fp@2131: /******************************************************************************* fp@2131: fp@2131: Intel PRO/1000 Linux driver fp@2131: Copyright(c) 1999 - 2008 Intel Corporation. fp@2131: fp@2131: This program is free software; you can redistribute it and/or modify it fp@2131: under the terms and conditions of the GNU General Public License, fp@2131: version 2, as published by the Free Software Foundation. fp@2131: fp@2131: This program is distributed in the hope it will be useful, but WITHOUT fp@2131: ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or fp@2131: FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for fp@2131: more details. fp@2131: fp@2131: You should have received a copy of the GNU General Public License along with fp@2131: this program; if not, write to the Free Software Foundation, Inc., fp@2131: 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. fp@2131: fp@2131: The full GNU General Public License is included in this distribution in fp@2131: the file called "COPYING". fp@2131: fp@2131: Contact Information: fp@2131: Linux NICS <linux.nics@intel.com> fp@2131: e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> fp@2131: Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 fp@2131: fp@2131: *******************************************************************************/ fp@2131: fp@2131: #include <linux/netdevice.h> fp@2131: #include <linux/ethtool.h> fp@2131: #include <linux/delay.h> fp@2131: #include <linux/pci.h> fp@2131: fp@2131: #include "e1000.h" fp@2131: fp@2131: enum e1000_mng_mode { fp@2131: e1000_mng_mode_none = 0, fp@2131: e1000_mng_mode_asf, fp@2131: e1000_mng_mode_pt, fp@2131: e1000_mng_mode_ipmi, fp@2131: e1000_mng_mode_host_if_only fp@2131: }; fp@2131: fp@2131: #define E1000_FACTPS_MNGCG 0x20000000 fp@2131: fp@2131: /* Intel(R) Active Management Technology signature */ fp@2131: #define E1000_IAMT_SIGNATURE 0x544D4149 fp@2131: fp@2131: /** fp@2131: * e1000e_get_bus_info_pcie - Get PCIe bus information fp@2131: * @hw: pointer to the HW structure fp@2131: * fp@2131: * Determines and stores the system bus information for a particular fp@2131: * network interface. The following bus information is determined and stored: fp@2131: * bus speed, bus width, type (PCIe), and PCIe function. fp@2131: **/ fp@2131: s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw) fp@2131: { fp@2131: struct e1000_bus_info *bus = &hw->bus; fp@2131: struct e1000_adapter *adapter = hw->adapter; fp@2131: u32 status; fp@2131: u16 pcie_link_status, pci_header_type, cap_offset; fp@2131: fp@2131: cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP); fp@2131: if (!cap_offset) { fp@2131: bus->width = e1000_bus_width_unknown; fp@2131: } else { fp@2131: pci_read_config_word(adapter->pdev, fp@2131: cap_offset + PCIE_LINK_STATUS, fp@2131: &pcie_link_status); fp@2131: bus->width = (enum e1000_bus_width)((pcie_link_status & fp@2131: PCIE_LINK_WIDTH_MASK) >> fp@2131: PCIE_LINK_WIDTH_SHIFT); fp@2131: } fp@2131: fp@2131: pci_read_config_word(adapter->pdev, PCI_HEADER_TYPE_REGISTER, fp@2131: &pci_header_type); fp@2131: if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) { fp@2131: status = er32(STATUS); fp@2131: bus->func = (status & E1000_STATUS_FUNC_MASK) fp@2131: >> E1000_STATUS_FUNC_SHIFT; fp@2131: } else { fp@2131: bus->func = 0; fp@2131: } fp@2131: fp@2131: return 0; fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000e_write_vfta - Write value to VLAN filter table fp@2131: * @hw: pointer to the HW structure fp@2131: * @offset: register offset in VLAN filter table fp@2131: * @value: register value written to VLAN filter table fp@2131: * fp@2131: * Writes value at the given offset in the register array which stores fp@2131: * the VLAN filter table. fp@2131: **/ fp@2131: void e1000e_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) fp@2131: { fp@2131: E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value); fp@2131: e1e_flush(); fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000e_init_rx_addrs - Initialize receive address's fp@2131: * @hw: pointer to the HW structure fp@2131: * @rar_count: receive address registers fp@2131: * fp@2131: * Setups the receive address registers by setting the base receive address fp@2131: * register to the devices MAC address and clearing all the other receive fp@2131: * address registers to 0. fp@2131: **/ fp@2131: void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count) fp@2131: { fp@2131: u32 i; fp@2131: fp@2131: /* Setup the receive address */ fp@2131: hw_dbg(hw, "Programming MAC Address into RAR[0]\n"); fp@2131: fp@2131: e1000e_rar_set(hw, hw->mac.addr, 0); fp@2131: fp@2131: /* Zero out the other (rar_entry_count - 1) receive addresses */ fp@2131: hw_dbg(hw, "Clearing RAR[1-%u]\n", rar_count-1); fp@2131: for (i = 1; i < rar_count; i++) { fp@2131: E1000_WRITE_REG_ARRAY(hw, E1000_RA, (i << 1), 0); fp@2131: e1e_flush(); fp@2131: E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((i << 1) + 1), 0); fp@2131: e1e_flush(); fp@2131: } fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000e_rar_set - Set receive address register fp@2131: * @hw: pointer to the HW structure fp@2131: * @addr: pointer to the receive address fp@2131: * @index: receive address array register fp@2131: * fp@2131: * Sets the receive address array register at index to the address passed fp@2131: * in by addr. fp@2131: **/ fp@2131: void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) fp@2131: { fp@2131: u32 rar_low, rar_high; fp@2131: fp@2131: /* fp@2131: * HW expects these in little endian so we reverse the byte order fp@2131: * from network order (big endian) to little endian fp@2131: */ fp@2131: rar_low = ((u32) addr[0] | fp@2131: ((u32) addr[1] << 8) | fp@2131: ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); fp@2131: fp@2131: rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); fp@2131: fp@2131: rar_high |= E1000_RAH_AV; fp@2131: fp@2131: E1000_WRITE_REG_ARRAY(hw, E1000_RA, (index << 1), rar_low); fp@2131: E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((index << 1) + 1), rar_high); fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000_hash_mc_addr - Generate a multicast hash value fp@2131: * @hw: pointer to the HW structure fp@2131: * @mc_addr: pointer to a multicast address fp@2131: * fp@2131: * Generates a multicast address hash value which is used to determine fp@2131: * the multicast filter table array address and new table value. See fp@2131: * e1000_mta_set_generic() fp@2131: **/ fp@2131: static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) fp@2131: { fp@2131: u32 hash_value, hash_mask; fp@2131: u8 bit_shift = 0; fp@2131: fp@2131: /* Register count multiplied by bits per register */ fp@2131: hash_mask = (hw->mac.mta_reg_count * 32) - 1; fp@2131: fp@2131: /* fp@2131: * For a mc_filter_type of 0, bit_shift is the number of left-shifts fp@2131: * where 0xFF would still fall within the hash mask. fp@2131: */ fp@2131: while (hash_mask >> bit_shift != 0xFF) fp@2131: bit_shift++; fp@2131: fp@2131: /* fp@2131: * The portion of the address that is used for the hash table fp@2131: * is determined by the mc_filter_type setting. fp@2131: * The algorithm is such that there is a total of 8 bits of shifting. fp@2131: * The bit_shift for a mc_filter_type of 0 represents the number of fp@2131: * left-shifts where the MSB of mc_addr[5] would still fall within fp@2131: * the hash_mask. Case 0 does this exactly. Since there are a total fp@2131: * of 8 bits of shifting, then mc_addr[4] will shift right the fp@2131: * remaining number of bits. Thus 8 - bit_shift. The rest of the fp@2131: * cases are a variation of this algorithm...essentially raising the fp@2131: * number of bits to shift mc_addr[5] left, while still keeping the fp@2131: * 8-bit shifting total. fp@2131: * fp@2131: * For example, given the following Destination MAC Address and an fp@2131: * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask), fp@2131: * we can see that the bit_shift for case 0 is 4. These are the hash fp@2131: * values resulting from each mc_filter_type... fp@2131: * [0] [1] [2] [3] [4] [5] fp@2131: * 01 AA 00 12 34 56 fp@2131: * LSB MSB fp@2131: * fp@2131: * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563 fp@2131: * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6 fp@2131: * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163 fp@2131: * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634 fp@2131: */ fp@2131: switch (hw->mac.mc_filter_type) { fp@2131: default: fp@2131: case 0: fp@2131: break; fp@2131: case 1: fp@2131: bit_shift += 1; fp@2131: break; fp@2131: case 2: fp@2131: bit_shift += 2; fp@2131: break; fp@2131: case 3: fp@2131: bit_shift += 4; fp@2131: break; fp@2131: } fp@2131: fp@2131: hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | fp@2131: (((u16) mc_addr[5]) << bit_shift))); fp@2131: fp@2131: return hash_value; fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000e_update_mc_addr_list_generic - Update Multicast addresses fp@2131: * @hw: pointer to the HW structure fp@2131: * @mc_addr_list: array of multicast addresses to program fp@2131: * @mc_addr_count: number of multicast addresses to program fp@2131: * @rar_used_count: the first RAR register free to program fp@2131: * @rar_count: total number of supported Receive Address Registers fp@2131: * fp@2131: * Updates the Receive Address Registers and Multicast Table Array. fp@2131: * The caller must have a packed mc_addr_list of multicast addresses. fp@2131: * The parameter rar_count will usually be hw->mac.rar_entry_count fp@2131: * unless there are workarounds that change this. fp@2131: **/ fp@2131: void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw, fp@2131: u8 *mc_addr_list, u32 mc_addr_count, fp@2131: u32 rar_used_count, u32 rar_count) fp@2131: { fp@2131: u32 i; fp@2131: u32 *mcarray = kzalloc(hw->mac.mta_reg_count * sizeof(u32), GFP_ATOMIC); fp@2131: fp@2131: if (!mcarray) { fp@2131: printk(KERN_ERR "multicast array memory allocation failed\n"); fp@2131: return; fp@2131: } fp@2131: fp@2131: /* fp@2131: * Load the first set of multicast addresses into the exact fp@2131: * filters (RAR). If there are not enough to fill the RAR fp@2131: * array, clear the filters. fp@2131: */ fp@2131: for (i = rar_used_count; i < rar_count; i++) { fp@2131: if (mc_addr_count) { fp@2131: e1000e_rar_set(hw, mc_addr_list, i); fp@2131: mc_addr_count--; fp@2131: mc_addr_list += ETH_ALEN; fp@2131: } else { fp@2131: E1000_WRITE_REG_ARRAY(hw, E1000_RA, i << 1, 0); fp@2131: e1e_flush(); fp@2131: E1000_WRITE_REG_ARRAY(hw, E1000_RA, (i << 1) + 1, 0); fp@2131: e1e_flush(); fp@2131: } fp@2131: } fp@2131: fp@2131: /* Load any remaining multicast addresses into the hash table. */ fp@2131: for (; mc_addr_count > 0; mc_addr_count--) { fp@2131: u32 hash_value, hash_reg, hash_bit, mta; fp@2131: