fp@2407: /*******************************************************************************
fp@2407: 
fp@2407:   Intel PRO/1000 Linux driver
fp@2407:   Copyright(c) 1999 - 2011 Intel Corporation.
fp@2407: 
fp@2407:   This program is free software; you can redistribute it and/or modify it
fp@2407:   under the terms and conditions of the GNU General Public License,
fp@2407:   version 2, as published by the Free Software Foundation.
fp@2407: 
fp@2407:   This program is distributed in the hope it will be useful, but WITHOUT
fp@2407:   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
fp@2407:   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
fp@2407:   more details.
fp@2407: 
fp@2407:   You should have received a copy of the GNU General Public License along with
fp@2407:   this program; if not, write to the Free Software Foundation, Inc.,
fp@2407:   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
fp@2407: 
fp@2407:   The full GNU General Public License is included in this distribution in
fp@2407:   the file called "COPYING".
fp@2407: 
fp@2407:   Contact Information:
fp@2407:   Linux NICS <linux.nics@intel.com>
fp@2407:   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
fp@2407:   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
fp@2407: 
fp@2407: *******************************************************************************/
fp@2407: 
fp@2407: #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
fp@2407: 
fp@2407: #include <linux/module.h>
fp@2407: #include <linux/types.h>
fp@2407: #include <linux/init.h>
fp@2407: #include <linux/pci.h>
fp@2407: #include <linux/vmalloc.h>
fp@2407: #include <linux/pagemap.h>
fp@2407: #include <linux/delay.h>
fp@2407: #include <linux/netdevice.h>
fp@2407: #include <linux/interrupt.h>
fp@2407: #include <linux/tcp.h>
fp@2407: #include <linux/ipv6.h>
fp@2407: #include <linux/slab.h>
fp@2407: #include <net/checksum.h>
fp@2407: #include <net/ip6_checksum.h>
fp@2407: #include <linux/mii.h>
fp@2407: #include <linux/ethtool.h>
fp@2407: #include <linux/if_vlan.h>
fp@2407: #include <linux/cpu.h>
fp@2407: #include <linux/smp.h>
fp@2407: #include <linux/pm_qos.h>
fp@2407: #include <linux/pm_runtime.h>
fp@2407: #include <linux/aer.h>
fp@2407: #include <linux/prefetch.h>
fp@2407: 
fp@2407: #include "e1000.h"
fp@2407: 
fp@2407: #define DRV_EXTRAVERSION "-k"
fp@2407: 
fp@2407: #define DRV_VERSION "1.5.1" DRV_EXTRAVERSION
fp@2407: char e1000e_driver_name[] = "e1000e";
fp@2407: const char e1000e_driver_version[] = DRV_VERSION;
fp@2407: 
fp@2407: static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state);
fp@2407: 
fp@2407: static const struct e1000_info *e1000_info_tbl[] = {
fp@2407: 	[board_82571]		= &e1000_82571_info,
fp@2407: 	[board_82572]		= &e1000_82572_info,
fp@2407: 	[board_82573]		= &e1000_82573_info,
fp@2407: 	[board_82574]		= &e1000_82574_info,
fp@2407: 	[board_82583]		= &e1000_82583_info,
fp@2407: 	[board_80003es2lan]	= &e1000_es2_info,
fp@2407: 	[board_ich8lan]		= &e1000_ich8_info,
fp@2407: 	[board_ich9lan]		= &e1000_ich9_info,
fp@2407: 	[board_ich10lan]	= &e1000_ich10_info,
fp@2407: 	[board_pchlan]		= &e1000_pch_info,
fp@2407: 	[board_pch2lan]		= &e1000_pch2_info,
fp@2407: };
fp@2407: 
fp@2407: struct e1000_reg_info {
fp@2407: 	u32 ofs;
fp@2407: 	char *name;
fp@2407: };
fp@2407: 
fp@2407: #define E1000_RDFH	0x02410	/* Rx Data FIFO Head - RW */
fp@2407: #define E1000_RDFT	0x02418	/* Rx Data FIFO Tail - RW */
fp@2407: #define E1000_RDFHS	0x02420	/* Rx Data FIFO Head Saved - RW */
fp@2407: #define E1000_RDFTS	0x02428	/* Rx Data FIFO Tail Saved - RW */
fp@2407: #define E1000_RDFPC	0x02430	/* Rx Data FIFO Packet Count - RW */
fp@2407: 
fp@2407: #define E1000_TDFH	0x03410	/* Tx Data FIFO Head - RW */
fp@2407: #define E1000_TDFT	0x03418	/* Tx Data FIFO Tail - RW */
fp@2407: #define E1000_TDFHS	0x03420	/* Tx Data FIFO Head Saved - RW */
fp@2407: #define E1000_TDFTS	0x03428	/* Tx Data FIFO Tail Saved - RW */
fp@2407: #define E1000_TDFPC	0x03430	/* Tx Data FIFO Packet Count - RW */
fp@2407: 
fp@2407: static const struct e1000_reg_info e1000_reg_info_tbl[] = {
fp@2407: 
fp@2407: 	/* General Registers */
fp@2407: 	{E1000_CTRL, "CTRL"},
fp@2407: 	{E1000_STATUS, "STATUS"},
fp@2407: 	{E1000_CTRL_EXT, "CTRL_EXT"},
fp@2407: 
fp@2407: 	/* Interrupt Registers */
fp@2407: 	{E1000_ICR, "ICR"},
fp@2407: 
fp@2407: 	/* Rx Registers */
fp@2407: 	{E1000_RCTL, "RCTL"},
fp@2407: 	{E1000_RDLEN, "RDLEN"},
fp@2407: 	{E1000_RDH, "RDH"},
fp@2407: 	{E1000_RDT, "RDT"},
fp@2407: 	{E1000_RDTR, "RDTR"},
fp@2407: 	{E1000_RXDCTL(0), "RXDCTL"},
fp@2407: 	{E1000_ERT, "ERT"},
fp@2407: 	{E1000_RDBAL, "RDBAL"},
fp@2407: 	{E1000_RDBAH, "RDBAH"},
fp@2407: 	{E1000_RDFH, "RDFH"},
fp@2407: 	{E1000_RDFT, "RDFT"},
fp@2407: 	{E1000_RDFHS, "RDFHS"},
fp@2407: 	{E1000_RDFTS, "RDFTS"},
fp@2407: 	{E1000_RDFPC, "RDFPC"},
fp@2407: 
fp@2407: 	/* Tx Registers */
fp@2407: 	{E1000_TCTL, "TCTL"},
fp@2407: 	{E1000_TDBAL, "TDBAL"},
fp@2407: 	{E1000_TDBAH, "TDBAH"},
fp@2407: 	{E1000_TDLEN, "TDLEN"},
fp@2407: 	{E1000_TDH, "TDH"},
fp@2407: 	{E1000_TDT, "TDT"},
fp@2407: 	{E1000_TIDV, "TIDV"},
fp@2407: 	{E1000_TXDCTL(0), "TXDCTL"},
fp@2407: 	{E1000_TADV, "TADV"},
fp@2407: 	{E1000_TARC(0), "TARC"},
fp@2407: 	{E1000_TDFH, "TDFH"},
fp@2407: 	{E1000_TDFT, "TDFT"},
fp@2407: 	{E1000_TDFHS, "TDFHS"},
fp@2407: 	{E1000_TDFTS, "TDFTS"},
fp@2407: 	{E1000_TDFPC, "TDFPC"},
fp@2407: 
fp@2407: 	/* List Terminator */
fp@2407: 	{}
fp@2407: };
fp@2407: 
fp@2407: /*
fp@2407:  * e1000_regdump - register printout routine
fp@2407:  */
fp@2407: static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
fp@2407: {
fp@2407: 	int n = 0;
fp@2407: 	char rname[16];
fp@2407: 	u32 regs[8];
fp@2407: 
fp@2407: 	switch (reginfo->ofs) {
fp@2407: 	case E1000_RXDCTL(0):
fp@2407: 		for (n = 0; n < 2; n++)
fp@2407: 			regs[n] = __er32(hw, E1000_RXDCTL(n));
fp@2407: 		break;
fp@2407: 	case E1000_TXDCTL(0):
fp@2407: 		for (n = 0; n < 2; n++)
fp@2407: 			regs[n] = __er32(hw, E1000_TXDCTL(n));
fp@2407: 		break;
fp@2407: 	case E1000_TARC(0):
fp@2407: 		for (n = 0; n < 2; n++)
fp@2407: 			regs[n] = __er32(hw, E1000_TARC(n));
fp@2407: 		break;
fp@2407: 	default:
fp@2407: 		printk(KERN_INFO "%-15s %08x\n",
fp@2407: 		       reginfo->name, __er32(hw, reginfo->ofs));
fp@2407: 		return;
fp@2407: 	}
fp@2407: 
fp@2407: 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
fp@2407: 	printk(KERN_INFO "%-15s ", rname);
fp@2407: 	for (n = 0; n < 2; n++)
fp@2407: 		printk(KERN_CONT "%08x ", regs[n]);
fp@2407: 	printk(KERN_CONT "\n");
fp@2407: }
fp@2407: 
fp@2407: /*
fp@2407:  * e1000e_dump - Print registers, Tx-ring and Rx-ring
fp@2407:  */
fp@2407: static void e1000e_dump(struct e1000_adapter *adapter)
fp@2407: {
fp@2407: 	struct net_device *netdev = adapter->netdev;
fp@2407: 	struct e1000_hw *hw = &adapter->hw;
fp@2407: 	struct e1000_reg_info *reginfo;
fp@2407: 	struct e1000_ring *tx_ring = adapter->tx_ring;
fp@2407: 	struct e1000_tx_desc *tx_desc;
fp@2407: 	struct my_u0 {
fp@2407: 		u64 a;
fp@2407: 		u64 b;
fp@2407: 	} *u0;
fp@2407: 	struct e1000_buffer *buffer_info;
fp@2407: 	struct e1000_ring *rx_ring = adapter->rx_ring;
fp@2407: 	union e1000_rx_desc_packet_split *rx_desc_ps;
fp@2407: 	union e1000_rx_desc_extended *rx_desc;
fp@2407: 	struct my_u1 {
fp@2407: 		u64 a;
fp@2407: 		u64 b;
fp@2407: 		u64 c;
fp@2407: 		u64 d;
fp@2407: 	} *u1;
fp@2407: 	u32 staterr;
fp@2407: 	int i = 0;
fp@2407: 
fp@2407: 	if (!netif_msg_hw(adapter))
fp@2407: 		return;
fp@2407: 
fp@2407: 	/* Print netdevice Info */
fp@2407: 	if (netdev) {
fp@2407: 		dev_info(&adapter->pdev->dev, "Net device Info\n");
fp@2407: 		printk(KERN_INFO "Device Name     state            "
fp@2407: 		       "trans_start      last_rx\n");
fp@2407: 		printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
fp@2407: 		       netdev->name, netdev->state, netdev->trans_start,
fp@2407: 		       netdev->last_rx);
fp@2407: 	}
fp@2407: 
fp@2407: 	/* Print Registers */
fp@2407: 	dev_info(&adapter->pdev->dev, "Register Dump\n");
fp@2407: 	printk(KERN_INFO " Register Name   Value\n");
fp@2407: 	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
fp@2407: 	     reginfo->name; reginfo++) {
fp@2407: 		e1000_regdump(hw, reginfo);
fp@2407: 	}
fp@2407: 
fp@2407: 	/* Print Tx Ring Summary */
fp@2407: 	if (!netdev || !netif_running(netdev))
fp@2407: 		goto exit;
fp@2407: 
fp@2407: 	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
fp@2407: 	printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma  ]"
fp@2407: 	       " leng ntw timestamp\n");
fp@2407: 	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
fp@2407: 	printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n",
fp@2407: 	       0, tx_ring->next_to_use, tx_ring->next_to_clean,
fp@2407: 	       (unsigned long long)buffer_info->dma,
fp@2407: 	       buffer_info->length,
fp@2407: 	       buffer_info->next_to_watch,
fp@2407: 	       (unsigned long long)buffer_info->time_stamp);
fp@2407: 
fp@2407: 	/* Print Tx Ring */
fp@2407: 	if (!netif_msg_tx_done(adapter))
fp@2407: 		goto rx_ring_summary;
fp@2407: 
fp@2407: 	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
fp@2407: 
fp@2407: 	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
fp@2407: 	 *
fp@2407: 	 * Legacy Transmit Descriptor
fp@2407: 	 *   +--------------------------------------------------------------+
fp@2407: 	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
fp@2407: 	 *   +--------------------------------------------------------------+
fp@2407: 	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
fp@2407: 	 *   +--------------------------------------------------------------+
fp@2407: 	 *   63       48 47        36 35    32 31     24 23    16 15        0
fp@2407: 	 *
fp@2407: 	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
fp@2407: 	 *   63      48 47    40 39       32 31             16 15    8 7      0
fp@2407: 	 *   +----------------------------------------------------------------+
fp@2407: 	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
fp@2407: 	 *   +----------------------------------------------------------------+
fp@2407: 	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
fp@2407: 	 *   +----------------------------------------------------------------+
fp@2407: 	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
fp@2407: 	 *
fp@2407: 	 * Extended Data Descriptor (DTYP=0x1)
fp@2407: 	 *   +----------------------------------------------------------------+
fp@2407: 	 * 0 |                     Buffer Address [63:0]                      |
fp@2407: 	 *   +----------------------------------------------------------------+
fp@2407: 	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
fp@2407: 	 *   +----------------------------------------------------------------+
fp@2407: 	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
fp@2407: 	 */
fp@2407: 	printk(KERN_INFO "Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen]"
fp@2407: 	       " [bi->dma       ] leng  ntw timestamp        bi->skb "
fp@2407: 	       "<-- Legacy format\n");
fp@2407: 	printk(KERN_INFO "Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen]"
fp@2407: 	       " [bi->dma       ] leng  ntw timestamp        bi->skb "
fp@2407: 	       "<-- Ext Context format\n");
fp@2407: 	printk(KERN_INFO "Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen]"
fp@2407: 	       " [bi->dma       ] leng  ntw timestamp        bi->skb "
fp@2407: 	       "<-- Ext Data format\n");
fp@2407: 	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
fp@2407: 		tx_desc = E1000_TX_DESC(*tx_ring, i);
fp@2407: 		buffer_info = &tx_ring->buffer_info[i];
fp@2407: 		u0 = (struct my_u0 *)tx_desc;
fp@2407: 		printk(KERN_INFO "T%c[0x%03X]    %016llX %016llX %016llX "
fp@2407: 		       "%04X  %3X %016llX %p",
fp@2407: 		       (!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
fp@2407: 			((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')), i,
fp@2407: 		       (unsigned long long)le64_to_cpu(u0->a),
fp@2407: 		       (unsigned long long)le64_to_cpu(u0->b),
fp@2407: 		       (unsigned long long)buffer_info->dma,
fp@2407: 		       buffer_info->length, buffer_info->next_to_watch,
fp@2407: 		       (unsigned long long)buffer_info->time_stamp,
fp@2407: 		       buffer_info->skb);
fp@2407: 		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
fp@2407: 			printk(KERN_CONT " NTC/U\n");
fp@2407: 		else if (i == tx_ring->next_to_use)
fp@2407: 			printk(KERN_CONT " NTU\n");
fp@2407: 		else if (i == tx_ring->next_to_clean)
fp@2407: 			printk(KERN_CONT " NTC\n");
fp@2407: 		else
fp@2407: 			printk(KERN_CONT "\n");
fp@2407: 
fp@2407: 		if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
fp@2407: 			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
fp@2407: 				       16, 1, phys_to_virt(buffer_info->dma),
fp@2407: 				       buffer_info->length, true);
fp@2407: 	}
fp@2407: 
fp@2407: 	/* Print Rx Ring Summary */
fp@2407: rx_ring_summary:
fp@2407: 	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
fp@2407: 	printk(KERN_INFO "Queue [NTU] [NTC]\n");
fp@2407: 	printk(KERN_INFO " %5d %5X %5X\n", 0,
fp@2407: 	       rx_ring->next_to_use, rx_ring->next_to_clean);
fp@2407: 
fp@2407: 	/* Print Rx Ring */
fp@2407: 	if (!netif_msg_rx_status(adapter))
fp@2407: 		goto exit;
fp@2407: 
fp@2407: 	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
fp@2407: 	switch (adapter->rx_ps_pages) {
fp@2407: 	case 1:
fp@2407: 	case 2:
fp@2407: 	case 3:
fp@2407: 		/* [Extended] Packet Split Receive Descriptor Format
fp@2407: 		 *
fp@2407: 		 *    +-----------------------------------------------------+
fp@2407: 		 *  0 |                Buffer Address 0 [63:0]              |
fp@2407: 		 *    +-----------------------------------------------------+
fp@2407: 		 *  8 |                Buffer Address 1 [63:0]              |
fp@2407: 		 *    +-----------------------------------------------------+
fp@2407: 		 * 16 |                Buffer Address 2 [63:0]              |
fp@2407: 		 *    +-----------------------------------------------------+
fp@2407: 		 * 24 |                Buffer Address 3 [63:0]              |
fp@2407: 		 *    +-----------------------------------------------------+
fp@2407: 		 */
fp@2407: 		printk(KERN_INFO "R  [desc]      [buffer 0 63:0 ] "
fp@2407: 		       "[buffer 1 63:0 ] "
fp@2407: 		       "[buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] "
fp@2407: 		       "[bi->skb] <-- Ext Pkt Split format\n");
fp@2407: 		/* [Extended] Receive Descriptor (Write-Back) Format
fp@2407: 		 *
fp@2407: 		 *   63       48 47    32 31     13 12    8 7    4 3        0
fp@2407: 		 *   +------------------------------------------------------+
fp@2407: 		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
fp@2407: 		 *   | Checksum | Ident  |         | Queue |      |  Type   |
fp@2407: 		 *   +------------------------------------------------------+
fp@2407: 		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
fp@2407: 		 *   +------------------------------------------------------+
fp@2407: 		 *   63       48 47    32 31            20 19               0
fp@2407: 		 */
fp@2407: 		printk(KERN_INFO "RWB[desc]      [ck ipid mrqhsh] "
fp@2407: 		       "[vl   l0 ee  es] "
fp@2407: 		       "[ l3  l2  l1 hs] [reserved      ] ---------------- "
fp@2407: 		       "[bi->skb] <-- Ext Rx Write-Back format\n");
fp@2407: 		for (i = 0; i < rx_ring->count; i++) {
fp@2407: 			buffer_info = &rx_ring->buffer_info[i];
fp@2407: 			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
fp@2407: 			u1 = (struct my_u1 *)rx_desc_ps;
fp@2407: 			staterr =
fp@2407: 			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
fp@2407: 			if (staterr & E1000_RXD_STAT_DD) {
fp@2407: 				/* Descriptor Done */
fp@2407: 				printk(KERN_INFO "RWB[0x%03X]     %016llX "
fp@2407: 				       "%016llX %016llX %016llX "
fp@2407: 				       "---------------- %p", i,
fp@2407: 				       (unsigned long long)le64_to_cpu(u1->a),
fp@2407: 				       (unsigned long long)le64_to_cpu(u1->b),
fp@2407: 				       (unsigned long long)le64_to_cpu(u1->c),
fp@2407: 				       (unsigned long long)le64_to_cpu(u1->d),
fp@2407: 				       buffer_info->skb);
fp@2407: 			} else {
fp@2407: 				printk(KERN_INFO "R  [0x%03X]     %016llX "
fp@2407: 				       "%016llX %016llX %016llX %016llX %p", i,
fp@2407: 				       (unsigned long long)le64_to_cpu(u1->a),
fp@2407: 				       (unsigned long long)le64_to_cpu(u1->b),
fp@2407: 				       (unsigned long long)le64_to_cpu(u1->c),
fp@2407: 				       (unsigned long long)le64_to_cpu(u1->d),
fp@2407: 				       (unsigned long long)buffer_info->dma,
fp@2407: 				       buffer_info->skb);
fp@2407: 
fp@2407: 				if (netif_msg_pktdata(adapter))
fp@2407: 					print_hex_dump(KERN_INFO, "",
fp@2407: 						DUMP_PREFIX_ADDRESS, 16, 1,
fp@2407: 						phys_to_virt(buffer_info->dma),
fp@2407: 						adapter->rx_ps_bsize0, true);
fp@2407: 			}
fp@2407: 
fp@2407: 			if (i == rx_ring->next_to_use)
fp@2407: 				printk(KERN_CONT " NTU\n");
fp@2407: 			else if (i == rx_ring->next_to_clean)
fp@2407: 				printk(KERN_CONT " NTC\n");
fp@2407: 			else
fp@2407: 				printk(KERN_CONT "\n");
fp@2407: 		}
fp@2407: 		break;
fp@2407: 	default:
fp@2407: 	case 0:
fp@2407: 		/* Extended Receive Descriptor (Read) Format
fp@2407: 		 *
fp@2407: 		 *   +-----------------------------------------------------+
fp@2407: 		 * 0 |                Buffer Address [63:0]                |
fp@2407: 		 *   +-----------------------------------------------------+
fp@2407: 		 * 8 |                      Reserved                       |
fp@2407: 		 *   +-----------------------------------------------------+
fp@2407: 		 */
fp@2407: 		printk(KERN_INFO "R  [desc]      [buf addr 63:0 ] "
fp@2407: 		       "[reserved 63:0 ] [bi->dma       ] "
fp@2407: 		       "[bi->skb] <-- Ext (Read) format\n");
fp@2407: 		/* Extended Receive Descriptor (Write-Back) Format
fp@2407: 		 *
fp@2407: 		 *   63       48 47    32 31    24 23            4 3        0
fp@2407: 		 *   +------------------------------------------------------+
fp@2407: 		 *   |     RSS Hash      |        |               |         |
fp@2407: 		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
fp@2407: 		 *   | Packet   | IP     |        |               |  Type   |
fp@2407: 		 *   | Checksum | Ident  |        |               |         |
fp@2407: 		 *   +------------------------------------------------------+
fp@2407: 		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
fp@2407: 		 *   +------------------------------------------------------+
fp@2407: 		 *   63       48 47    32 31            20 19               0
fp@2407: 		 */
fp@2407: 		printk(KERN_INFO "RWB[desc]      [cs ipid    mrq] "
fp@2407: 		       "[vt   ln xe  xs] "
fp@2407: 		       "[bi->skb] <-- Ext (Write-Back) format\n");
fp@2407: 
fp@2407: 		for (i = 0; i < rx_ring->count; i++) {
fp@2407: 			buffer_info = &rx_ring->buffer_info[i];
fp@2407: 			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
fp@2407: 			u1 = (struct my_u1 *)rx_desc;
fp@2407: 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
fp@2407: 			if (staterr & E1000_RXD_STAT_DD) {
fp@2407: 				/* Descriptor Done */
fp@2407: 				printk(KERN_INFO "RWB[0x%03X]     %016llX "
fp@2407: 				       "%016llX ---------------- %p", i,
fp@2407: 				       (unsigned long long)le64_to_cpu(u1->a),
fp@2407: 				       (unsigned long long)le64_to_cpu(u1->b),
fp@2407: 				       buffer_info->skb);
fp@2407: 			} else {
fp@2407: 				printk(KERN_INFO "R  [0x%03X]     %016llX "
fp@2407: 				       "%016llX %016llX %p", i,
fp@2407: 				       (unsigned long long)le64_to_cpu(u1->a),
fp@2407: 				       (unsigned long long)le64_to_cpu(u1->b),
fp@2407: 				       (unsigned long long)buffer_info->dma,
fp@2407: 				       buffer_info->skb);
fp@2407: 
fp@2407: 				if (netif_msg_pktdata(adapter))
fp@2407: 					print_hex_dump(KERN_INFO, "",
fp@2407: 						       DUMP_PREFIX_ADDRESS, 16,
fp@2407: 						       1,
fp@2407: 						       phys_to_virt
fp@2407: 						       (buffer_info->dma),
fp@2407: 						       adapter->rx_buffer_len,
fp@2407: 						       true);
fp@2407: 			}
fp@2407: 
fp@2407: 			if (i == rx_ring->next_to_use)
fp@2407: 				printk(KERN_CONT " NTU\n");
fp@2407: 			else if (i == rx_ring->next_to_clean)
fp@2407: 				printk(KERN_CONT " NTC\n");
fp@2407: 			else
fp@2407: 				printk(KERN_CONT "\n");
fp@2407: 		}
fp@2407: 	}
fp@2407: 
fp@2407: exit:
fp@2407: 	return;
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000_desc_unused - calculate if we have unused descriptors
fp@2407:  **/
fp@2407: static int e1000_desc_unused(struct e1000_ring *ring)
fp@2407: {
fp@2407: 	if (ring->next_to_clean > ring->next_to_use)
fp@2407: 		return ring->next_to_clean - ring->next_to_use - 1;
fp@2407: 
fp@2407: 	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000_receive_skb - helper function to handle Rx indications
fp@2407:  * @adapter: board private structure
fp@2407:  * @status: descriptor status field as written by hardware
fp@2407:  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
fp@2407:  * @skb: pointer to sk_buff to be indicated to stack
fp@2407:  **/
fp@2407: static void e1000_receive_skb(struct e1000_adapter *adapter,
fp@2407: 			      struct net_device *netdev, struct sk_buff *skb,
fp@2407: 			      u8 status, __le16 vlan)
fp@2407: {
fp@2407: 	u16 tag = le16_to_cpu(vlan);
fp@2407: 	skb->protocol = eth_type_trans(skb, netdev);
fp@2407: 
fp@2407: 	if (status & E1000_RXD_STAT_VP)
fp@2407: 		__vlan_hwaccel_put_tag(skb, tag);
fp@2407: 
fp@2407: 	napi_gro_receive(&adapter->napi, skb);
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000_rx_checksum - Receive Checksum Offload
fp@2407:  * @adapter:     board private structure
fp@2407:  * @status_err:  receive descriptor status and error fields
fp@2407:  * @csum:	receive descriptor csum field
fp@2407:  * @sk_buff:     socket buffer with received data
fp@2407:  **/
fp@2407: static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
fp@2407: 			      u32 csum, struct sk_buff *skb)
fp@2407: {
fp@2407: 	u16 status = (u16)status_err;
fp@2407: 	u8 errors = (u8)(status_err >> 24);
fp@2407: 
fp@2407: 	skb_checksum_none_assert(skb);
fp@2407: 
fp@2407: 	/* Ignore Checksum bit is set */
fp@2407: 	if (status & E1000_RXD_STAT_IXSM)
fp@2407: 		return;
fp@2407: 	/* TCP/UDP checksum error bit is set */
fp@2407: 	if (errors & E1000_RXD_ERR_TCPE) {
fp@2407: 		/* let the stack verify checksum errors */
fp@2407: 		adapter->hw_csum_err++;
fp@2407: 		return;
fp@2407: 	}
fp@2407: 
fp@2407: 	/* TCP/UDP Checksum has not been calculated */
fp@2407: 	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
fp@2407: 		return;
fp@2407: 
fp@2407: 	/* It must be a TCP or UDP packet with a valid checksum */
fp@2407: 	if (status & E1000_RXD_STAT_TCPCS) {
fp@2407: 		/* TCP checksum is good */
fp@2407: 		skb->ip_summed = CHECKSUM_UNNECESSARY;
fp@2407: 	} else {
fp@2407: 		/*
fp@2407: 		 * IP fragment with UDP payload
fp@2407: 		 * Hardware complements the payload checksum, so we undo it
fp@2407: 		 * and then put the value in host order for further stack use.
fp@2407: 		 */
fp@2407: 		__sum16 sum = (__force __sum16)htons(csum);
fp@2407: 		skb->csum = csum_unfold(~sum);
fp@2407: 		skb->ip_summed = CHECKSUM_COMPLETE;
fp@2407: 	}
fp@2407: 	adapter->hw_csum_good++;
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000e_update_tail_wa - helper function for e1000e_update_[rt]dt_wa()
fp@2407:  * @hw: pointer to the HW structure
fp@2407:  * @tail: address of tail descriptor register
fp@2407:  * @i: value to write to tail descriptor register
fp@2407:  *
fp@2407:  * When updating the tail register, the ME could be accessing Host CSR
fp@2407:  * registers at the same time.  Normally, this is handled in h/w by an
fp@2407:  * arbiter but on some parts there is a bug that acknowledges Host accesses
fp@2407:  * later than it should which could result in the descriptor register to
fp@2407:  * have an incorrect value.  Workaround this by checking the FWSM register
fp@2407:  * which has bit 24 set while ME is accessing Host CSR registers, wait
fp@2407:  * if it is set and try again a number of times.
fp@2407:  **/
fp@2407: static inline s32 e1000e_update_tail_wa(struct e1000_hw *hw, u8 __iomem * tail,
fp@2407: 					unsigned int i)
fp@2407: {
fp@2407: 	unsigned int j = 0;
fp@2407: 
fp@2407: 	while ((j++ < E1000_ICH_FWSM_PCIM2PCI_COUNT) &&
fp@2407: 	       (er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI))
fp@2407: 		udelay(50);
fp@2407: 
fp@2407: 	writel(i, tail);
fp@2407: 
fp@2407: 	if ((j == E1000_ICH_FWSM_PCIM2PCI_COUNT) && (i != readl(tail)))
fp@2407: 		return E1000_ERR_SWFW_SYNC;
fp@2407: 
fp@2407: 	return 0;
fp@2407: }
fp@2407: 
fp@2407: static void e1000e_update_rdt_wa(struct e1000_adapter *adapter, unsigned int i)
fp@2407: {
fp@2407: 	u8 __iomem *tail = (adapter->hw.hw_addr + adapter->rx_ring->tail);
fp@2407: 	struct e1000_hw *hw = &adapter->hw;
fp@2407: 
fp@2407: 	if (e1000e_update_tail_wa(hw, tail, i)) {
fp@2407: 		u32 rctl = er32(RCTL);
fp@2407: 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
fp@2407: 		e_err("ME firmware caused invalid RDT - resetting\n");
fp@2407: 		schedule_work(&adapter->reset_task);
fp@2407: 	}
fp@2407: }
fp@2407: 
fp@2407: static void e1000e_update_tdt_wa(struct e1000_adapter *adapter, unsigned int i)
fp@2407: {
fp@2407: 	u8 __iomem *tail = (adapter->hw.hw_addr + adapter->tx_ring->tail);
fp@2407: 	struct e1000_hw *hw = &adapter->hw;
fp@2407: 
fp@2407: 	if (e1000e_update_tail_wa(hw, tail, i)) {
fp@2407: 		u32 tctl = er32(TCTL);
fp@2407: 		ew32(TCTL, tctl & ~E1000_TCTL_EN);
fp@2407: 		e_err("ME firmware caused invalid TDT - resetting\n");
fp@2407: 		schedule_work(&adapter->reset_task);
fp@2407: 	}
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000_alloc_rx_buffers - Replace used receive buffers
fp@2407:  * @adapter: address of board private structure
fp@2407:  **/
fp@2407: static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
fp@2407: 				   int cleaned_count, gfp_t gfp)
fp@2407: {
fp@2407: 	struct net_device *netdev = adapter->netdev;
fp@2407: 	struct pci_dev *pdev = adapter->pdev;
fp@2407: 	struct e1000_ring *rx_ring = adapter->rx_ring;
fp@2407: 	union e1000_rx_desc_extended *rx_desc;
fp@2407: 	struct e1000_buffer *buffer_info;
fp@2407: 	struct sk_buff *skb;
fp@2407: 	unsigned int i;
fp@2407: 	unsigned int bufsz = adapter->rx_buffer_len;
fp@2407: 
fp@2407: 	i = rx_ring->next_to_use;
fp@2407: 	buffer_info = &rx_ring->buffer_info[i];
fp@2407: 
fp@2407: 	while (cleaned_count--) {
fp@2407: 		skb = buffer_info->skb;
fp@2407: 		if (skb) {
fp@2407: 			skb_trim(skb, 0);
fp@2407: 			goto map_skb;
fp@2407: 		}
fp@2407: 
fp@2407: 		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
fp@2407: 		if (!skb) {
fp@2407: 			/* Better luck next round */
fp@2407: 			adapter->alloc_rx_buff_failed++;
fp@2407: 			break;
fp@2407: 		}
fp@2407: 
fp@2407: 		buffer_info->skb = skb;
fp@2407: map_skb:
fp@2407: 		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
fp@2407: 						  adapter->rx_buffer_len,
fp@2407: 						  DMA_FROM_DEVICE);
fp@2407: 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
fp@2407: 			dev_err(&pdev->dev, "Rx DMA map failed\n");
fp@2407: 			adapter->rx_dma_failed++;
fp@2407: 			break;
fp@2407: 		}
fp@2407: 
fp@2407: 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
fp@2407: 		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
fp@2407: 
fp@2407: 		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
fp@2407: 			/*
fp@2407: 			 * Force memory writes to complete before letting h/w
fp@2407: 			 * know there are new descriptors to fetch.  (Only
fp@2407: 			 * applicable for weak-ordered memory model archs,
fp@2407: 			 * such as IA-64).
fp@2407: 			 */
fp@2407: 			wmb();
fp@2407: 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
fp@2407: 				e1000e_update_rdt_wa(adapter, i);
fp@2407: 			else
fp@2407: 				writel(i, adapter->hw.hw_addr + rx_ring->tail);
fp@2407: 		}
fp@2407: 		i++;
fp@2407: 		if (i == rx_ring->count)
fp@2407: 			i = 0;
fp@2407: 		buffer_info = &rx_ring->buffer_info[i];
fp@2407: 	}
fp@2407: 
fp@2407: 	rx_ring->next_to_use = i;
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
fp@2407:  * @adapter: address of board private structure
fp@2407:  **/
fp@2407: static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
fp@2407: 				      int cleaned_count, gfp_t gfp)
fp@2407: {
fp@2407: 	struct net_device *netdev = adapter->netdev;
fp@2407: 	struct pci_dev *pdev = adapter->pdev;
fp@2407: 	union e1000_rx_desc_packet_split *rx_desc;
fp@2407: 	struct e1000_ring *rx_ring = adapter->rx_ring;
fp@2407: 	struct e1000_buffer *buffer_info;
fp@2407: 	struct e1000_ps_page *ps_page;
fp@2407: 	struct sk_buff *skb;
fp@2407: 	unsigned int i, j;
fp@2407: 
fp@2407: 	i = rx_ring->next_to_use;
fp@2407: 	buffer_info = &rx_ring->buffer_info[i];
fp@2407: 
fp@2407: 	while (cleaned_count--) {
fp@2407: 		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
fp@2407: 
fp@2407: 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
fp@2407: 			ps_page = &buffer_info->ps_pages[j];
fp@2407: 			if (j >= adapter->rx_ps_pages) {
fp@2407: 				/* all unused desc entries get hw null ptr */
fp@2407: 				rx_desc->read.buffer_addr[j + 1] =
fp@2407: 				    ~cpu_to_le64(0);
fp@2407: 				continue;
fp@2407: 			}
fp@2407: 			if (!ps_page->page) {
fp@2407: 				ps_page->page = alloc_page(gfp);
fp@2407: 				if (!ps_page->page) {
fp@2407: 					adapter->alloc_rx_buff_failed++;
fp@2407: 					goto no_buffers;
fp@2407: 				}
fp@2407: 				ps_page->dma = dma_map_page(&pdev->dev,
fp@2407: 							    ps_page->page,
fp@2407: 							    0, PAGE_SIZE,
fp@2407: 							    DMA_FROM_DEVICE);
fp@2407: 				if (dma_mapping_error(&pdev->dev,
fp@2407: 						      ps_page->dma)) {
fp@2407: 					dev_err(&adapter->pdev->dev,
fp@2407: 						"Rx DMA page map failed\n");
fp@2407: 					adapter->rx_dma_failed++;
fp@2407: 					goto no_buffers;
fp@2407: 				}
fp@2407: 			}
fp@2407: 			/*
fp@2407: 			 * Refresh the desc even if buffer_addrs
fp@2407: 			 * didn't change because each write-back
fp@2407: 			 * erases this info.
