fp@2685: /* Intel(R) Gigabit Ethernet Linux driver fp@2685: * Copyright(c) 2007-2014 Intel Corporation. fp@2685: * fp@2685: * This program is free software; you can redistribute it and/or modify it fp@2685: * under the terms and conditions of the GNU General Public License, fp@2685: * version 2, as published by the Free Software Foundation. fp@2685: * fp@2685: * This program is distributed in the hope it will be useful, but WITHOUT fp@2685: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or fp@2685: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for fp@2685: * more details. fp@2685: * fp@2685: * You should have received a copy of the GNU General Public License along with fp@2685: * this program; if not, see . fp@2685: * fp@2685: * The full GNU General Public License is included in this distribution in fp@2685: * the file called "COPYING". fp@2685: * fp@2685: * Contact Information: fp@2685: * e1000-devel Mailing List fp@2685: * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 fp@2685: */ fp@2685: fp@2685: #include fp@2685: #include fp@2685: #include fp@2685: #include fp@2685: #include fp@2685: fp@2685: #include "e1000_mac.h" fp@2685: fp@2685: #include "igb.h" fp@2685: fp@2685: static s32 igb_set_default_fc(struct e1000_hw *hw); fp@2685: static s32 igb_set_fc_watermarks(struct e1000_hw *hw); fp@2685: fp@2685: /** fp@2685: * igb_get_bus_info_pcie - Get PCIe bus information fp@2685: * @hw: pointer to the HW structure fp@2685: * fp@2685: * Determines and stores the system bus information for a particular fp@2685: * network interface. The following bus information is determined and stored: fp@2685: * bus speed, bus width, type (PCIe), and PCIe function. fp@2685: **/ fp@2685: s32 igb_get_bus_info_pcie(struct e1000_hw *hw) fp@2685: { fp@2685: struct e1000_bus_info *bus = &hw->bus; fp@2685: s32 ret_val; fp@2685: u32 reg; fp@2685: u16 pcie_link_status; fp@2685: fp@2685: bus->type = e1000_bus_type_pci_express; fp@2685: fp@2685: ret_val = igb_read_pcie_cap_reg(hw, fp@2685: PCI_EXP_LNKSTA, fp@2685: &pcie_link_status); fp@2685: if (ret_val) { fp@2685: bus->width = e1000_bus_width_unknown; fp@2685: bus->speed = e1000_bus_speed_unknown; fp@2685: } else { fp@2685: switch (pcie_link_status & PCI_EXP_LNKSTA_CLS) { fp@2685: case PCI_EXP_LNKSTA_CLS_2_5GB: fp@2685: bus->speed = e1000_bus_speed_2500; fp@2685: break; fp@2685: case PCI_EXP_LNKSTA_CLS_5_0GB: fp@2685: bus->speed = e1000_bus_speed_5000; fp@2685: break; fp@2685: default: fp@2685: bus->speed = e1000_bus_speed_unknown; fp@2685: break; fp@2685: } fp@2685: fp@2685: bus->width = (enum e1000_bus_width)((pcie_link_status & fp@2685: PCI_EXP_LNKSTA_NLW) >> fp@2685: PCI_EXP_LNKSTA_NLW_SHIFT); fp@2685: } fp@2685: fp@2685: reg = rd32(E1000_STATUS); fp@2685: bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT; fp@2685: fp@2685: return 0; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_clear_vfta - Clear VLAN filter table fp@2685: * @hw: pointer to the HW structure fp@2685: * fp@2685: * Clears the register array which contains the VLAN filter table by fp@2685: * setting all the values to 0. fp@2685: **/ fp@2685: void igb_clear_vfta(struct e1000_hw *hw) fp@2685: { fp@2685: u32 offset; fp@2685: fp@2685: for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { fp@2685: array_wr32(E1000_VFTA, offset, 0); fp@2685: wrfl(); fp@2685: } fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_write_vfta - Write value to VLAN filter table fp@2685: * @hw: pointer to the HW structure fp@2685: * @offset: register offset in VLAN filter table fp@2685: * @value: register value written to VLAN filter table fp@2685: * fp@2685: * Writes value at the given offset in the register array which stores fp@2685: * the VLAN filter table. fp@2685: **/ fp@2685: static void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) fp@2685: { fp@2685: array_wr32(E1000_VFTA, offset, value); fp@2685: wrfl(); fp@2685: } fp@2685: fp@2685: /* Due