hash_value = e1000_hash_mc_addr(hw, mc_addr_list); fp@2131: hw_dbg(hw, "Hash value = 0x%03X\n", hash_value); fp@2131: hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); fp@2131: hash_bit = hash_value & 0x1F; fp@2131: mta = (1 << hash_bit); fp@2131: mcarray[hash_reg] |= mta; fp@2131: mc_addr_list += ETH_ALEN; fp@2131: } fp@2131: fp@2131: /* write the hash table completely */ fp@2131: for (i = 0; i < hw->mac.mta_reg_count; i++) fp@2131: E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, mcarray[i]); fp@2131: fp@2131: e1e_flush(); fp@2131: kfree(mcarray); fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000e_clear_hw_cntrs_base - Clear base hardware counters fp@2131: * @hw: pointer to the HW structure fp@2131: * fp@2131: * Clears the base hardware counters by reading the counter registers. fp@2131: **/ fp@2131: void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw) fp@2131: { fp@2131: u32 temp; fp@2131: fp@2131: temp = er32(CRCERRS); fp@2131: temp = er32(SYMERRS); fp@2131: temp = er32(MPC); fp@2131: temp = er32(SCC); fp@2131: temp = er32(ECOL); fp@2131: temp = er32(MCC); fp@2131: temp = er32(LATECOL); fp@2131: temp = er32(COLC); fp@2131: temp = er32(DC); fp@2131: temp = er32(SEC); fp@2131: temp = er32(RLEC); fp@2131: temp = er32(XONRXC); fp@2131: temp = er32(XONTXC); fp@2131: temp = er32(XOFFRXC); fp@2131: temp = er32(XOFFTXC); fp@2131: temp = er32(FCRUC); fp@2131: temp = er32(GPRC); fp@2131: temp = er32(BPRC); fp@2131: temp = er32(MPRC); fp@2131: temp = er32(GPTC); fp@2131: temp = er32(GORCL); fp@2131: temp = er32(GORCH); fp@2131: temp = er32(GOTCL); fp@2131: temp = er32(GOTCH); fp@2131: temp = er32(RNBC); fp@2131: temp = er32(RUC); fp@2131: temp = er32(RFC); fp@2131: temp = er32(ROC); fp@2131: temp = er32(RJC); fp@2131: temp = er32(TORL); fp@2131: temp = er32(TORH); fp@2131: temp = er32(TOTL); fp@2131: temp = er32(TOTH); fp@2131: temp = er32(TPR); fp@2131: temp = er32(TPT); fp@2131: temp = er32(MPTC); fp@2131: temp = er32(BPTC); fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000e_check_for_copper_link - Check for link (Copper) fp@2131: * @hw: pointer to the HW structure fp@2131: * fp@2131: * Checks to see of the link status of the hardware has changed. If a fp@2131: * change in link status has been detected, then we read the PHY registers fp@2131: * to get the current speed/duplex if link exists. fp@2131: **/ fp@2131: s32 e1000e_check_for_copper_link(struct e1000_hw *hw) fp@2131: { fp@2131: struct e1000_mac_info *mac = &hw->mac; fp@2131: s32 ret_val; fp@2131: bool link; fp@2131: fp@2131: /* fp@2131: * We only want to go out to the PHY registers to see if Auto-Neg fp@2131: * has completed and/or if our link status has changed. The fp@2131: * get_link_status flag is set upon receiving a Link Status fp@2131: * Change or Rx Sequence Error interrupt. fp@2131: */ fp@2131: if (!mac->get_link_status) fp@2131: return 0; fp@2131: fp@2131: /* fp@2131: * First we want to see if the MII Status Register reports fp@2131: * link. If so, then we want to get the current speed/duplex fp@2131: * of the PHY. fp@2131: */ fp@2131: ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); fp@2131: if (ret_val) fp@2131: return ret_val; fp@2131: fp@2131: if (!link) fp@2131: return ret_val; /* No link detected */ fp@2131: fp@2131: mac->get_link_status = 0; fp@2131: fp@2131: /* fp@2131: * Check if there was DownShift, must be checked fp@2131: * immediately after link-up fp@2131: */ fp@2131: e1000e_check_downshift(hw); fp@2131: fp@2131: /* fp@2131: * If we are forcing speed/duplex, then we simply return since fp@2131: * we have already determined whether we have link or not. fp@2131: */ fp@2131: if (!mac->autoneg) { fp@2131: ret_val = -E1000_ERR_CONFIG; fp@2131: return ret_val; fp@2131: } fp@2131: fp@2131: /* fp@2131: * Auto-Neg is enabled. Auto Speed Detection takes care fp@2131: * of MAC speed/duplex configuration. So we only need to fp@2131: * configure Collision Distance in the MAC. fp@2131: */ fp@2131: e1000e_config_collision_dist(hw); fp@2131: fp@2131: /* fp@2131: * Configure Flow Control now that Auto-Neg has completed. fp@2131: * First, we need to restore the desired flow control fp@2131: * settings because we may have had to re-autoneg with a fp@2131: * different link partner. fp@2131: */ fp@2131: ret_val = e1000e_config_fc_after_link_up(hw); fp@2131: if (ret_val) { fp@2131: hw_dbg(hw, "Error configuring flow control\n"); fp@2131: } fp@2131: fp@2131: return ret_val; fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000e_check_for_fiber_link - Check for link (Fiber) fp@2131: * @hw: pointer to the HW structure fp@2131: * fp@2131: * Checks for link up on the hardware. If link is not up and we have fp@2131: * a signal, then we need to force link up. fp@2131: **/ fp@2131: s32 e1000e_check_for_fiber_link(struct e1000_hw *hw) fp@2131: { fp@2131: struct e1000_mac_info *mac = &hw->mac; fp@2131: u32 rxcw; fp@2131: u32 ctrl; fp@2131: u32 status; fp@2131: s32 ret_val; fp@2131: fp@2131: ctrl = er32(CTRL); fp@2131: status = er32(STATUS); fp@2131: rxcw = er32(RXCW); fp@2131: fp@2131: /* fp@2131: * If we don't have link (auto-negotiation failed or link partner fp@2131: * cannot auto-negotiate), the cable is plugged in (we have signal), fp@2131: * and our link partner is not trying to auto-negotiate with us (we fp@2131: * are receiving idles or data), we need to force link up. We also fp@2131: * need to give auto-negotiation time to complete, in case the cable fp@2131: * was just plugged in. The autoneg_failed flag does this. fp@2131: */ fp@2131: /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ fp@2131: if ((ctrl & E1000_CTRL_SWDPIN1) && (!(status & E1000_STATUS_LU)) && fp@2131: (!(rxcw & E1000_RXCW_C))) { fp@2131: if (mac->autoneg_failed == 0) { fp@2131: mac->autoneg_failed = 1; fp@2131: return 0; fp@2131: } fp@2131: hw_dbg(hw, "NOT RXing /C/, disable AutoNeg and force link.\n"); fp@2131: fp@2131: /* Disable auto-negotiation in the TXCW register */ fp@2131: ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE)); fp@2131: fp@2131: /* Force link-up and also force full-duplex. */ fp@2131: ctrl = er32(CTRL); fp@2131: ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); fp@2131: ew32(CTRL, ctrl); fp@2131: fp@2131: /* Configure Flow Control after forcing link up. */ fp@2131: ret_val = e1000e_config_fc_after_link_up(hw); fp@2131: if (ret_val) { fp@2131: hw_dbg(hw, "Error configuring flow control\n"); fp@2131: return ret_val; fp@2131: } fp@2131: } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { fp@2131: /* fp@2131: * If we are forcing link and we are receiving /C/ ordered fp@2131: * sets, re-enable auto-negotiation in the TXCW register fp@2131: * and disable forced link in the Device Control register fp@2131: * in an attempt to auto-negotiate with our link partner. fp@2131: */ fp@2131: hw_dbg(hw, "RXing /C/, enable AutoNeg and stop forcing link.\n"); fp@2131: ew32(TXCW, mac->txcw); fp@2131: ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); fp@2131: fp@2131: mac->serdes_has_link = true; fp@2131: } fp@2131: fp@2131: return 0; fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000e_check_for_serdes_link - Check for link (Serdes) fp@2131: * @hw: pointer to the HW structure fp@2131: * fp@2131: * Checks for link up on the hardware. If link is not up and we have fp@2131: * a signal, then we need to force link up. fp@2131: **/ fp@2131: s32 e1000e_check_for_serdes_link(struct e1000_hw *hw) fp@2131: { fp@2131: struct e1000_mac_info *mac = &hw->mac; fp@2131: u32 rxcw; fp@2131: u32 ctrl; fp@2131: u32 status; fp@2131: s32 ret_val; fp@2131: fp@2131: ctrl = er32(CTRL); fp@2131: status = er32(STATUS); fp@2131: rxcw = er32(RXCW); fp@2131: fp@2131: /* fp@2131: * If we don't have link (auto-negotiation failed or link partner fp@2131: * cannot auto-negotiate), and our link partner is not trying to fp@2131: * auto-negotiate with us (we are receiving idles or data), fp@2131: * we need to force link up. We also need to give auto-negotiation fp@2131: * time to complete. fp@2131: */ fp@2131: /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ fp@2131: if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) { fp@2131: if (mac->autoneg_failed == 0) { fp@2131: mac->autoneg_failed = 1; fp@2131: return 0; fp@2131: } fp@2131: hw_dbg(hw, "NOT RXing /C/, disable AutoNeg and force link.\n"); fp@2131: fp@2131: /* Disable auto-negotiation in the TXCW register */ fp@2131: ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE)); fp@2131: fp@2131: /* Force link-up and also force full-duplex. */ fp@2131: ctrl = er32(CTRL); fp@2131: ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); fp@2131: ew32(CTRL, ctrl); fp@2131: fp@2131: /* Configure Flow Control after forcing link up. */ fp@2131: ret_val = e1000e_config_fc_after_link_up(hw); fp@2131: if (ret_val) { fp@2131: hw_dbg(hw, "Error configuring flow control\n"); fp@2131: return ret_val; fp@2131: } fp@2131: } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { fp@2131: /* fp@2131: * If we are forcing link and we are receiving /C/ ordered fp@2131: * sets, re-enable auto-negotiation in the TXCW register fp@2131: * and disable forced link in the Device Control register fp@2131: * in an attempt to auto-negotiate with our link partner. fp@2131: */ fp@2131: hw_dbg(hw, "RXing /C/, enable AutoNeg and stop forcing link.\n"); fp@2131: ew32(TXCW, mac->txcw); fp@2131: ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); fp@2131: fp@2131: mac->serdes_has_link = true; fp@2131: } else if (!(E1000_TXCW_ANE & er32(TXCW))) { fp@2131: /* fp@2131: * If we force link for non-auto-negotiation switch, check fp@2131: * link status based on MAC synchronization for internal fp@2131: * serdes media type. fp@2131: */ fp@2131: /* SYNCH bit and IV bit are sticky. */ fp@2131: udelay(10); fp@2131: rxcw = er32(RXCW); fp@2131: if (rxcw & E1000_RXCW_SYNCH) { fp@2131: if (!(rxcw & E1000_RXCW_IV)) { fp@2131: mac->serdes_has_link = true; fp@2131: hw_dbg(hw, "SERDES: Link up - forced.\n"); fp@2131: } fp@2131: } else { fp@2131: mac->serdes_has_link = false; fp@2131: hw_dbg(hw, "SERDES: Link down - force failed.\n"); fp@2131: } fp@2131: } fp@2131: fp@2131: if (E1000_TXCW_ANE & er32(TXCW)) { fp@2131: status = er32(STATUS); fp@2131: if (status & E1000_STATUS_LU) { fp@2131: /* SYNCH bit and IV bit are sticky, so reread rxcw. */ fp@2131: udelay(10); fp@2131: rxcw = er32(RXCW); fp@2131: if (rxcw & E1000_RXCW_SYNCH) { fp@2131: if (!(rxcw & E1000_RXCW_IV)) { fp@2131: mac->serdes_has_link = true; fp@2131: hw_dbg(hw, "SERDES: Link up - autoneg " fp@2131: "completed sucessfully.\n"); fp@2131: } else { fp@2131: mac->serdes_has_link = false; fp@2131: hw_dbg(hw, "SERDES: Link down - invalid" fp@2131: "codewords detected in autoneg.\n"); fp@2131: } fp@2131: } else { fp@2131: mac->serdes_has_link = false; fp@2131: hw_dbg(hw, "SERDES: Link down - no sync.