fp@2407: 			 */
fp@2407: 			rx_desc->read.buffer_addr[j + 1] =
fp@2407: 			    cpu_to_le64(ps_page->dma);
fp@2407: 		}
fp@2407: 
fp@2407: 		skb = __netdev_alloc_skb_ip_align(netdev,
fp@2407: 						  adapter->rx_ps_bsize0,
fp@2407: 						  gfp);
fp@2407: 
fp@2407: 		if (!skb) {
fp@2407: 			adapter->alloc_rx_buff_failed++;
fp@2407: 			break;
fp@2407: 		}
fp@2407: 
fp@2407: 		buffer_info->skb = skb;
fp@2407: 		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
fp@2407: 						  adapter->rx_ps_bsize0,
fp@2407: 						  DMA_FROM_DEVICE);
fp@2407: 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
fp@2407: 			dev_err(&pdev->dev, "Rx DMA map failed\n");
fp@2407: 			adapter->rx_dma_failed++;
fp@2407: 			/* cleanup skb */
fp@2407: 			dev_kfree_skb_any(skb);
fp@2407: 			buffer_info->skb = NULL;
fp@2407: 			break;
fp@2407: 		}
fp@2407: 
fp@2407: 		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
fp@2407: 
fp@2407: 		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
fp@2407: 			/*
fp@2407: 			 * Force memory writes to complete before letting h/w
fp@2407: 			 * know there are new descriptors to fetch.  (Only
fp@2407: 			 * applicable for weak-ordered memory model archs,
fp@2407: 			 * such as IA-64).
fp@2407: 			 */
fp@2407: 			wmb();
fp@2407: 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
fp@2407: 				e1000e_update_rdt_wa(adapter, i << 1);
fp@2407: 			else
fp@2407: 				writel(i << 1,
fp@2407: 				       adapter->hw.hw_addr + rx_ring->tail);
fp@2407: 		}
fp@2407: 
fp@2407: 		i++;
fp@2407: 		if (i == rx_ring->count)
fp@2407: 			i = 0;
fp@2407: 		buffer_info = &rx_ring->buffer_info[i];
fp@2407: 	}
fp@2407: 
fp@2407: no_buffers:
fp@2407: 	rx_ring->next_to_use = i;
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
fp@2407:  * @adapter: address of board private structure
fp@2407:  * @cleaned_count: number of buffers to allocate this pass
fp@2407:  **/
fp@2407: 
fp@2407: static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
fp@2407: 					 int cleaned_count, gfp_t gfp)
fp@2407: {
fp@2407: 	struct net_device *netdev = adapter->netdev;
fp@2407: 	struct pci_dev *pdev = adapter->pdev;
fp@2407: 	union e1000_rx_desc_extended *rx_desc;
fp@2407: 	struct e1000_ring *rx_ring = adapter->rx_ring;
fp@2407: 	struct e1000_buffer *buffer_info;
fp@2407: 	struct sk_buff *skb;
fp@2407: 	unsigned int i;
fp@2407: 	unsigned int bufsz = 256 - 16 /* for skb_reserve */;
fp@2407: 
fp@2407: 	i = rx_ring->next_to_use;
fp@2407: 	buffer_info = &rx_ring->buffer_info[i];
fp@2407: 
fp@2407: 	while (cleaned_count--) {
fp@2407: 		skb = buffer_info->skb;
fp@2407: 		if (skb) {
fp@2407: 			skb_trim(skb, 0);
fp@2407: 			goto check_page;
fp@2407: 		}
fp@2407: 
fp@2407: 		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
fp@2407: 		if (unlikely(!skb)) {
fp@2407: 			/* Better luck next round */
fp@2407: 			adapter->alloc_rx_buff_failed++;
fp@2407: 			break;
fp@2407: 		}
fp@2407: 
fp@2407: 		buffer_info->skb = skb;
fp@2407: check_page:
fp@2407: 		/* allocate a new page if necessary */
fp@2407: 		if (!buffer_info->page) {
fp@2407: 			buffer_info->page = alloc_page(gfp);
fp@2407: 			if (unlikely(!buffer_info->page)) {
fp@2407: 				adapter->alloc_rx_buff_failed++;
fp@2407: 				break;
fp@2407: 			}
fp@2407: 		}
fp@2407: 
fp@2407: 		if (!buffer_info->dma)
fp@2407: 			buffer_info->dma = dma_map_page(&pdev->dev,
fp@2407: 			                                buffer_info->page, 0,
fp@2407: 			                                PAGE_SIZE,
fp@2407: 							DMA_FROM_DEVICE);
fp@2407: 
fp@2407: 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
fp@2407: 		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
fp@2407: 
fp@2407: 		if (unlikely(++i == rx_ring->count))
fp@2407: 			i = 0;
fp@2407: 		buffer_info = &rx_ring->buffer_info[i];
fp@2407: 	}
fp@2407: 
fp@2407: 	if (likely(rx_ring->next_to_use != i)) {
fp@2407: 		rx_ring->next_to_use = i;
fp@2407: 		if (unlikely(i-- == 0))
fp@2407: 			i = (rx_ring->count - 1);
fp@2407: 
fp@2407: 		/* Force memory writes to complete before letting h/w
fp@2407: 		 * know there are new descriptors to fetch.  (Only
fp@2407: 		 * applicable for weak-ordered memory model archs,
fp@2407: 		 * such as IA-64). */
fp@2407: 		wmb();
fp@2407: 		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
fp@2407: 			e1000e_update_rdt_wa(adapter, i);
fp@2407: 		else
fp@2407: 			writel(i, adapter->hw.hw_addr + rx_ring->tail);
fp@2407: 	}
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000_clean_rx_irq - Send received data up the network stack; legacy
fp@2407:  * @adapter: board private structure
fp@2407:  *
fp@2407:  * the return value indicates whether actual cleaning was done, there
fp@2407:  * is no guarantee that everything was cleaned
fp@2407:  **/
fp@2407: static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
fp@2407: 			       int *work_done, int work_to_do)
fp@2407: {
fp@2407: 	struct net_device *netdev = adapter->netdev;
fp@2407: 	struct pci_dev *pdev = adapter->pdev;
fp@2407: 	struct e1000_hw *hw = &adapter->hw;
fp@2407: 	struct e1000_ring *rx_ring = adapter->rx_ring;
fp@2407: 	union e1000_rx_desc_extended *rx_desc, *next_rxd;
fp@2407: 	struct e1000_buffer *buffer_info, *next_buffer;
fp@2407: 	u32 length, staterr;
fp@2407: 	unsigned int i;
fp@2407: 	int cleaned_count = 0;
fp@2407: 	bool cleaned = 0;
fp@2407: 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
fp@2407: 
fp@2407: 	i = rx_ring->next_to_clean;
fp@2407: 	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
fp@2407: 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
fp@2407: 	buffer_info = &rx_ring->buffer_info[i];
fp@2407: 
fp@2407: 	while (staterr & E1000_RXD_STAT_DD) {
fp@2407: 		struct sk_buff *skb;
fp@2407: 
fp@2407: 		if (*work_done >= work_to_do)
fp@2407: 			break;
fp@2407: 		(*work_done)++;
fp@2407: 		rmb();	/* read descriptor and rx_buffer_info after status DD */
fp@2407: 
fp@2407: 		skb = buffer_info->skb;
fp@2407: 		buffer_info->skb = NULL;
fp@2407: 
fp@2407: 		prefetch(skb->data - NET_IP_ALIGN);
fp@2407: 
fp@2407: 		i++;
fp@2407: 		if (i == rx_ring->count)
fp@2407: 			i = 0;
fp@2407: 		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
fp@2407: 		prefetch(next_rxd);
fp@2407: 
fp@2407: 		next_buffer = &rx_ring->buffer_info[i];
fp@2407: 
fp@2407: 		cleaned = 1;
fp@2407: 		cleaned_count++;
fp@2407: 		dma_unmap_single(&pdev->dev,
fp@2407: 				 buffer_info->dma,
fp@2407: 				 adapter->rx_buffer_len,
fp@2407: 				 DMA_FROM_DEVICE);
fp@2407: 		buffer_info->dma = 0;
fp@2407: 
fp@2407: 		length = le16_to_cpu(rx_desc->wb.upper.length);
fp@2407: 
fp@2407: 		/*
fp@2407: 		 * !EOP means multiple descriptors were used to store a single
fp@2407: 		 * packet, if that's the case we need to toss it.  In fact, we
fp@2407: 		 * need to toss every packet with the EOP bit clear and the
fp@2407: 		 * next frame that _does_ have the EOP bit set, as it is by
fp@2407: 		 * definition only a frame fragment
fp@2407: 		 */
fp@2407: 		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
fp@2407: 			adapter->flags2 |= FLAG2_IS_DISCARDING;
fp@2407: 
fp@2407: 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
fp@2407: 			/* All receives must fit into a single buffer */
fp@2407: 			e_dbg("Receive packet consumed multiple buffers\n");
fp@2407: 			/* recycle */
fp@2407: 			buffer_info->skb = skb;
fp@2407: 			if (staterr & E1000_RXD_STAT_EOP)
fp@2407: 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
fp@2407: 			goto next_desc;
fp@2407: 		}
fp@2407: 
fp@2407: 		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
fp@2407: 			/* recycle */
fp@2407: 			buffer_info->skb = skb;
fp@2407: 			goto next_desc;
fp@2407: 		}
fp@2407: 
fp@2407: 		/* adjust length to remove Ethernet CRC */
fp@2407: 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
fp@2407: 			length -= 4;
fp@2407: 
fp@2407: 		total_rx_bytes += length;
fp@2407: 		total_rx_packets++;
fp@2407: 
fp@2407: 		/*
fp@2407: 		 * code added for copybreak, this should improve
fp@2407: 		 * performance for small packets with large amounts
fp@2407: 		 * of reassembly being done in the stack
fp@2407: 		 */
fp@2407: 		if (length < copybreak) {
fp@2407: 			struct sk_buff *new_skb =
fp@2407: 			    netdev_alloc_skb_ip_align(netdev, length);
fp@2407: 			if (new_skb) {
fp@2407: 				skb_copy_to_linear_data_offset(new_skb,
fp@2407: 							       -NET_IP_ALIGN,
fp@2407: 							       (skb->data -
fp@2407: 								NET_IP_ALIGN),
fp@2407: 							       (length +
fp@2407: 								NET_IP_ALIGN));
fp@2407: 				/* save the skb in buffer_info as good */
fp@2407: 				buffer_info->skb = skb;
fp@2407: 				skb = new_skb;
fp@2407: 			}
fp@2407: 			/* else just continue with the old one */
fp@2407: 		}
fp@2407: 		/* end copybreak code */
fp@2407: 		skb_put(skb, length);
fp@2407: 
fp@2407: 		/* Receive Checksum Offload */
fp@2407: 		e1000_rx_checksum(adapter, staterr,
fp@2407: 				  le16_to_cpu(rx_desc->wb.lower.hi_dword.
fp@2407: 					      csum_ip.csum), skb);
fp@2407: 
fp@2407: 		e1000_receive_skb(adapter, netdev, skb, staterr,
fp@2407: 				  rx_desc->wb.upper.vlan);
fp@2407: 
fp@2407: next_desc:
fp@2407: 		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
fp@2407: 
fp@2407: 		/* return some buffers to hardware, one at a time is too slow */
fp@2407: 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
fp@2407: 			adapter->alloc_rx_buf(adapter, cleaned_count,
fp@2407: 					      GFP_ATOMIC);
fp@2407: 			cleaned_count = 0;
fp@2407: 		}
fp@2407: 
fp@2407: 		/* use prefetched values */
fp@2407: 		rx_desc = next_rxd;
fp@2407: 		buffer_info = next_buffer;
fp@2407: 
fp@2407: 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
fp@2407: 	}
fp@2407: 	rx_ring->next_to_clean = i;
fp@2407: 
fp@2407: 	cleaned_count = e1000_desc_unused(rx_ring);
fp@2407: 	if (cleaned_count)
fp@2407: 		adapter->alloc_rx_buf(adapter, cleaned_count, GFP_ATOMIC);
fp@2407: 
fp@2407: 	adapter->total_rx_bytes += total_rx_bytes;
fp@2407: 	adapter->total_rx_packets += total_rx_packets;
fp@2407: 	return cleaned;
fp@2407: }
fp@2407: 
fp@2407: static void e1000_put_txbuf(struct e1000_adapter *adapter,
fp@2407: 			     struct e1000_buffer *buffer_info)
fp@2407: {
fp@2407: 	if (buffer_info->dma) {
fp@2407: 		if (buffer_info->mapped_as_page)
fp@2407: 			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
fp@2407: 				       buffer_info->length, DMA_TO_DEVICE);
fp@2407: 		else
fp@2407: 			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
fp@2407: 					 buffer_info->length, DMA_TO_DEVICE);
fp@2407: 		buffer_info->dma = 0;
fp@2407: 	}
fp@2407: 	if (buffer_info->skb) {
fp@2407: 		dev_kfree_skb_any(buffer_info->skb);
fp@2407: 		buffer_info->skb = NULL;
fp@2407: 	}
fp@2407: 	buffer_info->time_stamp = 0;
fp@2407: }
fp@2407: 
fp@2407: static void e1000_print_hw_hang(struct work_struct *work)
fp@2407: {
fp@2407: 	struct e1000_adapter *adapter = container_of(work,
fp@2407: 	                                             struct e1000_adapter,
fp@2407: 	                                             print_hang_task);
fp@2407: 	struct net_device *netdev = adapter->netdev;
fp@2407: 	struct e1000_ring *tx_ring = adapter->tx_ring;
fp@2407: 	unsigned int i = tx_ring->next_to_clean;
fp@2407: 	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
fp@2407: 	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
fp@2407: 	struct e1000_hw *hw = &adapter->hw;
fp@2407: 	u16 phy_status, phy_1000t_status, phy_ext_status;
fp@2407: 	u16 pci_status;
fp@2407: 
fp@2407: 	if (test_bit(__E1000_DOWN, &adapter->state))
fp@2407: 		return;
fp@2407: 
fp@2407: 	if (!adapter->tx_hang_recheck &&
fp@2407: 	    (adapter->flags2 & FLAG2_DMA_BURST)) {
fp@2407: 		/* May be block on write-back, flush and detect again
fp@2407: 		 * flush pending descriptor writebacks to memory
fp@2407: 		 */
fp@2407: 		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
fp@2407: 		/* execute the writes immediately */
fp@2407: 		e1e_flush();
fp@2407: 		adapter->tx_hang_recheck = true;
fp@2407: 		return;
fp@2407: 	}
fp@2407: 	/* Real hang detected */
fp@2407: 	adapter->tx_hang_recheck = false;
fp@2407: 	netif_stop_queue(netdev);
fp@2407: 
fp@2407: 	e1e_rphy(hw, PHY_STATUS, &phy_status);
fp@2407: 	e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
fp@2407: 	e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
fp@2407: 
fp@2407: 	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
fp@2407: 
fp@2407: 	/* detected Hardware unit hang */
fp@2407: 	e_err("Detected Hardware Unit Hang:\n"
fp@2407: 	      "  TDH                  <%x>\n"
fp@2407: 	      "  TDT                  <%x>\n"
fp@2407: 	      "  next_to_use          <%x>\n"
fp@2407: 	      "  next_to_clean        <%x>\n"
fp@2407: 	      "buffer_info[next_to_clean]:\n"
fp@2407: 	      "  time_stamp           <%lx>\n"
fp@2407: 	      "  next_to_watch        <%x>\n"
fp@2407: 	      "  jiffies              <%lx>\n"
fp@2407: 	      "  next_to_watch.status <%x>\n"
fp@2407: 	      "MAC Status             <%x>\n"
fp@2407: 	      "PHY Status             <%x>\n"
fp@2407: 	      "PHY 1000BASE-T Status  <%x>\n"
fp@2407: 	      "PHY Extended Status    <%x>\n"
fp@2407: 	      "PCI Status             <%x>\n",
fp@2407: 	      readl(adapter->hw.hw_addr + tx_ring->head),
fp@2407: 	      readl(adapter->hw.hw_addr + tx_ring->tail),
fp@2407: 	      tx_ring->next_to_use,
fp@2407: 	      tx_ring->next_to_clean,
fp@2407: 	      tx_ring->buffer_info[eop].time_stamp,
fp@2407: 	      eop,
fp@2407: 	      jiffies,
fp@2407: 	      eop_desc->upper.fields.status,
fp@2407: 	      er32(STATUS),
fp@2407: 	      phy_status,
fp@2407: 	      phy_1000t_status,
fp@2407: 	      phy_ext_status,
fp@2407: 	      pci_status);
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000_clean_tx_irq - Reclaim resources after transmit completes
fp@2407:  * @adapter: board private structure
fp@2407:  *
fp@2407:  * the return value indicates whether actual cleaning was done, there
fp@2407:  * is no guarantee that everything was cleaned
fp@2407:  **/
fp@2407: static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
fp@2407: {
fp@2407: 	struct net_device *netdev = adapter->netdev;
fp@2407: 	struct e1000_hw *hw = &adapter->hw;
fp@2407: 	struct e1000_ring *tx_ring = adapter->tx_ring;
fp@2407: 	struct e1000_tx_desc *tx_desc, *eop_desc;
fp@2407: 	struct e1000_buffer *buffer_info;
fp@2407: 	unsigned int i, eop;
fp@2407: 	unsigned int count = 0;
fp@2407: 	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
fp@2407: 
fp@2407: 	i = tx_ring->next_to_clean;
fp@2407: 	eop = tx_ring->buffer_info[i].next_to_watch;
fp@2407: 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
fp@2407: 
fp@2407: 	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
fp@2407: 	       (count < tx_ring->count)) {
fp@2407: 		bool cleaned = false;
fp@2407: 		rmb(); /* read buffer_info after eop_desc */
fp@2407: 		for (; !cleaned; count++) {
fp@2407: 			tx_desc = E1000_TX_DESC(*tx_ring, i);
fp@2407: 			buffer_info = &tx_ring->buffer_info[i];
fp@2407: 			cleaned = (i == eop);
fp@2407: 
fp@2407: 			if (cleaned) {
fp@2407: 				total_tx_packets += buffer_info->segs;
fp@2407: 				total_tx_bytes += buffer_info->bytecount;
fp@2407: 			}
fp@2407: 
fp@2407: 			e1000_put_txbuf(adapter, buffer_info);
fp@2407: 			tx_desc->upper.data = 0;
fp@2407: 
fp@2407: 			i++;
fp@2407: 			if (i == tx_ring->count)
fp@2407: 				i = 0;
fp@2407: 		}
fp@2407: 
fp@2407: 		if (i == tx_ring->next_to_use)
fp@2407: 			break;
fp@2407: 		eop = tx_ring->buffer_info[i].next_to_watch;
fp@2407: 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
fp@2407: 	}
fp@2407: 
fp@2407: 	tx_ring->next_to_clean = i;
fp@2407: 
fp@2407: #define TX_WAKE_THRESHOLD 32
fp@2407: 	if (count && netif_carrier_ok(netdev) &&
fp@2407: 	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
fp@2407: 		/* Make sure that anybody stopping the queue after this
fp@2407: 		 * sees the new next_to_clean.
fp@2407: 		 */
fp@2407: 		smp_mb();
fp@2407: 
fp@2407: 		if (netif_queue_stopped(netdev) &&
fp@2407: 		    !(test_bit(__E1000_DOWN, &adapter->state))) {
fp@2407: 			netif_wake_queue(netdev);
fp@2407: 			++adapter->restart_queue;
fp@2407: 		}
fp@2407: 	}
fp@2407: 
fp@2407: 	if (adapter->detect_tx_hung) {
fp@2407: 		/*
fp@2407: 		 * Detect a transmit hang in hardware, this serializes the
fp@2407: 		 * check with the clearing of time_stamp and movement of i
fp@2407: 		 */
fp@2407: 		adapter->detect_tx_hung = 0;
fp@2407: 		if (tx_ring->buffer_info[i].time_stamp &&
fp@2407: 		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
fp@2407: 			       + (adapter->tx_timeout_factor * HZ)) &&
fp@2407: 		    !(er32(STATUS) & E1000_STATUS_TXOFF))
fp@2407: 			schedule_work(&adapter->print_hang_task);
fp@2407: 		else
fp@2407: 			adapter->tx_hang_recheck = false;
fp@2407: 	}
fp@2407: 	adapter->total_tx_bytes += total_tx_bytes;
fp@2407: 	adapter->total_tx_packets += total_tx_packets;
fp@2407: 	return count < tx_ring->count;
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
fp@2407:  * @adapter: board private structure
fp@2407:  *
fp@2407:  * the return value indicates whether actual cleaning was done, there
fp@2407:  * is no guarantee that everything was cleaned
fp@2407:  **/
fp@2407: static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
fp@2407: 				  int *work_done, int work_to_do)
fp@2407: {
fp@2407: 	struct e1000_hw *hw = &adapter->hw;
fp@2407: 	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
fp@2407: 	struct net_device *netdev = adapter->netdev;
fp@2407: 	struct pci_dev *pdev = adapter->pdev;
fp@2407: 	struct e1000_ring *rx_ring = adapter->rx_ring;
fp@2407: 	struct e1000_buffer *buffer_info, *next_buffer;
fp@2407: 	struct e1000_ps_page *ps_page;
fp@2407: 	struct sk_buff *skb;
fp@2407: 	unsigned int i, j;
fp@2407: 	u32 length, staterr;
fp@2407: 	int cleaned_count = 0;
fp@2407: 	bool cleaned = 0;
fp@2407: 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
fp@2407: 
fp@2407: 	i = rx_ring->next_to_clean;
fp@2407: 	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
fp@2407: 	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
fp@2407: 	buffer_info = &rx_ring->buffer_info[i];
fp@2407: 
fp@2407: 	while (staterr & E1000_RXD_STAT_DD) {
fp@2407: 		if (*work_done >= work_to_do)
fp@2407: 			break;
fp@2407: 		(*work_done)++;
fp@2407: 		skb = buffer_info->skb;
fp@2407: 		rmb();	/* read descriptor and rx_buffer_info after status DD */
fp@2407: 
fp@2407: 		/* in the packet split case this is header only */
fp@2407: 		prefetch(skb->data - NET_IP_ALIGN);
fp@2407: 
fp@2407: 		i++;
fp@2407: 		if (i == rx_ring->count)
fp@2407: 			i = 0;
fp@2407: 		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
fp@2407: 		prefetch(next_rxd);
fp@2407: 
fp@2407: 		next_buffer = &rx_ring->buffer_info[i];
fp@2407: 
fp@2407: 		cleaned = 1;
fp@2407: 		cleaned_count++;
fp@2407: 		dma_unmap_single(&pdev->dev, buffer_info->dma,
fp@2407: 				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
fp@2407: 		buffer_info->dma = 0;
fp@2407: 
fp@2407: 		/* see !EOP comment in other Rx routine */
fp@2407: 		if (!(staterr & E1000_RXD_STAT_EOP))
fp@2407: 			adapter->flags2 |= FLAG2_IS_DISCARDING;
fp@2407: 
fp@2407: 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
fp@2407: 			e_dbg("Packet Split buffers didn't pick up the full "
fp@2407: 			      "packet\n");
fp@2407: 			dev_kfree_skb_irq(skb);
fp@2407: 			if (staterr & E1000_RXD_STAT_EOP)
fp@2407: 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
fp@2407: 			goto next_desc;
fp@2407: 		}
fp@2407: 
fp@2407: 		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
fp@2407: 			dev_kfree_skb_irq(skb);
fp@2407: 			goto next_desc;
fp@2407: 		}
fp@2407: 
fp@2407: 		length = le16_to_cpu(rx_desc->wb.middle.length0);
fp@2407: 
fp@2407: 		if (!length) {
fp@2407: 			e_dbg("Last part of the packet spanning multiple "
fp@2407: 			      "descriptors\n");
fp@2407: 			dev_kfree_skb_irq(skb);
fp@2407: 			goto next_desc;
fp@2407: 		}
fp@2407: 
fp@2407: 		/* Good Receive */
fp@2407: 		skb_put(skb, length);
fp@2407: 
fp@2407: 		{
fp@2407: 		/*
fp@2407: 		 * this looks ugly, but it seems compiler issues make it
fp@2407: 		 * more efficient than reusing j
fp@2407: 		 */
fp@2407: 		int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
fp@2407: 
fp@2407: 		/*
fp@2407: 		 * page alloc/put takes too long and effects small packet
fp@2407: 		 * throughput, so unsplit small packets and save the alloc/put
fp@2407: 		 * only valid in softirq (napi) context to call kmap_*
fp@2407: 		 */
fp@2407: 		if (l1 && (l1 <= copybreak) &&
fp@2407: 		    ((length + l1) <= adapter->rx_ps_bsize0)) {
fp@2407: 			u8 *vaddr;
fp@2407: 
fp@2407: 			ps_page = &buffer_info->ps_pages[0];
fp@2407: 
fp@2407: 			/*
fp@2407: 			 * there is no documentation about how to call
fp@2407: 			 * kmap_atomic, so we can't hold the mapping
fp@2407: 			 * very long
fp@2407: 			 */
fp@2407: 			dma_sync_single_for_cpu(&pdev->dev, ps_page->dma,
fp@2407: 						PAGE_SIZE, DMA_FROM_DEVICE);
fp@2407: 			vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
fp@2407: 			memcpy(skb_tail_pointer(skb), vaddr, l1);
fp@2407: 			kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
fp@2407: 			dma_sync_single_for_device(&pdev->dev, ps_page->dma,
fp@2407: 						   PAGE_SIZE, DMA_FROM_DEVICE);
fp@2407: 
fp@2407: 			/* remove the CRC */
fp@2407: 			if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
fp@2407: 				l1 -= 4;
fp@2407: 
fp@2407: 			skb_put(skb, l1);
fp@2407: 			goto copydone;
fp@2407: 		} /* if */
fp@2407: 		}
fp@2407: 
fp@2407: 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
fp@2407: 			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
fp@2407: 			if (!length)
fp@2407: 				break;
fp@2407: 
fp@2407: 			ps_page = &buffer_info->ps_pages[j];
fp@2407: 			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
fp@2407: 				       DMA_FROM_DEVICE);
fp@2407: 			ps_page->dma = 0;
fp@2407: 			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
fp@2407: 			ps_page->page = NULL;
fp@2407: 			skb->len += length;
fp@2407: 			skb->data_len += length;
fp@2407: 			skb->truesize += PAGE_SIZE;
fp@2407: 		}
fp@2407: 
fp@2407: 		/* strip the ethernet crc, problem is we're using pages now so
fp@2407: 		 * this whole operation can get a little cpu intensive
fp@2407: 		 */
fp@2407: 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
fp@2407: 			pskb_trim(skb, skb->len - 4);
fp@2407: 
fp@2407: copydone:
fp@2407: 		total_rx_bytes += skb->len;
fp@2407: 		total_rx_packets++;
fp@2407: 
fp@2407: 		e1000_rx_checksum(adapter, staterr, le16_to_cpu(
fp@2407: 			rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
fp@2407: 
fp@2407: 		if (rx_desc->wb.upper.header_status &
fp@2407: 			   cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
fp@2407: 			adapter->rx_hdr_split++;
fp@2407: 
fp@2407: 		e1000_receive_skb(adapter, netdev, skb,
fp@2407: 				  staterr, rx_desc->wb.middle.vlan);
fp@2407: 
fp@2407: next_desc:
fp@2407: 		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
fp@2407: 		buffer_info->skb = NULL;
fp@2407: 
fp@2407: 		/* return some buffers to hardware, one at a time is too slow */
fp@2407: 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
fp@2407: 			adapter->alloc_rx_buf(adapter, cleaned_count,
fp@2407: 					      GFP_ATOMIC);
fp@2407: 			cleaned_count = 0;
fp@2407: 		}
fp@2407: 
fp@2407: 		/* use prefetched values */
fp@2407: 		rx_desc = next_rxd;
fp@2407: 		buffer_info = next_buffer;
fp@2407: 
fp@2407: 		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
fp@2407: 	}
fp@2407: 	rx_ring->next_to_clean = i;
fp@2407: 
fp@2407: 	cleaned_count = e1000_desc_unused(rx_ring);
fp@2407: 	if (cleaned_count)
fp@2407: 		adapter->alloc_rx_buf(adapter, cleaned_count, GFP_ATOMIC);
fp@2407: 
fp@2407: 	adapter->total_rx_bytes += total_rx_bytes;
fp@2407: 	adapter->total_rx_packets += total_rx_packets;
fp@2407: 	return cleaned;
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000_consume_page - helper function
fp@2407:  **/
fp@2407: static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
fp@2407:                                u16 length)
fp@2407: {
fp@2407: 	bi->page = NULL;
fp@2407: 	skb->len += length;
fp@2407: 	skb->data_len += length;
fp@2407: 	skb->truesize += PAGE_SIZE;
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
fp@2407:  * @adapter: board private structure
fp@2407:  *
fp@2407:  * the return value indicates whether actual cleaning was done, there
fp@2407:  * is no guarantee that everything was cleaned
fp@2407:  **/
fp@2407: 
fp@2407: static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
fp@2407:                                      int *work_done, int work_to_do)
fp@2407: {
fp@2407: 	struct net_device *netdev = adapter->netdev;
fp@2407: 	struct pci_dev *pdev = adapter->pdev;
fp@2407: 	struct e1000_ring *rx_ring = adapter->rx_ring;
fp@2407: 	union e1000_rx_desc_extended *rx_desc, *next_rxd;
fp@2407: 	struct e1000_buffer *buffer_info, *next_buffer;
fp@2407: 	u32 length, staterr;
fp@2407: 	unsigned int i;
fp@2407: 	int cleaned_count = 0;
fp@2407: 	bool cleaned = false;
fp@2407: 	unsigned int total_rx_bytes=0, total_rx_packets=0;
fp@2407: 
fp@2407: 	i = rx_ring->next_to_clean;
fp@2407: 	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
fp@2407: 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
fp@2407: 	buffer_info = &rx_ring->buffer_info[i];
fp@2407: 
fp@2407: 	while (staterr & E1000_RXD_STAT_DD) {
fp@2407: 		struct sk_buff *skb;
fp@2407: 
fp@2407: 		if (*work_done >= work_to_do)
fp@2407: 			break;
fp@2407: 		(*work_done)++;
fp@2407: 		rmb();	/* read descriptor and rx_buffer_info after status DD */
fp@2407: 
fp@2407: 		skb = buffer_info->skb;
fp@2407: 		buffer_info->skb = NULL;
fp@2407: 
fp@2407: 		++i;
fp@2407: 		if (i == rx_ring->count)
fp@2407: 			i = 0;
fp@2407: 		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
fp@2407: 		prefetch(next_rxd);
fp@2407: 
fp@2407: 		next_buffer = &rx_ring->buffer_info[i];
fp@2407: 
fp@2407: 		cleaned = true;
fp@2407: 		cleaned_count++;
fp@2407: 		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
fp@2407: 			       DMA_FROM_DEVICE);
fp@2407: 		buffer_info->dma = 0;
fp@2407: 
fp@2407: 		length = le16_to_cpu(rx_desc->wb.upper.length);
fp@2407: 
fp@2407: 		/* errors is only valid for DD + EOP descriptors */
fp@2407: 		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
fp@2407: 			     (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK))) {
fp@2407: 			/* recycle both page and skb */
fp@2407: 			buffer_info->skb = skb;
fp@2407: 			/* an error means any chain goes out the window too */
fp@2407: 			if (rx_ring->rx_skb_top)
fp@2407: 				dev_kfree_skb_irq(rx_ring->rx_skb_top);
fp@2407: 			rx_ring->rx_skb_top = NULL;
fp@2407: 			goto next_desc;
fp@2407: 		}
fp@2407: 
fp@2407: #define rxtop (rx_ring->rx_skb_top)
fp@2407: 		if (!(staterr & E1000_RXD_STAT_EOP)) {
fp@2407: 			/* this descriptor is only the beginning (or middle) */
fp@2407: 			if (!rxtop) {
fp@2407: 				/* this is the beginning of a chain */
fp@2407: 				rxtop = skb;
fp@2407: 				skb_fill_page_desc(rxtop, 0, buffer_info->page,
fp@2407: 				                   0, length);
fp@2407: 			} else {
fp@2407: 				/* this is the middle of a chain */
fp@2407: 				skb_fill_page_desc(rxtop,
fp@2407: 				    skb_shinfo(rxtop)->nr_frags,
fp@2407: 				    buffer_info->page, 0, length);
fp@2407: 				/* re-use the skb, only consumed the page */
fp@2407: 				buffer_info->skb = skb;
fp@2407: 			}
fp@2407: 			e1000_consume_page(buffer_info, rxtop, length);
fp@2407: 			goto next_desc;
fp@2407: 		} else {
fp@2407: 			if (rxtop) {
fp@2407: 				/* end of the chain */
fp@2407: 				skb_fill_page_desc(rxtop,
fp@2407: 				    skb_shinfo(rxtop)->nr_frags,
fp@2407: 				    buffer_info->page, 0, length);
fp@2407: 				/* re-use the current skb, we only consumed the
fp@2407: 				 * page */
fp@2407: 				buffer_info->skb = skb;
fp@2407: 				skb = rxtop;
fp@2407: 				rxtop = NULL;
fp@2407: 				e1000_consume_page(buffer_info, skb, length);
fp@2407: 			} else {
fp@2407: 				/* no chain, got EOP, this buf is the packet
fp@2407: 				 * copybreak to save the put_page/alloc_page */
fp@2407: 				if (length <= copybreak &&
fp@2407: 				    skb_tailroom(skb) >= length) {
fp@2407: 					u8 *vaddr;
fp@2407: 					vaddr = kmap_atomic(buffer_info->page,
fp@2407: 					                   KM_SKB_DATA_SOFTIRQ);
fp@2407: 					memcpy(skb_tail_pointer(skb), vaddr,
fp@2407: 					       length);
fp@2407: 					kunmap_atomic(vaddr,
fp@2407: 					              KM_SKB_DATA_SOFTIRQ);
fp@2407: 					/* re-use the page, so don't erase
fp@2407: 					 * buffer_info->page */
fp@2407: 					skb_put(skb, length);
fp@2407: 				} else {
fp@2407: 					skb_fill_page_desc(skb, 0,
fp@2407: 					                   buffer_info->page, 0,
fp@2407: 				                           length);
fp@2407: 					e1000_consume_page(buffer_info, skb,
fp@2407: 					                   length);
fp@2407: 				}
fp@2407: 			}
fp@2407: 		}
fp@2407: 
fp@2407: 		/* Receive Checksum Offload XXX recompute due to CRC strip? */
fp@2407: 		e1000_rx_checksum(adapter, staterr,
fp@2407: 				  le16_to_cpu(rx_desc->wb.lower.hi_dword.
