fp@2685: /* Intel(R) Gigabit Ethernet Linux driver fp@2685: * Copyright(c) 2007-2014 Intel Corporation. fp@2685: * fp@2685: * This program is free software; you can redistribute it and/or modify it fp@2685: * under the terms and conditions of the GNU General Public License, fp@2685: * version 2, as published by the Free Software Foundation. fp@2685: * fp@2685: * This program is distributed in the hope it will be useful, but WITHOUT fp@2685: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or fp@2685: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for fp@2685: * more details. fp@2685: * fp@2685: * You should have received a copy of the GNU General Public License along with fp@2685: * this program; if not, see . fp@2685: * fp@2685: * The full GNU General Public License is included in this distribution in fp@2685: * the file called "COPYING". fp@2685: * fp@2685: * Contact Information: fp@2685: * e1000-devel Mailing List fp@2685: * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 fp@2686: * fp@2686: * vim: noexpandtab fp@2685: */ fp@2685: fp@2685: #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt fp@2685: fp@2685: #include fp@2685: #include fp@2685: #include fp@2685: #include fp@2685: #include fp@2685: #include fp@2685: #include fp@2685: #include fp@2685: #include fp@2685: #include fp@2685: #include fp@2685: #include fp@2685: #include fp@2685: #include fp@2685: #include fp@2685: #include fp@2685: #include fp@2685: #include fp@2685: #include fp@2685: #include fp@2685: #include fp@2685: #include fp@2685: #include fp@2685: #include fp@2685: #include fp@2685: #include fp@2685: #include fp@2685: #ifdef CONFIG_IGB_DCA fp@2685: #include fp@2685: #endif fp@2685: #include fp@2685: #include "igb-3.18-ethercat.h" fp@2685: fp@2685: #define MAJ 5 fp@2685: #define MIN 2 fp@2685: #define BUILD 15 fp@2685: #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \ fp@2686: __stringify(BUILD) "-k-EtherCAT" fp@2686: char igb_driver_name[] = "ec_igb"; fp@2685: char igb_driver_version[] = DRV_VERSION; fp@2685: static const char igb_driver_string[] = fp@2686: "Intel(R) Gigabit Ethernet Network Driver (EtherCAT-enabled)"; fp@2685: static const char igb_copyright[] = fp@2685: "Copyright (c) 2007-2014 Intel Corporation."; fp@2685: fp@2685: static const struct e1000_info *igb_info_tbl[] = { fp@2685: [board_82575] = &e1000_82575_info, fp@2685: }; fp@2685: fp@2685: static const struct pci_device_id igb_pci_tbl[] = { fp@2685: { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) }, fp@2685: { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) }, fp@2685: { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) }, fp@2685: { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 }, fp@2685: { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 }, fp@2685: { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 }, fp@2685: { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 }, fp@2685: { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 }, fp@2685: { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 }, fp@2685: { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 }, fp@2685: { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 }, fp@2685: { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 }, fp@2685: { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 }, fp@2685: { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 }, fp@2685: { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 }, fp@2685: { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 }, fp@2685: { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 }, fp@2685: { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 }, fp@2685: { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 }, fp@2685: { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 }, fp@2685: { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 }, fp@2685: { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 }, fp@2685: { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 }, fp@2685: { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 }, fp@2685: { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 }, fp@2685: { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 }, fp@2685: { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 }, fp@2685: { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 }, fp@2685: { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 }, fp@2685: { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 }, fp@2685: { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 }, fp@2685: { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 }, fp@2685: { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 }, fp@2685: { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 }, fp@2685: { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 }, fp@2685: /* required last entry */ fp@2685: {0, } fp@2685: }; fp@2685: fp@2686: // MODULE_DEVICE_TABLE(pci, igb_pci_tbl); fp@2685: fp@2685: static int igb_setup_all_tx_resources(struct igb_adapter *); fp@2685: static int igb_setup_all_rx_resources(struct igb_adapter *); fp@2685: static void igb_free_all_tx_resources(struct igb_adapter *); fp@2685: static void igb_free_all_rx_resources(struct igb_adapter *); fp@2685: static void igb_setup_mrqc(struct igb_adapter *); fp@2685: static int igb_probe(struct pci_dev *, const struct pci_device_id *); fp@2685: static void igb_remove(struct pci_dev *pdev); fp@2685: static int igb_sw_init(struct igb_adapter *); fp@2685: static int igb_open(struct net_device *); fp@2685: static int igb_close(struct net_device *); fp@2685: static void igb_configure(struct igb_adapter *); fp@2685: static void igb_configure_tx(struct igb_adapter *); fp@2685: static void igb_configure_rx(struct igb_adapter *); fp@2685: static void igb_clean_all_tx_rings(struct igb_adapter *); fp@2685: static void igb_clean_all_rx_rings(struct igb_adapter *); fp@2685: static void igb_clean_tx_ring(struct igb_ring *); fp@2685: static void igb_clean_rx_ring(struct igb_ring *); fp@2685: static void igb_set_rx_mode(struct net_device *); fp@2685: static void igb_update_phy_info(unsigned long); fp@2685: static void igb_watchdog(unsigned long); fp@2685: static void igb_watchdog_task(struct work_struct *); fp@2685: static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *); fp@2685: static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev, fp@2685: struct rtnl_link_stats64 *stats); fp@2685: static int igb_change_mtu(struct net_device *, int); fp@2685: static int igb_set_mac(struct net_device *, void *); fp@2685: static void igb_set_uta(struct igb_adapter *adapter); fp@2685: static irqreturn_t igb_intr(int irq, void *); fp@2685: static irqreturn_t igb_intr_msi(int irq, void *); fp@2685: static irqreturn_t igb_msix_other(int irq, void *); fp@2685: static irqreturn_t igb_msix_ring(int irq, void *); fp@2685: #ifdef CONFIG_IGB_DCA fp@2685: static void igb_update_dca(struct igb_q_vector *); fp@2685: static void igb_setup_dca(struct igb_adapter *); fp@2685: #endif /* CONFIG_IGB_DCA */ fp@2685: static int igb_poll(struct napi_struct *, int); fp@2685: static bool igb_clean_tx_irq(struct igb_q_vector *); fp@2685: static bool igb_clean_rx_irq(struct igb_q_vector *, int); fp@2685: static int igb_ioctl(struct net_device *, struct ifreq *, int cmd); fp@2685: static void igb_tx_timeout(struct net_device *); fp@2685: static void igb_reset_task(struct work_struct *); fp@2685: static void igb_vlan_mode(struct net_device *netdev, fp@2685: netdev_features_t features); fp@2685: static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16); fp@2685: static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16); fp@2685: static void igb_restore_vlan(struct igb_adapter *); fp@2685: static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8); fp@2685: static void igb_ping_all_vfs(struct igb_adapter *); fp@2685: static void igb_msg_task(struct igb_adapter *); fp@2685: static void igb_vmm_control(struct igb_adapter *); fp@2685: static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *); fp@2685: static void igb_restore_vf_multicasts(struct igb_adapter *adapter); fp@2685: static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac); fp@2685: static int igb_ndo_set_vf_vlan(struct net_device *netdev, fp@2685: int vf, u16 vlan, u8 qos); fp@2685: static int igb_ndo_set_vf_bw(struct net_device *, int, int, int); fp@2685: static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf, fp@2685: bool setting); fp@2685: static int igb_ndo_get_vf_config(struct net_device *netdev, int vf, fp@2685: struct ifla_vf_info *ivi); fp@2685: static void igb_check_vf_rate_limit(struct igb_adapter *); fp@2685: fp@2685: #ifdef CONFIG_PCI_IOV fp@2685: static int igb_vf_configure(struct igb_adapter *adapter, int vf); fp@2685: static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs); fp@2685: #endif fp@2685: fp@2685: #ifdef CONFIG_PM fp@2685: #ifdef CONFIG_PM_SLEEP fp@2685: static int igb_suspend(struct device *); fp@2685: #endif fp@2685: static int igb_resume(struct device *); fp@2685: #ifdef CONFIG_PM_RUNTIME fp@2685: static int igb_runtime_suspend(struct device *dev); fp@2685: static int igb_runtime_resume(struct device *dev); fp@2685: static int igb_runtime_idle(struct device *dev); fp@2685: #endif fp@2685: static const struct dev_pm_ops igb_pm_ops = { fp@2685: SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume) fp@2685: SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume, fp@2685: igb_runtime_idle) fp@2685: }; fp@2685: #endif fp@2685: static void igb_shutdown(struct pci_dev *); fp@2685: static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs); fp@2685: #ifdef CONFIG_IGB_DCA fp@2685: static int igb_notify_dca(struct notifier_block *, unsigned long, void *); fp@2685: static struct notifier_block dca_notifier = { fp@2685: .notifier_call = igb_notify_dca, fp@2685: .next = NULL, fp@2685: .priority = 0 fp@2685: }; fp@2685: #endif fp@2685: #ifdef CONFIG_NET_POLL_CONTROLLER fp@2685: /* for netdump / net console */ fp@2685: static void igb_netpoll(struct net_device *); fp@2685: #endif fp@2685: #ifdef CONFIG_PCI_IOV fp@2685: static unsigned int max_vfs; fp@2685: module_param(max_vfs, uint, 0); fp@2685: MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function"); fp@2685: #endif /* CONFIG_PCI_IOV */ fp@2685: fp@2685: static pci_ers_result_t igb_io_error_detected(struct pci_dev *, fp@2685: pci_channel_state_t); fp@2685: static pci_ers_result_t igb_io_slot_reset(struct pci_dev *); fp@2685: static void igb_io_resume(struct pci_dev *); fp@2685: fp@2685: static const struct pci_error_handlers igb_err_handler = { fp@2685: .error_detected = igb_io_error_detected, fp@2685: .slot_reset = igb_io_slot_reset, fp@2685: .resume = igb_io_resume, fp@2685: }; fp@2685: fp@2685: static void igb_init_dmac(struct igb_adapter *adapter, u32 pba); fp@2685: fp@2685: static struct pci_driver igb_driver = { fp@2685: .name = igb_driver_name, fp@2685: .id_table = igb_pci_tbl, fp@2685: .probe = igb_probe, fp@2685: .remove = igb_remove, fp@2685: #ifdef CONFIG_PM fp@2685: .driver.pm = &igb_pm_ops, fp@2685: #endif fp@2685: .shutdown = igb_shutdown, fp@2685: .sriov_configure = igb_pci_sriov_configure, fp@2685: .err_handler = &igb_err_handler fp@2685: }; fp@2685: fp@2685: MODULE_AUTHOR("Intel Corporation, "); fp@2685: MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver"); fp@2685: MODULE_LICENSE("GPL"); fp@2685: MODULE_VERSION(DRV_VERSION); fp@2685: fp@2685: #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) fp@2685: static int debug = -1; fp@2685: module_param(debug, int, 0); fp@2685: MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); fp@2685: fp@2685: struct igb_reg_info { fp@2685: u32 ofs; fp@2685: char *name; fp@2685: }; fp@2685: fp@2685: static const struct igb_reg_info igb_reg_info_tbl[] = { fp@2685: fp@2685: /* General Registers */ fp@2685: {E1000_CTRL, "CTRL"}, fp@2685: {E1000_STATUS, "STATUS"}, fp@2685: {E1000_CTRL_EXT, "CTRL_EXT"}, fp@2685: fp@2685: /* Interrupt Registers */ fp@2685: {E1000_ICR, "ICR"}, fp@2685: fp@2685: /* RX Registers */ fp@2685: {E1000_RCTL, "RCTL"}, fp@2685: {E1000_RDLEN(0), "RDLEN"}, fp@2685: {E1000_RDH(0), "RDH"}, fp@2685: {E1000_RDT(0), "RDT"}, fp@2685: {E1000_RXDCTL(0), "RXDCTL"}, fp@2685: {E1000_RDBAL(0), "RDBAL"}, fp@2685: {E1000_RDBAH(0), "RDBAH"}, fp@2685: fp@2685: /* TX Registers */ fp@2685: {E1000_TCTL, "TCTL"}, fp@2685: {E1000_TDBAL(0), "TDBAL"}, fp@2685: {E1000_TDBAH(0), "TDBAH"}, fp@2685: {E1000_TDLEN(0), "TDLEN"}, fp@2685: {E1000_TDH(0), "TDH"}, fp@2685: {E1000_TDT(0), "TDT"}, fp@2685: {E1000_TXDCTL(0), "TXDCTL"}, fp@2685: {E1000_TDFH, "TDFH"}, fp@2685: {E1000_TDFT, "TDFT"}, fp@2685: {E1000_TDFHS, "TDFHS"}, fp@2685: {E1000_TDFPC, "TDFPC"}, fp@2685: fp@2685: /* List Terminator */ fp@2685: {} fp@2685: }; fp@2685: fp@2685: /* igb_regdump - register printout routine */ fp@2685: static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo) fp@2685: { fp@2685: int n = 0; fp@2685: char rname[16]; fp@2685: u32 regs[8]; fp@2685: fp@2685: switch (reginfo->ofs) { fp@2685: case E1000_RDLEN(0): fp@2685: for (n = 0; n < 4; n++) fp@2685: regs[n] = rd32(E1000_RDLEN(n)); fp@2685: break; fp@2685: case E1000_RDH(0): fp@2685: for (n = 0; n < 4; n++) fp@2685: regs[n] = rd32(E1000_RDH(n)); fp@2685: break; fp@2685: case E1000_RDT(0): fp@2685: for (n = 0; n < 4; n++) fp@2685: regs[n] = rd32(E1000_RDT(n)); fp@2685: break; fp@2685: case E1000_RXDCTL(0): fp@2685: for (n = 0; n < 4; n++) fp@2685: regs[n] = rd32(E1000_RXDCTL(n)); fp@2685: break; fp@2685: case E1000_RDBAL(0): fp@2685: for (n = 0; n < 4; n++) fp@2685: regs[n] = rd32(E1000_RDBAL(n)); fp@2685: break; fp@2685: case E1000_RDBAH(0): fp@2685: for (n = 0; n < 4; n++) fp@2685: regs[n] = rd32(E1000_RDBAH(n)); fp@2685: break; fp@2685: case E1000_TDBAL(0): fp@2685: for (n = 0; n < 4; n++) fp@2685: regs[n] = rd32(E1000_RDBAL(n)); fp@2685: break; fp@2685: case E1000_TDBAH(0): fp@2685: for (n = 0; n < 4; n++) fp@2685: regs[n] = rd32(E1000_TDBAH(n)); fp@2685: break; fp@2685: case E1000_TDLEN(0): fp@2685: for (n = 0; n < 4; n++) fp@2685: regs[n] = rd32(E1000_TDLEN(n)); fp@2685: break; fp@2685: case E1000_TDH(0): fp@2685: for (n = 0; n < 4; n++) fp@2685: regs[n] = rd32(E1000_TDH(n)); fp@2685: break; fp@2685: case E1000_TDT(0): fp@2685: for (n = 0; n < 4; n++) fp@2685: regs[n] = rd32(E1000_TDT(n)); fp@2685: break; fp@2685: case E1000_TXDCTL(0): fp@2685: for (n = 0; n < 4; n++) fp@2685: regs[n] = rd32(E1000_TXDCTL(n)); fp@2685: break; fp@2685: default: fp@2685: pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs)); fp@2685: return; fp@2685: } fp@2685: fp@2685: snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]"); fp@2685: pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1], fp@2685: regs[2], regs[3]); fp@2685: } fp@2685: fp@2685: /* igb_dump - Print registers, Tx-rings and Rx-rings */ fp@2685: static void igb_dump(struct igb_adapter *adapter) fp@2685: { fp@2685: struct net_device *netdev = adapter->netdev; fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: struct igb_reg_info *reginfo; fp@2685: struct igb_ring *tx_ring; fp@2685: union e1000_adv_tx_desc *tx_desc; fp@2685: struct my_u0 { u64 a; u64 b; } *u0; fp@2685: struct igb_ring *rx_ring; fp@2685: union e1000_adv_rx_desc *rx_desc; fp@2685: u32 staterr; fp@2685: u16 i, n; fp@2685: fp@2685: if (!netif_msg_hw(adapter)) fp@2685: return; fp@2685: fp@2685: /* Print netdevice Info */ fp@2685: if (netdev) { fp@2685: dev_info(&adapter->pdev->dev, "Net device Info\n"); fp@2685: pr_info("Device Name state trans_start last_rx\n"); fp@2685: pr_info("%-15s %016lX %016lX %016lX\n", netdev->name, fp@2685: netdev->state, netdev->trans_start, netdev->last_rx); fp@2685: } fp@2685: fp@2685: /* Print Registers */ fp@2685: dev_info(&adapter->pdev->dev, "Register Dump\n"); fp@2685: pr_info(" Register Name Value\n"); fp@2685: for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl; fp@2685: reginfo->name; reginfo++) { fp@2685: igb_regdump(hw, reginfo); fp@2685: } fp@2685: fp@2685: /* Print TX Ring Summary */ fp@2685: if (!netdev || !netif_running(netdev)) fp@2685: goto exit; fp@2685: fp@2685: dev_info(&adapter->pdev->dev, "TX Rings Summary\n"); fp@2685: pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n"); fp@2685: for (n = 0; n < adapter->num_tx_queues; n++) { fp@2685: struct igb_tx_buffer *buffer_info; fp@2685: tx_ring = adapter->tx_ring[n]; fp@2685: buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean]; fp@2685: pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n", fp@2685: n, tx_ring->next_to_use, tx_ring->next_to_clean, fp@2685: (u64)dma_unmap_addr(buffer_info, dma), fp@2685: dma_unmap_len(buffer_info, len), fp@2685: buffer_info->next_to_watch, fp@2685: (u64)buffer_info->time_stamp); fp@2685: } fp@2685: fp@2685: /* Print TX Rings */ fp@2685: if (!netif_msg_tx_done(adapter)) fp@2685: goto rx_ring_summary; fp@2685: fp@2685: dev_info(&adapter->pdev->dev, "TX Rings Dump\n"); fp@2685: fp@2685: /* Transmit Descriptor Formats fp@2685: * fp@2685: * Advanced Transmit Descriptor fp@2685: * +--------------------------------------------------------------+ fp@2685: * 0 | Buffer Address [63:0] | fp@2685: * +--------------------------------------------------------------+ fp@2685: * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN | fp@2685: * +--------------------------------------------------------------+ fp@2685: * 63 46 45 40 39 38 36 35 32 31 24 15 0 fp@2685: */ fp@2685: fp@2685: for (n = 0; n < adapter->num_tx_queues; n++) { fp@2685: tx_ring = adapter->tx_ring[n]; fp@2685: pr_info("------------------------------------\n"); fp@2685: pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index); fp@2685: pr_info("------------------------------------\n"); fp@2685: pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n"); fp@2685: fp@2685: for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { fp@2685: const char *next_desc; fp@2685: struct igb_tx_buffer *buffer_info; fp@2685: tx_desc = IGB_TX_DESC(tx_ring, i); fp@2685: buffer_info = &tx_ring->tx_buffer_info[i]; fp@2685: u0 = (struct my_u0 *)tx_desc; fp@2685: if (i == tx_ring->next_to_use && fp@2685: i == tx_ring->next_to_clean) fp@2685: next_desc = " NTC/U"; fp@2685: else if (i == tx_ring->next_to_use) fp@2685: next_desc = " NTU"; fp@2685: else if (i == tx_ring->next_to_clean) fp@2685: next_desc = " NTC"; fp@2685: else fp@2685: next_desc = ""; fp@2685: fp@2685: pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n", fp@2685: i, le64_to_cpu(u0->a), fp@2685: le64_to_cpu(u0->b), fp@2685: (u64)dma_unmap_addr(buffer_info, dma), fp@2685: dma_unmap_len(buffer_info, len), fp@2685: buffer_info->next_to_watch, fp@2685: (u64)buffer_info->time_stamp, fp@2685: buffer_info->skb, next_desc); fp@2685: fp@2685: if (netif_msg_pktdata(adapter) && buffer_info->skb) fp@2685: print_hex_dump(KERN_INFO, "", fp@2685: DUMP_PREFIX_ADDRESS, fp@2685: 16, 1, buffer_info->skb->data, fp@2685: dma_unmap_len(buffer_info, len), fp@2685: true); fp@2685: } fp@2685: } fp@2685: fp@2685: /* Print RX Rings Summary */ fp@2685: rx_ring_summary: fp@2685: dev_info(&adapter->pdev->dev, "RX Rings Summary\n"); fp@2685: pr_info("Queue [NTU] [NTC]\n"); fp@2685: for (n = 0; n < adapter->num_rx_queues; n++) { fp@2685: rx_ring = adapter->rx_ring[n]; fp@2685: pr_info(" %5d %5X %5X\n", fp@2685: n, rx_ring->next_to_use, rx_ring->next_to_clean); fp@2685: } fp@2685: fp@2685: /* Print RX Rings */ fp@2685: if (!netif_msg_rx_status(adapter)) fp@2685: goto exit; fp@2685: fp@2685: dev_info(&adapter->pdev->dev, "RX Rings Dump\n"); fp@2685: fp@2685: /* Advanced Receive Descriptor (Read) Format fp@2685: * 63 1 0 fp@2685: * +-----------------------------------------------------+ fp@2685: * 0 | Packet Buffer Address [63:1] |A0/NSE| fp@2685: * +----------------------------------------------+------+ fp@2685: * 8 | Header Buffer Address [63:1] | DD | fp@2685: * +-----------------------------------------------------+ fp@2685: * fp@2685: * fp@2685: * Advanced Receive Descriptor (Write-Back) Format fp@2685: * fp@2685: * 63 48 47 32 31 30 21 20 17 16 4 3 0 fp@2685: * +------------------------------------------------------+ fp@2685: * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS | fp@2685: * | Checksum Ident | | | | Type | Type | fp@2685: * +------------------------------------------------------+ fp@2685: * 8 | VLAN Tag | Length | Extended Error | Extended Status | fp@2685: * +------------------------------------------------------+ fp@2685: * 63 48 47 32 31 20 19 0 fp@2685: */ fp@2685: fp@2685: for (n = 0; n < adapter->num_rx_queues; n++) { fp@2685: rx_ring = adapter->rx_ring[n]; fp@2685: pr_info("------------------------------------\n"); fp@2685: pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index); fp@2685: pr_info("------------------------------------\n"); fp@2685: pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n"); fp@2685: pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n"); fp@2685: fp@2685: for (i = 0; i < rx_ring->count; i++) { fp@2685: const char *next_desc; fp@2685: struct igb_rx_buffer *buffer_info; fp@2685: buffer_info = &rx_ring->rx_buffer_info[i]; fp@2685: rx_desc = IGB_RX_DESC(rx_ring, i); fp@2685: u0 = (struct my_u0 *)rx_desc; fp@2685: staterr = le32_to_cpu(rx_desc->wb.upper.status_error); fp@2685: fp@2685: if (i == rx_ring->next_to_use) fp@2685: next_desc = " NTU"; fp@2685: else if (i == rx_ring->next_to_clean) fp@2685: next_desc = " NTC"; fp@2685: else fp@2685: next_desc = ""; fp@2685: fp@2685: if (staterr & E1000_RXD_STAT_DD) { fp@2685: /* Descriptor Done */ fp@2685: pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n", fp@2685: "RWB", i, fp@2685: le64_to_cpu(u0->a), fp@2685: le64_to_cpu(u0->b), fp@2685: next_desc); fp@2685: } else { fp@2685: pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n", fp@2685: "R ", i, fp@2685: le64_to_cpu(u0->a), fp@2685: le64_to_cpu(u0->b), fp@2685: (u64)buffer_info->dma, fp@2685: next_desc); fp@2685: fp@2685: if (netif_msg_pktdata(adapter) && fp@2685: buffer_info->dma && buffer_info->page) { fp@2685: print_hex_dump(KERN_INFO, "", fp@2685: DUMP_PREFIX_ADDRESS, fp@2685: 16, 1, fp@2685: page_address(buffer_info->page) + fp@2685: buffer_info->page_offset, fp@2685: IGB_RX_BUFSZ, true); fp@2685: } fp@2685: } fp@2685: } fp@2685: } fp@2685: fp@2685: exit: fp@2685: return; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_get_i2c_data - Reads the I2C SDA data bit fp@2685: * @hw: pointer to hardware structure fp@2685: * @i2cctl: Current value of I2CCTL register fp@2685: * fp@2685: * Returns the I2C data bit value fp@2685: **/ fp@2685: static int igb_get_i2c_data(void *data) fp@2685: { fp@2685: struct igb_adapter *adapter = (struct igb_adapter *)data; fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: s32 i2cctl = rd32(E1000_I2CPARAMS); fp@2685: fp@2685: return !!(i2cctl & E1000_I2C_DATA_IN); fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_set_i2c_data - Sets the I2C data bit fp@2685: * @data: pointer to hardware structure fp@2685: * @state: I2C data value (0 or 1) to set fp@2685: * fp@2685: * Sets the I2C data bit fp@2685: **/ fp@2685: static void igb_set_i2c_data(void *data, int state) fp@2685: { fp@2685: struct igb_adapter *adapter = (struct igb_adapter *)data; fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: s32 i2cctl = rd32(E1000_I2CPARAMS); fp@2685: fp@2685: if (state) fp@2685: i2cctl |= E1000_I2C_DATA_OUT; fp@2685: else fp@2685: i2cctl &= ~E1000_I2C_DATA_OUT; fp@2685: fp@2685: i2cctl &= ~E1000_I2C_DATA_OE_N; fp@2685: i2cctl |= E1000_I2C_CLK_OE_N; fp@2685: wr32(E1000_I2CPARAMS, i2cctl); fp@2685: wrfl(); fp@2685: fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_set_i2c_clk - Sets the I2C SCL clock fp@2685: * @data: pointer to hardware structure fp@2685: * @state: state to set clock fp@2685: * fp@2685: * Sets the I2C clock line to state fp@2685: **/ fp@2685: static void igb_set_i2c_clk(void *data, int state) fp@2685: { fp@2685: struct igb_adapter *adapter = (struct igb_adapter *)data; fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: s32 i2cctl = rd32(E1000_I2CPARAMS); fp@2685: fp@2685: if (state) { fp@2685: i2cctl |= E1000_I2C_CLK_OUT; fp@2685: i2cctl &= ~E1000_I2C_CLK_OE_N; fp@2685: } else { fp@2685: i2cctl &= ~E1000_I2C_CLK_OUT; fp@2685: i2cctl &= ~E1000_I2C_CLK_OE_N; fp@2685: } fp@2685: wr32(E1000_I2CPARAMS, i2cctl); fp@2685: wrfl(); fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_get_i2c_clk - Gets the I2C SCL clock state fp@2685: * @data: pointer to hardware structure fp@2685: * fp@2685: * Gets the I2C clock state fp@2685: **/ fp@2685: static int igb_get_i2c_clk(void *data) fp@2685: { fp@2685: struct igb_adapter *adapter = (struct igb_adapter *)data; fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: s32 i2cctl = rd32(E1000_I2CPARAMS); fp@2685: fp@2685: return !!(i2cctl & E1000_I2C_CLK_IN); fp@2685: } fp@2685: fp@2685: static const struct i2c_algo_bit_data igb_i2c_algo = { fp@2685: .setsda = igb_set_i2c_data, fp@2685: .setscl = igb_set_i2c_clk, fp@2685: .getsda = igb_get_i2c_data, fp@2685: .getscl = igb_get_i2c_clk, fp@2685: .udelay = 5, fp@2685: .timeout = 20, fp@2685: }; fp@2685: fp@2685: /** fp@2685: * igb_get_hw_dev - return device fp@2685: * @hw: pointer to hardware structure fp@2685: * fp@2685: * used by hardware layer to print debugging information fp@2685: **/ fp@2685: struct net_device *igb_get_hw_dev(struct e1000_hw *hw) fp@2685: { fp@2685: struct igb_adapter *adapter = hw->back; fp@2685: return adapter->netdev; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_init_module - Driver Registration Routine fp@2685: * fp@2685: * igb_init_module is the first routine called when the driver is fp@2685: * loaded. All it does is register with the PCI subsystem. fp@2685: **/ fp@2685: static int __init igb_init_module(void) fp@2685: { fp@2685: int ret; fp@2685: fp@2685: pr_info("%s - version %s\n", fp@2685: igb_driver_string, igb_driver_version); fp@2685: pr_info("%s\n", igb_copyright); fp@2685: fp@2685: #ifdef CONFIG_IGB_DCA fp@2685: dca_register_notify(&dca_notifier); fp@2685: #endif fp@2685: ret = pci_register_driver(&igb_driver); fp@2685: return ret; fp@2685: } fp@2685: fp@2685: module_init(igb_init_module); fp@2685: fp@2685: /** fp@2685: * igb_exit_module - Driver Exit Cleanup Routine fp@2685: * fp@2685: * igb_exit_module is called just before the driver is removed fp@2685: * from memory. fp@2685: **/ fp@2685: static void __exit igb_exit_module(void) fp@2685: { fp@2685: #ifdef CONFIG_IGB_DCA fp@2685: dca_unregister_notify(&dca_notifier); fp@2685: #endif fp@2685: pci_unregister_driver(&igb_driver); fp@2685: } fp@2685: fp@2685: module_exit(igb_exit_module); fp@2685: fp@2685: #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1)) fp@2685: /** fp@2685: * igb_cache_ring_register - Descriptor ring to register mapping fp@2685: * @adapter: board private structure to initialize fp@2685: * fp@2685: * Once we know the feature-set enabled for the device, we'll cache fp@2685: * the register offset the descriptor ring is assigned to. fp@2685: **/ fp@2685: static void igb_cache_ring_register(struct igb_adapter *adapter) fp@2685: { fp@2685: int i = 0, j = 0; fp@2685: u32 rbase_offset = adapter->vfs_allocated_count; fp@2685: fp@2685: switch (adapter->hw.mac.type) { fp@2685: case e1000_82576: fp@2685: /* The queues are allocated for virtualization such that VF 0 fp@2685: * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc. fp@2685: * In order to avoid collision we start at the first free queue fp@2685: * and continue consuming queues in the same sequence fp@2685: */ fp@2685: if (adapter->vfs_allocated_count) { fp@2685: for (; i < adapter->rss_queues; i++) fp@2685: adapter->rx_ring[i]->reg_idx = rbase_offset + fp@2685: Q_IDX_82576(i); fp@2685: } fp@2685: /* Fall through */ fp@2685: case e1000_82575: fp@2685: case e1000_82580: fp@2685: case e1000_i350: fp@2685: case e1000_i354: fp@2685: case e1000_i210: fp@2685: case e1000_i211: fp@2685: /* Fall through */ fp@2685: default: fp@2685: for (; i < adapter->num_rx_queues; i++) fp@2685: adapter->rx_ring[i]->reg_idx = rbase_offset + i; fp@2685: for (; j < adapter->num_tx_queues; j++) fp@2685: adapter->tx_ring[j]->reg_idx = rbase_offset + j; fp@2685: break; fp@2685: } fp@2685: } fp@2685: fp@2685: u32 igb_rd32(struct e1000_hw *hw, u32 reg) fp@2685: { fp@2685: struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw); fp@2685: u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr); fp@2685: u32 value = 0; fp@2685: fp@2685: if (E1000_REMOVED(hw_addr)) fp@2685: return ~value; fp@2685: fp@2685: value = readl(&hw_addr[reg]); fp@2685: fp@2685: /* reads should not return all F's */ fp@2685: if (!(~value) && (!reg || !(~readl(hw_addr)))) { fp@2685: struct net_device *netdev = igb->netdev; fp@2685: hw->hw_addr = NULL; fp@2685: netif_device_detach(netdev); fp@2685: netdev_err(netdev, "PCIe link lost, device now detached\n"); fp@2685: } fp@2685: fp@2685: return value; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_write_ivar - configure ivar for given MSI-X vector fp@2685: * @hw: pointer to the HW structure fp@2685: * @msix_vector: vector number we are allocating to a given ring fp@2685: * @index: row index of IVAR register to write within IVAR table fp@2685: * @offset: column offset of in IVAR, should be multiple of 8 fp@2685: * fp@2685: * This function is intended to handle the writing of the IVAR register fp@2685: * for adapters 82576 and newer. The IVAR table consists of 2 columns, fp@2685: * each containing an cause allocation for an Rx and Tx ring, and a fp@2685: * variable number of rows depending on the number of queues supported. fp@2685: **/ fp@2685: static void igb_write_ivar(struct e1000_hw *hw, int msix_vector, fp@2685: int index, int offset) fp@2685: { fp@2685: u32 ivar = array_rd32(E1000_IVAR0, index); fp@2685: fp@2685: /* clear any bits that are currently set */ fp@2685: ivar &= ~((u32)0xFF << offset); fp@2685: fp@2685: /* write vector and valid bit */ fp@2685: ivar |= (msix_vector | E1000_IVAR_VALID) << offset; fp@2685: fp@2685: array_wr32(E1000_IVAR0, index, ivar); fp@2685: } fp@2685: fp@2685: #define IGB_N0_QUEUE -1 fp@2685: static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector) fp@2685: { fp@2685: struct igb_adapter *adapter = q_vector->adapter; fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: int rx_queue = IGB_N0_QUEUE; fp@2685: int tx_queue = IGB_N0_QUEUE; fp@2685: u32 msixbm = 0; fp@2685: fp@2685: if (q_vector->rx.ring) fp@2685: rx_queue = q_vector->rx.ring->reg_idx; fp@2685: if (q_vector->tx.ring) fp@2685: tx_queue = q_vector->tx.ring->reg_idx; fp@2685: fp@2685: switch (hw->mac.type) { fp@2685: case e1000_82575: fp@2685: /* The 82575 assigns vectors using a bitmask, which matches the fp@2685: * bitmask for the EICR/EIMS/EIMC registers. To assign one fp@2685: * or more queues to a vector, we write the appropriate bits fp@2685: * into the MSIXBM register for that vector. fp@2685: */ fp@2685: if (rx_queue > IGB_N0_QUEUE) fp@2685: msixbm = E1000_EICR_RX_QUEUE0 << rx_queue; fp@2685: if (tx_queue > IGB_N0_QUEUE) fp@2685: msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue; fp@2685: if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0) fp@2685: msixbm |= E1000_EIMS_OTHER; fp@2685: array_wr32(E1000_MSIXBM(0), msix_vector, msixbm); fp@2685: q_vector->eims_value = msixbm; fp@2685: break; fp@2685: case e1000_82576: fp@2685: /* 82576 uses a table that essentially consists of 2 columns fp@2685: * with 8 rows. The ordering is column-major so we use the fp@2685: * lower 3 bits as the row index, and the 4th bit as the fp@2685: * column offset. fp@2685: */ fp@2685: if (rx_queue > IGB_N0_QUEUE) fp@2685: igb_write_ivar(hw, msix_vector, fp@2685: rx_queue & 0x7, fp@2685: (rx_queue & 0x8) << 1); fp@2685: if (tx_queue > IGB_N0_QUEUE) fp@2685: igb_write_ivar(hw, msix_vector, fp@2685: tx_queue & 0x7, fp@2685: ((tx_queue & 0x8) << 1) + 8); fp@2685: q_vector->eims_value = 1 << msix_vector; fp@2685: break; fp@2685: case e1000_82580: fp@2685: case e1000_i350: fp@2685: case e1000_i354: fp@2685: case e1000_i210: fp@2685: case e1000_i211: fp@2685: /* On 82580 and newer adapters the scheme is similar to 82576 fp@2685: * however instead of ordering column-major we have things fp@2685: * ordered row-major. So we traverse the table by using fp@2685: * bit 0 as the column offset, and the remaining bits as the fp@2685: * row index. fp@2685: */ fp@2685: if (rx_queue > IGB_N0_QUEUE) fp@2685: igb_write_ivar(hw, msix_vector, fp@2685: rx_queue >> 1, fp@2685: (rx_queue & 0x1) << 4); fp@2685: if (tx_queue > IGB_N0_QUEUE) fp@2685: igb_write_ivar(hw, msix_vector, fp@2685: tx_queue >> 1, fp@2685: ((tx_queue & 0x1) << 4) + 8); fp@2685: q_vector->eims_value = 1 << msix_vector; fp@2685: break; fp@2685: default: fp@2685: BUG(); fp@2685: break; fp@2685: } fp@2685: fp@2685: /* add q_vector eims value to global eims_enable_mask */ fp@2685: adapter->eims_enable_mask |= q_vector->eims_value; fp@2685: fp@2685: /* configure q_vector to set itr on first interrupt */ fp@2685: q_vector->set_itr = 1; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_configure_msix - Configure MSI-X hardware fp@2685: * @adapter: board private structure to initialize fp@2685: * fp@2685: * igb_configure_msix sets up the hardware to properly fp@2685: * generate MSI-X interrupts. fp@2685: **/ fp@2685: static void igb_configure_msix(struct igb_adapter *adapter) fp@2685: { fp@2685: u32 tmp; fp@2685: int i, vector = 0; fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: fp@2685: adapter->eims_enable_mask = 0; fp@2685: fp@2685: /* set vector for other causes, i.e. link changes */ fp@2685: switch (hw->mac.type) { fp@2685: case e1000_82575: fp@2685: tmp = rd32(E1000_CTRL_EXT); fp@2685: /* enable MSI-X PBA support*/ fp@2685: tmp |= E1000_CTRL_EXT_PBA_CLR; fp@2685: fp@2685: /* Auto-Mask interrupts upon ICR read. */ fp@2685: tmp |= E1000_CTRL_EXT_EIAME; fp@2685: tmp |= E1000_CTRL_EXT_IRCA; fp@2685: fp@2685: wr32(E1000_CTRL_EXT, tmp); fp@2685: fp@2685: /* enable msix_other interrupt */ fp@2685: array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER); fp@2685: adapter->eims_other = E1000_EIMS_OTHER; fp@2685: fp@2685: break; fp@2685: fp@2685: case e1000_82576: fp@2685: case e1000_82580: fp@2685: case e1000_i350: fp@2685: case e1000_i354: fp@2685: case e1000_i210: fp@2685: case e1000_i211: fp@2685: /* Turn on MSI-X capability first, or our settings fp@2685: * won't stick. And it will take days to debug. fp@2685: */ fp@2685: wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE | fp@2685: E1000_GPIE_PBA | E1000_GPIE_EIAME | fp@2685: E1000_GPIE_NSICR); fp@2685: fp@2685: /* enable msix_other interrupt */ fp@2685: adapter->eims_other = 1 << vector; fp@2685: tmp = (vector++ | E1000_IVAR_VALID) << 8; fp@2685: fp@2685: wr32(E1000_IVAR_MISC, tmp); fp@2685: break; fp@2685: default: fp@2685: /* do nothing, since nothing else supports MSI-X */ fp@2685: break; fp@2685: } /* switch (hw->mac.type) */ fp@2685: fp@2685: adapter->eims_enable_mask |= adapter->eims_other; fp@2685: fp@2685: for (i = 0; i < adapter->num_q_vectors; i++) fp@2685: igb_assign_vector(adapter->q_vector[i], vector++); fp@2685: fp@2685: wrfl(); fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_request_msix - Initialize MSI-X interrupts fp@2685: * @adapter: board private structure to initialize fp@2685: * fp@2685: * igb_request_msix allocates MSI-X vectors and requests interrupts from the fp@2685: * kernel. fp@2685: **/ fp@2685: static int igb_request_msix(struct igb_adapter *adapter) fp@2685: { fp@2685: struct net_device *netdev = adapter->netdev; fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: int i, err = 0, vector = 0, free_vector = 0; fp@2685: fp@2686: if (adapter->ecdev) { fp@2686: /* avoid requesting MSI-X. */ fp@2686: return 0; fp@2686: } fp@2686: fp@2685: err = request_irq(adapter->msix_entries[vector].vector, fp@2685: igb_msix_other, 0, netdev->name, adapter); fp@2685: if (err) fp@2685: goto err_out; fp@2685: fp@2685: for (i = 0; i < adapter->num_q_vectors; i++) { fp@2685: struct igb_q_vector *q_vector = adapter->q_vector[i]; fp@2685: fp@2685: vector++; fp@2685: fp@2685: q_vector->itr_register = hw->hw_addr + E1000_EITR(vector); fp@2685: fp@2685: if (q_vector->rx.ring && q_vector->tx.ring) fp@2685: sprintf(q_vector->name, "%s-TxRx-%u", netdev->name, fp@2685: q_vector->rx.ring->queue_index); fp@2685: else if (q_vector->tx.ring) fp@2685: sprintf(q_vector->name, "%s-tx-%u", netdev->name, fp@2685: q_vector->tx.ring->queue_index); fp@2685: else if (q_vector->rx.ring) fp@2685: sprintf(q_vector->name, "%s-rx-%u", netdev->name, fp@2685: q_vector->rx.ring->queue_index); fp@2685: else fp@2685: sprintf(q_vector->name, "%s-unused", netdev->name); fp@2685: fp@2685: err = request_irq(adapter->msix_entries[vector].vector, fp@2685: igb_msix_ring, 0, q_vector->name, fp@2685: q_vector); fp@2685: if (err) fp@2685: goto err_free; fp@2685: } fp@2685: fp@2685: igb_configure_msix(adapter); fp@2685: return 0; fp@2685: fp@2685: err_free: fp@2685: /* free already assigned IRQs */ fp@2685: free_irq(adapter->msix_entries[free_vector++].vector, adapter); fp@2685: fp@2685: vector--; fp@2685: for (i = 0; i < vector; i++) { fp@2685: free_irq(adapter->msix_entries[free_vector++].vector, fp@2685: adapter->q_vector[i]); fp@2685: } fp@2685: err_out: fp@2685: return err; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_free_q_vector - Free memory allocated for specific interrupt vector fp@2685: * @adapter: board private structure to initialize fp@2685: * @v_idx: Index of vector to be freed fp@2685: * fp@2685: * This function frees the memory allocated to the q_vector. fp@2685: **/ fp@2685: static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx) fp@2685: { fp@2685: struct igb_q_vector *q_vector = adapter->q_vector[v_idx]; fp@2685: fp@2685: adapter->q_vector[v_idx] = NULL; fp@2685: fp@2685: /* igb_get_stats64() might access the rings on this vector, fp@2685: * we must wait a grace period before freeing it. fp@2685: */ fp@2685: if (q_vector) fp@2685: kfree_rcu(q_vector, rcu); fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_reset_q_vector - Reset config for interrupt vector fp@2685: * @adapter: board private structure to initialize fp@2685: * @v_idx: Index of vector to be reset fp@2685: * fp@2685: * If NAPI is enabled it will delete any references to the fp@2685: * NAPI struct. This is preparation for igb_free_q_vector. fp@2685: **/ fp@2685: static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx) fp@2685: { fp@2685: struct igb_q_vector *q_vector = adapter->q_vector[v_idx]; fp@2685: fp@2685: /* Coming from igb_set_interrupt_capability, the vectors are not yet fp@2685: * allocated. So, q_vector is NULL so we should stop here. fp@2685: */ fp@2685: if (!q_vector) fp@2685: return; fp@2685: fp@2685: if (q_vector->tx.ring) fp@2685: adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL; fp@2685: fp@2685: if (q_vector->rx.ring) fp@2685: adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL; fp@2685: fp@2686: if (!adapter->ecdev) { fp@2686: netif_napi_del(&q_vector->napi); fp@2686: } fp@2685: fp@2685: } fp@2685: fp@2685: static void igb_reset_interrupt_capability(struct igb_adapter *adapter) fp@2685: { fp@2685: int v_idx = adapter->num_q_vectors; fp@2685: fp@2685: if (adapter->flags & IGB_FLAG_HAS_MSIX) fp@2685: pci_disable_msix(adapter->pdev); fp@2685: else if (adapter->flags & IGB_FLAG_HAS_MSI) fp@2685: pci_disable_msi(adapter->pdev); fp@2685: fp@2685: while (v_idx--) fp@2685: igb_reset_q_vector(adapter, v_idx); fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_free_q_vectors - Free memory allocated for interrupt vectors fp@2685: * @adapter: board private structure to initialize fp@2685: * fp@2685: * This function frees the memory allocated to the q_vectors. In addition if fp@2685: * NAPI is enabled it will delete any references to the NAPI struct prior fp@2685: * to freeing the q_vector. fp@2685: **/ fp@2685: static void igb_free_q_vectors(struct igb_adapter *adapter) fp@2685: { fp@2685: int v_idx = adapter->num_q_vectors; fp@2685: fp@2685: adapter->num_tx_queues = 0; fp@2685: adapter->num_rx_queues = 0; fp@2685: adapter->num_q_vectors = 0; fp@2685: fp@2685: while (v_idx--) { fp@2685: igb_reset_q_vector(adapter, v_idx); fp@2685: igb_free_q_vector(adapter, v_idx); fp@2685: } fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_clear_interrupt_scheme - reset the device to a state of no interrupts fp@2685: * @adapter: board private structure to initialize fp@2685: * fp@2685: * This function resets the device so that it has 0 Rx queues, Tx queues, and fp@2685: * MSI-X interrupts allocated. fp@2685: */ fp@2685: static void igb_clear_interrupt_scheme(struct igb_adapter *adapter) fp@2685: { fp@2685: igb_free_q_vectors(adapter); fp@2685: igb_reset_interrupt_capability(adapter); fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_set_interrupt_capability - set MSI or MSI-X if supported fp@2685: * @adapter: board private structure to initialize fp@2685: * @msix: boolean value of MSIX capability fp@2685: * fp@2685: * Attempt to configure interrupts using the best available fp@2685: * capabilities of the hardware and kernel. fp@2685: **/ fp@2685: static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix) fp@2685: { fp@2685: int err; fp@2685: int numvecs, i; fp@2685: fp@2685: if (!msix) fp@2685: goto msi_only; fp@2685: adapter->flags |= IGB_FLAG_HAS_MSIX; fp@2685: fp@2685: /* Number of supported queues. */ fp@2685: adapter->num_rx_queues = adapter->rss_queues; fp@2685: if (adapter->vfs_allocated_count) fp@2685: adapter->num_tx_queues = 1; fp@2685: else fp@2685: adapter->num_tx_queues = adapter->rss_queues; fp@2685: fp@2685: /* start with one vector for every Rx queue */ fp@2685: numvecs = adapter->num_rx_queues; fp@2685: fp@2685: /* if Tx handler is separate add 1 for every Tx queue */ fp@2685: if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) fp@2685: numvecs += adapter->num_tx_queues; fp@2685: fp@2685: /* store the number of vectors reserved for queues */ fp@2685: adapter->num_q_vectors = numvecs; fp@2685: fp@2685: /* add 1 vector for link status interrupts */ fp@2685: numvecs++; fp@2685: for (i = 0; i < numvecs; i++) fp@2685: adapter->msix_entries[i].entry = i; fp@2685: fp@2685: err = pci_enable_msix_range(adapter->pdev, fp@2685: adapter->msix_entries, fp@2685: numvecs, fp@2685: numvecs); fp@2685: if (err > 0) fp@2685: return; fp@2685: fp@2685: igb_reset_interrupt_capability(adapter); fp@2685: fp@2685: /* If we can't do MSI-X, try MSI */ fp@2685: msi_only: fp@2685: adapter->flags &= ~IGB_FLAG_HAS_MSIX; fp@2685: #ifdef CONFIG_PCI_IOV fp@2685: /* disable SR-IOV for non MSI-X configurations */ fp@2685: if (adapter->vf_data) { fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: /* disable iov and allow time for transactions to clear */ fp@2685: pci_disable_sriov(adapter->pdev); fp@2685: msleep(500); fp@2685: fp@2685: kfree(adapter->vf_data); fp@2685: adapter->vf_data = NULL; fp@2685: wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ); fp@2685: wrfl(); fp@2685: msleep(100); fp@2685: dev_info(&adapter->pdev->dev, "IOV Disabled\n"); fp@2685: } fp@2685: #endif fp@2685: adapter->vfs_allocated_count = 0; fp@2685: adapter->rss_queues = 1; fp@2685: adapter->flags |= IGB_FLAG_QUEUE_PAIRS; fp@2685: adapter->num_rx_queues = 1; fp@2685: adapter->num_tx_queues = 1; fp@2685: adapter->num_q_vectors = 1; fp@2685: if (!pci_enable_msi(adapter->pdev)) fp@2685: adapter->flags |= IGB_FLAG_HAS_MSI; fp@2685: } fp@2685: fp@2685: static void igb_add_ring(struct igb_ring *ring, fp@2685: struct igb_ring_container *head) fp@2685: { fp@2685: head->ring = ring; fp@2685: head->count++; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_alloc_q_vector - Allocate memory for a single interrupt vector fp@2685: * @adapter: board private structure to initialize fp@2685: * @v_count: q_vectors allocated on adapter, used for ring interleaving fp@2685: * @v_idx: index of vector in adapter struct fp@2685: * @txr_count: total number of Tx rings to allocate fp@2685: * @txr_idx: index of first Tx ring to allocate fp@2685: * @rxr_count: total number of Rx rings to allocate fp@2685: * @rxr_idx: index of first Rx ring to allocate fp@2685: * fp@2685: * We allocate one q_vector. If allocation fails we return -ENOMEM. fp@2685: **/ fp@2685: static int igb_alloc_q_vector(struct igb_adapter *adapter, fp@2685: int v_count, int v_idx, fp@2685: int txr_count, int txr_idx, fp@2685: int rxr_count, int rxr_idx) fp@2685: { fp@2685: struct igb_q_vector *q_vector; fp@2685: struct igb_ring *ring; fp@2685: int ring_count, size; fp@2685: fp@2685: /* igb only supports 1 Tx and/or 1 Rx queue per vector */ fp@2685: if (txr_count > 1 || rxr_count > 1) fp@2685: return -ENOMEM; fp@2685: fp@2685: ring_count = txr_count + rxr_count; fp@2685: size = sizeof(struct igb_q_vector) + fp@2685: (sizeof(struct igb_ring) * ring_count); fp@2685: fp@2685: /* allocate q_vector and rings */ fp@2685: q_vector = adapter->q_vector[v_idx]; fp@2685: if (!q_vector) fp@2685: q_vector = kzalloc(size, GFP_KERNEL); fp@2685: if (!q_vector) fp@2685: return -ENOMEM; fp@2685: fp@2686: if (!adapter->ecdev) { fp@2686: /* initialize NAPI */ fp@2686: netif_napi_add(adapter->netdev, &q_vector->napi, fp@2686: igb_poll, 64); fp@2686: } fp@2685: fp@2685: /* tie q_vector and adapter together */ fp@2685: adapter->q_vector[v_idx] = q_vector; fp@2685: q_vector->adapter = adapter; fp@2685: fp@2685: /* initialize work limits */ fp@2685: q_vector->tx.work_limit = adapter->tx_work_limit; fp@2685: fp@2685: /* initialize ITR configuration */ fp@2685: q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0); fp@2685: q_vector->itr_val = IGB_START_ITR; fp@2685: fp@2685: /* initialize pointer to rings */ fp@2685: ring = q_vector->ring; fp@2685: fp@2685: /* intialize ITR */ fp@2685: if (rxr_count) { fp@2685: /* rx or rx/tx vector */ fp@2685: if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3) fp@2685: q_vector->itr_val = adapter->rx_itr_setting; fp@2685: } else { fp@2685: /* tx only vector */ fp@2685: if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3) fp@2685: q_vector->itr_val = adapter->tx_itr_setting; fp@2685: } fp@2685: fp@2685: if (txr_count) { fp@2685: /* assign generic ring traits */ fp@2685: ring->dev = &adapter->pdev->dev; fp@2685: ring->netdev = adapter->netdev; fp@2685: fp@2685: /* configure backlink on ring */ fp@2685: ring->q_vector = q_vector; fp@2685: fp@2685: /* update q_vector Tx values */ fp@2685: igb_add_ring(ring, &q_vector->tx); fp@2685: fp@2685: /* For 82575, context index must be unique per ring. */ fp@2685: if (adapter->hw.mac.type == e1000_82575) fp@2685: set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags); fp@2685: fp@2685: /* apply Tx specific ring traits */ fp@2685: ring->count = adapter->tx_ring_count; fp@2685: ring->queue_index = txr_idx; fp@2685: fp@2685: u64_stats_init(&ring->tx_syncp); fp@2685: u64_stats_init(&ring->tx_syncp2); fp@2685: fp@2685: /* assign ring to adapter */ fp@2685: adapter->tx_ring[txr_idx] = ring; fp@2685: fp@2685: /* push pointer to next ring */ fp@2685: ring++; fp@2685: } fp@2685: fp@2685: if (rxr_count) { fp@2685: /* assign generic ring traits */ fp@2685: ring->dev = &adapter->pdev->dev; fp@2685: ring->netdev = adapter->netdev; fp@2685: fp@2685: /* configure backlink on ring */ fp@2685: ring->q_vector = q_vector; fp@2685: fp@2685: /* update q_vector Rx values */ fp@2685: igb_add_ring(ring, &q_vector->rx); fp@2685: fp@2685: /* set flag indicating ring supports SCTP checksum offload */ fp@2685: if (adapter->hw.mac.type >= e1000_82576) fp@2685: set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags); fp@2685: fp@2685: /* On i350, i354, i210, and i211, loopback VLAN packets fp@2685: * have the tag byte-swapped. fp@2685: */ fp@2685: if (adapter->hw.mac.type >= e1000_i350) fp@2685: set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags); fp@2685: fp@2685: /* apply Rx specific ring traits */ fp@2685: ring->count = adapter->rx_ring_count; fp@2685: ring->queue_index = rxr_idx; fp@2685: fp@2685: u64_stats_init(&ring->rx_syncp); fp@2685: fp@2685: /* assign ring to adapter */ fp@2685: adapter->rx_ring[rxr_idx] = ring; fp@2685: } fp@2685: fp@2685: return 0; fp@2685: } fp@2685: fp@2685: fp@2685: /** fp@2685: * igb_alloc_q_vectors - Allocate memory for interrupt vectors fp@2685: * @adapter: board private structure to initialize fp@2685: * fp@2685: * We allocate one q_vector per queue interrupt. If allocation fails we fp@2685: * return -ENOMEM. fp@2685: **/ fp@2685: static int igb_alloc_q_vectors(struct igb_adapter *adapter) fp@2685: { fp@2685: int q_vectors = adapter->num_q_vectors; fp@2685: int rxr_remaining = adapter->num_rx_queues; fp@2685: int txr_remaining = adapter->num_tx_queues; fp@2685: int rxr_idx = 0, txr_idx = 0, v_idx = 0; fp@2685: int err; fp@2685: fp@2685: if (q_vectors >= (rxr_remaining + txr_remaining)) { fp@2685: for (; rxr_remaining; v_idx++) { fp@2685: err = igb_alloc_q_vector(adapter, q_vectors, v_idx, fp@2685: 0, 0, 1, rxr_idx); fp@2685: fp@2685: if (err) fp@2685: goto err_out; fp@2685: fp@2685: /* update counts and index */ fp@2685: rxr_remaining--; fp@2685: rxr_idx++; fp@2685: } fp@2685: } fp@2685: fp@2685: for (; v_idx < q_vectors; v_idx++) { fp@2685: int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); fp@2685: int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); fp@2685: fp@2685: err = igb_alloc_q_vector(adapter, q_vectors, v_idx, fp@2685: tqpv, txr_idx, rqpv, rxr_idx); fp@2685: fp@2685: if (err) fp@2685: goto err_out; fp@2685: fp@2685: /* update counts and index */ fp@2685: rxr_remaining -= rqpv; fp@2685: txr_remaining -= tqpv; fp@2685: rxr_idx++; fp@2685: txr_idx++; fp@2685: } fp@2685: fp@2685: return 0; fp@2685: fp@2685: err_out: fp@2685: adapter->num_tx_queues = 0; fp@2685: adapter->num_rx_queues = 0; fp@2685: adapter->num_q_vectors = 0; fp@2685: fp@2685: while (v_idx--) fp@2685: igb_free_q_vector(adapter, v_idx); fp@2685: fp@2685: return -ENOMEM; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors fp@2685: * @adapter: board private structure to initialize fp@2685: * @msix: boolean value of MSIX capability fp@2685: * fp@2685: * This function initializes the interrupts and allocates all of the queues. fp@2685: **/ fp@2685: static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix) fp@2685: { fp@2685: struct pci_dev *pdev = adapter->pdev; fp@2685: int err; fp@2685: fp@2685: igb_set_interrupt_capability(adapter, msix); fp@2685: fp@2685: err = igb_alloc_q_vectors(adapter); fp@2685: if (err) { fp@2685: dev_err(&pdev->dev, "Unable to allocate memory for vectors\n"); fp@2685: goto err_alloc_q_vectors; fp@2685: } fp@2685: fp@2685: igb_cache_ring_register(adapter); fp@2685: fp@2685: return 0; fp@2685: fp@2685: err_alloc_q_vectors: fp@2685: igb_reset_interrupt_capability(adapter); fp@2685: return err; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_request_irq - initialize interrupts fp@2685: * @adapter: board private structure to initialize fp@2685: * fp@2685: * Attempts to configure interrupts using the best available fp@2685: * capabilities of the hardware and kernel. fp@2685: **/ fp@2685: static int igb_request_irq(struct igb_adapter *adapter) fp@2685: { fp@2685: struct net_device *netdev = adapter->netdev; fp@2685: struct pci_dev *pdev = adapter->pdev; fp@2685: int err = 0; fp@2685: fp@2685: if (adapter->flags & IGB_FLAG_HAS_MSIX) { fp@2685: err = igb_request_msix(adapter); fp@2685: if (!err) fp@2685: goto request_done; fp@2685: /* fall back to MSI */ fp@2685: igb_free_all_tx_resources(adapter); fp@2685: igb_free_all_rx_resources(adapter); fp@2685: fp@2685: igb_clear_interrupt_scheme(adapter); fp@2685: err = igb_init_interrupt_scheme(adapter, false); fp@2685: if (err) fp@2685: goto request_done; fp@2685: fp@2685: igb_setup_all_tx_resources(adapter); fp@2685: igb_setup_all_rx_resources(adapter); fp@2685: igb_configure(adapter); fp@2685: } fp@2685: fp@2685: igb_assign_vector(adapter->q_vector[0], 0); fp@2685: fp@2686: if (!adapter->ecdev && adapter->flags & IGB_FLAG_HAS_MSI) { fp@2685: err = request_irq(pdev->irq, igb_intr_msi, 0, fp@2685: netdev->name, adapter); fp@2685: if (!err) fp@2685: goto request_done; fp@2685: fp@2685: /* fall back to legacy interrupts */ fp@2685: igb_reset_interrupt_capability(adapter); fp@2685: adapter->flags &= ~IGB_FLAG_HAS_MSI; fp@2685: } fp@2685: fp@2686: if (!adapter->ecdev) { fp@2686: err = request_irq(pdev->irq, igb_intr, IRQF_SHARED, fp@2686: netdev->name, adapter); fp@2686: fp@2686: if (err) fp@2686: dev_err(&pdev->dev, "Error %d getting interrupt\n", fp@2686: err); fp@2686: } fp@2685: fp@2685: request_done: fp@2685: return err; fp@2685: } fp@2685: fp@2685: static void igb_free_irq(struct igb_adapter *adapter) fp@2685: { fp@2686: if (adapter->ecdev) { fp@2686: /* no IRQ to free in EtherCAT operation */ fp@2686: return; fp@2686: } fp@2686: fp@2685: if (adapter->flags & IGB_FLAG_HAS_MSIX) { fp@2685: int vector = 0, i; fp@2685: fp@2685: free_irq(adapter->msix_entries[vector++].vector, adapter); fp@2685: fp@2685: for (i = 0; i < adapter->num_q_vectors; i++) fp@2685: free_irq(adapter->msix_entries[vector++].vector, fp@2685: adapter->q_vector[i]); fp@2685: } else { fp@2685: free_irq(adapter->pdev->irq, adapter); fp@2685: } fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_irq_disable - Mask off interrupt generation on the NIC fp@2685: * @adapter: board private structure fp@2685: **/ fp@2685: static void igb_irq_disable(struct igb_adapter *adapter) fp@2685: { fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: fp@2685: /* we need to be careful when disabling interrupts. The VFs are also fp@2685: * mapped into these registers and so clearing the bits can cause fp@2685: * issues on the VF drivers so we only need to clear what we set fp@2685: */ fp@2685: if (adapter->flags & IGB_FLAG_HAS_MSIX) { fp@2685: u32 regval = rd32(E1000_EIAM); fp@2685: fp@2685: wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask); fp@2685: wr32(E1000_EIMC, adapter->eims_enable_mask); fp@2685: regval = rd32(E1000_EIAC); fp@2685: wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask); fp@2685: } fp@2685: fp@2685: wr32(E1000_IAM, 0); fp@2685: wr32(E1000_IMC, ~0); fp@2685: wrfl(); fp@2686: fp@2686: if (adapter->ecdev) { fp@2686: /* skip synchonizing IRQs */ fp@2686: return; fp@2686: } fp@2686: fp@2685: if (adapter->flags & IGB_FLAG_HAS_MSIX) { fp@2685: int i; fp@2685: fp@2685: for (i = 0; i < adapter->num_q_vectors; i++) fp@2685: synchronize_irq(adapter->msix_entries[i].vector); fp@2685: } else { fp@2685: synchronize_irq(adapter->pdev->irq); fp@2685: } fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_irq_enable - Enable default interrupt generation settings fp@2685: * @adapter: board private structure fp@2685: **/ fp@2685: static void igb_irq_enable(struct igb_adapter *adapter) fp@2685: { fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: fp@2686: if (adapter->ecdev) { fp@2686: /* skip enabling interrupts */ fp@2686: return; fp@2686: } fp@2686: fp@2685: if (adapter->flags & IGB_FLAG_HAS_MSIX) { fp@2685: u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA; fp@2685: u32 regval = rd32(E1000_EIAC); fp@2685: fp@2685: wr32(E1000_EIAC, regval | adapter->eims_enable_mask); fp@2685: regval = rd32(E1000_EIAM); fp@2685: wr32(E1000_EIAM, regval | adapter->eims_enable_mask); fp@2685: wr32(E1000_EIMS, adapter->eims_enable_mask); fp@2685: if (adapter->vfs_allocated_count) { fp@2685: wr32(E1000_MBVFIMR, 0xFF); fp@2685: ims |= E1000_IMS_VMMB; fp@2685: } fp@2685: wr32(E1000_IMS, ims); fp@2685: } else { fp@2685: wr32(E1000_IMS, IMS_ENABLE_MASK | fp@2685: E1000_IMS_DRSTA); fp@2685: wr32(E1000_IAM, IMS_ENABLE_MASK | fp@2685: E1000_IMS_DRSTA); fp@2685: } fp@2685: } fp@2685: fp@2685: static void igb_update_mng_vlan(struct igb_adapter *adapter) fp@2685: { fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: u16 vid = adapter->hw.mng_cookie.vlan_id; fp@2685: u16 old_vid = adapter->mng_vlan_id; fp@2685: fp@2685: if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) { fp@2685: /* add VID to filter table */ fp@2685: igb_vfta_set(hw, vid, true); fp@2685: adapter->mng_vlan_id = vid; fp@2685: } else { fp@2685: adapter->mng_vlan_id = IGB_MNG_VLAN_NONE; fp@2685: } fp@2685: fp@2685: if ((old_vid != (u16)IGB_MNG_VLAN_NONE) && fp@2685: (vid != old_vid) && fp@2685: !test_bit(old_vid, adapter->active_vlans)) { fp@2685: /* remove VID from filter table */ fp@2685: igb_vfta_set(hw, old_vid, false); fp@2685: } fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_release_hw_control - release control of the h/w to f/w fp@2685: * @adapter: address of board private structure fp@2685: * fp@2685: * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit. fp@2685: * For ASF and Pass Through versions of f/w this means that the fp@2685: * driver is no longer loaded. fp@2685: **/ fp@2685: static void igb_release_hw_control(struct igb_adapter *adapter) fp@2685: { fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: u32 ctrl_ext; fp@2685: fp@2685: /* Let firmware take over control of h/w */ fp@2685: ctrl_ext = rd32(E1000_CTRL_EXT); fp@2685: wr32(E1000_CTRL_EXT, fp@2685: ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_get_hw_control - get control of the h/w from f/w fp@2685: * @adapter: address of board private structure fp@2685: * fp@2685: * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit. fp@2685: * For ASF and Pass Through versions of f/w this means that fp@2685: * the driver is loaded. fp@2685: **/ fp@2685: static void igb_get_hw_control(struct igb_adapter *adapter) fp@2685: { fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: u32 ctrl_ext; fp@2685: fp@2685: /* Let firmware know the driver has taken over */ fp@2685: ctrl_ext = rd32(E1000_CTRL_EXT); fp@2685: wr32(E1000_CTRL_EXT, fp@2685: ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_configure - configure the hardware for RX and TX fp@2685: * @adapter: private board structure fp@2685: **/ fp@2685: static void igb_configure(struct igb_adapter *adapter) fp@2685: { fp@2685: struct net_device *netdev = adapter->netdev; fp@2685: int i; fp@2685: fp@2685: igb_get_hw_control(adapter); fp@2685: igb_set_rx_mode(netdev); fp@2685: fp@2685: igb_restore_vlan(adapter); fp@2685: fp@2685: igb_setup_tctl(adapter); fp@2685: igb_setup_mrqc(adapter); fp@2685: igb_setup_rctl(adapter); fp@2685: fp@2685: igb_configure_tx(adapter); fp@2685: igb_configure_rx(adapter); fp@2685: fp@2685: igb_rx_fifo_flush_82575(&adapter->hw); fp@2685: fp@2685: /* call igb_desc_unused which always leaves fp@2685: * at least 1 descriptor unused to make sure fp@2685: * next_to_use != next_to_clean fp@2685: */ fp@2685: for (i = 0; i < adapter->num_rx_queues; i++) { fp@2685: struct igb_ring *ring = adapter->rx_ring[i]; fp@2685: igb_alloc_rx_buffers(ring, igb_desc_unused(ring)); fp@2685: } fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_power_up_link - Power up the phy/serdes link fp@2685: * @adapter: address of board private structure fp@2685: **/ fp@2685: void igb_power_up_link(struct igb_adapter *adapter) fp@2685: { fp@2685: igb_reset_phy(&adapter->hw); fp@2685: fp@2685: if (adapter->hw.phy.media_type == e1000_media_type_copper) fp@2685: igb_power_up_phy_copper(&adapter->hw); fp@2685: else fp@2685: igb_power_up_serdes_link_82575(&adapter->hw); fp@2685: fp@2685: igb_setup_link(&adapter->hw); fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_power_down_link - Power down the phy/serdes link fp@2685: * @adapter: address of board private structure fp@2685: */ fp@2685: static void igb_power_down_link(struct igb_adapter *adapter) fp@2685: { fp@2685: if (adapter->hw.phy.media_type == e1000_media_type_copper) fp@2685: igb_power_down_phy_copper_82575(&adapter->hw); fp@2685: else fp@2685: igb_shutdown_serdes_link_82575(&adapter->hw); fp@2685: } fp@2685: fp@2685: /** fp@2685: * Detect and switch function for Media Auto Sense fp@2685: * @adapter: address of the board private structure fp@2685: **/ fp@2685: static void igb_check_swap_media(struct igb_adapter *adapter) fp@2685: { fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: u32 ctrl_ext, connsw; fp@2685: bool swap_now = false; fp@2685: fp@2685: ctrl_ext = rd32(E1000_CTRL_EXT); fp@2685: connsw = rd32(E1000_CONNSW); fp@2685: fp@2685: /* need to live swap if current media is copper and we have fiber/serdes fp@2685: * to go to. fp@2685: */ fp@2685: fp@2685: if ((hw->phy.media_type == e1000_media_type_copper) && fp@2685: (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) { fp@2685: swap_now = true; fp@2685: } else if (!(connsw & E1000_CONNSW_SERDESD)) { fp@2685: /* copper signal takes time to appear */ fp@2685: if (adapter->copper_tries < 4) { fp@2685: adapter->copper_tries++; fp@2685: connsw |= E1000_CONNSW_AUTOSENSE_CONF; fp@2685: wr32(E1000_CONNSW, connsw); fp@2685: return; fp@2685: } else { fp@2685: adapter->copper_tries = 0; fp@2685: if ((connsw & E1000_CONNSW_PHYSD) && fp@2685: (!(connsw & E1000_CONNSW_PHY_PDN))) { fp@2685: swap_now = true; fp@2685: connsw &= ~E1000_CONNSW_AUTOSENSE_CONF; fp@2685: wr32(E1000_CONNSW, connsw); fp@2685: } fp@2685: } fp@2685: } fp@2685: fp@2685: if (!swap_now) fp@2685: return; fp@2685: fp@2685: switch (hw->phy.media_type) { fp@2685: case e1000_media_type_copper: fp@2685: netdev_info(adapter->netdev, fp@2685: "MAS: changing media to fiber/serdes\n"); fp@2685: ctrl_ext |= fp@2685: E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; fp@2685: adapter->flags |= IGB_FLAG_MEDIA_RESET; fp@2685: adapter->copper_tries = 0; fp@2685: break; fp@2685: case e1000_media_type_internal_serdes: fp@2685: case e1000_media_type_fiber: fp@2685: netdev_info(adapter->netdev, fp@2685: "MAS: changing media to copper\n"); fp@2685: ctrl_ext &= fp@2685: ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; fp@2685: adapter->flags |= IGB_FLAG_MEDIA_RESET; fp@2685: break; fp@2685: default: fp@2685: /* shouldn't get here during regular operation */ fp@2685: netdev_err(adapter->netdev, fp@2685: "AMS: Invalid media type found, returning\n"); fp@2685: break; fp@2685: } fp@2685: wr32(E1000_CTRL_EXT, ctrl_ext); fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_up - Open the interface and prepare it to handle traffic fp@2685: * @adapter: board private structure fp@2685: **/ fp@2685: int igb_up(struct igb_adapter *adapter) fp@2685: { fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: int i; fp@2685: fp@2685: /* hardware has been reset, we need to reload some things */ fp@2685: igb_configure(adapter); fp@2685: fp@2685: clear_bit(__IGB_DOWN, &adapter->state); fp@2685: fp@2686: if (!adapter->ecdev) { fp@2686: for (i = 0; i < adapter->num_q_vectors; i++) fp@2686: napi_enable(&(adapter->q_vector[i]->napi)); fp@2686: } fp@2685: fp@2685: if (adapter->flags & IGB_FLAG_HAS_MSIX) fp@2685: igb_configure_msix(adapter); fp@2685: else fp@2685: igb_assign_vector(adapter->q_vector[0], 0); fp@2685: fp@2685: /* Clear any pending interrupts. */ fp@2685: rd32(E1000_ICR); fp@2685: igb_irq_enable(adapter); fp@2685: fp@2685: /* notify VFs that reset has been completed */ fp@2685: if (adapter->vfs_allocated_count) { fp@2685: u32 reg_data = rd32(E1000_CTRL_EXT); fp@2685: fp@2685: reg_data |= E1000_CTRL_EXT_PFRSTD; fp@2685: wr32(E1000_CTRL_EXT, reg_data); fp@2685: } fp@2685: fp@2686: if (!adapter->ecdev) { fp@2686: netif_tx_start_all_queues(adapter->netdev); fp@2686: fp@2686: /* start the watchdog. */ fp@2686: hw->mac.get_link_status = 1; fp@2686: schedule_work(&adapter->watchdog_task); fp@2686: } fp@2685: fp@2685: if ((adapter->flags & IGB_FLAG_EEE) && fp@2685: (!hw->dev_spec._82575.eee_disable)) fp@2685: adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T; fp@2685: fp@2685: return 0; fp@2685: } fp@2685: fp@2685: void igb_down(struct igb_adapter *adapter) fp@2685: { fp@2685: struct net_device *netdev = adapter->netdev; fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: u32 tctl, rctl; fp@2685: int i; fp@2685: fp@2685: /* signal that we're down so the interrupt handler does not fp@2685: * reschedule our watchdog timer fp@2685: */ fp@2685: set_bit(__IGB_DOWN, &adapter->state); fp@2685: fp@2685: /* disable receives in the hardware */ fp@2685: rctl = rd32(E1000_RCTL); fp@2685: wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN); fp@2685: /* flush and sleep below */ fp@2685: fp@2686: if (!adapter->ecdev) { fp@2686: netif_tx_stop_all_queues(netdev); fp@2686: } fp@2685: fp@2685: /* disable transmits in the hardware */ fp@2685: tctl = rd32(E1000_TCTL); fp@2685: tctl &= ~E1000_TCTL_EN; fp@2685: wr32(E1000_TCTL, tctl); fp@2685: /* flush both disables and wait for them to finish */ fp@2685: wrfl(); fp@2685: usleep_range(10000, 11000); fp@2685: fp@2685: igb_irq_disable(adapter); fp@2685: fp@2685: adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE; fp@2685: fp@2685: for (i = 0; i < adapter->num_q_vectors; i++) { fp@2686: if (!adapter->ecdev && adapter->q_vector[i]) { fp@2685: napi_synchronize(&adapter->q_vector[i]->napi); fp@2685: napi_disable(&adapter->q_vector[i]->napi); fp@2685: } fp@2685: } fp@2685: fp@2685: fp@2685: del_timer_sync(&adapter->watchdog_timer); fp@2685: del_timer_sync(&adapter->phy_info_timer); fp@2685: fp@2686: if (!adapter->ecdev) { fp@2686: netif_carrier_off(netdev); fp@2686: } fp@2685: fp@2685: /* record the stats before reset*/ fp@2685: spin_lock(&adapter->stats64_lock); fp@2685: igb_update_stats(adapter, &adapter->stats64); fp@2685: spin_unlock(&adapter->stats64_lock); fp@2685: fp@2685: adapter->link_speed = 0; fp@2685: adapter->link_duplex = 0; fp@2685: fp@2685: if (!pci_channel_offline(adapter->pdev)) fp@2685: igb_reset(adapter); fp@2685: igb_clean_all_tx_rings(adapter); fp@2685: igb_clean_all_rx_rings(adapter); fp@2685: #ifdef CONFIG_IGB_DCA fp@2685: fp@2685: /* since we reset the hardware DCA settings were cleared */ fp@2685: igb_setup_dca(adapter); fp@2685: #endif fp@2685: } fp@2685: fp@2685: void igb_reinit_locked(struct igb_adapter *adapter) fp@2685: { fp@2685: WARN_ON(in_interrupt()); fp@2685: while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) fp@2685: usleep_range(1000, 2000); fp@2685: igb_down(adapter); fp@2685: igb_up(adapter); fp@2685: clear_bit(__IGB_RESETTING, &adapter->state); fp@2685: } fp@2685: fp@2685: /** igb_enable_mas - Media Autosense re-enable after swap fp@2685: * fp@2685: * @adapter: adapter struct fp@2685: **/ fp@2685: static s32 igb_enable_mas(struct igb_adapter *adapter) fp@2685: { fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: u32 connsw; fp@2685: s32 ret_val = 0; fp@2685: fp@2685: connsw = rd32(E1000_CONNSW); fp@2685: if (!(hw->phy.media_type == e1000_media_type_copper)) fp@2685: return ret_val; fp@2685: fp@2685: /* configure for SerDes media detect */ fp@2685: if (!(connsw & E1000_CONNSW_SERDESD)) { fp@2685: connsw |= E1000_CONNSW_ENRGSRC; fp@2685: connsw |= E1000_CONNSW_AUTOSENSE_EN; fp@2685: wr32(E1000_CONNSW, connsw); fp@2685: wrfl(); fp@2685: } else if (connsw & E1000_CONNSW_SERDESD) { fp@2685: /* already SerDes, no need to enable anything */ fp@2685: return ret_val; fp@2685: } else { fp@2685: netdev_info(adapter->netdev, fp@2685: "MAS: Unable to configure feature, disabling..\n"); fp@2685: adapter->flags &= ~IGB_FLAG_MAS_ENABLE; fp@2685: } fp@2685: return ret_val; fp@2685: } fp@2685: fp@2685: void igb_reset(struct igb_adapter *adapter) fp@2685: { fp@2685: struct pci_dev *pdev = adapter->pdev; fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: struct e1000_mac_info *mac = &hw->mac; fp@2685: struct e1000_fc_info *fc = &hw->fc; fp@2685: u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm; fp@2685: fp@2685: /* Repartition Pba for greater than 9k mtu fp@2685: * To take effect CTRL.RST is required. fp@2685: */ fp@2685: switch (mac->type) { fp@2685: case e1000_i350: fp@2685: case e1000_i354: fp@2685: case e1000_82580: fp@2685: pba = rd32(E1000_RXPBS); fp@2685: pba = igb_rxpbs_adjust_82580(pba); fp@2685: break; fp@2685: case e1000_82576: fp@2685: pba = rd32(E1000_RXPBS); fp@2685: pba &= E1000_RXPBS_SIZE_MASK_82576; fp@2685: break; fp@2685: case e1000_82575: fp@2685: case e1000_i210: fp@2685: case e1000_i211: fp@2685: default: fp@2685: pba = E1000_PBA_34K; fp@2685: break; fp@2685: } fp@2685: fp@2685: if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) && fp@2685: (mac->type < e1000_82576)) { fp@2685: /* adjust PBA for jumbo frames */ fp@2685: wr32(E1000_PBA, pba); fp@2685: fp@2685: /* To maintain wire speed transmits, the Tx FIFO should be fp@2685: * large enough to accommodate two full transmit packets, fp@2685: * rounded up to the next 1KB and expressed in KB. Likewise, fp@2685: * the Rx FIFO should be large enough to accommodate at least fp@2685: * one full receive packet and is similarly rounded up and fp@2685: * expressed in KB. fp@2685: */ fp@2685: pba = rd32(E1000_PBA); fp@2685: /* upper 16 bits has Tx packet buffer allocation size in KB */ fp@2685: tx_space = pba >> 16; fp@2685: /* lower 16 bits has Rx packet buffer allocation size in KB */ fp@2685: pba &= 0xffff; fp@2685: /* the Tx fifo also stores 16 bytes of information about the Tx fp@2685: * but don't include ethernet FCS because hardware appends it fp@2685: */ fp@2685: min_tx_space = (adapter->max_frame_size + fp@2685: sizeof(union e1000_adv_tx_desc) - fp@2685: ETH_FCS_LEN) * 2; fp@2685: min_tx_space = ALIGN(min_tx_space, 1024); fp@2685: min_tx_space >>= 10; fp@2685: /* software strips receive CRC, so leave room for it */ fp@2685: min_rx_space = adapter->max_frame_size; fp@2685: min_rx_space = ALIGN(min_rx_space, 1024); fp@2685: min_rx_space >>= 10; fp@2685: fp@2685: /* If current Tx allocation is less than the min Tx FIFO size, fp@2685: * and the min Tx FIFO size is less than the current Rx FIFO fp@2685: * allocation, take space away from current Rx allocation fp@2685: */ fp@2685: if (tx_space < min_tx_space && fp@2685: ((min_tx_space - tx_space) < pba)) { fp@2685: pba = pba - (min_tx_space - tx_space); fp@2685: fp@2685: /* if short on Rx space, Rx wins and must trump Tx fp@2685: * adjustment fp@2685: */ fp@2685: if (pba < min_rx_space) fp@2685: pba = min_rx_space; fp@2685: } fp@2685: wr32(E1000_PBA, pba); fp@2685: } fp@2685: fp@2685: /* flow control settings */ fp@2685: /* The high water mark must be low enough to fit one full frame fp@2685: * (or the size used for early receive) above it in the Rx FIFO. fp@2685: * Set it to the lower of: fp@2685: * - 90% of the Rx FIFO size, or fp@2685: * - the full Rx FIFO size minus one full frame fp@2685: */ fp@2685: hwm = min(((pba << 10) * 9 / 10), fp@2685: ((pba << 10) - 2 * adapter->max_frame_size)); fp@2685: fp@2685: fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */ fp@2685: fc->low_water = fc->high_water - 16; fp@2685: fc->pause_time = 0xFFFF; fp@2685: fc->send_xon = 1; fp@2685: fc->current_mode = fc->requested_mode; fp@2685: fp@2685: /* disable receive for all VFs and wait one second */ fp@2685: if (adapter->vfs_allocated_count) { fp@2685: int i; fp@2685: fp@2685: for (i = 0 ; i < adapter->vfs_allocated_count; i++) fp@2685: adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC; fp@2685: fp@2685: /* ping all the active vfs to let them know we are going down */ fp@2685: igb_ping_all_vfs(adapter); fp@2685: fp@2685: /* disable transmits and receives */ fp@2685: wr32(E1000_VFRE, 0); fp@2685: wr32(E1000_VFTE, 0); fp@2685: } fp@2685: fp@2685: /* Allow time for pending master requests to run */ fp@2685: hw->mac.ops.reset_hw(hw); fp@2685: wr32(E1000_WUC, 0); fp@2685: fp@2685: if (adapter->flags & IGB_FLAG_MEDIA_RESET) { fp@2685: /* need to resetup here after media swap */ fp@2685: adapter->ei.get_invariants(hw); fp@2685: adapter->flags &= ~IGB_FLAG_MEDIA_RESET; fp@2685: } fp@2685: if (adapter->flags & IGB_FLAG_MAS_ENABLE) { fp@2685: if (igb_enable_mas(adapter)) fp@2685: dev_err(&pdev->dev, fp@2685: "Error enabling Media Auto Sense\n"); fp@2685: } fp@2685: if (hw->mac.ops.init_hw(hw)) fp@2685: dev_err(&pdev->dev, "Hardware Error\n"); fp@2685: fp@2685: /* Flow control settings reset on hardware reset, so guarantee flow fp@2685: * control is off when forcing speed. fp@2685: */ fp@2685: if (!hw->mac.autoneg) fp@2685: igb_force_mac_fc(hw); fp@2685: fp@2685: igb_init_dmac(adapter, pba); fp@2685: #ifdef CONFIG_IGB_HWMON fp@2685: /* Re-initialize the thermal sensor on i350 devices. */ fp@2685: if (!test_bit(__IGB_DOWN, &adapter->state)) { fp@2685: if (mac->type == e1000_i350 && hw->bus.func == 0) { fp@2685: /* If present, re-initialize the external thermal sensor fp@2685: * interface. fp@2685: */ fp@2685: if (adapter->ets) fp@2685: mac->ops.init_thermal_sensor_thresh(hw); fp@2685: } fp@2685: } fp@2685: #endif fp@2685: /* Re-establish EEE setting */ fp@2685: if (hw->phy.media_type == e1000_media_type_copper) { fp@2685: switch (mac->type) { fp@2685: case e1000_i350: fp@2685: case e1000_i210: fp@2685: case e1000_i211: fp@2685: igb_set_eee_i350(hw, true, true); fp@2685: break; fp@2685: case e1000_i354: fp@2685: igb_set_eee_i354(hw, true, true); fp@2685: break; fp@2685: default: fp@2685: break; fp@2685: } fp@2685: } fp@2686: if (!adapter->ecdev && !netif_running(adapter->netdev)) fp@2685: igb_power_down_link(adapter); fp@2685: fp@2685: igb_update_mng_vlan(adapter); fp@2685: fp@2685: /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ fp@2685: wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE); fp@2685: fp@2685: /* Re-enable PTP, where applicable. */ fp@2685: igb_ptp_reset(adapter); fp@2685: fp@2685: igb_get_phy_info(hw); fp@2685: } fp@2685: fp@2685: static netdev_features_t igb_fix_features(struct net_device *netdev, fp@2685: netdev_features_t features) fp@2685: { fp@2685: /* Since there is no support for separate Rx/Tx vlan accel fp@2685: * enable/disable make sure Tx flag is always in same state as Rx. fp@2685: */ fp@2685: if (features & NETIF_F_HW_VLAN_CTAG_RX) fp@2685: features |= NETIF_F_HW_VLAN_CTAG_TX; fp@2685: else fp@2685: features &= ~NETIF_F_HW_VLAN_CTAG_TX; fp@2685: fp@2685: return features; fp@2685: } fp@2685: fp@2685: static int igb_set_features(struct net_device *netdev, fp@2685: netdev_features_t features) fp@2685: { fp@2685: netdev_features_t changed = netdev->features ^ features; fp@2685: struct igb_adapter *adapter = netdev_priv(netdev); fp@2685: fp@2685: if (changed & NETIF_F_HW_VLAN_CTAG_RX) fp@2685: igb_vlan_mode(netdev, features); fp@2685: fp@2685: if (!