\n"); fp@2131: } fp@2131: } else { fp@2131: mac->serdes_has_link = false; fp@2131: hw_dbg(hw, "SERDES: Link down - autoneg failed\n"); fp@2131: } fp@2131: } fp@2131: fp@2131: return 0; fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000_set_default_fc_generic - Set flow control default values fp@2131: * @hw: pointer to the HW structure fp@2131: * fp@2131: * Read the EEPROM for the default values for flow control and store the fp@2131: * values. fp@2131: **/ fp@2131: static s32 e1000_set_default_fc_generic(struct e1000_hw *hw) fp@2131: { fp@2131: s32 ret_val; fp@2131: u16 nvm_data; fp@2131: fp@2131: /* fp@2131: * Read and store word 0x0F of the EEPROM. This word contains bits fp@2131: * that determine the hardware's default PAUSE (flow control) mode, fp@2131: * a bit that determines whether the HW defaults to enabling or fp@2131: * disabling auto-negotiation, and the direction of the fp@2131: * SW defined pins. If there is no SW over-ride of the flow fp@2131: * control setting, then the variable hw->fc will fp@2131: * be initialized based on a value in the EEPROM. fp@2131: */ fp@2131: ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data); fp@2131: fp@2131: if (ret_val) { fp@2131: hw_dbg(hw, "NVM Read Error\n"); fp@2131: return ret_val; fp@2131: } fp@2131: fp@2131: if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0) fp@2131: hw->fc.requested_mode = e1000_fc_none; fp@2131: else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == fp@2131: NVM_WORD0F_ASM_DIR) fp@2131: hw->fc.requested_mode = e1000_fc_tx_pause; fp@2131: else fp@2131: hw->fc.requested_mode = e1000_fc_full; fp@2131: fp@2131: return 0; fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000e_setup_link - Setup flow control and link settings fp@2131: * @hw: pointer to the HW structure fp@2131: * fp@2131: * Determines which flow control settings to use, then configures flow fp@2131: * control. Calls the appropriate media-specific link configuration fp@2131: * function. Assuming the adapter has a valid link partner, a valid link fp@2131: * should be established. Assumes the hardware has previously been reset fp@2131: * and the transmitter and receiver are not enabled. fp@2131: **/ fp@2131: s32 e1000e_setup_link(struct e1000_hw *hw) fp@2131: { fp@2131: struct e1000_mac_info *mac = &hw->mac; fp@2131: s32 ret_val; fp@2131: fp@2131: /* fp@2131: * In the case of the phy reset being blocked, we already have a link. fp@2131: * We do not need to set it up again. fp@2131: */ fp@2131: if (e1000_check_reset_block(hw)) fp@2131: return 0; fp@2131: fp@2131: /* fp@2131: * If requested flow control is set to default, set flow control fp@2131: * based on the EEPROM flow control settings. fp@2131: */ fp@2131: if (hw->fc.requested_mode == e1000_fc_default) { fp@2131: ret_val = e1000_set_default_fc_generic(hw); fp@2131: if (ret_val) fp@2131: return ret_val; fp@2131: } fp@2131: fp@2131: /* fp@2131: * Save off the requested flow control mode for use later. Depending fp@2131: * on the link partner's capabilities, we may or may not use this mode. fp@2131: */ fp@2131: hw->fc.current_mode = hw->fc.requested_mode; fp@2131: fp@2131: hw_dbg(hw, "After fix-ups FlowControl is now = %x\n", fp@2131: hw->fc.current_mode); fp@2131: fp@2131: /* Call the necessary media_type subroutine to configure the link. */ fp@2131: ret_val = mac->ops.setup_physical_interface(hw); fp@2131: if (ret_val) fp@2131: return ret_val; fp@2131: fp@2131: /* fp@2131: * Initialize the flow control address, type, and PAUSE timer fp@2131: * registers to their default values. This is done even if flow fp@2131: * control is disabled, because it does not hurt anything to fp@2131: * initialize these registers. fp@2131: */ fp@2131: hw_dbg(hw, "Initializing the Flow Control address, type and timer regs\n"); fp@2131: ew32(FCT, FLOW_CONTROL_TYPE); fp@2131: ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH); fp@2131: ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW); fp@2131: fp@2131: ew32(FCTTV, hw->fc.pause_time); fp@2131: fp@2131: return e1000e_set_fc_watermarks(hw); fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000_commit_fc_settings_generic - Configure flow control fp@2131: * @hw: pointer to the HW structure fp@2131: * fp@2131: * Write the flow control settings to the Transmit Config Word Register (TXCW) fp@2131: * base on the flow control settings in e1000_mac_info. fp@2131: **/ fp@2131: static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw) fp@2131: { fp@2131: struct e1000_mac_info *mac = &hw->mac; fp@2131: u32 txcw; fp@2131: fp@2131: /* fp@2131: * Check for a software override of the flow control settings, and fp@2131: * setup the device accordingly. If auto-negotiation is enabled, then fp@2131: * software will have to set the "PAUSE" bits to the correct value in fp@2131: * the Transmit Config Word Register (TXCW) and re-start auto- fp@2131: * negotiation. However, if auto-negotiation is disabled, then fp@2131: * software will have to manually configure the two flow control enable fp@2131: * bits in the CTRL register. fp@2131: * fp@2131: * The possible values of the "fc" parameter are: fp@2131: * 0: Flow control is completely disabled fp@2131: * 1: Rx flow control is enabled (we can receive pause frames, fp@2131: * but not send pause frames). fp@2131: * 2: Tx flow control is enabled (we can send pause frames but we fp@2131: * do not support receiving pause frames). fp@2131: * 3: Both Rx and Tx flow control (symmetric) are enabled. fp@2131: */ fp@2131: switch (hw->fc.current_mode) { fp@2131: case e1000_fc_none: fp@2131: /* Flow control completely disabled by a software over-ride. */ fp@2131: txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); fp@2131: break; fp@2131: case e1000_fc_rx_pause: fp@2131: /* fp@2131: * Rx Flow control is enabled and Tx Flow control is disabled fp@2131: * by a software over-ride. Since there really isn't a way to fp@2131: * advertise that we are capable of Rx Pause ONLY, we will fp@2131: * advertise that we support both symmetric and asymmetric Rx fp@2131: * PAUSE. Later, we will disable the adapter's ability to send fp@2131: * PAUSE frames. fp@2131: */ fp@2131: txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); fp@2131: break; fp@2131: case e1000_fc_tx_pause: fp@2131: /* fp@2131: * Tx Flow control is enabled, and Rx Flow control is disabled, fp@2131: * by a software over-ride. fp@2131: */ fp@2131: txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); fp@2131: break; fp@2131: case e1000_fc_full: fp@2131: /* fp@2131: * Flow control (both Rx and Tx) is enabled by a software fp@2131: * over-ride. fp@2131: */ fp@2131: txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); fp@2131: break; fp@2131: default: fp@2131: hw_dbg(hw, "Flow control param set incorrectly\n"); fp@2131: return -E1000_ERR_CONFIG; fp@2131: break; fp@2131: } fp@2131: fp@2131: ew32(TXCW, txcw); fp@2131: mac->txcw = txcw; fp@2131: fp@2131: return 0; fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000_poll_fiber_serdes_link_generic - Poll for link up fp@2131: * @hw: pointer to the HW structure fp@2131: * fp@2131: * Polls for link up by reading the status register, if link fails to come fp@2131: * up with auto-negotiation, then the link is forced if a signal is detected. fp@2131: **/ fp@2131: static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw) fp@2131: { fp@2131: struct e1000_mac_info *mac = &hw->mac; fp@2131: u32 i, status; fp@2131: s32 ret_val; fp@2131: fp@2131: /* fp@2131: * If we have a signal (the cable is plugged in, or assumed true for fp@2131: * serdes media) then poll for a "Link-Up" indication in the Device fp@2131: * Status Register. Time-out if a link isn't seen in 500 milliseconds fp@2131: * seconds (Auto-negotiation should complete in less than 500 fp@2131: * milliseconds even if the other end is doing it in SW). fp@2131: */ fp@2131: for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) { fp@2131: msleep(10); fp@2131: status = er32(STATUS); fp@2131: if (status & E1000_STATUS_LU) fp@2131: break; fp@2131: } fp@2131: if (i == FIBER_LINK_UP_LIMIT) { fp@2131: hw_dbg(hw, "Never got a valid link from auto-neg!!!\n"); fp@2131: mac->autoneg_failed = 1; fp@2131: /* fp@2131: * AutoNeg failed to achieve a link, so we'll call fp@2131: * mac->check_for_link. This routine will force the fp@2131: * link up if we detect a signal. This will allow us to fp@2131: * communicate with non-autonegotiating link partners. fp@2131: */ fp@2131: ret_val = mac->ops.check_for_link(hw); fp@2131: if (ret_val) { fp@2131: hw_dbg(hw, "Error while checking for link\n"); fp@2131: return ret_val; fp@2131: } fp@2131: mac->autoneg_failed = 0; fp@2131: } else { fp@2131: mac->autoneg_failed = 0; fp@2131: hw_dbg(hw, "Valid Link Found\n"); fp@2131: } fp@2131: fp@2131: return 0; fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes fp@2131: * @hw: pointer to the HW structure fp@2131: * fp@2131: * Configures collision distance and flow control for fiber and serdes fp@2131: * links. Upon successful setup, poll for link. fp@2131: **/ fp@2131: s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw) fp@2131: { fp@2131: u32 ctrl; fp@2131: s32 ret_val; fp@2131: fp@2131: ctrl = er32(CTRL); fp@2131: fp@2131: /* Take the link out of reset */ fp@2131: ctrl &= ~E1000_CTRL_LRST; fp@2131: fp@2131: e1000e_config_collision_dist(hw); fp@2131: fp@2131: ret_val = e1000_commit_fc_settings_generic(hw); fp@2131: if (ret_val) fp@2131: return ret_val; fp@2131: fp@2131: /* fp@2131: * Since auto-negotiation is enabled, take the link out of reset (the fp@2131: * link will be in reset, because we previously reset the chip). This fp@2131: * will restart auto-negotiation. If auto-negotiation is successful fp@2131: * then the link-up status bit will be set and the flow control enable fp@2131: * bits (RFCE and TFCE) will be set according to their negotiated value. fp@2131: */ fp@2131: hw_dbg(hw, "Auto-negotiation enabled\n"); fp@2131: fp@2131: ew32(CTRL, ctrl); fp@2131: e1e_flush(); fp@2131: msleep(1); fp@2131: fp@2131: /* fp@2131: * For these adapters, the SW definable pin 1 is set when the optics fp@2131: * detect a signal. If we have a signal, then poll for a "Link-Up" fp@2131: * indication. fp@2131: */ fp@2131: if (hw->phy.media_type == e1000_media_type_internal_serdes || fp@2131: (er32(CTRL) & E1000_CTRL_SWDPIN1)) { fp@2131: ret_val = e1000_poll_fiber_serdes_link_generic(hw); fp@2131: } else { fp@2131: hw_dbg(hw, "No signal detected\n"); fp@2131: } fp@2131: fp@2131: return 0; fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000e_config_collision_dist - Configure collision distance fp@2131: * @hw: pointer to the HW structure fp@2131: * fp@2131: * Configures the collision distance to the default value and is used fp@2131: * during link setup. Currently no func pointer exists and all fp@2131: * implementations