fp@2407: 					      csum_ip.csum), skb);
fp@2407: 
fp@2407: 		/* probably a little skewed due to removing CRC */
fp@2407: 		total_rx_bytes += skb->len;
fp@2407: 		total_rx_packets++;
fp@2407: 
fp@2407: 		/* eth type trans needs skb->data to point to something */
fp@2407: 		if (!pskb_may_pull(skb, ETH_HLEN)) {
fp@2407: 			e_err("pskb_may_pull failed.\n");
fp@2407: 			dev_kfree_skb_irq(skb);
fp@2407: 			goto next_desc;
fp@2407: 		}
fp@2407: 
fp@2407: 		e1000_receive_skb(adapter, netdev, skb, staterr,
fp@2407: 				  rx_desc->wb.upper.vlan);
fp@2407: 
fp@2407: next_desc:
fp@2407: 		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
fp@2407: 
fp@2407: 		/* return some buffers to hardware, one at a time is too slow */
fp@2407: 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
fp@2407: 			adapter->alloc_rx_buf(adapter, cleaned_count,
fp@2407: 					      GFP_ATOMIC);
fp@2407: 			cleaned_count = 0;
fp@2407: 		}
fp@2407: 
fp@2407: 		/* use prefetched values */
fp@2407: 		rx_desc = next_rxd;
fp@2407: 		buffer_info = next_buffer;
fp@2407: 
fp@2407: 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
fp@2407: 	}
fp@2407: 	rx_ring->next_to_clean = i;
fp@2407: 
fp@2407: 	cleaned_count = e1000_desc_unused(rx_ring);
fp@2407: 	if (cleaned_count)
fp@2407: 		adapter->alloc_rx_buf(adapter, cleaned_count, GFP_ATOMIC);
fp@2407: 
fp@2407: 	adapter->total_rx_bytes += total_rx_bytes;
fp@2407: 	adapter->total_rx_packets += total_rx_packets;
fp@2407: 	return cleaned;
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000_clean_rx_ring - Free Rx Buffers per Queue
fp@2407:  * @adapter: board private structure
fp@2407:  **/
fp@2407: static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
fp@2407: {
fp@2407: 	struct e1000_ring *rx_ring = adapter->rx_ring;
fp@2407: 	struct e1000_buffer *buffer_info;
fp@2407: 	struct e1000_ps_page *ps_page;
fp@2407: 	struct pci_dev *pdev = adapter->pdev;
fp@2407: 	unsigned int i, j;
fp@2407: 
fp@2407: 	/* Free all the Rx ring sk_buffs */
fp@2407: 	for (i = 0; i < rx_ring->count; i++) {
fp@2407: 		buffer_info = &rx_ring->buffer_info[i];
fp@2407: 		if (buffer_info->dma) {
fp@2407: 			if (adapter->clean_rx == e1000_clean_rx_irq)
fp@2407: 				dma_unmap_single(&pdev->dev, buffer_info->dma,
fp@2407: 						 adapter->rx_buffer_len,
fp@2407: 						 DMA_FROM_DEVICE);
fp@2407: 			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
fp@2407: 				dma_unmap_page(&pdev->dev, buffer_info->dma,
fp@2407: 				               PAGE_SIZE,
fp@2407: 					       DMA_FROM_DEVICE);
fp@2407: 			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
fp@2407: 				dma_unmap_single(&pdev->dev, buffer_info->dma,
fp@2407: 						 adapter->rx_ps_bsize0,
fp@2407: 						 DMA_FROM_DEVICE);
fp@2407: 			buffer_info->dma = 0;
fp@2407: 		}
fp@2407: 
fp@2407: 		if (buffer_info->page) {
fp@2407: 			put_page(buffer_info->page);
fp@2407: 			buffer_info->page = NULL;
fp@2407: 		}
fp@2407: 
fp@2407: 		if (buffer_info->skb) {
fp@2407: 			dev_kfree_skb(buffer_info->skb);
fp@2407: 			buffer_info->skb = NULL;
fp@2407: 		}
fp@2407: 
fp@2407: 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
fp@2407: 			ps_page = &buffer_info->ps_pages[j];
fp@2407: 			if (!ps_page->page)
fp@2407: 				break;
fp@2407: 			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
fp@2407: 				       DMA_FROM_DEVICE);
fp@2407: 			ps_page->dma = 0;
fp@2407: 			put_page(ps_page->page);
fp@2407: 			ps_page->page = NULL;
fp@2407: 		}
fp@2407: 	}
fp@2407: 
fp@2407: 	/* there also may be some cached data from a chained receive */
fp@2407: 	if (rx_ring->rx_skb_top) {
fp@2407: 		dev_kfree_skb(rx_ring->rx_skb_top);
fp@2407: 		rx_ring->rx_skb_top = NULL;
fp@2407: 	}
fp@2407: 
fp@2407: 	/* Zero out the descriptor ring */
fp@2407: 	memset(rx_ring->desc, 0, rx_ring->size);
fp@2407: 
fp@2407: 	rx_ring->next_to_clean = 0;
fp@2407: 	rx_ring->next_to_use = 0;
fp@2407: 	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
fp@2407: 
fp@2407: 	writel(0, adapter->hw.hw_addr + rx_ring->head);
fp@2407: 	writel(0, adapter->hw.hw_addr + rx_ring->tail);
fp@2407: }
fp@2407: 
fp@2407: static void e1000e_downshift_workaround(struct work_struct *work)
fp@2407: {
fp@2407: 	struct e1000_adapter *adapter = container_of(work,
fp@2407: 					struct e1000_adapter, downshift_task);
fp@2407: 
fp@2407: 	if (test_bit(__E1000_DOWN, &adapter->state))
fp@2407: 		return;
fp@2407: 
fp@2407: 	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000_intr_msi - Interrupt Handler
fp@2407:  * @irq: interrupt number
fp@2407:  * @data: pointer to a network interface device structure
fp@2407:  **/
fp@2407: static irqreturn_t e1000_intr_msi(int irq, void *data)
fp@2407: {
fp@2407: 	struct net_device *netdev = data;
fp@2407: 	struct e1000_adapter *adapter = netdev_priv(netdev);
fp@2407: 	struct e1000_hw *hw = &adapter->hw;
fp@2407: 	u32 icr = er32(ICR);
fp@2407: 
fp@2407: 	/*
fp@2407: 	 * read ICR disables interrupts using IAM
fp@2407: 	 */
fp@2407: 
fp@2407: 	if (icr & E1000_ICR_LSC) {
fp@2407: 		hw->mac.get_link_status = 1;
fp@2407: 		/*
fp@2407: 		 * ICH8 workaround-- Call gig speed drop workaround on cable
fp@2407: 		 * disconnect (LSC) before accessing any PHY registers
fp@2407: 		 */
fp@2407: 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
fp@2407: 		    (!(er32(STATUS) & E1000_STATUS_LU)))
fp@2407: 			schedule_work(&adapter->downshift_task);
fp@2407: 
fp@2407: 		/*
fp@2407: 		 * 80003ES2LAN workaround-- For packet buffer work-around on
fp@2407: 		 * link down event; disable receives here in the ISR and reset
fp@2407: 		 * adapter in watchdog
fp@2407: 		 */
fp@2407: 		if (netif_carrier_ok(netdev) &&
fp@2407: 		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
fp@2407: 			/* disable receives */
fp@2407: 			u32 rctl = er32(RCTL);
fp@2407: 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
fp@2407: 			adapter->flags |= FLAG_RX_RESTART_NOW;
fp@2407: 		}
fp@2407: 		/* guard against interrupt when we're going down */
fp@2407: 		if (!test_bit(__E1000_DOWN, &adapter->state))
fp@2407: 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
fp@2407: 	}
fp@2407: 
fp@2407: 	if (napi_schedule_prep(&adapter->napi)) {
fp@2407: 		adapter->total_tx_bytes = 0;
fp@2407: 		adapter->total_tx_packets = 0;
fp@2407: 		adapter->total_rx_bytes = 0;
fp@2407: 		adapter->total_rx_packets = 0;
fp@2407: 		__napi_schedule(&adapter->napi);
fp@2407: 	}
fp@2407: 
fp@2407: 	return IRQ_HANDLED;
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000_intr - Interrupt Handler
fp@2407:  * @irq: interrupt number
fp@2407:  * @data: pointer to a network interface device structure
fp@2407:  **/
fp@2407: static irqreturn_t e1000_intr(int irq, void *data)
fp@2407: {
fp@2407: 	struct net_device *netdev = data;
fp@2407: 	struct e1000_adapter *adapter = netdev_priv(netdev);
fp@2407: 	struct e1000_hw *hw = &adapter->hw;
fp@2407: 	u32 rctl, icr = er32(ICR);
fp@2407: 
fp@2407: 	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
fp@2407: 		return IRQ_NONE;  /* Not our interrupt */
fp@2407: 
fp@2407: 	/*
fp@2407: 	 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
fp@2407: 	 * not set, then the adapter didn't send an interrupt
fp@2407: 	 */
fp@2407: 	if (!(icr & E1000_ICR_INT_ASSERTED))
fp@2407: 		return IRQ_NONE;
fp@2407: 
fp@2407: 	/*
fp@2407: 	 * Interrupt Auto-Mask...upon reading ICR,
fp@2407: 	 * interrupts are masked.  No need for the
fp@2407: 	 * IMC write
fp@2407: 	 */
fp@2407: 
fp@2407: 	if (icr & E1000_ICR_LSC) {
fp@2407: 		hw->mac.get_link_status = 1;
fp@2407: 		/*
fp@2407: 		 * ICH8 workaround-- Call gig speed drop workaround on cable
fp@2407: 		 * disconnect (LSC) before accessing any PHY registers
fp@2407: 		 */
fp@2407: 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
fp@2407: 		    (!(er32(STATUS) & E1000_STATUS_LU)))
fp@2407: 			schedule_work(&adapter->downshift_task);
fp@2407: 
fp@2407: 		/*
fp@2407: 		 * 80003ES2LAN workaround--
fp@2407: 		 * For packet buffer work-around on link down event;
fp@2407: 		 * disable receives here in the ISR and
fp@2407: 		 * reset adapter in watchdog
fp@2407: 		 */
fp@2407: 		if (netif_carrier_ok(netdev) &&
fp@2407: 		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
fp@2407: 			/* disable receives */
fp@2407: 			rctl = er32(RCTL);
fp@2407: 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
fp@2407: 			adapter->flags |= FLAG_RX_RESTART_NOW;
fp@2407: 		}
fp@2407: 		/* guard against interrupt when we're going down */
fp@2407: 		if (!test_bit(__E1000_DOWN, &adapter->state))
fp@2407: 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
fp@2407: 	}
fp@2407: 
fp@2407: 	if (napi_schedule_prep(&adapter->napi)) {
fp@2407: 		adapter->total_tx_bytes = 0;
fp@2407: 		adapter->total_tx_packets = 0;
fp@2407: 		adapter->total_rx_bytes = 0;
fp@2407: 		adapter->total_rx_packets = 0;
fp@2407: 		__napi_schedule(&adapter->napi);
fp@2407: 	}
fp@2407: 
fp@2407: 	return IRQ_HANDLED;
fp@2407: }
fp@2407: 
fp@2407: static irqreturn_t e1000_msix_other(int irq, void *data)
fp@2407: {
fp@2407: 	struct net_device *netdev = data;
fp@2407: 	struct e1000_adapter *adapter = netdev_priv(netdev);
fp@2407: 	struct e1000_hw *hw = &adapter->hw;
fp@2407: 	u32 icr = er32(ICR);
fp@2407: 
fp@2407: 	if (!(icr & E1000_ICR_INT_ASSERTED)) {
fp@2407: 		if (!test_bit(__E1000_DOWN, &adapter->state))
fp@2407: 			ew32(IMS, E1000_IMS_OTHER);
fp@2407: 		return IRQ_NONE;
fp@2407: 	}
fp@2407: 
fp@2407: 	if (icr & adapter->eiac_mask)
fp@2407: 		ew32(ICS, (icr & adapter->eiac_mask));
fp@2407: 
fp@2407: 	if (icr & E1000_ICR_OTHER) {
fp@2407: 		if (!(icr & E1000_ICR_LSC))
fp@2407: 			goto no_link_interrupt;
fp@2407: 		hw->mac.get_link_status = 1;
fp@2407: 		/* guard against interrupt when we're going down */
fp@2407: 		if (!test_bit(__E1000_DOWN, &adapter->state))
fp@2407: 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
fp@2407: 	}
fp@2407: 
fp@2407: no_link_interrupt:
fp@2407: 	if (!test_bit(__E1000_DOWN, &adapter->state))
fp@2407: 		ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
fp@2407: 
fp@2407: 	return IRQ_HANDLED;
fp@2407: }
fp@2407: 
fp@2407: 
fp@2407: static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
fp@2407: {
fp@2407: 	struct net_device *netdev = data;
fp@2407: 	struct e1000_adapter *adapter = netdev_priv(netdev);
fp@2407: 	struct e1000_hw *hw = &adapter->hw;
fp@2407: 	struct e1000_ring *tx_ring = adapter->tx_ring;
fp@2407: 
fp@2407: 
fp@2407: 	adapter->total_tx_bytes = 0;
fp@2407: 	adapter->total_tx_packets = 0;
fp@2407: 
fp@2407: 	if (!e1000_clean_tx_irq(adapter))
fp@2407: 		/* Ring was not completely cleaned, so fire another interrupt */
fp@2407: 		ew32(ICS, tx_ring->ims_val);
fp@2407: 
fp@2407: 	return IRQ_HANDLED;
fp@2407: }
fp@2407: 
fp@2407: static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
fp@2407: {
fp@2407: 	struct net_device *netdev = data;
fp@2407: 	struct e1000_adapter *adapter = netdev_priv(netdev);
fp@2407: 
fp@2407: 	/* Write the ITR value calculated at the end of the
fp@2407: 	 * previous interrupt.
fp@2407: 	 */
fp@2407: 	if (adapter->rx_ring->set_itr) {
fp@2407: 		writel(1000000000 / (adapter->rx_ring->itr_val * 256),
fp@2407: 		       adapter->hw.hw_addr + adapter->rx_ring->itr_register);
fp@2407: 		adapter->rx_ring->set_itr = 0;
fp@2407: 	}
fp@2407: 
fp@2407: 	if (napi_schedule_prep(&adapter->napi)) {
fp@2407: 		adapter->total_rx_bytes = 0;
fp@2407: 		adapter->total_rx_packets = 0;
fp@2407: 		__napi_schedule(&adapter->napi);
fp@2407: 	}
fp@2407: 	return IRQ_HANDLED;
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000_configure_msix - Configure MSI-X hardware
fp@2407:  *
fp@2407:  * e1000_configure_msix sets up the hardware to properly
fp@2407:  * generate MSI-X interrupts.
fp@2407:  **/
fp@2407: static void e1000_configure_msix(struct e1000_adapter *adapter)
fp@2407: {
fp@2407: 	struct e1000_hw *hw = &adapter->hw;
fp@2407: 	struct e1000_ring *rx_ring = adapter->rx_ring;
fp@2407: 	struct e1000_ring *tx_ring = adapter->tx_ring;
fp@2407: 	int vector = 0;
fp@2407: 	u32 ctrl_ext, ivar = 0;
fp@2407: 
fp@2407: 	adapter->eiac_mask = 0;
fp@2407: 
fp@2407: 	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
fp@2407: 	if (hw->mac.type == e1000_82574) {
fp@2407: 		u32 rfctl = er32(RFCTL);
fp@2407: 		rfctl |= E1000_RFCTL_ACK_DIS;
fp@2407: 		ew32(RFCTL, rfctl);
fp@2407: 	}
fp@2407: 
fp@2407: #define E1000_IVAR_INT_ALLOC_VALID	0x8
fp@2407: 	/* Configure Rx vector */
fp@2407: 	rx_ring->ims_val = E1000_IMS_RXQ0;
fp@2407: 	adapter->eiac_mask |= rx_ring->ims_val;
fp@2407: 	if (rx_ring->itr_val)
fp@2407: 		writel(1000000000 / (rx_ring->itr_val * 256),
fp@2407: 		       hw->hw_addr + rx_ring->itr_register);
fp@2407: 	else
fp@2407: 		writel(1, hw->hw_addr + rx_ring->itr_register);
fp@2407: 	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
fp@2407: 
fp@2407: 	/* Configure Tx vector */
fp@2407: 	tx_ring->ims_val = E1000_IMS_TXQ0;
fp@2407: 	vector++;
fp@2407: 	if (tx_ring->itr_val)
fp@2407: 		writel(1000000000 / (tx_ring->itr_val * 256),
fp@2407: 		       hw->hw_addr + tx_ring->itr_register);
fp@2407: 	else
fp@2407: 		writel(1, hw->hw_addr + tx_ring->itr_register);
fp@2407: 	adapter->eiac_mask |= tx_ring->ims_val;
fp@2407: 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
fp@2407: 
fp@2407: 	/* set vector for Other Causes, e.g. link changes */
fp@2407: 	vector++;
fp@2407: 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
fp@2407: 	if (rx_ring->itr_val)
fp@2407: 		writel(1000000000 / (rx_ring->itr_val * 256),
fp@2407: 		       hw->hw_addr + E1000_EITR_82574(vector));
fp@2407: 	else
fp@2407: 		writel(1, hw->hw_addr + E1000_EITR_82574(vector));
fp@2407: 
fp@2407: 	/* Cause Tx interrupts on every write back */
fp@2407: 	ivar |= (1 << 31);
fp@2407: 
fp@2407: 	ew32(IVAR, ivar);
fp@2407: 
fp@2407: 	/* enable MSI-X PBA support */
fp@2407: 	ctrl_ext = er32(CTRL_EXT);
fp@2407: 	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
fp@2407: 
fp@2407: 	/* Auto-Mask Other interrupts upon ICR read */
fp@2407: #define E1000_EIAC_MASK_82574   0x01F00000
fp@2407: 	ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
fp@2407: 	ctrl_ext |= E1000_CTRL_EXT_EIAME;
fp@2407: 	ew32(CTRL_EXT, ctrl_ext);
fp@2407: 	e1e_flush();
fp@2407: }
fp@2407: 
fp@2407: void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
fp@2407: {
fp@2407: 	if (adapter->msix_entries) {
fp@2407: 		pci_disable_msix(adapter->pdev);
fp@2407: 		kfree(adapter->msix_entries);
fp@2407: 		adapter->msix_entries = NULL;
fp@2407: 	} else if (adapter->flags & FLAG_MSI_ENABLED) {
fp@2407: 		pci_disable_msi(adapter->pdev);
fp@2407: 		adapter->flags &= ~FLAG_MSI_ENABLED;
fp@2407: 	}
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
fp@2407:  *
fp@2407:  * Attempt to configure interrupts using the best available
fp@2407:  * capabilities of the hardware and kernel.
fp@2407:  **/
fp@2407: void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
fp@2407: {
fp@2407: 	int err;
fp@2407: 	int i;
fp@2407: 
fp@2407: 	switch (adapter->int_mode) {
fp@2407: 	case E1000E_INT_MODE_MSIX:
fp@2407: 		if (adapter->flags & FLAG_HAS_MSIX) {
fp@2407: 			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
fp@2407: 			adapter->msix_entries = kcalloc(adapter->num_vectors,
fp@2407: 						      sizeof(struct msix_entry),
fp@2407: 						      GFP_KERNEL);
fp@2407: 			if (adapter->msix_entries) {
fp@2407: 				for (i = 0; i < adapter->num_vectors; i++)
fp@2407: 					adapter->msix_entries[i].entry = i;
fp@2407: 
fp@2407: 				err = pci_enable_msix(adapter->pdev,
fp@2407: 						      adapter->msix_entries,
fp@2407: 						      adapter->num_vectors);
fp@2407: 				if (err == 0)
fp@2407: 					return;
fp@2407: 			}
fp@2407: 			/* MSI-X failed, so fall through and try MSI */
fp@2407: 			e_err("Failed to initialize MSI-X interrupts.  "
fp@2407: 			      "Falling back to MSI interrupts.\n");
fp@2407: 			e1000e_reset_interrupt_capability(adapter);
fp@2407: 		}
fp@2407: 		adapter->int_mode = E1000E_INT_MODE_MSI;
fp@2407: 		/* Fall through */
fp@2407: 	case E1000E_INT_MODE_MSI:
fp@2407: 		if (!pci_enable_msi(adapter->pdev)) {
fp@2407: 			adapter->flags |= FLAG_MSI_ENABLED;
fp@2407: 		} else {
fp@2407: 			adapter->int_mode = E1000E_INT_MODE_LEGACY;
fp@2407: 			e_err("Failed to initialize MSI interrupts.  Falling "
fp@2407: 			      "back to legacy interrupts.\n");
fp@2407: 		}
fp@2407: 		/* Fall through */
fp@2407: 	case E1000E_INT_MODE_LEGACY:
fp@2407: 		/* Don't do anything; this is the system default */
fp@2407: 		break;
fp@2407: 	}
fp@2407: 
fp@2407: 	/* store the number of vectors being used */
fp@2407: 	adapter->num_vectors = 1;
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000_request_msix - Initialize MSI-X interrupts
fp@2407:  *
fp@2407:  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
fp@2407:  * kernel.
fp@2407:  **/
fp@2407: static int e1000_request_msix(struct e1000_adapter *adapter)
fp@2407: {
fp@2407: 	struct net_device *netdev = adapter->netdev;
fp@2407: 	int err = 0, vector = 0;
fp@2407: 
fp@2407: 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
fp@2407: 		snprintf(adapter->rx_ring->name,
fp@2407: 			 sizeof(adapter->rx_ring->name) - 1,
fp@2407: 			 "%s-rx-0", netdev->name);
fp@2407: 	else
fp@2407: 		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
fp@2407: 	err = request_irq(adapter->msix_entries[vector].vector,
fp@2407: 			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
fp@2407: 			  netdev);
fp@2407: 	if (err)
fp@2407: 		goto out;
fp@2407: 	adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
fp@2407: 	adapter->rx_ring->itr_val = adapter->itr;
fp@2407: 	vector++;
fp@2407: 
fp@2407: 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
fp@2407: 		snprintf(adapter->tx_ring->name,
fp@2407: 			 sizeof(adapter->tx_ring->name) - 1,
fp@2407: 			 "%s-tx-0", netdev->name);
fp@2407: 	else
fp@2407: 		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
fp@2407: 	err = request_irq(adapter->msix_entries[vector].vector,
fp@2407: 			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
fp@2407: 			  netdev);
fp@2407: 	if (err)
fp@2407: 		goto out;
fp@2407: 	adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
fp@2407: 	adapter->tx_ring->itr_val = adapter->itr;
fp@2407: 	vector++;
fp@2407: 
fp@2407: 	err = request_irq(adapter->msix_entries[vector].vector,
fp@2407: 			  e1000_msix_other, 0, netdev->name, netdev);
fp@2407: 	if (err)
fp@2407: 		goto out;
fp@2407: 
fp@2407: 	e1000_configure_msix(adapter);
fp@2407: 	return 0;
fp@2407: out:
fp@2407: 	return err;
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000_request_irq - initialize interrupts
fp@2407:  *
fp@2407:  * Attempts to configure interrupts using the best available
fp@2407:  * capabilities of the hardware and kernel.
fp@2407:  **/
fp@2407: static int e1000_request_irq(struct e1000_adapter *adapter)
fp@2407: {
fp@2407: 	struct net_device *netdev = adapter->netdev;
fp@2407: 	int err;
fp@2407: 
fp@2407: 	if (adapter->msix_entries) {
fp@2407: 		err = e1000_request_msix(adapter);
fp@2407: 		if (!err)
fp@2407: 			return err;
fp@2407: 		/* fall back to MSI */
fp@2407: 		e1000e_reset_interrupt_capability(adapter);
fp@2407: 		adapter->int_mode = E1000E_INT_MODE_MSI;
fp@2407: 		e1000e_set_interrupt_capability(adapter);
fp@2407: 	}
fp@2407: 	if (adapter->flags & FLAG_MSI_ENABLED) {
fp@2407: 		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
fp@2407: 				  netdev->name, netdev);
fp@2407: 		if (!err)
fp@2407: 			return err;
fp@2407: 
fp@2407: 		/* fall back to legacy interrupt */
fp@2407: 		e1000e_reset_interrupt_capability(adapter);
fp@2407: 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
fp@2407: 	}
fp@2407: 
fp@2407: 	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
fp@2407: 			  netdev->name, netdev);
fp@2407: 	if (err)
fp@2407: 		e_err("Unable to allocate interrupt, Error: %d\n", err);
fp@2407: 
fp@2407: 	return err;
fp@2407: }
fp@2407: 
fp@2407: static void e1000_free_irq(struct e1000_adapter *adapter)
fp@2407: {
fp@2407: 	struct net_device *netdev = adapter->netdev;
fp@2407: 
fp@2407: 	if (adapter->msix_entries) {
fp@2407: 		int vector = 0;
fp@2407: 
fp@2407: 		free_irq(adapter->msix_entries[vector].vector, netdev);
fp@2407: 		vector++;
fp@2407: 
fp@2407: 		free_irq(adapter->msix_entries[vector].vector, netdev);
fp@2407: 		vector++;
fp@2407: 
fp@2407: 		/* Other Causes interrupt vector */
fp@2407: 		free_irq(adapter->msix_entries[vector].vector, netdev);
fp@2407: 		return;
fp@2407: 	}
fp@2407: 
fp@2407: 	free_irq(adapter->pdev->irq, netdev);
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000_irq_disable - Mask off interrupt generation on the NIC
fp@2407:  **/
fp@2407: static void e1000_irq_disable(struct e1000_adapter *adapter)
fp@2407: {
fp@2407: 	struct e1000_hw *hw = &adapter->hw;
fp@2407: 
fp@2407: 	ew32(IMC, ~0);
fp@2407: 	if (adapter->msix_entries)
fp@2407: 		ew32(EIAC_82574, 0);
fp@2407: 	e1e_flush();
fp@2407: 
fp@2407: 	if (adapter->msix_entries) {
fp@2407: 		int i;
fp@2407: 		for (i = 0; i < adapter->num_vectors; i++)
fp@2407: 			synchronize_irq(adapter->msix_entries[i].vector);
fp@2407: 	} else {
fp@2407: 		synchronize_irq(adapter->pdev->irq);
fp@2407: 	}
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000_irq_enable - Enable default interrupt generation settings
fp@2407:  **/
fp@2407: static void e1000_irq_enable(struct e1000_adapter *adapter)
fp@2407: {
fp@2407: 	struct e1000_hw *hw = &adapter->hw;
fp@2407: 
fp@2407: 	if (adapter->msix_entries) {
fp@2407: 		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
fp@2407: 		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
fp@2407: 	} else {
fp@2407: 		ew32(IMS, IMS_ENABLE_MASK);
fp@2407: 	}
fp@2407: 	e1e_flush();
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000e_get_hw_control - get control of the h/w from f/w
fp@2407:  * @adapter: address of board private structure
fp@2407:  *
fp@2407:  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
fp@2407:  * For ASF and Pass Through versions of f/w this means that
fp@2407:  * the driver is loaded. For AMT version (only with 82573)
fp@2407:  * of the f/w this means that the network i/f is open.
fp@2407:  **/
fp@2407: void e1000e_get_hw_control(struct e1000_adapter *adapter)
fp@2407: {
fp@2407: 	struct e1000_hw *hw = &adapter->hw;
fp@2407: 	u32 ctrl_ext;
fp@2407: 	u32 swsm;
fp@2407: 
fp@2407: 	/* Let firmware know the driver has taken over */
fp@2407: 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
fp@2407: 		swsm = er32(SWSM);
fp@2407: 		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
fp@2407: 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
fp@2407: 		ctrl_ext = er32(CTRL_EXT);
fp@2407: 		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
fp@2407: 	}
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000e_release_hw_control - release control of the h/w to f/w
fp@2407:  * @adapter: address of board private structure
fp@2407:  *
fp@2407:  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
fp@2407:  * For ASF and Pass Through versions of f/w this means that the
fp@2407:  * driver is no longer loaded. For AMT version (only with 82573) i
fp@2407:  * of the f/w this means that the network i/f is closed.
fp@2407:  *
fp@2407:  **/
fp@2407: void e1000e_release_hw_control(struct e1000_adapter *adapter)
fp@2407: {
fp@2407: 	struct e1000_hw *hw = &adapter->hw;
fp@2407: 	u32 ctrl_ext;
fp@2407: 	u32 swsm;
fp@2407: 
fp@2407: 	/* Let firmware taken over control of h/w */
fp@2407: 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
fp@2407: 		swsm = er32(SWSM);
fp@2407: 		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
fp@2407: 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
fp@2407: 		ctrl_ext = er32(CTRL_EXT);
fp@2407: 		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
fp@2407: 	}
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * @e1000_alloc_ring - allocate memory for a ring structure
fp@2407:  **/
fp@2407: static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
fp@2407: 				struct e1000_ring *ring)
fp@2407: {
fp@2407: 	struct pci_dev *pdev = adapter->pdev;
fp@2407: 
fp@2407: 	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
fp@2407: 					GFP_KERNEL);
fp@2407: 	if (!ring->desc)
fp@2407: 		return -ENOMEM;
fp@2407: 
fp@2407: 	return 0;
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
fp@2407:  * @adapter: board private structure
fp@2407:  *
fp@2407:  * Return 0 on success, negative on failure
fp@2407:  **/
fp@2407: int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
fp@2407: {
fp@2407: 	struct e1000_ring *tx_ring = adapter->tx_ring;
fp@2407: 	int err = -ENOMEM, size;
fp@2407: 
fp@2407: 	size = sizeof(struct e1000_buffer) * tx_ring->count;
fp@2407: 	tx_ring->buffer_info = vzalloc(size);
fp@2407: 	if (!tx_ring->buffer_info)
fp@2407: 		goto err;
fp@2407: 
fp@2407: 	/* round up to nearest 4K */
fp@2407: 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
fp@2407: 	tx_ring->size = ALIGN(tx_ring->size, 4096);
fp@2407: 
fp@2407: 	err = e1000_alloc_ring_dma(adapter, tx_ring);
fp@2407: 	if (err)
fp@2407: 		goto err;
fp@2407: 
fp@2407: 	tx_ring->next_to_use = 0;
fp@2407: 	tx_ring->next_to_clean = 0;
fp@2407: 
fp@2407: 	return 0;
fp@2407: err:
fp@2407: 	vfree(tx_ring->buffer_info);
fp@2407: 	e_err("Unable to allocate memory for the transmit descriptor ring\n");
fp@2407: 	return err;
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
fp@2407:  * @adapter: board private structure
fp@2407:  *
fp@2407:  * Returns 0 on success, negative on failure
fp@2407:  **/
fp@2407: int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
fp@2407: {
fp@2407: 	struct e1000_ring *rx_ring = adapter->rx_ring;
fp@2407: 	struct e1000_buffer *buffer_info;
fp@2407: 	int i, size, desc_len, err = -ENOMEM;
fp@2407: 
fp@2407: 	size = sizeof(struct e1000_buffer) * rx_ring->count;
fp@2407: 	rx_ring->buffer_info = vzalloc(size);
fp@2407: 	if (!rx_ring->buffer_info)
fp@2407: 		goto err;
fp@2407: 
fp@2407: 	for (i = 0; i < rx_ring->count; i++) {
fp@2407: 		buffer_info = &rx_ring->buffer_info[i];
fp@2407: 		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
fp@2407: 						sizeof(struct e1000_ps_page),
fp@2407: 						GFP_KERNEL);
fp@2407: 		if (!buffer_info->ps_pages)
fp@2407: 			goto err_pages;
fp@2407: 	}
fp@2407: 
fp@2407: 	desc_len = sizeof(union e1000_rx_desc_packet_split);
fp@2407: 
fp@2407: 	/* Round up to nearest 4K */
fp@2407: 	rx_ring->size = rx_ring->count * desc_len;
fp@2407: 	rx_ring->size = ALIGN(rx_ring->size, 4096);
fp@2407: 
fp@2407: 	err = e1000_alloc_ring_dma(adapter, rx_ring);
fp@2407: 	if (err)
fp@2407: 		goto err_pages;
fp@2407: 
fp@2407: 	rx_ring->next_to_clean = 0;
fp@2407: 	rx_ring->next_to_use = 0;
fp@2407: 	rx_ring->rx_skb_top = NULL;
fp@2407: 
fp@2407: 	return 0;
fp@2407: 
fp@2407: err_pages:
fp@2407: 	for (i = 0; i < rx_ring->count; i++) {
fp@2407: 		buffer_info = &rx_ring->buffer_info[i];
fp@2407: 		kfree(buffer_info->ps_pages);
fp@2407: 	}
fp@2407: err:
fp@2407: 	vfree(rx_ring->buffer_info);
fp@2407: 	e_err("Unable to allocate memory for the receive descriptor ring\n");
fp@2407: 	return err;
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000_clean_tx_ring - Free Tx Buffers
fp@2407:  * @adapter: board private structure
fp@2407:  **/
fp@2407: static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
fp@2407: {
fp@2407: 	struct e1000_ring *tx_ring = adapter->tx_ring;
fp@2407: 	struct e1000_buffer *buffer_info;
fp@2407: 	unsigned long size;
fp@2407: 	unsigned int i;
fp@2407: 
fp@2407: 	for (i = 0; i < tx_ring->count; i++) {
fp@2407: 		buffer_info = &tx_ring->buffer_info[i];
fp@2407: 		e1000_put_txbuf(adapter, buffer_info);
fp@2407: 	}
fp@2407: 
fp@2407: 	size = sizeof(struct e1000_buffer) * tx_ring->count;
fp@2407: 	memset(tx_ring->buffer_info, 0, size);
fp@2407: 
fp@2407: 	memset(tx_ring->desc, 0, tx_ring->size);
fp@2407: 
fp@2407: 	tx_ring->next_to_use = 0;
fp@2407: 	tx_ring->next_to_clean = 0;
fp@2407: 
fp@2407: 	writel(0, adapter->hw.hw_addr + tx_ring->head);
fp@2407: 	writel(0, adapter->hw.hw_addr + tx_ring->tail);
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000e_free_tx_resources - Free Tx Resources per Queue
fp@2407:  * @adapter: board private structure
fp@2407:  *
fp@2407:  * Free all transmit software resources
fp@2407:  **/
fp@2407: void e1000e_free_tx_resources(struct e1000_adapter *adapter)
fp@2407: {
fp@2407: 	struct pci_dev *pdev = adapter->pdev;
fp@2407: 	struct e1000_ring *tx_ring = adapter->tx_ring;
fp@2407: 
fp@2407: 	e1000_clean_tx_ring(adapter);
fp@2407: 
fp@2407: 	vfree(tx_ring->buffer_info);
fp@2407: 	tx_ring->buffer_info = NULL;
fp@2407: 
fp@2407: 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
fp@2407: 			  tx_ring->dma);
fp@2407: 	tx_ring->desc = NULL;
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000e_free_rx_resources - Free Rx Resources
fp@2407:  * @adapter: board private structure
fp@2407:  *
fp@2407:  * Free all receive software resources
fp@2407:  **/
fp@2407: 
fp@2407: void e1000e_free_rx_resources(struct e1000_adapter *adapter)
fp@2407: {
fp@2407: 	struct pci_dev *pdev = adapter->pdev;
fp@2407: 	struct e1000_ring *rx_ring = adapter->rx_ring;
fp@2407: 	int i;
fp@2407: 
fp@2407: 	e1000_clean_rx_ring(adapter);
fp@2407: 
fp@2407: 	for (i = 0; i < rx_ring->count; i++)
fp@2407: 		kfree(rx_ring->buffer_info[i].ps_pages);
fp@2407: 
fp@2407: 	vfree(rx_ring->buffer_info);
fp@2407: 	rx_ring->buffer_info = NULL;
fp@2407: 
fp@2407: 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
fp@2407: 			  rx_ring->dma);
fp@2407: 	rx_ring->desc = NULL;
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000_update_itr - update the dynamic ITR value based on statistics
fp@2407:  * @adapter: pointer to adapter
fp@2407:  * @itr_setting: current adapter->itr
fp@2407:  * @packets: the number of packets during this measurement interval
fp@2407:  * @bytes: the number of bytes during this measurement interval
fp@2407:  *
fp@2407:  *      Stores a new ITR value based on packets and byte
fp@2407:  *      counts during the last interrupt.  The advantage of per interrupt
fp@2407:  *      computation is faster updates and more accurate ITR for the current
fp@2407:  *      traffic pattern.  Constants in this function were computed
fp@2407:  *      based on theoretical maximum wire speed and thresholds were set based
fp@2407:  *      on testing data as well as attempting to minimize response time
fp@2407:  *      while increasing bulk throughput.  This functionality is controlled
fp@2407:  *      by the InterruptThrottleRate module parameter.
