ fp@640: fp@640: void ecrt_master_send(ec_master_t *master /**< EtherCAT master */) fp@640: { fp@640: ec_datagram_t *datagram, *n; fp@640: fp@640: if (master->injection_seq_rt != master->injection_seq_fsm) { fp@640: // inject datagram produced by master FSM fp@640: ec_master_queue_datagram(master, &master->fsm_datagram); fp@640: master->injection_seq_rt = master->injection_seq_fsm; fp@640: } fp@640: fp@640: if (unlikely(!master->main_device.link_state)) { fp@640: // link is down, no datagram can be sent fp@640: list_for_each_entry_safe(datagram, n, &master->datagram_queue, queue) { fp@640: datagram->state = EC_DATAGRAM_ERROR; fp@640: list_del_init(&datagram->queue); fp@640: } fp@640: fp@640: // query link state fp@640: ec_device_poll(&master->main_device); fp@640: return; fp@640: } fp@640: fp@640: // send frames fp@640: ec_master_send_datagrams(master); fp@640: } fp@640: fp@640: /*****************************************************************************/ fp@640: fp@640: /** fp@640: Asynchronous receiving of datagrams. fp@640: \ingroup RealtimeInterface fp@640: */ fp@640: fp@640: void ecrt_master_receive(ec_master_t *master /**< EtherCAT master */) fp@640: { fp@640: ec_datagram_t *datagram, *next; fp@640: cycles_t cycles_timeout; fp@664: unsigned int frames_timed_out = 0; fp@640: fp@640: // receive datagrams fp@640: ec_device_poll(&master->main_device); fp@640: fp@640: cycles_timeout = (cycles_t) EC_IO_TIMEOUT /* us */ * (cpu_khz / 1000); fp@640: fp@640: // dequeue all datagrams that timed out fp@640: list_for_each_entry_safe(datagram, next, &master->datagram_queue, queue) { fp@640: if (datagram->state != EC_DATAGRAM_SENT) continue; fp@640: fp@640: if (master->main_device.cycles_poll - datagram->cycles_sent fp@640: > cycles_timeout) { fp@664: frames_timed_out = 1; fp@640: list_del_init(&datagram->queue); fp@640: datagram->state = EC_DATAGRAM_TIMED_OUT; fp@640: master->stats.timeouts++; fp@640: ec_master_output_stats(master); fp@684: fp@684: if (unlikely(master->debug_level > 0)) { fp@684: EC_DBG("TIMED OUT datagram index %02X waited %u us.\n", fp@684: datagram->index, fp@684: (unsigned int) (master->main_device.cycles_poll fp@684: - datagram->cycles_sent) * 1000 / cpu_khz); fp@684: } fp@640: } fp@640: } fp@664: fp@664: master->frames_timed_out = frames_timed_out; fp@640: } fp@640: fp@640: /*****************************************************************************/ fp@640: fp@640: /** fp@640: * Obtains a slave pointer by its bus address. fp@640: * A valid slave pointer is only returned, if vendor ID and product code are fp@640: * matching. fp@640: * \return pointer to the slave on success, else NULL fp@640: * \ingroup RealtimeInterface fp@640: */ fp@640: fp@640: ec_slave_t *ecrt_master_get_slave( fp@640: const ec_master_t *master, /**< EtherCAT master */ fp@640: const char *address, /**< address string fp@640: \see ec_master_parse_slave_address() */ fp@640: uint32_t vendor_id, /**< vendor ID */ fp@640: uint32_t product_code /**< product code */ fp@640: ) fp@640: { fp@640: ec_slave_t *slave = ec_master_parse_slave_address(master, address); fp@640: fp@640: if (!slave) fp@640: return NULL; fp@640: fp@640: return ec_slave_validate(slave, vendor_id, product_code) ? NULL : slave; fp@640: } fp@640: fp@197: /*****************************************************************************/ fp@197: fp@197: /** fp@204: Sets the locking callbacks. fp@226: The request_cb function must return zero, to allow another instance fp@226: (the EoE process for example) to access the master. Non-zero means, fp@226: that access is forbidden at this time. fp@204: \ingroup RealtimeInterface fp@204: */ fp@204: fp@204: void ecrt_master_callbacks(ec_master_t *master, /**< EtherCAT master */ fp@204: int (*request_cb)(void *), /**< request lock CB */ fp@204: void (*release_cb)(void *), /**< release lock CB */ fp@204: void *cb_data /**< data parameter */ fp@204: ) fp@204: { fp@661: master->ext_request_cb = request_cb; fp@661: master->ext_release_cb = release_cb; fp@661: master->ext_cb_data = cb_data; fp@204: } fp@204: fp@204: /*****************************************************************************/ fp@204: fp@612: /** fp@612: * Reads the current master status. fp@612: */ fp@612: fp@612: void ecrt_master_get_status(const ec_master_t *master, /**< EtherCAT master */ fp@612: ec_master_status_t *status /**< target status object */ fp@612: ) fp@612: { fp@612: status->bus_status = fp@664: (master->pdo_slaves_offline || master->frames_timed_out) fp@664: ? EC_BUS_FAILURE : EC_BUS_OK; fp@612: status->bus_tainted = master->fsm.tainted; fp@612: status->slaves_responding = master->fsm.slaves_responding; fp@612: } fp@612: fp@612: /*****************************************************************************/ fp@612: fp@199: /** \cond */ fp@199: fp@104: EXPORT_SYMBOL(ecrt_master_create_domain); fp@104: EXPORT_SYMBOL(ecrt_master_activate); fp@325: EXPORT_SYMBOL(ecrt_master_send); fp@325: EXPORT_SYMBOL(ecrt_master_receive); fp@206: EXPORT_SYMBOL(ecrt_master_callbacks); fp@138: EXPORT_SYMBOL(ecrt_master_get_slave); fp@612: EXPORT_SYMBOL(ecrt_master_get_status); fp@42: fp@199: /** \endcond */ fp@199: fp@199: /*****************************************************************************/