are handled in the generic version of this function. fp@2131: **/ fp@2131: void e1000e_config_collision_dist(struct e1000_hw *hw) fp@2131: { fp@2131: u32 tctl; fp@2131: fp@2131: tctl = er32(TCTL); fp@2131: fp@2131: tctl &= ~E1000_TCTL_COLD; fp@2131: tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; fp@2131: fp@2131: ew32(TCTL, tctl); fp@2131: e1e_flush(); fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000e_set_fc_watermarks - Set flow control high/low watermarks fp@2131: * @hw: pointer to the HW structure fp@2131: * fp@2131: * Sets the flow control high/low threshold (watermark) registers. If fp@2131: * flow control XON frame transmission is enabled, then set XON frame fp@2131: * transmission as well. fp@2131: **/ fp@2131: s32 e1000e_set_fc_watermarks(struct e1000_hw *hw) fp@2131: { fp@2131: u32 fcrtl = 0, fcrth = 0; fp@2131: fp@2131: /* fp@2131: * Set the flow control receive threshold registers. Normally, fp@2131: * these registers will be set to a default threshold that may be fp@2131: * adjusted later by the driver's runtime code. However, if the fp@2131: * ability to transmit pause frames is not enabled, then these fp@2131: * registers will be set to 0. fp@2131: */ fp@2131: if (hw->fc.current_mode & e1000_fc_tx_pause) { fp@2131: /* fp@2131: * We need to set up the Receive Threshold high and low water fp@2131: * marks as well as (optionally) enabling the transmission of fp@2131: * XON frames. fp@2131: */ fp@2131: fcrtl = hw->fc.low_water; fp@2131: fcrtl |= E1000_FCRTL_XONE; fp@2131: fcrth = hw->fc.high_water; fp@2131: } fp@2131: ew32(FCRTL, fcrtl); fp@2131: ew32(FCRTH, fcrth); fp@2131: fp@2131: return 0; fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000e_force_mac_fc - Force the MAC's flow control settings fp@2131: * @hw: pointer to the HW structure fp@2131: * fp@2131: * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the fp@2131: * device control register to reflect the adapter settings. TFCE and RFCE fp@2131: * need to be explicitly set by software when a copper PHY is used because fp@2131: * autonegotiation is managed by the PHY rather than the MAC. Software must fp@2131: * also configure these bits when link is forced on a fiber connection. fp@2131: **/ fp@2131: s32 e1000e_force_mac_fc(struct e1000_hw *hw) fp@2131: { fp@2131: u32 ctrl; fp@2131: fp@2131: ctrl = er32(CTRL); fp@2131: fp@2131: /* fp@2131: * Because we didn't get link via the internal auto-negotiation fp@2131: * mechanism (we either forced link or we got link via PHY fp@2131: * auto-neg), we have to manually enable/disable transmit an fp@2131: * receive flow control. fp@2131: * fp@2131: * The "Case" statement below enables/disable flow control fp@2131: * according to the "hw->fc.current_mode" parameter. fp@2131: * fp@2131: * The possible values of the "fc" parameter are: fp@2131: * 0: Flow control is completely disabled fp@2131: * 1: Rx flow control is enabled (we can receive pause fp@2131: * frames but not send pause frames). fp@2131: * 2: Tx flow control is enabled (we can send pause frames fp@2131: * frames but we do not receive pause frames). fp@2131: * 3: Both Rx and Tx flow control (symmetric) is enabled. fp@2131: * other: No other values should be possible at this point. fp@2131: */ fp@2131: hw_dbg(hw, "hw->fc.current_mode = %u\n", hw->fc.current_mode); fp@2131: fp@2131: switch (hw->fc.current_mode) { fp@2131: case e1000_fc_none: fp@2131: ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); fp@2131: break; fp@2131: case e1000_fc_rx_pause: fp@2131: ctrl &= (~E1000_CTRL_TFCE); fp@2131: ctrl |= E1000_CTRL_RFCE; fp@2131: break; fp@2131: case e1000_fc_tx_pause: fp@2131: ctrl &= (~E1000_CTRL_RFCE); fp@2131: ctrl |= E1000_CTRL_TFCE; fp@2131: break; fp@2131: case e1000_fc_full: fp@2131: ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); fp@2131: break; fp@2131: default: fp@2131: hw_dbg(hw, "Flow control param set incorrectly\n"); fp@2131: return -E1000_ERR_CONFIG; fp@2131: } fp@2131: fp@2131: ew32(CTRL, ctrl); fp@2131: fp@2131: return 0; fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000e_config_fc_after_link_up - Configures flow control after link fp@2131: * @hw: pointer to the HW structure fp@2131: * fp@2131: * Checks the status of auto-negotiation after link up to ensure that the fp@2131: * speed and duplex were not forced. If the link needed to be forced, then fp@2131: * flow control needs to be forced also. If auto-negotiation is enabled fp@2131: * and did not fail, then we configure flow control based on our link fp@2131: * partner. fp@2131: **/ fp@2131: s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw) fp@2131: { fp@2131: struct e1000_mac_info *mac = &hw->mac; fp@2131: s32 ret_val = 0; fp@2131: u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg; fp@2131: u16 speed, duplex; fp@2131: fp@2131: /* fp@2131: * Check for the case where we have fiber media and auto-neg failed fp@2131: * so we had to force link. In this case, we need to force the fp@2131: * configuration of the MAC to match the "fc" parameter. fp@2131: */ fp@2131: if (mac->autoneg_failed) { fp@2131: if (hw->phy.media_type == e1000_media_type_fiber || fp@2131: hw->phy.media_type == e1000_media_type_internal_serdes) fp@2131: ret_val = e1000e_force_mac_fc(hw); fp@2131: } else { fp@2131: if (hw->phy.media_type == e1000_media_type_copper) fp@2131: ret_val = e1000e_force_mac_fc(hw); fp@2131: } fp@2131: fp@2131: if (ret_val) { fp@2131: hw_dbg(hw, "Error forcing flow control settings\n"); fp@2131: return ret_val; fp@2131: } fp@2131: fp@2131: /* fp@2131: * Check for the case where we have copper media and auto-neg is fp@2131: * enabled. In this case, we need to check and see if Auto-Neg fp@2131: * has completed, and if so, how the PHY and link partner has fp@2131: * flow control configured. fp@2131: */ fp@2131: if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) { fp@2131: /* fp@2131: * Read the MII Status Register and check to see if AutoNeg fp@2131: * has completed. We read this twice because this reg has fp@2131: * some "sticky" (latched) bits. fp@2131: */ fp@2131: ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg); fp@2131: if (ret_val) fp@2131: return ret_val; fp@2131: ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg); fp@2131: if (ret_val) fp@2131: return ret_val; fp@2131: fp@2131: if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) { fp@2131: hw_dbg(hw, "Copper PHY and Auto Neg " fp@2131: "has not completed.\n"); fp@2131: return ret_val; fp@2131: } fp@2131: fp@2131: /* fp@2131: * The AutoNeg process has completed, so we now need to fp@2131: * read both the Auto Negotiation Advertisement fp@2131: * Register (Address 4) and the Auto_Negotiation Base fp@2131: * Page Ability Register (Address 5) to determine how fp@2131: * flow control was negotiated. fp@2131: */ fp@2131: ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg); fp@2131: if (ret_val) fp@2131: return ret_val; fp@2131: ret_val = e1e_rphy(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg); fp@2131: if (ret_val) fp@2131: return ret_val; fp@2131: fp@2131: /* fp@2131: * Two bits in the Auto Negotiation Advertisement Register fp@2131: * (Address 4) and two bits in the Auto Negotiation Base fp@2131: * Page Ability Register (Address 5) determine flow control fp@2131: * for both the PHY and the link partner. The following fp@2131: * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, fp@2131: * 1999, describes these PAUSE resolution bits and how flow fp@2131: * control is determined based upon these settings. fp@2131: * NOTE: DC = Don't Care fp@2131: * fp@2131: * LOCAL DEVICE | LINK PARTNER fp@2131: * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution fp@2131: *-------|---------|-------|---------|-------------------- fp@2131: * 0 | 0 | DC | DC | e1000_fc_none fp@2131: * 0 | 1 | 0 | DC | e1000_fc_none fp@2131: * 0 | 1 | 1 | 0 | e1000_fc_none fp@2131: * 0 | 1 | 1 | 1 | e1000_fc_tx_pause fp@2131: * 1 | 0 | 0 | DC | e1000_fc_none fp@2131: * 1 | DC | 1 | DC | e1000_fc_full fp@2131: * 1 | 1 | 0 | 0 | e1000_fc_none fp@2131: * 1 | 1 | 0 | 1 | e1000_fc_rx_pause fp@2131: * fp@2131: * fp@2131: * Are both PAUSE bits set to 1? If so, this implies fp@2131: * Symmetric Flow Control is enabled at both ends. The fp@2131: * ASM_DIR bits are irrelevant per the spec. fp@2131: * fp@2131: * For Symmetric Flow Control: fp@2131: * fp@2131: * LOCAL DEVICE | LINK PARTNER fp@2131: * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result fp@2131: *-------|---------|-------|---------|-------------------- fp@2131: * 1 | DC | 1 | DC | E1000_fc_full fp@2131: * fp@2131: */ fp@2131: if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && fp@2131: (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { fp@2131: /* fp@2131: * Now we need to check if the user selected Rx ONLY fp@2131: * of pause frames. In this case, we had to advertise fp@2131: * FULL flow control because we could not advertise Rx fp@2131: * ONLY. Hence, we must now check to see if we need to fp@2131: * turn OFF the TRANSMISSION of PAUSE frames. fp@2131: */ fp@2131: if (hw->fc.requested_mode == e1000_fc_full) { fp@2131: hw->fc.current_mode = e1000_fc_full; fp@2131: hw_dbg(hw, "Flow Control = FULL.\r\n"); fp@2131: } else { fp@2131: hw->fc.current_mode = e1000_fc_rx_pause; fp@2131: hw_dbg(hw, "Flow Control = " fp@2131: "RX PAUSE frames only.\r\n"); fp@2131: } fp@2131: } fp@2131: /* fp@2131: * For receiving PAUSE frames ONLY. fp@2131: * fp@2131: * LOCAL DEVICE | LINK PARTNER fp@2131: * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result fp@2131: *-------|---------|-------|---------|-------------------- fp@2131: * 0 | 1 | 1 | 1 | e1000_fc_tx_pause fp@2131: * fp@2131: */ fp@2131: else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && fp@2131: (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && fp@2131: (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && fp@2131: (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { fp@2131: hw->fc.current_mode = e1000_fc_tx_pause; fp@2131: hw_dbg(hw, "Flow Control = Tx PAUSE frames only.\r\n"); fp@2131: } fp@2131: /* fp@2131: * For transmitting PAUSE frames ONLY. fp@2131: * fp@2131: * LOCAL DEVICE | LINK PARTNER fp@2131: * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result fp@2131: *-------|---------|-------|---------|-------------------- fp@2131: * 1 | 1 | 0 | 1 | e1000_fc_rx_pause fp@2131: * fp@2131: */ fp@2131: else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && fp@2131: (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && fp@2131: !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && fp@2131: (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { fp@2131: hw->fc.current_mode = e1000_fc_rx_pause; fp@2131: hw_dbg(hw, "Flow Control = Rx PAUSE frames only.