(changed & NETIF_F_RXALL)) fp@2685: return 0; fp@2685: fp@2685: netdev->features = features; fp@2685: fp@2685: if (netif_running(netdev)) fp@2685: igb_reinit_locked(adapter); fp@2685: else fp@2685: igb_reset(adapter); fp@2685: fp@2685: return 0; fp@2685: } fp@2685: fp@2685: static const struct net_device_ops igb_netdev_ops = { fp@2685: .ndo_open = igb_open, fp@2685: .ndo_stop = igb_close, fp@2685: .ndo_start_xmit = igb_xmit_frame, fp@2685: .ndo_get_stats64 = igb_get_stats64, fp@2685: .ndo_set_rx_mode = igb_set_rx_mode, fp@2685: .ndo_set_mac_address = igb_set_mac, fp@2685: .ndo_change_mtu = igb_change_mtu, fp@2685: .ndo_do_ioctl = igb_ioctl, fp@2685: .ndo_tx_timeout = igb_tx_timeout, fp@2685: .ndo_validate_addr = eth_validate_addr, fp@2685: .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid, fp@2685: .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid, fp@2685: .ndo_set_vf_mac = igb_ndo_set_vf_mac, fp@2685: .ndo_set_vf_vlan = igb_ndo_set_vf_vlan, fp@2685: .ndo_set_vf_rate = igb_ndo_set_vf_bw, fp@2685: .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk, fp@2685: .ndo_get_vf_config = igb_ndo_get_vf_config, fp@2685: #ifdef CONFIG_NET_POLL_CONTROLLER fp@2685: .ndo_poll_controller = igb_netpoll, fp@2685: #endif fp@2685: .ndo_fix_features = igb_fix_features, fp@2685: .ndo_set_features = igb_set_features, fp@2685: }; fp@2685: fp@2685: /** fp@2686: * ec_poll - EtherCAT poll routine fp@2686: * @netdev: net device structure fp@2686: * fp@2686: * This function can never fail. fp@2686: * fp@2686: **/ fp@2686: void ec_poll(struct net_device *netdev) fp@2686: { fp@2686: struct igb_adapter *adapter = netdev_priv(netdev); fp@2686: int i; fp@2686: int budget = 64; fp@2686: fp@2686: if (jiffies - adapter->ec_watchdog_jiffies >= 2 * HZ) { fp@2686: struct e1000_hw *hw = &adapter->hw; fp@2686: bool link; fp@2686: hw->mac.get_link_status = true; fp@2686: link = igb_has_link(adapter); fp@2686: ecdev_set_link(adapter->ecdev, link); fp@2686: adapter->ec_watchdog_jiffies = jiffies; fp@2686: } fp@2686: fp@2686: for (i = 0; i < adapter->num_q_vectors; i++) { fp@2686: struct igb_q_vector *q_vector = adapter->q_vector[i]; fp@2686: if (q_vector->tx.ring) { fp@2686: igb_clean_tx_irq(q_vector); fp@2686: } fp@2686: fp@2686: if (q_vector->rx.ring) { fp@2686: igb_clean_rx_irq(q_vector, budget); fp@2686: } fp@2686: } fp@2686: } fp@2686: fp@2686: /** fp@2685: * igb_set_fw_version - Configure version string for ethtool fp@2685: * @adapter: adapter struct fp@2685: **/ fp@2685: void igb_set_fw_version(struct igb_adapter *adapter) fp@2685: { fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: struct e1000_fw_version fw; fp@2685: fp@2685: igb_get_fw_version(hw, &fw); fp@2685: fp@2685: switch (hw->mac.type) { fp@2685: case e1000_i210: fp@2685: case e1000_i211: fp@2685: if (!(igb_get_flash_presence_i210(hw))) { fp@2685: snprintf(adapter->fw_version, fp@2685: sizeof(adapter->fw_version), fp@2685: "%2d.%2d-%d", fp@2685: fw.invm_major, fw.invm_minor, fp@2685: fw.invm_img_type); fp@2685: break; fp@2685: } fp@2685: /* fall through */ fp@2685: default: fp@2685: /* if option is rom valid, display its version too */ fp@2685: if (fw.or_valid) { fp@2685: snprintf(adapter->fw_version, fp@2685: sizeof(adapter->fw_version), fp@2685: "%d.%d, 0x%08x, %d.%d.%d", fp@2685: fw.eep_major, fw.eep_minor, fw.etrack_id, fp@2685: fw.or_major, fw.or_build, fw.or_patch); fp@2685: /* no option rom */ fp@2685: } else if (fw.etrack_id != 0X0000) { fp@2685: snprintf(adapter->fw_version, fp@2685: sizeof(adapter->fw_version), fp@2685: "%d.%d, 0x%08x", fp@2685: fw.eep_major, fw.eep_minor, fw.etrack_id); fp@2685: } else { fp@2685: snprintf(adapter->fw_version, fp@2685: sizeof(adapter->fw_version), fp@2685: "%d.%d.%d", fp@2685: fw.eep_major, fw.eep_minor, fw.eep_build); fp@2685: } fp@2685: break; fp@2685: } fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_init_mas - init Media Autosense feature if enabled in the NVM fp@2685: * fp@2685: * @adapter: adapter struct fp@2685: **/ fp@2685: static void igb_init_mas(struct igb_adapter *adapter) fp@2685: { fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: u16 eeprom_data; fp@2685: fp@2685: hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data); fp@2685: switch (hw->bus.func) { fp@2685: case E1000_FUNC_0: fp@2685: if (eeprom_data & IGB_MAS_ENABLE_0) { fp@2685: adapter->flags |= IGB_FLAG_MAS_ENABLE; fp@2685: netdev_info(adapter->netdev, fp@2685: "MAS: Enabling Media Autosense for port %d\n", fp@2685: hw->bus.func); fp@2685: } fp@2685: break; fp@2685: case E1000_FUNC_1: fp@2685: if (eeprom_data & IGB_MAS_ENABLE_1) { fp@2685: adapter->flags |= IGB_FLAG_MAS_ENABLE; fp@2685: netdev_info(adapter->netdev, fp@2685: "MAS: Enabling Media Autosense for port %d\n", fp@2685: hw->bus.func); fp@2685: } fp@2685: break; fp@2685: case E1000_FUNC_2: fp@2685: if (eeprom_data & IGB_MAS_ENABLE_2) { fp@2685: adapter->flags |= IGB_FLAG_MAS_ENABLE; fp@2685: netdev_info(adapter->netdev, fp@2685: "MAS: Enabling Media Autosense for port %d\n", fp@2685: hw->bus.func); fp@2685: } fp@2685: break; fp@2685: case E1000_FUNC_3: fp@2685: if (eeprom_data & IGB_MAS_ENABLE_3) { fp@2685: adapter->flags |= IGB_FLAG_MAS_ENABLE; fp@2685: netdev_info(adapter->netdev, fp@2685: "MAS: Enabling Media Autosense for port %d\n", fp@2685: hw->bus.func); fp@2685: } fp@2685: break; fp@2685: default: fp@2685: /* Shouldn't get here */ fp@2685: netdev_err(adapter->netdev, fp@2685: "MAS: Invalid port configuration, returning\n"); fp@2685: break; fp@2685: } fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_init_i2c - Init I2C interface fp@2685: * @adapter: pointer to adapter structure fp@2685: **/ fp@2685: static s32 igb_init_i2c(struct igb_adapter *adapter) fp@2685: { fp@2685: s32 status = 0; fp@2685: fp@2685: /* I2C interface supported on i350 devices */ fp@2685: if (adapter->hw.mac.type != e1000_i350) fp@2685: return 0; fp@2685: fp@2685: /* Initialize the i2c bus which is controlled by the registers. fp@2685: * This bus will use the i2c_algo_bit structue that implements fp@2685: * the protocol through toggling of the 4 bits in the register. fp@2685: */ fp@2685: adapter->i2c_adap.owner = THIS_MODULE; fp@2685: adapter->i2c_algo = igb_i2c_algo; fp@2685: adapter->i2c_algo.data = adapter; fp@2685: adapter->i2c_adap.algo_data = &adapter->i2c_algo; fp@2685: adapter->i2c_adap.dev.parent = &adapter->pdev->dev; fp@2685: strlcpy(adapter->i2c_adap.name, "igb BB", fp@2685: sizeof(adapter->i2c_adap.name)); fp@2685: status = i2c_bit_add_bus(&adapter->i2c_adap); fp@2685: return status; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_probe - Device Initialization Routine fp@2685: * @pdev: PCI device information struct fp@2685: * @ent: entry in igb_pci_tbl fp@2685: * fp@2685: * Returns 0 on success, negative on failure fp@2685: * fp@2685: * igb_probe initializes an adapter identified by a pci_dev structure. fp@2685: * The OS initialization, configuring of the adapter private structure, fp@2685: * and a hardware reset occur. fp@2685: **/ fp@2685: static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent) fp@2685: { fp@2685: struct net_device *netdev; fp@2685: struct igb_adapter *adapter; fp@2685: struct e1000_hw *hw; fp@2685: u16 eeprom_data = 0; fp@2685: s32 ret_val; fp@2685: static int global_quad_port_a; /* global quad port a indication */ fp@2685: const struct e1000_info *ei = igb_info_tbl[ent->driver_data]; fp@2685: int err, pci_using_dac; fp@2685: u8 part_str[E1000_PBANUM_LENGTH]; fp@2685: fp@2685: /* Catch broken hardware that put the wrong VF device ID in fp@2685: * the PCIe SR-IOV capability. fp@2685: */ fp@2685: if (pdev->is_virtfn) { fp@2685: WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n", fp@2685: pci_name(pdev), pdev->vendor, pdev->device); fp@2685: return -EINVAL; fp@2685: } fp@2685: fp@2685: err = pci_enable_device_mem(pdev); fp@2685: if (err) fp@2685: return err; fp@2685: fp@2685: pci_using_dac = 0; fp@2685: err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); fp@2685: if (!err) { fp@2685: pci_using_dac = 1; fp@2685: } else { fp@2685: err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); fp@2685: if (err) { fp@2685: dev_err(&pdev->dev, fp@2685: "No usable DMA configuration, aborting\n"); fp@2685: goto err_dma; fp@2685: } fp@2685: } fp@2685: fp@2685: err = pci_request_selected_regions(pdev, pci_select_bars(pdev, fp@2685: IORESOURCE_MEM), fp@2685: igb_driver_name); fp@2685: if (err) fp@2685: goto err_pci_reg; fp@2685: fp@2685: pci_enable_pcie_error_reporting(pdev); fp@2685: fp@2685: pci_set_master(pdev); fp@2685: pci_save_state(pdev); fp@2685: fp@2685: err = -ENOMEM; fp@2685: netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), fp@2685: IGB_MAX_TX_QUEUES); fp@2685: if (!netdev) fp@2685: goto err_alloc_etherdev; fp@2685: fp@2685: SET_NETDEV_DEV(netdev, &pdev->dev); fp@2685: fp@2685: pci_set_drvdata(pdev, netdev); fp@2685: adapter = netdev_priv(netdev); fp@2685: adapter->netdev = netdev; fp@2685: adapter->pdev = pdev; fp@2685: hw = &adapter->hw; fp@2685: hw->back = adapter; fp@2685: adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); fp@2685: fp@2685: err = -EIO; fp@2685: hw->hw_addr = pci_iomap(pdev, 0, 0); fp@2685: if (!hw->hw_addr) fp@2685: goto err_ioremap; fp@2685: fp@2685: netdev->netdev_ops = &igb_netdev_ops; fp@2685: igb_set_ethtool_ops(netdev); fp@2685: netdev->watchdog_timeo = 5 * HZ; fp@2685: fp@2685: strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); fp@2685: fp@2685: netdev->mem_start = pci_resource_start(pdev, 0); fp@2685: netdev->mem_end = pci_resource_end(pdev, 0); fp@2685: fp@2685: /* PCI config space info */ fp@2685: hw->vendor_id = pdev->vendor; fp@2685: hw->device_id = pdev->device; fp@2685: hw->revision_id = pdev->revision; fp@2685: hw->subsystem_vendor_id = pdev->subsystem_vendor; fp@2685: hw->subsystem_device_id = pdev->subsystem_device; fp@2685: fp@2685: /* Copy the default MAC, PHY and NVM function pointers */ fp@2685: memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); fp@2685: memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); fp@2685: memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops)); fp@2685: /* Initialize skew-specific constants */ fp@2685: err = ei->get_invariants(hw); fp@2685: if (err) fp@2685: goto err_sw_init; fp@2685: fp@2685: /* setup the private structure */ fp@2685: err = igb_sw_init(adapter); fp@2685: if (err) fp@2685: goto err_sw_init; fp@2685: fp@2685: igb_get_bus_info_pcie(hw); fp@2685: fp@2685: hw->phy.autoneg_wait_to_complete = false; fp@2685: fp@2685: /* Copper options */ fp@2685: if (hw->phy.media_type == e1000_media_type_copper) { fp@2685: hw->phy.mdix = AUTO_ALL_MODES; fp@2685: hw->phy.disable_polarity_correction = false; fp@2685: hw->phy.ms_type = e1000_ms_hw_default; fp@2685: } fp@2685: fp@2685: if (igb_check_reset_block(hw)) fp@2685: dev_info(&pdev->dev, fp@2685: "PHY reset is blocked due to SOL/IDER session.\n"); fp@2685: fp@2685: /* features is initialized to 0 in allocation, it might have bits fp@2685: * set by igb_sw_init so we should use an or instead of an fp@2685: * assignment. fp@2685: */ fp@2685: netdev->features |= NETIF_F_SG | fp@2685: NETIF_F_IP_CSUM | fp@2685: NETIF_F_IPV6_CSUM | fp@2685: NETIF_F_TSO | fp@2685: NETIF_F_TSO6 | fp@2685: NETIF_F_RXHASH | fp@2685: NETIF_F_RXCSUM | fp@2685: NETIF_F_HW_VLAN_CTAG_RX | fp@2685: NETIF_F_HW_VLAN_CTAG_TX; fp@2685: fp@2685: /* copy netdev features into list of user selectable features */ fp@2685: netdev->hw_features |= netdev->features; fp@2685: netdev->hw_features |= NETIF_F_RXALL; fp@2685: fp@2685: /* set this bit last since it cannot be part of hw_features */ fp@2685: netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; fp@2685: fp@2685: netdev->vlan_features |= NETIF_F_TSO | fp@2685: NETIF_F_TSO6 | fp@2685: NETIF_F_IP_CSUM | fp@2685: NETIF_F_IPV6_CSUM | fp@2685: NETIF_F_SG; fp@2685: fp@2685: netdev->priv_flags |= IFF_SUPP_NOFCS; fp@2685: fp@2685: if (pci_using_dac) { fp@2685: netdev->features |= NETIF_F_HIGHDMA; fp@2685: netdev->vlan_features |= NETIF_F_HIGHDMA; fp@2685: } fp@2685: fp@2685: if (hw->mac.type >= e1000_82576) { fp@2685: netdev->hw_features |= NETIF_F_SCTP_CSUM; fp@2685: netdev->features |= NETIF_F_SCTP_CSUM; fp@2685: } fp@2685: fp@2685: netdev->priv_flags |= IFF_UNICAST_FLT; fp@2685: fp@2685: adapter->en_mng_pt = igb_enable_mng_pass_thru(hw); fp@2685: fp@2685: /* before reading the NVM, reset the controller to put the device in a fp@2685: * known good starting state fp@2685: */ fp@2685: hw->mac.ops.reset_hw(hw); fp@2685: fp@2685: /* make sure the NVM is good , i211/i210 parts can have special NVM fp@2685: * that doesn't contain a checksum fp@2685: */ fp@2685: switch (hw->mac.type) { fp@2685: case e1000_i210: fp@2685: case e1000_i211: fp@2685: if (igb_get_flash_presence_i210(hw)) { fp@2685: if (hw->nvm.ops.validate(hw) < 0) { fp@2685: dev_err(&pdev->dev, fp@2685: "The NVM Checksum Is Not Valid\n"); fp@2685: err = -EIO; fp@2685: goto err_eeprom; fp@2685: } fp@2685: } fp@2685: break; fp@2685: default: fp@2685: if (hw->nvm.ops.validate(hw) < 0) { fp@2685: dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n"); fp@2685: err = -EIO; fp@2685: goto err_eeprom; fp@2685: } fp@2685: break; fp@2685: } fp@2685: fp@2685: /* copy the MAC address out of the NVM */ fp@2685: if (hw->mac.ops.read_mac_addr(hw)) fp@2685: dev_err(&pdev->dev, "NVM Read Error\n"); fp@2685: fp@2685: memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len); fp@2685: fp@2685: if (!is_valid_ether_addr(netdev->dev_addr)) { fp@2685: dev_err(&pdev->dev, "Invalid MAC Address\n"); fp@2685: err = -EIO; fp@2685: goto err_eeprom; fp@2685: } fp@2685: fp@2685: /* get firmware version for ethtool -i */ fp@2685: igb_set_fw_version(adapter); fp@2685: fp@2685: /* configure RXPBSIZE and TXPBSIZE */ fp@2685: if (hw->mac.type == e1000_i210) { fp@2685: wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT); fp@2685: wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT); fp@2685: } fp@2685: fp@2685: setup_timer(&adapter->watchdog_timer, igb_watchdog, fp@2685: (unsigned long) adapter); fp@2685: setup_timer(&adapter->phy_info_timer, igb_update_phy_info, fp@2685: (unsigned long) adapter); fp@2685: fp@2685: INIT_WORK(&adapter->reset_task, igb_reset_task); fp@2685: INIT_WORK(&adapter->watchdog_task, igb_watchdog_task); fp@2685: fp@2685: /* Initialize link properties that are user-changeable */ fp@2685: adapter->fc_autoneg = true; fp@2685: hw->mac.autoneg = true; fp@2685: hw->phy.autoneg_advertised = 0x2f; fp@2685: fp@2685: hw->fc.requested_mode = e1000_fc_default; fp@2685: hw->fc.current_mode = e1000_fc_default; fp@2685: fp@2685: igb_validate_mdi_setting(hw); fp@2685: fp@2685: /* By default, support wake on port A */ fp@2685: if (hw->bus.func == 0) fp@2685: adapter->flags |= IGB_FLAG_WOL_SUPPORTED; fp@2685: fp@2685: /* Check the NVM for wake support on non-port A ports */ fp@2685: if (hw->mac.type >= e1000_82580) fp@2685: hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A + fp@2685: NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1, fp@2685: &eeprom_data); fp@2685: else if (hw->bus.func == 1) fp@2685: hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); fp@2685: fp@2685: if (eeprom_data & IGB_EEPROM_APME) fp@2685: adapter->flags |= IGB_FLAG_WOL_SUPPORTED; fp@2685: fp@2685: /* now that we have the eeprom settings, apply the special cases where fp@2685: * the eeprom may be wrong or the board simply won't support wake on fp@2685: * lan on a particular port fp@2685: */ fp@2685: switch (pdev->device) { fp@2685: case E1000_DEV_ID_82575GB_QUAD_COPPER: fp@2685: adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; fp@2685: break; fp@2685: case E1000_DEV_ID_82575EB_FIBER_SERDES: fp@2685: case E1000_DEV_ID_82576_FIBER: fp@2685: case E1000_DEV_ID_82576_SERDES: fp@2685: /* Wake events only supported on port A for dual fiber fp@2685: * regardless of eeprom setting fp@2685: */ fp@2685: if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) fp@2685: adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; fp@2685: break; fp@2685: case E1000_DEV_ID_82576_QUAD_COPPER: fp@2685: case E1000_DEV_ID_82576_QUAD_COPPER_ET2: fp@2685: /* if quad port adapter, disable WoL on all but port A */ fp@2685: if (global_quad_port_a != 0) fp@2685: adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; fp@2685: else fp@2685: adapter->flags |= IGB_FLAG_QUAD_PORT_A; fp@2685: /* Reset for multiple quad port adapters */ fp@2685: if (++global_quad_port_a == 4) fp@2685: global_quad_port_a = 0; fp@2685: break; fp@2685: default: fp@2685: /* If the device can't wake, don't set software support */ fp@2685: if (!device_can_wakeup(&adapter->pdev->dev)) fp@2685: adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; fp@2685: } fp@2685: fp@2685: /* initialize the wol settings based on the eeprom settings */ fp@2685: if (adapter->flags & IGB_FLAG_WOL_SUPPORTED) fp@2685: adapter->wol |= E1000_WUFC_MAG; fp@2685: fp@2685: /* Some vendors want WoL disabled by default, but still supported */ fp@2685: if ((hw->mac.type == e1000_i350) && fp@2685: (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) { fp@2685: adapter->flags |= IGB_FLAG_WOL_SUPPORTED; fp@2685: adapter->wol = 0; fp@2685: } fp@2685: fp@2685: device_set_wakeup_enable(&adapter->pdev->dev, fp@2685: adapter->flags & IGB_FLAG_WOL_SUPPORTED); fp@2685: fp@2685: /* reset the hardware with the new settings */ fp@2685: igb_reset(adapter); fp@2685: fp@2685: /* Init the I2C interface */ fp@2685: err = igb_init_i2c(adapter); fp@2685: if (err) { fp@2685: dev_err(&pdev->dev, "failed to init i2c interface\n"); fp@2685: goto err_eeprom; fp@2685: } fp@2685: fp@2685: /* let the f/w know that the h/w is now under the control of the fp@2685: * driver. fp@2685: */ fp@2685: igb_get_hw_control(adapter); fp@2685: fp@2686: adapter->ecdev = ecdev_offer(netdev, ec_poll, THIS_MODULE); fp@2686: if (adapter->ecdev) { fp@2686: err = ecdev_open(adapter->ecdev); fp@2686: if (err) { fp@2686: ecdev_withdraw(adapter->ecdev); fp@2686: goto err_register; fp@2686: } fp@2686: adapter->ec_watchdog_jiffies = jiffies; fp@2686: } else { fp@2686: strcpy(netdev->name, "eth%d"); fp@2686: err = register_netdev(netdev); fp@2686: if (err) fp@2686: goto err_register; fp@2686: fp@2686: /* carrier off reporting is important to ethtool even BEFORE open */ fp@2686: netif_carrier_off(netdev); fp@2686: } fp@2685: fp@2685: #ifdef CONFIG_IGB_DCA fp@2685: if (dca_add_requester(&pdev->dev) == 0) { fp@2685: adapter->flags |= IGB_FLAG_DCA_ENABLED; fp@2685: dev_info(&pdev->dev, "DCA enabled\n"); fp@2685: igb_setup_dca(adapter); fp@2685: } fp@2685: fp@2685: #endif fp@2685: #ifdef CONFIG_IGB_HWMON fp@2685: /* Initialize the thermal sensor on i350 devices. */ fp@2685: if (hw->mac.type == e1000_i350 && hw->bus.func == 0) { fp@2685: u16 ets_word; fp@2685: fp@2685: /* Read the NVM to determine if this i350 device supports an fp@2685: * external thermal sensor. fp@2685: */ fp@2685: hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word); fp@2685: if (ets_word != 0x0000 && ets_word != 0xFFFF) fp@2685: adapter->ets = true; fp@2685: else fp@2685: adapter->ets = false; fp@2685: if (igb_sysfs_init(adapter)) fp@2685: dev_err(&pdev->dev, fp@2685: "failed to allocate sysfs resources\n"); fp@2685: } else { fp@2685: adapter->ets = false; fp@2685: } fp@2685: #endif fp@2685: /* Check if Media Autosense is enabled */ fp@2685: adapter->ei = *ei; fp@2685: if (hw->dev_spec._82575.mas_capable) fp@2685: igb_init_mas(adapter); fp@2685: fp@2685: /* do hw tstamp init after resetting */ fp@2685: igb_ptp_init(adapter); fp@2685: fp@2685: dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n"); fp@2685: /* print bus type/speed/width info, not applicable to i354 */ fp@2685: if (hw->mac.type != e1000_i354) { fp@2685: dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n", fp@2685: netdev->name, fp@2685: ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" : fp@2685: (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" : fp@2685: "unknown"), fp@2685: ((hw->bus.width == e1000_bus_width_pcie_x4) ? fp@2685: "Width x4" : fp@2685: (hw->bus.width == e1000_bus_width_pcie_x2) ? fp@2685: "Width x2" : fp@2685: (hw->bus.width == e1000_bus_width_pcie_x1) ? fp@2685: "Width x1" : "unknown"), netdev->dev_addr); fp@2685: } fp@2685: fp@2685: if ((hw->mac.type >= e1000_i210 || fp@2685: igb_get_flash_presence_i210(hw))) { fp@2685: ret_val = igb_read_part_string(hw, part_str, fp@2685: E1000_PBANUM_LENGTH); fp@2685: } else { fp@2685: ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND; fp@2685: } fp@2685: fp@2685: if (ret_val) fp@2685: strcpy(part_str, "Unknown"); fp@2685: dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str); fp@2685: dev_info(&pdev->dev, fp@2685: "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n", fp@2685: (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" : fp@2685: (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy", fp@2685: adapter->num_rx_queues, adapter->num_tx_queues); fp@2685: if (hw->phy.media_type == e1000_media_type_copper) { fp@2685: switch (hw->mac.type) { fp@2685: case e1000_i350: fp@2685: case e1000_i210: fp@2685: case e1000_i211: fp@2685: /* Enable EEE for internal copper PHY devices */ fp@2685: err = igb_set_eee_i350(hw, true, true); fp@2685: if ((!err) && fp@2685: (!hw->dev_spec._82575.eee_disable)) { fp@2685: adapter->eee_advert = fp@2685: MDIO_EEE_100TX | MDIO_EEE_1000T; fp@2685: adapter->flags |= IGB_FLAG_EEE; fp@2685: } fp@2685: break; fp@2685: case e1000_i354: fp@2685: if ((rd32(E1000_CTRL_EXT) & fp@2685: E1000_CTRL_EXT_LINK_MODE_SGMII)) { fp@2685: err = igb_set_eee_i354(hw, true, true); fp@2685: if ((!err) && fp@2685: (!hw->dev_spec._82575.eee_disable)) { fp@2685: adapter->eee_advert = fp@2685: MDIO_EEE_100TX | MDIO_EEE_1000T; fp@2685: adapter->flags |= IGB_FLAG_EEE; fp@2685: } fp@2685: } fp@2685: break; fp@2685: default: fp@2685: break; fp@2685: } fp@2685: } fp@2685: pm_runtime_put_noidle(&pdev->dev); fp@2685: return 0; fp@2685: fp@2685: err_register: fp@2685: igb_release_hw_control(adapter); fp@2685: memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap)); fp@2685: err_eeprom: fp@2685: if (!igb_check_reset_block(hw)) fp@2685: igb_reset_phy(hw); fp@2685: fp@2685: if (hw->flash_address) fp@2685: iounmap(hw->flash_address); fp@2685: err_sw_init: fp@2685: igb_clear_interrupt_scheme(adapter); fp@2685: pci_iounmap(pdev, hw->hw_addr); fp@2685: err_ioremap: fp@2685: free_netdev(netdev); fp@2685: err_alloc_etherdev: fp@2685: pci_release_selected_regions(pdev, fp@2685: pci_select_bars(pdev, IORESOURCE_MEM)); fp@2685: err_pci_reg: fp@2685: err_dma: fp@2685: pci_disable_device(pdev); fp@2685: return err; fp@2685: } fp@2685: fp@2685: #ifdef CONFIG_PCI_IOV fp@2685: static int igb_disable_sriov(struct pci_dev *pdev) fp@2685: { fp@2685: struct net_device *netdev = pci_get_drvdata(pdev); fp@2685: struct igb_adapter *adapter = netdev_priv(netdev); fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: fp@2685: /* reclaim resources allocated to VFs */ fp@2685: if (adapter->vf_data) { fp@2685: /* disable iov and allow time for transactions to clear */ fp@2685: if (pci_vfs_assigned(pdev)) { fp@2685: dev_warn(&pdev->dev, fp@2685: "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n"); fp@2685: return -EPERM; fp@2685: } else { fp@2685: pci_disable_sriov(pdev); fp@2685: msleep(500); fp@2685: } fp@2685: fp@2685: kfree(adapter->vf_data); fp@2685: adapter->vf_data = NULL; fp@2685: adapter->vfs_allocated_count = 0; fp@2685: wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ); fp@2685: wrfl(); fp@2685: msleep(100); fp@2685: dev_info(&pdev->dev, "IOV Disabled\n"); fp@2685: fp@2685: /* Re-enable DMA Coalescing flag since IOV is turned off */ fp@2685: adapter->flags |= IGB_FLAG_DMAC; fp@2685: } fp@2685: fp@2685: return 0; fp@2685: } fp@2685: fp@2685: static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs) fp@2685: { fp@2685: struct net_device *netdev = pci_get_drvdata(pdev); fp@2685: struct igb_adapter *adapter = netdev_priv(netdev); fp@2685: int old_vfs = pci_num_vf(pdev); fp@2685: int err = 0; fp@2685: int i; fp@2685: fp@2685: if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) { fp@2685: err = -EPERM; fp@2685: goto out; fp@2685: } fp@2685: if (!num_vfs) fp@2685: goto out; fp@2685: fp@2685: if (old_vfs) { fp@2685: dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n", fp@2685: old_vfs, max_vfs); fp@2685: adapter->vfs_allocated_count = old_vfs; fp@2685: } else fp@2685: adapter->vfs_allocated_count = num_vfs; fp@2685: fp@2685: adapter->vf_data = kcalloc(adapter->vfs_allocated_count, fp@2685: sizeof(struct vf_data_storage), GFP_KERNEL); fp@2685: fp@2685: /* if allocation failed then we do not support SR-IOV */ fp@2685: if (!adapter->vf_data) { fp@2685: adapter->vfs_allocated_count = 0; fp@2685: dev_err(&pdev->dev, fp@2685: "Unable to allocate memory for VF Data Storage\n"); fp@2685: err = -ENOMEM; fp@2685: goto out; fp@2685: } fp@2685: fp@2685: /* only call pci_enable_sriov() if no VFs are allocated already */ fp@2685: if (!old_vfs) { fp@2685: err = pci_enable_sriov(pdev, adapter->vfs_allocated_count); fp@2685: if (err) fp@2685: goto err_out; fp@2685: } fp@2685: dev_info(&pdev->dev, "%d VFs allocated\n", fp@2685: adapter->vfs_allocated_count); fp@2685: for (i = 0; i < adapter->vfs_allocated_count; i++) fp@2685: igb_vf_configure(adapter, i); fp@2685: fp@2685: /* DMA Coalescing is not supported in IOV mode. */ fp@2685: adapter->flags &= ~IGB_FLAG_DMAC; fp@2685: goto out; fp@2685: fp@2685: err_out: fp@2685: kfree(adapter->vf_data); fp@2685: adapter->vf_data = NULL; fp@2685: adapter->vfs_allocated_count = 0; fp@2685: out: fp@2685: return err; fp@2685: } fp@2685: fp@2685: #endif fp@2685: /** fp@2685: * igb_remove_i2c - Cleanup I2C interface fp@2685: * @adapter: pointer to adapter structure fp@2685: **/ fp@2685: static void igb_remove_i2c(struct igb_adapter *adapter) fp@2685: { fp@2685: /* free the adapter bus structure */ fp@2685: i2c_del_adapter(&adapter->i2c_adap); fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_remove - Device Removal Routine fp@2685: * @pdev: PCI device information struct fp@2685: * fp@2685: * igb_remove is called by the PCI subsystem to alert the driver fp@2685: * that it should release a PCI device. The could be caused by a fp@2685: * Hot-Plug event, or because the driver is going to be removed from fp@2685: * memory. fp@2685: **/ fp@2685: static void igb_remove(struct pci_dev *pdev) fp@2685: { fp@2685: struct net_device *netdev = pci_get_drvdata(pdev); fp@2685: struct igb_adapter *adapter = netdev_priv(netdev); fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: fp@2686: if (adapter->ecdev) { fp@2686: ecdev_close(adapter->ecdev); fp@2686: ecdev_withdraw(adapter->ecdev); fp@2686: } fp@2686: fp@2685: pm_runtime_get_noresume(&pdev->dev); fp@2685: #ifdef CONFIG_IGB_HWMON fp@2685: igb_sysfs_exit(adapter); fp@2685: #endif fp@2685: igb_remove_i2c(adapter); fp@2685: igb_ptp_stop(adapter); fp@2685: /* The watchdog timer may be rescheduled, so explicitly fp@2685: * disable watchdog from being rescheduled. fp@2685: */ fp@2685: set_bit(__IGB_DOWN, &adapter->state); fp@2685: del_timer_sync(&adapter->watchdog_timer); fp@2685: del_timer_sync(&adapter->phy_info_timer); fp@2685: fp@2685: cancel_work_sync(&adapter->reset_task); fp@2685: cancel_work_sync(&adapter->watchdog_task); fp@2685: fp@2685: #ifdef CONFIG_IGB_DCA fp@2685: if (adapter->flags & IGB_FLAG_DCA_ENABLED) { fp@2685: dev_info(&pdev->dev, "DCA disabled\n"); fp@2685: dca_remove_requester(&pdev->dev); fp@2685: adapter->flags &= ~IGB_FLAG_DCA_ENABLED; fp@2685: wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE); fp@2685: } fp@2685: #endif fp@2685: fp@2685: /* Release control of h/w to f/w. If f/w is AMT enabled, this fp@2685: * would have already happened in close and is redundant. fp@2685: */ fp@2685: igb_release_hw_control(adapter); fp@2685: fp@2686: if (!adapter->ecdev) { fp@2686: unregister_netdev(netdev); fp@2686: } fp@2685: fp@2685: igb_clear_interrupt_scheme(adapter); fp@2685: fp@2685: #ifdef CONFIG_PCI_IOV fp@2685: igb_disable_sriov(pdev); fp@2685: #endif fp@2685: fp@2685: pci_iounmap(pdev, hw->hw_addr); fp@2685: if (hw->flash_address) fp@2685: iounmap(hw->flash_address); fp@2685: pci_release_selected_regions(pdev, fp@2685: pci_select_bars(pdev, IORESOURCE_MEM)); fp@2685: fp@2685: kfree(adapter->shadow_vfta); fp@2685: free_netdev(netdev); fp@2685: fp@2685: pci_disable_pcie_error_reporting(pdev); fp@2685: fp@2685: pci_disable_device(pdev); fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space fp@2685: * @adapter: board private structure to initialize fp@2685: * fp@2685: * This function initializes the vf specific data storage and then attempts to fp@2685: * allocate the VFs. The reason for ordering it this way is because it is much fp@2685: * mor expensive time wise to disable SR-IOV than it is to allocate and free fp@2685: * the memory for the VFs. fp@2685: **/ fp@2685: static void igb_probe_vfs(struct igb_adapter *adapter) fp@2685: { fp@2685: #ifdef CONFIG_PCI_IOV fp@2685: struct pci_dev *pdev = adapter->pdev; fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: fp@2685: /* Virtualization features not supported on i210 family. */ fp@2685: if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) fp@2685: return; fp@2685: fp@2685: pci_sriov_set_totalvfs(pdev, 7); fp@2685: igb_pci_enable_sriov(pdev, max_vfs); fp@2685: fp@2685: #endif /* CONFIG_PCI_IOV */ fp@2685: } fp@2685: fp@2685: static void igb_init_queue_configuration(struct igb_adapter *adapter) fp@2685: { fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: u32 max_rss_queues; fp@2685: fp@2685: /* Determine the maximum number of RSS queues supported. */ fp@2685: switch (hw->mac.type) { fp@2685: case e1000_i211: fp@2685: max_rss_queues = IGB_MAX_RX_QUEUES_I211; fp@2685: break; fp@2685: case e1000_82575: fp@2685: case e1000_i210: fp@2685: max_rss_queues = IGB_MAX_RX_QUEUES_82575; fp@2685: break; fp@2685: case e1000_i350: fp@2685: /* I350 cannot do RSS and SR-IOV at the same time */ fp@2685: if (!!adapter->vfs_allocated_count) { fp@2685: max_rss_queues = 1; fp@2685: break; fp@2685: } fp@2685: /* fall through */ fp@2685: case e1000_82576: fp@2685: if (!!adapter->vfs_allocated_count) { fp@2685: max_rss_queues = 2; fp@2685: break; fp@2685: } fp@2685: /* fall through */ fp@2685: case e1000_82580: fp@2685: case e1000_i354: fp@2685: default: fp@2685: max_rss_queues = IGB_MAX_RX_QUEUES; fp@2685: break; fp@2685: } fp@2685: fp@2685: adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus()); fp@2685: fp@2685: /* Determine if we need to pair queues. */ fp@2685: switch (hw->mac.type) { fp@2685: case e1000_82575: fp@2685: case e1000_i211: fp@2685: /* Device supports enough interrupts without queue pairing. */ fp@2685: break; fp@2685: case e1000_82576: fp@2685: /* If VFs are going to be allocated with RSS queues then we fp@2685: * should pair the queues in order to conserve interrupts due fp@2685: * to limited supply. fp@2685: */ fp@2685: if ((adapter->rss_queues > 1) && fp@2685: (adapter->vfs_allocated_count > 6)) fp@2685: adapter->flags |= IGB_FLAG_QUEUE_PAIRS; fp@2685: /* fall through */ fp@2685: case e1000_82580: fp@2685: case e1000_i350: fp@2685: case e1000_i354: fp@2685: case e1000_i210: fp@2685: default: fp@2685: /* If rss_queues > half of max_rss_queues, pair the queues in fp@2685: * order to conserve interrupts due to limited supply. fp@2685: */ fp@2685: if (adapter->rss_queues > (max_rss_queues / 2)) fp@2685: adapter->flags |= IGB_FLAG_QUEUE_PAIRS; fp@2685: break; fp@2685: } fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_sw_init - Initialize general software structures (struct igb_adapter) fp@2685: * @adapter: board private structure to initialize fp@2685: * fp@2685: * igb_sw_init initializes the Adapter private data structure. fp@2685: * Fields are initialized based on PCI device information and fp@2685: * OS network device settings (MTU size). fp@2685: **/ fp@2685: static int igb_sw_init(struct igb_adapter *adapter) fp@2685: { fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: struct net_device *netdev = adapter->netdev; fp@2685: struct pci_dev *pdev = adapter->pdev; fp@2685: fp@2685: pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word); fp@2685: fp@2685: /* set default ring sizes */ fp@2685: adapter->tx_ring_count = IGB_DEFAULT_TXD; fp@2685: adapter->rx_ring_count = IGB_DEFAULT_RXD; fp@2685: fp@2685: /* set default ITR values */ fp@2685: adapter->rx_itr_setting = IGB_DEFAULT_ITR; fp@2685: adapter->tx_itr_setting = IGB_DEFAULT_ITR; fp@2685: fp@2685: /* set default work limits */ fp@2685: adapter->tx_work_limit = IGB_DEFAULT_TX_WORK; fp@2685: fp@2685: adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + fp@2685: VLAN_HLEN; fp@2685: adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; fp@2685: fp@2685: spin_lock_init(&adapter->stats64_lock); fp@2685: #ifdef CONFIG_PCI_IOV fp@2685: switch (hw->mac.type) { fp@2685: case e1000_82576: fp@2685: case e1000_i350: fp@2685: if (max_vfs > 7) { fp@2685: dev_warn(&pdev->dev, fp@2685: "Maximum of 7 VFs per PF, using max\n"); fp@2685: max_vfs = adapter->vfs_allocated_count = 7; fp@2685: } else fp@2685: adapter->vfs_allocated_count = max_vfs; fp@2685: if (adapter->vfs_allocated_count) fp@2685: dev_warn(&pdev->dev, fp@2685: "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n"); fp@2685: break; fp@2685: default: fp@2685: break; fp@2685: } fp@2685: #endif /* CONFIG_PCI_IOV */ fp@2685: fp@2685: igb_init_queue_configuration(adapter); fp@2685: fp@2685: /* Setup and initialize a copy of the hw vlan table array */ fp@2685: adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32), fp@2685: GFP_ATOMIC); fp@2685: fp@2685: /* This call may decrease the number of queues */ fp@2685: if (igb_init_interrupt_scheme(adapter, true)) { fp@2685: dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); fp@2685: return -ENOMEM; fp@2685: } fp@2685: fp@2685: igb_probe_vfs(adapter); fp@2685: fp@2685: /* Explicitly disable IRQ since the NIC can be in any state. */ fp@2685: igb_irq_disable(adapter); fp@2685: fp@2685: if (hw->mac.type >= e1000_i350) fp@2685: adapter->flags &= ~IGB_FLAG_DMAC; fp@2685: fp@2685: set_bit(__IGB_DOWN, &adapter->state); fp@2685: return 0; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_open - Called when a network interface is made active fp@2685: * @netdev: network interface device structure fp@2685: * fp@2685: * Returns 0 on success, negative value on failure fp@2685: * fp@2685: * The open entry point is called when a network interface is made fp@2685: * active by the system (IFF_UP). At this point all resources needed fp@2685: * for transmit and receive operations are allocated, the interrupt fp@2685: * handler is registered with the OS, the watchdog timer is started, fp@2685: * and the stack is notified that the interface is ready. fp@2685: **/ fp@2685: static int __igb_open(struct net_device *netdev, bool resuming) fp@2685: { fp@2685: struct igb_adapter *adapter = netdev_priv(netdev); fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: struct pci_dev *pdev = adapter->pdev; fp@2685: int err; fp@2685: int i; fp@2685: fp@2685: /* disallow open during test */ fp@2685: if (test_bit(__IGB_TESTING, &adapter->state)) { fp@2685: WARN_ON(resuming); fp@2685: return -EBUSY; fp@2685: } fp@2685: fp@2685: if (!resuming) fp@2685: pm_runtime_get_sync(&pdev->dev); fp@2685: fp@2686: if (adapter->ecdev) { fp@2686: ecdev_set_link(adapter->ecdev, 0); fp@2686: } fp@2686: else { fp@2686: netif_carrier_off(netdev); fp@2686: } fp@2685: fp@2685: /* allocate transmit descriptors */ fp@2685: err = igb_setup_all_tx_resources(adapter); fp@2685: if (err) fp@2685: goto err_setup_tx; fp@2685: fp@2685: /* allocate receive descriptors */ fp@2685: err = igb_setup_all_rx_resources(adapter); fp@2685: if (err) fp@2685: goto err_setup_rx; fp@2685: fp@2685: igb_power_up_link(adapter); fp@2685: fp@2685: /* before we allocate an interrupt, we must be ready to handle it. fp@2685: * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt fp@2685: * as soon as we call pci_request_irq, so we have to setup our fp@2685: * clean_rx handler before we do so. fp@2685: */ fp@2685: igb_configure(adapter); fp@2685: fp@2685: err = igb_request_irq(adapter); fp@2685: if (err) fp@2685: goto err_req_irq; fp@2685: fp@2686: if (!adapter->ecdev) { fp@2686: /* Notify the stack of the actual queue counts. */ fp@2686: err = netif_set_real_num_tx_queues(adapter->netdev, fp@2686: adapter->num_tx_queues); fp@2686: if (err) fp@2686: goto err_set_queues; fp@2686: fp@2686: err = netif_set_real_num_rx_queues(adapter->netdev, fp@2686: adapter->num_rx_queues); fp@2686: if (err) fp@2686: goto err_set_queues; fp@2686: } fp@2685: fp@2685: /* From here on the code is the same as igb_up() */ fp@2685: clear_bit(__IGB_DOWN, &adapter->state); fp@2685: fp@2686: if (!adapter->ecdev) { fp@2686: for (i = 0; i < adapter->num_q_vectors; i++) fp@2686: napi_enable(&(adapter->q_vector[i]->napi)); fp@2686: } fp@2685: fp@2685: /* Clear any pending interrupts. */ fp@2685: rd32(E1000_ICR); fp@2685: fp@2685: igb_irq_enable(adapter); fp@2685: fp@2685: /* notify VFs that reset has been completed */ fp@2685: if (adapter->vfs_allocated_count) { fp@2685: u32 reg_data = rd32(E1000_CTRL_EXT); fp@2685: fp@2685: reg_data |= E1000_CTRL_EXT_PFRSTD; fp@2685: wr32(E1000_CTRL_EXT, reg_data); fp@2685: } fp@2685: fp@2686: if (!adapter->ecdev) { fp@2686: netif_tx_start_all_queues(netdev); fp@2686: } fp@2685: fp@2685: if (!resuming) fp@2685: pm_runtime_put(&pdev->dev); fp@2685: fp@2686: if (!adapter->ecdev) { fp@2686: /* start the watchdog. */ fp@2686: hw->mac.get_link_status = 1; fp@2686: schedule_work(&adapter->watchdog_task); fp@2686: } fp@2685: fp@2685: return 0; fp@2685: fp@2685: err_set_queues: fp@2685: igb_free_irq(adapter); fp@2685: err_req_irq: fp@2685: igb_release_hw_control(adapter); fp@2685: igb_power_down_link(adapter); fp@2685: igb_free_all_rx_resources(adapter); fp@2685: err_setup_rx: fp@2685: igb_free_all_tx_resources(adapter); fp@2685: err_setup_tx: fp@2685: igb_reset(adapter); fp@2685: if (!resuming) fp@2685: pm_runtime_put(&pdev->dev); fp@2685: fp@2685: return err; fp@2685: } fp@2685: fp@2685: static int igb_open(struct net_device *netdev) fp@2685: { fp@2685: return __igb_open(netdev, false); fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_close - Disables a network interface fp@2685: * @netdev: network interface device structure fp@2685: * fp@2685: * Returns 0, this is not allowed to fail fp@2685: * fp@2685: * The close entry point is called when an interface is de-activated fp@2685: * by the OS. The hardware is still under the driver's control, but fp@2685: * needs to be disabled. A global MAC reset is issued to stop the fp@2685: * hardware, and all transmit and receive resources are freed. fp@2685: **/ fp@2685: static int __igb_close(struct net_device *netdev, bool suspending) fp@2685: { fp@2685: struct igb_adapter *adapter = netdev_priv(netdev); fp@2685: struct pci_dev *pdev = adapter->pdev; fp@2685: fp@2685: WARN_ON(test_bit(__IGB_RESETTING, &adapter->state)); fp@2685: fp@2685: if (!suspending) fp@2685: pm_runtime_get_sync(&pdev->dev); fp@2685: fp@2685: igb_down(adapter); fp@2685: igb_free_irq(adapter); fp@2685: fp@2685: igb_free_all_tx_resources(adapter); fp@2685: igb_free_all_rx_resources(adapter); fp@2685: fp@2685: if (!suspending) fp@2685: pm_runtime_put_sync(&pdev->dev); fp@2685: return 0; fp@2685: } fp@2685: fp@2685: static int igb_close(struct net_device *netdev) fp@2685: { fp@2685: return __igb_close(netdev, false); fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_setup_tx_resources - allocate Tx resources (Descriptors) fp@2685: * @tx_ring: tx descriptor ring (for a specific queue) to setup fp@2685: * fp@2685: * Return 0 on success, negative on failure fp@2685: **/ fp@2685: int igb_setup_tx_resources(struct igb_ring *tx_ring) fp@2685: { fp@2685: struct device *dev = tx_ring->dev; fp@2685: int size; fp@2685: fp@2685: size = sizeof(struct igb_tx_buffer) * tx_ring->count; fp@2685: fp@2685: tx_ring->tx_buffer_info = vzalloc(size); fp@2685: if (!tx_ring->tx_buffer_info) fp@2685: goto err; fp@2685: fp@2685: /* round up to nearest 4K */ fp@2685: tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc); fp@2685: tx_ring->size = ALIGN(tx_ring->size, 4096); fp@2685: fp@2685: tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, fp@2685: &tx_ring->dma, GFP_KERNEL); fp@2685: if (!tx_ring->desc) fp@2685: goto err; fp@2685: fp@2685: tx_ring->next_to_use = 0; fp@2685: tx_ring->next_to_clean = 0; fp@2685: fp@2685: return 0; fp@2685: fp@2685: err: fp@2685: vfree(tx_ring->tx_buffer_info); fp@2685: tx_ring->tx_buffer_info = NULL; fp@2685: dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n"); fp@2685: return -ENOMEM; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_setup_all_tx_resources - wrapper to allocate Tx resources fp@2685: * (Descriptors) for all queues fp@2685: * @adapter: board private structure fp@2685: * fp@2685: * Return 0 on success, negative on failure fp@2685: **/ fp@2685: static int igb_setup_all_tx_resources(struct igb_adapter *adapter) fp@2685: { fp@2685: struct pci_dev *pdev = adapter->pdev; fp@2685: int i, err = 0; fp@2685: fp@2685: for (i = 0; i < adapter->num_tx_queues; i++) { fp@2685: err = igb_setup_tx_resources(adapter->tx_ring[i]); fp@2685: if (err) { fp@2685: dev_err(&pdev->dev, fp@2685: "Allocation for Tx Queue %u failed\n", i); fp@2685: for (i--; i >= 0; i--) fp@2685: igb_free_tx_resources(adapter->tx_ring[i]); fp@2685: break; fp@2685: } fp@2685: } fp@2685: fp@2685: return err; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_setup_tctl - configure the transmit control registers fp@2685: * @adapter: Board private structure fp@2685: **/ fp@2685: void igb_setup_tctl(struct igb_adapter *adapter) fp@2685: { fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: u32 tctl; fp@2685: fp@2685: /* disable queue 0 which is enabled by default on 82575 and 82576 */ fp@2685: wr32(E1000_TXDCTL(0), 0); fp@2685: fp@2685: /* Program the Transmit Control Register */ fp@2685: tctl = rd32(E1000_TCTL); fp@2685: tctl &= ~E1000_TCTL_CT; fp@2685: tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | fp@2685: (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); fp@2685: fp@2685: igb_config_collision_dist(hw); fp@2685: fp@2685: /* Enable transmits */ fp@2685: tctl |= E1000_TCTL_EN; fp@2685: fp@2685: wr32(E1000_TCTL, tctl); fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_configure_tx_ring - Configure transmit ring after Reset fp@2685: * @adapter: board private structure fp@2685: * @ring: tx ring to configure fp@2685: * fp@2685: * Configure a transmit ring after a reset. fp@2685: **/ fp@2685: void igb_configure_tx_ring(struct igb_adapter *adapter, fp@2685: struct igb_ring *ring) fp@2685: { fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: u32 txdctl = 0; fp@2685: u64 tdba = ring->dma; fp@2685: int reg_idx = ring->reg_idx; fp@2685: fp@2685: /* disable the queue */ fp@2685: wr32(E1000_TXDCTL(reg_idx), 0); fp@2685: wrfl(); fp@2685: mdelay(10); fp@2685: fp@2685: wr32(E1000_TDLEN(reg_idx), fp@2685: ring->count * sizeof(union e1000_adv_tx_desc)); fp@2685: wr32(E1000_TDBAL(reg_idx), fp@2685: tdba & 0x00000000ffffffffULL); fp@2685: wr32(E1000_TDBAH(reg_idx), tdba >> 32); fp@2685: fp@2685: ring->tail = hw->hw_addr + E1000_TDT(reg_idx); fp@2685: wr32(E1000_TDH(reg_idx), 0); fp@2685: writel(0, ring->tail); fp@2685: fp@2685: txdctl |= IGB_TX_PTHRESH; fp@2685: txdctl |= IGB_TX_HTHRESH << 8; fp@2685: txdctl |= IGB_TX_WTHRESH << 16; fp@2685: fp@2685: txdctl |= E1000_TXDCTL_QUEUE_ENABLE; fp@2685: wr32(E1000_TXDCTL(reg_idx), txdctl); fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_configure_tx - Configure transmit Unit after Reset fp@2685: * @adapter: board private structure fp@2685: * fp@2685: * Configure the Tx unit of the MAC after a reset. fp@2685: **/ fp@2685: static void igb_configure_tx(struct igb_adapter *adapter) fp@2685: { fp@2685: int i; fp@2685: fp@2685: for (i = 0; i < adapter->num_tx_queues; i++) fp@2685: igb_configure_tx_ring(adapter, adapter->tx_ring[i]); fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_setup_rx_resources - allocate Rx resources (Descriptors) fp@2685: * @rx_ring: Rx descriptor ring (for a specific queue) to setup fp@2685: * fp@2685: * Returns 0 on success, negative on failure fp@2685: **/ fp@2685: int igb_setup_rx_resources(struct igb_ring *rx_ring) fp@2685: { fp@2685: struct device *dev = rx_ring->dev; fp@2685: int size; fp@2685: fp@2685: size = sizeof(struct igb_rx_buffer) * rx_ring->count; fp@2685: fp@2685: rx_ring->rx_buffer_info = vzalloc(size); fp@2685: if (!rx_ring->rx_buffer_info) fp@2685: goto err; fp@2685: fp@2685: /* Round up to nearest 4K */ fp@2685: rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc); fp@2685: rx_ring->size = ALIGN(rx_ring->size, 4096); fp@2685: fp@2685: rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, fp@2685: &rx_ring->dma, GFP_KERNEL); fp@2685: if (!rx_ring->desc) fp@2685: goto err; fp@2685: fp@2685: rx_ring->next_to_alloc = 0; fp@2685: rx_ring->next_to_clean = 0; fp@2685: rx_ring->next_to_use = 0; fp@2685: fp@2685: return 0; fp@2685: fp@2685: err: fp@2685: vfree(rx_ring->rx_buffer_info); fp@2685: rx_ring->rx_buffer_info = NULL; fp@2685: dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n"); fp@2685: return -ENOMEM; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_setup_all_rx_resources - wrapper to allocate Rx resources fp@2685: * (Descriptors) for all queues fp@2685: * @adapter: board private structure fp@2685: * fp@2685: * Return 0 on success, negative on failure fp@2685: **/ fp@2685: static int igb_setup_all_rx_resources(struct igb_adapter *adapter) fp@2685: { fp@2685: struct pci_dev *pdev = adapter->pdev; fp@2685: int i, err = 0; fp@2685: fp@2685: for (i = 0; i < adapter->num_rx_queues; i++) { fp@2685: err = igb_setup_rx_resources(adapter->rx_ring[i]); fp@2685: if (err) { fp@2685: dev_err(&pdev->dev, fp@2685: "Allocation for Rx Queue %u failed\n", i); fp@2685: for (i--; i >= 0; i--) fp@2685: igb_free_rx_resources(adapter->rx_ring[i]); fp@2685: break; fp@2685: } fp@2685: } fp@2685: fp@2685: return err; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_setup_mrqc - configure the multiple receive queue control registers fp@2685: * @adapter: Board private structure fp@2685: **/ fp@2685: static void igb_setup_mrqc(struct igb_adapter *adapter) fp@2685: { fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: u32 mrqc, rxcsum; fp@2685: u32 j, num_rx_queues; fp@2685: static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741, fp@2685: 0xB08FA343, 0xCB2BCAD0, 0xB4307BAE, fp@2685: 0xA32DCB77, 0x0CF23080, 0x3BB7426A, fp@2685: 0xFA01ACBE }; fp@2685: fp@2685: /* Fill out hash function seeds */ fp@2685: for (j = 0; j < 10; j++) fp@2685: wr32(E1000_RSSRK(j), rsskey[j]); fp@2685: fp@2685: num_rx_queues = adapter->rss_queues; fp@2685: fp@2685: switch (hw->mac.type) { fp@2685: case e1000_82576: fp@2685: /* 82576 supports 2 RSS queues for SR-IOV */ fp@2685: if (adapter->vfs_allocated_count) fp@2685: num_rx_queues = 2; fp@2685: break; fp@2685: default: fp@2685: break; fp@2685: } fp@2685: fp@2685: if (adapter->rss_indir_tbl_init != num_rx_queues) { fp@2685: for (j = 0; j < IGB_RETA_SIZE; j++) fp@2685: adapter->rss_indir_tbl[j] = fp@2685: (j * num_rx_queues) / IGB_RETA_SIZE; fp@2685: adapter->rss_indir_tbl_init = num_rx_queues; fp@2685: } fp@2685: igb_write_rss_indir_tbl(adapter); fp@2685: fp@2685: /* Disable raw packet checksumming so that RSS hash is placed in fp@2685: * descriptor on writeback. No need to enable TCP/UDP/IP checksum fp@2685: * offloads as they are enabled by default fp@2685: */ fp@2685: rxcsum = rd32(E1000_RXCSUM); fp@2685: rxcsum |= E1000_RXCSUM_PCSD; fp@2685: fp@2685: if (adapter->hw.mac.type >= e1000_82576) fp@2685: /* Enable Receive Checksum Offload for SCTP */ fp@2685: rxcsum |= E1000_RXCSUM_CRCOFL; fp@2685: fp@2685: /* Don't need to set TUOFL or IPOFL, they default to 1 */ fp@2685: wr32(E1000_RXCSUM, rxcsum); fp@2685: fp@2685: /* Generate RSS hash based on packet types, TCP/UDP fp@2685: * port numbers and/or IPv4/v6 src and dst addresses fp@2685: */ fp@2685: mrqc = E1000_MRQC_RSS_FIELD_IPV4 | fp@2685: E1000_MRQC_RSS_FIELD_IPV4_TCP | fp@2685: E1000_MRQC_RSS_FIELD_IPV6 | fp@2685: E1000_MRQC_RSS_FIELD_IPV6_TCP | fp@2685: E1000_MRQC_RSS_FIELD_IPV6_TCP_EX; fp@2685: fp@2685: if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP) fp@2685: mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP; fp@2685: if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP) fp@2685: mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP; fp@2685: fp@2685: /* If VMDq is enabled then we set the appropriate mode for that, else fp@2685: * we default to RSS so that an RSS hash is calculated per packet even fp@2685: * if we are only using one queue fp@2685: */ fp@2685: if (adapter->vfs_allocated_count) { fp@2685: if (hw->mac.type > e1000_82575) { fp@2685: /* Set the default pool for the PF's first queue */ fp@2685: u32 vtctl = rd32(E1000_VT_CTL); fp@2685: fp@2685: vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK | fp@2685: E1000_VT_CTL_DISABLE_DEF_POOL); fp@2685: vtctl |= adapter->vfs_allocated_count << fp@2685: E1000_VT_CTL_DEFAULT_POOL_SHIFT; fp@2685: wr32(E1000_VT_CTL, vtctl); fp@2685: } fp@2685: if (adapter->rss_queues > 1) fp@2685: mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q; fp@2685: else fp@2685: mrqc |= E1000_MRQC_ENABLE_VMDQ; fp@2685: } else { fp@2685: if (hw->mac.type != e1000_i211) fp@2685: mrqc |= E1000_MRQC_ENABLE_RSS_4Q; fp@2685: } fp@2685: igb_vmm_control(adapter); fp@2685: fp@2685: wr32(E1000_MRQC, mrqc); fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_setup_rctl - configure the receive control registers fp@2685: * @adapter: Board private structure fp@2685: **/ fp@2685: void igb_setup_rctl(struct igb_adapter *adapter) fp@2685: { fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: u32 rctl; fp@2685: fp@2685: rctl = rd32(E1000_RCTL); fp@2685: fp@2685: rctl &= ~(3 << E1000_RCTL_MO_SHIFT); fp@2685: rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); fp@2685: fp@2685: rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF | fp@2685: (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT); fp@2685: fp@2685: /* enable stripping of CRC. It's unlikely this will break BMC fp@2685: * redirection as it did with e1000. Newer features require fp@2685: * that the HW strips the CRC. fp@2685: */ fp@2685: rctl |= E1000_RCTL_SECRC; fp@2685: fp@2685: /* disable store bad packets and clear size bits. */ fp@2685: rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256); fp@2685: fp@2685: /* enable LPE to prevent packets larger than max_frame_size */ fp@2685: rctl |= E1000_RCTL_LPE; fp@2685: fp@2685: /* disable queue 0 to prevent tail write w/o re-config */ fp@2685: wr32(E1000_RXDCTL(0), 0); fp@2685: fp@2685: /* Attention!!! For SR-IOV PF driver operations you must enable fp@2685: * queue drop for all VF and PF queues to prevent head of line blocking fp@2685: * if an un-trusted VF does not provide descriptors to hardware. fp@2685: */ fp@2685: if (adapter->vfs_allocated_count) { fp@2685: /* set all queue drop enable bits */ fp@2685: wr32(E1000_QDE, ALL_QUEUES); fp@2685: } fp@2685: fp@2685: /* This is useful for sniffing bad packets. */ fp@2685: if (adapter->netdev->features & NETIF_F_RXALL) { fp@2685: /* UPE and MPE will be handled by normal PROMISC logic fp@2685: * in e1000e_set_rx_mode fp@2685: */ fp@2685: rctl |= (E1000_RCTL_SBP | /* Receive bad packets */ fp@2685: E1000_RCTL_BAM | /* RX All Bcast Pkts */ fp@2685: E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ fp@2685: fp@2685: rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */ fp@2685: E1000_RCTL_DPF | /* Allow filtered pause */ fp@2685: E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */ fp@2685: /* Do not mess with E1000_CTRL_VME, it affects transmit as well, fp@2685: * and that breaks VLANs. fp@2685: */ fp@2685: } fp@2685: fp@2685: wr32(E1000_RCTL, rctl); fp@2685: } fp@2685: fp@2685: static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size, fp@2685: int vfn) fp@2685: { fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: u32 vmolr; fp@2685: fp@2685: /* if it isn't the PF check to see if VFs are enabled and fp@2685: * increase the size to support vlan tags fp@2685: */ fp@2685: if (vfn < adapter->vfs_allocated_count && fp@2685: adapter->vf_data[vfn].vlans_enabled) fp@2685: size += VLAN_TAG_SIZE; fp@2685: fp@2685: vmolr = rd32(E1000_VMOLR(vfn)); fp@2685: vmolr &= ~E1000_VMOLR_RLPML_MASK; fp@2685: vmolr |= size | E1000_VMOLR_LPE; fp@2685: wr32(E1000_VMOLR(vfn), vmolr); fp@2685: fp@2685: return 0; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_rlpml_set - set maximum receive packet size fp@2685: * @adapter: board private structure fp@2685: * fp@2685: * Configure maximum receivable packet size. fp@2685: **/ fp@2685: static void igb_rlpml_set(struct igb_adapter *adapter) fp@2685: { fp@2685: u32 max_frame_size = adapter->max_frame_size; fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: u16 pf_id = adapter->vfs_allocated_count; fp@2685: fp@2685: if (pf_id) { fp@2685: igb_set_vf_rlpml(adapter, max_frame_size, pf_id); fp@2685: /* If we're in VMDQ or SR-IOV mode, then set global RLPML fp@2685: * to our max jumbo frame size, in case we need to enable fp@2685: * jumbo frames on one of the rings later. fp@2685: * This will not pass over-length frames into the default fp@2685: * queue because it's gated by the VMOLR.RLPML. fp@2685: */ fp@2685: max_frame_size = MAX_JUMBO_FRAME_SIZE; fp@2685: } fp@2685: fp@2685: wr32(E1000_RLPML, max_frame_size); fp@2685: } fp@2685: fp@2685: static inline void igb_set_vmolr(struct igb_adapter *adapter, fp@2685: int vfn, bool aupe) fp@2685: { fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: u32 vmolr; fp@2685: fp@2685: /* This register exists only on 82576 and newer so if we are older then fp@2685: * we should exit and do nothing fp@2685: */ fp@2685: if (hw->mac.type < e1000_82576) fp@2685: return; fp@2685: fp@2685: vmolr = rd32(E1000_VMOLR(vfn)); fp@2685: vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */ fp@2685: if (hw->mac.type == e1000_i350) { fp@2685: u32 dvmolr; fp@2685: fp@2685: dvmolr = rd32(E1000_DVMOLR(vfn)); fp@2685: dvmolr |= E1000_DVMOLR_STRVLAN; fp@2685: wr32(E1000_DVMOLR(vfn), dvmolr); fp@2685: } fp@2685: if (aupe) fp@2685: vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */ fp@2685: else fp@2685: vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */ fp@2685: fp@2685: /* clear all bits that might not be set */ fp@2685: vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE); fp@2685: fp@2685: if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count) fp@2685: vmolr |= E1000_VMOLR_RSSE; /* enable RSS */ fp@2685: /* for VMDq only allow the VFs and pool 0 to accept broadcast and fp@2685: * multicast packets fp@2685: */ fp@2685: if (vfn <= adapter->vfs_allocated_count) fp@2685: vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */ fp@2685: fp@2685: wr32(E1000_VMOLR(vfn), vmolr); fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_configure_rx_ring - Configure a receive ring after Reset fp@2685: * @adapter: board private structure fp@2685: * @ring: receive ring to be configured fp@2685: * fp@2685: * Configure the Rx unit of the MAC after a reset. fp@2685: **/ fp@2685: void igb_configure_rx_ring(struct igb_adapter *adapter, fp@2685: struct igb_ring *ring) fp@2685: { fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: u64 rdba = ring->dma; fp@2685: int reg_idx = ring->reg_idx; fp@2685: u32 srrctl = 0, rxdctl = 0; fp@2685: fp@2685: /* disable the queue */ fp@2685: wr32(E1000_RXDCTL(reg_idx), 0); fp@2685: fp@2685: /* Set DMA base address registers */ fp@2685: wr32(E1000_RDBAL(reg_idx), fp@2685: rdba & 0x00000000ffffffffULL); fp@2685: wr32(E1000_RDBAH(reg_idx), rdba >> 32); fp@2685: wr32(E1000_RDLEN(reg_idx), fp@2685: ring->count * sizeof(union e1000_adv_rx_desc)); fp@2685: fp@2685: /* initialize head and tail */ fp@2685: ring->tail = hw->hw_addr + E1000_RDT(reg_idx); fp@2685: wr32(E1000_RDH(reg_idx), 0); fp@2685: writel(0, ring->tail); fp@2685: fp@2685: /* set descriptor configuration */ fp@2685: srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT; fp@2685: srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT; fp@2685: srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; fp@2685: if (hw->mac.type >= e1000_82580) fp@2685: srrctl |= E1000_SRRCTL_TIMESTAMP; fp@2685: /* Only set Drop Enable if we are supporting multiple queues */ fp@2685: if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1) fp@2685: srrctl |= E1000_SRRCTL_DROP_EN; fp@2685: fp@2685: wr32(E1000_SRRCTL(reg_idx), srrctl); fp@2685: fp@2685: /* set filtering for VMDQ pools */ fp@2685: igb_set_vmolr(adapter, reg_idx & 0x7, true); fp@2685: fp@2685: rxdctl |= IGB_RX_PTHRESH; fp@2685: rxdctl |= IGB_RX_HTHRESH << 8; fp@2685: rxdctl |= IGB_RX_WTHRESH << 16; fp@2685: fp@2685: /* enable receive descriptor fetching */ fp@2685: rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; fp@2685: wr32(E1000_RXDCTL(reg_idx), rxdctl); fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_configure_rx - Configure receive Unit after Reset fp@2685: * @adapter: board private structure fp@2685: * fp@2685: * Configure the Rx unit of the MAC after a reset. fp@2685: **/ fp@2685: static void igb_configure_rx(struct igb_adapter *adapter) fp@2685: { fp@2685: int i; fp@2685: fp@2685: /* set UTA to appropriate mode */ fp@2685: igb_set_uta(adapter); fp@2685: fp@2685: /* set the correct pool for the PF default MAC address in entry 0 */ fp@2685: igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0, fp@2685: adapter->vfs_allocated_count); fp@2685: fp@2685: /* Setup the HW Rx Head and Tail Descriptor Pointers and fp@2685: * the Base and Length of the Rx Descriptor Ring fp@2685: */ fp@2685: for (i = 0; i < adapter->num_rx_queues; i++) fp@2685: igb_configure_rx_ring(adapter, adapter->rx_ring[i]); fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_free_tx_resources - Free Tx Resources per Queue fp@2685: * @tx_ring: Tx descriptor ring for a specific queue fp@2685: * fp@2685: * Free all transmit software resources fp@2685: **/ fp@2685: void igb_free_tx_resources(struct igb_ring *tx_ring) fp@2685: { fp@2685: igb_clean_tx_ring(tx_ring); fp@2685: fp@2685: vfree(tx_ring->tx_buffer_info); fp@2685: tx_ring->tx_buffer_info = NULL; fp@2685: fp@2685: /* if not set, then don't free */ fp@2685: if (!tx_ring->desc) fp@2685: return; fp@2685: fp@2685: dma_free_coherent(tx_ring->dev, tx_ring->size, fp@2685: tx_ring->desc, tx_ring->dma); fp@2685: fp@2685: tx_ring->desc = NULL; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_free_all_tx_resources - Free Tx Resources for All Queues fp@2685: * @adapter: board private structure fp@2685: * fp@2685: * Free all transmit software resources fp@2685: **/ fp@2685: static void igb_free_all_tx_resources(struct igb_adapter *adapter) fp@2685: { fp@2685: int i; fp@2685: fp@2685: for (i = 0; i < adapter->num_tx_queues; i++) fp@2685: if (adapter->tx_ring[i]) fp@2685: igb_free_tx_resources(adapter->tx_ring[i]); fp@2685: } fp@2685: fp@2685: void igb_unmap_and_free_tx_resource(struct igb_ring *ring, fp@2685: struct igb_tx_buffer *tx_buffer) fp@2685: { fp@2685: if (tx_buffer->skb) { fp@2686: struct igb_adapter *adapter = netdev_priv(ring->netdev); fp@2686: if (!adapter->ecdev) { fp@2686: /* skb is reused in EtherCAT TX operation */ fp@2686: dev_kfree_skb_any(tx_buffer->skb); fp@2686: } fp@2685: if (dma_unmap_len(tx_buffer, len)) fp@2685: dma_unmap_single(ring->dev, fp@2685: dma_unmap_addr(tx_buffer, dma), fp@2685: dma_unmap_len(tx_buffer, len), fp@2685: DMA_TO_DEVICE); fp@2685: } else if (dma_unmap_len(tx_buffer, len)) { fp@2685: dma_unmap_page(ring->dev, fp@2685: dma_unmap_addr(tx_buffer, dma), fp@2685: dma_unmap_len(tx_buffer, len), fp@2685: DMA_TO_DEVICE); fp@2685: } fp@2685: tx_buffer->next_to_watch = NULL; fp@2685: tx_buffer->skb = NULL; fp@2685: dma_unmap_len_set(tx_buffer, len, 0); fp@2685: /* buffer_info must be completely set up in the transmit path */ fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_clean_tx_ring - Free Tx Buffers fp@2685: * @tx_ring: ring to be cleaned fp@2685: **/ fp@2685: static void igb_clean_tx_ring(struct igb_ring *tx_ring) fp@2685: { fp@2685: struct igb_tx_buffer *buffer_info; fp@2685: unsigned long size; fp@2685: u16 i; fp@2685: fp@2685: if (!tx_ring->tx_buffer_info) fp@2685: return; fp@2685: /* Free all the Tx ring sk_buffs */ fp@2685: fp@2685: for (i = 0; i < tx_ring->count; i++) { fp@2685: buffer_info = &tx_ring->tx_buffer_info[i]; fp@2685: igb_unmap_and_free_tx_resource(tx_ring, buffer_info); fp@2685: } fp@2685: fp@2685: netdev_tx_reset_queue(txring_txq(tx_ring)); fp@2685: fp@2685: size = sizeof(struct igb_tx_buffer) * tx_ring->count; fp@2685: memset(tx_ring->tx_buffer_info, 0, size); fp@2685: fp@2685: /* Zero out the descriptor ring */ fp@2685: memset(tx_ring->desc, 0, tx_ring->size); fp@2685: fp@2685: tx_ring->next_to_use = 0; fp@2685: tx_ring->next_to_clean = 0; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_clean_all_tx_rings - Free Tx Buffers for all queues fp@2685: * @adapter: board private structure fp@2685: **/ fp@2685: static void igb_clean_all_tx_rings(struct igb_adapter *adapter) fp@2685: { fp@2685: int i; fp@2685: fp@2685: for (i = 0; i < adapter->num_tx_queues; i++) fp@2685: if (adapter->tx_ring[i]) fp@2685: igb_clean_tx_ring(adapter->tx_ring[i]); fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_free_rx_resources - Free Rx Resources fp@2685: * @rx_ring: ring to clean the resources from fp@2685: * fp@2685: * Free all receive software resources fp@2685: **/ fp@2685: void igb_free_rx_resources(struct igb_ring *rx_ring) fp@2685: { fp@2685: igb_clean_rx_ring(rx_ring); fp@2685: fp@2685: vfree(rx_ring->rx_buffer_info); fp@2685: rx_ring->rx_buffer_info = NULL; fp@2685: fp@2685: /* if not set, then don't free */ fp@2685: if (!rx_ring->desc) fp@2685: return; fp@2685: fp@2685: dma_free_coherent(rx_ring->dev, rx_ring->size, fp@2685: rx_ring->desc, rx_ring->dma); fp@2685: fp@2685: rx_ring->desc = NULL; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_free_all_rx_resources - Free Rx Resources for All Queues fp@2685: * @adapter: board private structure fp@2685: * fp@2685: * Free all receive software resources fp@2685: **/ fp@2685: static void igb_free_all_rx_resources(struct igb_adapter *adapter) fp@2685: { fp@2685: int i; fp@2685: fp@2685: for (i = 0; i < adapter->num_rx_queues; i++) fp@2685: if (adapter->rx_ring[i]) fp@2685: igb_free_rx_resources(adapter->rx_ring[i]); fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_clean_rx_ring - Free Rx Buffers per Queue fp@2685: * @rx_ring: ring to free buffers from fp@2685: **/ fp@2685: static void igb_clean_rx_ring(struct igb_ring *rx_ring) fp@2685: { fp@2685: unsigned long size; fp@2685: u16 i; fp@2685: fp@2685: if (rx_ring->skb) fp@2685: dev_kfree_skb(rx_ring->skb); fp@2685: rx_ring->skb = NULL; fp@2685: fp@2685: if (!rx_ring->rx_buffer_info) fp@2685: return; fp@2685: fp@2685: /* Free all the Rx ring sk_buffs */ fp@2685: for (i = 0; i < rx_ring->count; i++) { fp@2685: struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i]; fp@2685: fp@2685: if (!buffer_info->page) fp@2685: continue; fp@2685: fp@2685: dma_unmap_page(rx_ring->dev, fp@2685: buffer_info->dma, fp@2685: PAGE_SIZE, fp@2685: DMA_FROM_DEVICE); fp@2685: __free_page(buffer_info->page); fp@2685: fp@2685: buffer_info->page = NULL; fp@2685: } fp@2685: fp@2685: size = sizeof(struct igb_rx_buffer) * rx_ring->count; fp@2685: memset(rx_ring->rx_buffer_info, 0, size); fp@2685: fp@2685: /* Zero out the descriptor ring */ fp@2685: memset(rx_ring->desc, 0, rx_ring->size); fp@2685: fp@2685: rx_ring->next_to_alloc = 0; fp@2685: rx_ring->next_to_clean = 0; fp@2685: rx_ring->next_to_use = 0; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_clean_all_rx_rings - Free Rx Buffers for all queues fp@2685: * @adapter: board private structure fp@2685: **/ fp@2685: static void igb_clean_all_rx_rings(struct igb_adapter *adapter) fp@2685: { fp@2685: int i; fp@2685: fp@2685: for (i = 0; i < adapter->num_rx_queues; i++) fp@2685: if (adapter->rx_ring[i]) fp@2685: igb_clean_rx_ring(adapter->rx_ring[i]); fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_set_mac - Change the Ethernet Address of the NIC fp@2685: * @netdev: network interface device structure fp@2685: * @p: pointer to an address structure fp@2685: * fp@2685: * Returns 0 on success, negative on failure fp@2685: **/ fp@2685: static int igb_set_mac(struct net_device *netdev, void *p) fp@2685: { fp@2685: struct igb_adapter *adapter = netdev_priv(netdev); fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: struct sockaddr *addr = p; fp@2685: fp@2685: if (!is_valid_ether_addr(addr->sa_data)) fp@2685: return -EADDRNOTAVAIL; fp@2685: fp@2685: memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); fp@2685: memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len); fp@2685: fp@2685: /* set the correct pool for the new PF MAC address in entry 0 */ fp@2685: igb_rar_set_qsel(adapter, hw->mac.addr, 0, fp@2685: adapter->vfs_allocated_count); fp@2685: fp@2685: return 0; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_write_mc_addr_list - write multicast addresses to MTA fp@2685: * @netdev: network interface device structure fp@2685: * fp@2685: * Writes multicast address list to the MTA hash table. fp@2685: * Returns: -ENOMEM on failure fp@2685: * 0 on no addresses written fp@2685: * X on writing X addresses to MTA fp@2685: **/ fp@2685: static int igb_write_mc_addr_list(struct net_device *netdev) fp@2685: { fp@2685: struct igb_adapter *adapter = netdev_priv(netdev); fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: struct netdev_hw_addr *ha; fp@2685: u8 *mta_list; fp@2685: int i; fp@2685: fp@2685: if (netdev_mc_empty(netdev)) { fp@2685: /* nothing to program, so clear mc list */ fp@2685: igb_update_mc_addr_list(hw, NULL, 0); fp@2685: igb_restore_vf_multicasts(adapter); fp@2685: return 0; fp@2685: } fp@2685: fp@2685: mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC); fp@2685: if (!mta_list) fp@2685: return -ENOMEM; fp@2685: fp@2685: /* The shared function expects a packed array of only addresses. */ fp@2685: i = 0; fp@2685: netdev_for_each_mc_addr(ha, netdev) fp@2685: memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); fp@2685: fp@2685: igb_update_mc_addr_list(hw, mta_list, i); fp@2685: kfree(mta_list); fp@2685: fp@2685: return netdev_mc_count(netdev); fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_write_uc_addr_list - write unicast addresses to RAR table fp@2685: * @netdev: network interface device structure fp@2685: * fp@2685: * Writes unicast address list to the RAR table. fp@2685: * Returns: -ENOMEM on failure/insufficient address space fp@2685: * 0 on no addresses written fp@2685: * X on writing X addresses to the RAR table fp@2685: **/ fp@2685: static int igb_write_uc_addr_list(struct net_device *netdev) fp@2685: { fp@2685: struct igb_adapter *adapter = netdev_priv(netdev); fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: unsigned int vfn = adapter->vfs_allocated_count; fp@2685: unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1); fp@2685: int count = 0; fp@2685: fp@2685: /* return ENOMEM indicating insufficient memory for addresses */ fp@2685: if (netdev_uc_count(netdev) > rar_entries) fp@2685: return -ENOMEM; fp@2685: fp@2685: if (!netdev_uc_empty(netdev) && rar_entries) { fp@2685: struct netdev_hw_addr *ha; fp@2685: fp@2685: netdev_for_each_uc_addr(ha, netdev) { fp@2685: if (!rar_entries) fp@2685: break; fp@2685: igb_rar_set_qsel(adapter, ha->addr, fp@2685: rar_entries--, fp@2685: vfn); fp@2685: count++; fp@2685: } fp@2685: } fp@2685: /* write the addresses in reverse order to avoid write combining */ fp@2685: for (; rar_entries > 0 ; rar_entries--) { fp@2685: wr32(E1000_RAH(rar_entries), 0); fp@2685: wr32(E1000_RAL(rar_entries), 0); fp@2685: } fp@2685: wrfl(); fp@2685: fp@2685: return count; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set fp@2685: * @netdev: network interface device structure fp@2685: * fp@2685: * The set_rx_mode entry point is called whenever the unicast or multicast fp@2685: * address lists or the network interface flags are updated. This routine is fp@2685: * responsible for configuring the hardware for proper unicast, multicast, fp@2685: * promiscuous mode, and all-multi behavior. fp@2685: **/ fp@2685: static void igb_set_rx_mode(struct net_device *netdev) fp@2685: { fp@2685: struct igb_adapter *adapter = netdev_priv(netdev); fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: unsigned int vfn = adapter->vfs_allocated_count; fp@2685: u32 rctl, vmolr = 0; fp@2685: int count; fp@2685: fp@2685: /* Check for Promiscuous and All Multicast modes */ fp@2685: rctl = rd32(E1000_RCTL); fp@2685: fp@2685: /* clear the effected bits */ fp@2685: rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE); fp@2685: fp@2685: if (netdev->flags & IFF_PROMISC) { fp@2685: /* retain VLAN HW filtering if in VT mode */ fp@2685: if (adapter->vfs_allocated_count) fp@2685: rctl |= E1000_RCTL_VFE; fp@2685: rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); fp@2685: vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME); fp@2685: } else { fp@2685: if (netdev->flags & IFF_ALLMULTI) { fp@2685: rctl |= E1000_RCTL_MPE; fp@2685: vmolr |= E1000_VMOLR_MPME; fp@2685: } else { fp@2685: /* Write addresses to the MTA, if the attempt fails fp@2685: * then we should just turn on promiscuous mode so fp@2685: * that we can at least receive multicast traffic fp@2685: */ fp@2685: count = igb_write_mc_addr_list(netdev); fp@2685: if (count < 0) { fp@2685: rctl |= E1000_RCTL_MPE; fp@2685: vmolr |= E1000_VMOLR_MPME; fp@2685: } else if (count) { fp@2685: vmolr |= E1000_VMOLR_ROMPE; fp@2685: } fp@2685: } fp@2685: /* Write addresses to available RAR registers, if there is not fp@2685: * sufficient space to store all the addresses then enable fp@2685: * unicast promiscuous mode fp@2685: */ fp@2685: count = igb_write_uc_addr_list(netdev); fp@2685: if (count < 0) { fp@2685: rctl |= E1000_RCTL_UPE; fp@2685: vmolr |= E1000_VMOLR_ROPE; fp@2685: } fp@2685: rctl |= E1000_RCTL_VFE; fp@2685: } fp@2685: wr32(E1000_RCTL, rctl); fp@2685: fp@2685: /* In order to support SR-IOV and eventually VMDq it is necessary to set fp@2685: * the VMOLR to enable the appropriate modes. Without this workaround fp@2685: * we will have issues with VLAN tag stripping not being done for frames fp@2685: * that are only arriving because we are the default pool fp@2685: */ fp@2685: if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350)) fp@2685: return; fp@2685: fp@2685: vmolr |= rd32(E1000_VMOLR(vfn)) & fp@2685: ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE); fp@2685: wr32(E1000_VMOLR(vfn), vmolr); fp@2685: igb_restore_vf_multicasts(adapter); fp@2685: } fp@2685: fp@2685: static void igb_check_wvbr(struct igb_adapter *adapter) fp@2685: { fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: u32 wvbr = 0; fp@2685: fp@2685: switch (hw->mac.type) { fp@2685: case e1000_82576: fp@2685: case e1000_i350: fp@2685: wvbr = rd32(E1000_WVBR); fp@2685: if (!wvbr) fp@2685: return; fp@2685: break; fp@2685: default: fp@2685: break; fp@2685: } fp@2685: fp@2685: adapter->wvbr |= wvbr; fp@2685: } fp@2685: fp@2685: #define IGB_STAGGERED_QUEUE_OFFSET 8 fp@2685: fp@2685: static void igb_spoof_check(struct igb_adapter *adapter) fp@2685: { fp@2685: int j; fp@2685: fp@2685: if (!adapter->wvbr) fp@2685: return; fp@2685: fp@2685: for (j = 0; j < adapter->vfs_allocated_count; j++) { fp@2685: if (adapter->wvbr & (1 << j) || fp@2685: adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) { fp@2685: dev_warn(&adapter->pdev->dev, fp@2685: "Spoof event(s) detected on VF %d\n", j); fp@2685: adapter->wvbr &= fp@2685: ~((1 << j) | fp@2685: (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))); fp@2685: } fp@2685: } fp@2685: } fp@2685: fp@2685: /* Need to wait a few seconds after link up to get diagnostic information from fp@2685: * the phy fp@2685: */ fp@2685: static void igb_update_phy_info(unsigned long data) fp@2685: { fp@2685: struct igb_adapter *adapter = (struct igb_adapter *) data; fp@2685: igb_get_phy_info(&adapter->hw); fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_has_link - check shared code for link and determine up/down fp@2685: * @adapter: pointer to driver private info fp@2685: **/ fp@2685: bool igb_has_link(struct igb_adapter *adapter) fp@2685: { fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: bool link_active = false; fp@2685: fp@2685: /* get_link_status is set on LSC (link status) interrupt or fp@2685: * rx sequence error interrupt. get_link_status will stay fp@2685: * false until the e1000_check_for_link establishes link fp@2685: * for copper adapters ONLY fp@2685: */ fp@2685: switch (hw->phy.media_type) { fp@2685: case e1000_media_type_copper: fp@2685: if (!hw->mac.get_link_status) fp@2685: return true; fp@2685: case e1000_media_type_internal_serdes: fp@2685: hw->mac.ops.check_for_link(hw); fp@2685: link_active = !hw->mac.get_link_status; fp@2685: break; fp@2685: default: fp@2685: case e1000_media_type_unknown: fp@2685: break; fp@2685: } fp@2685: fp@2685: if (((hw->mac.type == e1000_i210) || fp@2685: (hw->mac.type == e1000_i211)) && fp@2685: (hw->phy.id == I210_I_PHY_ID)) { fp@2685: if (!netif_carrier_ok(adapter->netdev)) { fp@2685: adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE; fp@2685: } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) { fp@2685: adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE; fp@2685: adapter->link_check_timeout = jiffies; fp@2685: } fp@2685: } fp@2685: fp@2685: return link_active; fp@2685: } fp@2685: fp@2685: static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event) fp@2685: { fp@2685: bool ret = false; fp@2685: u32 ctrl_ext, thstat; fp@2685: fp@2685: /* check for thermal sensor event on i350 copper only */ fp@2685: if (hw->mac.type == e1000_i350) { fp@2685: thstat = rd32(E1000_THSTAT); fp@2685: ctrl_ext = rd32(E1000_CTRL_EXT); fp@2685: fp@2685: if ((hw->phy.media_type == e1000_media_type_copper) && fp@2685: !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) fp@2685: ret = !!(thstat & event); fp@2685: } fp@2685: fp@2685: return ret; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_check_lvmmc - check for malformed packets received fp@2685: * and indicated in LVMMC register fp@2685: * @adapter: pointer to adapter fp@2685: **/ fp@2685: static void igb_check_lvmmc(struct igb_adapter *adapter) fp@2685: { fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: u32 lvmmc; fp@2685: fp@2685: lvmmc = rd32(E1000_LVMMC); fp@2685: if (lvmmc) { fp@2685: if (unlikely(net_ratelimit())) { fp@2685: netdev_warn(adapter->netdev, fp@2685: "malformed Tx packet detected and dropped, LVMMC:0x%08x\n", fp@2685: lvmmc); fp@2685: } fp@2685: } fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_watchdog - Timer Call-back fp@2685: * @data: pointer to adapter cast into an unsigned long fp@2685: **/ fp@2685: static void igb_watchdog(unsigned long data) fp@2685: { fp@2685: struct igb_adapter *adapter = (struct igb_adapter *)data; fp@2685: /* Do the rest outside of interrupt context */ fp@2685: schedule_work(&adapter->watchdog_task); fp@2685: } fp@2685: fp@2685: static void igb_watchdog_task(struct work_struct *work) fp@2685: { fp@2685: struct igb_adapter *adapter = container_of(work, fp@2685: struct igb_adapter, fp@2685: watchdog_task); fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: struct e1000_phy_info *phy = &hw->phy; fp@2685: struct net_device *netdev = adapter->netdev; fp@2685: u32 link; fp@2685: int i; fp@2685: u32 connsw; fp@2685: fp@2685: link = igb_has_link(adapter); fp@2685: fp@2685: if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) { fp@2685: if (time_after(jiffies, (adapter->link_check_timeout + HZ))) fp@2685: adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE; fp@2685: else fp@2685: link = false; fp@2685: } fp@2685: fp@2685: /* Force link down if we have fiber to swap to */ fp@2685: if (adapter->flags & IGB_FLAG_MAS_ENABLE) { fp@2685: if (hw->phy.media_type == e1000_media_type_copper) { fp@2685: connsw = rd32(E1000_CONNSW); fp@2685: if (!(connsw & E1000_CONNSW_AUTOSENSE_EN)) fp@2685: link = 0; fp@2685: } fp@2685: } fp@2685: if (link) { fp@2685: /* Perform a reset if the media type changed. */ fp@2685: if (hw->dev_spec._82575.media_changed) { fp@2685: hw->dev_spec._82575.media_changed = false; fp@2685: adapter->flags |= IGB_FLAG_MEDIA_RESET; fp@2685: igb_reset(adapter); fp@2685: } fp@2685: /* Cancel scheduled suspend requests. */ fp@2685: pm_runtime_resume(netdev->dev.parent); fp@2685: fp@2685: if (!netif_carrier_ok(netdev)) { fp@2685: u32 ctrl; fp@2685: fp@2685: hw->mac.ops.get_speed_and_duplex(hw, fp@2685: &adapter->link_speed, fp@2685: &adapter->link_duplex); fp@2685: fp@2685: ctrl = rd32(E1000_CTRL); fp@2685: /* Links status message must follow this format */ fp@2685: netdev_info(netdev, fp@2685: "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n", fp@2685: netdev->name, fp@2685: adapter->link_speed, fp@2685: adapter->link_duplex == FULL_DUPLEX ? fp@2685: "Full" : "Half", fp@2685: (ctrl & E1000_CTRL_TFCE) && fp@2685: (ctrl & E1000_CTRL_RFCE) ? "RX/TX" : fp@2685: (ctrl & E1000_CTRL_RFCE) ? "RX" : fp@2685: (ctrl & E1000_CTRL_TFCE) ? "TX" : "None"); fp@2685: fp@2685: /* disable EEE if enabled */ fp@2685: if ((adapter->flags & IGB_FLAG_EEE) && fp@2685: (adapter->link_duplex == HALF_DUPLEX)) { fp@2685: dev_info(&adapter->pdev->dev, fp@2685: "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n"); fp@2685: adapter->hw.dev_spec._82575.eee_disable = true; fp@2685: adapter->flags &= ~IGB_FLAG_EEE; fp@2685: } fp@2685: fp@2685: /* check if SmartSpeed worked */ fp@2685: igb_check_downshift(hw); fp@2685: if (phy->speed_downgraded) fp@2685: netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n"); fp@2685: fp@2685: /* check for thermal sensor event */ fp@2685: if (igb_thermal_sensor_event(hw, fp@2685: E1000_THSTAT_LINK_THROTTLE)) fp@2685: netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n"); fp@2685: fp@2685: /* adjust timeout factor according to speed/duplex */ fp@2685: adapter->tx_timeout_factor = 1; fp@2685: switch (adapter->link_speed) { fp@2685: case SPEED_10: fp@2685: adapter->tx_timeout_factor = 14; fp@2685: break; fp@2685: case SPEED_100: fp@2685: /* maybe add some timeout factor ? */ fp@2685: break; fp@2685: } fp@2685: fp@2685: netif_carrier_on(netdev); fp@2685: fp@2685: igb_ping_all_vfs(adapter); fp@2685: igb_check_vf_rate_limit(adapter); fp@2685: fp@2685: /* link state has changed, schedule phy info update */ fp@2685: if (!test_bit(__IGB_DOWN, &adapter->state)) fp@2685: mod_timer(&adapter->phy_info_timer, fp@2685: round_jiffies(jiffies + 2 * HZ)); fp@2685: } fp@2685: } else { fp@2685: if (netif_carrier_ok(netdev)) { fp@2685: adapter->link_speed = 0; fp@2685: adapter->link_duplex = 0; fp@2685: fp@2685: /* check for thermal sensor event */ fp@2685: if (igb_thermal_sensor_event(hw, fp@2685: E1000_THSTAT_PWR_DOWN)) { fp@2685: netdev_err(netdev, "The network adapter was stopped because it overheated\n"); fp@2685: } fp@2685: fp@2685: /* Links status message must follow this format */ fp@2685: netdev_info(netdev, "igb: %s NIC Link is Down\n", fp@2685: netdev->name); fp@2685: netif_carrier_off(netdev); fp@2685: fp@2685: igb_ping_all_vfs(adapter); fp@2685: fp@2685: /* link state has changed, schedule phy info update */ fp@2685: if (!test_bit(__IGB_DOWN, &adapter->state)) fp@2685: mod_timer(&adapter->phy_info_timer, fp@2685: round_jiffies(jiffies + 2 * HZ)); fp@2685: fp@2685: /* link is down, time to check for alternate media */ fp@2685: if (adapter->flags & IGB_FLAG_MAS_ENABLE) { fp@2685: igb_check_swap_media(adapter); fp@2685: if (adapter->flags & IGB_FLAG_MEDIA_RESET) { fp@2685: schedule_work(&adapter->reset_task); fp@2685: /* return immediately */ fp@2685: return; fp@2685: } fp@2685: } fp@2685: pm_schedule_suspend(netdev->dev.parent, fp@2685: MSEC_PER_SEC * 5); fp@2685: fp@2685: /* also check for alternate media here */ fp@2685: } else if (!netif_carrier_ok(netdev) && fp@2685: (adapter->flags & IGB_FLAG_MAS_ENABLE)) { fp@2685: igb_check_swap_media(adapter); fp@2685: if (adapter->flags & IGB_FLAG_MEDIA_RESET) { fp@2685: schedule_work(&adapter->reset_task); fp@2685: /* return immediately */ fp@2685: return; fp@2685: } fp@2685: } fp@2685: } fp@2685: fp@2685: spin_lock(&adapter->stats64_lock); fp@2685: igb_update_stats(adapter, &adapter->stats64); fp@2685: spin_unlock(&adapter->stats64_lock); fp@2685: fp@2685: for (i = 0; i < adapter->num_tx_queues; i++) { fp@2685: struct igb_ring *tx_ring = adapter->tx_ring[i]; fp@2685: if (!netif_carrier_ok(netdev)) { fp@2685: /* We've lost link, so the controller stops DMA, fp@2685: * but we've got queued Tx work that's never going fp@2685: * to get done, so reset controller to flush Tx. fp@2685: * (Do the reset outside of interrupt context). fp@2685: */ fp@2685: if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) { fp@2685: adapter->tx_timeout_count++; fp@2685: schedule_work(&adapter->reset_task); fp@2685: /* return immediately since reset is imminent */ fp@2685: return; fp@2685: } fp@2685: } fp@2685: fp@2685: /* Force detection of hung controller every watchdog period */ fp@2685: set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); fp@2685: } fp@2685: fp@2685: /* Cause software interrupt to ensure Rx ring is cleaned */ fp@2685: if (adapter->flags & IGB_FLAG_HAS_MSIX) { fp@2685: u32 eics = 0; fp@2685: fp@2685: for (i = 0; i < adapter->num_q_vectors; i++) fp@2685: eics |= adapter->q_vector[i]->eims_value; fp@2685: wr32(E1000_EICS, eics); fp@2685: } else { fp@2685: wr32(E1000_ICS, E1000_ICS_RXDMT0); fp@2685: } fp@2685: fp@2685: igb_spoof_check(adapter); fp@2685: igb_ptp_rx_hang(adapter); fp@2685: fp@2685: /* Check LVMMC register on i350/i354 only */ fp@2685: if ((adapter->hw.mac.type == e1000_i350) || fp@2685: (adapter->hw.mac.type == e1000_i354)) fp@2685: igb_check_lvmmc(adapter); fp@2685: fp@2685: /* Reset the timer */ fp@2685: if (!test_bit(__IGB_DOWN, &adapter->state)) { fp@2685: if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) fp@2685: mod_timer(&adapter->watchdog_timer, fp@2685: round_jiffies(jiffies + HZ)); fp@2685: else fp@2685: mod_timer(&adapter->watchdog_timer, fp@2685: round_jiffies(jiffies + 2 * HZ)); fp@2685: } fp@2685: } fp@2685: fp@2685: enum latency_range { fp@2685: lowest_latency = 0, fp@2685: low_latency = 1, fp@2685: bulk_latency = 2, fp@2685: latency_invalid = 255 fp@2685: }; fp@2685: fp@2685: /** fp@2685: * igb_update_ring_itr - update the dynamic ITR value based on packet size fp@2685: * @q_vector: pointer to q_vector fp@2685: * fp@2685: * Stores a new ITR value based on strictly on packet size. This fp@2685: * algorithm is less sophisticated than that used in igb_update_itr, fp@2685: * due to the difficulty of synchronizing statistics across multiple fp@2685: * receive rings. The divisors and thresholds used by this function fp@2685: * were determined based on theoretical maximum wire speed and testing fp@2685: * data, in order to minimize response time while increasing bulk fp@2685: * throughput. fp@2685: * This functionality is controlled by ethtool's coalescing settings. fp@2685: * NOTE: This function is called only when operating in a multiqueue fp@2685: * receive environment. fp@2685: **/ fp@2685: static void igb_update_ring_itr(struct igb_q_vector *q_vector) fp@2685: { fp@2685: int new_val = q_vector->itr_val; fp@2685: int avg_wire_size = 0; fp@2685: struct igb_adapter *adapter = q_vector->adapter; fp@2685: unsigned int packets; fp@2685: fp@2685: /* For non-gigabit speeds, just fix the interrupt rate at 4000 fp@2685: * ints/sec - ITR timer value of 120 ticks. fp@2685: */ fp@2685: if (adapter->link_speed != SPEED_1000) { fp@2685: new_val = IGB_4K_ITR; fp@2685: goto set_itr_val; fp@2685: } fp@2685: fp@2685: packets = q_vector->rx.total_packets; fp@2685: if (packets) fp@2685: avg_wire_size = q_vector->rx.total_bytes / packets; fp@2685: fp@2685: packets = q_vector->tx.total_packets; fp@2685: if (packets) fp@2685: avg_wire_size = max_t(u32, avg_wire_size, fp@2685: q_vector->tx.total_bytes / packets); fp@2685: fp@2685: /* if avg_wire_size isn't set no work was done */ fp@2685: if (!avg_wire_size) fp@2685: goto clear_counts; fp@2685: fp@2685: /* Add 24 bytes to size to account for CRC, preamble, and gap */ fp@2685: avg_wire_size += 24; fp@2685: fp@2685: /* Don't starve jumbo frames */ fp@2685: avg_wire_size = min(avg_wire_size, 3000); fp@2685: fp@2685: /* Give a little boost to mid-size frames */ fp@2685: if ((avg_wire_size > 300) && (avg_wire_size < 1200)) fp@2685: new_val = avg_wire_size / 3; fp@2685: else fp@2685: new_val = avg_wire_size / 2; fp@2685: fp@2685: /* conservative mode (itr 3) eliminates the lowest_latency setting */ fp@2685: if (new_val < IGB_20K_ITR && fp@2685: ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || fp@2685: (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) fp@2685: new_val = IGB_20K_ITR; fp@2685: fp@2685: set_itr_val: fp@2685: if (new_val != q_vector->itr_val) { fp@2685: q_vector->itr_val = new_val; fp@2685: q_vector->set_itr = 1; fp@2685: } fp@2685: clear_counts: fp@2685: q_vector->rx.total_bytes = 0; fp@2685: q_vector->rx.total_packets = 0; fp@2685: q_vector->tx.total_bytes = 0; fp@2685: q_vector->tx.total_packets = 0; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_update_itr - update the dynamic ITR value based on statistics fp@2685: * @q_vector: pointer to q_vector fp@2685: * @ring_container: ring info to update the itr for fp@2685: * fp@2685: * Stores a new ITR value based on packets and byte fp@2685: * counts during the last interrupt. The advantage of per interrupt fp@2685: * computation is faster updates and more accurate ITR for the current fp@2685: * traffic pattern. Constants in this function were computed fp@2685: * based on theoretical maximum wire speed and thresholds were set based fp@2685: * on testing data as well as attempting to minimize response time fp@2685: * while increasing bulk throughput. fp@2685: * This functionality is controlled by ethtool's coalescing settings. fp@2685: * NOTE: These calculations are only valid when operating in a single- fp@2685: * queue environment. fp@2685: **/ fp@2685: static void igb_update_itr(struct igb_q_vector *q_vector, fp@2685: struct igb_ring_container *ring_container) fp@2685: { fp@2685: unsigned int packets = ring_container->total_packets; fp@2685: unsigned int bytes = ring_container->total_bytes; fp@2685: u8 itrval = ring_container->itr; fp@2685: fp@2685: /* no packets, exit with status unchanged */ fp@2685: if (packets == 0) fp@2685: return; fp@2685: fp@2685: switch (itrval) { fp@2685: case lowest_latency: fp@2685: /* handle TSO and jumbo frames */ fp@2685: if (bytes/packets > 8000) fp@2685: itrval = bulk_latency; fp@2685: else if ((packets < 5) && (bytes > 512)) fp@2685: itrval = low_latency; fp@2685: break; fp@2685: case low_latency: /* 50 usec aka 20000 ints/s */ fp@2685: if (bytes > 10000) { fp@2685: /* this if handles the TSO accounting */ fp@2685: if (bytes/packets > 8000) fp@2685: itrval = bulk_latency; fp@2685: else if ((packets < 10) || ((bytes/packets) > 1200)) fp@2685: itrval = bulk_latency; fp@2685: else if ((packets > 35)) fp@2685: itrval = lowest_latency; fp@2685: } else if (bytes/packets > 2000) { fp@2685: itrval = bulk_latency; fp@2685: } else if (packets <= 2 && bytes < 512) { fp@2685: itrval = lowest_latency; fp@2685: } fp@2685: break; fp@2685: case bulk_latency: /* 250 usec aka 4000 ints/s */ fp@2685: if (bytes > 25000) { fp@2685: if (packets > 35) fp@2685: itrval = low_latency; fp@2685: } else if (bytes < 1500) { fp@2685: itrval = low_latency; fp@2685: } fp@2685: break; fp@2685: } fp@2685: fp@2685: /* clear work counters since we have the values we need */ fp@2685: ring_container->total_bytes = 0; fp@2685: ring_container->total_packets = 0; fp@2685: fp@2685: /* write updated itr to ring container */ fp@2685: ring_container->itr = itrval; fp@2685: } fp@2685: fp@2685: static void igb_set_itr(struct igb_q_vector *q_vector) fp@2685: { fp@2685: struct igb_adapter *adapter = q_vector->adapter; fp@2685: u32 new_itr = q_vector->itr_val; fp@2685: u8 current_itr = 0; fp@2685: fp@2685: /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ fp@2685: if (adapter->link_speed != SPEED_1000) { fp@2685: current_itr = 0; fp@2685: new_itr = IGB_4K_ITR; fp@2685: goto set_itr_now; fp@2685: } fp@2685: fp@2685: igb_update_itr(q_vector, &q_vector->tx); fp@2685: igb_update_itr(q_vector, &q_vector->rx); fp@2685: fp@2685: current_itr = max(q_vector->rx.itr, q_vector->tx.itr); fp@2685: fp@2685: /* conservative mode (itr 3) eliminates the lowest_latency setting */ fp@2685: if (current_itr == lowest_latency && fp@2685: ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || fp@2685: (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) fp@2685: current_itr = low_latency; fp@2685: fp@2685: switch (current_itr) { fp@2685: /* counts and packets in update_itr are dependent on these numbers */ fp@2685: case lowest_latency: fp@2685: new_itr = IGB_70K_ITR; /* 70,000 ints/sec */ fp@2685: break; fp@2685: case low_latency: fp@2685: new_itr = IGB_20K_ITR; /* 20,000 ints/sec */ fp@2685: break; fp@2685: case bulk_latency: fp@2685: new_itr = IGB_4K_ITR; /* 4,000 ints/sec */ fp@2685: break; fp@2685: default: fp@2685: break; fp@2685: } fp@2685: fp@2685: set_itr_now: fp@2685: if (new_itr != q_vector->itr_val) { fp@2685: /* this attempts to bias the interrupt rate towards Bulk fp@2685: * by adding intermediate steps when interrupt rate is fp@2685: * increasing fp@2685: */ fp@2685: new_itr = new_itr > q_vector->itr_val ? fp@2685: max((new_itr * q_vector->itr_val) / fp@2685: (new_itr + (q_vector->itr_val >> 2)), fp@2685: new_itr) : new_itr; fp@2685: /* Don't write the value here; it resets the adapter's fp@2685: * internal timer, and causes us to delay far longer than fp@2685: * we should between interrupts. Instead, we write the ITR fp@2685: * value at the beginning of the next interrupt so the timing fp@2685: * ends up being correct. fp@2685: */ fp@2685: q_vector->itr_val = new_itr; fp@2685: q_vector->set_itr = 1; fp@2685: } fp@2685: } fp@2685: fp@2685: static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens, fp@2685: u32 type_tucmd, u32 mss_l4len_idx) fp@2685: { fp@2685: struct e1000_adv_tx_context_desc *context_desc; fp@2685: u16 i = tx_ring->next_to_use; fp@2685: fp@2685: context_desc = IGB_TX_CTXTDESC(tx_ring, i); fp@2685: fp@2685: i++; fp@2685: tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; fp@2685: fp@2685: /* set bits to identify this as an advanced context descriptor */ fp@2685: type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT; fp@2685: fp@2685: /* For 82575, context index must be unique per ring. */ fp@2685: if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) fp@2685: mss_l4len_idx |= tx_ring->reg_idx << 4; fp@2685: fp@2685: context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); fp@2685: context_desc->seqnum_seed = 0; fp@2685: context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); fp@2685: context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); fp@2685: } fp@2685: fp@2685: static int igb_tso(struct igb_ring *tx_ring, fp@2685: struct igb_tx_buffer *first, fp@2685: u8 *hdr_len) fp@2685: { fp@2685: struct sk_buff *skb = first->skb; fp@2685: u32 vlan_macip_lens, type_tucmd; fp@2685: u32 mss_l4len_idx, l4len; fp@2685: int err; fp@2685: fp@2685: if (skb->ip_summed != CHECKSUM_PARTIAL) fp@2685: return 0; fp@2685: fp@2685: if (!skb_is_gso(skb)) fp@2685: return 0; fp@2685: fp@2685: err = skb_cow_head(skb, 0); fp@2685: if (err < 0) fp@2685: return err; fp@2685: fp@2685: /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ fp@2685: type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP; fp@2685: fp@2685: if (first->protocol == htons(ETH_P_IP)) { fp@2685: struct iphdr *iph = ip_hdr(skb); fp@2685: iph->tot_len = 0; fp@2685: iph->check = 0; fp@2685: tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, fp@2685: iph->daddr, 0, fp@2685: IPPROTO_TCP, fp@2685: 0); fp@2685: type_tucmd |= E1000_ADVTXD_TUCMD_IPV4; fp@2685: first->tx_flags |= IGB_TX_FLAGS_TSO | fp@2685: IGB_TX_FLAGS_CSUM | fp@2685: IGB_TX_FLAGS_IPV4; fp@2685: } else if (skb_is_gso_v6(skb)) { fp@2685: ipv6_hdr(skb)->payload_len = 0; fp@2685: tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, fp@2685: &ipv6_hdr(skb)->daddr, fp@2685: 0, IPPROTO_TCP, 0); fp@2685: first->tx_flags |= IGB_TX_FLAGS_TSO | fp@2685: IGB_TX_FLAGS_CSUM; fp@2685: } fp@2685: fp@2685: /* compute header lengths */ fp@2685: l4len = tcp_hdrlen(skb); fp@2685: *hdr_len = skb_transport_offset(skb) + l4len; fp@2685: fp@2685: /* update gso size and bytecount with header size */ fp@2685: first->gso_segs = skb_shinfo(skb)->gso_segs; fp@2685: first->bytecount += (first->gso_segs - 1) * *hdr_len; fp@2685: fp@2685: /* MSS L4LEN IDX */ fp@2685: mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT; fp@2685: mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT; fp@2685: fp@2685: /* VLAN MACLEN IPLEN */ fp@2685: vlan_macip_lens = skb_network_header_len(skb); fp@2685: vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT; fp@2685: vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK; fp@2685: fp@2685: igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx); fp@2685: fp@2685: return 1; fp@2685: } fp@2685: fp@2685: static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first) fp@2685: { fp@2685: struct sk_buff *skb = first->skb; fp@2685: u32 vlan_macip_lens = 0; fp@2685: u32 mss_l4len_idx = 0; fp@2685: u32 type_tucmd = 0; fp@2685: fp@2685: if (skb->ip_summed != CHECKSUM_PARTIAL) { fp@2685: if (!(first->tx_flags & IGB_TX_FLAGS_VLAN)) fp@2685: return; fp@2685: } else { fp@2685: u8 l4_hdr = 0; fp@2685: fp@2685: switch (first->protocol) { fp@2685: case htons(ETH_P_IP): fp@2685: vlan_macip_lens |= skb_network_header_len(skb); fp@2685: type_tucmd |= E1000_ADVTXD_TUCMD_IPV4; fp@2685: l4_hdr = ip_hdr(skb)->protocol; fp@2685: break; fp@2685: case htons(ETH_P_IPV6): fp@2685: vlan_macip_lens |= skb_network_header_len(skb); fp@2685: l4_hdr = ipv6_hdr(skb)->nexthdr; fp@2685: break; fp@2685: default: fp@2685: if (unlikely(net_ratelimit())) { fp@2685: dev_warn(tx_ring->dev, fp@2685: "partial checksum but proto=%x!\n", fp@2685: first->protocol); fp@2685: } fp@2685: break; fp@2685: } fp@2685: fp@2685: switch (l4_hdr) { fp@2685: case IPPROTO_TCP: fp@2685: type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP; fp@2685: mss_l4len_idx = tcp_hdrlen(skb) << fp@2685: E1000_ADVTXD_L4LEN_SHIFT; fp@2685: break; fp@2685: case IPPROTO_SCTP: fp@2685: type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP; fp@2685: mss_l4len_idx = sizeof(struct sctphdr) << fp@2685: E1000_ADVTXD_L4LEN_SHIFT; fp@2685: break; fp@2685: case IPPROTO_UDP: fp@2685: mss_l4len_idx = sizeof(struct udphdr) << fp@2685: E1000_ADVTXD_L4LEN_SHIFT; fp@2685: break; fp@2685: default: fp@2685: if (unlikely(net_ratelimit())) { fp@2685: dev_warn(tx_ring->dev, fp@2685: "partial checksum but l4 proto=%x!\n", fp@2685: l4_hdr); fp@2685: } fp@2685: break; fp@2685: } fp@2685: fp@2685: /* update TX checksum flag */ fp@2685: first->tx_flags |= IGB_TX_FLAGS_CSUM; fp@2685: } fp@2685: fp@2685: vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT; fp@2685: vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK; fp@2685: fp@2685: igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx); fp@2685: } fp@2685: fp@2685: #define IGB_SET_FLAG(_input, _flag, _result) \ fp@2685: ((_flag <= _result) ? \ fp@2685: ((u32)(_input & _flag) * (_result / _flag)) : \ fp@2685: ((u32)(_input & _flag) / (_flag / _result))) fp@2685: fp@2685: static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags) fp@2685: { fp@2685: /* set type for advanced descriptor with frame checksum insertion */ fp@2685: u32 cmd_type = E1000_ADVTXD_DTYP_DATA | fp@2685: E1000_ADVTXD_DCMD_DEXT | fp@2685: E1000_ADVTXD_DCMD_IFCS; fp@2685: fp@2685: /* set HW vlan bit if vlan is present */ fp@2685: cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN, fp@2685: (E1000_ADVTXD_DCMD_VLE)); fp@2685: fp@2685: /* set segmentation bits for TSO */ fp@2685: cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO, fp@2685: (E1000_ADVTXD_DCMD_TSE)); fp@2685: fp@2685: /* set timestamp bit if present */ fp@2685: cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP, fp@2685: (E1000_ADVTXD_MAC_TSTAMP)); fp@2685: fp@2685: /* insert frame checksum */ fp@2685: cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS); fp@2685: fp@2685: return cmd_type; fp@2685: } fp@2685: fp@2685: static void igb_tx_olinfo_status(struct igb_ring *tx_ring, fp@2685: union e1000_adv_tx_desc *tx_desc, fp@2685: u32 tx_flags, unsigned int paylen) fp@2685: { fp@2685: u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT; fp@2685: fp@2685: /* 82575 requires a unique index per ring */ fp@2685: if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) fp@2685: olinfo_status |= tx_ring->reg_idx << 4; fp@2685: fp@2685: /* insert L4 checksum */ fp@2685: olinfo_status |= IGB_SET_FLAG(tx_flags, fp@2685: IGB_TX_FLAGS_CSUM, fp@2685: (E1000_TXD_POPTS_TXSM << 8)); fp@2685: fp@2685: /* insert IPv4 checksum */ fp@2685: olinfo_status |= IGB_SET_FLAG(tx_flags, fp@2685: IGB_TX_FLAGS_IPV4, fp@2685: (E1000_TXD_POPTS_IXSM << 8)); fp@2685: fp@2685: tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); fp@2685: } fp@2685: fp@2685: static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size) fp@2685: { fp@2685: struct net_device *netdev = tx_ring->netdev; fp@2686: struct igb_adapter *adapter = netdev_priv(netdev); fp@2686: fp@2686: if (!adapter->ecdev) { fp@2686: netif_stop_subqueue(netdev, tx_ring->queue_index); fp@2686: } fp@2685: fp@2685: /* Herbert's original patch had: fp@2685: * smp_mb__after_netif_stop_queue(); fp@2685: * but since that doesn't exist yet, just open code it. fp@2685: */ fp@2685: smp_mb(); fp@2685: fp@2685: /* We need to check again in a case another CPU has just fp@2685: * made room available. fp@2685: */ fp@2685: if (igb_desc_unused(tx_ring) < size) fp@2685: return -EBUSY; fp@2685: fp@2685: /* A reprieve! */ fp@2686: if (!adapter->ecdev) { fp@2686: netif_wake_subqueue(netdev, tx_ring->queue_index); fp@2686: } fp@2685: fp@2685: u64_stats_update_begin(&tx_ring->tx_syncp2); fp@2685: tx_ring->tx_stats.restart_queue2++; fp@2685: u64_stats_update_end(&tx_ring->tx_syncp2); fp@2685: fp@2685: return 0; fp@2685: } fp@2685: fp@2685: static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size) fp@2685: { fp@2685: if (igb_desc_unused(tx_ring) >= size) fp@2685: return 0; fp@2685: return __igb_maybe_stop_tx(tx_ring, size); fp@2685: } fp@2685: fp@2685: static void igb_tx_map(struct igb_ring *tx_ring, fp@2685: struct igb_tx_buffer *first, fp@2685: const u8 hdr_len) fp@2685: { fp@2685: struct sk_buff *skb = first->skb; fp@2685: struct igb_tx_buffer *tx_buffer; fp@2685: union e1000_adv_tx_desc *tx_desc; fp@2685: struct skb_frag_struct *frag; fp@2685: dma_addr_t dma; fp@2685: unsigned int data_len, size; fp@2685: u32 tx_flags = first->tx_flags; fp@2685: u32 cmd_type = igb_tx_cmd_type(skb, tx_flags); fp@2685: u16 i = tx_ring->next_to_use; fp@2685: fp@2685: tx_desc = IGB_TX_DESC(tx_ring, i); fp@2685: fp@2685: igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len); fp@2685: fp@2685: size = skb_headlen(skb); fp@2685: data_len = skb->data_len; fp@2685: fp@2685: dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); fp@2685: fp@2685: tx_buffer = first; fp@2685: fp@2685: for (frag = &skb_shinfo(skb)->frags[0];; frag++) { fp@2685: if (dma_mapping_error(tx_ring->dev, dma)) fp@2685: goto dma_error; fp@2685: fp@2685: /* record length, and DMA address */ fp@2685: dma_unmap_len_set(tx_buffer, len, size); fp@2685: dma_unmap_addr_set(tx_buffer, dma, dma); fp@2685: fp@2685: tx_desc->read.buffer_addr = cpu_to_le64(dma); fp@2685: fp@2685: while (unlikely(size > IGB_MAX_DATA_PER_TXD)) { fp@2685: tx_desc->read.cmd_type_len = fp@2685: cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD); fp@2685: fp@2685: i++; fp@2685: tx_desc++; fp@2685: if (i == tx_ring->count) { fp@2685: tx_desc = IGB_TX_DESC(tx_ring, 0); fp@2685: i = 0; fp@2685: } fp@2685: tx_desc->read.olinfo_status = 0; fp@2685: fp@2685: dma += IGB_MAX_DATA_PER_TXD; fp@2685: size -= IGB_MAX_DATA_PER_TXD; fp@2685: fp@2685: tx_desc->read.buffer_addr = cpu_to_le64(dma); fp@2685: } fp@2685: fp@2685: if (likely(!data_len)) fp@2685: break; fp@2685: fp@2685: tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size); fp@2685: fp@2685: i++; fp@2685: tx_desc++; fp@2685: if (i == tx_ring->count) { fp@2685: tx_desc = IGB_TX_DESC(tx_ring, 0); fp@2685: i = 0; fp@2685: } fp@2685: tx_desc->read.olinfo_status = 0; fp@2685: fp@2685: size = skb_frag_size(frag); fp@2685: data_len -= size; fp@2685: fp@2685: dma = skb_frag_dma_map(tx_ring->dev, frag, 0, fp@2685: size, DMA_TO_DEVICE); fp@2685: fp@2685: tx_buffer = &tx_ring->tx_buffer_info[i]; fp@2685: } fp@2685: fp@2685: /* write last descriptor with RS and EOP bits */ fp@2685: cmd_type |= size | IGB_TXD_DCMD; fp@2685: tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); fp@2685: fp@2685: netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); fp@2685: fp@2685: /* set the timestamp */ fp@2685: first->time_stamp = jiffies; fp@2685: fp@2685: /* Force memory writes to complete before letting h/w know there fp@2685: * are new descriptors to fetch. (Only applicable for weak-ordered fp@2685: * memory model archs, such as IA-64). fp@2685: * fp@2685: * We also need this memory barrier to make certain all of the fp@2685: * status bits have been updated before next_to_watch is written. fp@2685: */ fp@2685: wmb(); fp@2685: fp@2685: /* set next_to_watch value indicating a packet is present */ fp@2685: first->next_to_watch = tx_desc; fp@2685: fp@2685: i++; fp@2685: if (i == tx_ring->count) fp@2685: i = 0; fp@2685: fp@2685: tx_ring->next_to_use = i; fp@2685: fp@2685: /* Make sure there is space in the ring for the next send. */ fp@2685: igb_maybe_stop_tx(tx_ring, DESC_NEEDED); fp@2685: fp@2685: if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) { fp@2685: writel(i, tx_ring->tail); fp@2685: fp@2685: /* we need this if more than one processor can write to our tail fp@2685: * at a time, it synchronizes IO on IA64/Altix systems fp@2685: */ fp@2685: mmiowb(); fp@2685: } fp@2685: return; fp@2685: fp@2685: dma_error: fp@2685: dev_err(tx_ring->dev, "TX DMA map failed\n"); fp@2685: fp@2685: /* clear dma mappings for failed tx_buffer_info map */ fp@2685: for (;;) { fp@2685: tx_buffer = &tx_ring->tx_buffer_info[i]; fp@2685: igb_unmap_and_free_tx_resource(tx_ring, tx_buffer); fp@2685: if (tx_buffer == first) fp@2685: break; fp@2685: if (i == 0) fp@2685: i = tx_ring->count; fp@2685: i--; fp@2685: } fp@2685: fp@2685: tx_ring->next_to_use = i; fp@2685: } fp@2685: fp@2685: netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb, fp@2685: struct igb_ring *tx_ring) fp@2685: { fp@2685: struct igb_tx_buffer *first; fp@2685: int tso; fp@2685: u32 tx_flags = 0; fp@2685: u16 count = TXD_USE_COUNT(skb_headlen(skb)); fp@2685: __be16 protocol = vlan_get_protocol(skb); fp@2685: u8 hdr_len = 0; fp@2686: struct igb_adapter *adapter = netdev_priv(tx_ring->netdev); fp@2685: fp@2685: /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD, fp@2685: * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD, fp@2685: * + 2 desc gap to keep tail from touching head, fp@2685: * + 1 desc for context descriptor, fp@2685: * otherwise try next time fp@2685: */ fp@2685: if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) { fp@2685: unsigned short f; fp@2685: fp@2685: for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) fp@2685: count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size); fp@2685: } else { fp@2685: count += skb_shinfo(skb)->nr_frags; fp@2685: } fp@2685: fp@2685: if (igb_maybe_stop_tx(tx_ring, count + 3)) { fp@2685: /* this is a hard error */ fp@2685: return NETDEV_TX_BUSY; fp@2685: } fp@2685: fp@2685: /* record the location of the first descriptor for this packet */ fp@2685: first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; fp@2685: first->skb = skb; fp@2685: first->bytecount = skb->len; fp@2685: first->gso_segs = 1; fp@2685: fp@2686: if (unlikely(!adapter->ecdev && fp@2686: (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))) { fp@2685: fp@2685: if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS, fp@2685: &adapter->state)) { fp@2685: skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; fp@2685: tx_flags |= IGB_TX_FLAGS_TSTAMP; fp@2685: fp@2685: adapter->ptp_tx_skb = skb_get(skb); fp@2685: adapter->ptp_tx_start = jiffies; fp@2685: if (adapter->hw.mac.type == e1000_82576) fp@2685: schedule_work(&adapter->ptp_tx_work); fp@2685: } fp@2685: } fp@2685: fp@2685: skb_tx_timestamp(skb); fp@2685: fp@2685: if (vlan_tx_tag_present(skb)) { fp@2685: tx_flags |= IGB_TX_FLAGS_VLAN; fp@2685: tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT); fp@2685: } fp@2685: fp@2685: /* record initial flags and protocol */ fp@2685: first->tx_flags = tx_flags; fp@2685: first->protocol = protocol; fp@2685: fp@2685: tso = igb_tso(tx_ring, first, &hdr_len); fp@2685: if (tso < 0) fp@2685: goto out_drop; fp@2685: else if (!tso) fp@2685: igb_tx_csum(tx_ring, first); fp@2685: fp@2685: igb_tx_map(tx_ring, first, hdr_len); fp@2685: fp@2685: return NETDEV_TX_OK; fp@2685: fp@2685: out_drop: fp@2685: igb_unmap_and_free_tx_resource(tx_ring, first); fp@2685: fp@2685: return NETDEV_TX_OK; fp@2685: } fp@2685: fp@2685: static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter, fp@2685: struct sk_buff *skb) fp@2685: { fp@2685: unsigned int r_idx = skb->queue_mapping; fp@2685: fp@2685: if (r_idx >= adapter->num_tx_queues) fp@2685: r_idx = r_idx % adapter->num_tx_queues; fp@2685: fp@2685: return adapter->tx_ring[r_idx]; fp@2685: } fp@2685: fp@2685: static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, fp@2685: struct net_device *netdev) fp@2685: { fp@2685: struct igb_adapter *adapter = netdev_priv(netdev); fp@2685: fp@2685: if (test_bit(__IGB_DOWN, &adapter->state)) { fp@2686: if (!adapter->ecdev) { fp@2686: dev_kfree_skb_any(skb); fp@2686: } fp@2685: return NETDEV_TX_OK; fp@2685: } fp@2685: fp@2685: if (skb->len <= 0) { fp@2686: if (!adapter->ecdev) { fp@2686: dev_kfree_skb_any(skb); fp@2686: } fp@2685: return NETDEV_TX_OK; fp@2685: } fp@2685: fp@2685: /* The minimum packet size with TCTL.PSP set is 17 so pad the skb fp@2685: * in order to meet this minimum size requirement. fp@2685: */ fp@2685: if (unlikely(skb->len < 17)) { fp@2685: if (skb_pad(skb, 17 - skb->len)) fp@2685: return NETDEV_TX_OK; fp@2685: skb->len = 17; fp@2685: skb_set_tail_pointer(skb, 17); fp@2685: } fp@2685: fp@2685: return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb)); fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_tx_timeout - Respond to a Tx Hang fp@2685: * @netdev: network interface device structure fp@2685: **/ fp@2685: static void igb_tx_timeout(struct net_device *netdev) fp@2685: { fp@2685: struct igb_adapter *adapter = netdev_priv(netdev); fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: fp@2685: /* Do the reset outside of interrupt context */ fp@2685: adapter->tx_timeout_count++; fp@2685: fp@2685: if (hw->mac.type >= e1000_82580) fp@2685: hw->dev_spec._82575.global_device_reset = true; fp@2685: fp@2685: schedule_work(&adapter->reset_task); fp@2685: wr32(E1000_EICS, fp@2685: (adapter->eims_enable_mask & ~adapter->eims_other)); fp@2685: } fp@2685: fp@2685: static void igb_reset_task(struct work_struct *work) fp@2685: { fp@2685: struct igb_adapter *adapter; fp@2685: adapter = container_of(work, struct igb_adapter, reset_task); fp@2685: fp@2685: igb_dump(adapter); fp@2685: netdev_err(adapter->netdev, "Reset adapter\n"); fp@2685: igb_reinit_locked(adapter); fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_get_stats64 - Get System Network Statistics fp@2685: * @netdev: network interface device structure fp@2685: * @stats: rtnl_link_stats64 pointer fp@2685: **/ fp@2685: static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev, fp@2685: struct rtnl_link_stats64 *stats) fp@2685: { fp@2685: struct igb_adapter *adapter = netdev_priv(netdev); fp@2685: fp@2685: spin_lock(&adapter->stats64_lock); fp@2685: igb_update_stats(adapter, &adapter->stats64); fp@2685: memcpy(stats, &adapter->stats64, sizeof(*stats)); fp@2685: spin_unlock(&adapter->stats64_lock); fp@2685: fp@2685: return stats; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_change_mtu - Change the Maximum Transfer Unit fp@2685: * @netdev: network interface device structure fp@2685: * @new_mtu: new value for maximum frame size fp@2685: * fp@2685: * Returns 0 on success, negative on failure fp@2685: **/ fp@2685: static int igb_change_mtu(struct net_device *netdev, int new_mtu) fp@2685: { fp@2685: struct igb_adapter *adapter = netdev_priv(netdev); fp@2685: struct pci_dev *pdev = adapter->pdev; fp@2685: int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; fp@2685: fp@2685: if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) { fp@2685: dev_err(&pdev->dev, "Invalid MTU setting\n"); fp@2685: return -EINVAL; fp@2685: } fp@2685: fp@2685: #define MAX_STD_JUMBO_FRAME_SIZE 9238 fp@2685: if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) { fp@2685: dev_err(&pdev->dev, "MTU > 9216 not supported.\n"); fp@2685: return -EINVAL; fp@2685: } fp@2685: fp@2685: /* adjust max frame to be at least the size of a standard frame */ fp@2685: if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN)) fp@2685: max_frame = ETH_FRAME_LEN + ETH_FCS_LEN; fp@2685: fp@2685: while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) fp@2685: usleep_range(1000, 2000); fp@2685: fp@2685: /* igb_down has a dependency on max_frame_size */ fp@2685: adapter->max_frame_size = max_frame; fp@2685: fp@2685: if (netif_running(netdev)) fp@2685: igb_down(adapter); fp@2685: fp@2685: dev_info(&pdev->dev, "changing MTU from %d to %d\n", fp@2685: netdev->mtu, new_mtu); fp@2685: netdev->mtu = new_mtu; fp@2685: fp@2685: if (netif_running(netdev)) fp@2685: igb_up(adapter); fp@2685: else fp@2685: igb_reset(adapter); fp@2685: fp@2685: clear_bit(__IGB_RESETTING, &adapter->state); fp@2685: fp@2685: return 0; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_update_stats - Update the board statistics counters fp@2685: * @adapter: board private structure fp@2685: **/ fp@2685: void igb_update_stats(struct igb_adapter *adapter, fp@2685: struct rtnl_link_stats64 *net_stats) fp@2685: { fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: struct pci_dev *pdev = adapter->pdev; fp@2685: u32 reg, mpc; fp@2685: int i; fp@2685: u64 bytes, packets; fp@2685: unsigned int start; fp@2685: u64 _bytes, _packets; fp@2685: fp@2685: /* Prevent stats update while adapter is being reset, or if the pci fp@2685: * connection is down. fp@2685: */ fp@2685: if (adapter->link_speed == 0) fp@2685: return; fp@2685: if (pci_channel_offline(pdev)) fp@2685: return; fp@2685: fp@2685: bytes = 0; fp@2685: packets = 0; fp@2685: fp@2685: rcu_read_lock(); fp@2685: for (i = 0; i < adapter->num_rx_queues; i++) { fp@2685: struct igb_ring *ring = adapter->rx_ring[i]; fp@2685: u32 rqdpc = rd32(E1000_RQDPC(i)); fp@2685: if (hw->mac.type >= e1000_i210) fp@2685: wr32(E1000_RQDPC(i), 0); fp@2685: fp@2685: if (rqdpc) { fp@2685: ring->rx_stats.drops += rqdpc; fp@2685: net_stats->rx_fifo_errors += rqdpc; fp@2685: } fp@2685: fp@2685: do { fp@2685: start = u64_stats_fetch_begin_irq(&ring->rx_syncp); fp@2685: _bytes = ring->rx_stats.bytes; fp@2685: _packets = ring->rx_stats.packets; fp@2685: } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start)); fp@2685: bytes += _bytes; fp@2685: packets += _packets; fp@2685: } fp@2685: fp@2685: net_stats->rx_bytes = bytes; fp@2685: net_stats->rx_packets = packets; fp@2685: fp@2685: bytes = 0; fp@2685: packets = 0; fp@2685: for (i = 0; i < adapter->num_tx_queues; i++) { fp@2685: struct igb_ring *ring = adapter->tx_ring[i]; fp@2685: do { fp@2685: start = u64_stats_fetch_begin_irq(&ring->tx_syncp); fp@2685: _bytes = ring->tx_stats.bytes; fp@2685: _packets = ring->tx_stats.packets; fp@2685: } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start)); fp@2685: bytes += _bytes; fp@2685: packets += _packets; fp@2685: } fp@2685: net_stats->tx_bytes = bytes; fp@2685: net_stats->tx_packets = packets; fp@2685: rcu_read_unlock(); fp@2685: fp@2685: /* read stats registers */ fp@2685: adapter->stats.crcerrs += rd32(E1000_CRCERRS); fp@2685: adapter->stats.gprc += rd32(E1000_GPRC); fp@2685: adapter->stats.gorc += rd32(E1000_GORCL); fp@2685: rd32(E1000_GORCH); /* clear GORCL */ fp@2685: adapter->stats.bprc += rd32(E1000_BPRC); fp@2685: adapter->stats.mprc += rd32(E1000_MPRC); fp@2685: adapter->stats.roc += rd32(E1000_ROC); fp@2685: fp@2685: adapter->stats.prc64 += rd32(E1000_PRC64); fp@2685: adapter->stats.prc127 += rd32(E1000_PRC127); fp@2685: adapter->stats.prc255 += rd32(E1000_PRC255); fp@2685: adapter->stats.prc511 += rd32(E1000_PRC511); fp@2685: adapter->stats.prc1023 += rd32(E1000_PRC1023); fp@2685: adapter->stats.prc1522 += rd32(E1000_PRC1522); fp@2685: adapter->stats.symerrs += rd32(E1000_SYMERRS); fp@2685: adapter->stats.sec += rd32(E1000_SEC); fp@2685: fp@2685: mpc = rd32(E1000_MPC); fp@2685: adapter->stats.mpc += mpc; fp@2685: net_stats->rx_fifo_errors += mpc; fp@2685: adapter->stats.scc += rd32(E1000_SCC); fp@2685: adapter->stats.ecol += rd32(E1000_ECOL); fp@2685: adapter->stats.mcc += rd32(E1000_MCC); fp@2685: adapter->stats.latecol += rd32(E1000_LATECOL); fp@2685: adapter->stats.dc += rd32(E1000_DC); fp@2685: adapter->stats.rlec += rd32(E1000_RLEC); fp@2685: adapter->stats.xonrxc += rd32(E1000_XONRXC); fp@2685: adapter->stats.xontxc += rd32(E1000_XONTXC); fp@2685: adapter->stats.xoffrxc += rd32(E1000_XOFFRXC); fp@2685: adapter->stats.xofftxc += rd32(E1000_XOFFTXC); fp@2685: adapter->stats.fcruc += rd32(E1000_FCRUC); fp@2685: adapter->stats.gptc += rd32(E1000_GPTC); fp@2685: adapter->stats.gotc += rd32(E1000_GOTCL); fp@2685: rd32(E1000_GOTCH); /* clear GOTCL */ fp@2685: adapter->stats.rnbc += rd32(E1000_RNBC); fp@2685: adapter->stats.ruc += rd32(E1000_RUC); fp@2685: adapter->stats.rfc += rd32(E1000_RFC); fp@2685: adapter->stats.rjc += rd32(E1000_RJC); fp@2685: adapter->stats.tor += rd32(E1000_TORH); fp@2685: adapter->stats.tot += rd32(E1000_TOTH); fp@2685: adapter->stats.tpr += rd32(E1000_TPR); fp@2685: fp@2685: adapter->stats.ptc64 += rd32(E1000_PTC64); fp@2685: adapter->stats.ptc127 += rd32(E1000_PTC127); fp@2685: adapter->stats.ptc255 += rd32(E1000_PTC255); fp@2685: adapter->stats.ptc511 += rd32(E1000_PTC511); fp@2685: adapter->stats.ptc1023 += rd32(E1000_PTC1023); fp@2685: adapter->stats.ptc1522 += rd32(E1000_PTC1522); fp@2685: fp@2685: adapter->stats.mptc += rd32(E1000_MPTC); fp@2685: adapter->stats.bptc += rd32(E1000_BPTC); fp@2685: fp@2685: adapter->stats.tpt += rd32(E1000_TPT); fp@2685: adapter->stats.colc += rd32(E1000_COLC); fp@2685: fp@2685: adapter->stats.algnerrc += rd32(E1000_ALGNERRC); fp@2685: /* read internal phy specific stats */ fp@2685: reg = rd32(E1000_CTRL_EXT); fp@2685: if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) { fp@2685: adapter->stats.rxerrc += rd32(E1000_RXERRC); fp@2685: fp@2685: /* this stat has invalid values on i210/i211 */ fp@2685: if ((hw->mac.type != e1000_i210) && fp@2685: (hw->mac.type != e1000_i211)) fp@2685: adapter->stats.tncrs += rd32(E1000_TNCRS); fp@2685: } fp@2685: fp@2685: adapter->stats.tsctc += rd32(E1000_TSCTC); fp@2685: adapter->stats.tsctfc += rd32(E1000_TSCTFC); fp@2685: fp@2685: adapter->stats.iac += rd32(E1000_IAC); fp@2685: adapter->stats.icrxoc += rd32(E1000_ICRXOC); fp@2685: adapter->stats.icrxptc += rd32(E1000_ICRXPTC); fp@2685: adapter->stats.icrxatc += rd32(E1000_ICRXATC); fp@2685: adapter->stats.ictxptc += rd32(E1000_ICTXPTC); fp@2685: adapter->stats.ictxatc += rd32(E1000_ICTXATC); fp@2685: adapter->stats.ictxqec += rd32(E1000_ICTXQEC); fp@2685: adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC); fp@2685: adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC); fp@2685: fp@2685: /* Fill out the OS statistics structure */ fp@2685: net_stats->multicast = adapter->stats.mprc; fp@2685: net_stats->collisions = adapter->stats.colc; fp@2685: fp@2685: /* Rx Errors */ fp@2685: fp@2685: /* RLEC on some newer hardware can be incorrect so build fp@2685: * our own version based on RUC and ROC fp@2685: */ fp@2685: net_stats->rx_errors = adapter->stats.rxerrc + fp@2685: adapter->stats.crcerrs + adapter->stats.algnerrc + fp@2685: adapter->stats.ruc + adapter->stats.roc + fp@2685: adapter->stats.cexterr; fp@2685: net_stats->rx_length_errors = adapter->stats.ruc + fp@2685: adapter->stats.roc; fp@2685: net_stats->rx_crc_errors = adapter->stats.crcerrs; fp@2685: net_stats->rx_frame_errors = adapter->stats.algnerrc; fp@2685: net_stats->rx_missed_errors = adapter->stats.mpc; fp@2685: fp@2685: /* Tx Errors */ fp@2685: net_stats->tx_errors = adapter->stats.ecol + fp@2685: adapter->stats.latecol; fp@2685: net_stats->tx_aborted_errors = adapter->stats.ecol; fp@2685: net_stats->tx_window_errors = adapter->stats.latecol; fp@2685: net_stats->tx_carrier_errors = adapter->stats.tncrs; fp@2685: fp@2685: /* Tx Dropped needs to be maintained elsewhere */ fp@2685: fp@2685: /* Management Stats */ fp@2685: adapter->stats.mgptc += rd32(E1000_MGTPTC); fp@2685: adapter->stats.mgprc += rd32(E1000_MGTPRC); fp@2685: adapter->stats.mgpdc += rd32(E1000_MGTPDC); fp@2685: fp@2685: /* OS2BMC Stats */ fp@2685: reg = rd32(E1000_MANC); fp@2685: if (reg & E1000_MANC_EN_BMC2OS) { fp@2685: adapter->stats.o2bgptc += rd32(E1000_O2BGPTC); fp@2685: adapter->stats.o2bspc += rd32(E1000_O2BSPC); fp@2685: adapter->stats.b2ospc += rd32(E1000_B2OSPC); fp@2685: adapter->stats.b2ogprc += rd32(E1000_B2OGPRC); fp@2685: } fp@2685: } fp@2685: fp@2685: static irqreturn_t igb_msix_other(int irq, void *data) fp@2685: { fp@2685: struct igb_adapter *adapter = data; fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: u32 icr = rd32(E1000_ICR); fp@2685: /* reading ICR causes bit 31 of EICR to be cleared */ fp@2685: fp@2685: if (icr & E1000_ICR_DRSTA) fp@2685: schedule_work(&adapter->reset_task); fp@2685: fp@2685: if (icr & E1000_ICR_DOUTSYNC) { fp@2685: /* HW is reporting DMA is out of sync */ fp@2685: adapter->stats.doosync++; fp@2685: /* The DMA Out of Sync is also indication of a spoof event fp@2685: * in IOV mode. Check the Wrong VM Behavior register to fp@2685: * see if it is really a spoof event. fp@2685: */ fp@2685: igb_check_wvbr(adapter); fp@2685: } fp@2685: fp@2685: /* Check for a mailbox event */ fp@2685: if (icr & E1000_ICR_VMMB) fp@2685: igb_msg_task(adapter); fp@2685: fp@2685: if (icr & E1000_ICR_LSC) { fp@2685: hw->mac.get_link_status = 1; fp@2685: /* guard against interrupt when we're going down */ fp@2685: if (!test_bit(__IGB_DOWN, &adapter->state)) fp@2685: mod_timer(&adapter->watchdog_timer, jiffies + 1); fp@2685: } fp@2685: fp@2685: if (icr & E1000_ICR_TS) { fp@2685: u32 tsicr = rd32(E1000_TSICR); fp@2685: fp@2685: if (tsicr & E1000_TSICR_TXTS) { fp@2685: /* acknowledge the interrupt */ fp@2685: wr32(E1000_TSICR, E1000_TSICR_TXTS); fp@2685: /* retrieve hardware timestamp */ fp@2685: schedule_work(&adapter->ptp_tx_work); fp@2685: } fp@2685: } fp@2685: fp@2685: wr32(E1000_EIMS, adapter->eims_other); fp@2685: fp@2685: return IRQ_HANDLED; fp@2685: } fp@2685: fp@2685: static void igb_write_itr(struct igb_q_vector *q_vector) fp@2685: { fp@2685: struct igb_adapter *adapter = q_vector->adapter; fp@2685: u32 itr_val = q_vector->itr_val & 0x7FFC; fp@2685: fp@2685: if (!q_vector->set_itr) fp@2685: return; fp@2685: fp@2685: if (!itr_val) fp@2685: itr_val = 0x4; fp@2685: fp@2685: if (adapter->hw.mac.type == e1000_82575) fp@2685: itr_val |= itr_val << 16; fp@2685: else fp@2685: itr_val |= E1000_EITR_CNT_IGNR; fp@2685: fp@2685: writel(itr_val, q_vector->itr_register); fp@2685: q_vector->set_itr = 0; fp@2685: } fp@2685: fp@2685: static irqreturn_t igb_msix_ring(int irq, void *data) fp@2685: { fp@2685: struct igb_q_vector *q_vector = data; fp@2685: fp@2685: /* Write the ITR value calculated from the previous interrupt. */ fp@2685: igb_write_itr(q_vector); fp@2685: fp@2685: napi_schedule(&q_vector->napi); fp@2685: fp@2685: return IRQ_HANDLED; fp@2685: } fp@2685: fp@2685: #ifdef CONFIG_IGB_DCA fp@2685: static void igb_update_tx_dca(struct igb_adapter *adapter, fp@2685: struct igb_ring *tx_ring, fp@2685: int cpu) fp@2685: { fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: u32 txctrl = dca3_get_tag(tx_ring->dev, cpu); fp@2685: fp@2685: if (hw->mac.type != e1000_82575) fp@2685: txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT; fp@2685: fp@2685: /* We can enable relaxed ordering for reads, but not writes when fp@2685: * DCA is enabled. This is due to a known issue in some chipsets fp@2685: * which will cause the DCA tag to be cleared. fp@2685: */ fp@2685: txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN | fp@2685: E1000_DCA_TXCTRL_DATA_RRO_EN | fp@2685: E1000_DCA_TXCTRL_DESC_DCA_EN; fp@2685: fp@2685: wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl); fp@2685: } fp@2685: fp@2685: static void igb_update_rx_dca(struct igb_adapter *adapter, fp@2685: struct igb_ring *rx_ring, fp@2685: int cpu) fp@2685: { fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu); fp@2685: fp@2685: if (hw->mac.type != e1000_82575) fp@2685: rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT; fp@2685: fp@2685: /* We can enable relaxed ordering for reads, but not writes when fp@2685: * DCA is enabled. This is due to a known issue in some chipsets fp@2685: * which will cause the DCA tag to be cleared. fp@2685: */ fp@2685: rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN | fp@2685: E1000_DCA_RXCTRL_DESC_DCA_EN; fp@2685: fp@2685: wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl); fp@2685: } fp@2685: fp@2685: static void igb_update_dca(struct igb_q_vector *q_vector) fp@2685: { fp@2685: struct igb_adapter *adapter = q_vector->adapter; fp@2685: int cpu = get_cpu(); fp@2685: fp@2685: if (q_vector->cpu == cpu) fp@2685: goto out_no_update; fp@2685: fp@2685: if (q_vector->tx.ring) fp@2685: igb_update_tx_dca(adapter, q_vector->tx.ring, cpu); fp@2685: fp@2685: if (q_vector->rx.ring) fp@2685: igb_update_rx_dca(adapter, q_vector->rx.ring, cpu); fp@2685: fp@2685: q_vector->cpu = cpu; fp@2685: out_no_update: fp@2685: put_cpu(); fp@2685: } fp@2685: fp@2685: static void igb_setup_dca(struct igb_adapter *adapter) fp@2685: { fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: int i; fp@2685: fp@2685: if (!(adapter->flags & IGB_FLAG_DCA_ENABLED)) fp@2685: return; fp@2685: fp@2685: /* Always use CB2 mode, difference is masked in the CB driver. */ fp@2685: wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2); fp@2685: fp@2685: for (i = 0; i < adapter->num_q_vectors; i++) { fp@2685: adapter->q_vector[i]->cpu = -1; fp@2685: igb_update_dca(adapter->q_vector[i]); fp@2685: } fp@2685: } fp@2685: fp@2685: static int __igb_notify_dca(struct device *dev, void *data) fp@2685: { fp@2685: struct net_device *netdev = dev_get_drvdata(dev); fp@2685: struct igb_adapter *adapter = netdev_priv(netdev); fp@2685: struct pci_dev *pdev = adapter->pdev; fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: unsigned long event = *(unsigned long *)data; fp@2685: fp@2685: switch (event) { fp@2685: case DCA_PROVIDER_ADD: fp@2685: /* if already enabled, don't do it again */ fp@2685: if (adapter->flags & IGB_FLAG_DCA_ENABLED) fp@2685: break; fp@2685: if (dca_add_requester(dev) == 0) { fp@2685: adapter->flags |= IGB_FLAG_DCA_ENABLED; fp@2685: dev_info(&pdev->dev, "DCA enabled\n"); fp@2685: igb_setup_dca(adapter); fp@2685: break; fp@2685: } fp@2685: /* Fall Through since DCA is disabled. */ fp@2685: case DCA_PROVIDER_REMOVE: fp@2685: if (adapter->flags & IGB_FLAG_DCA_ENABLED) { fp@2685: /* without this a class_device is left fp@2685: * hanging around in the sysfs model fp@2685: */ fp@2685: dca_remove_requester(dev); fp@2685: dev_info(&pdev->dev, "DCA disabled\n"); fp@2685: adapter->flags &= ~IGB_FLAG_DCA_ENABLED; fp@2685: wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE); fp@2685: } fp@2685: break; fp@2685: } fp@2685: fp@2685: return 0; fp@2685: } fp@2685: fp@2685: static int igb_notify_dca(struct notifier_block *nb, unsigned long event, fp@2685: void *p) fp@2685: { fp@2685: int ret_val; fp@2685: fp@2685: ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event, fp@2685: __igb_notify_dca); fp@2685: fp@2685: return ret_val ? NOTIFY_BAD : NOTIFY_DONE; fp@2685: } fp@2685: #endif /* CONFIG_IGB_DCA */ fp@2685: fp@2685: #ifdef CONFIG_PCI_IOV fp@2685: static int igb_vf_configure(struct igb_adapter *adapter, int vf) fp@2685: { fp@2685: unsigned char mac_addr[ETH_ALEN]; fp@2685: fp@2685: eth_zero_addr(mac_addr); fp@2685: igb_set_vf_mac(adapter, vf, mac_addr); fp@2685: fp@2685: /* By default spoof check is enabled for all VFs */ fp@2685: adapter->vf_data[vf].spoofchk_enabled = true; fp@2685: fp@2685: return 0; fp@2685: } fp@2685: fp@2685: #endif fp@2685: static void igb_ping_all_vfs(struct igb_adapter *adapter) fp@2685: { fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: u32 ping; fp@2685: int i; fp@2685: fp@2685: for (i = 0 ; i < adapter->vfs_allocated_count; i++) { fp@2685: ping = E1000_PF_CONTROL_MSG; fp@2685: if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS) fp@2685: ping |= E1000_VT_MSGTYPE_CTS; fp@2685: igb_write_mbx(hw, &ping, 1, i); fp@2685: } fp@2685: } fp@2685: fp@2685: static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf) fp@2685: { fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: u32 vmolr = rd32(E1000_VMOLR(vf)); fp@2685: struct vf_data_storage *vf_data = &adapter->vf_data[vf]; fp@2685: fp@2685: vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC | fp@2685: IGB_VF_FLAG_MULTI_PROMISC); fp@2685: vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME); fp@2685: fp@2685: if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) { fp@2685: vmolr |= E1000_VMOLR_MPME; fp@2685: vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC; fp@2685: *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST; fp@2685: } else { fp@2685: /* if we have hashes and we are clearing a multicast promisc fp@2685: * flag we need to write the hashes to the MTA as this step fp@2685: * was previously skipped fp@2685: */ fp@2685: if (vf_data->num_vf_mc_hashes > 30) { fp@2685: vmolr |= E1000_VMOLR_MPME; fp@2685: } else if (vf_data->num_vf_mc_hashes) { fp@2685: int j; fp@2685: fp@2685: vmolr |= E1000_VMOLR_ROMPE; fp@2685: for (j = 0; j < vf_data->num_vf_mc_hashes; j++) fp@2685: igb_mta_set(hw, vf_data->vf_mc_hashes[j]); fp@2685: } fp@2685: } fp@2685: fp@2685: wr32(E1000_VMOLR(vf), vmolr); fp@2685: fp@2685: /* there are flags left unprocessed, likely not supported */ fp@2685: if (*msgbuf & E1000_VT_MSGINFO_MASK) fp@2685: return -EINVAL; fp@2685: fp@2685: return 0; fp@2685: } fp@2685: fp@2685: static int igb_set_vf_multicasts(struct igb_adapter *adapter, fp@2685: u32 *msgbuf, u32 vf) fp@2685: { fp@2685: int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT; fp@2685: u16 *hash_list = (u16 *)&msgbuf[1]; fp@2685: struct vf_data_storage *vf_data = &adapter->vf_data[vf]; fp@2685: int i; fp@2685: fp@2685: /* salt away the number of multicast addresses assigned fp@2685: * to this VF for later use to restore when the PF multi cast fp@2685: * list changes fp@2685: */ fp@2685: vf_data->num_vf_mc_hashes = n; fp@2685: fp@2685: /* only up to 30 hash values supported */ fp@2685: if (n > 30) fp@2685: n = 30; fp@2685: fp@2685: /* store the hashes for later use */ fp@2685: for (i = 0; i < n; i++) fp@2685: vf_data->vf_mc_hashes[i] = hash_list[i]; fp@2685: fp@2685: /* Flush and reset the mta with the new values */ fp@2685: igb_set_rx_mode(adapter->netdev); fp@2685: fp@2685: return 0; fp@2685: } fp@2685: fp@2685: static void igb_restore_vf_multicasts(struct igb_adapter *adapter) fp@2685: { fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: struct vf_data_storage *vf_data; fp@2685: int i, j; fp@2685: fp@2685: for (i = 0; i < adapter->vfs_allocated_count; i++) { fp@2685: u32 vmolr = rd32(E1000_VMOLR(i)); fp@2685: fp@2685: vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME); fp@2685: fp@2685: vf_data = &adapter->vf_data[i]; fp@2685: fp@2685: if ((vf_data->num_vf_mc_hashes > 30) || fp@2685: (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) { fp@2685: vmolr |= E1000_VMOLR_MPME; fp@2685: } else if (vf_data->num_vf_mc_hashes) { fp@2685: vmolr |= E1000_VMOLR_ROMPE; fp@2685: for (j = 0; j < vf_data->num_vf_mc_hashes; j++) fp@2685: igb_mta_set(hw, vf_data->vf_mc_hashes[j]); fp@2685: } fp@2685: wr32(E1000_VMOLR(i), vmolr); fp@2685: } fp@2685: } fp@2685: fp@2685: static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf) fp@2685: { fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: u32 pool_mask, reg, vid; fp@2685: int i; fp@2685: fp@2685: pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf); fp@2685: fp@2685: /* Find the vlan filter for this id */ fp@2685: for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { fp@2685: reg = rd32(E1000_VLVF(i)); fp@2685: fp@2685: /* remove the vf from the pool */ fp@2685: reg &= ~pool_mask; fp@2685: fp@2685: /* if pool is empty then remove entry from vfta */ fp@2685: if (!(reg & E1000_VLVF_POOLSEL_MASK) && fp@2685: (reg & E1000_VLVF_VLANID_ENABLE)) { fp@2685: reg = 0; fp@2685: vid = reg & E1000_VLVF_VLANID_MASK; fp@2685: igb_vfta_set(hw, vid, false); fp@2685: } fp@2685: fp@2685: wr32(E1000_VLVF(i), reg); fp@2685: } fp@2685: fp@2685: adapter->vf_data[vf].vlans_enabled = 0; fp@2685: } fp@2685: fp@2685: static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf) fp@2685: { fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: u32 reg, i; fp@2685: fp@2685: /* The vlvf table only exists on 82576 hardware and newer */ fp@2685: if (hw->mac.type < e1000_82576) fp@2685: return -1; fp@2685: fp@2685: /* we only need to do this if VMDq is enabled */ fp@2685: if (!adapter->vfs_allocated_count) fp@2685: return -1; fp@2685: fp@2685: /* Find the vlan filter for this id */ fp@2685: for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { fp@2685: reg = rd32(E1000_VLVF(i)); fp@2685: if ((reg & E1000_VLVF_VLANID_ENABLE) && fp@2685: vid == (reg & E1000_VLVF_VLANID_MASK)) fp@2685: break; fp@2685: } fp@2685: fp@2685: if (add) { fp@2685: if (i == E1000_VLVF_ARRAY_SIZE) { fp@2685: /* Did not find a matching VLAN ID entry that was fp@2685: * enabled. Search for a free filter entry, i.e. fp@2685: * one without the enable bit set fp@2685: */ fp@2685: for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { fp@2685: reg = rd32(E1000_VLVF(i)); fp@2685: if (!(reg & E1000_VLVF_VLANID_ENABLE)) fp@2685: break; fp@2685: } fp@2685: } fp@2685: if (i < E1000_VLVF_ARRAY_SIZE) { fp@2685: /* Found an enabled/available entry */ fp@2685: reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf); fp@2685: fp@2685: /* if !enabled we need to set this up in vfta */ fp@2685: if (!(reg & E1000_VLVF_VLANID_ENABLE)) { fp@2685: /* add VID to filter table */ fp@2685: igb_vfta_set(hw, vid, true); fp@2685: reg |= E1000_VLVF_VLANID_ENABLE; fp@2685: } fp@2685: reg &= ~E1000_VLVF_VLANID_MASK; fp@2685: reg |= vid; fp@2685: wr32(E1000_VLVF(i), reg); fp@2685: fp@2685: /* do not modify RLPML for PF devices */ fp@2685: if (vf >= adapter->vfs_allocated_count) fp@2685: return 0; fp@2685: fp@2685: if (!adapter->vf_data[vf].vlans_enabled) { fp@2685: u32 size; fp@2685: fp@2685: reg = rd32(E1000_VMOLR(vf)); fp@2685: size = reg & E1000_VMOLR_RLPML_MASK; fp@2685: size += 4; fp@2685: reg &= ~E1000_VMOLR_RLPML_MASK; fp@2685: reg |= size; fp@2685: wr32(E1000_VMOLR(vf), reg); fp@2685: } fp@2685: fp@2685: adapter->vf_data[vf].vlans_enabled++; fp@2685: } fp@2685: } else { fp@2685: if (i < E1000_VLVF_ARRAY_SIZE) { fp@2685: /* remove vf from the pool */ fp@2685: reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf)); fp@2685: /* if pool is empty then remove entry from vfta */ fp@2685: if (!(reg & E1000_VLVF_POOLSEL_MASK)) { fp@2685: reg = 0; fp@2685: igb_vfta_set(hw, vid, false); fp@2685: } fp@2685: wr32(E1000_VLVF(i), reg); fp@2685: fp@2685: /* do not modify RLPML for PF devices */ fp@2685: if (vf >= adapter->vfs_allocated_count) fp@2685: return 0; fp@2685: fp@2685: adapter->vf_data[vf].vlans_enabled--; fp@2685: if (!adapter->vf_data[vf].vlans_enabled) { fp@2685: u32 size; fp@2685: fp@2685: reg = rd32(E1000_VMOLR(vf)); fp@2685: size = reg & E1000_VMOLR_RLPML_MASK; fp@2685: size -= 4; fp@2685: reg &= ~E1000_VMOLR_RLPML_MASK; fp@2685: reg |= size; fp@2685: wr32(E1000_VMOLR(vf), reg); fp@2685: } fp@2685: } fp@2685: } fp@2685: return 0; fp@2685: } fp@2685: fp@2685: static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf) fp@2685: { fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: fp@2685: if (vid) fp@2685: wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT)); fp@2685: else fp@2685: wr32(E1000_VMVIR(vf), 0); fp@2685: } fp@2685: fp@2685: static int igb_ndo_set_vf_vlan(struct net_device *netdev, fp@2685: int vf, u16 vlan, u8 qos) fp@2685: { fp@2685: int err = 0; fp@2685: struct igb_adapter *adapter = netdev_priv(netdev); fp@2685: fp@2685: if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7)) fp@2685: return -EINVAL; fp@2685: if (vlan || qos) { fp@2685: err = igb_vlvf_set(adapter, vlan, !!vlan, vf); fp@2685: if (err) fp@2685: goto out; fp@2685: igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf); fp@2685: igb_set_vmolr(adapter, vf, !vlan); fp@2685: adapter->vf_data[vf].pf_vlan = vlan; fp@2685: adapter->vf_data[vf].pf_qos = qos; fp@2685: dev_info(&adapter->pdev->dev, fp@2685: "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf); fp@2685: if (test_bit(__IGB_DOWN, &adapter->state)) { fp@2685: dev_warn(&adapter->pdev->dev, fp@2685: "The VF VLAN has been set, but the PF device is not up.\n"); fp@2685: dev_warn(&adapter->pdev->dev, fp@2685: "Bring the PF device up before attempting to use the VF device.\n"); fp@2685: } fp@2685: } else { fp@2685: igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan, fp@2685: false, vf); fp@2685: igb_set_vmvir(adapter, vlan, vf); fp@2685: igb_set_vmolr(adapter, vf, true); fp@2685: adapter->vf_data[vf].pf_vlan = 0; fp@2685: adapter->vf_data[vf].pf_qos = 0; fp@2685: } fp@2685: out: fp@2685: return err; fp@2685: } fp@2685: fp@2685: static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid) fp@2685: { fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: int i; fp@2685: u32 reg; fp@2685: fp@2685: /* Find the vlan filter for this id */ fp@2685: for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { fp@2685: reg = rd32(E1000_VLVF(i)); fp@2685: if ((reg & E1000_VLVF_VLANID_ENABLE) && fp@2685: vid == (reg & E1000_VLVF_VLANID_MASK)) fp@2685: break; fp@2685: } fp@2685: fp@2685: if (i >= E1000_VLVF_ARRAY_SIZE) fp@2685: i = -1; fp@2685: fp@2685: return i; fp@2685: } fp@2685: fp@2685: static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf) fp@2685: { fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT; fp@2685: int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK); fp@2685: int err = 0; fp@2685: fp@2685: /* If in promiscuous mode we need to make sure the PF also has fp@2685: * the VLAN filter set. fp@2685: */ fp@2685: if (add && (adapter->netdev->flags & IFF_PROMISC)) fp@2685: err = igb_vlvf_set(adapter, vid, add, fp@2685: adapter->vfs_allocated_count); fp@2685: if (err) fp@2685: goto out; fp@2685: fp@2685: err = igb_vlvf_set(adapter, vid, add, vf); fp@2685: fp@2685: if (err) fp@2685: goto out; fp@2685: fp@2685: /* Go through all the checks to see if the VLAN filter should fp@2685: * be wiped completely. fp@2685: */ fp@2685: if (!add && (adapter->netdev->flags & IFF_PROMISC)) { fp@2685: u32 vlvf, bits; fp@2685: int regndx = igb_find_vlvf_entry(adapter, vid); fp@2685: fp@2685: if (regndx < 0) fp@2685: goto out; fp@2685: /* See if any other pools are set for this VLAN filter fp@2685: * entry other than the PF. fp@2685: */ fp@2685: vlvf = bits = rd32(E1000_VLVF(regndx)); fp@2685: bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT + fp@2685: adapter->vfs_allocated_count); fp@2685: /* If the filter was removed then ensure PF pool bit fp@2685: * is cleared if the PF only added itself to the pool fp@2685: * because the PF is in promiscuous mode. fp@2685: */ fp@2685: if ((vlvf & VLAN_VID_MASK) == vid && fp@2685: !test_bit(vid, adapter->active_vlans) && fp@2685: !bits) fp@2685: igb_vlvf_set(adapter, vid, add, fp@2685: adapter->vfs_allocated_count); fp@2685: } fp@2685: fp@2685: out: fp@2685: return err; fp@2685: } fp@2685: fp@2685: static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf) fp@2685: { fp@2685: /* clear flags - except flag that indicates PF has set the MAC */ fp@2685: adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC; fp@2685: adapter->vf_data[vf].last_nack = jiffies; fp@2685: fp@2685: /* reset offloads to defaults */ fp@2685: igb_set_vmolr(adapter, vf, true); fp@2685: fp@2685: /* reset vlans for device */ fp@2685: igb_clear_vf_vfta(adapter, vf); fp@2685: if (adapter->vf_data[vf].pf_vlan) fp@2685: igb_ndo_set_vf_vlan(adapter->netdev, vf, fp@2685: adapter->vf_data[vf].pf_vlan, fp@2685: adapter->vf_data[vf].pf_qos); fp@2685: else fp@2685: igb_clear_vf_vfta(adapter, vf); fp@2685: fp@2685: /* reset multicast table array for vf */ fp@2685: adapter->vf_data[vf].num_vf_mc_hashes = 0; fp@2685: fp@2685: /* Flush and reset the mta with the new values */ fp@2685: igb_set_rx_mode(adapter->netdev); fp@2685: } fp@2685: fp@2685: static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf) fp@2685: { fp@2685: unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses; fp@2685: fp@2685: /* clear mac address as we were hotplug removed/added */ fp@2685: if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC)) fp@2685: eth_zero_addr(vf_mac); fp@2685: fp@2685: /* process remaining reset events */ fp@2685: igb_vf_reset(adapter, vf); fp@2685: } fp@2685: fp@2685: static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf) fp@2685: { fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses; fp@2685: int rar_entry = hw->mac.rar_entry_count - (vf + 1); fp@2685: u32 reg, msgbuf[3]; fp@2685: u8 *addr = (u8 *)(&msgbuf[1]); fp@2685: fp@2685: /* process all the same items cleared in a function level reset */ fp@2685: igb_vf_reset(adapter, vf); fp@2685: fp@2685: /* set vf mac address */ fp@2685: igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf); fp@2685: fp@2685: /* enable transmit and receive for vf */ fp@2685: reg = rd32(E1000_VFTE); fp@2685: wr32(E1000_VFTE, reg | (1 << vf)); fp@2685: reg = rd32(E1000_VFRE); fp@2685: wr32(E1000_VFRE, reg | (1 << vf)); fp@2685: fp@2685: adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS; fp@2685: fp@2685: /* reply to reset with ack and vf mac address */ fp@2685: msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK; fp@2685: memcpy(addr, vf_mac, ETH_ALEN); fp@2685: igb_write_mbx(hw, msgbuf, 3, vf); fp@2685: } fp@2685: fp@2685: static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf) fp@2685: { fp@2685: /* The VF MAC Address is stored in a packed array of bytes fp@2685: * starting at the second 32 bit word of the msg array fp@2685: */ fp@2685: unsigned char *addr = (char *)&msg[1]; fp@2685: int err = -1; fp@2685: fp@2685: if (is_valid_ether_addr(addr)) fp@2685: err = igb_set_vf_mac(adapter, vf, addr); fp@2685: fp@2685: return err; fp@2685: } fp@2685: fp@2685: static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf) fp@2685: { fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: struct vf_data_storage *vf_data = &adapter->vf_data[vf]; fp@2685: u32 msg = E1000_VT_MSGTYPE_NACK; fp@2685: fp@2685: /* if device isn't clear to send it shouldn't be reading either */ fp@2685: if (!