to a hw errata, if the host tries to configure the VFTA register fp@2685: * while performing queries from the BMC or DMA, then the VFTA in some fp@2685: * cases won't be written. fp@2685: */ fp@2685: fp@2685: /** fp@2685: * igb_clear_vfta_i350 - Clear VLAN filter table fp@2685: * @hw: pointer to the HW structure fp@2685: * fp@2685: * Clears the register array which contains the VLAN filter table by fp@2685: * setting all the values to 0. fp@2685: **/ fp@2685: void igb_clear_vfta_i350(struct e1000_hw *hw) fp@2685: { fp@2685: u32 offset; fp@2685: int i; fp@2685: fp@2685: for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { fp@2685: for (i = 0; i < 10; i++) fp@2685: array_wr32(E1000_VFTA, offset, 0); fp@2685: fp@2685: wrfl(); fp@2685: } fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_write_vfta_i350 - Write value to VLAN filter table fp@2685: * @hw: pointer to the HW structure fp@2685: * @offset: register offset in VLAN filter table fp@2685: * @value: register value written to VLAN filter table fp@2685: * fp@2685: * Writes value at the given offset in the register array which stores fp@2685: * the VLAN filter table. fp@2685: **/ fp@2685: static void igb_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value) fp@2685: { fp@2685: int i; fp@2685: fp@2685: for (i = 0; i < 10; i++) fp@2685: array_wr32(E1000_VFTA, offset, value); fp@2685: fp@2685: wrfl(); fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_init_rx_addrs - Initialize receive address's fp@2685: * @hw: pointer to the HW structure fp@2685: * @rar_count: receive address registers fp@2685: * fp@2685: * Setups the receive address registers by setting the base receive address fp@2685: * register to the devices MAC address and clearing all the other receive fp@2685: * address registers to 0. fp@2685: **/ fp@2685: void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count) fp@2685: { fp@2685: u32 i; fp@2685: u8 mac_addr[ETH_ALEN] = {0}; fp@2685: fp@2685: /* Setup the receive address */ fp@2685: hw_dbg("Programming MAC Address into RAR[0]\n"); fp@2685: fp@2685: hw->mac.ops.rar_set(hw, hw->mac.addr, 0); fp@2685: fp@2685: /* Zero out the other (rar_entry_count - 1) receive addresses */ fp@2685: hw_dbg("Clearing RAR[1-%u]\n", rar_count-1); fp@2685: for (i = 1; i < rar_count; i++) fp@2685: hw->mac.ops.rar_set(hw, mac_addr, i); fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_vfta_set - enable or disable vlan in VLAN filter table fp@2685: * @hw: pointer to the HW structure fp@2685: * @vid: VLAN id to add or remove fp@2685: * @add: if true add filter, if false remove fp@2685: * fp@2685: * Sets or clears a bit in the VLAN filter table array based on VLAN id fp@2685: * and if we are adding or removing the filter fp@2685: **/ fp@2685: s32 igb_vfta_set(struct e1000_hw *hw, u32 vid, bool add) fp@2685: { fp@2685: u32 index = (vid >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK; fp@2685: u32 mask = 1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK); fp@2685: u32 vfta; fp@2685: struct igb_adapter *adapter = hw->back; fp@2685: s32 ret_val = 0; fp@2685: fp@2685: vfta = adapter->shadow_vfta[index]; fp@2685: fp@2685: /* bit was set/cleared before we started */ fp@2685: if ((!!(vfta & mask)) == add) { fp@2685: ret_val = -E1000_ERR_CONFIG; fp@2685: } else { fp@2685: if (add) fp@2685: vfta |= mask; fp@2685: else fp@2685: vfta &= ~mask; fp@2685: } fp@2685: if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354)) fp@2685: igb_write_vfta_i350(hw, index, vfta); fp@2685: else fp@2685: igb_write_vfta(hw, index, vfta); fp@2685: adapter->shadow_vfta[index] = vfta; fp@2685: fp@2685: return ret_val; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_check_alt_mac_addr - Check for alternate MAC addr fp@2685: * @hw: pointer to the HW structure fp@2685: * fp@2685: * Checks the nvm for an alternate MAC address. An alternate MAC address fp@2685: * can be setup by pre-boot software and must be