\r\n"); fp@2131: } else { fp@2131: /* fp@2131: * Per the IEEE spec, at this point flow control fp@2131: * should be disabled. fp@2131: */ fp@2131: hw->fc.current_mode = e1000_fc_none; fp@2131: hw_dbg(hw, "Flow Control = NONE.\r\n"); fp@2131: } fp@2131: fp@2131: /* fp@2131: * Now we need to do one last check... If we auto- fp@2131: * negotiated to HALF DUPLEX, flow control should not be fp@2131: * enabled per IEEE 802.3 spec. fp@2131: */ fp@2131: ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex); fp@2131: if (ret_val) { fp@2131: hw_dbg(hw, "Error getting link speed and duplex\n"); fp@2131: return ret_val; fp@2131: } fp@2131: fp@2131: if (duplex == HALF_DUPLEX) fp@2131: hw->fc.current_mode = e1000_fc_none; fp@2131: fp@2131: /* fp@2131: * Now we call a subroutine to actually force the MAC fp@2131: * controller to use the correct flow control settings. fp@2131: */ fp@2131: ret_val = e1000e_force_mac_fc(hw); fp@2131: if (ret_val) { fp@2131: hw_dbg(hw, "Error forcing flow control settings\n"); fp@2131: return ret_val; fp@2131: } fp@2131: } fp@2131: fp@2131: return 0; fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex fp@2131: * @hw: pointer to the HW structure fp@2131: * @speed: stores the current speed fp@2131: * @duplex: stores the current duplex fp@2131: * fp@2131: * Read the status register for the current speed/duplex and store the current fp@2131: * speed and duplex for copper connections. fp@2131: **/ fp@2131: s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *duplex) fp@2131: { fp@2131: u32 status; fp@2131: fp@2131: status = er32(STATUS); fp@2131: if (status & E1000_STATUS_SPEED_1000) { fp@2131: *speed = SPEED_1000; fp@2131: hw_dbg(hw, "1000 Mbs, "); fp@2131: } else if (status & E1000_STATUS_SPEED_100) { fp@2131: *speed = SPEED_100; fp@2131: hw_dbg(hw, "100 Mbs, "); fp@2131: } else { fp@2131: *speed = SPEED_10; fp@2131: hw_dbg(hw, "10 Mbs, "); fp@2131: } fp@2131: fp@2131: if (status & E1000_STATUS_FD) { fp@2131: *duplex = FULL_DUPLEX; fp@2131: hw_dbg(hw, "Full Duplex\n"); fp@2131: } else { fp@2131: *duplex = HALF_DUPLEX; fp@2131: hw_dbg(hw, "Half Duplex\n"); fp@2131: } fp@2131: fp@2131: return 0; fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex fp@2131: * @hw: pointer to the HW structure fp@2131: * @speed: stores the current speed fp@2131: * @duplex: stores the current duplex fp@2131: * fp@2131: * Sets the speed and duplex to gigabit full duplex (the only possible option) fp@2131: * for fiber/serdes links. fp@2131: **/ fp@2131: s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed, u16 *duplex) fp@2131: { fp@2131: *speed = SPEED_1000; fp@2131: *duplex = FULL_DUPLEX; fp@2131: fp@2131: return 0; fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000e_get_hw_semaphore - Acquire hardware semaphore fp@2131: * @hw: pointer to the HW structure fp@2131: * fp@2131: * Acquire the HW semaphore to access the PHY or NVM fp@2131: **/ fp@2131: s32 e1000e_get_hw_semaphore(struct e1000_hw *hw) fp@2131: { fp@2131: u32 swsm; fp@2131: s32 timeout = hw->nvm.word_size + 1; fp@2131: s32 i = 0; fp@2131: fp@2131: /* Get the SW semaphore */ fp@2131: while (i < timeout) { fp@2131: swsm = er32(SWSM); fp@2131: if (!(swsm & E1000_SWSM_SMBI)) fp@2131: break; fp@2131: fp@2131: udelay(50); fp@2131: i++; fp@2131: } fp@2131: fp@2131: if (i == timeout) { fp@2131: hw_dbg(hw, "Driver can't access device - SMBI bit is set.\n"); fp@2131: return -E1000_ERR_NVM; fp@2131: } fp@2131: fp@2131: /* Get the FW semaphore. */ fp@2131: for (i = 0; i < timeout; i++) { fp@2131: swsm = er32(SWSM); fp@2131: ew32(SWSM, swsm | E1000_SWSM_SWESMBI); fp@2131: fp@2131: /* Semaphore acquired if bit latched */ fp@2131: if (er32(SWSM) & E1000_SWSM_SWESMBI) fp@2131: break; fp@2131: fp@2131: udelay(50); fp@2131: } fp@2131: fp@2131: if (i == timeout) { fp@2131: /* Release semaphores */ fp@2131: e1000e_put_hw_semaphore(hw); fp@2131: hw_dbg(hw, "Driver can't access the NVM\n"); fp@2131: return -E1000_ERR_NVM; fp@2131: } fp@2131: fp@2131: return 0; fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000e_put_hw_semaphore - Release hardware semaphore fp@2131: * @hw: pointer to the HW structure fp@2131: * fp@2131: * Release hardware semaphore used to access the PHY or NVM fp@2131: **/ fp@2131: void e1000e_put_hw_semaphore(struct e1000_hw *hw) fp@2131: { fp@2131: u32 swsm; fp@2131: fp@2131: swsm = er32(SWSM); fp@2131: swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); fp@2131: ew32(SWSM, swsm); fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000e_get_auto_rd_done - Check for auto read completion fp@2131: * @hw: pointer to the HW structure fp@2131: * fp@2131: * Check EEPROM for Auto Read done bit. fp@2131: **/ fp@2131: s32 e1000e_get_auto_rd_done(struct e1000_hw *hw) fp@2131: { fp@2131: s32 i = 0; fp@2131: fp@2131: while (i < AUTO_READ_DONE_TIMEOUT) { fp@2131: if (er32(EECD) & E1000_EECD_AUTO_RD) fp@2131: break; fp@2131: msleep(1); fp@2131: i++; fp@2131: } fp@2131: fp@2131: if (i == AUTO_READ_DONE_TIMEOUT) { fp@2131: hw_dbg(hw, "Auto read by HW from NVM has not completed.\n"); fp@2131: return -E1000_ERR_RESET; fp@2131: } fp@2131: fp@2131: return 0; fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000e_valid_led_default - Verify a valid default LED config fp@2131: * @hw: pointer to the HW structure fp@2131: * @data: pointer to the NVM (EEPROM) fp@2131: * fp@2131: * Read the EEPROM for the current default LED configuration. If the fp@2131: * LED configuration is not valid, set to a valid LED configuration. fp@2131: **/ fp@2131: s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data) fp@2131: { fp@2131: s32 ret_val; fp@2131: fp@2131: ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); fp@2131: if (ret_val) { fp@2131: hw_dbg(hw, "NVM Read Error\n"); fp@2131: return ret_val; fp@2131: } fp@2131: fp@2131: if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) fp@2131: *data = ID_LED_DEFAULT; fp@2131: fp@2131: return 0; fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000e_id_led_init - fp@2131: * @hw: pointer to the HW structure fp@2131: * fp@2131: **/ fp@2131: s32 e1000e_id_led_init(struct e1000_hw *hw) fp@2131: { fp@2131: struct e1000_mac_info *mac = &hw->mac; fp@2131: s32 ret_val; fp@2131: const u32 ledctl_mask = 0x000000FF; fp@2131: const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; fp@2131: const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; fp@2131: u16 data, i, temp; fp@2131: const u16 led_mask = 0x0F; fp@2131: fp@2131: ret_val = hw->nvm.ops.valid_led_default(hw, &data); fp@2131: if (ret_val) fp@2131: return ret_val; fp@2131: fp@2131: mac->ledctl_default = er32(LEDCTL); fp@2131: mac->ledctl_mode1 = mac->ledctl_default; fp@2131: mac->ledctl_mode2 = mac->ledctl_default; fp@2131: fp@2131: for (i = 0; i < 4; i++) { fp@2131: temp = (data >> (i << 2)) & led_mask; fp@2131: switch (temp) { fp@2131: case ID_LED_ON1_DEF2: fp@2131: case ID_LED_ON1_ON2: fp@2131: case ID_LED_ON1_OFF2: fp@2131: mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); fp@2131: mac->ledctl_mode1 |= ledctl_on << (i << 3); fp@2131: break; fp@2131: case ID_LED_OFF1_DEF2: fp@2131: case ID_LED_OFF1_ON2: fp@2131: case ID_LED_OFF1_OFF2: fp@2131: mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); fp@2131: mac->ledctl_mode1 |= ledctl_off << (i << 3); fp@2131: break; fp@2131: default: fp@2131: /* Do nothing */ fp@2131: break; fp@2131: } fp@2131: switch (temp) { fp@2131: case ID_LED_DEF1_ON2: fp@2131: case ID_LED_ON1_ON2: fp@2131: case ID_LED_OFF1_ON2: fp@2131: mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); fp@2131: mac->ledctl_mode2 |= ledctl_on << (i << 3); fp@2131: break; fp@2131: case ID_LED_DEF1_OFF2: fp@2131: case ID_LED_ON1_OFF2: fp@2131: case ID_LED_OFF1_OFF2: fp@2131: mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); fp@2131: mac->ledctl_mode2 |= ledctl_off << (i << 3); fp@2131: break; fp@2131: default: fp@2131: /* Do nothing */ fp@2131: break; fp@2131: } fp@2131: } fp@2131: fp@2131: return 0; fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000e_setup_led_generic - Configures SW controllable LED fp@2131: * @hw: pointer to the HW structure fp@2131: * fp@2131: * This prepares the SW controllable LED for use and saves the current state fp@2131: * of the LED so it can be later restored. fp@2131: **/ fp@2131: s32 e1000e_setup_led_generic(struct e1000_hw *hw) fp@2131: { fp@2131: u32 ledctl; fp@2131: fp@2131: if (hw->mac.ops.setup_led != e1000e_setup_led_generic) { fp@2131: return -E1000_ERR_CONFIG; fp@2131: } fp@2131: fp@2131: if (hw->phy.media_type == e1000_media_type_fiber) { fp@2131: ledctl = er32(LEDCTL); fp@2131: hw->mac.ledctl_default = ledctl; fp@2131: /* Turn off LED0 */ fp@2131: ledctl &= ~(E1000_LEDCTL_LED0_IVRT | fp@2131: E1000_LEDCTL_LED0_BLINK | fp@2131: E1000_LEDCTL_LED0_MODE_MASK); fp@2131: ledctl |= (E1000_LEDCTL_MODE_LED_OFF << fp@2131: E1000_LEDCTL_LED0_MODE_SHIFT); fp@2131: ew32(LEDCTL, ledctl); fp@2131: } else if (hw->phy.media_type == e1000_media_type_copper) { fp@2131: ew32(LEDCTL, hw->mac.ledctl_mode1); fp@2131: } fp@2131: fp@2131: return 0; fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000e_cleanup_led_generic - Set LED config to default operation fp@2131: * @hw: pointer to the HW structure fp@2131: * fp@2131: * Remove the current LED configuration and set the LED configuration fp@2131: * to the default value, saved from the EEPROM. fp@2131: **/ fp@2131: s32 e1000e_cleanup_led_generic(struct e1000_hw *hw) fp@2131: { fp@2131: ew32(LEDCTL, hw->mac.ledctl_default); fp@2131: return 0; fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000e_blink_led - Blink LED fp@2131: * @hw: pointer to the HW structure fp@2131: * fp@2131: * Blink the LEDs which are set to be on. fp@2131: **/ fp@2131: s32 e1000e_blink_led(struct e1000_hw *hw) fp@2131: { fp@2131: u32 ledctl_blink = 0; fp@2131: u32 i; fp@2131: fp@2131: if (hw->phy.media_type == e1000_media_type_fiber) { fp@2131: /* always blink LED0 for PCI-E fiber */ fp@2131: ledctl_blink = E1000_LEDCTL_LED0_BLINK | fp@2131: (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); fp@2131: } else { fp@2131: /* fp@2131: * set the blink bit for each LED that's "on" (0x0E) fp@2131: * in ledctl_mode2 fp@2131: */ fp@2131: ledctl_blink = hw->mac.ledctl_mode2; fp@2131: for (i = 0; i < 4; i++) fp@2131: if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) == fp@2131: E1000_LEDCTL_MODE_LED_ON) fp@2131: ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << fp@2131: (i * 8)); fp@2131: } fp@2131: fp@2131: ew32(LEDCTL, ledctl_blink); fp@2131: fp@2131: return 0; fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000e_led_on_generic - Turn LED on fp@2131: * @hw: pointer to the HW structure fp@2131: * fp@2131: * Turn LED on. fp@2131: **/ fp@2131: s32 e1000e_led_on_generic(struct e1000_hw *hw) fp@2131: { fp@2131: u32 ctrl; fp@2131: fp@2131: switch (hw->phy.media_type) { fp@2131: case e1000_media_type_fiber: fp@2131: ctrl = er32(CTRL); fp@2131: ctrl &= ~E1000_CTRL_SWDPIN0; fp@2131: ctrl |= E1000_CTRL_SWDPIO0; fp@2131: ew32(CTRL, ctrl); fp@2131: break; fp@2131: case e1000_media_type_copper: fp@2131: ew32(LEDCTL, hw->mac.ledctl_mode2); fp@2131: break; fp@2131: default: fp@2131: break; fp@2131: } fp@2131: fp@2131: return 0; fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000e_led_off_generic - Turn LED off fp@2131: * @hw: pointer to the HW structure fp@2131: * fp@2131: * Turn LED off. fp@2131: **/ fp@2131: s32 e1000e_led_off_generic(struct e1000_hw *hw) fp@2131: { fp@2131: u32 ctrl; fp@2131: fp@2131: switch (hw->phy.media_type) { fp@2131: case e1000_media_type_fiber: fp@2131: ctrl = er32(CTRL); fp@2131: ctrl |= E1000_CTRL_SWDPIN0; fp@2131: ctrl |= E1000_CTRL_SWDPIO0; fp@2131: ew32(CTRL, ctrl); fp@2131: break; fp@2131: case e1000_media_type_copper: fp@2131: ew32(LEDCTL, hw->mac.ledctl_mode1); fp@2131: break; fp@2131: default: fp@2131: break; fp@2131: } fp@2131: fp@2131: return 0; fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000e_set_pcie_no_snoop - Set PCI-express capabilities fp@2131: * @hw: pointer to the HW structure fp@2131: * @no_snoop: bitmap of snoop events fp@2131: * fp@2131: * Set the PCI-express register to snoop for events enabled in 'no_snoop'. fp@2131: **/ fp@2131: void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop) fp@2131: { fp@2131: u32 gcr; fp@2131: fp@2131: if (no_snoop) { fp@2131: gcr = er32(GCR); fp@2131: gcr &= ~(PCIE_NO_SNOOP_ALL); fp@2131: gcr |= no_snoop; fp@2131: ew32(GCR, gcr); fp@2131: } fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000e_disable_pcie_master - Disables PCI-express master access fp@2131: * @hw: pointer to the HW structure fp@2131: * fp@2131: * Returns 0 if successful, else returns -10 fp@2131: * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused fp@2131: * the master requests to be disabled. fp@2131: * fp@2131: * Disables PCI-Express master access and verifies there are no pending fp@2131: * requests. fp@2131: **/ fp@2131: s32 e1000e_disable_pcie_master(struct e1000_hw *hw) fp@2131: { fp@2131: u32 ctrl; fp@2131: s32 timeout = MASTER_DISABLE_TIMEOUT; fp@2131: fp@2131: ctrl = er32(CTRL); fp@2131: ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; fp@2131: ew32(CTRL, ctrl); fp@2131: fp@2131: while (timeout) { fp@2131: if (!(er32(STATUS) & fp@2131: E1000_STATUS_GIO_MASTER_ENABLE)) fp@2131: break; fp@2131: udelay(100); fp@2131: timeout--; fp@2131: } fp@2131: fp@2131: if (!timeout) { fp@2131: hw_dbg(hw, "Master requests are pending.\n"); fp@2131: return -E1000_ERR_MASTER_REQUESTS_PENDING; fp@2131: } fp@2131: fp@2131: return 0; fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000e_reset_adaptive - Reset Adaptive Interframe Spacing fp@2131: * @hw: pointer to the HW structure fp@2131: * fp@2131: * Reset the Adaptive Interframe Spacing throttle to default values. fp@2131: **/ fp@2131: void e1000e_reset_adaptive(struct e1000_hw *hw) fp@2131: { fp@2131: struct e1000_mac_info *mac = &hw->mac; fp@2131: fp@2131: mac->current_ifs_val = 0; fp@2131: mac->ifs_min_val = IFS_MIN; fp@2131: mac->ifs_max_val = IFS_MAX; fp@2131: mac->ifs_step_size = IFS_STEP; fp@2131: mac->ifs_ratio = IFS_RATIO; fp@2131: fp@2131: mac->in_ifs_mode = 0; fp@2131: ew32(AIT, 0); fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000e_update_adaptive - Update Adaptive Interframe Spacing fp@2131: * @hw: pointer to the HW structure fp@2131: * fp@2131: * Update the Adaptive Interframe Spacing Throttle value based on the fp@2131: * time between transmitted packets and time between collisions. fp@2131: **/ fp@2131: void e1000e_update_adaptive(struct e1000_hw *hw) fp@2131: { fp@2131: struct e1000_mac_info *mac = &hw->mac; fp@2131: fp@2131: if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) { fp@2131: if (mac->tx_packet_delta > MIN_NUM_XMITS) { fp@2131: mac->in_ifs_mode = 1; fp@2131: if (mac->current_ifs_val < mac->ifs_max_val) { fp@2131: if (!mac->current_ifs_val) fp@2131: mac->current_ifs_val = mac->ifs_min_val; fp@2131: else fp@2131: mac->current_ifs_val += fp@2131: mac->ifs_step_size; fp@2131: ew32(AIT, mac->current_ifs_val); fp@2131: } fp@2131: } fp@2131: } else { fp@2131: if (mac->in_ifs_mode && fp@2131: (mac->tx_packet_delta <= MIN_NUM_XMITS)) { fp@2131: mac->current_ifs_val = 0; fp@2131: mac->in_ifs_mode = 0; fp@2131: ew32(AIT, 0); fp@2131: } fp@2131: } fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000_raise_eec_clk - Raise EEPROM clock fp@2131: * @hw: pointer to the HW structure fp@2131: * @eecd: pointer to the EEPROM fp@2131: * fp@2131: * Enable/Raise the EEPROM clock bit. fp@2131: **/ fp@2131: static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd) fp@2131: { fp@2131: *eecd = *eecd | E1000_EECD_SK; fp@2131: ew32(EECD, *eecd); fp@2131: e1e_flush(); fp@2131: udelay(hw->nvm.delay_usec); fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000_lower_eec_clk - Lower EEPROM clock fp@2131: * @hw: pointer to the HW structure fp@2131: * @eecd: pointer to the EEPROM fp@2131: * fp@2131: * Clear/Lower the EEPROM clock bit. fp@2131: **/ fp@2131: static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd) fp@2131: { fp@2131: *eecd = *eecd & ~E1000_EECD_SK; fp@2131: ew32(EECD, *eecd); fp@2131: e1e_flush(); fp@2131: udelay(hw->nvm.delay_usec); fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM fp@2131: * @hw: pointer to the HW structure fp@2131: * @data: data to send to the EEPROM fp@2131: * @count: number of bits to shift out fp@2131: * fp@2131: * We need to shift 'count' bits out to the EEPROM. So, the value in the fp@2131: * "data" parameter will be shifted out to the EEPROM one bit at a time. fp@2131: * In order to do this, "data" must be broken down into bits. fp@2131: **/ fp@2131: static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count) fp@2131: { fp@2131: struct e1000_nvm_info *nvm = &hw->nvm; fp@2131: u32 eecd = er32(EECD); fp@2131: u32 mask; fp@2131: fp@2131: mask = 0x01 << (count - 1); fp@2131: if (nvm->type == e1000_nvm_eeprom_spi) fp@2131: eecd |= E1000_EECD_DO; fp@2131: fp@2131: do { fp@2131: eecd &= ~E1000_EECD_DI; fp@2131: fp@2131: if (data & mask) fp@2131: eecd |= E1000_EECD_DI; fp@2131: fp@2131: ew32(EECD, eecd); fp@2131: e1e_flush(); fp@2131: fp@2131: udelay(nvm->delay_usec); fp@2131: fp@2131: e1000_raise_eec_clk(hw, &eecd); fp@2131: e1000_lower_eec_clk(hw, &eecd); fp@2131: fp@2131: mask >>= 1; fp@2131: } while (mask); fp@2131: fp@2131: eecd &= ~E1000_EECD_DI; fp@2131: ew32(EECD, eecd); fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM fp@2131: * @hw: pointer to the HW structure fp@2131: * @count: number of bits to shift in fp@2131: * fp@2131: * In order to read a register from the EEPROM, we need to shift 'count' bits fp@2131: * in from the EEPROM. Bits are "shifted in" by raising the clock input to fp@2131: * the EEPROM (setting the SK bit), and then reading the value of the data out fp@2131: * "DO" bit. During this "shifting in" process the data in "DI" bit should fp@2131: * always be clear. fp@2131: **/ fp@2131: static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count) fp@2131: { fp@2131: u32 eecd; fp@2131: u32 i; fp@2131: u16 data; fp@2131: fp@2131: eecd = er32(EECD); fp@2131: fp@2131: eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); fp@2131: data = 0; fp@2131: fp@2131: for (i = 0; i < count; i++) { fp@2131: data <<= 1; fp@2131: e1000_raise_eec_clk(hw, &eecd); fp@2131: fp@2131: eecd = er32(EECD); fp@2131: fp@2131: eecd &= ~E1000_EECD_DI; fp@2131: if (eecd & E1000_EECD_DO) fp@2131: data |= 1; fp@2131: fp@2131: e1000_lower_eec_clk(hw, &eecd); fp@2131: } fp@2131: fp@2131: return data; fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion fp@2131: * @hw: pointer to the HW structure fp@2131: * @ee_reg: EEPROM flag for polling fp@2131: * fp@2131: * Polls the EEPROM status bit for either read or write completion based fp@2131: * upon the value of 'ee_reg'. fp@2131: **/ fp@2131: s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg) fp@2131: { fp@2131: u32 attempts = 100000; fp@2131: u32 i, reg = 0; fp@2131: fp@2131: for (i = 0; i < attempts; i++) { fp@2131: if (ee_reg == E1000_NVM_POLL_READ) fp@2131: reg = er32(EERD); fp@2131: else fp@2131: reg = er32(EEWR); fp@2131: fp@2131: if (reg & E1000_NVM_RW_REG_DONE) fp@2131: return 0; fp@2131: fp@2131: udelay(5); fp@2131: } fp@2131: fp@2131: return -E1000_ERR_NVM; fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000e_acquire_nvm - Generic request for access to EEPROM fp@2131: * @hw: pointer to the HW structure fp@2131: * fp@2131: * Set the EEPROM access request bit and wait for EEPROM access grant bit. fp@2131: * Return successful if access grant bit set, else clear the request for fp@2131: * EEPROM access and return -E1000_ERR_NVM (-1). fp@2131: **/ fp@2131: s32 e1000e_acquire_nvm(struct e1000_hw *hw) fp@2131: { fp@2131: u32 eecd = er32(EECD); fp@2131: s32 timeout = E1000_NVM_GRANT_ATTEMPTS; fp@2131: fp@2131: ew32(EECD, eecd | E1000_EECD_REQ); fp@2131: eecd = er32(EECD); fp@2131: fp@2131: while (timeout) { fp@2131: if (eecd & E1000_EECD_GNT) fp@2131: break; fp@2131: udelay(5); fp@2131: eecd = er32(EECD); fp@2131: timeout--; fp@2131: } fp@2131: fp@2131: if (!timeout) { fp@2131: eecd &= ~E1000_EECD_REQ; fp@2131: ew32(EECD, eecd); fp@2131: hw_dbg(hw, "Could not acquire NVM grant\n"); fp@2131: return -E1000_ERR_NVM; fp@2131: } fp@2131: fp@2131: return 0; fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000_standby_nvm - Return EEPROM to standby state fp@2131: * @hw: pointer to the HW structure fp@2131: * fp@2131: * Return the EEPROM to a standby state. fp@2131: **/ fp@2131: static void e1000_standby_nvm(struct e1000_hw *hw) fp@2131: { fp@2131: struct e1000_nvm_info *nvm = &hw->nvm; fp@2131: u32 eecd = er32(EECD); fp@2131: fp@2131: if (nvm->type == e1000_nvm_eeprom_spi) { fp@2131: /* Toggle CS to flush commands */ fp@2131: eecd |= E1000_EECD_CS; fp@2131: ew32(EECD, eecd); fp@2131: e1e_flush(); fp@2131: udelay(nvm->delay_usec); fp@2131: eecd &= ~E1000_EECD_CS; fp@2131: ew32(EECD, eecd); fp@2131: e1e_flush(); fp@2131: udelay(nvm->delay_usec); fp@2131: } fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000_stop_nvm - Terminate EEPROM command fp@2131: * @hw: pointer to the HW structure fp@2131: * fp@2131: * Terminates the current command by inverting the EEPROM's chip select pin. fp@2131: **/ fp@2131: static void e1000_stop_nvm(struct e1000_hw *hw) fp@2131: { fp@2131: u32 eecd; fp@2131: fp@2131: eecd = er32(EECD); fp@2131: if (hw->nvm.type == e1000_nvm_eeprom_spi) { fp@2131: /* Pull CS high */ fp@2131: eecd |= E1000_EECD_CS; fp@2131: e1000_lower_eec_clk(hw, &eecd); fp@2131: } fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000e_release_nvm - Release exclusive access to EEPROM fp@2131: * @hw: pointer to the HW structure fp@2131: * fp@2131: * Stop any current commands to the EEPROM and clear the EEPROM request bit. fp@2131: **/ fp@2131: void e1000e_release_nvm(struct e1000_hw *hw) fp@2131: { fp@2131: u32 eecd; fp@2131: fp@2131: e1000_stop_nvm(hw); fp@2131: fp@2131: eecd = er32(EECD); fp@2131: eecd &= ~E1000_EECD_REQ; fp@2131: ew32(EECD, eecd); fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write fp@2131: * @hw: pointer to the HW structure fp@2131: * fp@2131: * Setups the EEPROM for reading and writing. fp@2131: **/ fp@2131: static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw) fp@2131: { fp@2131: struct e1000_nvm_info *nvm = &hw->nvm; fp@2131: u32 eecd = er32(EECD); fp@2131: u16 timeout = 0; fp@2131: u8 spi_stat_reg; fp@2131: fp@2131: if (nvm->type == e1000_nvm_eeprom_spi) { fp@2131: /* Clear SK and CS */ fp@2131: eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); fp@2131: ew32(EECD, eecd); fp@2131: udelay(1); fp@2131: timeout = NVM_MAX_RETRY_SPI; fp@2131: fp@2131: /* fp@2131: * Read "Status Register" repeatedly until the LSB is cleared. fp@2131: * The EEPROM will signal that the command has been completed fp@2131: * by clearing bit 0 of the internal status register. If it's fp@2131: * not cleared within 'timeout', then error out. fp@2131: */ fp@2131: while (timeout) { fp@2131: e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI, fp@2131: hw->nvm.opcode_bits); fp@2131: spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8); fp@2131: if (!