fp@2407:  **/
fp@2407: static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
fp@2407: 				     u16 itr_setting, int packets,
fp@2407: 				     int bytes)
fp@2407: {
fp@2407: 	unsigned int retval = itr_setting;
fp@2407: 
fp@2407: 	if (packets == 0)
fp@2407: 		goto update_itr_done;
fp@2407: 
fp@2407: 	switch (itr_setting) {
fp@2407: 	case lowest_latency:
fp@2407: 		/* handle TSO and jumbo frames */
fp@2407: 		if (bytes/packets > 8000)
fp@2407: 			retval = bulk_latency;
fp@2407: 		else if ((packets < 5) && (bytes > 512))
fp@2407: 			retval = low_latency;
fp@2407: 		break;
fp@2407: 	case low_latency:  /* 50 usec aka 20000 ints/s */
fp@2407: 		if (bytes > 10000) {
fp@2407: 			/* this if handles the TSO accounting */
fp@2407: 			if (bytes/packets > 8000)
fp@2407: 				retval = bulk_latency;
fp@2407: 			else if ((packets < 10) || ((bytes/packets) > 1200))
fp@2407: 				retval = bulk_latency;
fp@2407: 			else if ((packets > 35))
fp@2407: 				retval = lowest_latency;
fp@2407: 		} else if (bytes/packets > 2000) {
fp@2407: 			retval = bulk_latency;
fp@2407: 		} else if (packets <= 2 && bytes < 512) {
fp@2407: 			retval = lowest_latency;
fp@2407: 		}
fp@2407: 		break;
fp@2407: 	case bulk_latency: /* 250 usec aka 4000 ints/s */
fp@2407: 		if (bytes > 25000) {
fp@2407: 			if (packets > 35)
fp@2407: 				retval = low_latency;
fp@2407: 		} else if (bytes < 6000) {
fp@2407: 			retval = low_latency;
fp@2407: 		}
fp@2407: 		break;
fp@2407: 	}
fp@2407: 
fp@2407: update_itr_done:
fp@2407: 	return retval;
fp@2407: }
fp@2407: 
fp@2407: static void e1000_set_itr(struct e1000_adapter *adapter)
fp@2407: {
fp@2407: 	struct e1000_hw *hw = &adapter->hw;
fp@2407: 	u16 current_itr;
fp@2407: 	u32 new_itr = adapter->itr;
fp@2407: 
fp@2407: 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
fp@2407: 	if (adapter->link_speed != SPEED_1000) {
fp@2407: 		current_itr = 0;
fp@2407: 		new_itr = 4000;
fp@2407: 		goto set_itr_now;
fp@2407: 	}
fp@2407: 
fp@2407: 	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
fp@2407: 		new_itr = 0;
fp@2407: 		goto set_itr_now;
fp@2407: 	}
fp@2407: 
fp@2407: 	adapter->tx_itr = e1000_update_itr(adapter,
fp@2407: 				    adapter->tx_itr,
fp@2407: 				    adapter->total_tx_packets,
fp@2407: 				    adapter->total_tx_bytes);
fp@2407: 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
fp@2407: 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
fp@2407: 		adapter->tx_itr = low_latency;
fp@2407: 
fp@2407: 	adapter->rx_itr = e1000_update_itr(adapter,
fp@2407: 				    adapter->rx_itr,
fp@2407: 				    adapter->total_rx_packets,
fp@2407: 				    adapter->total_rx_bytes);
fp@2407: 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
fp@2407: 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
fp@2407: 		adapter->rx_itr = low_latency;
fp@2407: 
fp@2407: 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
fp@2407: 
fp@2407: 	switch (current_itr) {
fp@2407: 	/* counts and packets in update_itr are dependent on these numbers */
fp@2407: 	case lowest_latency:
fp@2407: 		new_itr = 70000;
fp@2407: 		break;
fp@2407: 	case low_latency:
fp@2407: 		new_itr = 20000; /* aka hwitr = ~200 */
fp@2407: 		break;
fp@2407: 	case bulk_latency:
fp@2407: 		new_itr = 4000;
fp@2407: 		break;
fp@2407: 	default:
fp@2407: 		break;
fp@2407: 	}
fp@2407: 
fp@2407: set_itr_now:
fp@2407: 	if (new_itr != adapter->itr) {
fp@2407: 		/*
fp@2407: 		 * this attempts to bias the interrupt rate towards Bulk
fp@2407: 		 * by adding intermediate steps when interrupt rate is
fp@2407: 		 * increasing
fp@2407: 		 */
fp@2407: 		new_itr = new_itr > adapter->itr ?
fp@2407: 			     min(adapter->itr + (new_itr >> 2), new_itr) :
fp@2407: 			     new_itr;
fp@2407: 		adapter->itr = new_itr;
fp@2407: 		adapter->rx_ring->itr_val = new_itr;
fp@2407: 		if (adapter->msix_entries)
fp@2407: 			adapter->rx_ring->set_itr = 1;
fp@2407: 		else
fp@2407: 			if (new_itr)
fp@2407: 				ew32(ITR, 1000000000 / (new_itr * 256));
fp@2407: 			else
fp@2407: 				ew32(ITR, 0);
fp@2407: 	}
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000_alloc_queues - Allocate memory for all rings
fp@2407:  * @adapter: board private structure to initialize
fp@2407:  **/
fp@2407: static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
fp@2407: {
fp@2407: 	adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
fp@2407: 	if (!adapter->tx_ring)
fp@2407: 		goto err;
fp@2407: 
fp@2407: 	adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
fp@2407: 	if (!adapter->rx_ring)
fp@2407: 		goto err;
fp@2407: 
fp@2407: 	return 0;
fp@2407: err:
fp@2407: 	e_err("Unable to allocate memory for queues\n");
fp@2407: 	kfree(adapter->rx_ring);
fp@2407: 	kfree(adapter->tx_ring);
fp@2407: 	return -ENOMEM;
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000_clean - NAPI Rx polling callback
fp@2407:  * @napi: struct associated with this polling callback
fp@2407:  * @budget: amount of packets driver is allowed to process this poll
fp@2407:  **/
fp@2407: static int e1000_clean(struct napi_struct *napi, int budget)
fp@2407: {
fp@2407: 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
fp@2407: 	struct e1000_hw *hw = &adapter->hw;
fp@2407: 	struct net_device *poll_dev = adapter->netdev;
fp@2407: 	int tx_cleaned = 1, work_done = 0;
fp@2407: 
fp@2407: 	adapter = netdev_priv(poll_dev);
fp@2407: 
fp@2407: 	if (adapter->msix_entries &&
fp@2407: 	    !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
fp@2407: 		goto clean_rx;
fp@2407: 
fp@2407: 	tx_cleaned = e1000_clean_tx_irq(adapter);
fp@2407: 
fp@2407: clean_rx:
fp@2407: 	adapter->clean_rx(adapter, &work_done, budget);
fp@2407: 
fp@2407: 	if (!tx_cleaned)
fp@2407: 		work_done = budget;
fp@2407: 
fp@2407: 	/* If budget not fully consumed, exit the polling mode */
fp@2407: 	if (work_done < budget) {
fp@2407: 		if (adapter->itr_setting & 3)
fp@2407: 			e1000_set_itr(adapter);
fp@2407: 		napi_complete(napi);
fp@2407: 		if (!test_bit(__E1000_DOWN, &adapter->state)) {
fp@2407: 			if (adapter->msix_entries)
fp@2407: 				ew32(IMS, adapter->rx_ring->ims_val);
fp@2407: 			else
fp@2407: 				e1000_irq_enable(adapter);
fp@2407: 		}
fp@2407: 	}
fp@2407: 
fp@2407: 	return work_done;
fp@2407: }
fp@2407: 
fp@2407: static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
fp@2407: {
fp@2407: 	struct e1000_adapter *adapter = netdev_priv(netdev);
fp@2407: 	struct e1000_hw *hw = &adapter->hw;
fp@2407: 	u32 vfta, index;
fp@2407: 
fp@2407: 	/* don't update vlan cookie if already programmed */
fp@2407: 	if ((adapter->hw.mng_cookie.status &
fp@2407: 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
fp@2407: 	    (vid == adapter->mng_vlan_id))
fp@2407: 		return;
fp@2407: 
fp@2407: 	/* add VID to filter table */
fp@2407: 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
fp@2407: 		index = (vid >> 5) & 0x7F;
fp@2407: 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
fp@2407: 		vfta |= (1 << (vid & 0x1F));
fp@2407: 		hw->mac.ops.write_vfta(hw, index, vfta);
fp@2407: 	}
fp@2407: 
fp@2407: 	set_bit(vid, adapter->active_vlans);
fp@2407: }
fp@2407: 
fp@2407: static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
fp@2407: {
fp@2407: 	struct e1000_adapter *adapter = netdev_priv(netdev);
fp@2407: 	struct e1000_hw *hw = &adapter->hw;
fp@2407: 	u32 vfta, index;
fp@2407: 
fp@2407: 	if ((adapter->hw.mng_cookie.status &
fp@2407: 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
fp@2407: 	    (vid == adapter->mng_vlan_id)) {
fp@2407: 		/* release control to f/w */
fp@2407: 		e1000e_release_hw_control(adapter);
fp@2407: 		return;
fp@2407: 	}
fp@2407: 
fp@2407: 	/* remove VID from filter table */
fp@2407: 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
fp@2407: 		index = (vid >> 5) & 0x7F;
fp@2407: 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
fp@2407: 		vfta &= ~(1 << (vid & 0x1F));
fp@2407: 		hw->mac.ops.write_vfta(hw, index, vfta);
fp@2407: 	}
fp@2407: 
fp@2407: 	clear_bit(vid, adapter->active_vlans);
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
fp@2407:  * @adapter: board private structure to initialize
fp@2407:  **/
fp@2407: static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
fp@2407: {
fp@2407: 	struct net_device *netdev = adapter->netdev;
fp@2407: 	struct e1000_hw *hw = &adapter->hw;
fp@2407: 	u32 rctl;
fp@2407: 
fp@2407: 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
fp@2407: 		/* disable VLAN receive filtering */
fp@2407: 		rctl = er32(RCTL);
fp@2407: 		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
fp@2407: 		ew32(RCTL, rctl);
fp@2407: 
fp@2407: 		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
fp@2407: 			e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
fp@2407: 			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
fp@2407: 		}
fp@2407: 	}
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
fp@2407:  * @adapter: board private structure to initialize
fp@2407:  **/
fp@2407: static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
fp@2407: {
fp@2407: 	struct e1000_hw *hw = &adapter->hw;
fp@2407: 	u32 rctl;
fp@2407: 
fp@2407: 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
fp@2407: 		/* enable VLAN receive filtering */
fp@2407: 		rctl = er32(RCTL);
fp@2407: 		rctl |= E1000_RCTL_VFE;
fp@2407: 		rctl &= ~E1000_RCTL_CFIEN;
fp@2407: 		ew32(RCTL, rctl);
fp@2407: 	}
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
fp@2407:  * @adapter: board private structure to initialize
fp@2407:  **/
fp@2407: static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
fp@2407: {
fp@2407: 	struct e1000_hw *hw = &adapter->hw;
fp@2407: 	u32 ctrl;
fp@2407: 
fp@2407: 	/* disable VLAN tag insert/strip */
fp@2407: 	ctrl = er32(CTRL);
fp@2407: 	ctrl &= ~E1000_CTRL_VME;
fp@2407: 	ew32(CTRL, ctrl);
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
fp@2407:  * @adapter: board private structure to initialize
fp@2407:  **/
fp@2407: static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
fp@2407: {
fp@2407: 	struct e1000_hw *hw = &adapter->hw;
fp@2407: 	u32 ctrl;
fp@2407: 
fp@2407: 	/* enable VLAN tag insert/strip */
fp@2407: 	ctrl = er32(CTRL);
fp@2407: 	ctrl |= E1000_CTRL_VME;
fp@2407: 	ew32(CTRL, ctrl);
fp@2407: }
fp@2407: 
fp@2407: static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
fp@2407: {
fp@2407: 	struct net_device *netdev = adapter->netdev;
fp@2407: 	u16 vid = adapter->hw.mng_cookie.vlan_id;
fp@2407: 	u16 old_vid = adapter->mng_vlan_id;
fp@2407: 
fp@2407: 	if (adapter->hw.mng_cookie.status &
fp@2407: 	    E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
fp@2407: 		e1000_vlan_rx_add_vid(netdev, vid);
fp@2407: 		adapter->mng_vlan_id = vid;
fp@2407: 	}
fp@2407: 
fp@2407: 	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
fp@2407: 		e1000_vlan_rx_kill_vid(netdev, old_vid);
fp@2407: }
fp@2407: 
fp@2407: static void e1000_restore_vlan(struct e1000_adapter *adapter)
fp@2407: {
fp@2407: 	u16 vid;
fp@2407: 
fp@2407: 	e1000_vlan_rx_add_vid(adapter->netdev, 0);
fp@2407: 
fp@2407: 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
fp@2407: 		e1000_vlan_rx_add_vid(adapter->netdev, vid);
fp@2407: }
fp@2407: 
fp@2407: static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
fp@2407: {
fp@2407: 	struct e1000_hw *hw = &adapter->hw;
fp@2407: 	u32 manc, manc2h, mdef, i, j;
fp@2407: 
fp@2407: 	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
fp@2407: 		return;
fp@2407: 
fp@2407: 	manc = er32(MANC);
fp@2407: 
fp@2407: 	/*
fp@2407: 	 * enable receiving management packets to the host. this will probably
fp@2407: 	 * generate destination unreachable messages from the host OS, but
fp@2407: 	 * the packets will be handled on SMBUS
fp@2407: 	 */
fp@2407: 	manc |= E1000_MANC_EN_MNG2HOST;
fp@2407: 	manc2h = er32(MANC2H);
fp@2407: 
fp@2407: 	switch (hw->mac.type) {
fp@2407: 	default:
fp@2407: 		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
fp@2407: 		break;
fp@2407: 	case e1000_82574:
fp@2407: 	case e1000_82583:
fp@2407: 		/*
fp@2407: 		 * Check if IPMI pass-through decision filter already exists;
fp@2407: 		 * if so, enable it.
fp@2407: 		 */
fp@2407: 		for (i = 0, j = 0; i < 8; i++) {
fp@2407: 			mdef = er32(MDEF(i));
fp@2407: 
fp@2407: 			/* Ignore filters with anything other than IPMI ports */
fp@2407: 			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
fp@2407: 				continue;
fp@2407: 
fp@2407: 			/* Enable this decision filter in MANC2H */
fp@2407: 			if (mdef)
fp@2407: 				manc2h |= (1 << i);
fp@2407: 
fp@2407: 			j |= mdef;
fp@2407: 		}
fp@2407: 
fp@2407: 		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
fp@2407: 			break;
fp@2407: 
fp@2407: 		/* Create new decision filter in an empty filter */
fp@2407: 		for (i = 0, j = 0; i < 8; i++)
fp@2407: 			if (er32(MDEF(i)) == 0) {
fp@2407: 				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
fp@2407: 					       E1000_MDEF_PORT_664));
fp@2407: 				manc2h |= (1 << 1);
fp@2407: 				j++;
fp@2407: 				break;
fp@2407: 			}
fp@2407: 
fp@2407: 		if (!j)
fp@2407: 			e_warn("Unable to create IPMI pass-through filter\n");
fp@2407: 		break;
fp@2407: 	}
fp@2407: 
fp@2407: 	ew32(MANC2H, manc2h);
fp@2407: 	ew32(MANC, manc);
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000_configure_tx - Configure Transmit Unit after Reset
fp@2407:  * @adapter: board private structure
fp@2407:  *
fp@2407:  * Configure the Tx unit of the MAC after a reset.
fp@2407:  **/
fp@2407: static void e1000_configure_tx(struct e1000_adapter *adapter)
fp@2407: {
fp@2407: 	struct e1000_hw *hw = &adapter->hw;
fp@2407: 	struct e1000_ring *tx_ring = adapter->tx_ring;
fp@2407: 	u64 tdba;
fp@2407: 	u32 tdlen, tctl, tipg, tarc;
fp@2407: 	u32 ipgr1, ipgr2;
fp@2407: 
fp@2407: 	/* Setup the HW Tx Head and Tail descriptor pointers */
fp@2407: 	tdba = tx_ring->dma;
fp@2407: 	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
fp@2407: 	ew32(TDBAL, (tdba & DMA_BIT_MASK(32)));
fp@2407: 	ew32(TDBAH, (tdba >> 32));
fp@2407: 	ew32(TDLEN, tdlen);
fp@2407: 	ew32(TDH, 0);
fp@2407: 	ew32(TDT, 0);
fp@2407: 	tx_ring->head = E1000_TDH;
fp@2407: 	tx_ring->tail = E1000_TDT;
fp@2407: 
fp@2407: 	/* Set the default values for the Tx Inter Packet Gap timer */
fp@2407: 	tipg = DEFAULT_82543_TIPG_IPGT_COPPER;          /*  8  */
fp@2407: 	ipgr1 = DEFAULT_82543_TIPG_IPGR1;               /*  8  */
fp@2407: 	ipgr2 = DEFAULT_82543_TIPG_IPGR2;               /*  6  */
fp@2407: 
fp@2407: 	if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
fp@2407: 		ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /*  7  */
fp@2407: 
fp@2407: 	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
fp@2407: 	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
fp@2407: 	ew32(TIPG, tipg);
fp@2407: 
fp@2407: 	/* Set the Tx Interrupt Delay register */
fp@2407: 	ew32(TIDV, adapter->tx_int_delay);
fp@2407: 	/* Tx irq moderation */
fp@2407: 	ew32(TADV, adapter->tx_abs_int_delay);
fp@2407: 
fp@2407: 	if (adapter->flags2 & FLAG2_DMA_BURST) {
fp@2407: 		u32 txdctl = er32(TXDCTL(0));
fp@2407: 		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
fp@2407: 			    E1000_TXDCTL_WTHRESH);
fp@2407: 		/*
fp@2407: 		 * set up some performance related parameters to encourage the
fp@2407: 		 * hardware to use the bus more efficiently in bursts, depends
fp@2407: 		 * on the tx_int_delay to be enabled,
fp@2407: 		 * wthresh = 5 ==> burst write a cacheline (64 bytes) at a time
fp@2407: 		 * hthresh = 1 ==> prefetch when one or more available
fp@2407: 		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
fp@2407: 		 * BEWARE: this seems to work but should be considered first if
fp@2407: 		 * there are Tx hangs or other Tx related bugs
fp@2407: 		 */
fp@2407: 		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
fp@2407: 		ew32(TXDCTL(0), txdctl);
fp@2407: 		/* erratum work around: set txdctl the same for both queues */
fp@2407: 		ew32(TXDCTL(1), txdctl);
fp@2407: 	}
fp@2407: 
fp@2407: 	/* Program the Transmit Control Register */
fp@2407: 	tctl = er32(TCTL);
fp@2407: 	tctl &= ~E1000_TCTL_CT;
fp@2407: 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
fp@2407: 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
fp@2407: 
fp@2407: 	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
fp@2407: 		tarc = er32(TARC(0));
fp@2407: 		/*
fp@2407: 		 * set the speed mode bit, we'll clear it if we're not at
fp@2407: 		 * gigabit link later
fp@2407: 		 */
fp@2407: #define SPEED_MODE_BIT (1 << 21)
fp@2407: 		tarc |= SPEED_MODE_BIT;
fp@2407: 		ew32(TARC(0), tarc);
fp@2407: 	}
fp@2407: 
fp@2407: 	/* errata: program both queues to unweighted RR */
fp@2407: 	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
fp@2407: 		tarc = er32(TARC(0));
fp@2407: 		tarc |= 1;
fp@2407: 		ew32(TARC(0), tarc);
fp@2407: 		tarc = er32(TARC(1));
fp@2407: 		tarc |= 1;
fp@2407: 		ew32(TARC(1), tarc);
fp@2407: 	}
fp@2407: 
fp@2407: 	/* Setup Transmit Descriptor Settings for eop descriptor */
fp@2407: 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
fp@2407: 
fp@2407: 	/* only set IDE if we are delaying interrupts using the timers */
fp@2407: 	if (adapter->tx_int_delay)
fp@2407: 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
fp@2407: 
fp@2407: 	/* enable Report Status bit */
fp@2407: 	adapter->txd_cmd |= E1000_TXD_CMD_RS;
fp@2407: 
fp@2407: 	ew32(TCTL, tctl);
fp@2407: 
fp@2407: 	e1000e_config_collision_dist(hw);
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000_setup_rctl - configure the receive control registers
fp@2407:  * @adapter: Board private structure
fp@2407:  **/
fp@2407: #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
fp@2407: 			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
fp@2407: static void e1000_setup_rctl(struct e1000_adapter *adapter)
fp@2407: {
fp@2407: 	struct e1000_hw *hw = &adapter->hw;
fp@2407: 	u32 rctl, rfctl;
fp@2407: 	u32 pages = 0;
fp@2407: 
fp@2407: 	/* Workaround Si errata on 82579 - configure jumbo frame flow */
fp@2407: 	if (hw->mac.type == e1000_pch2lan) {
fp@2407: 		s32 ret_val;
fp@2407: 
fp@2407: 		if (adapter->netdev->mtu > ETH_DATA_LEN)
fp@2407: 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
fp@2407: 		else
fp@2407: 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
fp@2407: 
fp@2407: 		if (ret_val)
fp@2407: 			e_dbg("failed to enable jumbo frame workaround mode\n");
fp@2407: 	}
fp@2407: 
fp@2407: 	/* Program MC offset vector base */
fp@2407: 	rctl = er32(RCTL);
fp@2407: 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
fp@2407: 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
fp@2407: 		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
fp@2407: 		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
fp@2407: 
fp@2407: 	/* Do not Store bad packets */
fp@2407: 	rctl &= ~E1000_RCTL_SBP;
fp@2407: 
fp@2407: 	/* Enable Long Packet receive */
fp@2407: 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
fp@2407: 		rctl &= ~E1000_RCTL_LPE;
fp@2407: 	else
fp@2407: 		rctl |= E1000_RCTL_LPE;
fp@2407: 
fp@2407: 	/* Some systems expect that the CRC is included in SMBUS traffic. The
fp@2407: 	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
fp@2407: 	 * host memory when this is enabled
fp@2407: 	 */
fp@2407: 	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
fp@2407: 		rctl |= E1000_RCTL_SECRC;
fp@2407: 
fp@2407: 	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
fp@2407: 	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
fp@2407: 		u16 phy_data;
fp@2407: 
fp@2407: 		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
fp@2407: 		phy_data &= 0xfff8;
fp@2407: 		phy_data |= (1 << 2);
fp@2407: 		e1e_wphy(hw, PHY_REG(770, 26), phy_data);
fp@2407: 
fp@2407: 		e1e_rphy(hw, 22, &phy_data);
fp@2407: 		phy_data &= 0x0fff;
fp@2407: 		phy_data |= (1 << 14);
fp@2407: 		e1e_wphy(hw, 0x10, 0x2823);
fp@2407: 		e1e_wphy(hw, 0x11, 0x0003);
fp@2407: 		e1e_wphy(hw, 22, phy_data);
fp@2407: 	}
fp@2407: 
fp@2407: 	/* Setup buffer sizes */
fp@2407: 	rctl &= ~E1000_RCTL_SZ_4096;
fp@2407: 	rctl |= E1000_RCTL_BSEX;
fp@2407: 	switch (adapter->rx_buffer_len) {
fp@2407: 	case 2048:
fp@2407: 	default:
fp@2407: 		rctl |= E1000_RCTL_SZ_2048;
fp@2407: 		rctl &= ~E1000_RCTL_BSEX;
fp@2407: 		break;
fp@2407: 	case 4096:
fp@2407: 		rctl |= E1000_RCTL_SZ_4096;
fp@2407: 		break;
fp@2407: 	case 8192:
fp@2407: 		rctl |= E1000_RCTL_SZ_8192;
fp@2407: 		break;
fp@2407: 	case 16384:
fp@2407: 		rctl |= E1000_RCTL_SZ_16384;
fp@2407: 		break;
fp@2407: 	}
fp@2407: 
fp@2407: 	/* Enable Extended Status in all Receive Descriptors */
fp@2407: 	rfctl = er32(RFCTL);
fp@2407: 	rfctl |= E1000_RFCTL_EXTEN;
fp@2407: 
fp@2407: 	/*
fp@2407: 	 * 82571 and greater support packet-split where the protocol
fp@2407: 	 * header is placed in skb->data and the packet data is
fp@2407: 	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
fp@2407: 	 * In the case of a non-split, skb->data is linearly filled,
fp@2407: 	 * followed by the page buffers.  Therefore, skb->data is
fp@2407: 	 * sized to hold the largest protocol header.
fp@2407: 	 *
fp@2407: 	 * allocations using alloc_page take too long for regular MTU
fp@2407: 	 * so only enable packet split for jumbo frames
fp@2407: 	 *
fp@2407: 	 * Using pages when the page size is greater than 16k wastes
fp@2407: 	 * a lot of memory, since we allocate 3 pages at all times
fp@2407: 	 * per packet.
fp@2407: 	 */
fp@2407: 	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
fp@2407: 	if (!(adapter->flags & FLAG_HAS_ERT) && (pages <= 3) &&
fp@2407: 	    (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
fp@2407: 		adapter->rx_ps_pages = pages;
fp@2407: 	else
fp@2407: 		adapter->rx_ps_pages = 0;
fp@2407: 
fp@2407: 	if (adapter->rx_ps_pages) {
fp@2407: 		u32 psrctl = 0;
fp@2407: 
fp@2407: 		/*
fp@2407: 		 * disable packet split support for IPv6 extension headers,
fp@2407: 		 * because some malformed IPv6 headers can hang the Rx
fp@2407: 		 */
fp@2407: 		rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
fp@2407: 			  E1000_RFCTL_NEW_IPV6_EXT_DIS);
fp@2407: 
fp@2407: 		/* Enable Packet split descriptors */
fp@2407: 		rctl |= E1000_RCTL_DTYP_PS;
fp@2407: 
fp@2407: 		psrctl |= adapter->rx_ps_bsize0 >>
fp@2407: 			E1000_PSRCTL_BSIZE0_SHIFT;
fp@2407: 
fp@2407: 		switch (adapter->rx_ps_pages) {
fp@2407: 		case 3:
fp@2407: 			psrctl |= PAGE_SIZE <<
fp@2407: 				E1000_PSRCTL_BSIZE3_SHIFT;
fp@2407: 		case 2:
fp@2407: 			psrctl |= PAGE_SIZE <<
fp@2407: 				E1000_PSRCTL_BSIZE2_SHIFT;
fp@2407: 		case 1:
fp@2407: 			psrctl |= PAGE_SIZE >>
fp@2407: 				E1000_PSRCTL_BSIZE1_SHIFT;
fp@2407: 			break;
fp@2407: 		}
fp@2407: 
fp@2407: 		ew32(PSRCTL, psrctl);
fp@2407: 	}
fp@2407: 
fp@2407: 	ew32(RFCTL, rfctl);
fp@2407: 	ew32(RCTL, rctl);
fp@2407: 	/* just started the receive unit, no need to restart */
fp@2407: 	adapter->flags &= ~FLAG_RX_RESTART_NOW;
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000_configure_rx - Configure Receive Unit after Reset
fp@2407:  * @adapter: board private structure
fp@2407:  *
fp@2407:  * Configure the Rx unit of the MAC after a reset.
fp@2407:  **/
fp@2407: static void e1000_configure_rx(struct e1000_adapter *adapter)
fp@2407: {
fp@2407: 	struct e1000_hw *hw = &adapter->hw;
fp@2407: 	struct e1000_ring *rx_ring = adapter->rx_ring;
fp@2407: 	u64 rdba;
fp@2407: 	u32 rdlen, rctl, rxcsum, ctrl_ext;
fp@2407: 
fp@2407: 	if (adapter->rx_ps_pages) {
fp@2407: 		/* this is a 32 byte descriptor */
fp@2407: 		rdlen = rx_ring->count *
fp@2407: 		    sizeof(union e1000_rx_desc_packet_split);
fp@2407: 		adapter->clean_rx = e1000_clean_rx_irq_ps;
fp@2407: 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
fp@2407: 	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
fp@2407: 		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
fp@2407: 		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
fp@2407: 		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
fp@2407: 	} else {
fp@2407: 		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
fp@2407: 		adapter->clean_rx = e1000_clean_rx_irq;
fp@2407: 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
fp@2407: 	}
fp@2407: 
fp@2407: 	/* disable receives while setting up the descriptors */
fp@2407: 	rctl = er32(RCTL);
fp@2407: 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
fp@2407: 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
fp@2407: 	e1e_flush();
fp@2407: 	usleep_range(10000, 20000);
fp@2407: 
fp@2407: 	if (adapter->flags2 & FLAG2_DMA_BURST) {
fp@2407: 		/*
fp@2407: 		 * set the writeback threshold (only takes effect if the RDTR
fp@2407: 		 * is set). set GRAN=1 and write back up to 0x4 worth, and
fp@2407: 		 * enable prefetching of 0x20 Rx descriptors
fp@2407: 		 * granularity = 01
fp@2407: 		 * wthresh = 04,
fp@2407: 		 * hthresh = 04,
fp@2407: 		 * pthresh = 0x20
fp@2407: 		 */
fp@2407: 		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
fp@2407: 		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
fp@2407: 
fp@2407: 		/*
fp@2407: 		 * override the delay timers for enabling bursting, only if
fp@2407: 		 * the value was not set by the user via module options
fp@2407: 		 */
fp@2407: 		if (adapter->rx_int_delay == DEFAULT_RDTR)
fp@2407: 			adapter->rx_int_delay = BURST_RDTR;
fp@2407: 		if (adapter->rx_abs_int_delay == DEFAULT_RADV)
fp@2407: 			adapter->rx_abs_int_delay = BURST_RADV;
fp@2407: 	}
fp@2407: 
fp@2407: 	/* set the Receive Delay Timer Register */
fp@2407: 	ew32(RDTR, adapter->rx_int_delay);
fp@2407: 
fp@2407: 	/* irq moderation */
fp@2407: 	ew32(RADV, adapter->rx_abs_int_delay);
fp@2407: 	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
fp@2407: 		ew32(ITR, 1000000000 / (adapter->itr * 256));
fp@2407: 
fp@2407: 	ctrl_ext = er32(CTRL_EXT);
fp@2407: 	/* Auto-Mask interrupts upon ICR access */
fp@2407: 	ctrl_ext |= E1000_CTRL_EXT_IAME;
fp@2407: 	ew32(IAM, 0xffffffff);
fp@2407: 	ew32(CTRL_EXT, ctrl_ext);
fp@2407: 	e1e_flush();
fp@2407: 
fp@2407: 	/*
fp@2407: 	 * Setup the HW Rx Head and Tail Descriptor Pointers and
fp@2407: 	 * the Base and Length of the Rx Descriptor Ring
fp@2407: 	 */
fp@2407: 	rdba = rx_ring->dma;
fp@2407: 	ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));
fp@2407: 	ew32(RDBAH, (rdba >> 32));
fp@2407: 	ew32(RDLEN, rdlen);
fp@2407: 	ew32(RDH, 0);
fp@2407: 	ew32(RDT, 0);
fp@2407: 	rx_ring->head = E1000_RDH;
fp@2407: 	rx_ring->tail = E1000_RDT;
fp@2407: 
fp@2407: 	/* Enable Receive Checksum Offload for TCP and UDP */
fp@2407: 	rxcsum = er32(RXCSUM);
fp@2407: 	if (adapter->netdev->features & NETIF_F_RXCSUM) {
fp@2407: 		rxcsum |= E1000_RXCSUM_TUOFL;
fp@2407: 
fp@2407: 		/*
fp@2407: 		 * IPv4 payload checksum for UDP fragments must be
fp@2407: 		 * used in conjunction with packet-split.
fp@2407: 		 */
fp@2407: 		if (adapter->rx_ps_pages)
fp@2407: 			rxcsum |= E1000_RXCSUM_IPPCSE;
fp@2407: 	} else {
fp@2407: 		rxcsum &= ~E1000_RXCSUM_TUOFL;
fp@2407: 		/* no need to clear IPPCSE as it defaults to 0 */
fp@2407: 	}
fp@2407: 	ew32(RXCSUM, rxcsum);
fp@2407: 
fp@2407: 	/*
fp@2407: 	 * Enable early receives on supported devices, only takes effect when
fp@2407: 	 * packet size is equal or larger than the specified value (in 8 byte
fp@2407: 	 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
fp@2407: 	 */
fp@2407: 	if ((adapter->flags & FLAG_HAS_ERT) ||
fp@2407: 	    (adapter->hw.mac.type == e1000_pch2lan)) {
fp@2407: 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
fp@2407: 			u32 rxdctl = er32(RXDCTL(0));
fp@2407: 			ew32(RXDCTL(0), rxdctl | 0x3);
fp@2407: 			if (adapter->flags & FLAG_HAS_ERT)
fp@2407: 				ew32(ERT, E1000_ERT_2048 | (1 << 13));
fp@2407: 			/*
fp@2407: 			 * With jumbo frames and early-receive enabled,
fp@2407: 			 * excessive C-state transition latencies result in
fp@2407: 			 * dropped transactions.
fp@2407: 			 */
fp@2407: 			pm_qos_update_request(&adapter->netdev->pm_qos_req, 55);
fp@2407: 		} else {
fp@2407: 			pm_qos_update_request(&adapter->netdev->pm_qos_req,
fp@2407: 					      PM_QOS_DEFAULT_VALUE);
fp@2407: 		}
fp@2407: 	}
fp@2407: 
fp@2407: 	/* Enable Receives */
fp@2407: 	ew32(RCTL, rctl);
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  *  e1000_update_mc_addr_list - Update Multicast addresses
fp@2407:  *  @hw: pointer to the HW structure
fp@2407:  *  @mc_addr_list: array of multicast addresses to program
fp@2407:  *  @mc_addr_count: number of multicast addresses to program
fp@2407:  *
fp@2407:  *  Updates the Multicast Table Array.
fp@2407:  *  The caller must have a packed mc_addr_list of multicast addresses.
fp@2407:  **/
fp@2407: static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
fp@2407: 				      u32 mc_addr_count)
fp@2407: {
fp@2407: 	hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count);
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000_set_multi - Multicast and Promiscuous mode set
fp@2407:  * @netdev: network interface device structure
fp@2407:  *
fp@2407:  * The set_multi entry point is called whenever the multicast address
fp@2407:  * list or the network interface flags are updated.  This routine is
fp@2407:  * responsible for configuring the hardware for proper multicast,
fp@2407:  * promiscuous mode, and all-multi behavior.