(vf_data->flags & IGB_VF_FLAG_CTS) && fp@2685: time_after(jiffies, vf_data->last_nack + (2 * HZ))) { fp@2685: igb_write_mbx(hw, &msg, 1, vf); fp@2685: vf_data->last_nack = jiffies; fp@2685: } fp@2685: } fp@2685: fp@2685: static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf) fp@2685: { fp@2685: struct pci_dev *pdev = adapter->pdev; fp@2685: u32 msgbuf[E1000_VFMAILBOX_SIZE]; fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: struct vf_data_storage *vf_data = &adapter->vf_data[vf]; fp@2685: s32 retval; fp@2685: fp@2685: retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf); fp@2685: fp@2685: if (retval) { fp@2685: /* if receive failed revoke VF CTS stats and restart init */ fp@2685: dev_err(&pdev->dev, "Error receiving message from VF\n"); fp@2685: vf_data->flags &= ~IGB_VF_FLAG_CTS; fp@2685: if (!time_after(jiffies, vf_data->last_nack + (2 * HZ))) fp@2685: return; fp@2685: goto out; fp@2685: } fp@2685: fp@2685: /* this is a message we already processed, do nothing */ fp@2685: if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK)) fp@2685: return; fp@2685: fp@2685: /* until the vf completes a reset it should not be fp@2685: * allowed to start any configuration. fp@2685: */ fp@2685: if (msgbuf[0] == E1000_VF_RESET) { fp@2685: igb_vf_reset_msg(adapter, vf); fp@2685: return; fp@2685: } fp@2685: fp@2685: if (!(vf_data->flags & IGB_VF_FLAG_CTS)) { fp@2685: if (!time_after(jiffies, vf_data->last_nack + (2 * HZ))) fp@2685: return; fp@2685: retval = -1; fp@2685: goto out; fp@2685: } fp@2685: fp@2685: switch ((msgbuf[0] & 0xFFFF)) { fp@2685: case E1000_VF_SET_MAC_ADDR: fp@2685: retval = -EINVAL; fp@2685: if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC)) fp@2685: retval = igb_set_vf_mac_addr(adapter, msgbuf, vf); fp@2685: else fp@2685: dev_warn(&pdev->dev, fp@2685: "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n", fp@2685: vf); fp@2685: break; fp@2685: case E1000_VF_SET_PROMISC: fp@2685: retval = igb_set_vf_promisc(adapter, msgbuf, vf); fp@2685: break; fp@2685: case E1000_VF_SET_MULTICAST: fp@2685: retval = igb_set_vf_multicasts(adapter, msgbuf, vf); fp@2685: break; fp@2685: case E1000_VF_SET_LPE: fp@2685: retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf); fp@2685: break; fp@2685: case E1000_VF_SET_VLAN: fp@2685: retval = -1; fp@2685: if (vf_data->pf_vlan) fp@2685: dev_warn(&pdev->dev, fp@2685: "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n", fp@2685: vf); fp@2685: else fp@2685: retval = igb_set_vf_vlan(adapter, msgbuf, vf); fp@2685: break; fp@2685: default: fp@2685: dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]); fp@2685: retval = -1; fp@2685: break; fp@2685: } fp@2685: fp@2685: msgbuf[0] |= E1000_VT_MSGTYPE_CTS; fp@2685: out: fp@2685: /* notify the VF of the results of what it sent us */ fp@2685: if (retval) fp@2685: msgbuf[0] |= E1000_VT_MSGTYPE_NACK; fp@2685: else fp@2685: msgbuf[0] |= E1000_VT_MSGTYPE_ACK; fp@2685: fp@2685: igb_write_mbx(hw, msgbuf, 1, vf); fp@2685: } fp@2685: fp@2685: static void igb_msg_task(struct igb_adapter *adapter) fp@2685: { fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: u32 vf; fp@2685: fp@2685: for (vf = 0; vf < adapter->vfs_allocated_count; vf++) { fp@2685: /* process any reset requests */ fp@2685: if (!igb_check_for_rst(hw, vf)) fp@2685: igb_vf_reset_event(adapter, vf); fp@2685: fp@2685: /* process any messages pending */ fp@2685: if (!igb_check_for_msg(hw, vf)) fp@2685: igb_rcv_msg_from_vf(adapter, vf); fp@2685: fp@2685: /* process any acks */ fp@2685: if (!igb_check_for_ack(hw, vf)) fp@2685: igb_rcv_ack_from_vf(adapter, vf); fp@2685: } fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_set_uta - Set unicast filter table address fp@2685: * @adapter: board private structure fp@2685: * fp@2685: * The unicast table address is a register array of 32-bit registers. fp@2685: * The table is meant to be used in a way similar to how the MTA is used fp@2685: * however due to certain limitations in the hardware it is necessary to fp@2685: * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous fp@2685: * enable bit to allow vlan tag stripping when promiscuous mode is enabled fp@2685: **/ fp@2685: static void igb_set_uta(struct igb_adapter *adapter) fp@2685: { fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: int i; fp@2685: fp@2685: /* The UTA table only exists on 82576 hardware and newer */ fp@2685: if (hw->mac.type < e1000_82576) fp@2685: return; fp@2685: fp@2685: /* we only need to do this if VMDq is enabled */ fp@2685: if (!adapter->vfs_allocated_count) fp@2685: return; fp@2685: fp@2685: for (i = 0; i < hw->mac.uta_reg_count; i++) fp@2685: array_wr32(E1000_UTA, i, ~0); fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_intr_msi - Interrupt Handler fp@2685: * @irq: interrupt number fp@2685: * @data: pointer to a network interface device structure fp@2685: **/ fp@2685: static irqreturn_t igb_intr_msi(int irq, void *data) fp@2685: { fp@2685: struct igb_adapter *adapter = data; fp@2685: struct igb_q_vector *q_vector = adapter->q_vector[0]; fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: /* read ICR disables interrupts using IAM */ fp@2685: u32 icr = rd32(E1000_ICR); fp@2685: fp@2685: igb_write_itr(q_vector); fp@2685: fp@2685: if (icr & E1000_ICR_DRSTA) fp@2685: schedule_work(&adapter->reset_task); fp@2685: fp@2685: if (icr & E1000_ICR_DOUTSYNC) { fp@2685: /* HW is reporting DMA is out of sync */ fp@2685: adapter->stats.doosync++; fp@2685: } fp@2685: fp@2685: if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { fp@2685: hw->mac.get_link_status = 1; fp@2685: if (!test_bit(__IGB_DOWN, &adapter->state)) fp@2685: mod_timer(&adapter->watchdog_timer, jiffies + 1); fp@2685: } fp@2685: fp@2685: if (icr & E1000_ICR_TS) { fp@2685: u32 tsicr = rd32(E1000_TSICR); fp@2685: fp@2685: if (tsicr & E1000_TSICR_TXTS) { fp@2685: /* acknowledge the interrupt */ fp@2685: wr32(E1000_TSICR, E1000_TSICR_TXTS); fp@2685: /* retrieve hardware timestamp */ fp@2685: schedule_work(&adapter->ptp_tx_work); fp@2685: } fp@2685: } fp@2685: fp@2685: napi_schedule(&q_vector->napi); fp@2685: fp@2685: return IRQ_HANDLED; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_intr - Legacy Interrupt Handler fp@2685: * @irq: interrupt number fp@2685: * @data: pointer to a network interface device structure fp@2685: **/ fp@2685: static irqreturn_t igb_intr(int irq, void *data) fp@2685: { fp@2685: struct igb_adapter *adapter = data; fp@2685: struct igb_q_vector *q_vector = adapter->q_vector[0]; fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No fp@2685: * need for the IMC write fp@2685: */ fp@2685: u32 icr = rd32(E1000_ICR); fp@2685: fp@2685: /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is fp@2685: * not set, then the adapter didn't send an interrupt fp@2685: */ fp@2685: if (!(icr & E1000_ICR_INT_ASSERTED)) fp@2685: return IRQ_NONE; fp@2685: fp@2685: igb_write_itr(q_vector); fp@2685: fp@2685: if (icr & E1000_ICR_DRSTA) fp@2685: schedule_work(&adapter->reset_task); fp@2685: fp@2685: if (icr & E1000_ICR_DOUTSYNC) { fp@2685: /* HW is reporting DMA is out of sync */ fp@2685: adapter->stats.doosync++; fp@2685: } fp@2685: fp@2685: if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { fp@2685: hw->mac.get_link_status = 1; fp@2685: /* guard against interrupt when we're going down */ fp@2685: if (!test_bit(__IGB_DOWN, &adapter->state)) fp@2685: mod_timer(&adapter->watchdog_timer, jiffies + 1); fp@2685: } fp@2685: fp@2685: if (icr & E1000_ICR_TS) { fp@2685: u32 tsicr = rd32(E1000_TSICR); fp@2685: fp@2685: if (tsicr & E1000_TSICR_TXTS) { fp@2685: /* acknowledge the interrupt */ fp@2685: wr32(E1000_TSICR, E1000_TSICR_TXTS); fp@2685: /* retrieve hardware timestamp */ fp@2685: schedule_work(&adapter->ptp_tx_work); fp@2685: } fp@2685: } fp@2685: fp@2685: napi_schedule(&q_vector->napi); fp@2685: fp@2685: return IRQ_HANDLED; fp@2685: } fp@2685: fp@2685: static void igb_ring_irq_enable(struct igb_q_vector *q_vector) fp@2685: { fp@2685: struct igb_adapter *adapter = q_vector->adapter; fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: fp@2685: if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) || fp@2685: (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) { fp@2685: if ((adapter->num_q_vectors == 1) && !adapter->vf_data) fp@2685: igb_set_itr(q_vector); fp@2685: else fp@2685: igb_update_ring_itr(q_vector); fp@2685: } fp@2685: fp@2685: if (!test_bit(__IGB_DOWN, &adapter->state)) { fp@2685: if (adapter->flags & IGB_FLAG_HAS_MSIX) fp@2685: wr32(E1000_EIMS, q_vector->eims_value); fp@2685: else fp@2685: igb_irq_enable(adapter); fp@2685: } fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_poll - NAPI Rx polling callback fp@2685: * @napi: napi polling structure fp@2685: * @budget: count of how many packets we should handle fp@2685: **/ fp@2685: static int igb_poll(struct napi_struct *napi, int budget) fp@2685: { fp@2685: struct igb_q_vector *q_vector = container_of(napi, fp@2685: struct igb_q_vector, fp@2685: napi); fp@2685: bool clean_complete = true; fp@2685: fp@2685: #ifdef CONFIG_IGB_DCA fp@2685: if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED) fp@2685: igb_update_dca(q_vector); fp@2685: #endif fp@2685: if (q_vector->tx.ring) fp@2685: clean_complete = igb_clean_tx_irq(q_vector); fp@2685: fp@2685: if (q_vector->rx.ring) fp@2685: clean_complete &= igb_clean_rx_irq(q_vector, budget); fp@2685: fp@2685: /* If all work not completed, return budget and keep polling */ fp@2685: if (!clean_complete) fp@2685: return budget; fp@2685: fp@2685: /* If not enough Rx work done, exit the polling mode */ fp@2685: napi_complete(napi); fp@2685: igb_ring_irq_enable(q_vector); fp@2685: fp@2685: return 0; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_clean_tx_irq - Reclaim resources after transmit completes fp@2685: * @q_vector: pointer to q_vector containing needed info fp@2685: * fp@2685: * returns true if ring is completely cleaned fp@2685: **/ fp@2685: static bool igb_clean_tx_irq(struct igb_q_vector *q_vector) fp@2685: { fp@2685: struct igb_adapter *adapter = q_vector->adapter; fp@2685: struct igb_ring *tx_ring = q_vector->tx.ring; fp@2685: struct igb_tx_buffer *tx_buffer; fp@2685: union e1000_adv_tx_desc *tx_desc; fp@2685: unsigned int total_bytes = 0, total_packets = 0; fp@2685: unsigned int budget = q_vector->tx.work_limit; fp@2685: unsigned int i = tx_ring->next_to_clean; fp@2685: fp@2685: if (test_bit(__IGB_DOWN, &adapter->state)) fp@2685: return true; fp@2685: fp@2685: tx_buffer = &tx_ring->tx_buffer_info[i]; fp@2685: tx_desc = IGB_TX_DESC(tx_ring, i); fp@2685: i -= tx_ring->count; fp@2685: fp@2685: do { fp@2685: union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; fp@2685: fp@2685: /* if next_to_watch is not set then there is no work pending */ fp@2685: if (!eop_desc) fp@2685: break; fp@2685: fp@2685: /* prevent any other reads prior to eop_desc */ fp@2685: read_barrier_depends(); fp@2685: fp@2685: /* if DD is not set pending work has not been completed */ fp@2685: if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD))) fp@2685: break; fp@2685: fp@2685: /* clear next_to_watch to prevent false hangs */ fp@2685: tx_buffer->next_to_watch = NULL; fp@2685: fp@2685: /* update the statistics for this packet */ fp@2685: total_bytes += tx_buffer->bytecount; fp@2685: total_packets += tx_buffer->gso_segs; fp@2685: fp@2686: if (!adapter->ecdev) { fp@2686: /* free the skb */ fp@2686: dev_consume_skb_any(tx_buffer->skb); fp@2686: } fp@2685: fp@2685: /* unmap skb header data */ fp@2685: dma_unmap_single(tx_ring->dev, fp@2685: dma_unmap_addr(tx_buffer, dma), fp@2685: dma_unmap_len(tx_buffer, len), fp@2685: DMA_TO_DEVICE); fp@2685: fp@2685: /* clear tx_buffer data */ fp@2685: tx_buffer->skb = NULL; fp@2685: dma_unmap_len_set(tx_buffer, len, 0); fp@2685: fp@2685: /* clear last DMA location and unmap remaining buffers */ fp@2685: while (tx_desc != eop_desc) { fp@2685: tx_buffer++; fp@2685: tx_desc++; fp@2685: i++; fp@2685: if (unlikely(!i)) { fp@2685: i -= tx_ring->count; fp@2685: tx_buffer = tx_ring->tx_buffer_info; fp@2685: tx_desc = IGB_TX_DESC(tx_ring, 0); fp@2685: } fp@2685: fp@2685: /* unmap any remaining paged data */ fp@2685: if (dma_unmap_len(tx_buffer, len)) { fp@2685: dma_unmap_page(tx_ring->dev, fp@2685: dma_unmap_addr(tx_buffer, dma), fp@2685: dma_unmap_len(tx_buffer, len), fp@2685: DMA_TO_DEVICE); fp@2685: dma_unmap_len_set(tx_buffer, len, 0); fp@2685: } fp@2685: } fp@2685: fp@2685: /* move us one more past the eop_desc for start of next pkt */ fp@2685: tx_buffer++; fp@2685: tx_desc++; fp@2685: i++; fp@2685: if (unlikely(!i)) { fp@2685: i -= tx_ring->count; fp@2685: tx_buffer = tx_ring->tx_buffer_info; fp@2685: tx_desc = IGB_TX_DESC(tx_ring, 0); fp@2685: } fp@2685: fp@2685: /* issue prefetch for next Tx descriptor */ fp@2685: prefetch(tx_desc); fp@2685: fp@2685: /* update budget accounting */ fp@2685: budget--; fp@2685: } while (likely(budget)); fp@2685: fp@2686: if (!adapter->ecdev) { fp@2686: netdev_tx_completed_queue(txring_txq(tx_ring), fp@2686: total_packets, total_bytes); fp@2686: } fp@2685: i += tx_ring->count; fp@2685: tx_ring->next_to_clean = i; fp@2685: u64_stats_update_begin(&tx_ring->tx_syncp); fp@2685: tx_ring->tx_stats.bytes += total_bytes; fp@2685: tx_ring->tx_stats.packets += total_packets; fp@2685: u64_stats_update_end(&tx_ring->tx_syncp); fp@2685: q_vector->tx.total_bytes += total_bytes; fp@2685: q_vector->tx.total_packets += total_packets; fp@2685: fp@2686: if (!adapter->ecdev && fp@2686: test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) { fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: fp@2685: /* Detect a transmit hang in hardware, this serializes the fp@2685: * check with the clearing of time_stamp and movement of i fp@2685: */ fp@2685: clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); fp@2685: if (tx_buffer->next_to_watch && fp@2685: time_after(jiffies, tx_buffer->time_stamp + fp@2685: (adapter->tx_timeout_factor * HZ)) && fp@2685: !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) { fp@2685: fp@2685: /* detected Tx unit hang */ fp@2685: dev_err(tx_ring->dev, fp@2685: "Detected Tx Unit Hang\n" fp@2685: " Tx Queue <%d>\n" fp@2685: " TDH <%x>\n" fp@2685: " TDT <%x>\n" fp@2685: " next_to_use <%x>\n" fp@2685: " next_to_clean <%x>\n" fp@2685: "buffer_info[next_to_clean]\n" fp@2685: " time_stamp <%lx>\n" fp@2685: " next_to_watch <%p>\n" fp@2685: " jiffies <%lx>\n" fp@2685: " desc.status <%x>\n", fp@2685: tx_ring->queue_index, fp@2685: rd32(E1000_TDH(tx_ring->reg_idx)), fp@2685: readl(tx_ring->tail), fp@2685: tx_ring->next_to_use, fp@2685: tx_ring->next_to_clean, fp@2685: tx_buffer->time_stamp, fp@2685: tx_buffer->next_to_watch, fp@2685: jiffies, fp@2685: tx_buffer->next_to_watch->wb.status); fp@2685: netif_stop_subqueue(tx_ring->netdev, fp@2685: tx_ring->queue_index); fp@2685: fp@2685: /* we are about to reset, no point in enabling stuff */ fp@2685: return true; fp@2685: } fp@2685: } fp@2685: fp@2685: #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) fp@2686: if (unlikely(!adapter->ecdev && total_packets && fp@2685: netif_carrier_ok(tx_ring->netdev) && fp@2685: igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) { fp@2685: /* Make sure that anybody stopping the queue after this fp@2685: * sees the new next_to_clean. fp@2685: */ fp@2685: smp_mb(); fp@2685: if (__netif_subqueue_stopped(tx_ring->netdev, fp@2685: tx_ring->queue_index) && fp@2685: !(test_bit(__IGB_DOWN, &adapter->state))) { fp@2685: netif_wake_subqueue(tx_ring->netdev, fp@2685: tx_ring->queue_index); fp@2685: fp@2685: u64_stats_update_begin(&tx_ring->tx_syncp); fp@2685: tx_ring->tx_stats.restart_queue++; fp@2685: u64_stats_update_end(&tx_ring->tx_syncp); fp@2685: } fp@2685: } fp@2685: fp@2685: return !!budget; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_reuse_rx_page - page flip buffer and store it back on the ring fp@2685: * @rx_ring: rx descriptor ring to store buffers on fp@2685: * @old_buff: donor buffer to have page reused fp@2685: * fp@2685: * Synchronizes page for reuse by the adapter fp@2685: **/ fp@2685: static void igb_reuse_rx_page(struct igb_ring *rx_ring, fp@2685: struct igb_rx_buffer *old_buff) fp@2685: { fp@2685: struct igb_rx_buffer *new_buff; fp@2685: u16 nta = rx_ring->next_to_alloc; fp@2685: fp@2685: new_buff = &rx_ring->rx_buffer_info[nta]; fp@2685: fp@2685: /* update, and store next to alloc */ fp@2685: nta++; fp@2685: rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; fp@2685: fp@2685: /* transfer page from old buffer to new buffer */ fp@2685: *new_buff = *old_buff; fp@2685: fp@2685: /* sync the buffer for use by the device */ fp@2685: dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma, fp@2685: old_buff->page_offset, fp@2685: IGB_RX_BUFSZ, fp@2685: DMA_FROM_DEVICE); fp@2685: } fp@2685: fp@2685: static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer, fp@2685: struct page *page, fp@2685: unsigned int truesize) fp@2685: { fp@2685: /* avoid re-using remote pages */ fp@2685: if (unlikely(page_to_nid(page) != numa_node_id())) fp@2685: return false; fp@2685: fp@2685: if (unlikely(page->pfmemalloc)) fp@2685: return false; fp@2685: fp@2685: #if (PAGE_SIZE < 8192) fp@2685: /* if we are only owner of page we can reuse it */ fp@2685: if (unlikely(page_count(page) != 1)) fp@2685: return false; fp@2685: fp@2685: /* flip page offset to other buffer */ fp@2685: rx_buffer->page_offset ^= IGB_RX_BUFSZ; fp@2685: fp@2685: /* Even if we own the page, we are not allowed to use atomic_set() fp@2685: * This would break get_page_unless_zero() users. fp@2685: */ fp@2685: atomic_inc(&page->_count); fp@2685: #else fp@2685: /* move offset up to the next cache line */ fp@2685: rx_buffer->page_offset += truesize; fp@2685: fp@2685: if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ)) fp@2685: return false; fp@2685: fp@2685: /* bump ref count on page before it is given to the stack */ fp@2685: get_page(page); fp@2685: #endif fp@2685: fp@2685: return true; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_add_rx_frag - Add contents of Rx buffer to sk_buff fp@2685: * @rx_ring: rx descriptor ring to transact packets on fp@2685: * @rx_buffer: buffer containing page to add fp@2685: * @rx_desc: descriptor containing length of buffer written by hardware fp@2685: * @skb: sk_buff to place the data into fp@2685: * fp@2685: * This function will add the data contained in rx_buffer->page to the skb. fp@2685: * This is done either through a direct copy if the data in the buffer is fp@2685: * less than the skb header size, otherwise it will just attach the page as fp@2685: * a frag to the skb. fp@2685: * fp@2685: * The function will then update the page offset if necessary and return fp@2685: * true if the buffer can be reused by the adapter. fp@2685: **/ fp@2685: static bool igb_add_rx_frag(struct igb_ring *rx_ring, fp@2685: struct igb_rx_buffer *rx_buffer, fp@2685: union e1000_adv_rx_desc *rx_desc, fp@2685: struct sk_buff *skb) fp@2685: { fp@2685: struct page *page = rx_buffer->page; fp@2685: unsigned int size = le16_to_cpu(rx_desc->wb.upper.length); fp@2685: #if (PAGE_SIZE < 8192) fp@2685: unsigned int truesize = IGB_RX_BUFSZ; fp@2685: #else fp@2685: unsigned int truesize = ALIGN(size, L1_CACHE_BYTES); fp@2685: #endif fp@2685: fp@2685: if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) { fp@2685: unsigned char *va = page_address(page) + rx_buffer->page_offset; fp@2685: fp@2685: if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) { fp@2685: igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb); fp@2685: va += IGB_TS_HDR_LEN; fp@2685: size -= IGB_TS_HDR_LEN; fp@2685: } fp@2685: fp@2685: memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long))); fp@2685: fp@2685: /* we can reuse buffer as-is, just make sure it is local */ fp@2685: if (likely((page_to_nid(page) == numa_node_id()) && fp@2685: !page->pfmemalloc)) fp@2685: return true; fp@2685: fp@2685: /* this page cannot be reused so discard it */ fp@2685: put_page(page); fp@2685: return false; fp@2685: } fp@2685: fp@2685: skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, fp@2685: rx_buffer->page_offset, size, truesize); fp@2685: fp@2685: return igb_can_reuse_rx_page(rx_buffer, page, truesize); fp@2685: } fp@2685: fp@2685: static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring, fp@2685: union e1000_adv_rx_desc *rx_desc, fp@2685: struct sk_buff *skb) fp@2685: { fp@2685: struct igb_rx_buffer *rx_buffer; fp@2685: struct page *page; fp@2686: struct igb_adapter *adapter = netdev_priv(rx_ring->netdev); fp@2685: fp@2685: rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; fp@2685: fp@2685: page = rx_buffer->page; fp@2685: prefetchw(page); fp@2685: fp@2686: if (!adapter->ecdev && likely(!skb)) { fp@2685: void *page_addr = page_address(page) + fp@2685: rx_buffer->page_offset; fp@2685: fp@2685: /* prefetch first cache line of first page */ fp@2685: prefetch(page_addr); fp@2685: #if L1_CACHE_BYTES < 128 fp@2685: prefetch(page_addr + L1_CACHE_BYTES); fp@2685: #endif fp@2685: fp@2685: /* allocate a skb to store the frags */ fp@2685: skb = netdev_alloc_skb_ip_align(rx_ring->netdev, fp@2685: IGB_RX_HDR_LEN); fp@2685: if (unlikely(!skb)) { fp@2685: rx_ring->rx_stats.alloc_failed++; fp@2685: return NULL; fp@2685: } fp@2685: fp@2685: /* we will be copying header into skb->data in fp@2685: * pskb_may_pull so it is in our interest to prefetch fp@2685: * it now to avoid a possible cache miss fp@2685: */ fp@2685: prefetchw(skb->data); fp@2685: } fp@2685: fp@2685: /* we are reusing so sync this buffer for CPU use */ fp@2685: dma_sync_single_range_for_cpu(rx_ring->dev, fp@2685: rx_buffer->dma, fp@2685: rx_buffer->page_offset, fp@2685: IGB_RX_BUFSZ, fp@2685: DMA_FROM_DEVICE); fp@2685: fp@2686: if (adapter->ecdev) { fp@2686: unsigned char *va = fp@2686: page_address(rx_buffer->page) + rx_buffer->page_offset; fp@2686: unsigned int size = le16_to_cpu(rx_desc->wb.upper.length); fp@2686: ecdev_receive(adapter->ecdev, va, size); fp@2723: adapter->ec_watchdog_jiffies = jiffies; fp@2685: igb_reuse_rx_page(rx_ring, rx_buffer); fp@2686: } fp@2686: else { fp@2686: /* pull page into skb */ fp@2686: if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) { fp@2686: /* hand second half of page back to the ring */ fp@2686: igb_reuse_rx_page(rx_ring, rx_buffer); fp@2686: } else { fp@2686: /* we are not reusing the buffer so unmap it */ fp@2686: dma_unmap_page(rx_ring->dev, rx_buffer->dma, fp@2686: PAGE_SIZE, DMA_FROM_DEVICE); fp@2686: } fp@2686: fp@2686: /* clear contents of rx_buffer */ fp@2686: rx_buffer->page = NULL; fp@2686: } fp@2685: fp@2685: return skb; fp@2685: } fp@2685: fp@2685: static inline void igb_rx_checksum(struct igb_ring *ring, fp@2685: union e1000_adv_rx_desc *rx_desc, fp@2685: struct sk_buff *skb) fp@2685: { fp@2685: skb_checksum_none_assert(skb); fp@2685: fp@2685: /* Ignore Checksum bit is set */ fp@2685: if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM)) fp@2685: return; fp@2685: fp@2685: /* Rx checksum disabled via ethtool */ fp@2685: if (!(ring->netdev->features & NETIF_F_RXCSUM)) fp@2685: return; fp@2685: fp@2685: /* TCP/UDP checksum error bit is set */ fp@2685: if (igb_test_staterr(rx_desc, fp@2685: E1000_RXDEXT_STATERR_TCPE | fp@2685: E1000_RXDEXT_STATERR_IPE)) { fp@2685: /* work around errata with sctp packets where the TCPE aka fp@2685: * L4E bit is set incorrectly on 64 byte (60 byte w/o crc) fp@2685: * packets, (aka let the stack check the crc32c) fp@2685: */ fp@2685: if (!((skb->len == 60) && fp@2685: test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) { fp@2685: u64_stats_update_begin(&ring->rx_syncp); fp@2685: ring->rx_stats.csum_err++; fp@2685: u64_stats_update_end(&ring->rx_syncp); fp@2685: } fp@2685: /* let the stack verify checksum errors */ fp@2685: return; fp@2685: } fp@2685: /* It must be a TCP or UDP packet with a valid checksum */ fp@2685: if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS | fp@2685: E1000_RXD_STAT_UDPCS)) fp@2685: skb->ip_summed = CHECKSUM_UNNECESSARY; fp@2685: fp@2685: dev_dbg(ring->dev, "cksum success: bits %08X\n", fp@2685: le32_to_cpu(rx_desc->wb.upper.status_error)); fp@2685: } fp@2685: fp@2685: static inline void igb_rx_hash(struct igb_ring *ring, fp@2685: union e1000_adv_rx_desc *rx_desc, fp@2685: struct sk_buff *skb) fp@2685: { fp@2685: if (ring->netdev->features & NETIF_F_RXHASH) fp@2685: skb_set_hash(skb, fp@2685: le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), fp@2685: PKT_HASH_TYPE_L3); fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_is_non_eop - process handling of non-EOP buffers fp@2685: * @rx_ring: Rx ring being processed fp@2685: * @rx_desc: Rx descriptor for current buffer fp@2685: * @skb: current socket buffer containing buffer in progress fp@2685: * fp@2685: * This function updates next to clean. If the buffer is an EOP buffer fp@2685: * this function exits returning false, otherwise it will place the fp@2685: * sk_buff in the next buffer to be chained and return true indicating fp@2685: * that this is in fact a non-EOP buffer. fp@2685: **/ fp@2685: static bool igb_is_non_eop(struct igb_ring *rx_ring, fp@2685: union e1000_adv_rx_desc *rx_desc) fp@2685: { fp@2685: u32 ntc = rx_ring->next_to_clean + 1; fp@2685: fp@2685: /* fetch, update, and store next to clean */ fp@2685: ntc = (ntc < rx_ring->count) ? ntc : 0; fp@2685: rx_ring->next_to_clean = ntc; fp@2685: fp@2685: prefetch(IGB_RX_DESC(rx_ring, ntc)); fp@2685: fp@2685: if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP))) fp@2685: return false; fp@2685: fp@2685: return true; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_pull_tail - igb specific version of skb_pull_tail fp@2685: * @rx_ring: rx descriptor ring packet is being transacted on fp@2685: * @rx_desc: pointer to the EOP Rx descriptor fp@2685: * @skb: pointer to current skb being adjusted fp@2685: * fp@2685: * This function is an igb specific version of __pskb_pull_tail. The fp@2685: * main difference between this version and the original function is that fp@2685: * this function can make several assumptions about the state of things fp@2685: * that allow for significant optimizations versus the standard function. fp@2685: * As a result we can do things like drop a frag and maintain an accurate fp@2685: * truesize for the skb. fp@2685: */ fp@2685: static void igb_pull_tail(struct igb_ring *rx_ring, fp@2685: union e1000_adv_rx_desc *rx_desc, fp@2685: struct sk_buff *skb) fp@2685: { fp@2685: struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0]; fp@2685: unsigned char *va; fp@2685: unsigned int pull_len; fp@2685: fp@2685: /* it is valid to use page_address instead of kmap since we are fp@2685: * working with pages allocated out of the lomem pool per fp@2685: * alloc_page(GFP_ATOMIC) fp@2685: */ fp@2685: va = skb_frag_address(frag); fp@2685: fp@2685: if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) { fp@2685: /* retrieve timestamp from buffer */ fp@2685: igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb); fp@2685: fp@2685: /* update pointers to remove timestamp header */ fp@2685: skb_frag_size_sub(frag, IGB_TS_HDR_LEN); fp@2685: frag->page_offset += IGB_TS_HDR_LEN; fp@2685: skb->data_len -= IGB_TS_HDR_LEN; fp@2685: skb->len -= IGB_TS_HDR_LEN; fp@2685: fp@2685: /* move va to start of packet data */ fp@2685: va += IGB_TS_HDR_LEN; fp@2685: } fp@2685: fp@2685: /* we need the header to contain the greater of either ETH_HLEN or fp@2685: * 60 bytes if the skb->len is less than 60 for skb_pad. fp@2685: */ fp@2685: pull_len = eth_get_headlen(va, IGB_RX_HDR_LEN); fp@2685: fp@2685: /* align pull length to size of long to optimize memcpy performance */ fp@2685: skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long))); fp@2685: fp@2685: /* update all of the pointers */ fp@2685: skb_frag_size_sub(frag, pull_len); fp@2685: frag->page_offset += pull_len; fp@2685: skb->data_len -= pull_len; fp@2685: skb->tail += pull_len; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_cleanup_headers - Correct corrupted or empty headers fp@2685: * @rx_ring: rx descriptor ring packet is being transacted on fp@2685: * @rx_desc: pointer to the EOP Rx descriptor fp@2685: * @skb: pointer to current skb being fixed fp@2685: * fp@2685: * Address the case where we are pulling data in on pages only fp@2685: * and as such no data is present in the skb header. fp@2685: * fp@2685: * In addition if skb is not at least 60 bytes we need to pad it so that fp@2685: * it is large enough to qualify as a valid Ethernet frame. fp@2685: * fp@2685: * Returns true if an error was encountered and skb was freed. fp@2685: **/ fp@2685: static bool igb_cleanup_headers(struct igb_ring *rx_ring, fp@2685: union e1000_adv_rx_desc *rx_desc, fp@2685: struct sk_buff *skb) fp@2685: { fp@2685: if (unlikely((igb_test_staterr(rx_desc, fp@2685: E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) { fp@2685: struct net_device *netdev = rx_ring->netdev; fp@2685: if (!(netdev->features & NETIF_F_RXALL)) { fp@2685: dev_kfree_skb_any(skb); fp@2685: return true; fp@2685: } fp@2685: } fp@2685: fp@2685: /* place header in linear portion of buffer */ fp@2685: if (skb_is_nonlinear(skb)) fp@2685: igb_pull_tail(rx_ring, rx_desc, skb); fp@2685: fp@2685: /* if skb_pad returns an error the skb was freed */ fp@2685: if (unlikely(skb->len < 60)) { fp@2685: int pad_len = 60 - skb->len; fp@2685: fp@2685: if (skb_pad(skb, pad_len)) fp@2685: return true; fp@2685: __skb_put(skb, pad_len); fp@2685: } fp@2685: fp@2685: return false; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_process_skb_fields - Populate skb header fields from Rx descriptor fp@2685: * @rx_ring: rx descriptor ring packet is being transacted on fp@2685: * @rx_desc: pointer to the EOP Rx descriptor fp@2685: * @skb: pointer to current skb being populated fp@2685: * fp@2685: * This function checks the ring, descriptor, and packet information in fp@2685: * order to populate the hash, checksum, VLAN, timestamp, protocol, and fp@2685: * other fields within the skb. fp@2685: **/ fp@2685: static void igb_process_skb_fields(struct igb_ring *rx_ring, fp@2685: union e1000_adv_rx_desc *rx_desc, fp@2685: struct sk_buff *skb) fp@2685: { fp@2685: struct net_device *dev = rx_ring->netdev; fp@2685: fp@2685: igb_rx_hash(rx_ring, rx_desc, skb); fp@2685: fp@2685: igb_rx_checksum(rx_ring, rx_desc, skb); fp@2685: fp@2685: if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) && fp@2685: !