treated like a permanent fp@2685: * address and must override the actual permanent MAC address. If an fp@2685: * alternate MAC address is found it is saved in the hw struct and fp@2685: * programmed into RAR0 and the function returns success, otherwise the fp@2685: * function returns an error. fp@2685: **/ fp@2685: s32 igb_check_alt_mac_addr(struct e1000_hw *hw) fp@2685: { fp@2685: u32 i; fp@2685: s32 ret_val = 0; fp@2685: u16 offset, nvm_alt_mac_addr_offset, nvm_data; fp@2685: u8 alt_mac_addr[ETH_ALEN]; fp@2685: fp@2685: /* Alternate MAC address is handled by the option ROM for 82580 fp@2685: * and newer. SW support not required. fp@2685: */ fp@2685: if (hw->mac.type >= e1000_82580) fp@2685: goto out; fp@2685: fp@2685: ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1, fp@2685: &nvm_alt_mac_addr_offset); fp@2685: if (ret_val) { fp@2685: hw_dbg("NVM Read Error\n"); fp@2685: goto out; fp@2685: } fp@2685: fp@2685: if ((nvm_alt_mac_addr_offset == 0xFFFF) || fp@2685: (nvm_alt_mac_addr_offset == 0x0000)) fp@2685: /* There is no Alternate MAC Address */ fp@2685: goto out; fp@2685: fp@2685: if (hw->bus.func == E1000_FUNC_1) fp@2685: nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1; fp@2685: if (hw->bus.func == E1000_FUNC_2) fp@2685: nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2; fp@2685: fp@2685: if (hw->bus.func == E1000_FUNC_3) fp@2685: nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3; fp@2685: for (i = 0; i < ETH_ALEN; i += 2) { fp@2685: offset = nvm_alt_mac_addr_offset + (i >> 1); fp@2685: ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data); fp@2685: if (ret_val) { fp@2685: hw_dbg("NVM Read Error\n"); fp@2685: goto out; fp@2685: } fp@2685: fp@2685: alt_mac_addr[i] = (u8)(nvm_data & 0xFF); fp@2685: alt_mac_addr[i + 1] = (u8)(nvm_data >> 8); fp@2685: } fp@2685: fp@2685: /* if multicast bit is set, the alternate address will not be used */ fp@2685: if (is_multicast_ether_addr(alt_mac_addr)) { fp@2685: hw_dbg("Ignoring Alternate Mac Address with MC bit set\n"); fp@2685: goto out; fp@2685: } fp@2685: fp@2685: /* We have a valid alternate MAC address, and we want to treat it the fp@2685: * same as the normal permanent MAC address stored by the HW into the fp@2685: * RAR. Do this by mapping this address into RAR0. fp@2685: */ fp@2685: hw->mac.ops.rar_set(hw, alt_mac_addr, 0); fp@2685: fp@2685: out: fp@2685: return ret_val; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_rar_set - Set receive address register fp@2685: * @hw: pointer to the HW structure fp@2685: * @addr: pointer to the receive address fp@2685: * @index: receive address array register fp@2685: * fp@2685: * Sets the receive address array register at index to the address passed fp@2685: * in by addr. fp@2685: **/ fp@2685: void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) fp@2685: { fp@2685: u32 rar_low, rar_high; fp@2685: fp@2685: /* HW expects these in little endian so we reverse the byte order fp@2685: * from network order (big endian) to little endian fp@2685: */ fp@2685: rar_low = ((u32) addr[0] | fp@2685: ((u32) addr[1] << 8) | fp@2685: ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); fp@2685: fp@2685: rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); fp@2685: fp@2685: /* If MAC address zero, no need to set the AV bit */ fp@2685: if (rar_low || rar_high) fp@2685: rar_high |= E1000_RAH_AV; fp@2685: fp@2685: /* Some bridges will combine consecutive 32-bit writes into fp@2685: * a single burst write, which will malfunction on some parts. fp@2685: * The flushes avoid this. fp@2685: */ fp@2685: wr32(E1000_RAL(index), rar_low); fp@2685: wrfl(); fp@2685: wr32(E1000_RAH(index), rar_high); fp@2685: wrfl(); fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_mta_set - Set multicast filter table address fp@2685: * @hw: pointer to the HW structure fp@2685: * @hash_value: determines the MTA register and bit to set fp@2685: * fp@2685: * The