fp@2407:  **/
fp@2407: static void e1000_set_multi(struct net_device *netdev)
fp@2407: {
fp@2407: 	struct e1000_adapter *adapter = netdev_priv(netdev);
fp@2407: 	struct e1000_hw *hw = &adapter->hw;
fp@2407: 	struct netdev_hw_addr *ha;
fp@2407: 	u8  *mta_list;
fp@2407: 	u32 rctl;
fp@2407: 
fp@2407: 	/* Check for Promiscuous and All Multicast modes */
fp@2407: 
fp@2407: 	rctl = er32(RCTL);
fp@2407: 
fp@2407: 	if (netdev->flags & IFF_PROMISC) {
fp@2407: 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
fp@2407: 		rctl &= ~E1000_RCTL_VFE;
fp@2407: 		/* Do not hardware filter VLANs in promisc mode */
fp@2407: 		e1000e_vlan_filter_disable(adapter);
fp@2407: 	} else {
fp@2407: 		if (netdev->flags & IFF_ALLMULTI) {
fp@2407: 			rctl |= E1000_RCTL_MPE;
fp@2407: 			rctl &= ~E1000_RCTL_UPE;
fp@2407: 		} else {
fp@2407: 			rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
fp@2407: 		}
fp@2407: 		e1000e_vlan_filter_enable(adapter);
fp@2407: 	}
fp@2407: 
fp@2407: 	ew32(RCTL, rctl);
fp@2407: 
fp@2407: 	if (!netdev_mc_empty(netdev)) {
fp@2407: 		int i = 0;
fp@2407: 
fp@2407: 		mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
fp@2407: 		if (!mta_list)
fp@2407: 			return;
fp@2407: 
fp@2407: 		/* prepare a packed array of only addresses. */
fp@2407: 		netdev_for_each_mc_addr(ha, netdev)
fp@2407: 			memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
fp@2407: 
fp@2407: 		e1000_update_mc_addr_list(hw, mta_list, i);
fp@2407: 		kfree(mta_list);
fp@2407: 	} else {
fp@2407: 		/*
fp@2407: 		 * if we're called from probe, we might not have
fp@2407: 		 * anything to do here, so clear out the list
fp@2407: 		 */
fp@2407: 		e1000_update_mc_addr_list(hw, NULL, 0);
fp@2407: 	}
fp@2407: 
fp@2407: 	if (netdev->features & NETIF_F_HW_VLAN_RX)
fp@2407: 		e1000e_vlan_strip_enable(adapter);
fp@2407: 	else
fp@2407: 		e1000e_vlan_strip_disable(adapter);
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000_configure - configure the hardware for Rx and Tx
fp@2407:  * @adapter: private board structure
fp@2407:  **/
fp@2407: static void e1000_configure(struct e1000_adapter *adapter)
fp@2407: {
fp@2407: 	e1000_set_multi(adapter->netdev);
fp@2407: 
fp@2407: 	e1000_restore_vlan(adapter);
fp@2407: 	e1000_init_manageability_pt(adapter);
fp@2407: 
fp@2407: 	e1000_configure_tx(adapter);
fp@2407: 	e1000_setup_rctl(adapter);
fp@2407: 	e1000_configure_rx(adapter);
fp@2407: 	adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring),
fp@2407: 			      GFP_KERNEL);
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000e_power_up_phy - restore link in case the phy was powered down
fp@2407:  * @adapter: address of board private structure
fp@2407:  *
fp@2407:  * The phy may be powered down to save power and turn off link when the
fp@2407:  * driver is unloaded and wake on lan is not enabled (among others)
fp@2407:  * *** this routine MUST be followed by a call to e1000e_reset ***
fp@2407:  **/
fp@2407: void e1000e_power_up_phy(struct e1000_adapter *adapter)
fp@2407: {
fp@2407: 	if (adapter->hw.phy.ops.power_up)
fp@2407: 		adapter->hw.phy.ops.power_up(&adapter->hw);
fp@2407: 
fp@2407: 	adapter->hw.mac.ops.setup_link(&adapter->hw);
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000_power_down_phy - Power down the PHY
fp@2407:  *
fp@2407:  * Power down the PHY so no link is implied when interface is down.
fp@2407:  * The PHY cannot be powered down if management or WoL is active.
fp@2407:  */
fp@2407: static void e1000_power_down_phy(struct e1000_adapter *adapter)
fp@2407: {
fp@2407: 	/* WoL is enabled */
fp@2407: 	if (adapter->wol)
fp@2407: 		return;
fp@2407: 
fp@2407: 	if (adapter->hw.phy.ops.power_down)
fp@2407: 		adapter->hw.phy.ops.power_down(&adapter->hw);
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000e_reset - bring the hardware into a known good state
fp@2407:  *
fp@2407:  * This function boots the hardware and enables some settings that
fp@2407:  * require a configuration cycle of the hardware - those cannot be
fp@2407:  * set/changed during runtime. After reset the device needs to be
fp@2407:  * properly configured for Rx, Tx etc.
fp@2407:  */
fp@2407: void e1000e_reset(struct e1000_adapter *adapter)
fp@2407: {
fp@2407: 	struct e1000_mac_info *mac = &adapter->hw.mac;
fp@2407: 	struct e1000_fc_info *fc = &adapter->hw.fc;
fp@2407: 	struct e1000_hw *hw = &adapter->hw;
fp@2407: 	u32 tx_space, min_tx_space, min_rx_space;
fp@2407: 	u32 pba = adapter->pba;
fp@2407: 	u16 hwm;
fp@2407: 
fp@2407: 	/* reset Packet Buffer Allocation to default */
fp@2407: 	ew32(PBA, pba);
fp@2407: 
fp@2407: 	if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
fp@2407: 		/*
fp@2407: 		 * To maintain wire speed transmits, the Tx FIFO should be
fp@2407: 		 * large enough to accommodate two full transmit packets,
fp@2407: 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
fp@2407: 		 * the Rx FIFO should be large enough to accommodate at least
fp@2407: 		 * one full receive packet and is similarly rounded up and
fp@2407: 		 * expressed in KB.
fp@2407: 		 */
fp@2407: 		pba = er32(PBA);
fp@2407: 		/* upper 16 bits has Tx packet buffer allocation size in KB */
fp@2407: 		tx_space = pba >> 16;
fp@2407: 		/* lower 16 bits has Rx packet buffer allocation size in KB */
fp@2407: 		pba &= 0xffff;
fp@2407: 		/*
fp@2407: 		 * the Tx fifo also stores 16 bytes of information about the Tx
fp@2407: 		 * but don't include ethernet FCS because hardware appends it
fp@2407: 		 */
fp@2407: 		min_tx_space = (adapter->max_frame_size +
fp@2407: 				sizeof(struct e1000_tx_desc) -
fp@2407: 				ETH_FCS_LEN) * 2;
fp@2407: 		min_tx_space = ALIGN(min_tx_space, 1024);
fp@2407: 		min_tx_space >>= 10;
fp@2407: 		/* software strips receive CRC, so leave room for it */
fp@2407: 		min_rx_space = adapter->max_frame_size;
fp@2407: 		min_rx_space = ALIGN(min_rx_space, 1024);
fp@2407: 		min_rx_space >>= 10;
fp@2407: 
fp@2407: 		/*
fp@2407: 		 * If current Tx allocation is less than the min Tx FIFO size,
fp@2407: 		 * and the min Tx FIFO size is less than the current Rx FIFO
fp@2407: 		 * allocation, take space away from current Rx allocation
fp@2407: 		 */
fp@2407: 		if ((tx_space < min_tx_space) &&
fp@2407: 		    ((min_tx_space - tx_space) < pba)) {
fp@2407: 			pba -= min_tx_space - tx_space;
fp@2407: 
fp@2407: 			/*
fp@2407: 			 * if short on Rx space, Rx wins and must trump Tx
fp@2407: 			 * adjustment or use Early Receive if available
fp@2407: 			 */
fp@2407: 			if ((pba < min_rx_space) &&
fp@2407: 			    (!(adapter->flags & FLAG_HAS_ERT)))
fp@2407: 				/* ERT enabled in e1000_configure_rx */
fp@2407: 				pba = min_rx_space;
fp@2407: 		}
fp@2407: 
fp@2407: 		ew32(PBA, pba);
fp@2407: 	}
fp@2407: 
fp@2407: 	/*
fp@2407: 	 * flow control settings
fp@2407: 	 *
fp@2407: 	 * The high water mark must be low enough to fit one full frame
fp@2407: 	 * (or the size used for early receive) above it in the Rx FIFO.
fp@2407: 	 * Set it to the lower of:
fp@2407: 	 * - 90% of the Rx FIFO size, and
fp@2407: 	 * - the full Rx FIFO size minus the early receive size (for parts
fp@2407: 	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
fp@2407: 	 * - the full Rx FIFO size minus one full frame
fp@2407: 	 */
fp@2407: 	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
fp@2407: 		fc->pause_time = 0xFFFF;
fp@2407: 	else
fp@2407: 		fc->pause_time = E1000_FC_PAUSE_TIME;
fp@2407: 	fc->send_xon = 1;
fp@2407: 	fc->current_mode = fc->requested_mode;
fp@2407: 
fp@2407: 	switch (hw->mac.type) {
fp@2407: 	default:
fp@2407: 		if ((adapter->flags & FLAG_HAS_ERT) &&
fp@2407: 		    (adapter->netdev->mtu > ETH_DATA_LEN))
fp@2407: 			hwm = min(((pba << 10) * 9 / 10),
fp@2407: 				  ((pba << 10) - (E1000_ERT_2048 << 3)));
fp@2407: 		else
fp@2407: 			hwm = min(((pba << 10) * 9 / 10),
fp@2407: 				  ((pba << 10) - adapter->max_frame_size));
fp@2407: 
fp@2407: 		fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
fp@2407: 		fc->low_water = fc->high_water - 8;
fp@2407: 		break;
fp@2407: 	case e1000_pchlan:
fp@2407: 		/*
fp@2407: 		 * Workaround PCH LOM adapter hangs with certain network
fp@2407: 		 * loads.  If hangs persist, try disabling Tx flow control.
fp@2407: 		 */
fp@2407: 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
fp@2407: 			fc->high_water = 0x3500;
fp@2407: 			fc->low_water  = 0x1500;
fp@2407: 		} else {
fp@2407: 			fc->high_water = 0x5000;
fp@2407: 			fc->low_water  = 0x3000;
fp@2407: 		}
fp@2407: 		fc->refresh_time = 0x1000;
fp@2407: 		break;
fp@2407: 	case e1000_pch2lan:
fp@2407: 		fc->high_water = 0x05C20;
fp@2407: 		fc->low_water = 0x05048;
fp@2407: 		fc->pause_time = 0x0650;
fp@2407: 		fc->refresh_time = 0x0400;
fp@2407: 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
fp@2407: 			pba = 14;
fp@2407: 			ew32(PBA, pba);
fp@2407: 		}
fp@2407: 		break;
fp@2407: 	}
fp@2407: 
fp@2407: 	/*
fp@2407: 	 * Disable Adaptive Interrupt Moderation if 2 full packets cannot
fp@2407: 	 * fit in receive buffer and early-receive not supported.
fp@2407: 	 */
fp@2407: 	if (adapter->itr_setting & 0x3) {
fp@2407: 		if (((adapter->max_frame_size * 2) > (pba << 10)) &&
fp@2407: 		    !(adapter->flags & FLAG_HAS_ERT)) {
fp@2407: 			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
fp@2407: 				dev_info(&adapter->pdev->dev,
fp@2407: 					"Interrupt Throttle Rate turned off\n");
fp@2407: 				adapter->flags2 |= FLAG2_DISABLE_AIM;
fp@2407: 				ew32(ITR, 0);
fp@2407: 			}
fp@2407: 		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
fp@2407: 			dev_info(&adapter->pdev->dev,
fp@2407: 				 "Interrupt Throttle Rate turned on\n");
fp@2407: 			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
fp@2407: 			adapter->itr = 20000;
fp@2407: 			ew32(ITR, 1000000000 / (adapter->itr * 256));
fp@2407: 		}
fp@2407: 	}
fp@2407: 
fp@2407: 	/* Allow time for pending master requests to run */
fp@2407: 	mac->ops.reset_hw(hw);
fp@2407: 
fp@2407: 	/*
fp@2407: 	 * For parts with AMT enabled, let the firmware know
fp@2407: 	 * that the network interface is in control
fp@2407: 	 */
fp@2407: 	if (adapter->flags & FLAG_HAS_AMT)
fp@2407: 		e1000e_get_hw_control(adapter);
fp@2407: 
fp@2407: 	ew32(WUC, 0);
fp@2407: 
fp@2407: 	if (mac->ops.init_hw(hw))
fp@2407: 		e_err("Hardware Error\n");
fp@2407: 
fp@2407: 	e1000_update_mng_vlan(adapter);
fp@2407: 
fp@2407: 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
fp@2407: 	ew32(VET, ETH_P_8021Q);
fp@2407: 
fp@2407: 	e1000e_reset_adaptive(hw);
fp@2407: 
fp@2407: 	if (!netif_running(adapter->netdev) &&
fp@2407: 	    !test_bit(__E1000_TESTING, &adapter->state)) {
fp@2407: 		e1000_power_down_phy(adapter);
fp@2407: 		return;
fp@2407: 	}
fp@2407: 
fp@2407: 	e1000_get_phy_info(hw);
fp@2407: 
fp@2407: 	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
fp@2407: 	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
fp@2407: 		u16 phy_data = 0;
fp@2407: 		/*
fp@2407: 		 * speed up time to link by disabling smart power down, ignore
fp@2407: 		 * the return value of this function because there is nothing
fp@2407: 		 * different we would do if it failed
fp@2407: 		 */
fp@2407: 		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
fp@2407: 		phy_data &= ~IGP02E1000_PM_SPD;
fp@2407: 		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
fp@2407: 	}
fp@2407: }
fp@2407: 
fp@2407: int e1000e_up(struct e1000_adapter *adapter)
fp@2407: {
fp@2407: 	struct e1000_hw *hw = &adapter->hw;
fp@2407: 
fp@2407: 	/* hardware has been reset, we need to reload some things */
fp@2407: 	e1000_configure(adapter);
fp@2407: 
fp@2407: 	clear_bit(__E1000_DOWN, &adapter->state);
fp@2407: 
fp@2407: 	napi_enable(&adapter->napi);
fp@2407: 	if (adapter->msix_entries)
fp@2407: 		e1000_configure_msix(adapter);
fp@2407: 	e1000_irq_enable(adapter);
fp@2407: 
fp@2407: 	netif_start_queue(adapter->netdev);
fp@2407: 
fp@2407: 	/* fire a link change interrupt to start the watchdog */
fp@2407: 	if (adapter->msix_entries)
fp@2407: 		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
fp@2407: 	else
fp@2407: 		ew32(ICS, E1000_ICS_LSC);
fp@2407: 
fp@2407: 	return 0;
fp@2407: }
fp@2407: 
fp@2407: static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
fp@2407: {
fp@2407: 	struct e1000_hw *hw = &adapter->hw;
fp@2407: 
fp@2407: 	if (!(adapter->flags2 & FLAG2_DMA_BURST))
fp@2407: 		return;
fp@2407: 
fp@2407: 	/* flush pending descriptor writebacks to memory */
fp@2407: 	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
fp@2407: 	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
fp@2407: 
fp@2407: 	/* execute the writes immediately */
fp@2407: 	e1e_flush();
fp@2407: }
fp@2407: 
fp@2407: static void e1000e_update_stats(struct e1000_adapter *adapter);
fp@2407: 
fp@2407: void e1000e_down(struct e1000_adapter *adapter)
fp@2407: {
fp@2407: 	struct net_device *netdev = adapter->netdev;
fp@2407: 	struct e1000_hw *hw = &adapter->hw;
fp@2407: 	u32 tctl, rctl;
fp@2407: 
fp@2407: 	/*
fp@2407: 	 * signal that we're down so the interrupt handler does not
fp@2407: 	 * reschedule our watchdog timer
fp@2407: 	 */
fp@2407: 	set_bit(__E1000_DOWN, &adapter->state);
fp@2407: 
fp@2407: 	/* disable receives in the hardware */
fp@2407: 	rctl = er32(RCTL);
fp@2407: 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
fp@2407: 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
fp@2407: 	/* flush and sleep below */
fp@2407: 
fp@2407: 	netif_stop_queue(netdev);
fp@2407: 
fp@2407: 	/* disable transmits in the hardware */
fp@2407: 	tctl = er32(TCTL);
fp@2407: 	tctl &= ~E1000_TCTL_EN;
fp@2407: 	ew32(TCTL, tctl);
fp@2407: 
fp@2407: 	/* flush both disables and wait for them to finish */
fp@2407: 	e1e_flush();
fp@2407: 	usleep_range(10000, 20000);
fp@2407: 
fp@2407: 	napi_disable(&adapter->napi);
fp@2407: 	e1000_irq_disable(adapter);
fp@2407: 
fp@2407: 	del_timer_sync(&adapter->watchdog_timer);
fp@2407: 	del_timer_sync(&adapter->phy_info_timer);
fp@2407: 
fp@2407: 	netif_carrier_off(netdev);
fp@2407: 
fp@2407: 	spin_lock(&adapter->stats64_lock);
fp@2407: 	e1000e_update_stats(adapter);
fp@2407: 	spin_unlock(&adapter->stats64_lock);
fp@2407: 
fp@2407: 	e1000e_flush_descriptors(adapter);
fp@2407: 	e1000_clean_tx_ring(adapter);
fp@2407: 	e1000_clean_rx_ring(adapter);
fp@2407: 
fp@2407: 	adapter->link_speed = 0;
fp@2407: 	adapter->link_duplex = 0;
fp@2407: 
fp@2407: 	if (!pci_channel_offline(adapter->pdev))
fp@2407: 		e1000e_reset(adapter);
fp@2407: 
fp@2407: 	/*
fp@2407: 	 * TODO: for power management, we could drop the link and
fp@2407: 	 * pci_disable_device here.
fp@2407: 	 */
fp@2407: }
fp@2407: 
fp@2407: void e1000e_reinit_locked(struct e1000_adapter *adapter)
fp@2407: {
fp@2407: 	might_sleep();
fp@2407: 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
fp@2407: 		usleep_range(1000, 2000);
fp@2407: 	e1000e_down(adapter);
fp@2407: 	e1000e_up(adapter);
fp@2407: 	clear_bit(__E1000_RESETTING, &adapter->state);
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
fp@2407:  * @adapter: board private structure to initialize
fp@2407:  *
fp@2407:  * e1000_sw_init initializes the Adapter private data structure.
fp@2407:  * Fields are initialized based on PCI device information and
fp@2407:  * OS network device settings (MTU size).
fp@2407:  **/
fp@2407: static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
fp@2407: {
fp@2407: 	struct net_device *netdev = adapter->netdev;
fp@2407: 
fp@2407: 	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
fp@2407: 	adapter->rx_ps_bsize0 = 128;
fp@2407: 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
fp@2407: 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
fp@2407: 
fp@2407: 	spin_lock_init(&adapter->stats64_lock);
fp@2407: 
fp@2407: 	e1000e_set_interrupt_capability(adapter);
fp@2407: 
fp@2407: 	if (e1000_alloc_queues(adapter))
fp@2407: 		return -ENOMEM;
fp@2407: 
fp@2407: 	/* Explicitly disable IRQ since the NIC can be in any state. */
fp@2407: 	e1000_irq_disable(adapter);
fp@2407: 
fp@2407: 	set_bit(__E1000_DOWN, &adapter->state);
fp@2407: 	return 0;
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000_intr_msi_test - Interrupt Handler
fp@2407:  * @irq: interrupt number
fp@2407:  * @data: pointer to a network interface device structure
fp@2407:  **/
fp@2407: static irqreturn_t e1000_intr_msi_test(int irq, void *data)
fp@2407: {
fp@2407: 	struct net_device *netdev = data;
fp@2407: 	struct e1000_adapter *adapter = netdev_priv(netdev);
fp@2407: 	struct e1000_hw *hw = &adapter->hw;
fp@2407: 	u32 icr = er32(ICR);
fp@2407: 
fp@2407: 	e_dbg("icr is %08X\n", icr);
fp@2407: 	if (icr & E1000_ICR_RXSEQ) {
fp@2407: 		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
fp@2407: 		wmb();
fp@2407: 	}
fp@2407: 
fp@2407: 	return IRQ_HANDLED;
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000_test_msi_interrupt - Returns 0 for successful test
fp@2407:  * @adapter: board private struct
fp@2407:  *
fp@2407:  * code flow taken from tg3.c
fp@2407:  **/
fp@2407: static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
fp@2407: {
fp@2407: 	struct net_device *netdev = adapter->netdev;
fp@2407: 	struct e1000_hw *hw = &adapter->hw;
fp@2407: 	int err;
fp@2407: 
fp@2407: 	/* poll_enable hasn't been called yet, so don't need disable */
fp@2407: 	/* clear any pending events */
fp@2407: 	er32(ICR);
fp@2407: 
fp@2407: 	/* free the real vector and request a test handler */
fp@2407: 	e1000_free_irq(adapter);
fp@2407: 	e1000e_reset_interrupt_capability(adapter);
fp@2407: 
fp@2407: 	/* Assume that the test fails, if it succeeds then the test
fp@2407: 	 * MSI irq handler will unset this flag */
fp@2407: 	adapter->flags |= FLAG_MSI_TEST_FAILED;
fp@2407: 
fp@2407: 	err = pci_enable_msi(adapter->pdev);
fp@2407: 	if (err)
fp@2407: 		goto msi_test_failed;
fp@2407: 
fp@2407: 	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
fp@2407: 			  netdev->name, netdev);
fp@2407: 	if (err) {
fp@2407: 		pci_disable_msi(adapter->pdev);
fp@2407: 		goto msi_test_failed;
fp@2407: 	}
fp@2407: 
fp@2407: 	wmb();
fp@2407: 
fp@2407: 	e1000_irq_enable(adapter);
fp@2407: 
fp@2407: 	/* fire an unusual interrupt on the test handler */
fp@2407: 	ew32(ICS, E1000_ICS_RXSEQ);
fp@2407: 	e1e_flush();
fp@2407: 	msleep(50);
fp@2407: 
fp@2407: 	e1000_irq_disable(adapter);
fp@2407: 
fp@2407: 	rmb();
fp@2407: 
fp@2407: 	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
fp@2407: 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
fp@2407: 		e_info("MSI interrupt test failed, using legacy interrupt.\n");
fp@2407: 	} else
fp@2407: 		e_dbg("MSI interrupt test succeeded!\n");
fp@2407: 
fp@2407: 	free_irq(adapter->pdev->irq, netdev);
fp@2407: 	pci_disable_msi(adapter->pdev);
fp@2407: 
fp@2407: msi_test_failed:
fp@2407: 	e1000e_set_interrupt_capability(adapter);
fp@2407: 	return e1000_request_irq(adapter);
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
fp@2407:  * @adapter: board private struct
fp@2407:  *
fp@2407:  * code flow taken from tg3.c, called with e1000 interrupts disabled.
fp@2407:  **/
fp@2407: static int e1000_test_msi(struct e1000_adapter *adapter)
fp@2407: {
fp@2407: 	int err;
fp@2407: 	u16 pci_cmd;
fp@2407: 
fp@2407: 	if (!(adapter->flags & FLAG_MSI_ENABLED))
fp@2407: 		return 0;
fp@2407: 
fp@2407: 	/* disable SERR in case the MSI write causes a master abort */
fp@2407: 	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
fp@2407: 	if (pci_cmd & PCI_COMMAND_SERR)
fp@2407: 		pci_write_config_word(adapter->pdev, PCI_COMMAND,
fp@2407: 				      pci_cmd & ~PCI_COMMAND_SERR);
fp@2407: 
fp@2407: 	err = e1000_test_msi_interrupt(adapter);
fp@2407: 
fp@2407: 	/* re-enable SERR */
fp@2407: 	if (pci_cmd & PCI_COMMAND_SERR) {
fp@2407: 		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
fp@2407: 		pci_cmd |= PCI_COMMAND_SERR;
fp@2407: 		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
fp@2407: 	}
fp@2407: 
fp@2407: 	return err;
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000_open - Called when a network interface is made active
fp@2407:  * @netdev: network interface device structure
fp@2407:  *
fp@2407:  * Returns 0 on success, negative value on failure
fp@2407:  *
fp@2407:  * The open entry point is called when a network interface is made
fp@2407:  * active by the system (IFF_UP).  At this point all resources needed
fp@2407:  * for transmit and receive operations are allocated, the interrupt
fp@2407:  * handler is registered with the OS, the watchdog timer is started,
fp@2407:  * and the stack is notified that the interface is ready.
fp@2407:  **/
fp@2407: static int e1000_open(struct net_device *netdev)
fp@2407: {
fp@2407: 	struct e1000_adapter *adapter = netdev_priv(netdev);
fp@2407: 	struct e1000_hw *hw = &adapter->hw;
fp@2407: 	struct pci_dev *pdev = adapter->pdev;
fp@2407: 	int err;
fp@2407: 
fp@2407: 	/* disallow open during test */
fp@2407: 	if (test_bit(__E1000_TESTING, &adapter->state))
fp@2407: 		return -EBUSY;
fp@2407: 
fp@2407: 	pm_runtime_get_sync(&pdev->dev);
fp@2407: 
fp@2407: 	netif_carrier_off(netdev);
fp@2407: 
fp@2407: 	/* allocate transmit descriptors */
fp@2407: 	err = e1000e_setup_tx_resources(adapter);
fp@2407: 	if (err)
fp@2407: 		goto err_setup_tx;
fp@2407: 
fp@2407: 	/* allocate receive descriptors */
fp@2407: 	err = e1000e_setup_rx_resources(adapter);
fp@2407: 	if (err)
fp@2407: 		goto err_setup_rx;
fp@2407: 
fp@2407: 	/*
fp@2407: 	 * If AMT is enabled, let the firmware know that the network
fp@2407: 	 * interface is now open and reset the part to a known state.
fp@2407: 	 */
fp@2407: 	if (adapter->flags & FLAG_HAS_AMT) {
fp@2407: 		e1000e_get_hw_control(adapter);
fp@2407: 		e1000e_reset(adapter);
fp@2407: 	}
fp@2407: 
fp@2407: 	e1000e_power_up_phy(adapter);
fp@2407: 
fp@2407: 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
fp@2407: 	if ((adapter->hw.mng_cookie.status &
fp@2407: 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
fp@2407: 		e1000_update_mng_vlan(adapter);
fp@2407: 
fp@2407: 	/* DMA latency requirement to workaround early-receive/jumbo issue */
fp@2407: 	if ((adapter->flags & FLAG_HAS_ERT) ||
fp@2407: 	    (adapter->hw.mac.type == e1000_pch2lan))
fp@2407: 		pm_qos_add_request(&adapter->netdev->pm_qos_req,
fp@2407: 				   PM_QOS_CPU_DMA_LATENCY,
fp@2407: 				   PM_QOS_DEFAULT_VALUE);
fp@2407: 
fp@2407: 	/*
fp@2407: 	 * before we allocate an interrupt, we must be ready to handle it.
fp@2407: 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
fp@2407: 	 * as soon as we call pci_request_irq, so we have to setup our
fp@2407: 	 * clean_rx handler before we do so.
fp@2407: 	 */
fp@2407: 	e1000_configure(adapter);
fp@2407: 
fp@2407: 	err = e1000_request_irq(adapter);
fp@2407: 	if (err)
fp@2407: 		goto err_req_irq;
fp@2407: 
fp@2407: 	/*
fp@2407: 	 * Work around PCIe errata with MSI interrupts causing some chipsets to
fp@2407: 	 * ignore e1000e MSI messages, which means we need to test our MSI
fp@2407: 	 * interrupt now
fp@2407: 	 */
fp@2407: 	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
fp@2407: 		err = e1000_test_msi(adapter);
fp@2407: 		if (err) {
fp@2407: 			e_err("Interrupt allocation failed\n");
fp@2407: 			goto err_req_irq;
fp@2407: 		}
fp@2407: 	}
fp@2407: 
fp@2407: 	/* From here on the code is the same as e1000e_up() */
fp@2407: 	clear_bit(__E1000_DOWN, &adapter->state);
fp@2407: 
fp@2407: 	napi_enable(&adapter->napi);
fp@2407: 
fp@2407: 	e1000_irq_enable(adapter);
fp@2407: 
fp@2407: 	adapter->tx_hang_recheck = false;
fp@2407: 	netif_start_queue(netdev);
fp@2407: 
fp@2407: 	adapter->idle_check = true;
fp@2407: 	pm_runtime_put(&pdev->dev);
fp@2407: 
fp@2407: 	/* fire a link status change interrupt to start the watchdog */
fp@2407: 	if (adapter->msix_entries)
fp@2407: 		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
fp@2407: 	else
fp@2407: 		ew32(ICS, E1000_ICS_LSC);
fp@2407: 
fp@2407: 	return 0;
fp@2407: 
fp@2407: err_req_irq:
fp@2407: 	e1000e_release_hw_control(adapter);
fp@2407: 	e1000_power_down_phy(adapter);
fp@2407: 	e1000e_free_rx_resources(adapter);
fp@2407: err_setup_rx:
fp@2407: 	e1000e_free_tx_resources(adapter);
fp@2407: err_setup_tx:
fp@2407: 	e1000e_reset(adapter);
fp@2407: 	pm_runtime_put_sync(&pdev->dev);
fp@2407: 
fp@2407: 	return err;
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000_close - Disables a network interface
fp@2407:  * @netdev: network interface device structure
fp@2407:  *
fp@2407:  * Returns 0, this is not allowed to fail
fp@2407:  *
fp@2407:  * The close entry point is called when an interface is de-activated
fp@2407:  * by the OS.  The hardware is still under the drivers control, but
fp@2407:  * needs to be disabled.  A global MAC reset is issued to stop the
fp@2407:  * hardware, and all transmit and receive resources are freed.
fp@2407:  **/
fp@2407: static int e1000_close(struct net_device *netdev)
fp@2407: {
fp@2407: 	struct e1000_adapter *adapter = netdev_priv(netdev);
fp@2407: 	struct pci_dev *pdev = adapter->pdev;
fp@2407: 
fp@2407: 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
fp@2407: 
fp@2407: 	pm_runtime_get_sync(&pdev->dev);
fp@2407: 
fp@2407: 	if (!test_bit(__E1000_DOWN, &adapter->state)) {
fp@2407: 		e1000e_down(adapter);
fp@2407: 		e1000_free_irq(adapter);
fp@2407: 	}
fp@2407: 	e1000_power_down_phy(adapter);
fp@2407: 
fp@2407: 	e1000e_free_tx_resources(adapter);
fp@2407: 	e1000e_free_rx_resources(adapter);
fp@2407: 
fp@2407: 	/*
fp@2407: 	 * kill manageability vlan ID if supported, but not if a vlan with
fp@2407: 	 * the same ID is registered on the host OS (let 8021q kill it)
fp@2407: 	 */
fp@2407: 	if (adapter->hw.mng_cookie.status &
fp@2407: 	    E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
fp@2407: 		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
fp@2407: 
fp@2407: 	/*
fp@2407: 	 * If AMT is enabled, let the firmware know that the network
fp@2407: 	 * interface is now closed
fp@2407: 	 */
fp@2407: 	if ((adapter->flags & FLAG_HAS_AMT) &&
fp@2407: 	    !test_bit(__E1000_TESTING, &adapter->state))
fp@2407: 		e1000e_release_hw_control(adapter);
fp@2407: 
fp@2407: 	if ((adapter->flags & FLAG_HAS_ERT) ||
fp@2407: 	    (adapter->hw.mac.type == e1000_pch2lan))
fp@2407: 		pm_qos_remove_request(&adapter->netdev->pm_qos_req);
fp@2407: 
fp@2407: 	pm_runtime_put_sync(&pdev->dev);
fp@2407: 
fp@2407: 	return 0;
fp@2407: }
fp@2407: /**
fp@2407:  * e1000_set_mac - Change the Ethernet Address of the NIC
fp@2407:  * @netdev: network interface device structure
fp@2407:  * @p: pointer to an address structure
fp@2407:  *
fp@2407:  * Returns 0 on success, negative on failure
fp@2407:  **/
fp@2407: static int e1000_set_mac(struct net_device *netdev, void *p)
fp@2407: {
fp@2407: 	struct e1000_adapter *adapter = netdev_priv(netdev);
fp@2407: 	struct sockaddr *addr = p;
fp@2407: 
fp@2407: 	if (!is_valid_ether_addr(addr->sa_data))
fp@2407: 		return -EADDRNOTAVAIL;
fp@2407: 
fp@2407: 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
fp@2407: 	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
fp@2407: 
fp@2407: 	e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
fp@2407: 
fp@2407: 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
fp@2407: 		/* activate the work around */
fp@2407: 		e1000e_set_laa_state_82571(&adapter->hw, 1);
fp@2407: 
fp@2407: 		/*
fp@2407: 		 * Hold a copy of the LAA in RAR[14] This is done so that
fp@2407: 		 * between the time RAR[0] gets clobbered  and the time it
fp@2407: 		 * gets fixed (in e1000_watchdog), the actual LAA is in one
fp@2407: 		 * of the RARs and no incoming packets directed to this port
fp@2407: 		 * are dropped. Eventually the LAA will be in RAR[0] and
fp@2407: 		 * RAR[14]
fp@2407: 		 */
fp@2407: 		e1000e_rar_set(&adapter->hw,
fp@2407: 			      adapter->hw.mac.addr,
fp@2407: 			      adapter->hw.mac.rar_entry_count - 1);
fp@2407: 	}
fp@2407: 
fp@2407: 	return 0;
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000e_update_phy_task - work thread to update phy
fp@2407:  * @work: pointer to our work struct
fp@2407:  *
fp@2407:  * this worker thread exists because we must acquire a
fp@2407:  * semaphore to read the phy, which we could msleep while
fp@2407:  * waiting for it, and we can't msleep in a timer.
fp@2407:  **/
fp@2407: static void e1000e_update_phy_task(struct work_struct *work)
fp@2407: {
fp@2407: 	struct e1000_adapter *adapter = container_of(work,
fp@2407: 					struct e1000_adapter, update_phy_task);
fp@2407: 
fp@2407: 	if (test_bit(__E1000_DOWN, &adapter->state))
fp@2407: 		return;
fp@2407: 
fp@2407: 	e1000_get_phy_info(&adapter->hw);
fp@2407: }
fp@2407: 
fp@2407: /*
fp@2407:  * Need to wait a few seconds after link up to get diagnostic information from
fp@2407:  * the phy
fp@2407:  */
fp@2407: static void e1000_update_phy_info(unsigned long data)
fp@2407: {
fp@2407: 	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
fp@2407: 
fp@2407: 	if (test_bit(__E1000_DOWN, &adapter->state))
fp@2407: 		return;
fp@2407: 
fp@2407: 	schedule_work(&adapter->update_phy_task);
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000e_update_phy_stats - Update the PHY statistics counters
fp@2407:  * @adapter: board private structure
fp@2407:  *
fp@2407:  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
fp@2407:  **/
fp@2407: static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
fp@2407: {
fp@2407: 	struct e1000_hw *hw = &adapter->hw;
fp@2407: 	s32 ret_val;
fp@2407: 	u16 phy_data;
fp@2407: 
fp@2407: 	ret_val = hw->phy.ops.acquire(hw);
fp@2407: 	if (ret_val)
fp@2407: 		return;
fp@2407: 
fp@2407: 	/*
fp@2407: 	 * A page set is expensive so check if already on desired page.
fp@2407: 	 * If not, set to the page with the PHY status registers.
fp@2407: 	 */
fp@2407: 	hw->phy.addr = 1;
fp@2407: 	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
fp@2407: 					   &phy_data);
fp@2407: 	if (ret_val)
fp@2407: 		goto release;
fp@2407: 	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
fp@2407: 		ret_val = hw->phy.ops.set_page(hw,
fp@2407: 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
fp@2407: 		if (ret_val)
fp@2407: 			goto release;
fp@2407: 	}
fp@2407: 
fp@2407: 	/* Single Collision Count */
fp@2407: 	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
fp@2407: 	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
fp@2407: 	if (!ret_val)
fp@2407: 		adapter->stats.scc += phy_data;
fp@2407: 
fp@2407: 	/* Excessive Collision Count */
fp@2407: 	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
fp@2407: 	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
fp@2407: 	if (!ret_val)
fp@2407: 		adapter->stats.ecol += phy_data;
fp@2407: 
fp@2407: 	/* Multiple Collision Count */
fp@2407: 	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
fp@2407: 	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
fp@2407: 	if (!ret_val)
fp@2407: 		adapter->stats.mcc += phy_data;
fp@2407: 
fp@2407: 	/* Late Collision Count */
fp@2407: 	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
fp@2407: 	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
fp@2407: 	if (!ret_val)
fp@2407: 		adapter->stats.latecol += phy_data;
fp@2407: 
fp@2407: 	/* Collision Count - also used for adaptive IFS */
fp@2407: 	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
fp@2407: 	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
fp@2407: 	if (!ret_val)
fp@2407: 		hw->mac.collision_delta = phy_data;
fp@2407: 
fp@2407: 	/* Defer Count */
fp@2407: 	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
fp@2407: 	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
fp@2407: 	if (!ret_val)
fp@2407: 		adapter->stats.dc += phy_data;
fp@2407: 
fp@2407: 	/* Transmit with no CRS */
fp@2407: 	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
fp@2407: 	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
fp@2407: 	if (!ret_val)
fp@2407: 		adapter->stats.tncrs += phy_data;
fp@2407: 
fp@2407: release:
fp@2407: 	hw->phy.ops.release(hw);
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000e_update_stats - Update the board statistics counters
fp@2407:  * @adapter: board private structure
fp@2407:  **/
fp@2407: static void e1000e_update_stats(struct e1000_adapter *adapter)
fp@2407: {
fp@2407: 	struct net_device *netdev = adapter->netdev;
fp@2407: 	struct e1000_hw *hw = &adapter->hw;
fp@2407: 	struct pci_dev *pdev = adapter->pdev;
fp@2407: 
fp@2407: 	/*
fp@2407: 	 * Prevent stats update while adapter is being reset, or if the pci
fp@2407: 	 * connection is down.