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) fp@2685: igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb); fp@2685: fp@2685: if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) && fp@2685: igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) { fp@2685: u16 vid; fp@2685: fp@2685: if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) && fp@2685: test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags)) fp@2685: vid = be16_to_cpu(rx_desc->wb.upper.vlan); fp@2685: else fp@2685: vid = le16_to_cpu(rx_desc->wb.upper.vlan); fp@2685: fp@2685: __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); fp@2685: } fp@2685: fp@2685: skb_record_rx_queue(skb, rx_ring->queue_index); fp@2685: fp@2685: skb->protocol = eth_type_trans(skb, rx_ring->netdev); fp@2685: } fp@2685: fp@2685: static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget) fp@2685: { fp@2685: struct igb_ring *rx_ring = q_vector->rx.ring; fp@2686: struct igb_adapter *adapter = netdev_priv(rx_ring->netdev); fp@2685: struct sk_buff *skb = rx_ring->skb; fp@2685: unsigned int total_bytes = 0, total_packets = 0; fp@2685: u16 cleaned_count = igb_desc_unused(rx_ring); fp@2685: fp@2685: while (likely(total_packets < budget)) { fp@2685: union e1000_adv_rx_desc *rx_desc; fp@2685: fp@2685: /* return some buffers to hardware, one at a time is too slow */ fp@2685: if (cleaned_count >= IGB_RX_BUFFER_WRITE) { fp@2685: igb_alloc_rx_buffers(rx_ring, cleaned_count); fp@2685: cleaned_count = 0; fp@2685: } fp@2685: fp@2685: rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean); fp@2685: fp@2685: if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) fp@2685: break; fp@2685: fp@2685: /* This memory barrier is needed to keep us from reading fp@2685: * any other fields out of the rx_desc until we know the fp@2685: * RXD_STAT_DD bit is set fp@2685: */ fp@2685: rmb(); fp@2685: fp@2685: /* retrieve a buffer from the ring */ fp@2685: skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb); fp@2685: fp@2685: /* exit if we failed to retrieve a buffer */ fp@2686: if (!adapter->ecdev && !skb) { fp@2685: break; fp@2686: } fp@2685: fp@2685: cleaned_count++; fp@2685: fp@2685: /* fetch next buffer in frame if non-eop */ fp@2685: if (igb_is_non_eop(rx_ring, rx_desc)) fp@2685: continue; fp@2685: fp@2686: if (adapter->ecdev) { fp@2686: total_packets++; fp@2686: continue; fp@2686: } fp@2686: fp@2685: /* verify the packet layout is correct */ fp@2685: if (igb_cleanup_headers(rx_ring, rx_desc, skb)) { fp@2685: skb = NULL; fp@2685: continue; fp@2685: } fp@2685: fp@2685: /* probably a little skewed due to removing CRC */ fp@2685: total_bytes += skb->len; fp@2685: fp@2685: /* populate checksum, timestamp, VLAN, and protocol */ fp@2685: igb_process_skb_fields(rx_ring, rx_desc, skb); fp@2685: fp@2685: napi_gro_receive(&q_vector->napi, skb); fp@2685: fp@2685: /* reset skb pointer */ fp@2685: skb = NULL; fp@2685: fp@2685: /* update budget accounting */ fp@2685: total_packets++; fp@2685: } fp@2685: fp@2685: /* place incomplete frames back on ring for completion */ fp@2685: rx_ring->skb = skb; fp@2685: fp@2685: u64_stats_update_begin(&rx_ring->rx_syncp); fp@2685: rx_ring->rx_stats.packets += total_packets; fp@2685: rx_ring->rx_stats.bytes += total_bytes; fp@2685: u64_stats_update_end(&rx_ring->rx_syncp); fp@2685: q_vector->rx.total_packets += total_packets; fp@2685: q_vector->rx.total_bytes += total_bytes; fp@2685: fp@2685: if (cleaned_count) fp@2685: igb_alloc_rx_buffers(rx_ring, cleaned_count); fp@2685: fp@2685: return total_packets < budget; fp@2685: } fp@2685: fp@2685: static bool igb_alloc_mapped_page(struct igb_ring *rx_ring, fp@2685: struct igb_rx_buffer *bi) fp@2685: { fp@2685: struct page *page = bi->page; fp@2685: dma_addr_t dma; fp@2685: fp@2685: /* since we are recycling buffers we should seldom need to alloc */ fp@2685: if (likely(page)) fp@2685: return true; fp@2685: fp@2685: /* alloc new page for storage */ fp@2685: page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL); fp@2685: if (unlikely(!page)) { fp@2685: rx_ring->rx_stats.alloc_failed++; fp@2685: return false; fp@2685: } fp@2685: fp@2685: /* map page for use */ fp@2685: dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE); fp@2685: fp@2685: /* if mapping failed free memory back to system since fp@2685: * there isn't much point in holding memory we can't use fp@2685: */ fp@2685: if (dma_mapping_error(rx_ring->dev, dma)) { fp@2685: __free_page(page); fp@2685: fp@2685: rx_ring->rx_stats.alloc_failed++; fp@2685: return false; fp@2685: } fp@2685: fp@2685: bi->dma = dma; fp@2685: bi->page = page; fp@2685: bi->page_offset = 0; fp@2685: fp@2685: return true; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_alloc_rx_buffers - Replace used receive buffers; packet split fp@2685: * @adapter: address of board private structure fp@2685: **/ fp@2685: void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count) fp@2685: { fp@2685: union e1000_adv_rx_desc *rx_desc; fp@2685: struct igb_rx_buffer *bi; fp@2685: u16 i = rx_ring->next_to_use; fp@2685: fp@2685: /* nothing to do */ fp@2685: if (!cleaned_count) fp@2685: return; fp@2685: fp@2685: rx_desc = IGB_RX_DESC(rx_ring, i); fp@2685: bi = &rx_ring->rx_buffer_info[i]; fp@2685: i -= rx_ring->count; fp@2685: fp@2685: do { fp@2685: if (!igb_alloc_mapped_page(rx_ring, bi)) fp@2685: break; fp@2685: fp@2685: /* Refresh the desc even if buffer_addrs didn't change fp@2685: * because each write-back erases this info. fp@2685: */ fp@2685: rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); fp@2685: fp@2685: rx_desc++; fp@2685: bi++; fp@2685: i++; fp@2685: if (unlikely(!i)) { fp@2685: rx_desc = IGB_RX_DESC(rx_ring, 0); fp@2685: bi = rx_ring->rx_buffer_info; fp@2685: i -= rx_ring->count; fp@2685: } fp@2685: fp@2685: /* clear the hdr_addr for the next_to_use descriptor */ fp@2685: rx_desc->read.hdr_addr = 0; fp@2685: fp@2685: cleaned_count--; fp@2685: } while (cleaned_count); fp@2685: fp@2685: i += rx_ring->count; fp@2685: fp@2685: if (rx_ring->next_to_use != i) { fp@2685: /* record the next descriptor to use */ fp@2685: rx_ring->next_to_use = i; fp@2685: fp@2685: /* update next to alloc since we have filled the ring */ fp@2685: rx_ring->next_to_alloc = i; fp@2685: fp@2685: /* Force memory writes to complete before letting h/w fp@2685: * know there are new descriptors to fetch. (Only fp@2685: * applicable for weak-ordered memory model archs, fp@2685: * such as IA-64). fp@2685: */ fp@2685: wmb(); fp@2685: writel(i, rx_ring->tail); fp@2685: } fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_mii_ioctl - fp@2685: * @netdev: fp@2685: * @ifreq: fp@2685: * @cmd: fp@2685: **/ fp@2685: static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) fp@2685: { fp@2685: struct igb_adapter *adapter = netdev_priv(netdev); fp@2685: struct mii_ioctl_data *data = if_mii(ifr); fp@2685: fp@2685: if (adapter->hw.phy.media_type != e1000_media_type_copper) fp@2685: return -EOPNOTSUPP; fp@2685: fp@2685: switch (cmd) { fp@2685: case SIOCGMIIPHY: fp@2685: data->phy_id = adapter->hw.phy.addr; fp@2685: break; fp@2685: case SIOCGMIIREG: fp@2685: if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F, fp@2685: &data->val_out)) fp@2685: return -EIO; fp@2685: break; fp@2685: case SIOCSMIIREG: fp@2685: default: fp@2685: return -EOPNOTSUPP; fp@2685: } fp@2685: return 0; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_ioctl - fp@2685: * @netdev: fp@2685: * @ifreq: fp@2685: * @cmd: fp@2685: **/ fp@2685: static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) fp@2685: { fp@2685: switch (cmd) { fp@2685: case SIOCGMIIPHY: fp@2685: case SIOCGMIIREG: fp@2685: case SIOCSMIIREG: fp@2685: return igb_mii_ioctl(netdev, ifr, cmd); fp@2685: case SIOCGHWTSTAMP: fp@2685: return igb_ptp_get_ts_config(netdev, ifr); fp@2685: case SIOCSHWTSTAMP: fp@2685: return igb_ptp_set_ts_config(netdev, ifr); fp@2685: default: fp@2685: return -EOPNOTSUPP; fp@2685: } fp@2685: } fp@2685: fp@2685: void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value) fp@2685: { fp@2685: struct igb_adapter *adapter = hw->back; fp@2685: fp@2685: pci_read_config_word(adapter->pdev, reg, value); fp@2685: } fp@2685: fp@2685: void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value) fp@2685: { fp@2685: struct igb_adapter *adapter = hw->back; fp@2685: fp@2685: pci_write_config_word(adapter->pdev, reg, *value); fp@2685: } fp@2685: fp@2685: s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) fp@2685: { fp@2685: struct igb_adapter *adapter = hw->back; fp@2685: fp@2685: if (pcie_capability_read_word(adapter->pdev, reg, value)) fp@2685: return -E1000_ERR_CONFIG; fp@2685: fp@2685: return 0; fp@2685: } fp@2685: fp@2685: s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) fp@2685: { fp@2685: struct igb_adapter *adapter = hw->back; fp@2685: fp@2685: if (pcie_capability_write_word(adapter->pdev, reg, *value)) fp@2685: return -E1000_ERR_CONFIG; fp@2685: fp@2685: return 0; fp@2685: } fp@2685: fp@2685: static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features) fp@2685: { fp@2685: struct igb_adapter *adapter = netdev_priv(netdev); fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: u32 ctrl, rctl; fp@2685: bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX); fp@2685: fp@2685: if (enable) { fp@2685: /* enable VLAN tag insert/strip */ fp@2685: ctrl = rd32(E1000_CTRL); fp@2685: ctrl |= E1000_CTRL_VME; fp@2685: wr32(E1000_CTRL, ctrl); fp@2685: fp@2685: /* Disable CFI check */ fp@2685: rctl = rd32(E1000_RCTL); fp@2685: rctl &= ~E1000_RCTL_CFIEN; fp@2685: wr32(E1000_RCTL, rctl); fp@2685: } else { fp@2685: /* disable VLAN tag insert/strip */ fp@2685: ctrl = rd32(E1000_CTRL); fp@2685: ctrl &= ~E1000_CTRL_VME; fp@2685: wr32(E1000_CTRL, ctrl); fp@2685: } fp@2685: fp@2685: igb_rlpml_set(adapter); fp@2685: } fp@2685: fp@2685: static int igb_vlan_rx_add_vid(struct net_device *netdev, fp@2685: __be16 proto, u16 vid) fp@2685: { fp@2685: struct igb_adapter *adapter = netdev_priv(netdev); fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: int pf_id = adapter->vfs_allocated_count; fp@2685: fp@2685: /* attempt to add filter to vlvf array */ fp@2685: igb_vlvf_set(adapter, vid, true, pf_id); fp@2685: fp@2685: /* add the filter since PF can receive vlans w/o entry in vlvf */ fp@2685: igb_vfta_set(hw, vid, true); fp@2685: fp@2685: set_bit(vid, adapter->active_vlans); fp@2685: fp@2685: return 0; fp@2685: } fp@2685: fp@2685: static int igb_vlan_rx_kill_vid(struct net_device *netdev, fp@2685: __be16 proto, u16 vid) fp@2685: { fp@2685: struct igb_adapter *adapter = netdev_priv(netdev); fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: int pf_id = adapter->vfs_allocated_count; fp@2685: s32 err; fp@2685: fp@2685: /* remove vlan from VLVF table array */ fp@2685: err = igb_vlvf_set(adapter, vid, false, pf_id); fp@2685: fp@2685: /* if vid was not present in VLVF just remove it from table */ fp@2685: if (err) fp@2685: igb_vfta_set(hw, vid, false); fp@2685: fp@2685: clear_bit(vid, adapter->active_vlans); fp@2685: fp@2685: return 0; fp@2685: } fp@2685: fp@2685: static void igb_restore_vlan(struct igb_adapter *adapter) fp@2685: { fp@2685: u16 vid; fp@2685: fp@2685: igb_vlan_mode(adapter->netdev, adapter->netdev->features); fp@2685: fp@2685: for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) fp@2685: igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid); fp@2685: } fp@2685: fp@2685: int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx) fp@2685: { fp@2685: struct pci_dev *pdev = adapter->pdev; fp@2685: struct e1000_mac_info *mac = &adapter->hw.mac; fp@2685: fp@2685: mac->autoneg = 0; fp@2685: fp@2685: /* Make sure dplx is at most 1 bit and lsb of speed is not set fp@2685: * for the switch() below to work fp@2685: */ fp@2685: if ((spd & 1) || (dplx & ~1)) fp@2685: goto err_inval; fp@2685: fp@2685: /* Fiber NIC's only allow 1000 gbps Full duplex fp@2685: * and 100Mbps Full duplex for 100baseFx sfp fp@2685: */ fp@2685: if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) { fp@2685: switch (spd + dplx) { fp@2685: case SPEED_10 + DUPLEX_HALF: fp@2685: case SPEED_10 + DUPLEX_FULL: fp@2685: case SPEED_100 + DUPLEX_HALF: fp@2685: goto err_inval; fp@2685: default: fp@2685: break; fp@2685: } fp@2685: } fp@2685: fp@2685: switch (spd + dplx) { fp@2685: case SPEED_10 + DUPLEX_HALF: fp@2685: mac->forced_speed_duplex = ADVERTISE_10_HALF; fp@2685: break; fp@2685: case SPEED_10 + DUPLEX_FULL: fp@2685: mac->forced_speed_duplex = ADVERTISE_10_FULL; fp@2685: break; fp@2685: case SPEED_100 + DUPLEX_HALF: fp@2685: mac->forced_speed_duplex = ADVERTISE_100_HALF; fp@2685: break; fp@2685: case SPEED_100 + DUPLEX_FULL: fp@2685: mac->forced_speed_duplex = ADVERTISE_100_FULL; fp@2685: break; fp@2685: case SPEED_1000 + DUPLEX_FULL: fp@2685: mac->autoneg = 1; fp@2685: adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; fp@2685: break; fp@2685: case SPEED_1000 + DUPLEX_HALF: /* not supported */ fp@2685: default: fp@2685: goto err_inval; fp@2685: } fp@2685: fp@2685: /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ fp@2685: adapter->hw.phy.mdix = AUTO_ALL_MODES; fp@2685: fp@2685: return 0; fp@2685: fp@2685: err_inval: fp@2685: dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n"); fp@2685: return -EINVAL; fp@2685: } fp@2685: fp@2685: static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake, fp@2685: bool runtime) fp@2685: { fp@2685: struct net_device *netdev = pci_get_drvdata(pdev); fp@2685: struct igb_adapter *adapter = netdev_priv(netdev); fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: u32 ctrl, rctl, status; fp@2685: u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol; fp@2685: #ifdef CONFIG_PM fp@2685: int retval = 0; fp@2685: #endif fp@2685: fp@2685: netif_device_detach(netdev); fp@2685: fp@2685: if (netif_running(netdev)) fp@2685: __igb_close(netdev, true); fp@2685: fp@2685: igb_clear_interrupt_scheme(adapter); fp@2685: fp@2685: #ifdef CONFIG_PM fp@2685: retval = pci_save_state(pdev); fp@2685: if (retval) fp@2685: return retval; fp@2685: #endif fp@2685: fp@2685: status = rd32(E1000_STATUS); fp@2685: if (status & E1000_STATUS_LU) fp@2685: wufc &= ~E1000_WUFC_LNKC; fp@2685: fp@2685: if (wufc) { fp@2685: igb_setup_rctl(adapter); fp@2685: igb_set_rx_mode(netdev); fp@2685: fp@2685: /* turn on all-multi mode if wake on multicast is enabled */ fp@2685: if (wufc & E1000_WUFC_MC) { fp@2685: rctl = rd32(E1000_RCTL); fp@2685: rctl |= E1000_RCTL_MPE; fp@2685: wr32(E1000_RCTL, rctl); fp@2685: } fp@2685: fp@2685: ctrl = rd32(E1000_CTRL); fp@2685: /* advertise wake from D3Cold */ fp@2685: #define E1000_CTRL_ADVD3WUC 0x00100000 fp@2685: /* phy power management enable */ fp@2685: #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 fp@2685: ctrl |= E1000_CTRL_ADVD3WUC; fp@2685: wr32(E1000_CTRL, ctrl); fp@2685: fp@2685: /* Allow time for pending master requests to run */ fp@2685: igb_disable_pcie_master(hw); fp@2685: fp@2685: wr32(E1000_WUC, E1000_WUC_PME_EN); fp@2685: wr32(E1000_WUFC, wufc); fp@2685: } else { fp@2685: wr32(E1000_WUC, 0); fp@2685: wr32(E1000_WUFC, 0); fp@2685: } fp@2685: fp@2685: *enable_wake = wufc || adapter->en_mng_pt; fp@2685: if (!*enable_wake) fp@2685: igb_power_down_link(adapter); fp@2685: else fp@2685: igb_power_up_link(adapter); fp@2685: fp@2685: /* Release control of h/w to f/w. If f/w is AMT enabled, this fp@2685: * would have already happened in close and is redundant. fp@2685: */ fp@2685: igb_release_hw_control(adapter); fp@2685: fp@2685: pci_disable_device(pdev); fp@2685: fp@2685: return 0; fp@2685: } fp@2685: fp@2685: #ifdef CONFIG_PM fp@2685: #ifdef CONFIG_PM_SLEEP fp@2685: static int igb_suspend(struct device *dev) fp@2685: { fp@2685: int retval; fp@2685: bool wake; fp@2685: struct pci_dev *pdev = to_pci_dev(dev); fp@2685: fp@2685: retval = __igb_shutdown(pdev, &wake, 0); fp@2685: if (retval) fp@2685: return retval; fp@2685: fp@2685: if (wake) { fp@2685: pci_prepare_to_sleep(pdev); fp@2685: } else { fp@2685: pci_wake_from_d3(pdev, false); fp@2685: pci_set_power_state(pdev, PCI_D3hot); fp@2685: } fp@2685: fp@2685: return 0; fp@2685: } fp@2685: #endif /* CONFIG_PM_SLEEP */ fp@2685: fp@2685: static int igb_resume(struct device *dev) fp@2685: { fp@2685: struct pci_dev *pdev = to_pci_dev(dev); fp@2685: struct net_device *netdev = pci_get_drvdata(pdev); fp@2685: struct igb_adapter *adapter = netdev_priv(netdev); fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: u32 err; fp@2685: fp@2685: pci_set_power_state(pdev, PCI_D0); fp@2685: pci_restore_state(pdev); fp@2685: pci_save_state(pdev); fp@2685: fp@2685: if (!pci_device_is_present(pdev)) fp@2685: return -ENODEV; fp@2685: err = pci_enable_device_mem(pdev); fp@2685: if (err) { fp@2685: dev_err(&pdev->dev, fp@2685: "igb: Cannot enable PCI device from suspend\n"); fp@2685: return err; fp@2685: } fp@2685: pci_set_master(pdev); fp@2685: fp@2685: pci_enable_wake(pdev, PCI_D3hot, 0); fp@2685: pci_enable_wake(pdev, PCI_D3cold, 0); fp@2685: fp@2685: if (igb_init_interrupt_scheme(adapter, true)) { fp@2685: dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); fp@2685: return -ENOMEM; fp@2685: } fp@2685: fp@2685: igb_reset(adapter); fp@2685: fp@2685: /* let the f/w know that the h/w is now under the control of the fp@2685: * driver. fp@2685: */ fp@2685: igb_get_hw_control(adapter); fp@2685: fp@2685: wr32(E1000_WUS, ~0); fp@2685: fp@2685: if (netdev->flags & IFF_UP) { fp@2685: rtnl_lock(); fp@2685: err = __igb_open(netdev, true); fp@2685: rtnl_unlock(); fp@2685: if (err) fp@2685: return err; fp@2685: } fp@2685: fp@2685: netif_device_attach(netdev); fp@2685: return 0; fp@2685: } fp@2685: fp@2685: #ifdef CONFIG_PM_RUNTIME fp@2685: static int igb_runtime_idle(struct device *dev) fp@2685: { fp@2685: struct pci_dev *pdev = to_pci_dev(dev); fp@2685: struct net_device *netdev = pci_get_drvdata(pdev); fp@2685: struct igb_adapter *adapter = netdev_priv(netdev); fp@2685: fp@2685: if (!igb_has_link(adapter)) fp@2685: pm_schedule_suspend(dev, MSEC_PER_SEC * 5); fp@2685: fp@2685: return -EBUSY; fp@2685: } fp@2685: fp@2685: static int igb_runtime_suspend(struct device *dev) fp@2685: { fp@2685: struct pci_dev *pdev = to_pci_dev(dev); fp@2685: int retval; fp@2685: bool wake; fp@2685: fp@2685: retval = __igb_shutdown(pdev, &wake, 1); fp@2685: if (retval) fp@2685: return retval; fp@2685: fp@2685: if (wake) { fp@2685: pci_prepare_to_sleep(pdev); fp@2685: } else { fp@2685: pci_wake_from_d3(pdev, false); fp@2685: pci_set_power_state(pdev, PCI_D3hot); fp@2685: } fp@2685: fp@2685: return 0; fp@2685: } fp@2685: fp@2685: static int igb_runtime_resume(struct device *dev) fp@2685: { fp@2685: return igb_resume(dev); fp@2685: } fp@2685: #endif /* CONFIG_PM_RUNTIME */ fp@2685: #endif fp@2685: fp@2685: static void igb_shutdown(struct pci_dev *pdev) fp@2685: { fp@2685: bool wake; fp@2685: fp@2685: __igb_shutdown(pdev, &wake, 0); fp@2685: fp@2685: if (system_state == SYSTEM_POWER_OFF) { fp@2685: pci_wake_from_d3(pdev, wake); fp@2685: pci_set_power_state(pdev, PCI_D3hot); fp@2685: } fp@2685: } fp@2685: fp@2685: #ifdef CONFIG_PCI_IOV fp@2685: static int igb_sriov_reinit(struct pci_dev *dev) fp@2685: { fp@2685: struct net_device *netdev = pci_get_drvdata(dev); fp@2685: struct igb_adapter *adapter = netdev_priv(netdev); fp@2685: struct pci_dev *pdev = adapter->pdev; fp@2685: fp@2685: rtnl_lock(); fp@2685: fp@2685: if (netif_running(netdev)) fp@2685: igb_close(netdev); fp@2685: else fp@2685: igb_reset(adapter); fp@2685: fp@2685: igb_clear_interrupt_scheme(adapter); fp@2685: fp@2685: igb_init_queue_configuration(adapter); fp@2685: fp@2685: if (igb_init_interrupt_scheme(adapter, true)) { fp@2685: dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); fp@2685: return -ENOMEM; fp@2685: } fp@2685: fp@2685: if (netif_running(netdev)) fp@2685: igb_open(netdev); fp@2685: fp@2685: rtnl_unlock(); fp@2685: fp@2685: return 0; fp@2685: } fp@2685: fp@2685: static int igb_pci_disable_sriov(struct pci_dev *dev) fp@2685: { fp@2685: int err = igb_disable_sriov(dev); fp@2685: fp@2685: if (!err) fp@2685: err = igb_sriov_reinit(dev); fp@2685: fp@2685: return err; fp@2685: } fp@2685: fp@2685: static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs) fp@2685: { fp@2685: int err = igb_enable_sriov(dev, num_vfs); fp@2685: fp@2685: if (err) fp@2685: goto out; fp@2685: fp@2685: err = igb_sriov_reinit(dev); fp@2685: if (!err) fp@2685: return num_vfs; fp@2685: fp@2685: out: fp@2685: return err; fp@2685: } fp@2685: fp@2685: #endif fp@2685: static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs) fp@2685: { fp@2685: #ifdef CONFIG_PCI_IOV fp@2685: if (num_vfs == 0) fp@2685: return igb_pci_disable_sriov(dev); fp@2685: else fp@2685: return igb_pci_enable_sriov(dev, num_vfs); fp@2685: #endif fp@2685: return 0; fp@2685: } fp@2685: fp@2685: #ifdef CONFIG_NET_POLL_CONTROLLER fp@2685: /* Polling 'interrupt' - used by things like netconsole to send skbs fp@2685: * without having to re-enable interrupts. It's not called while fp@2685: * the interrupt routine is executing. fp@2685: */ fp@2685: static void igb_netpoll(struct net_device *netdev) fp@2685: { fp@2685: struct igb_adapter *adapter = netdev_priv(netdev); fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: struct igb_q_vector *q_vector; fp@2685: int i; fp@2685: fp@2685: for (i = 0; i < adapter->num_q_vectors; i++) { fp@2685: q_vector = adapter->q_vector[i]; fp@2685: if (adapter->flags & IGB_FLAG_HAS_MSIX) fp@2685: wr32(E1000_EIMC, q_vector->eims_value); fp@2685: else fp@2685: igb_irq_disable(adapter); fp@2685: napi_schedule(&q_vector->napi); fp@2685: } fp@2685: } fp@2685: #endif /* CONFIG_NET_POLL_CONTROLLER */ fp@2685: fp@2685: /** fp@2685: * igb_io_error_detected - called when PCI error is detected fp@2685: * @pdev: Pointer to PCI device fp@2685: * @state: The current pci connection state fp@2685: * fp@2685: * This function is called after a PCI bus error affecting fp@2685: * this device has been detected. fp@2685: **/ fp@2685: static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev, fp@2685: pci_channel_state_t state) fp@2685: { fp@2685: struct net_device *netdev = pci_get_drvdata(pdev); fp@2685: struct igb_adapter *adapter = netdev_priv(netdev); fp@2685: fp@2685: netif_device_detach(netdev); fp@2685: fp@2685: if (state == pci_channel_io_perm_failure) fp@2685: return PCI_ERS_RESULT_DISCONNECT; fp@2685: fp@2685: if (netif_running(netdev)) fp@2685: igb_down(adapter); fp@2685: pci_disable_device(pdev); fp@2685: fp@2685: /* Request a slot slot reset. */ fp@2685: return PCI_ERS_RESULT_NEED_RESET; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_io_slot_reset - called after the pci bus has been reset. fp@2685: * @pdev: Pointer to PCI device fp@2685: * fp@2685: * Restart the card from scratch, as if from a cold-boot. Implementation fp@2685: * resembles the first-half of the igb_resume routine. fp@2685: **/ fp@2685: static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev) fp@2685: { fp@2685: struct net_device *netdev = pci_get_drvdata(pdev); fp@2685: struct igb_adapter *adapter = netdev_priv(netdev); fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: pci_ers_result_t result; fp@2685: int err; fp@2685: fp@2685: if (pci_enable_device_mem(pdev)) { fp@2685: dev_err(&pdev->dev, fp@2685: "Cannot re-enable PCI device after reset.\n"); fp@2685: result = PCI_ERS_RESULT_DISCONNECT; fp@2685: } else { fp@2685: pci_set_master(pdev); fp@2685: pci_restore_state(pdev); fp@2685: pci_save_state(pdev); fp@2685: fp@2685: pci_enable_wake(pdev, PCI_D3hot, 0); fp@2685: pci_enable_wake(pdev, PCI_D3cold, 0); fp@2685: fp@2685: igb_reset(adapter); fp@2685: wr32(E1000_WUS, ~0); fp@2685: result = PCI_ERS_RESULT_RECOVERED; fp@2685: } fp@2685: fp@2685: err = pci_cleanup_aer_uncorrect_error_status(pdev); fp@2685: if (err) { fp@2685: dev_err(&pdev->dev, fp@2685: "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n", fp@2685: err); fp@2685: /* non-fatal, continue */ fp@2685: } fp@2685: fp@2685: return result; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_io_resume - called when traffic can start flowing again. fp@2685: * @pdev: Pointer to PCI device fp@2685: * fp@2685: * This callback is called when the error recovery driver tells us that fp@2685: * its OK to resume normal operation. Implementation resembles the fp@2685: * second-half of the igb_resume routine. fp@2685: */ fp@2685: static void igb_io_resume(struct pci_dev *pdev) fp@2685: { fp@2685: struct net_device *netdev = pci_get_drvdata(pdev); fp@2685: struct igb_adapter *adapter = netdev_priv(netdev); fp@2685: fp@2685: if (netif_running(netdev)) { fp@2685: if (igb_up(adapter)) { fp@2685: dev_err(&pdev->dev, "igb_up failed after reset\n"); fp@2685: return; fp@2685: } fp@2685: } fp@2685: fp@2685: netif_device_attach(netdev); fp@2685: fp@2685: /* let the f/w know that the h/w is now under the control of the fp@2685: * driver. fp@2685: */ fp@2685: igb_get_hw_control(adapter); fp@2685: } fp@2685: fp@2685: static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index, fp@2685: u8 qsel) fp@2685: { fp@2685: u32 rar_low, rar_high; fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: fp@2685: /* HW expects these in little endian so we reverse the byte order fp@2685: * from network order (big endian) to little endian fp@2685: */ fp@2685: rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) | fp@2685: ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); fp@2685: rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); fp@2685: fp@2685: /* Indicate to hardware the Address is Valid. */ fp@2685: rar_high |= E1000_RAH_AV; fp@2685: fp@2685: if (hw->mac.type == e1000_82575) fp@2685: rar_high |= E1000_RAH_POOL_1 * qsel; fp@2685: else fp@2685: rar_high |= E1000_RAH_POOL_1 << qsel; fp@2685: fp@2685: wr32(E1000_RAL(index), rar_low); fp@2685: wrfl(); fp@2685: wr32(E1000_RAH(index), rar_high); fp@2685: wrfl(); fp@2685: } fp@2685: fp@2685: static int igb_set_vf_mac(struct igb_adapter *adapter, fp@2685: int vf, unsigned char *mac_addr) fp@2685: { fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: /* VF MAC addresses start at end of receive addresses and moves fp@2685: * towards the first, as a result a collision should not be possible fp@2685: */ fp@2685: int rar_entry = hw->mac.rar_entry_count - (vf + 1); fp@2685: fp@2685: memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN); fp@2685: fp@2685: igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf); fp@2685: fp@2685: return 0; fp@2685: } fp@2685: fp@2685: static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac) fp@2685: { fp@2685: struct igb_adapter *adapter = netdev_priv(netdev); fp@2685: if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count)) fp@2685: return -EINVAL; fp@2685: adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC; fp@2685: dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf); fp@2685: dev_info(&adapter->pdev->dev, fp@2685: "Reload the VF driver to make this change effective."); fp@2685: if (test_bit(__IGB_DOWN, &adapter->state)) { fp@2685: dev_warn(&adapter->pdev->dev, fp@2685: "The VF MAC address has been set, but the PF device is not up.\n"); fp@2685: dev_warn(&adapter->pdev->dev, fp@2685: "Bring the PF device up before attempting to use the VF device.\n"); fp@2685: } fp@2685: return igb_set_vf_mac(adapter, vf, mac); fp@2685: } fp@2685: fp@2685: static int igb_link_mbps(int internal_link_speed) fp@2685: { fp@2685: switch (internal_link_speed) { fp@2685: case SPEED_100: fp@2685: return 100; fp@2685: case SPEED_1000: fp@2685: return 1000; fp@2685: default: fp@2685: return 0; fp@2685: } fp@2685: } fp@2685: fp@2685: static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate, fp@2685: int link_speed) fp@2685: { fp@2685: int rf_dec, rf_int; fp@2685: u32 bcnrc_val; fp@2685: fp@2685: if (tx_rate != 0) { fp@2685: /* Calculate the rate factor values to set */ fp@2685: rf_int = link_speed / tx_rate; fp@2685: rf_dec = (link_speed - (rf_int * tx_rate)); fp@2685: rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) / fp@2685: tx_rate; fp@2685: fp@2685: bcnrc_val = E1000_RTTBCNRC_RS_ENA; fp@2685: bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) & fp@2685: E1000_RTTBCNRC_RF_INT_MASK); fp@2685: bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK); fp@2685: } else { fp@2685: bcnrc_val = 0; fp@2685: } fp@2685: fp@2685: wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */ fp@2685: /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM fp@2685: * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported. fp@2685: */ fp@2685: wr32(E1000_RTTBCNRM, 0x14); fp@2685: wr32(E1000_RTTBCNRC, bcnrc_val); fp@2685: } fp@2685: fp@2685: static void igb_check_vf_rate_limit(struct igb_adapter *adapter) fp@2685: { fp@2685: int actual_link_speed, i; fp@2685: bool reset_rate = false; fp@2685: fp@2685: /* VF TX rate limit was not set or not supported */ fp@2685: if ((adapter->vf_rate_link_speed == 0) || fp@2685: (adapter->hw.mac.type != e1000_82576)) fp@2685: return; fp@2685: fp@2685: actual_link_speed = igb_link_mbps(adapter->link_speed); fp@2685: if (actual_link_speed != adapter->vf_rate_link_speed) { fp@2685: reset_rate = true; fp@2685: adapter->vf_rate_link_speed = 0; fp@2685: dev_info(&adapter->pdev->dev, fp@2685: "Link speed has been changed. VF Transmit rate is disabled\n"); fp@2685: } fp@2685: fp@2685: for (i = 0; i < adapter->vfs_allocated_count; i++) { fp@2685: if (reset_rate) fp@2685: adapter->vf_data[i].tx_rate = 0; fp@2685: fp@2685: igb_set_vf_rate_limit(&adapter->hw, i, fp@2685: adapter->vf_data[i].tx_rate, fp@2685: actual_link_speed); fp@2685: } fp@2685: } fp@2685: fp@2685: static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, fp@2685: int min_tx_rate, int max_tx_rate) fp@2685: { fp@2685: struct igb_adapter *adapter = netdev_priv(netdev); fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: int actual_link_speed; fp@2685: fp@2685: if (hw->mac.type != e1000_82576) fp@2685: return -EOPNOTSUPP; fp@2685: fp@2685: if (min_tx_rate) fp@2685: return -EINVAL; fp@2685: fp@2685: actual_link_speed = igb_link_mbps(adapter->link_speed); fp@2685: if ((vf >= adapter->vfs_allocated_count) || fp@2685: (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) || fp@2685: (max_tx_rate < 0) || fp@2685: (max_tx_rate > actual_link_speed)) fp@2685: return -EINVAL; fp@2685: fp@2685: adapter->vf_rate_link_speed = actual_link_speed; fp@2685: adapter->vf_data[vf].tx_rate = (u16)max_tx_rate; fp@2685: igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed); fp@2685: fp@2685: return 0; fp@2685: } fp@2685: fp@2685: static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf, fp@2685: bool setting) fp@2685: { fp@2685: struct igb_adapter *adapter = netdev_priv(netdev); fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: u32 reg_val, reg_offset; fp@2685: fp@2685: if (!adapter->vfs_allocated_count) fp@2685: return -EOPNOTSUPP; fp@2685: fp@2685: if (vf >= adapter->vfs_allocated_count) fp@2685: return -EINVAL; fp@2685: fp@2685: reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC; fp@2685: reg_val = rd32(reg_offset); fp@2685: if (setting) fp@2685: reg_val |= ((1 << vf) | fp@2685: (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT))); fp@2685: else fp@2685: reg_val &= ~((1 << vf) | fp@2685: (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT))); fp@2685: wr32(reg_offset, reg_val); fp@2685: fp@2685: adapter->vf_data[vf].spoofchk_enabled = setting; fp@2685: return 0; fp@2685: } fp@2685: fp@2685: static int igb_ndo_get_vf_config(struct net_device *netdev, fp@2685: int vf, struct ifla_vf_info *ivi) fp@2685: { fp@2685: struct igb_adapter *adapter = netdev_priv(netdev); fp@2685: if (vf >= adapter->vfs_allocated_count) fp@2685: return -EINVAL; fp@2685: ivi->vf = vf; fp@2685: memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN); fp@2685: ivi->max_tx_rate = adapter->vf_data[vf].tx_rate; fp@2685: ivi->min_tx_rate = 0; fp@2685: ivi->vlan = adapter->vf_data[vf].pf_vlan; fp@2685: ivi->qos = adapter->vf_data[vf].pf_qos; fp@2685: ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled; fp@2685: return 0; fp@2685: } fp@2685: fp@2685: static void igb_vmm_control(struct igb_adapter *adapter) fp@2685: { fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: u32 reg; fp@2685: fp@2685: switch (hw->mac.type) { fp@2685: case e1000_82575: fp@2685: case e1000_i210: fp@2685: case e1000_i211: fp@2685: case e1000_i354: fp@2685: default: fp@2685: /* replication is not supported for 82575 */ fp@2685: return; fp@2685: case e1000_82576: fp@2685: /* notify HW that the MAC is adding vlan tags */ fp@2685: reg = rd32(E1000_DTXCTL); fp@2685: reg |= E1000_DTXCTL_VLAN_ADDED; fp@2685: wr32(E1000_DTXCTL, reg); fp@2685: /* Fall through */ fp@2685: case e1000_82580: fp@2685: /* enable replication vlan tag stripping */ fp@2685: reg = rd32(E1000_RPLOLR); fp@2685: reg |= E1000_RPLOLR_STRVLAN; fp@2685: wr32(E1000_RPLOLR, reg); fp@2685: /* Fall through */ fp@2685: case e1000_i350: fp@2685: /* none of the above registers are supported by i350 */ fp@2685: break; fp@2685: } fp@2685: fp@2685: if (adapter->vfs_allocated_count) { fp@2685: igb_vmdq_set_loopback_pf(hw, true); fp@2685: igb_vmdq_set_replication_pf(hw, true); fp@2685: igb_vmdq_set_anti_spoofing_pf(hw, true, fp@2685: adapter->vfs_allocated_count); fp@2685: } else { fp@2685: igb_vmdq_set_loopback_pf(hw, false); fp@2685: igb_vmdq_set_replication_pf(hw, false); fp@2685: } fp@2685: } fp@2685: fp@2685: static void igb_init_dmac(struct igb_adapter *adapter, u32 pba) fp@2685: { fp@2685: struct e1000_hw *hw = &adapter->hw; fp@2685: u32 dmac_thr; fp@2685: u16 hwm; fp@2685: fp@2685: if (hw->mac.type > e1000_82580) { fp@2685: if (adapter->flags & IGB_FLAG_DMAC) { fp@2685: u32 reg; fp@2685: fp@2685: /* force threshold to 0. */ fp@2685: wr32(E1000_DMCTXTH, 0); fp@2685: fp@2685: /* DMA Coalescing high water mark needs to be greater fp@2685: * than the Rx threshold. Set hwm to PBA - max frame fp@2685: * size in 16B units, capping it at PBA - 6KB. fp@2685: */ fp@2685: hwm = 64 * pba - adapter->max_frame_size / 16; fp@2685: if (hwm < 64 * (pba - 6)) fp@2685: hwm = 64 * (pba - 6); fp@2685: reg = rd32(E1000_FCRTC); fp@2685: reg &= ~E1000_FCRTC_RTH_COAL_MASK; fp@2685: reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT) fp@2685: & E1000_FCRTC_RTH_COAL_MASK); fp@2685: wr32(E1000_FCRTC, reg); fp@2685: fp@2685: /* Set the DMA Coalescing Rx threshold to PBA - 2 * max fp@2685: * frame size, capping it at PBA - 10KB. fp@2685: */ fp@2685: dmac_thr = pba - adapter->max_frame_size / 512; fp@2685: if (dmac_thr < pba - 10) fp@2685: dmac_thr = pba - 10; fp@2685: reg = rd32(E1000_DMACR); fp@2685: reg &= ~E1000_DMACR_DMACTHR_MASK; fp@2685: reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT) fp@2685: & E1000_DMACR_DMACTHR_MASK); fp@2685: fp@2685: /* transition to L0x or L1 if available..*/ fp@2685: reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK); fp@2685: fp@2685: /* watchdog timer= +-1000 usec in 32usec intervals */ fp@2685: reg |= (1000 >> 5); fp@2685: fp@2685: /* Disable BMC-to-OS Watchdog Enable */ fp@2685: if (hw->mac.type != e1000_i354) fp@2685: reg &= ~E1000_DMACR_DC_BMC2OSW_EN; fp@2685: fp@2685: wr32(E1000_DMACR, reg); fp@2685: fp@2685: /* no lower threshold to disable fp@2685: * coalescing(smart fifb)-UTRESH=0 fp@2685: */ fp@2685: wr32(E1000_DMCRTRH, 0); fp@2685: fp@2685: reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4); fp@2685: fp@2685: wr32(E1000_DMCTLX, reg); fp@2685: fp@2685: /* free space in tx packet buffer to wake from fp@2685: * DMA coal fp@2685: */ fp@2685: wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE - fp@2685: (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6); fp@2685: fp@2685: /* make low power state decision controlled fp@2685: * by DMA coal fp@2685: */ fp@2685: reg = rd32(E1000_PCIEMISC); fp@2685: reg &= ~E1000_PCIEMISC_LX_DECISION; fp@2685: wr32(E1000_PCIEMISC, reg); fp@2685: } /* endif adapter->dmac is not disabled */ fp@2685: } else if (hw->mac.type == e1000_82580) { fp@2685: u32 reg = rd32(E1000_PCIEMISC); fp@2685: fp@2685: wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION); fp@2685: wr32(E1000_DMACR, 0); fp@2685: } fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_read_i2c_byte - Reads 8 bit word over I2C fp@2685: * @hw: pointer to hardware structure fp@2685: * @byte_offset: byte offset to read fp@2685: * @dev_addr: device address fp@2685: * @data: value read fp@2685: * fp@2685: * Performs byte read operation over I2C interface at fp@2685: * a specified device address. fp@2685: **/ fp@2685: s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset, fp@2685: u8 dev_addr, u8 *data) fp@2685: { fp@2685: struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw); fp@2685: struct i2c_client *this_client = adapter->i2c_client; fp@2685: s32 status; fp@2685: u16 swfw_mask = 0; fp@2685: fp@2685: if (!this_client) fp@2685: return E1000_ERR_I2C; fp@2685: fp@2685: swfw_mask = E1000_SWFW_PHY0_SM; fp@2685: fp@2685: if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)) fp@2685: return E1000_ERR_SWFW_SYNC; fp@2685: fp@2685: status = i2c_smbus_read_byte_data(this_client, byte_offset); fp@2685: hw->mac.ops.release_swfw_sync(hw, swfw_mask); fp@2685: fp@2685: if (status < 0) fp@2685: return E1000_ERR_I2C; fp@2685: else { fp@2685: *data = status; fp@2685: return 0; fp@2685: } fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_write_i2c_byte - Writes 8 bit word over I2C fp@2685: * @hw: pointer to hardware structure fp@2685: * @byte_offset: byte offset to write fp@2685: * @dev_addr: device address fp@2685: * @data: value to write fp@2685: * fp@2685: * Performs byte write operation over I2C interface at fp@2685: * a specified device address. fp@2685: **/ fp@2685: s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset, fp@2685: u8 dev_addr, u8 data) fp@2685: { fp@2685: struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw); fp@2685: struct i2c_client *this_client = adapter->i2c_client; fp@2685: s32 status; fp@2685: u16 swfw_mask = E1000_SWFW_PHY0_SM; fp@2685: fp@2685: if (!this_client) fp@2685: return E1000_ERR_I2C; fp@2685: fp@2685: if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)) fp@2685: return E1000_ERR_SWFW_SYNC; fp@2685: status = i2c_smbus_write_byte_data(this_client, byte_offset, data); fp@2685: hw->mac.ops.release_swfw_sync(hw, swfw_mask); fp@2685: fp@2685: if (status) fp@2685: return E1000_ERR_I2C; fp@2685: else fp@2685: return 0; fp@2685: fp@2685: } fp@2685: fp@2685: int igb_reinit_queues(struct igb_adapter *adapter) fp@2685: { fp@2685: struct net_device *netdev = adapter->netdev; fp@2685: struct pci_dev *pdev = adapter->pdev; fp@2685: int err = 0; fp@2685: fp@2685: if (netif_running(netdev)) fp@2685: igb_close(netdev); fp@2685: fp@2685: igb_reset_interrupt_capability(adapter); fp@2685: fp@2685: if (igb_init_interrupt_scheme(adapter, true)) { fp@2685: dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); fp@2685: return -ENOMEM; fp@2685: } fp@2685: fp@2685: if (netif_running(netdev)) fp@2685: err = igb_open(netdev); fp@2685: fp@2685: return err; fp@2685: } fp@2685: /* igb_main.c */