(spi_stat_reg & NVM_STATUS_RDY_SPI)) fp@2131: break; fp@2131: fp@2131: udelay(5); fp@2131: e1000_standby_nvm(hw); fp@2131: timeout--; fp@2131: } fp@2131: fp@2131: if (!timeout) { fp@2131: hw_dbg(hw, "SPI NVM Status error\n"); fp@2131: return -E1000_ERR_NVM; fp@2131: } fp@2131: } fp@2131: fp@2131: return 0; fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000e_read_nvm_eerd - Reads EEPROM using EERD register fp@2131: * @hw: pointer to the HW structure fp@2131: * @offset: offset of word in the EEPROM to read fp@2131: * @words: number of words to read fp@2131: * @data: word read from the EEPROM fp@2131: * fp@2131: * Reads a 16 bit word from the EEPROM using the EERD register. fp@2131: **/ fp@2131: s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) fp@2131: { fp@2131: struct e1000_nvm_info *nvm = &hw->nvm; fp@2131: u32 i, eerd = 0; fp@2131: s32 ret_val = 0; fp@2131: fp@2131: /* fp@2131: * A check for invalid values: offset too large, too many words, fp@2131: * too many words for the offset, and not enough words. fp@2131: */ fp@2131: if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || fp@2131: (words == 0)) { fp@2131: hw_dbg(hw, "nvm parameter(s) out of bounds\n"); fp@2131: return -E1000_ERR_NVM; fp@2131: } fp@2131: fp@2131: for (i = 0; i < words; i++) { fp@2131: eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) + fp@2131: E1000_NVM_RW_REG_START; fp@2131: fp@2131: ew32(EERD, eerd); fp@2131: ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ); fp@2131: if (ret_val) fp@2131: break; fp@2131: fp@2131: data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA); fp@2131: } fp@2131: fp@2131: return ret_val; fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000e_write_nvm_spi - Write to EEPROM using SPI fp@2131: * @hw: pointer to the HW structure fp@2131: * @offset: offset within the EEPROM to be written to fp@2131: * @words: number of words to write fp@2131: * @data: 16 bit word(s) to be written to the EEPROM fp@2131: * fp@2131: * Writes data to EEPROM at offset using SPI interface. fp@2131: * fp@2131: * If e1000e_update_nvm_checksum is not called after this function , the fp@2131: * EEPROM will most likely contain an invalid checksum. fp@2131: **/ fp@2131: s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) fp@2131: { fp@2131: struct e1000_nvm_info *nvm = &hw->nvm; fp@2131: s32 ret_val; fp@2131: u16 widx = 0; fp@2131: fp@2131: /* fp@2131: * A check for invalid values: offset too large, too many words, fp@2131: * and not enough words. fp@2131: */ fp@2131: if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || fp@2131: (words == 0)) { fp@2131: hw_dbg(hw, "nvm parameter(s) out of bounds\n"); fp@2131: return -E1000_ERR_NVM; fp@2131: } fp@2131: fp@2131: ret_val = nvm->ops.acquire_nvm(hw); fp@2131: if (ret_val) fp@2131: return ret_val; fp@2131: fp@2131: msleep(10); fp@2131: fp@2131: while (widx < words) { fp@2131: u8 write_opcode = NVM_WRITE_OPCODE_SPI; fp@2131: fp@2131: ret_val = e1000_ready_nvm_eeprom(hw); fp@2131: if (ret_val) { fp@2131: nvm->ops.release_nvm(hw); fp@2131: return ret_val; fp@2131: } fp@2131: fp@2131: e1000_standby_nvm(hw); fp@2131: fp@2131: /* Send the WRITE ENABLE command (8 bit opcode) */ fp@2131: e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI, fp@2131: nvm->opcode_bits); fp@2131: fp@2131: e1000_standby_nvm(hw); fp@2131: fp@2131: /* fp@2131: * Some SPI eeproms use the 8th address bit embedded in the fp@2131: * opcode fp@2131: */ fp@2131: if ((nvm->address_bits == 8) && (offset >= 128)) fp@2131: write_opcode |= NVM_A8_OPCODE_SPI; fp@2131: fp@2131: /* Send the Write command (8-bit opcode + addr) */ fp@2131: e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits); fp@2131: e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2), fp@2131: nvm->address_bits); fp@2131: fp@2131: /* Loop to allow for up to whole page write of eeprom */ fp@2131: while (widx < words) { fp@2131: u16 word_out = data[widx]; fp@2131: word_out = (word_out >> 8) | (word_out << 8); fp@2131: e1000_shift_out_eec_bits(hw, word_out, 16); fp@2131: widx++; fp@2131: fp@2131: if ((((offset + widx) * 2) % nvm->page_size) == 0) { fp@2131: e1000_standby_nvm(hw); fp@2131: break; fp@2131: } fp@2131: } fp@2131: } fp@2131: fp@2131: msleep(10); fp@2131: nvm->ops.release_nvm(hw); fp@2131: return 0; fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000e_read_mac_addr - Read device MAC address fp@2131: * @hw: pointer to the HW structure fp@2131: * fp@2131: * Reads the device MAC address from the EEPROM and stores the value. fp@2131: * Since devices with two ports use the same EEPROM, we increment the fp@2131: * last bit in the MAC address for the second port. fp@2131: **/ fp@2131: s32 e1000e_read_mac_addr(struct e1000_hw *hw) fp@2131: { fp@2131: s32 ret_val; fp@2131: u16 offset, nvm_data, i; fp@2131: u16 mac_addr_offset = 0; fp@2131: fp@2131: if (hw->mac.type == e1000_82571) { fp@2131: /* Check for an alternate MAC address. An alternate MAC fp@2131: * address can be setup by pre-boot software and must be fp@2131: * treated like a permanent address and must override the fp@2131: * actual permanent MAC address.*/ fp@2131: ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1, fp@2131: &mac_addr_offset); fp@2131: if (ret_val) { fp@2131: hw_dbg(hw, "NVM Read Error\n"); fp@2131: return ret_val; fp@2131: } fp@2131: if (mac_addr_offset == 0xFFFF) fp@2131: mac_addr_offset = 0; fp@2131: fp@2131: if (mac_addr_offset) { fp@2131: if (hw->bus.func == E1000_FUNC_1) fp@2131: mac_addr_offset += ETH_ALEN/sizeof(u16); fp@2131: fp@2131: /* make sure we have a valid mac address here fp@2131: * before using it */ fp@2131: ret_val = e1000_read_nvm(hw, mac_addr_offset, 1, fp@2131: &nvm_data); fp@2131: if (ret_val) { fp@2131: hw_dbg(hw, "NVM Read Error\n"); fp@2131: return ret_val; fp@2131: } fp@2131: if (nvm_data & 0x0001) fp@2131: mac_addr_offset = 0; fp@2131: } fp@2131: fp@2131: if (mac_addr_offset) fp@2131: hw->dev_spec.e82571.alt_mac_addr_is_present = 1; fp@2131: } fp@2131: fp@2131: for (i = 0; i < ETH_ALEN; i += 2) { fp@2131: offset = mac_addr_offset + (i >> 1); fp@2131: ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data); fp@2131: if (ret_val) { fp@2131: hw_dbg(hw, "NVM Read Error\n"); fp@2131: return ret_val; fp@2131: } fp@2131: hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF); fp@2131: hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8); fp@2131: } fp@2131: fp@2131: /* Flip last bit of mac address if we're on second port */ fp@2131: if (!mac_addr_offset && hw->bus.func == E1000_FUNC_1) fp@2131: hw->mac.perm_addr[5] ^= 1; fp@2131: fp@2131: for (i = 0; i < ETH_ALEN; i++) fp@2131: hw->mac.addr[i] = hw->mac.perm_addr[i]; fp@2131: fp@2131: return 0; fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum fp@2131: * @hw: pointer to the HW structure fp@2131: * fp@2131: * Calculates the EEPROM checksum by reading/adding each word of the EEPROM fp@2131: * and then verifies that the sum of the EEPROM is equal to 0xBABA. fp@2131: **/ fp@2131: s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw) fp@2131: { fp@2131: s32 ret_val; fp@2131: u16 checksum = 0; fp@2131: u16 i, nvm_data; fp@2131: fp@2131: for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { fp@2131: ret_val = e1000_read_nvm(hw, i, 1, &nvm_data); fp@2131: if (ret_val) { fp@2131: hw_dbg(hw, "NVM Read Error\n"); fp@2131: return ret_val; fp@2131: } fp@2131: checksum += nvm_data; fp@2131: } fp@2131: fp@2131: if (checksum != (u16) NVM_SUM) { fp@2131: hw_dbg(hw, "NVM Checksum Invalid\n"); fp@2131: return -E1000_ERR_NVM; fp@2131: } fp@2131: fp@2131: return 0; fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000e_update_nvm_checksum_generic - Update EEPROM checksum fp@2131: * @hw: pointer to the HW structure fp@2131: * fp@2131: * Updates the EEPROM checksum by reading/adding each word of the EEPROM fp@2131: * up to the checksum. Then calculates the EEPROM checksum and writes the fp@2131: * value to the EEPROM. fp@2131: **/ fp@2131: s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw) fp@2131: { fp@2131: s32 ret_val; fp@2131: u16 checksum = 0; fp@2131: u16 i, nvm_data; fp@2131: fp@2131: for (i = 0; i < NVM_CHECKSUM_REG; i++) { fp@2131: ret_val = e1000_read_nvm(hw, i, 1, &nvm_data); fp@2131: if (ret_val) { fp@2131: hw_dbg(hw, "NVM Read Error while updating checksum.\n"); fp@2131: return ret_val; fp@2131: } fp@2131: checksum += nvm_data; fp@2131: } fp@2131: checksum = (u16) NVM_SUM - checksum; fp@2131: ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum); fp@2131: if (ret_val) fp@2131: hw_dbg(hw, "NVM Write Error while updating checksum.