fp@2407: 	 */
fp@2407: 	if (adapter->link_speed == 0)
fp@2407: 		return;
fp@2407: 	if (pci_channel_offline(pdev))
fp@2407: 		return;
fp@2407: 
fp@2407: 	adapter->stats.crcerrs += er32(CRCERRS);
fp@2407: 	adapter->stats.gprc += er32(GPRC);
fp@2407: 	adapter->stats.gorc += er32(GORCL);
fp@2407: 	er32(GORCH); /* Clear gorc */
fp@2407: 	adapter->stats.bprc += er32(BPRC);
fp@2407: 	adapter->stats.mprc += er32(MPRC);
fp@2407: 	adapter->stats.roc += er32(ROC);
fp@2407: 
fp@2407: 	adapter->stats.mpc += er32(MPC);
fp@2407: 
fp@2407: 	/* Half-duplex statistics */
fp@2407: 	if (adapter->link_duplex == HALF_DUPLEX) {
fp@2407: 		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
fp@2407: 			e1000e_update_phy_stats(adapter);
fp@2407: 		} else {
fp@2407: 			adapter->stats.scc += er32(SCC);
fp@2407: 			adapter->stats.ecol += er32(ECOL);
fp@2407: 			adapter->stats.mcc += er32(MCC);
fp@2407: 			adapter->stats.latecol += er32(LATECOL);
fp@2407: 			adapter->stats.dc += er32(DC);
fp@2407: 
fp@2407: 			hw->mac.collision_delta = er32(COLC);
fp@2407: 
fp@2407: 			if ((hw->mac.type != e1000_82574) &&
fp@2407: 			    (hw->mac.type != e1000_82583))
fp@2407: 				adapter->stats.tncrs += er32(TNCRS);
fp@2407: 		}
fp@2407: 		adapter->stats.colc += hw->mac.collision_delta;
fp@2407: 	}
fp@2407: 
fp@2407: 	adapter->stats.xonrxc += er32(XONRXC);
fp@2407: 	adapter->stats.xontxc += er32(XONTXC);
fp@2407: 	adapter->stats.xoffrxc += er32(XOFFRXC);
fp@2407: 	adapter->stats.xofftxc += er32(XOFFTXC);
fp@2407: 	adapter->stats.gptc += er32(GPTC);
fp@2407: 	adapter->stats.gotc += er32(GOTCL);
fp@2407: 	er32(GOTCH); /* Clear gotc */
fp@2407: 	adapter->stats.rnbc += er32(RNBC);
fp@2407: 	adapter->stats.ruc += er32(RUC);
fp@2407: 
fp@2407: 	adapter->stats.mptc += er32(MPTC);
fp@2407: 	adapter->stats.bptc += er32(BPTC);
fp@2407: 
fp@2407: 	/* used for adaptive IFS */
fp@2407: 
fp@2407: 	hw->mac.tx_packet_delta = er32(TPT);
fp@2407: 	adapter->stats.tpt += hw->mac.tx_packet_delta;
fp@2407: 
fp@2407: 	adapter->stats.algnerrc += er32(ALGNERRC);
fp@2407: 	adapter->stats.rxerrc += er32(RXERRC);
fp@2407: 	adapter->stats.cexterr += er32(CEXTERR);
fp@2407: 	adapter->stats.tsctc += er32(TSCTC);
fp@2407: 	adapter->stats.tsctfc += er32(TSCTFC);
fp@2407: 
fp@2407: 	/* Fill out the OS statistics structure */
fp@2407: 	netdev->stats.multicast = adapter->stats.mprc;
fp@2407: 	netdev->stats.collisions = adapter->stats.colc;
fp@2407: 
fp@2407: 	/* Rx Errors */
fp@2407: 
fp@2407: 	/*
fp@2407: 	 * RLEC on some newer hardware can be incorrect so build
fp@2407: 	 * our own version based on RUC and ROC
fp@2407: 	 */
fp@2407: 	netdev->stats.rx_errors = adapter->stats.rxerrc +
fp@2407: 		adapter->stats.crcerrs + adapter->stats.algnerrc +
fp@2407: 		adapter->stats.ruc + adapter->stats.roc +
fp@2407: 		adapter->stats.cexterr;
fp@2407: 	netdev->stats.rx_length_errors = adapter->stats.ruc +
fp@2407: 					      adapter->stats.roc;
fp@2407: 	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
fp@2407: 	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
fp@2407: 	netdev->stats.rx_missed_errors = adapter->stats.mpc;
fp@2407: 
fp@2407: 	/* Tx Errors */
fp@2407: 	netdev->stats.tx_errors = adapter->stats.ecol +
fp@2407: 				       adapter->stats.latecol;
fp@2407: 	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
fp@2407: 	netdev->stats.tx_window_errors = adapter->stats.latecol;
fp@2407: 	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
fp@2407: 
fp@2407: 	/* Tx Dropped needs to be maintained elsewhere */
fp@2407: 
fp@2407: 	/* Management Stats */
fp@2407: 	adapter->stats.mgptc += er32(MGTPTC);
fp@2407: 	adapter->stats.mgprc += er32(MGTPRC);
fp@2407: 	adapter->stats.mgpdc += er32(MGTPDC);
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000_phy_read_status - Update the PHY register status snapshot
fp@2407:  * @adapter: board private structure
fp@2407:  **/
fp@2407: static void e1000_phy_read_status(struct e1000_adapter *adapter)
fp@2407: {
fp@2407: 	struct e1000_hw *hw = &adapter->hw;
fp@2407: 	struct e1000_phy_regs *phy = &adapter->phy_regs;
fp@2407: 
fp@2407: 	if ((er32(STATUS) & E1000_STATUS_LU) &&
fp@2407: 	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
fp@2407: 		int ret_val;
fp@2407: 
fp@2407: 		ret_val  = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
fp@2407: 		ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
fp@2407: 		ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
fp@2407: 		ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
fp@2407: 		ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
fp@2407: 		ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
fp@2407: 		ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
fp@2407: 		ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
fp@2407: 		if (ret_val)
fp@2407: 			e_warn("Error reading PHY register\n");
fp@2407: 	} else {
fp@2407: 		/*
fp@2407: 		 * Do not read PHY registers if link is not up
fp@2407: 		 * Set values to typical power-on defaults
fp@2407: 		 */
fp@2407: 		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
fp@2407: 		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
fp@2407: 			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
fp@2407: 			     BMSR_ERCAP);
fp@2407: 		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
fp@2407: 				  ADVERTISE_ALL | ADVERTISE_CSMA);
fp@2407: 		phy->lpa = 0;
fp@2407: 		phy->expansion = EXPANSION_ENABLENPAGE;
fp@2407: 		phy->ctrl1000 = ADVERTISE_1000FULL;
fp@2407: 		phy->stat1000 = 0;
fp@2407: 		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
fp@2407: 	}
fp@2407: }
fp@2407: 
fp@2407: static void e1000_print_link_info(struct e1000_adapter *adapter)
fp@2407: {
fp@2407: 	struct e1000_hw *hw = &adapter->hw;
fp@2407: 	u32 ctrl = er32(CTRL);
fp@2407: 
fp@2407: 	/* Link status message must follow this format for user tools */
fp@2407: 	printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s, "
fp@2407: 	       "Flow Control: %s\n",
fp@2407: 	       adapter->netdev->name,
fp@2407: 	       adapter->link_speed,
fp@2407: 	       (adapter->link_duplex == FULL_DUPLEX) ?
fp@2407: 	       "Full Duplex" : "Half Duplex",
fp@2407: 	       ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
fp@2407: 	       "Rx/Tx" :
fp@2407: 	       ((ctrl & E1000_CTRL_RFCE) ? "Rx" :
fp@2407: 		((ctrl & E1000_CTRL_TFCE) ? "Tx" : "None")));
fp@2407: }
fp@2407: 
fp@2407: static bool e1000e_has_link(struct e1000_adapter *adapter)
fp@2407: {
fp@2407: 	struct e1000_hw *hw = &adapter->hw;
fp@2407: 	bool link_active = 0;
fp@2407: 	s32 ret_val = 0;
fp@2407: 
fp@2407: 	/*
fp@2407: 	 * get_link_status is set on LSC (link status) interrupt or
fp@2407: 	 * Rx sequence error interrupt.  get_link_status will stay
fp@2407: 	 * false until the check_for_link establishes link
fp@2407: 	 * for copper adapters ONLY
fp@2407: 	 */
fp@2407: 	switch (hw->phy.media_type) {
fp@2407: 	case e1000_media_type_copper:
fp@2407: 		if (hw->mac.get_link_status) {
fp@2407: 			ret_val = hw->mac.ops.check_for_link(hw);
fp@2407: 			link_active = !hw->mac.get_link_status;
fp@2407: 		} else {
fp@2407: 			link_active = 1;
fp@2407: 		}
fp@2407: 		break;
fp@2407: 	case e1000_media_type_fiber:
fp@2407: 		ret_val = hw->mac.ops.check_for_link(hw);
fp@2407: 		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
fp@2407: 		break;
fp@2407: 	case e1000_media_type_internal_serdes:
fp@2407: 		ret_val = hw->mac.ops.check_for_link(hw);
fp@2407: 		link_active = adapter->hw.mac.serdes_has_link;
fp@2407: 		break;
fp@2407: 	default:
fp@2407: 	case e1000_media_type_unknown:
fp@2407: 		break;
fp@2407: 	}
fp@2407: 
fp@2407: 	if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
fp@2407: 	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
fp@2407: 		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
fp@2407: 		e_info("Gigabit has been disabled, downgrading speed\n");
fp@2407: 	}
fp@2407: 
fp@2407: 	return link_active;
fp@2407: }
fp@2407: 
fp@2407: static void e1000e_enable_receives(struct e1000_adapter *adapter)
fp@2407: {
fp@2407: 	/* make sure the receive unit is started */
fp@2407: 	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
fp@2407: 	    (adapter->flags & FLAG_RX_RESTART_NOW)) {
fp@2407: 		struct e1000_hw *hw = &adapter->hw;
fp@2407: 		u32 rctl = er32(RCTL);
fp@2407: 		ew32(RCTL, rctl | E1000_RCTL_EN);
fp@2407: 		adapter->flags &= ~FLAG_RX_RESTART_NOW;
fp@2407: 	}
fp@2407: }
fp@2407: 
fp@2407: static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
fp@2407: {
fp@2407: 	struct e1000_hw *hw = &adapter->hw;
fp@2407: 
fp@2407: 	/*
fp@2407: 	 * With 82574 controllers, PHY needs to be checked periodically
fp@2407: 	 * for hung state and reset, if two calls return true
fp@2407: 	 */
fp@2407: 	if (e1000_check_phy_82574(hw))
fp@2407: 		adapter->phy_hang_count++;
fp@2407: 	else
fp@2407: 		adapter->phy_hang_count = 0;
fp@2407: 
fp@2407: 	if (adapter->phy_hang_count > 1) {
fp@2407: 		adapter->phy_hang_count = 0;
fp@2407: 		schedule_work(&adapter->reset_task);
fp@2407: 	}
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000_watchdog - Timer Call-back
fp@2407:  * @data: pointer to adapter cast into an unsigned long
fp@2407:  **/
fp@2407: static void e1000_watchdog(unsigned long data)
fp@2407: {
fp@2407: 	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
fp@2407: 
fp@2407: 	/* Do the rest outside of interrupt context */
fp@2407: 	schedule_work(&adapter->watchdog_task);
fp@2407: 
fp@2407: 	/* TODO: make this use queue_delayed_work() */
fp@2407: }
fp@2407: 
fp@2407: static void e1000_watchdog_task(struct work_struct *work)
fp@2407: {
fp@2407: 	struct e1000_adapter *adapter = container_of(work,
fp@2407: 					struct e1000_adapter, watchdog_task);
fp@2407: 	struct net_device *netdev = adapter->netdev;
fp@2407: 	struct e1000_mac_info *mac = &adapter->hw.mac;
fp@2407: 	struct e1000_phy_info *phy = &adapter->hw.phy;
fp@2407: 	struct e1000_ring *tx_ring = adapter->tx_ring;
fp@2407: 	struct e1000_hw *hw = &adapter->hw;
fp@2407: 	u32 link, tctl;
fp@2407: 
fp@2407: 	if (test_bit(__E1000_DOWN, &adapter->state))
fp@2407: 		return;
fp@2407: 
fp@2407: 	link = e1000e_has_link(adapter);
fp@2407: 	if ((netif_carrier_ok(netdev)) && link) {
fp@2407: 		/* Cancel scheduled suspend requests. */
fp@2407: 		pm_runtime_resume(netdev->dev.parent);
fp@2407: 
fp@2407: 		e1000e_enable_receives(adapter);
fp@2407: 		goto link_up;
fp@2407: 	}
fp@2407: 
fp@2407: 	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
fp@2407: 	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
fp@2407: 		e1000_update_mng_vlan(adapter);
fp@2407: 
fp@2407: 	if (link) {
fp@2407: 		if (!netif_carrier_ok(netdev)) {
fp@2407: 			bool txb2b = 1;
fp@2407: 
fp@2407: 			/* Cancel scheduled suspend requests. */
fp@2407: 			pm_runtime_resume(netdev->dev.parent);
fp@2407: 
fp@2407: 			/* update snapshot of PHY registers on LSC */
fp@2407: 			e1000_phy_read_status(adapter);
fp@2407: 			mac->ops.get_link_up_info(&adapter->hw,
fp@2407: 						   &adapter->link_speed,
fp@2407: 						   &adapter->link_duplex);
fp@2407: 			e1000_print_link_info(adapter);
fp@2407: 			/*
fp@2407: 			 * On supported PHYs, check for duplex mismatch only
fp@2407: 			 * if link has autonegotiated at 10/100 half
fp@2407: 			 */
fp@2407: 			if ((hw->phy.type == e1000_phy_igp_3 ||
fp@2407: 			     hw->phy.type == e1000_phy_bm) &&
fp@2407: 			    (hw->mac.autoneg == true) &&
fp@2407: 			    (adapter->link_speed == SPEED_10 ||
fp@2407: 			     adapter->link_speed == SPEED_100) &&
fp@2407: 			    (adapter->link_duplex == HALF_DUPLEX)) {
fp@2407: 				u16 autoneg_exp;
fp@2407: 
fp@2407: 				e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
fp@2407: 
fp@2407: 				if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
fp@2407: 					e_info("Autonegotiated half duplex but"
fp@2407: 					       " link partner cannot autoneg. "
fp@2407: 					       " Try forcing full duplex if "
fp@2407: 					       "link gets many collisions.\n");
fp@2407: 			}
fp@2407: 
fp@2407: 			/* adjust timeout factor according to speed/duplex */
fp@2407: 			adapter->tx_timeout_factor = 1;
fp@2407: 			switch (adapter->link_speed) {
fp@2407: 			case SPEED_10:
fp@2407: 				txb2b = 0;
fp@2407: 				adapter->tx_timeout_factor = 16;
fp@2407: 				break;
fp@2407: 			case SPEED_100:
fp@2407: 				txb2b = 0;
fp@2407: 				adapter->tx_timeout_factor = 10;
fp@2407: 				break;
fp@2407: 			}
fp@2407: 
fp@2407: 			/*
fp@2407: 			 * workaround: re-program speed mode bit after
fp@2407: 			 * link-up event
fp@2407: 			 */
fp@2407: 			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
fp@2407: 			    !txb2b) {
fp@2407: 				u32 tarc0;
fp@2407: 				tarc0 = er32(TARC(0));
fp@2407: 				tarc0 &= ~SPEED_MODE_BIT;
fp@2407: 				ew32(TARC(0), tarc0);
fp@2407: 			}
fp@2407: 
fp@2407: 			/*
fp@2407: 			 * disable TSO for pcie and 10/100 speeds, to avoid
fp@2407: 			 * some hardware issues
fp@2407: 			 */
fp@2407: 			if (!(adapter->flags & FLAG_TSO_FORCE)) {
fp@2407: 				switch (adapter->link_speed) {
fp@2407: 				case SPEED_10:
fp@2407: 				case SPEED_100:
fp@2407: 					e_info("10/100 speed: disabling TSO\n");
fp@2407: 					netdev->features &= ~NETIF_F_TSO;
fp@2407: 					netdev->features &= ~NETIF_F_TSO6;
fp@2407: 					break;
fp@2407: 				case SPEED_1000:
fp@2407: 					netdev->features |= NETIF_F_TSO;
fp@2407: 					netdev->features |= NETIF_F_TSO6;
fp@2407: 					break;
fp@2407: 				default:
fp@2407: 					/* oops */
fp@2407: 					break;
fp@2407: 				}
fp@2407: 			}
fp@2407: 
fp@2407: 			/*
fp@2407: 			 * enable transmits in the hardware, need to do this
fp@2407: 			 * after setting TARC(0)
fp@2407: 			 */
fp@2407: 			tctl = er32(TCTL);
fp@2407: 			tctl |= E1000_TCTL_EN;
fp@2407: 			ew32(TCTL, tctl);
fp@2407: 
fp@2407:                         /*
fp@2407: 			 * Perform any post-link-up configuration before
fp@2407: 			 * reporting link up.
fp@2407: 			 */
fp@2407: 			if (phy->ops.cfg_on_link_up)
fp@2407: 				phy->ops.cfg_on_link_up(hw);
fp@2407: 
fp@2407: 			netif_carrier_on(netdev);
fp@2407: 
fp@2407: 			if (!test_bit(__E1000_DOWN, &adapter->state))
fp@2407: 				mod_timer(&adapter->phy_info_timer,
fp@2407: 					  round_jiffies(jiffies + 2 * HZ));
fp@2407: 		}
fp@2407: 	} else {
fp@2407: 		if (netif_carrier_ok(netdev)) {
fp@2407: 			adapter->link_speed = 0;
fp@2407: 			adapter->link_duplex = 0;
fp@2407: 			/* Link status message must follow this format */
fp@2407: 			printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
fp@2407: 			       adapter->netdev->name);
fp@2407: 			netif_carrier_off(netdev);
fp@2407: 			if (!test_bit(__E1000_DOWN, &adapter->state))
fp@2407: 				mod_timer(&adapter->phy_info_timer,
fp@2407: 					  round_jiffies(jiffies + 2 * HZ));
fp@2407: 
fp@2407: 			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
fp@2407: 				schedule_work(&adapter->reset_task);
fp@2407: 			else
fp@2407: 				pm_schedule_suspend(netdev->dev.parent,
fp@2407: 							LINK_TIMEOUT);
fp@2407: 		}
fp@2407: 	}
fp@2407: 
fp@2407: link_up:
fp@2407: 	spin_lock(&adapter->stats64_lock);
fp@2407: 	e1000e_update_stats(adapter);
fp@2407: 
fp@2407: 	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
fp@2407: 	adapter->tpt_old = adapter->stats.tpt;
fp@2407: 	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
fp@2407: 	adapter->colc_old = adapter->stats.colc;
fp@2407: 
fp@2407: 	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
fp@2407: 	adapter->gorc_old = adapter->stats.gorc;
fp@2407: 	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
fp@2407: 	adapter->gotc_old = adapter->stats.gotc;
fp@2407: 	spin_unlock(&adapter->stats64_lock);
fp@2407: 
fp@2407: 	e1000e_update_adaptive(&adapter->hw);
fp@2407: 
fp@2407: 	if (!netif_carrier_ok(netdev) &&
fp@2407: 	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count)) {
fp@2407: 		/*
fp@2407: 		 * We've lost link, so the controller stops DMA,
fp@2407: 		 * but we've got queued Tx work that's never going
fp@2407: 		 * to get done, so reset controller to flush Tx.
fp@2407: 		 * (Do the reset outside of interrupt context).
fp@2407: 		 */
fp@2407: 		schedule_work(&adapter->reset_task);
fp@2407: 		/* return immediately since reset is imminent */
fp@2407: 		return;
fp@2407: 	}
fp@2407: 
fp@2407: 	/* Simple mode for Interrupt Throttle Rate (ITR) */
fp@2407: 	if (adapter->itr_setting == 4) {
fp@2407: 		/*
fp@2407: 		 * Symmetric Tx/Rx gets a reduced ITR=2000;
fp@2407: 		 * Total asymmetrical Tx or Rx gets ITR=8000;
fp@2407: 		 * everyone else is between 2000-8000.
fp@2407: 		 */
fp@2407: 		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
fp@2407: 		u32 dif = (adapter->gotc > adapter->gorc ?
fp@2407: 			    adapter->gotc - adapter->gorc :
fp@2407: 			    adapter->gorc - adapter->gotc) / 10000;
fp@2407: 		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
fp@2407: 
fp@2407: 		ew32(ITR, 1000000000 / (itr * 256));
fp@2407: 	}
fp@2407: 
fp@2407: 	/* Cause software interrupt to ensure Rx ring is cleaned */
fp@2407: 	if (adapter->msix_entries)
fp@2407: 		ew32(ICS, adapter->rx_ring->ims_val);
fp@2407: 	else
fp@2407: 		ew32(ICS, E1000_ICS_RXDMT0);
fp@2407: 
fp@2407: 	/* flush pending descriptors to memory before detecting Tx hang */
fp@2407: 	e1000e_flush_descriptors(adapter);
fp@2407: 
fp@2407: 	/* Force detection of hung controller every watchdog period */
fp@2407: 	adapter->detect_tx_hung = 1;
fp@2407: 
fp@2407: 	/*
fp@2407: 	 * With 82571 controllers, LAA may be overwritten due to controller
fp@2407: 	 * reset from the other port. Set the appropriate LAA in RAR[0]
fp@2407: 	 */
fp@2407: 	if (e1000e_get_laa_state_82571(hw))
fp@2407: 		e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
fp@2407: 
fp@2407: 	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
fp@2407: 		e1000e_check_82574_phy_workaround(adapter);
fp@2407: 
fp@2407: 	/* Reset the timer */
fp@2407: 	if (!test_bit(__E1000_DOWN, &adapter->state))
fp@2407: 		mod_timer(&adapter->watchdog_timer,
fp@2407: 			  round_jiffies(jiffies + 2 * HZ));
fp@2407: }
fp@2407: 
fp@2407: #define E1000_TX_FLAGS_CSUM		0x00000001
fp@2407: #define E1000_TX_FLAGS_VLAN		0x00000002
fp@2407: #define E1000_TX_FLAGS_TSO		0x00000004
fp@2407: #define E1000_TX_FLAGS_IPV4		0x00000008
fp@2407: #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
fp@2407: #define E1000_TX_FLAGS_VLAN_SHIFT	16
fp@2407: 
fp@2407: static int e1000_tso(struct e1000_adapter *adapter,
fp@2407: 		     struct sk_buff *skb)
fp@2407: {
fp@2407: 	struct e1000_ring *tx_ring = adapter->tx_ring;
fp@2407: 	struct e1000_context_desc *context_desc;
fp@2407: 	struct e1000_buffer *buffer_info;
fp@2407: 	unsigned int i;
fp@2407: 	u32 cmd_length = 0;
fp@2407: 	u16 ipcse = 0, tucse, mss;
fp@2407: 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
fp@2407: 
fp@2407: 	if (!skb_is_gso(skb))
fp@2407: 		return 0;
fp@2407: 
fp@2407: 	if (skb_header_cloned(skb)) {
fp@2407: 		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
fp@2407: 
fp@2407: 		if (err)
fp@2407: 			return err;
fp@2407: 	}
fp@2407: 
fp@2407: 	hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
fp@2407: 	mss = skb_shinfo(skb)->gso_size;
fp@2407: 	if (skb->protocol == htons(ETH_P_IP)) {
fp@2407: 		struct iphdr *iph = ip_hdr(skb);
fp@2407: 		iph->tot_len = 0;
fp@2407: 		iph->check = 0;
fp@2407: 		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
fp@2407: 		                                         0, IPPROTO_TCP, 0);
fp@2407: 		cmd_length = E1000_TXD_CMD_IP;
fp@2407: 		ipcse = skb_transport_offset(skb) - 1;
fp@2407: 	} else if (skb_is_gso_v6(skb)) {
fp@2407: 		ipv6_hdr(skb)->payload_len = 0;
fp@2407: 		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
fp@2407: 		                                       &ipv6_hdr(skb)->daddr,
fp@2407: 		                                       0, IPPROTO_TCP, 0);
fp@2407: 		ipcse = 0;
fp@2407: 	}
fp@2407: 	ipcss = skb_network_offset(skb);
fp@2407: 	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
fp@2407: 	tucss = skb_transport_offset(skb);
fp@2407: 	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
fp@2407: 	tucse = 0;
fp@2407: 
fp@2407: 	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
fp@2407: 	               E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
fp@2407: 
fp@2407: 	i = tx_ring->next_to_use;
fp@2407: 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
fp@2407: 	buffer_info = &tx_ring->buffer_info[i];
fp@2407: 
fp@2407: 	context_desc->lower_setup.ip_fields.ipcss  = ipcss;
fp@2407: 	context_desc->lower_setup.ip_fields.ipcso  = ipcso;
fp@2407: 	context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
fp@2407: 	context_desc->upper_setup.tcp_fields.tucss = tucss;
fp@2407: 	context_desc->upper_setup.tcp_fields.tucso = tucso;
fp@2407: 	context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
fp@2407: 	context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
fp@2407: 	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
fp@2407: 	context_desc->cmd_and_length = cpu_to_le32(cmd_length);
fp@2407: 
fp@2407: 	buffer_info->time_stamp = jiffies;
fp@2407: 	buffer_info->next_to_watch = i;
fp@2407: 
fp@2407: 	i++;
fp@2407: 	if (i == tx_ring->count)
fp@2407: 		i = 0;
fp@2407: 	tx_ring->next_to_use = i;
fp@2407: 
fp@2407: 	return 1;
fp@2407: }
fp@2407: 
fp@2407: static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
fp@2407: {
fp@2407: 	struct e1000_ring *tx_ring = adapter->tx_ring;
fp@2407: 	struct e1000_context_desc *context_desc;
fp@2407: 	struct e1000_buffer *buffer_info;
fp@2407: 	unsigned int i;
fp@2407: 	u8 css;
fp@2407: 	u32 cmd_len = E1000_TXD_CMD_DEXT;
fp@2407: 	__be16 protocol;
fp@2407: 
fp@2407: 	if (skb->ip_summed != CHECKSUM_PARTIAL)
fp@2407: 		return 0;
fp@2407: 
fp@2407: 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
fp@2407: 		protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
fp@2407: 	else
fp@2407: 		protocol = skb->protocol;
fp@2407: 
fp@2407: 	switch (protocol) {
fp@2407: 	case cpu_to_be16(ETH_P_IP):
fp@2407: 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
fp@2407: 			cmd_len |= E1000_TXD_CMD_TCP;
fp@2407: 		break;
fp@2407: 	case cpu_to_be16(ETH_P_IPV6):
fp@2407: 		/* XXX not handling all IPV6 headers */
fp@2407: 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
fp@2407: 			cmd_len |= E1000_TXD_CMD_TCP;
fp@2407: 		break;
fp@2407: 	default:
fp@2407: 		if (unlikely(net_ratelimit()))
fp@2407: 			e_warn("checksum_partial proto=%x!\n",
fp@2407: 			       be16_to_cpu(protocol));
fp@2407: 		break;
fp@2407: 	}
fp@2407: 
fp@2407: 	css = skb_checksum_start_offset(skb);
fp@2407: 
fp@2407: 	i = tx_ring->next_to_use;
fp@2407: 	buffer_info = &tx_ring->buffer_info[i];
fp@2407: 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
fp@2407: 
fp@2407: 	context_desc->lower_setup.ip_config = 0;
fp@2407: 	context_desc->upper_setup.tcp_fields.tucss = css;
fp@2407: 	context_desc->upper_setup.tcp_fields.tucso =
fp@2407: 				css + skb->csum_offset;
fp@2407: 	context_desc->upper_setup.tcp_fields.tucse = 0;
fp@2407: 	context_desc->tcp_seg_setup.data = 0;
fp@2407: 	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
fp@2407: 
fp@2407: 	buffer_info->time_stamp = jiffies;
fp@2407: 	buffer_info->next_to_watch = i;
fp@2407: 
fp@2407: 	i++;
fp@2407: 	if (i == tx_ring->count)
fp@2407: 		i = 0;
fp@2407: 	tx_ring->next_to_use = i;
fp@2407: 
fp@2407: 	return 1;
fp@2407: }
fp@2407: 
fp@2407: #define E1000_MAX_PER_TXD	8192
fp@2407: #define E1000_MAX_TXD_PWR	12
fp@2407: 
fp@2407: static int e1000_tx_map(struct e1000_adapter *adapter,
fp@2407: 			struct sk_buff *skb, unsigned int first,
fp@2407: 			unsigned int max_per_txd, unsigned int nr_frags,
fp@2407: 			unsigned int mss)
fp@2407: {
fp@2407: 	struct e1000_ring *tx_ring = adapter->tx_ring;
fp@2407: 	struct pci_dev *pdev = adapter->pdev;
fp@2407: 	struct e1000_buffer *buffer_info;
fp@2407: 	unsigned int len = skb_headlen(skb);
fp@2407: 	unsigned int offset = 0, size, count = 0, i;
fp@2407: 	unsigned int f, bytecount, segs;
fp@2407: 
fp@2407: 	i = tx_ring->next_to_use;
fp@2407: 
fp@2407: 	while (len) {
fp@2407: 		buffer_info = &tx_ring->buffer_info[i];
fp@2407: 		size = min(len, max_per_txd);
fp@2407: 
fp@2407: 		buffer_info->length = size;
fp@2407: 		buffer_info->time_stamp = jiffies;
fp@2407: 		buffer_info->next_to_watch = i;
fp@2407: 		buffer_info->dma = dma_map_single(&pdev->dev,
fp@2407: 						  skb->data + offset,
fp@2407: 						  size, DMA_TO_DEVICE);
fp@2407: 		buffer_info->mapped_as_page = false;
fp@2407: 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
fp@2407: 			goto dma_error;
fp@2407: 
fp@2407: 		len -= size;
fp@2407: 		offset += size;
fp@2407: 		count++;
fp@2407: 
fp@2407: 		if (len) {
fp@2407: 			i++;
fp@2407: 			if (i == tx_ring->count)
fp@2407: 				i = 0;
fp@2407: 		}
fp@2407: 	}
fp@2407: 
fp@2407: 	for (f = 0; f < nr_frags; f++) {
fp@2407: 		const struct skb_frag_struct *frag;
fp@2407: 
fp@2407: 		frag = &skb_shinfo(skb)->frags[f];
fp@2407: 		len = skb_frag_size(frag);
fp@2407: 		offset = 0;
fp@2407: 
fp@2407: 		while (len) {
fp@2407: 			i++;
fp@2407: 			if (i == tx_ring->count)
fp@2407: 				i = 0;
fp@2407: 
fp@2407: 			buffer_info = &tx_ring->buffer_info[i];
fp@2407: 			size = min(len, max_per_txd);
fp@2407: 
fp@2407: 			buffer_info->length = size;
fp@2407: 			buffer_info->time_stamp = jiffies;
fp@2407: 			buffer_info->next_to_watch = i;
fp@2407: 			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
fp@2407: 						offset, size, DMA_TO_DEVICE);
fp@2407: 			buffer_info->mapped_as_page = true;
fp@2407: 			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
fp@2407: 				goto dma_error;
fp@2407: 
fp@2407: 			len -= size;
fp@2407: 			offset += size;
fp@2407: 			count++;
fp@2407: 		}
fp@2407: 	}
fp@2407: 
fp@2407: 	segs = skb_shinfo(skb)->gso_segs ? : 1;
fp@2407: 	/* multiply data chunks by size of headers */
fp@2407: 	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
fp@2407: 
fp@2407: 	tx_ring->buffer_info[i].skb = skb;
fp@2407: 	tx_ring->buffer_info[i].segs = segs;
fp@2407: 	tx_ring->buffer_info[i].bytecount = bytecount;
fp@2407: 	tx_ring->buffer_info[first].next_to_watch = i;
fp@2407: 
fp@2407: 	return count;
fp@2407: 
fp@2407: dma_error:
fp@2407: 	dev_err(&pdev->dev, "Tx DMA map failed\n");
fp@2407: 	buffer_info->dma = 0;
fp@2407: 	if (count)
fp@2407: 		count--;
fp@2407: 
fp@2407: 	while (count--) {
fp@2407: 		if (i == 0)
fp@2407: 			i += tx_ring->count;
fp@2407: 		i--;
fp@2407: 		buffer_info = &tx_ring->buffer_info[i];
fp@2407: 		e1000_put_txbuf(adapter, buffer_info);
fp@2407: 	}
fp@2407: 
fp@2407: 	return 0;
fp@2407: }
fp@2407: 
fp@2407: static void e1000_tx_queue(struct e1000_adapter *adapter,
fp@2407: 			   int tx_flags, int count)
fp@2407: {
fp@2407: 	struct e1000_ring *tx_ring = adapter->tx_ring;
fp@2407: 	struct e1000_tx_desc *tx_desc = NULL;
fp@2407: 	struct e1000_buffer *buffer_info;
fp@2407: 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
fp@2407: 	unsigned int i;
fp@2407: 
fp@2407: 	if (tx_flags & E1000_TX_FLAGS_TSO) {
fp@2407: 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
fp@2407: 			     E1000_TXD_CMD_TSE;
fp@2407: 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
fp@2407: 
fp@2407: 		if (tx_flags & E1000_TX_FLAGS_IPV4)
fp@2407: 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
fp@2407: 	}
fp@2407: 
fp@2407: 	if (tx_flags & E1000_TX_FLAGS_CSUM) {
fp@2407: 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
fp@2407: 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
fp@2407: 	}
fp@2407: 
fp@2407: 	if (tx_flags & E1000_TX_FLAGS_VLAN) {
fp@2407: 		txd_lower |= E1000_TXD_CMD_VLE;
fp@2407: 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
fp@2407: 	}
fp@2407: 
fp@2407: 	i = tx_ring->next_to_use;
fp@2407: 
fp@2407: 	do {
fp@2407: 		buffer_info = &tx_ring->buffer_info[i];
fp@2407: 		tx_desc = E1000_TX_DESC(*tx_ring, i);
fp@2407: 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
fp@2407: 		tx_desc->lower.data =
fp@2407: 			cpu_to_le32(txd_lower | buffer_info->length);
fp@2407: 		tx_desc->upper.data = cpu_to_le32(txd_upper);
fp@2407: 
fp@2407: 		i++;
fp@2407: 		if (i == tx_ring->count)
fp@2407: 			i = 0;
fp@2407: 	} while (--count > 0);
fp@2407: 
fp@2407: 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
fp@2407: 
fp@2407: 	/*
fp@2407: 	 * Force memory writes to complete before letting h/w
fp@2407: 	 * know there are new descriptors to fetch.  (Only
fp@2407: 	 * applicable for weak-ordered memory model archs,
fp@2407: 	 * such as IA-64).
fp@2407: 	 */
fp@2407: 	wmb();
fp@2407: 
fp@2407: 	tx_ring->next_to_use = i;
fp@2407: 
fp@2407: 	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
fp@2407: 		e1000e_update_tdt_wa(adapter, i);
fp@2407: 	else
fp@2407: 		writel(i, adapter->hw.hw_addr + tx_ring->tail);
fp@2407: 
fp@2407: 	/*
fp@2407: 	 * we need this if more than one processor can write to our tail
fp@2407: 	 * at a time, it synchronizes IO on IA64/Altix systems
fp@2407: 	 */
fp@2407: 	mmiowb();
fp@2407: }
fp@2407: 
fp@2407: #define MINIMUM_DHCP_PACKET_SIZE 282
fp@2407: static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
fp@2407: 				    struct sk_buff *skb)
fp@2407: {
fp@2407: 	struct e1000_hw *hw =  &adapter->hw;
fp@2407: 	u16 length, offset;
fp@2407: 
fp@2407: 	if (vlan_tx_tag_present(skb)) {
fp@2407: 		if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
fp@2407: 		    (adapter->hw.mng_cookie.status &
fp@2407: 			E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
fp@2407: 			return 0;
fp@2407: 	}
fp@2407: 
fp@2407: 	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
fp@2407: 		return 0;
fp@2407: 
fp@2407: 	if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
fp@2407: 		return 0;
fp@2407: 
fp@2407: 	{
fp@2407: 		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
fp@2407: 		struct udphdr *udp;
fp@2407: 
fp@2407: 		if (ip->protocol != IPPROTO_UDP)
fp@2407: 			return 0;
fp@2407: 
fp@2407: 		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
fp@2407: 		if (ntohs(udp->dest) != 67)
fp@2407: 			return 0;
fp@2407: 
fp@2407: 		offset = (u8 *)udp + 8 - skb->data;
fp@2407: 		length = skb->len - offset;
fp@2407: 		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
fp@2407: 	}
fp@2407: 
fp@2407: 	return 0;
fp@2407: }
fp@2407: 
fp@2407: static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
fp@2407: {
fp@2407: 	struct e1000_adapter *adapter = netdev_priv(netdev);
fp@2407: 
fp@2407: 	netif_stop_queue(netdev);
fp@2407: 	/*
fp@2407: 	 * Herbert's original patch had:
fp@2407: 	 *  smp_mb__after_netif_stop_queue();
fp@2407: 	 * but since that doesn't exist yet, just open code it.
fp@2407: 	 */
fp@2407: 	smp_mb();
fp@2407: 
fp@2407: 	/*
fp@2407: 	 * We need to check again in a case another CPU has just
fp@2407: 	 * made room available.
fp@2407: 	 */
fp@2407: 	if (e1000_desc_unused(adapter->tx_ring) < size)
fp@2407: 		return -EBUSY;
fp@2407: 
fp@2407: 	/* A reprieve! */
fp@2407: 	netif_start_queue(netdev);
fp@2407: 	++adapter->restart_queue;
fp@2407: 	return 0;
fp@2407: }
fp@2407: 
fp@2407: static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
fp@2407: {
fp@2407: 	struct e1000_adapter *adapter = netdev_priv(netdev);
fp@2407: 
fp@2407: 	if (e1000_desc_unused(adapter->tx_ring) >= size)
fp@2407: 		return 0;
fp@2407: 	return __e1000_maybe_stop_tx(netdev, size);
fp@2407: }
fp@2407: 
fp@2407: #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
fp@2407: static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
fp@2407: 				    struct net_device *netdev)
fp@2407: {
fp@2407: 	struct e1000_adapter *adapter = netdev_priv(netdev);
fp@2407: 	struct e1000_ring *tx_ring = adapter->tx_ring;
fp@2407: 	unsigned int first;
fp@2407: 	unsigned int max_per_txd = E1000_MAX_PER_TXD;
fp@2407: 	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
fp@2407: 	unsigned int tx_flags = 0;
fp@2407: 	unsigned int len = skb_headlen(skb);
fp@2407: 	unsigned int nr_frags;
fp@2407: 	unsigned int mss;
fp@2407: 	int count = 0;
fp@2407: 	int tso;
fp@2407: 	unsigned int f;
fp@2407: 
fp@2407: 	if (test_bit(__E1000_DOWN, &adapter->state)) {
fp@2407: 		dev_kfree_skb_any(skb);
fp@2407: 		return NETDEV_TX_OK;
fp@2407: 	}
fp@2407: 
fp@2407: 	if (skb->len <= 0) {
fp@2407: 		dev_kfree_skb_any(skb);
fp@2407: 		return NETDEV_TX_OK;
fp@2407: 	}
fp@2407: 
fp@2407: 	mss = skb_shinfo(skb)->gso_size;
fp@2407: 	/*
fp@2407: 	 * The controller does a simple calculation to
fp@2407: 	 * make sure there is enough room in the FIFO before
fp@2407: 	 * initiating the DMA for each buffer.  The calc is:
fp@2407: 	 * 4 = ceil(buffer len/mss).  To make sure we don't
fp@2407: 	 * overrun the FIFO, adjust the max buffer len if mss
fp@2407: 	 * drops.
fp@2407: 	 */
fp@2407: 	if (mss) {
fp@2407: 		u8 hdr_len;
fp@2407: 		max_per_txd = min(mss << 2, max_per_txd);
fp@2407: 		max_txd_pwr = fls(max_per_txd) - 1;
fp@2407: 
fp@2407: 		/*
fp@2407: 		 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
fp@2407: 		 * points to just header, pull a few bytes of payload from
fp@2407: 		 * frags into skb->data
fp@2407: 		 */
fp@2407: 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
fp@2407: 		/*
fp@2407: 		 * we do this workaround for ES2LAN, but it is un-necessary,
fp@2407: 		 * avoiding it could save a lot of cycles
fp@2407: 		 */
fp@2407: 		if (skb->data_len && (hdr_len == len)) {
fp@2407: 			unsigned int pull_size;
fp@2407: 
fp@2407: 			pull_size = min((unsigned int)4, skb->data_len);
fp@2407: 			if (!__pskb_pull_tail(skb, pull_size)) {
fp@2407: 				e_err("__pskb_pull_tail failed.\n");
fp@2407: 				dev_kfree_skb_any(skb);
fp@2407: 				return NETDEV_TX_OK;
fp@2407: 			}
fp@2407: 			len = skb_headlen(skb);
fp@2407: 		}
fp@2407: 	}
fp@2407: 
fp@2407: 	/* reserve a descriptor for the offload context */
fp@2407: 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
fp@2407: 		count++;
fp@2407: 	count++;
fp@2407: 
fp@2407: 	count += TXD_USE_COUNT(len, max_txd_pwr);
fp@2407: 
fp@2407: 	nr_frags = skb_shinfo(skb)->nr_frags;
fp@2407: 	for (f = 0; f < nr_frags; f++)
fp@2407: 		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
fp@2407: 				       max_txd_pwr);
fp@2407: 
fp@2407: 	if (adapter->hw.mac.tx_pkt_filtering)
fp@2407: 		e1000_transfer_dhcp_info(adapter, skb);
fp@2407: 
fp@2407: 	/*
fp@2407: 	 * need: count + 2 desc gap to keep tail from touching
fp@2407: 	 * head, otherwise try next time
fp@2407: 	 */
fp@2407: 	if (e1000_maybe_stop_tx(netdev, count + 2))
fp@2407: 		return NETDEV_TX_BUSY;
fp@2407: 
fp@2407: 	if (vlan_tx_tag_present(skb)) {
fp@2407: 		tx_flags |= E1000_TX_FLAGS_VLAN;
fp@2407: 		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
fp@2407: 	}
fp@2407: 
fp@2407: 	first = tx_ring->next_to_use;
fp@2407: 
fp@2407: 	tso = e1000_tso(adapter, skb);
fp@2407: 	if (tso < 0) {
fp@2407: 		dev_kfree_skb_any(skb);
fp@2407: 		return NETDEV_TX_OK;
fp@2407: 	}
fp@2407: 
fp@2407: 	if (tso)
fp@2407: 		tx_flags |= E1000_TX_FLAGS_TSO;
fp@2407: 	else if (e1000_tx_csum(adapter, skb))
fp@2407: 		tx_flags |= E1000_TX_FLAGS_CSUM;
fp@2407: 
fp@2407: 	/*
fp@2407: 	 * Old method was to assume IPv4 packet by default if TSO was enabled.
fp@2407: 	 * 82571 hardware supports TSO capabilities for IPv6 as well...
fp@2407: 	 * no longer assume, we must.
fp@2407: 	 */
fp@2407: 	if (skb->protocol == htons(ETH_P_IP))
fp@2407: 		tx_flags |= E1000_TX_FLAGS_IPV4;
fp@2407: 
fp@2407: 	/* if count is 0 then mapping error has occurred */
fp@2407: 	count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
fp@2407: 	if (count) {
fp@2407: 		e1000_tx_queue(adapter, tx_flags, count);
fp@2407: 		/* Make sure there is space in the ring for the next send. */
fp@2407: 		e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
fp@2407: 
fp@2407: 	} else {
fp@2407: 		dev_kfree_skb_any(skb);
fp@2407: 		tx_ring->buffer_info[first].time_stamp = 0;
fp@2407: 		tx_ring->next_to_use = first;
fp@2407: 	}
fp@2407: 
fp@2407: 	return NETDEV_TX_OK;
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000_tx_timeout - Respond to a Tx Hang
fp@2407:  * @netdev: network interface device structure
fp@2407:  **/
fp@2407: static void e1000_tx_timeout(struct net_device *netdev)
fp@2407: {
fp@2407: 	struct e1000_adapter *adapter = netdev_priv(netdev);
fp@2407: 
fp@2407: 	/* Do the reset outside of interrupt context */
fp@2407: 	adapter->tx_timeout_count++;
fp@2407: 	schedule_work(&adapter->reset_task);
fp@2407: }
fp@2407: 
fp@2407: static void e1000_reset_task(struct work_struct *work)
fp@2407: {
fp@2407: 	struct e1000_adapter *adapter;
fp@2407: 	adapter = container_of(work, struct e1000_adapter, reset_task);
fp@2407: 
fp@2407: 	/* don't run the task if already down */
fp@2407: 	if (test_bit(__E1000_DOWN, &adapter->state))
fp@2407: 		return;
fp@2407: 
fp@2407: 	if (!((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
fp@2407: 	      (adapter->flags & FLAG_RX_RESTART_NOW))) {
fp@2407: 		e1000e_dump(adapter);
fp@2407: 		e_err("Reset adapter\n");
fp@2407: 	}
fp@2407: 	e1000e_reinit_locked(adapter);
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000_get_stats64 - Get System Network Statistics
fp@2407:  * @netdev: network interface device structure
fp@2407:  * @stats: rtnl_link_stats64 pointer
fp@2407:  *
fp@2407:  * Returns the address of the device statistics structure.
fp@2407:  **/
fp@2407: struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
fp@2407:                                              struct rtnl_link_stats64 *stats)
fp@2407: {
fp@2407: 	struct e1000_adapter *adapter = netdev_priv(netdev);
fp@2407: 
fp@2407: 	memset(stats, 0, sizeof(struct rtnl_link_stats64));
fp@2407: 	spin_lock(&adapter->stats64_lock);
fp@2407: 	e1000e_update_stats(adapter);
fp@2407: 	/* Fill out the OS statistics structure */
fp@2407: 	stats->rx_bytes = adapter->stats.gorc;
fp@2407: 	stats->rx_packets = adapter->stats.gprc;
fp@2407: 	stats->tx_bytes = adapter->stats.gotc;
fp@2407: 	stats->tx_packets = adapter->stats.gptc;
fp@2407: 	stats->multicast = adapter->stats.mprc;
fp@2407: 	stats->collisions = adapter->stats.colc;
fp@2407: 
fp@2407: 	/* Rx Errors */
fp@2407: 
fp@2407: 	/*
fp@2407: 	 * RLEC on some newer hardware can be incorrect so build
fp@2407: 	 * our own version based on RUC and ROC
fp@2407: 	 */
fp@2407: 	stats->rx_errors = adapter->stats.rxerrc +
fp@2407: 		adapter->stats.crcerrs + adapter->stats.algnerrc +
fp@2407: 		adapter->stats.ruc + adapter->stats.roc +
fp@2407: 		adapter->stats.cexterr;
fp@2407: 	stats->rx_length_errors = adapter->stats.ruc +
fp@2407: 					      adapter->stats.roc;
fp@2407: 	stats->rx_crc_errors = adapter->stats.crcerrs;
fp@2407: 	stats->rx_frame_errors = adapter->stats.algnerrc;
fp@2407: 	stats->rx_missed_errors = adapter->stats.mpc;
fp@2407: 
fp@2407: 	/* Tx Errors */
fp@2407: 	stats->tx_errors = adapter->stats.ecol +
fp@2407: 				       adapter->stats.latecol;
fp@2407: 	stats->tx_aborted_errors = adapter->stats.ecol;
fp@2407: 	stats->tx_window_errors = adapter->stats.latecol;
fp@2407: 	stats->tx_carrier_errors = adapter->stats.tncrs;
fp@2407: 
fp@2407: 	/* Tx Dropped needs to be maintained elsewhere */
fp@2407: 
fp@2407: 	spin_unlock(&adapter->stats64_lock);
fp@2407: 	return stats;
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000_change_mtu - Change the Maximum Transfer Unit
fp@2407:  * @netdev: network interface device structure
fp@2407:  * @new_mtu: new value for maximum frame size
fp@2407:  *
fp@2407:  * Returns 0 on success, negative on failure
fp@2407:  **/
fp@2407: static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
fp@2407: {
fp@2407: 	struct e1000_adapter *adapter = netdev_priv(netdev);
fp@2407: 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
fp@2407: 
fp@2407: 	/* Jumbo frame support */
fp@2407: 	if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
fp@2407: 	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
fp@2407: 		e_err("Jumbo Frames not supported.\n");
fp@2407: 		return -EINVAL;
fp@2407: 	}
fp@2407: 
fp@2407: 	/* Supported frame sizes */
fp@2407: 	if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
fp@2407: 	    (max_frame > adapter->max_hw_frame_size)) {
fp@2407: 		e_err("Unsupported MTU setting\n");
fp@2407: 		return -EINVAL;
fp@2407: 	}
fp@2407: 
fp@2407: 	/* Jumbo frame workaround on 82579 requires CRC be stripped */
fp@2407: 	if ((adapter->hw.mac.type == e1000_pch2lan) &&
fp@2407: 	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
fp@2407: 	    (new_mtu > ETH_DATA_LEN)) {
fp@2407: 		e_err("Jumbo Frames not supported on 82579 when CRC "
fp@2407: 		      "stripping is disabled.\n");
fp@2407: 		return -EINVAL;
fp@2407: 	}
fp@2407: 
fp@2407: 	/* 82573 Errata 17 */
fp@2407: 	if (((adapter->hw.mac.type == e1000_82573) ||
fp@2407: 	     (adapter->hw.mac.type == e1000_82574)) &&
fp@2407: 	    (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN)) {
fp@2407: 		adapter->flags2 |= FLAG2_DISABLE_ASPM_L1;
fp@2407: 		e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L1);
fp@2407: 	}
fp@2407: 
fp@2407: 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
fp@2407: 		usleep_range(1000, 2000);
fp@2407: 	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
fp@2407: 	adapter->max_frame_size = max_frame;
fp@2407: 	e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
fp@2407: 	netdev->mtu = new_mtu;
fp@2407: 	if (netif_running(netdev))
fp@2407: 		e1000e_down(adapter);
fp@2407: 
fp@2407: 	/*
fp@2407: 	 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
fp@2407: 	 * means we reserve 2 more, this pushes us to allocate from the next
fp@2407: 	 * larger slab size.
fp@2407: 	 * i.e. RXBUFFER_2048 --> size-4096 slab
fp@2407: 	 * However with the new *_jumbo_rx* routines, jumbo receives will use
fp@2407: 	 * fragmented skbs
fp@2407: 	 */
fp@2407: 
fp@2407: 	if (max_frame <= 2048)
fp@2407: 		adapter->rx_buffer_len = 2048;
fp@2407: 	else
fp@2407: 		adapter->rx_buffer_len = 4096;
fp@2407: 
fp@2407: 	/* adjust allocation if LPE protects us, and we aren't using SBP */
fp@2407: 	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
fp@2407: 	     (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
fp@2407: 		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
fp@2407: 					 + ETH_FCS_LEN;
fp@2407: 
fp@2407: 	if (netif_running(netdev))
fp@2407: 		e1000e_up(adapter);
fp@2407: 	else
fp@2407: 		e1000e_reset(adapter);
fp@2407: 
fp@2407: 	clear_bit(__E1000_RESETTING, &adapter->state);
fp@2407: 
fp@2407: 	return 0;
fp@2407: }
fp@2407: 
fp@2407: static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
fp@2407: 			   int cmd)
fp@2407: {
fp@2407: 	struct e1000_adapter *adapter = netdev_priv(netdev);
fp@2407: 	struct mii_ioctl_data *data = if_mii(ifr);
fp@2407: 
fp@2407: 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
fp@2407: 		return -EOPNOTSUPP;
fp@2407: 
fp@2407: 	switch (cmd) {
fp@2407: 	case SIOCGMIIPHY:
fp@2407: 		data->phy_id = adapter->hw.phy.addr;
fp@2407: 		break;
fp@2407: 	case SIOCGMIIREG:
fp@2407: 		e1000_phy_read_status(adapter);
fp@2407: 
fp@2407: 		switch (data->reg_num & 0x1F) {
fp@2407: 		case MII_BMCR:
fp@2407: 			data->val_out = adapter->phy_regs.bmcr;
fp@2407: 			break;
fp@2407: 		case MII_BMSR:
fp@2407: 			data->val_out = adapter->phy_regs.bmsr;
fp@2407: 			break;
fp@2407: 		case MII_PHYSID1:
fp@2407: 			data->val_out = (adapter->hw.phy.id >> 16);
fp@2407: 			break;
fp@2407: 		case MII_PHYSID2:
fp@2407: 			data->val_out = (adapter->hw.phy.id & 0xFFFF);
fp@2407: 			break;
fp@2407: 		case MII_ADVERTISE:
fp@2407: 			data->val_out = adapter->phy_regs.advertise;
fp@2407: 			break;
fp@2407: 		case MII_LPA:
fp@2407: 			data->val_out = adapter->phy_regs.lpa;
fp@2407: 			break;
fp@2407: 		case MII_EXPANSION:
fp@2407: 			data->val_out = adapter->phy_regs.expansion;
fp@2407: 			break;
fp@2407: 		case MII_CTRL1000:
fp@2407: 			data->val_out = adapter->phy_regs.ctrl1000;
fp@2407: 			break;
fp@2407: 		case MII_STAT1000:
fp@2407: 			data->val_out = adapter->phy_regs.stat1000;
fp@2407: 			break;
fp@2407: 		case MII_ESTATUS:
fp@2407: 			data->val_out = adapter->phy_regs.estatus;
fp@2407: 			break;
fp@2407: 		default:
fp@2407: 			return -EIO;
fp@2407: 		}
fp@2407: 		break;
fp@2407: 	case SIOCSMIIREG:
fp@2407: 	default:
fp@2407: 		return -EOPNOTSUPP;
fp@2407: 	}
fp@2407: 	return 0;
fp@2407: }
fp@2407: 
fp@2407: static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
fp@2407: {
fp@2407: 	switch (cmd) {
fp@2407: 	case SIOCGMIIPHY:
fp@2407: 	case SIOCGMIIREG:
fp@2407: 	case SIOCSMIIREG:
fp@2407: 		return e1000_mii_ioctl(netdev, ifr, cmd);
fp@2407: 	default:
fp@2407: 		return -EOPNOTSUPP;
fp@2407: 	}
fp@2407: }
fp@2407: 
fp@2407: static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
fp@2407: {
fp@2407: 	struct e1000_hw *hw = &adapter->hw;
fp@2407: 	u32 i, mac_reg;
fp@2407: 	u16 phy_reg, wuc_enable;
fp@2407: 	int retval = 0;
fp@2407: 
fp@2407: 	/* copy MAC RARs to PHY RARs */
fp@2407: 	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
fp@2407: 
fp@2407: 	retval = hw->phy.ops.acquire(hw);
fp@2407: 	if (retval) {
fp@2407: 		e_err("Could not acquire PHY\n");
fp@2407: 		return retval;
fp@2407: 	}
fp@2407: 
fp@2407: 	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
fp@2407: 	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
fp@2407: 	if (retval)
fp@2407: 		goto out;
fp@2407: 
fp@2407: 	/* copy MAC MTA to PHY MTA - only needed for pchlan */
fp@2407: 	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
fp@2407: 		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
fp@2407: 		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
fp@2407: 					   (u16)(mac_reg & 0xFFFF));
fp@2407: 		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
fp@2407: 					   (u16)((mac_reg >> 16) & 0xFFFF));
fp@2407: 	}
fp@2407: 
fp@2407: 	/* configure PHY Rx Control register */
fp@2407: 	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
fp@2407: 	mac_reg = er32(RCTL);
fp@2407: 	if (mac_reg & E1000_RCTL_UPE)
fp@2407: 		phy_reg |= BM_RCTL_UPE;
fp@2407: 	if (mac_reg & E1000_RCTL_MPE)
fp@2407: 		phy_reg |= BM_RCTL_MPE;
fp@2407: 	phy_reg &= ~(BM_RCTL_MO_MASK);
fp@2407: 	if (mac_reg & E1000_RCTL_MO_3)
fp@2407: 		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
fp@2407: 				<< BM_RCTL_MO_SHIFT);
fp@2407: 	if (mac_reg & E1000_RCTL_BAM)
fp@2407: 		phy_reg |= BM_RCTL_BAM;
fp@2407: 	if (mac_reg & E1000_RCTL_PMCF)
fp@2407: 		phy_reg |= BM_RCTL_PMCF;
fp@2407: 	mac_reg = er32(CTRL);
fp@2407: 	if (mac_reg & E1000_CTRL_RFCE)
fp@2407: 		phy_reg |= BM_RCTL_RFCE;
fp@2407: 	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
fp@2407: 
fp@2407: 	/* enable PHY wakeup in MAC register */
fp@2407: 	ew32(WUFC, wufc);
fp@2407: 	ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
fp@2407: 
fp@2407: 	/* configure and enable PHY wakeup in PHY registers */
fp@2407: 	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
fp@2407: 	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
fp@2407: 
fp@2407: 	/* activate PHY wakeup */
fp@2407: 	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
fp@2407: 	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
fp@2407: 	if (retval)
fp@2407: 		e_err("Could not set PHY Host Wakeup bit\n");
fp@2407: out:
fp@2407: 	hw->phy.ops.release(hw);
fp@2407: 
fp@2407: 	return retval;
fp@2407: }
fp@2407: 
fp@2407: static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake,
fp@2407: 			    bool runtime)
fp@2407: {
fp@2407: 	struct net_device *netdev = pci_get_drvdata(pdev);
fp@2407: 	struct e1000_adapter *adapter = netdev_priv(netdev);
fp@2407: 	struct e1000_hw *hw = &adapter->hw;
fp@2407: 	u32 ctrl, ctrl_ext, rctl, status;
fp@2407: 	/* Runtime suspend should only enable wakeup for link changes */
fp@2407: 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
fp@2407: 	int retval = 0;
fp@2407: 
fp@2407: 	netif_device_detach(netdev);
fp@2407: 
fp@2407: 	if (netif_running(netdev)) {
fp@2407: 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
fp@2407: 		e1000e_down(adapter);
fp@2407: 		e1000_free_irq(adapter);
fp@2407: 	}
fp@2407: 	e1000e_reset_interrupt_capability(adapter);
fp@2407: 
fp@2407: 	retval = pci_save_state(pdev);
fp@2407: 	if (retval)
fp@2407: 		return retval;
fp@2407: 
fp@2407: 	status = er32(STATUS);
fp@2407: 	if (status & E1000_STATUS_LU)
fp@2407: 		wufc &= ~E1000_WUFC_LNKC;
fp@2407: 
fp@2407: 	if (wufc) {
fp@2407: 		e1000_setup_rctl(adapter);
fp@2407: 		e1000_set_multi(netdev);
fp@2407: 
fp@2407: 		/* turn on all-multi mode if wake on multicast is enabled */
fp@2407: 		if (wufc & E1000_WUFC_MC) {
fp@2407: 			rctl = er32(RCTL);
fp@2407: 			rctl |= E1000_RCTL_MPE;
fp@2407: 			ew32(RCTL, rctl);
fp@2407: 		}
fp@2407: 
fp@2407: 		ctrl = er32(CTRL);
fp@2407: 		/* advertise wake from D3Cold */
fp@2407: 		#define E1000_CTRL_ADVD3WUC 0x00100000
fp@2407: 		/* phy power management enable */
fp@2407: 		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
fp@2407: 		ctrl |= E1000_CTRL_ADVD3WUC;
fp@2407: 		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
fp@2407: 			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
fp@2407: 		ew32(CTRL, ctrl);
fp@2407: 
fp@2407: 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
fp@2407: 		    adapter->hw.phy.media_type ==
fp@2407: 		    e1000_media_type_internal_serdes) {
fp@2407: 			/* keep the laser running in D3 */
fp@2407: 			ctrl_ext = er32(CTRL_EXT);
fp@2407: 			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
fp@2407: 			ew32(CTRL_EXT, ctrl_ext);
fp@2407: 		}
fp@2407: 
fp@2407: 		if (adapter->flags & FLAG_IS_ICH)
fp@2407: 			e1000_suspend_workarounds_ich8lan(&adapter->hw);
fp@2407: 
fp@2407: 		/* Allow time for pending master requests to run */
fp@2407: 		e1000e_disable_pcie_master(&adapter->hw);
fp@2407: 
fp@2407: 		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
fp@2407: 			/* enable wakeup by the PHY */
fp@2407: 			retval = e1000_init_phy_wakeup(adapter, wufc);
fp@2407: 			if (retval)
fp@2407: 				return retval;
fp@2407: 		} else {
fp@2407: 			/* enable wakeup by the MAC */
fp@2407: 			ew32(WUFC, wufc);
fp@2407: 			ew32(WUC, E1000_WUC_PME_EN);
fp@2407: 		}
fp@2407: 	} else {
fp@2407: 		ew32(WUC, 0);
fp@2407: 		ew32(WUFC, 0);
fp@2407: 	}
fp@2407: 
fp@2407: 	*enable_wake = !!wufc;
fp@2407: 
fp@2407: 	/* make sure adapter isn't asleep if manageability is enabled */
fp@2407: 	if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
fp@2407: 	    (hw->mac.ops.check_mng_mode(hw)))
fp@2407: 		*enable_wake = true;
fp@2407: 
fp@2407: 	if (adapter->hw.phy.type == e1000_phy_igp_3)
fp@2407: 		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
fp@2407: 
fp@2407: 	/*
fp@2407: 	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
fp@2407: 	 * would have already happened in close and is redundant.
fp@2407: 	 */
fp@2407: 	e1000e_release_hw_control(adapter);
fp@2407: 
fp@2407: 	pci_disable_device(pdev);
fp@2407: 
fp@2407: 	return 0;
fp@2407: }
fp@2407: 
fp@2407: static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
fp@2407: {
fp@2407: 	if (sleep && wake) {
fp@2407: 		pci_prepare_to_sleep(pdev);
fp@2407: 		return;
fp@2407: 	}
fp@2407: 
fp@2407: 	pci_wake_from_d3(pdev, wake);
fp@2407: 	pci_set_power_state(pdev, PCI_D3hot);
fp@2407: }
fp@2407: 
fp@2407: static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
fp@2407:                                     bool wake)
fp@2407: {
fp@2407: 	struct net_device *netdev = pci_get_drvdata(pdev);
fp@2407: 	struct e1000_adapter *adapter = netdev_priv(netdev);
fp@2407: 
fp@2407: 	/*
fp@2407: 	 * The pci-e switch on some quad port adapters will report a
fp@2407: 	 * correctable error when the MAC transitions from D0 to D3.  To
fp@2407: 	 * prevent this we need to mask off the correctable errors on the
fp@2407: 	 * downstream port of the pci-e switch.
fp@2407: 	 */
fp@2407: 	if (adapter->flags & FLAG_IS_QUAD_PORT) {
fp@2407: 		struct pci_dev *us_dev = pdev->bus->self;
fp@2407: 		int pos = pci_pcie_cap(us_dev);
fp@2407: 		u16 devctl;
fp@2407: 
fp@2407: 		pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
fp@2407: 		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
fp@2407: 		                      (devctl & ~PCI_EXP_DEVCTL_CERE));
fp@2407: 
fp@2407: 		e1000_power_off(pdev, sleep, wake);
fp@2407: 
fp@2407: 		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
fp@2407: 	} else {
fp@2407: 		e1000_power_off(pdev, sleep, wake);
fp@2407: 	}
fp@2407: }
fp@2407: 
fp@2407: #ifdef CONFIG_PCIEASPM
fp@2407: static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
fp@2407: {
fp@2407: 	pci_disable_link_state_locked(pdev, state);
fp@2407: }
fp@2407: #else
fp@2407: static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
fp@2407: {
fp@2407: 	int pos;
fp@2407: 	u16 reg16;
fp@2407: 
fp@2407: 	/*
fp@2407: 	 * Both device and parent should have the same ASPM setting.
fp@2407: 	 * Disable ASPM in downstream component first and then upstream.
fp@2407: 	 */
fp@2407: 	pos = pci_pcie_cap(pdev);
fp@2407: 	pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &reg16);
fp@2407: 	reg16 &= ~state;
fp@2407: 	pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16);
fp@2407: 
fp@2407: 	if (!pdev->bus->self)
fp@2407: 		return;
fp@2407: 
fp@2407: 	pos = pci_pcie_cap(pdev->bus->self);
fp@2407: 	pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, &reg16);
fp@2407: 	reg16 &= ~state;
fp@2407: 	pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16);
fp@2407: }
fp@2407: #endif
fp@2407: static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
fp@2407: {
fp@2407: 	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
fp@2407: 		 (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
fp@2407: 		 (state & PCIE_LINK_STATE_L1) ? "L1" : "");
fp@2407: 
fp@2407: 	__e1000e_disable_aspm(pdev, state);
fp@2407: }
fp@2407: 
fp@2407: #ifdef CONFIG_PM
fp@2407: static bool e1000e_pm_ready(struct e1000_adapter *adapter)
fp@2407: {
fp@2407: 	return !!adapter->tx_ring->buffer_info;
fp@2407: }
fp@2407: 
fp@2407: static int __e1000_resume(struct pci_dev *pdev)
fp@2407: {
fp@2407: 	struct net_device *netdev = pci_get_drvdata(pdev);
fp@2407: 	struct e1000_adapter *adapter = netdev_priv(netdev);
fp@2407: 	struct e1000_hw *hw = &adapter->hw;
fp@2407: 	u16 aspm_disable_flag = 0;
fp@2407: 	u32 err;
fp@2407: 
fp@2407: 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
fp@2407: 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
fp@2407: 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
fp@2407: 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
fp@2407: 	if (aspm_disable_flag)
fp@2407: 		e1000e_disable_aspm(pdev, aspm_disable_flag);
fp@2407: 
fp@2407: 	pci_set_power_state(pdev, PCI_D0);
fp@2407: 	pci_restore_state(pdev);
fp@2407: 	pci_save_state(pdev);
fp@2407: 
fp@2407: 	e1000e_set_interrupt_capability(adapter);
fp@2407: 	if (netif_running(netdev)) {
fp@2407: 		err = e1000_request_irq(adapter);
fp@2407: 		if (err)
fp@2407: 			return err;
fp@2407: 	}
fp@2407: 
fp@2407: 	if (hw->mac.type == e1000_pch2lan)
fp@2407: 		e1000_resume_workarounds_pchlan(&adapter->hw);
fp@2407: 
fp@2407: 	e1000e_power_up_phy(adapter);
fp@2407: 
fp@2407: 	/* report the system wakeup cause from S3/S4 */
fp@2407: 	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
fp@2407: 		u16 phy_data;
fp@2407: 
fp@2407: 		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
fp@2407: 		if (phy_data) {
fp@2407: 			e_info("PHY Wakeup cause - %s\n",
fp@2407: 				phy_data & E1000_WUS_EX ? "Unicast Packet" :
fp@2407: 				phy_data & E1000_WUS_MC ? "Multicast Packet" :
fp@2407: 				phy_data & E1000_WUS_BC ? "Broadcast Packet" :
fp@2407: 				phy_data & E1000_WUS_MAG ? "Magic Packet" :
fp@2407: 				phy_data & E1000_WUS_LNKC ? "Link Status "
fp@2407: 				" Change" : "other");
fp@2407: 		}
fp@2407: 		e1e_wphy(&adapter->hw, BM_WUS, ~0);
fp@2407: 	} else {
fp@2407: 		u32 wus = er32(WUS);
fp@2407: 		if (wus) {
fp@2407: 			e_info("MAC Wakeup cause - %s\n",
fp@2407: 				wus & E1000_WUS_EX ? "Unicast Packet" :
fp@2407: 				wus & E1000_WUS_MC ? "Multicast Packet" :
fp@2407: 				wus & E1000_WUS_BC ? "Broadcast Packet" :
fp@2407: 				wus & E1000_WUS_MAG ? "Magic Packet" :
fp@2407: 				wus & E1000_WUS_LNKC ? "Link Status Change" :
fp@2407: 				"other");
fp@2407: 		}
fp@2407: 		ew32(WUS, ~0);
fp@2407: 	}
fp@2407: 
fp@2407: 	e1000e_reset(adapter);
fp@2407: 
fp@2407: 	e1000_init_manageability_pt(adapter);
fp@2407: 
fp@2407: 	if (netif_running(netdev))
fp@2407: 		e1000e_up(adapter);
fp@2407: 
fp@2407: 	netif_device_attach(netdev);
fp@2407: 
fp@2407: 	/*
fp@2407: 	 * If the controller has AMT, do not set DRV_LOAD until the interface
fp@2407: 	 * is up.  For all other cases, let the f/w know that the h/w is now
fp@2407: 	 * under the control of the driver.