\n"); fp@2131: fp@2131: return ret_val; fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000e_reload_nvm - Reloads EEPROM fp@2131: * @hw: pointer to the HW structure fp@2131: * fp@2131: * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the fp@2131: * extended control register. fp@2131: **/ fp@2131: void e1000e_reload_nvm(struct e1000_hw *hw) fp@2131: { fp@2131: u32 ctrl_ext; fp@2131: fp@2131: udelay(10); fp@2131: ctrl_ext = er32(CTRL_EXT); fp@2131: ctrl_ext |= E1000_CTRL_EXT_EE_RST; fp@2131: ew32(CTRL_EXT, ctrl_ext); fp@2131: e1e_flush(); fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000_calculate_checksum - Calculate checksum for buffer fp@2131: * @buffer: pointer to EEPROM fp@2131: * @length: size of EEPROM to calculate a checksum for fp@2131: * fp@2131: * Calculates the checksum for some buffer on a specified length. The fp@2131: * checksum calculated is returned. fp@2131: **/ fp@2131: static u8 e1000_calculate_checksum(u8 *buffer, u32 length) fp@2131: { fp@2131: u32 i; fp@2131: u8 sum = 0; fp@2131: fp@2131: if (!buffer) fp@2131: return 0; fp@2131: fp@2131: for (i = 0; i < length; i++) fp@2131: sum += buffer[i]; fp@2131: fp@2131: return (u8) (0 - sum); fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000_mng_enable_host_if - Checks host interface is enabled fp@2131: * @hw: pointer to the HW structure fp@2131: * fp@2131: * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND fp@2131: * fp@2131: * This function checks whether the HOST IF is enabled for command operation fp@2131: * and also checks whether the previous command is completed. It busy waits fp@2131: * in case of previous command is not completed. fp@2131: **/ fp@2131: static s32 e1000_mng_enable_host_if(struct e1000_hw *hw) fp@2131: { fp@2131: u32 hicr; fp@2131: u8 i; fp@2131: fp@2131: /* Check that the host interface is enabled. */ fp@2131: hicr = er32(HICR); fp@2131: if ((hicr & E1000_HICR_EN) == 0) { fp@2131: hw_dbg(hw, "E1000_HOST_EN bit disabled.\n"); fp@2131: return -E1000_ERR_HOST_INTERFACE_COMMAND; fp@2131: } fp@2131: /* check the previous command is completed */ fp@2131: for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) { fp@2131: hicr = er32(HICR); fp@2131: if (!(hicr & E1000_HICR_C)) fp@2131: break; fp@2131: mdelay(1); fp@2131: } fp@2131: fp@2131: if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) { fp@2131: hw_dbg(hw, "Previous command timeout failed .\n"); fp@2131: return -E1000_ERR_HOST_INTERFACE_COMMAND; fp@2131: } fp@2131: fp@2131: return 0; fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000e_check_mng_mode_generic - check management mode fp@2131: * @hw: pointer to the HW structure fp@2131: * fp@2131: * Reads the firmware semaphore register and returns true (>0) if fp@2131: * manageability is enabled, else false (0). fp@2131: **/ fp@2131: bool e1000e_check_mng_mode_generic(struct e1000_hw *hw) fp@2131: { fp@2131: u32 fwsm = er32(FWSM); fp@2131: fp@2131: return (fwsm & E1000_FWSM_MODE_MASK) == fp@2131: (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT); fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000e_enable_tx_pkt_filtering - Enable packet filtering on Tx fp@2131: * @hw: pointer to the HW structure fp@2131: * fp@2131: * Enables packet filtering on transmit packets if manageability is enabled fp@2131: * and host interface is enabled. fp@2131: **/ fp@2131: bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw) fp@2131: { fp@2131: struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie; fp@2131: u32 *buffer = (u32 *)&hw->mng_cookie; fp@2131: u32 offset; fp@2131: s32 ret_val, hdr_csum, csum; fp@2131: u8 i, len; fp@2131: fp@2131: /* No manageability, no filtering */ fp@2131: if (!e1000e_check_mng_mode(hw)) { fp@2131: hw->mac.tx_pkt_filtering = 0; fp@2131: return 0; fp@2131: } fp@2131: fp@2131: /* fp@2131: * If we can't read from the host interface for whatever fp@2131: * reason, disable filtering. fp@2131: */ fp@2131: ret_val = e1000_mng_enable_host_if(hw); fp@2131: if (ret_val != 0) { fp@2131: hw->mac.tx_pkt_filtering = 0; fp@2131: return ret_val; fp@2131: } fp@2131: fp@2131: /* Read in the header. Length and offset are in dwords. */ fp@2131: len = E1000_MNG_DHCP_COOKIE_LENGTH >> 2; fp@2131: offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2; fp@2131: for (i = 0; i < len; i++) fp@2131: *(buffer + i) = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset + i); fp@2131: hdr_csum = hdr->checksum; fp@2131: hdr->checksum = 0; fp@2131: csum = e1000_calculate_checksum((u8 *)hdr, fp@2131: E1000_MNG_DHCP_COOKIE_LENGTH); fp@2131: /* fp@2131: * If either the checksums or signature don't match, then fp@2131: * the cookie area isn't considered valid, in which case we fp@2131: * take the safe route of assuming Tx filtering is enabled. fp@2131: */ fp@2131: if ((hdr_csum != csum) || (hdr->signature != E1000_IAMT_SIGNATURE)) { fp@2131: hw->mac.tx_pkt_filtering = 1; fp@2131: return 1; fp@2131: } fp@2131: fp@2131: /* Cookie area is valid, make the final check for filtering. */ fp@2131: if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING)) { fp@2131: hw->mac.tx_pkt_filtering = 0; fp@2131: return 0; fp@2131: } fp@2131: fp@2131: hw->mac.tx_pkt_filtering = 1; fp@2131: return 1; fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000_mng_write_cmd_header - Writes manageability command header fp@2131: * @hw: pointer to the HW structure fp@2131: * @hdr: pointer to the host interface command header fp@2131: * fp@2131: * Writes the command header after does the checksum calculation. fp@2131: **/ fp@2131: static s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, fp@2131: struct e1000_host_mng_command_header *hdr) fp@2131: { fp@2131: u16 i, length = sizeof(struct e1000_host_mng_command_header); fp@2131: fp@2131: /* Write the whole command header structure with new checksum. */ fp@2131: fp@2131: hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length); fp@2131: fp@2131: length >>= 2; fp@2131: /* Write the relevant command block into the ram area. */ fp@2131: for (i = 0; i < length; i++) { fp@2131: E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, i, fp@2131: *((u32 *) hdr + i)); fp@2131: e1e_flush(); fp@2131: } fp@2131: fp@2131: return 0; fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000_mng_host_if_write - Writes to the manageability host interface fp@2131: * @hw: pointer to the HW structure fp@2131: * @buffer: pointer to the host interface buffer fp@2131: * @length: size of the buffer fp@2131: * @offset: location in the buffer to write to fp@2131: * @sum: sum of the data (not checksum) fp@2131: * fp@2131: * This function writes the buffer content at the offset given on the host if. fp@2131: * It also does alignment considerations to do the writes in most efficient fp@2131: * way. Also fills up the sum of the buffer in *buffer parameter. fp@2131: **/ fp@2131: static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, fp@2131: u16 length, u16 offset, u8 *sum) fp@2131: { fp@2131: u8 *tmp; fp@2131: u8 *bufptr = buffer; fp@2131: u32 data = 0; fp@2131: u16 remaining, i, j, prev_bytes; fp@2131: fp@2131: /* sum = only sum of the data and it is not checksum */ fp@2131: fp@2131: if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) fp@2131: return -E1000_ERR_PARAM; fp@2131: fp@2131: tmp = (u8 *)&data; fp@2131: prev_bytes = offset & 0x3; fp@2131: offset >>= 2; fp@2131: fp@2131: if (prev_bytes) { fp@2131: data = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset); fp@2131: for (j = prev_bytes; j < sizeof(u32); j++) { fp@2131: *(tmp + j) = *bufptr++; fp@2131: *sum += *(tmp + j); fp@2131: } fp@2131: E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset, data); fp@2131: length -= j - prev_bytes; fp@2131: offset++; fp@2131: } fp@2131: fp@2131: remaining = length & 0x3; fp@2131: length -= remaining; fp@2131: fp@2131: /* Calculate length in DWORDs */ fp@2131: length >>= 2; fp@2131: fp@2131: /* fp@2131: * The device driver writes the relevant command block into the fp@2131: * ram area. fp@2131: */ fp@2131: for (i = 0; i < length; i++) { fp@2131: for (j = 0; j < sizeof(u32); j++) { fp@2131: *(tmp + j) = *bufptr++; fp@2131: *sum += *(tmp + j); fp@2131: } fp@2131: fp@2131: E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data); fp@2131: } fp@2131: if (remaining) { fp@2131: for (j = 0; j < sizeof(u32); j++) { fp@2131: if (j < remaining) fp@2131: *(tmp + j) = *bufptr++; fp@2131: else fp@2131: *(tmp + j) = 0; fp@2131: fp@2131: *sum += *(tmp + j); fp@2131: } fp@2131: E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data); fp@2131: } fp@2131: fp@2131: return 0; fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000e_mng_write_dhcp_info - Writes DHCP info to host interface fp@2131: * @hw: pointer to the HW structure fp@2131: * @buffer: pointer to the host interface fp@2131: * @length: size of the buffer fp@2131: * fp@2131: * Writes the DHCP information to the host interface. fp@2131: **/ fp@2131: s32 e1000e_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length) fp@2131: { fp@2131: struct e1000_host_mng_command_header hdr; fp@2131: s32 ret_val; fp@2131: u32 hicr; fp@2131: fp@2131: hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD; fp@2131: hdr.command_length = length; fp@2131: hdr.reserved1 = 0; fp@2131: hdr.reserved2 = 0; fp@2131: hdr.checksum = 0; fp@2131: fp@2131: /* Enable the host interface */ fp@2131: ret_val = e1000_mng_enable_host_if(hw); fp@2131: if (ret_val) fp@2131: return ret_val; fp@2131: fp@2131: /* Populate the host interface with the contents of "buffer". */ fp@2131: ret_val = e1000_mng_host_if_write(hw, buffer, length, fp@2131: sizeof(hdr), &(hdr.checksum)); fp@2131: if (ret_val) fp@2131: return ret_val; fp@2131: fp@2131: /* Write the manageability command header */ fp@2131: ret_val = e1000_mng_write_cmd_header(hw, &hdr); fp@2131: if (ret_val) fp@2131: return ret_val; fp@2131: fp@2131: /* Tell the ARC a new command is pending. */ fp@2131: hicr = er32(HICR); fp@2131: ew32(HICR, hicr | E1000_HICR_C); fp@2131: fp@2131: return 0; fp@2131: } fp@2131: fp@2131: /** fp@2131: * e1000e_enable_mng_pass_thru - Enable processing of ARP's fp@2131: * @hw: pointer to the HW structure fp@2131: * fp@2131: * Verifies the hardware needs to allow ARPs to be processed by the host. fp@2131: **/ fp@2131: bool e1000e_enable_mng_pass_thru(struct e1000_hw *hw) fp@2131: { fp@2131: u32 manc; fp@2131: u32 fwsm, factps; fp@2131: bool ret_val = 0; fp@2131: fp@2131: manc = er32(MANC); fp@2131: fp@2131: if (!(manc & E1000_MANC_RCV_TCO_EN) || fp@2131: !(manc & E1000_MANC_EN_MAC_ADDR_FILTER)) fp@2131: return ret_val; fp@2131: fp@2131: if (hw->mac.arc_subsystem_valid) { fp@2131: fwsm = er32(FWSM); fp@2131: factps = er32(FACTPS); fp@2131: fp@2131: if (!(factps & E1000_FACTPS_MNGCG) && fp@2131: ((fwsm & E1000_FWSM_MODE_MASK) == fp@2131: (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) { fp@2131: ret_val = 1; fp@2131: return ret_val; fp@2131: } fp@2131: } else { fp@2131: if ((manc & E1000_MANC_SMBUS_EN) && fp@2131: !(manc & E1000_MANC_ASF_EN)) { fp@2131: ret_val = 1; fp@2131: return ret_val; fp@2131: } fp@2131: } fp@2131: fp@2131: return ret_val; fp@2131: } fp@2131: fp@2131: s32 e1000e_read_pba_num(struct e1000_hw *hw, u32 *pba_num) fp@2131: { fp@2131: s32 ret_val; fp@2131: u16 nvm_data; fp@2131: fp@2131: ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); fp@2131: if (ret_val) { fp@2131: hw_dbg(hw, "NVM Read Error\n"); fp@2131: return ret_val; fp@2131: } fp@2131: *pba_num = (u32)(nvm_data << 16); fp@2131: fp@2131: ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &nvm_data); fp@2131: if (ret_val) { fp@2131: hw_dbg(hw, "NVM Read Error\n"); fp@2131: return ret_val; fp@2131: } fp@2131: *pba_num |= nvm_data; fp@2131: fp@2131: return 0; fp@2131: }