fp@2407: 	 */
fp@2407: 	if (!(adapter->flags & FLAG_HAS_AMT))
fp@2407: 		e1000e_get_hw_control(adapter);
fp@2407: 
fp@2407: 	return 0;
fp@2407: }
fp@2407: 
fp@2407: #ifdef CONFIG_PM_SLEEP
fp@2407: static int e1000_suspend(struct device *dev)
fp@2407: {
fp@2407: 	struct pci_dev *pdev = to_pci_dev(dev);
fp@2407: 	int retval;
fp@2407: 	bool wake;
fp@2407: 
fp@2407: 	retval = __e1000_shutdown(pdev, &wake, false);
fp@2407: 	if (!retval)
fp@2407: 		e1000_complete_shutdown(pdev, true, wake);
fp@2407: 
fp@2407: 	return retval;
fp@2407: }
fp@2407: 
fp@2407: static int e1000_resume(struct device *dev)
fp@2407: {
fp@2407: 	struct pci_dev *pdev = to_pci_dev(dev);
fp@2407: 	struct net_device *netdev = pci_get_drvdata(pdev);
fp@2407: 	struct e1000_adapter *adapter = netdev_priv(netdev);
fp@2407: 
fp@2407: 	if (e1000e_pm_ready(adapter))
fp@2407: 		adapter->idle_check = true;
fp@2407: 
fp@2407: 	return __e1000_resume(pdev);
fp@2407: }
fp@2407: #endif /* CONFIG_PM_SLEEP */
fp@2407: 
fp@2407: #ifdef CONFIG_PM_RUNTIME
fp@2407: static int e1000_runtime_suspend(struct device *dev)
fp@2407: {
fp@2407: 	struct pci_dev *pdev = to_pci_dev(dev);
fp@2407: 	struct net_device *netdev = pci_get_drvdata(pdev);
fp@2407: 	struct e1000_adapter *adapter = netdev_priv(netdev);
fp@2407: 
fp@2407: 	if (e1000e_pm_ready(adapter)) {
fp@2407: 		bool wake;
fp@2407: 
fp@2407: 		__e1000_shutdown(pdev, &wake, true);
fp@2407: 	}
fp@2407: 
fp@2407: 	return 0;
fp@2407: }
fp@2407: 
fp@2407: static int e1000_idle(struct device *dev)
fp@2407: {
fp@2407: 	struct pci_dev *pdev = to_pci_dev(dev);
fp@2407: 	struct net_device *netdev = pci_get_drvdata(pdev);
fp@2407: 	struct e1000_adapter *adapter = netdev_priv(netdev);
fp@2407: 
fp@2407: 	if (!e1000e_pm_ready(adapter))
fp@2407: 		return 0;
fp@2407: 
fp@2407: 	if (adapter->idle_check) {
fp@2407: 		adapter->idle_check = false;
fp@2407: 		if (!e1000e_has_link(adapter))
fp@2407: 			pm_schedule_suspend(dev, MSEC_PER_SEC);
fp@2407: 	}
fp@2407: 
fp@2407: 	return -EBUSY;
fp@2407: }
fp@2407: 
fp@2407: static int e1000_runtime_resume(struct device *dev)
fp@2407: {
fp@2407: 	struct pci_dev *pdev = to_pci_dev(dev);
fp@2407: 	struct net_device *netdev = pci_get_drvdata(pdev);
fp@2407: 	struct e1000_adapter *adapter = netdev_priv(netdev);
fp@2407: 
fp@2407: 	if (!e1000e_pm_ready(adapter))
fp@2407: 		return 0;
fp@2407: 
fp@2407: 	adapter->idle_check = !dev->power.runtime_auto;
fp@2407: 	return __e1000_resume(pdev);
fp@2407: }
fp@2407: #endif /* CONFIG_PM_RUNTIME */
fp@2407: #endif /* CONFIG_PM */
fp@2407: 
fp@2407: static void e1000_shutdown(struct pci_dev *pdev)
fp@2407: {
fp@2407: 	bool wake = false;
fp@2407: 
fp@2407: 	__e1000_shutdown(pdev, &wake, false);
fp@2407: 
fp@2407: 	if (system_state == SYSTEM_POWER_OFF)
fp@2407: 		e1000_complete_shutdown(pdev, false, wake);
fp@2407: }
fp@2407: 
fp@2407: #ifdef CONFIG_NET_POLL_CONTROLLER
fp@2407: 
fp@2407: static irqreturn_t e1000_intr_msix(int irq, void *data)
fp@2407: {
fp@2407: 	struct net_device *netdev = data;
fp@2407: 	struct e1000_adapter *adapter = netdev_priv(netdev);
fp@2407: 
fp@2407: 	if (adapter->msix_entries) {
fp@2407: 		int vector, msix_irq;
fp@2407: 
fp@2407: 		vector = 0;
fp@2407: 		msix_irq = adapter->msix_entries[vector].vector;
fp@2407: 		disable_irq(msix_irq);
fp@2407: 		e1000_intr_msix_rx(msix_irq, netdev);
fp@2407: 		enable_irq(msix_irq);
fp@2407: 
fp@2407: 		vector++;
fp@2407: 		msix_irq = adapter->msix_entries[vector].vector;
fp@2407: 		disable_irq(msix_irq);
fp@2407: 		e1000_intr_msix_tx(msix_irq, netdev);
fp@2407: 		enable_irq(msix_irq);
fp@2407: 
fp@2407: 		vector++;
fp@2407: 		msix_irq = adapter->msix_entries[vector].vector;
fp@2407: 		disable_irq(msix_irq);
fp@2407: 		e1000_msix_other(msix_irq, netdev);
fp@2407: 		enable_irq(msix_irq);
fp@2407: 	}
fp@2407: 
fp@2407: 	return IRQ_HANDLED;
fp@2407: }
fp@2407: 
fp@2407: /*
fp@2407:  * Polling 'interrupt' - used by things like netconsole to send skbs
fp@2407:  * without having to re-enable interrupts. It's not called while
fp@2407:  * the interrupt routine is executing.
fp@2407:  */
fp@2407: static void e1000_netpoll(struct net_device *netdev)
fp@2407: {
fp@2407: 	struct e1000_adapter *adapter = netdev_priv(netdev);
fp@2407: 
fp@2407: 	switch (adapter->int_mode) {
fp@2407: 	case E1000E_INT_MODE_MSIX:
fp@2407: 		e1000_intr_msix(adapter->pdev->irq, netdev);
fp@2407: 		break;
fp@2407: 	case E1000E_INT_MODE_MSI:
fp@2407: 		disable_irq(adapter->pdev->irq);
fp@2407: 		e1000_intr_msi(adapter->pdev->irq, netdev);
fp@2407: 		enable_irq(adapter->pdev->irq);
fp@2407: 		break;
fp@2407: 	default: /* E1000E_INT_MODE_LEGACY */
fp@2407: 		disable_irq(adapter->pdev->irq);
fp@2407: 		e1000_intr(adapter->pdev->irq, netdev);
fp@2407: 		enable_irq(adapter->pdev->irq);
fp@2407: 		break;
fp@2407: 	}
fp@2407: }
fp@2407: #endif
fp@2407: 
fp@2407: /**
fp@2407:  * e1000_io_error_detected - called when PCI error is detected
fp@2407:  * @pdev: Pointer to PCI device
fp@2407:  * @state: The current pci connection state
fp@2407:  *
fp@2407:  * This function is called after a PCI bus error affecting
fp@2407:  * this device has been detected.
fp@2407:  */
fp@2407: static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
fp@2407: 						pci_channel_state_t state)
fp@2407: {
fp@2407: 	struct net_device *netdev = pci_get_drvdata(pdev);
fp@2407: 	struct e1000_adapter *adapter = netdev_priv(netdev);
fp@2407: 
fp@2407: 	netif_device_detach(netdev);
fp@2407: 
fp@2407: 	if (state == pci_channel_io_perm_failure)
fp@2407: 		return PCI_ERS_RESULT_DISCONNECT;
fp@2407: 
fp@2407: 	if (netif_running(netdev))
fp@2407: 		e1000e_down(adapter);
fp@2407: 	pci_disable_device(pdev);
fp@2407: 
fp@2407: 	/* Request a slot slot reset. */
fp@2407: 	return PCI_ERS_RESULT_NEED_RESET;
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000_io_slot_reset - called after the pci bus has been reset.
fp@2407:  * @pdev: Pointer to PCI device
fp@2407:  *
fp@2407:  * Restart the card from scratch, as if from a cold-boot. Implementation
fp@2407:  * resembles the first-half of the e1000_resume routine.
fp@2407:  */
fp@2407: static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
fp@2407: {
fp@2407: 	struct net_device *netdev = pci_get_drvdata(pdev);
fp@2407: 	struct e1000_adapter *adapter = netdev_priv(netdev);
fp@2407: 	struct e1000_hw *hw = &adapter->hw;
fp@2407: 	u16 aspm_disable_flag = 0;
fp@2407: 	int err;
fp@2407: 	pci_ers_result_t result;
fp@2407: 
fp@2407: 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
fp@2407: 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
fp@2407: 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
fp@2407: 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
fp@2407: 	if (aspm_disable_flag)
fp@2407: 		e1000e_disable_aspm(pdev, aspm_disable_flag);
fp@2407: 
fp@2407: 	err = pci_enable_device_mem(pdev);
fp@2407: 	if (err) {
fp@2407: 		dev_err(&pdev->dev,
fp@2407: 			"Cannot re-enable PCI device after reset.\n");
fp@2407: 		result = PCI_ERS_RESULT_DISCONNECT;
fp@2407: 	} else {
fp@2407: 		pci_set_master(pdev);
fp@2407: 		pdev->state_saved = true;
fp@2407: 		pci_restore_state(pdev);
fp@2407: 
fp@2407: 		pci_enable_wake(pdev, PCI_D3hot, 0);
fp@2407: 		pci_enable_wake(pdev, PCI_D3cold, 0);
fp@2407: 
fp@2407: 		e1000e_reset(adapter);
fp@2407: 		ew32(WUS, ~0);
fp@2407: 		result = PCI_ERS_RESULT_RECOVERED;
fp@2407: 	}
fp@2407: 
fp@2407: 	pci_cleanup_aer_uncorrect_error_status(pdev);
fp@2407: 
fp@2407: 	return result;
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000_io_resume - called when traffic can start flowing again.
fp@2407:  * @pdev: Pointer to PCI device
fp@2407:  *
fp@2407:  * This callback is called when the error recovery driver tells us that
fp@2407:  * its OK to resume normal operation. Implementation resembles the
fp@2407:  * second-half of the e1000_resume routine.
fp@2407:  */
fp@2407: static void e1000_io_resume(struct pci_dev *pdev)
fp@2407: {
fp@2407: 	struct net_device *netdev = pci_get_drvdata(pdev);
fp@2407: 	struct e1000_adapter *adapter = netdev_priv(netdev);
fp@2407: 
fp@2407: 	e1000_init_manageability_pt(adapter);
fp@2407: 
fp@2407: 	if (netif_running(netdev)) {
fp@2407: 		if (e1000e_up(adapter)) {
fp@2407: 			dev_err(&pdev->dev,
fp@2407: 				"can't bring device back up after reset\n");
fp@2407: 			return;
fp@2407: 		}
fp@2407: 	}
fp@2407: 
fp@2407: 	netif_device_attach(netdev);
fp@2407: 
fp@2407: 	/*
fp@2407: 	 * If the controller has AMT, do not set DRV_LOAD until the interface
fp@2407: 	 * is up.  For all other cases, let the f/w know that the h/w is now
fp@2407: 	 * under the control of the driver.
fp@2407: 	 */
fp@2407: 	if (!(adapter->flags & FLAG_HAS_AMT))
fp@2407: 		e1000e_get_hw_control(adapter);
fp@2407: 
fp@2407: }
fp@2407: 
fp@2407: static void e1000_print_device_info(struct e1000_adapter *adapter)
fp@2407: {
fp@2407: 	struct e1000_hw *hw = &adapter->hw;
fp@2407: 	struct net_device *netdev = adapter->netdev;
fp@2407: 	u32 ret_val;
fp@2407: 	u8 pba_str[E1000_PBANUM_LENGTH];
fp@2407: 
fp@2407: 	/* print bus type/speed/width info */
fp@2407: 	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
fp@2407: 	       /* bus width */
fp@2407: 	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
fp@2407: 	        "Width x1"),
fp@2407: 	       /* MAC address */
fp@2407: 	       netdev->dev_addr);
fp@2407: 	e_info("Intel(R) PRO/%s Network Connection\n",
fp@2407: 	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
fp@2407: 	ret_val = e1000_read_pba_string_generic(hw, pba_str,
fp@2407: 						E1000_PBANUM_LENGTH);
fp@2407: 	if (ret_val)
fp@2407: 		strncpy((char *)pba_str, "Unknown", sizeof(pba_str) - 1);
fp@2407: 	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
fp@2407: 	       hw->mac.type, hw->phy.type, pba_str);
fp@2407: }
fp@2407: 
fp@2407: static void e1000_eeprom_checks(struct e1000_adapter *adapter)
fp@2407: {
fp@2407: 	struct e1000_hw *hw = &adapter->hw;
fp@2407: 	int ret_val;
fp@2407: 	u16 buf = 0;
fp@2407: 
fp@2407: 	if (hw->mac.type != e1000_82573)
fp@2407: 		return;
fp@2407: 
fp@2407: 	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
fp@2407: 	if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) {
fp@2407: 		/* Deep Smart Power Down (DSPD) */
fp@2407: 		dev_warn(&adapter->pdev->dev,
fp@2407: 			 "Warning: detected DSPD enabled in EEPROM\n");
fp@2407: 	}
fp@2407: }
fp@2407: 
fp@2407: static int e1000_set_features(struct net_device *netdev, u32 features)
fp@2407: {
fp@2407: 	struct e1000_adapter *adapter = netdev_priv(netdev);
fp@2407: 	u32 changed = features ^ netdev->features;
fp@2407: 
fp@2407: 	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
fp@2407: 		adapter->flags |= FLAG_TSO_FORCE;
fp@2407: 
fp@2407: 	if (!(changed & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX |
fp@2407: 			 NETIF_F_RXCSUM)))
fp@2407: 		return 0;
fp@2407: 
fp@2407: 	if (netif_running(netdev))
fp@2407: 		e1000e_reinit_locked(adapter);
fp@2407: 	else
fp@2407: 		e1000e_reset(adapter);
fp@2407: 
fp@2407: 	return 0;
fp@2407: }
fp@2407: 
fp@2407: static const struct net_device_ops e1000e_netdev_ops = {
fp@2407: 	.ndo_open		= e1000_open,
fp@2407: 	.ndo_stop		= e1000_close,
fp@2407: 	.ndo_start_xmit		= e1000_xmit_frame,
fp@2407: 	.ndo_get_stats64	= e1000e_get_stats64,
fp@2407: 	.ndo_set_rx_mode	= e1000_set_multi,
fp@2407: 	.ndo_set_mac_address	= e1000_set_mac,
fp@2407: 	.ndo_change_mtu		= e1000_change_mtu,
fp@2407: 	.ndo_do_ioctl		= e1000_ioctl,
fp@2407: 	.ndo_tx_timeout		= e1000_tx_timeout,
fp@2407: 	.ndo_validate_addr	= eth_validate_addr,
fp@2407: 
fp@2407: 	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
fp@2407: 	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
fp@2407: #ifdef CONFIG_NET_POLL_CONTROLLER
fp@2407: 	.ndo_poll_controller	= e1000_netpoll,
fp@2407: #endif
fp@2407: 	.ndo_set_features = e1000_set_features,
fp@2407: };
fp@2407: 
fp@2407: /**
fp@2407:  * e1000_probe - Device Initialization Routine
fp@2407:  * @pdev: PCI device information struct
fp@2407:  * @ent: entry in e1000_pci_tbl
fp@2407:  *
fp@2407:  * Returns 0 on success, negative on failure
fp@2407:  *
fp@2407:  * e1000_probe initializes an adapter identified by a pci_dev structure.
fp@2407:  * The OS initialization, configuring of the adapter private structure,
fp@2407:  * and a hardware reset occur.
fp@2407:  **/
fp@2407: static int __devinit e1000_probe(struct pci_dev *pdev,
fp@2407: 				 const struct pci_device_id *ent)
fp@2407: {
fp@2407: 	struct net_device *netdev;
fp@2407: 	struct e1000_adapter *adapter;
fp@2407: 	struct e1000_hw *hw;
fp@2407: 	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
fp@2407: 	resource_size_t mmio_start, mmio_len;
fp@2407: 	resource_size_t flash_start, flash_len;
fp@2407: 
fp@2407: 	static int cards_found;
fp@2407: 	u16 aspm_disable_flag = 0;
fp@2407: 	int i, err, pci_using_dac;
fp@2407: 	u16 eeprom_data = 0;
fp@2407: 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
fp@2407: 
fp@2407: 	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
fp@2407: 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
fp@2407: 	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
fp@2407: 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
fp@2407: 	if (aspm_disable_flag)
fp@2407: 		e1000e_disable_aspm(pdev, aspm_disable_flag);
fp@2407: 
fp@2407: 	err = pci_enable_device_mem(pdev);
fp@2407: 	if (err)
fp@2407: 		return err;
fp@2407: 
fp@2407: 	pci_using_dac = 0;
fp@2407: 	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
fp@2407: 	if (!err) {
fp@2407: 		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
fp@2407: 		if (!err)
fp@2407: 			pci_using_dac = 1;
fp@2407: 	} else {
fp@2407: 		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
fp@2407: 		if (err) {
fp@2407: 			err = dma_set_coherent_mask(&pdev->dev,
fp@2407: 						    DMA_BIT_MASK(32));
fp@2407: 			if (err) {
fp@2407: 				dev_err(&pdev->dev, "No usable DMA "
fp@2407: 					"configuration, aborting\n");
fp@2407: 				goto err_dma;
fp@2407: 			}
fp@2407: 		}
fp@2407: 	}
fp@2407: 
fp@2407: 	err = pci_request_selected_regions_exclusive(pdev,
fp@2407: 	                                  pci_select_bars(pdev, IORESOURCE_MEM),
fp@2407: 	                                  e1000e_driver_name);
fp@2407: 	if (err)
fp@2407: 		goto err_pci_reg;
fp@2407: 
fp@2407: 	/* AER (Advanced Error Reporting) hooks */
fp@2407: 	pci_enable_pcie_error_reporting(pdev);
fp@2407: 
fp@2407: 	pci_set_master(pdev);
fp@2407: 	/* PCI config space info */
fp@2407: 	err = pci_save_state(pdev);
fp@2407: 	if (err)
fp@2407: 		goto err_alloc_etherdev;
fp@2407: 
fp@2407: 	err = -ENOMEM;
fp@2407: 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
fp@2407: 	if (!netdev)
fp@2407: 		goto err_alloc_etherdev;
fp@2407: 
fp@2407: 	SET_NETDEV_DEV(netdev, &pdev->dev);
fp@2407: 
fp@2407: 	netdev->irq = pdev->irq;
fp@2407: 
fp@2407: 	pci_set_drvdata(pdev, netdev);
fp@2407: 	adapter = netdev_priv(netdev);
fp@2407: 	hw = &adapter->hw;
fp@2407: 	adapter->netdev = netdev;
fp@2407: 	adapter->pdev = pdev;
fp@2407: 	adapter->ei = ei;
fp@2407: 	adapter->pba = ei->pba;
fp@2407: 	adapter->flags = ei->flags;
fp@2407: 	adapter->flags2 = ei->flags2;
fp@2407: 	adapter->hw.adapter = adapter;
fp@2407: 	adapter->hw.mac.type = ei->mac;
fp@2407: 	adapter->max_hw_frame_size = ei->max_hw_frame_size;
fp@2407: 	adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
fp@2407: 
fp@2407: 	mmio_start = pci_resource_start(pdev, 0);
fp@2407: 	mmio_len = pci_resource_len(pdev, 0);
fp@2407: 
fp@2407: 	err = -EIO;
fp@2407: 	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
fp@2407: 	if (!adapter->hw.hw_addr)
fp@2407: 		goto err_ioremap;
fp@2407: 
fp@2407: 	if ((adapter->flags & FLAG_HAS_FLASH) &&
fp@2407: 	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
fp@2407: 		flash_start = pci_resource_start(pdev, 1);
fp@2407: 		flash_len = pci_resource_len(pdev, 1);
fp@2407: 		adapter->hw.flash_address = ioremap(flash_start, flash_len);
fp@2407: 		if (!adapter->hw.flash_address)
fp@2407: 			goto err_flashmap;
fp@2407: 	}
fp@2407: 
fp@2407: 	/* construct the net_device struct */
fp@2407: 	netdev->netdev_ops		= &e1000e_netdev_ops;
fp@2407: 	e1000e_set_ethtool_ops(netdev);
fp@2407: 	netdev->watchdog_timeo		= 5 * HZ;
fp@2407: 	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
fp@2407: 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
fp@2407: 
fp@2407: 	netdev->mem_start = mmio_start;
fp@2407: 	netdev->mem_end = mmio_start + mmio_len;
fp@2407: 
fp@2407: 	adapter->bd_number = cards_found++;
fp@2407: 
fp@2407: 	e1000e_check_options(adapter);
fp@2407: 
fp@2407: 	/* setup adapter struct */
fp@2407: 	err = e1000_sw_init(adapter);
fp@2407: 	if (err)
fp@2407: 		goto err_sw_init;
fp@2407: 
fp@2407: 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
fp@2407: 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
fp@2407: 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
fp@2407: 
fp@2407: 	err = ei->get_variants(adapter);
fp@2407: 	if (err)
fp@2407: 		goto err_hw_init;
fp@2407: 
fp@2407: 	if ((adapter->flags & FLAG_IS_ICH) &&
fp@2407: 	    (adapter->flags & FLAG_READ_ONLY_NVM))
fp@2407: 		e1000e_write_protect_nvm_ich8lan(&adapter->hw);
fp@2407: 
fp@2407: 	hw->mac.ops.get_bus_info(&adapter->hw);
fp@2407: 
fp@2407: 	adapter->hw.phy.autoneg_wait_to_complete = 0;
fp@2407: 
fp@2407: 	/* Copper options */
fp@2407: 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
fp@2407: 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
fp@2407: 		adapter->hw.phy.disable_polarity_correction = 0;
fp@2407: 		adapter->hw.phy.ms_type = e1000_ms_hw_default;
fp@2407: 	}
fp@2407: 
fp@2407: 	if (e1000_check_reset_block(&adapter->hw))
fp@2407: 		e_info("PHY reset is blocked due to SOL/IDER session.\n");
fp@2407: 
fp@2407: 	/* Set initial default active device features */
fp@2407: 	netdev->features = (NETIF_F_SG |
fp@2407: 			    NETIF_F_HW_VLAN_RX |
fp@2407: 			    NETIF_F_HW_VLAN_TX |
fp@2407: 			    NETIF_F_TSO |
fp@2407: 			    NETIF_F_TSO6 |
fp@2407: 			    NETIF_F_RXCSUM |
fp@2407: 			    NETIF_F_HW_CSUM);
fp@2407: 
fp@2407: 	/* Set user-changeable features (subset of all device features) */
fp@2407: 	netdev->hw_features = netdev->features;
fp@2407: 
fp@2407: 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
fp@2407: 		netdev->features |= NETIF_F_HW_VLAN_FILTER;
fp@2407: 
fp@2407: 	netdev->vlan_features |= (NETIF_F_SG |
fp@2407: 				  NETIF_F_TSO |
fp@2407: 				  NETIF_F_TSO6 |
fp@2407: 				  NETIF_F_HW_CSUM);
fp@2407: 
fp@2407: 	if (pci_using_dac) {
fp@2407: 		netdev->features |= NETIF_F_HIGHDMA;
fp@2407: 		netdev->vlan_features |= NETIF_F_HIGHDMA;
fp@2407: 	}
fp@2407: 
fp@2407: 	if (e1000e_enable_mng_pass_thru(&adapter->hw))
fp@2407: 		adapter->flags |= FLAG_MNG_PT_ENABLED;
fp@2407: 
fp@2407: 	/*
fp@2407: 	 * before reading the NVM, reset the controller to
fp@2407: 	 * put the device in a known good starting state
fp@2407: 	 */
fp@2407: 	adapter->hw.mac.ops.reset_hw(&adapter->hw);
fp@2407: 
fp@2407: 	/*
fp@2407: 	 * systems with ASPM and others may see the checksum fail on the first
fp@2407: 	 * attempt. Let's give it a few tries
fp@2407: 	 */
fp@2407: 	for (i = 0;; i++) {
fp@2407: 		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
fp@2407: 			break;
fp@2407: 		if (i == 2) {
fp@2407: 			e_err("The NVM Checksum Is Not Valid\n");
fp@2407: 			err = -EIO;
fp@2407: 			goto err_eeprom;
fp@2407: 		}
fp@2407: 	}
fp@2407: 
fp@2407: 	e1000_eeprom_checks(adapter);
fp@2407: 
fp@2407: 	/* copy the MAC address */
fp@2407: 	if (e1000e_read_mac_addr(&adapter->hw))
fp@2407: 		e_err("NVM Read Error while reading MAC address\n");
fp@2407: 
fp@2407: 	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
fp@2407: 	memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
fp@2407: 
fp@2407: 	if (!is_valid_ether_addr(netdev->perm_addr)) {
fp@2407: 		e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
fp@2407: 		err = -EIO;
fp@2407: 		goto err_eeprom;
fp@2407: 	}
fp@2407: 
fp@2407: 	init_timer(&adapter->watchdog_timer);
fp@2407: 	adapter->watchdog_timer.function = e1000_watchdog;
fp@2407: 	adapter->watchdog_timer.data = (unsigned long) adapter;
fp@2407: 
fp@2407: 	init_timer(&adapter->phy_info_timer);
fp@2407: 	adapter->phy_info_timer.function = e1000_update_phy_info;
fp@2407: 	adapter->phy_info_timer.data = (unsigned long) adapter;
fp@2407: 
fp@2407: 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
fp@2407: 	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
fp@2407: 	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
fp@2407: 	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
fp@2407: 	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
fp@2407: 
fp@2407: 	/* Initialize link parameters. User can change them with ethtool */
fp@2407: 	adapter->hw.mac.autoneg = 1;
fp@2407: 	adapter->fc_autoneg = 1;
fp@2407: 	adapter->hw.fc.requested_mode = e1000_fc_default;
fp@2407: 	adapter->hw.fc.current_mode = e1000_fc_default;
fp@2407: 	adapter->hw.phy.autoneg_advertised = 0x2f;
fp@2407: 
fp@2407: 	/* ring size defaults */
fp@2407: 	adapter->rx_ring->count = 256;
fp@2407: 	adapter->tx_ring->count = 256;
fp@2407: 
fp@2407: 	/*
fp@2407: 	 * Initial Wake on LAN setting - If APM wake is enabled in
fp@2407: 	 * the EEPROM, enable the ACPI Magic Packet filter
fp@2407: 	 */
fp@2407: 	if (adapter->flags & FLAG_APME_IN_WUC) {
fp@2407: 		/* APME bit in EEPROM is mapped to WUC.APME */
fp@2407: 		eeprom_data = er32(WUC);
fp@2407: 		eeprom_apme_mask = E1000_WUC_APME;
fp@2407: 		if ((hw->mac.type > e1000_ich10lan) &&
fp@2407: 		    (eeprom_data & E1000_WUC_PHY_WAKE))
fp@2407: 			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
fp@2407: 	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
fp@2407: 		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
fp@2407: 		    (adapter->hw.bus.func == 1))
fp@2407: 			e1000_read_nvm(&adapter->hw,
fp@2407: 				NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
fp@2407: 		else
fp@2407: 			e1000_read_nvm(&adapter->hw,
fp@2407: 				NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
fp@2407: 	}
fp@2407: 
fp@2407: 	/* fetch WoL from EEPROM */
fp@2407: 	if (eeprom_data & eeprom_apme_mask)
fp@2407: 		adapter->eeprom_wol |= E1000_WUFC_MAG;
fp@2407: 
fp@2407: 	/*
fp@2407: 	 * now that we have the eeprom settings, apply the special cases
fp@2407: 	 * where the eeprom may be wrong or the board simply won't support
fp@2407: 	 * wake on lan on a particular port
fp@2407: 	 */
fp@2407: 	if (!(adapter->flags & FLAG_HAS_WOL))
fp@2407: 		adapter->eeprom_wol = 0;
fp@2407: 
fp@2407: 	/* initialize the wol settings based on the eeprom settings */
fp@2407: 	adapter->wol = adapter->eeprom_wol;
fp@2407: 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
fp@2407: 
fp@2407: 	/* save off EEPROM version number */
fp@2407: 	e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
fp@2407: 
fp@2407: 	/* reset the hardware with the new settings */
fp@2407: 	e1000e_reset(adapter);
fp@2407: 
fp@2407: 	/*
fp@2407: 	 * If the controller has AMT, do not set DRV_LOAD until the interface
fp@2407: 	 * is up.  For all other cases, let the f/w know that the h/w is now
fp@2407: 	 * under the control of the driver.
fp@2407: 	 */
fp@2407: 	if (!(adapter->flags & FLAG_HAS_AMT))
fp@2407: 		e1000e_get_hw_control(adapter);
fp@2407: 
fp@2407: 	strncpy(netdev->name, "eth%d", sizeof(netdev->name) - 1);
fp@2407: 	err = register_netdev(netdev);
fp@2407: 	if (err)
fp@2407: 		goto err_register;
fp@2407: 
fp@2407: 	/* carrier off reporting is important to ethtool even BEFORE open */
fp@2407: 	netif_carrier_off(netdev);
fp@2407: 
fp@2407: 	e1000_print_device_info(adapter);
fp@2407: 
fp@2407: 	if (pci_dev_run_wake(pdev))
fp@2407: 		pm_runtime_put_noidle(&pdev->dev);
fp@2407: 
fp@2407: 	return 0;
fp@2407: 
fp@2407: err_register:
fp@2407: 	if (!(adapter->flags & FLAG_HAS_AMT))
fp@2407: 		e1000e_release_hw_control(adapter);
fp@2407: err_eeprom:
fp@2407: 	if (!e1000_check_reset_block(&adapter->hw))
fp@2407: 		e1000_phy_hw_reset(&adapter->hw);
fp@2407: err_hw_init:
fp@2407: 	kfree(adapter->tx_ring);
fp@2407: 	kfree(adapter->rx_ring);
fp@2407: err_sw_init:
fp@2407: 	if (adapter->hw.flash_address)
fp@2407: 		iounmap(adapter->hw.flash_address);
fp@2407: 	e1000e_reset_interrupt_capability(adapter);
fp@2407: err_flashmap:
fp@2407: 	iounmap(adapter->hw.hw_addr);
fp@2407: err_ioremap:
fp@2407: 	free_netdev(netdev);
fp@2407: err_alloc_etherdev:
fp@2407: 	pci_release_selected_regions(pdev,
fp@2407: 	                             pci_select_bars(pdev, IORESOURCE_MEM));
fp@2407: err_pci_reg:
fp@2407: err_dma:
fp@2407: 	pci_disable_device(pdev);
fp@2407: 	return err;
fp@2407: }
fp@2407: 
fp@2407: /**
fp@2407:  * e1000_remove - Device Removal Routine
fp@2407:  * @pdev: PCI device information struct
fp@2407:  *
fp@2407:  * e1000_remove is called by the PCI subsystem to alert the driver
fp@2407:  * that it should release a PCI device.  The could be caused by a
fp@2407:  * Hot-Plug event, or because the driver is going to be removed from
fp@2407:  * memory.
fp@2407:  **/
fp@2407: static void __devexit e1000_remove(struct pci_dev *pdev)
fp@2407: {
fp@2407: 	struct net_device *netdev = pci_get_drvdata(pdev);
fp@2407: 	struct e1000_adapter *adapter = netdev_priv(netdev);
fp@2407: 	bool down = test_bit(__E1000_DOWN, &adapter->state);
fp@2407: 
fp@2407: 	/*
fp@2407: 	 * The timers may be rescheduled, so explicitly disable them
fp@2407: 	 * from being rescheduled.
fp@2407: 	 */
fp@2407: 	if (!down)
fp@2407: 		set_bit(__E1000_DOWN, &adapter->state);
fp@2407: 	del_timer_sync(&adapter->watchdog_timer);
fp@2407: 	del_timer_sync(&adapter->phy_info_timer);
fp@2407: 
fp@2407: 	cancel_work_sync(&adapter->reset_task);
fp@2407: 	cancel_work_sync(&adapter->watchdog_task);
fp@2407: 	cancel_work_sync(&adapter->downshift_task);
fp@2407: 	cancel_work_sync(&adapter->update_phy_task);
fp@2407: 	cancel_work_sync(&adapter->print_hang_task);
fp@2407: 
fp@2407: 	if (!(netdev->flags & IFF_UP))
fp@2407: 		e1000_power_down_phy(adapter);
fp@2407: 
fp@2407: 	/* Don't lie to e1000_close() down the road. */
fp@2407: 	if (!down)
fp@2407: 		clear_bit(__E1000_DOWN, &adapter->state);
fp@2407: 	unregister_netdev(netdev);
fp@2407: 
fp@2407: 	if (pci_dev_run_wake(pdev))
fp@2407: 		pm_runtime_get_noresume(&pdev->dev);
fp@2407: 
fp@2407: 	/*
fp@2407: 	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
fp@2407: 	 * would have already happened in close and is redundant.
fp@2407: 	 */
fp@2407: 	e1000e_release_hw_control(adapter);
fp@2407: 
fp@2407: 	e1000e_reset_interrupt_capability(adapter);
fp@2407: 	kfree(adapter->tx_ring);
fp@2407: 	kfree(adapter->rx_ring);
fp@2407: 
fp@2407: 	iounmap(adapter->hw.hw_addr);
fp@2407: 	if (adapter->hw.flash_address)
fp@2407: 		iounmap(adapter->hw.flash_address);
fp@2407: 	pci_release_selected_regions(pdev,
fp@2407: 	                             pci_select_bars(pdev, IORESOURCE_MEM));
fp@2407: 
fp@2407: 	free_netdev(netdev);
fp@2407: 
fp@2407: 	/* AER disable */
fp@2407: 	pci_disable_pcie_error_reporting(pdev);
fp@2407: 
fp@2407: 	pci_disable_device(pdev);
fp@2407: }
fp@2407: 
fp@2407: /* PCI Error Recovery (ERS) */
fp@2407: static struct pci_error_handlers e1000_err_handler = {
fp@2407: 	.error_detected = e1000_io_error_detected,
fp@2407: 	.slot_reset = e1000_io_slot_reset,
fp@2407: 	.resume = e1000_io_resume,
fp@2407: };
fp@2407: 
fp@2407: static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
fp@2407: 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
fp@2407: 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
fp@2407: 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
fp@2407: 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
fp@2407: 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
fp@2407: 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
fp@2407: 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
fp@2407: 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
fp@2407: 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
fp@2407: 
fp@2407: 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
fp@2407: 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
fp@2407: 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
fp@2407: 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
fp@2407: 
fp@2407: 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
fp@2407: 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
fp@2407: 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
fp@2407: 
fp@2407: 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
fp@2407: 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
fp@2407: 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
fp@2407: 
fp@2407: 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
fp@2407: 	  board_80003es2lan },
fp@2407: 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
fp@2407: 	  board_80003es2lan },
fp@2407: 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
fp@2407: 	  board_80003es2lan },
fp@2407: 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
fp@2407: 	  board_80003es2lan },
fp@2407: 
fp@2407: 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
fp@2407: 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
fp@2407: 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
fp@2407: 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
fp@2407: 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
fp@2407: 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
fp@2407: 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
fp@2407: 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
fp@2407: 
fp@2407: 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
fp@2407: 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
fp@2407: 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
fp@2407: 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
fp@2407: 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
fp@2407: 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
fp@2407: 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
fp@2407: 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
fp@2407: 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
fp@2407: 
fp@2407: 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
fp@2407: 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
fp@2407: 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
fp@2407: 
fp@2407: 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
fp@2407: 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
fp@2407: 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
fp@2407: 
fp@2407: 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
fp@2407: 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
fp@2407: 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
fp@2407: 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
fp@2407: 
fp@2407: 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
fp@2407: 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
fp@2407: 
fp@2407: 	{ }	/* terminate list */
fp@2407: };
fp@2407: MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
fp@2407: 
fp@2407: #ifdef CONFIG_PM
fp@2407: static const struct dev_pm_ops e1000_pm_ops = {
fp@2407: 	SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
fp@2407: 	SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
fp@2407: 				e1000_runtime_resume, e1000_idle)
fp@2407: };
fp@2407: #endif
fp@2407: 
fp@2407: /* PCI Device API Driver */
fp@2407: static struct pci_driver e1000_driver = {
fp@2407: 	.name     = e1000e_driver_name,
fp@2407: 	.id_table = e1000_pci_tbl,
fp@2407: 	.probe    = e1000_probe,
fp@2407: 	.remove   = __devexit_p(e1000_remove),
fp@2407: #ifdef CONFIG_PM
fp@2407: 	.driver.pm = &e1000_pm_ops,
fp@2407: #endif
fp@2407: 	.shutdown = e1000_shutdown,
fp@2407: 	.err_handler = &e1000_err_handler
fp@2407: };
fp@2407: 
fp@2407: /**
fp@2407:  * e1000_init_module - Driver Registration Routine
fp@2407:  *
fp@2407:  * e1000_init_module is the first routine called when the driver is
fp@2407:  * loaded. All it does is register with the PCI subsystem.
fp@2407:  **/
fp@2407: static int __init e1000_init_module(void)
fp@2407: {
fp@2407: 	int ret;
fp@2407: 	pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
fp@2407: 		e1000e_driver_version);
fp@2407: 	pr_info("Copyright(c) 1999 - 2011 Intel Corporation.\n");
fp@2407: 	ret = pci_register_driver(&e1000_driver);
fp@2407: 
fp@2407: 	return ret;
fp@2407: }
fp@2407: module_init(e1000_init_module);
fp@2407: 
fp@2407: /**
fp@2407:  * e1000_exit_module - Driver Exit Cleanup Routine
fp@2407:  *
fp@2407:  * e1000_exit_module is called just before the driver is removed
fp@2407:  * from memory.
fp@2407:  **/
fp@2407: static void __exit e1000_exit_module(void)
fp@2407: {
fp@2407: 	pci_unregister_driver(&e1000_driver);
fp@2407: }
fp@2407: module_exit(e1000_exit_module);
fp@2407: 
fp@2407: 
fp@2407: MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
fp@2407: MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
fp@2407: MODULE_LICENSE("GPL");
fp@2407: MODULE_VERSION(DRV_VERSION);
fp@2407: 
fp@2407: /* e1000_main.c */