multicast table address is a register array of 32-bit registers. fp@2685: * The hash_value is used to determine what register the bit is in, the fp@2685: * current value is read, the new bit is OR'd in and the new value is fp@2685: * written back into the register. fp@2685: **/ fp@2685: void igb_mta_set(struct e1000_hw *hw, u32 hash_value) fp@2685: { fp@2685: u32 hash_bit, hash_reg, mta; fp@2685: fp@2685: /* The MTA is a register array of 32-bit registers. It is fp@2685: * treated like an array of (32*mta_reg_count) bits. We want to fp@2685: * set bit BitArray[hash_value]. So we figure out what register fp@2685: * the bit is in, read it, OR in the new bit, then write fp@2685: * back the new value. The (hw->mac.mta_reg_count - 1) serves as a fp@2685: * mask to bits 31:5 of the hash value which gives us the fp@2685: * register we're modifying. The hash bit within that register fp@2685: * is determined by the lower 5 bits of the hash value. fp@2685: */ fp@2685: hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); fp@2685: hash_bit = hash_value & 0x1F; fp@2685: fp@2685: mta = array_rd32(E1000_MTA, hash_reg); fp@2685: fp@2685: mta |= (1 << hash_bit); fp@2685: fp@2685: array_wr32(E1000_MTA, hash_reg, mta); fp@2685: wrfl(); fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_hash_mc_addr - Generate a multicast hash value fp@2685: * @hw: pointer to the HW structure fp@2685: * @mc_addr: pointer to a multicast address fp@2685: * fp@2685: * Generates a multicast address hash value which is used to determine fp@2685: * the multicast filter table array address and new table value. See fp@2685: * igb_mta_set() fp@2685: **/ fp@2685: static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) fp@2685: { fp@2685: u32 hash_value, hash_mask; fp@2685: u8 bit_shift = 0; fp@2685: fp@2685: /* Register count multiplied by bits per register */ fp@2685: hash_mask = (hw->mac.mta_reg_count * 32) - 1; fp@2685: fp@2685: /* For a mc_filter_type of 0, bit_shift is the number of left-shifts fp@2685: * where 0xFF would still fall within the hash mask. fp@2685: */ fp@2685: while (hash_mask >> bit_shift != 0xFF) fp@2685: bit_shift++; fp@2685: fp@2685: /* The portion of the address that is used for the hash table fp@2685: * is determined by the mc_filter_type setting. fp@2685: * The algorithm is such that there is a total of 8 bits of shifting. fp@2685: * The bit_shift for a mc_filter_type of 0 represents the number of fp@2685: * left-shifts where the MSB of mc_addr[5] would still fall within fp@2685: * the hash_mask. Case 0 does this exactly. Since there are a total fp@2685: * of 8 bits of shifting, then mc_addr[4] will shift right the fp@2685: * remaining number of bits. Thus 8 - bit_shift. The rest of the fp@2685: * cases are a variation of this algorithm...essentially raising the fp@2685: * number of bits to shift mc_addr[5] left, while still keeping the fp@2685: * 8-bit shifting total. fp@2685: * fp@2685: * For example, given the following Destination MAC Address and an fp@2685: * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask), fp@2685: * we can see that the bit_shift for case 0 is 4. These are the hash fp@2685: * values resulting from each mc_filter_type... fp@2685: * [0] [1] [2] [3] [4] [5] fp@2685: * 01 AA 00 12 34 56 fp@2685: * LSB MSB fp@2685: * fp@2685: * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563 fp@2685: * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6 fp@2685: * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163 fp@2685: * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634 fp@2685: */ fp@2685: switch (hw->mac.mc_filter_type) { fp@2685: default: fp@2685: case 0: fp@2685: break; fp@2685: case 1: fp@2685: bit_shift += 1; fp@2685: break; fp@2685: case 2: fp@2685: bit_shift += 2; fp@2685: break; fp@2685: case 3: fp@2685: bit_shift += 4; fp@2685: break; fp@2685: } fp@2685: fp@2685: hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | fp@2685: (((u16) mc_addr[5]) << bit_shift))); fp@2685: fp@2685: return hash_value; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_update_mc_addr_list - Update Multicast addresses fp@2685: * @hw: pointer to the HW structure fp@2685: * @mc_addr_list: array of multicast addresses to program fp@2685: * @mc_addr_count: number of multicast addresses to program fp@2685: * fp@2685: * Updates entire Multicast Table Array. fp@2685: * The caller must have a packed mc_addr_list of multicast addresses. fp@2685: **/ fp@2685: void igb_update_mc_addr_list(struct e1000_hw *hw, fp@2685: u8 *mc_addr_list, u32 mc_addr_count) fp@2685: { fp@2685: u32 hash_value, hash_bit, hash_reg; fp@2685: int i; fp@2685: fp@2685: /* clear mta_shadow */ fp@2685: memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow)); fp@2685: fp@2685: /* update mta_shadow from mc_addr_list */ fp@2685: for (i = 0; (u32) i < mc_addr_count; i++) { fp@2685: hash_value = igb_hash_mc_addr(hw, mc_addr_list); fp@2685: fp@2685: hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); fp@2685: hash_bit = hash_value & 0x1F; fp@2685: fp@2685: hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit); fp@2685: mc_addr_list += (ETH_ALEN); fp@2685: } fp@2685: fp@2685: /* replace the entire MTA table */ fp@2685: for (i = hw->mac.mta_reg_count - 1; i >= 0; i--) fp@2685: array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]); fp@2685: wrfl(); fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_clear_hw_cntrs_base - Clear base hardware counters fp@2685: * @hw: pointer to the HW structure fp@2685: * fp@2685: * Clears the base hardware counters by reading the counter registers. fp@2685: **/ fp@2685: void igb_clear_hw_cntrs_base(struct e1000_hw *hw) fp@2685: { fp@2685: rd32(E1000_CRCERRS); fp@2685: rd32(E1000_SYMERRS); fp@2685: rd32(E1000_MPC); fp@2685: rd32(E1000_SCC); fp@2685: rd32(E1000_ECOL); fp@2685: rd32(E1000_MCC); fp@2685: rd32(E1000_LATECOL); fp@2685: rd32(E1000_COLC); fp@2685: rd32(E1000_DC); fp@2685: rd32(E1000_SEC); fp@2685: rd32(E1000_RLEC); fp@2685: rd32(E1000_XONRXC); fp@2685: rd32(E1000_XONTXC); fp@2685: rd32(E1000_XOFFRXC); fp@2685: rd32(E1000_XOFFTXC); fp@2685: rd32(E1000_FCRUC); fp@2685: rd32(E1000_GPRC); fp@2685: rd32(E1000_BPRC); fp@2685: rd32(E1000_MPRC); fp@2685: rd32(E1000_GPTC); fp@2685: rd32(E1000_GORCL); fp@2685: rd32(E1000_GORCH); fp@2685: rd32(E1000_GOTCL); fp@2685: rd32(E1000_GOTCH); fp@2685: rd32(E1000_RNBC); fp@2685: rd32(E1000_RUC); fp@2685: rd32(E1000_RFC); fp@2685: rd32(E1000_ROC); fp@2685: rd32(E1000_RJC); fp@2685: rd32(E1000_TORL); fp@2685: rd32(E1000_TORH); fp@2685: rd32(E1000_TOTL); fp@2685: rd32(E1000_TOTH); fp@2685: rd32(E1000_TPR); fp@2685: rd32(E1000_TPT); fp@2685: rd32(E1000_MPTC); fp@2685: rd32(E1000_BPTC); fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_check_for_copper_link - Check for link (Copper) fp@2685: * @hw: pointer to the HW structure fp@2685: * fp@2685: * Checks to see of the link status of the hardware has changed. If a fp@2685: * change in link status has been detected, then we read the PHY registers fp@2685: * to get the current speed/duplex if link exists. fp@2685: **/ fp@2685: s32 igb_check_for_copper_link(struct e1000_hw *hw) fp@2685: { fp@2685: struct e1000_mac_info *mac = &hw->mac; fp@2685: s32 ret_val; fp@2685: bool link; fp@2685: fp@2685: /* We only want to go out to the PHY registers to see if Auto-Neg fp@2685: * has completed and/or if our link status has changed. The fp@2685: * get_link_status flag is set upon receiving a Link Status fp@2685: * Change or Rx Sequence Error interrupt. fp@2685: */ fp@2685: if (!mac->get_link_status) { fp@2685: ret_val = 0; fp@2685: goto out; fp@2685: } fp@2685: fp@2685: /* First we want to see if the MII Status Register reports fp@2685: * link. If so, then we want to get the current speed/duplex fp@2685: * of the PHY. fp@2685: */ fp@2685: ret_val = igb_phy_has_link(hw, 1, 0, &link); fp@2685: if (ret_val) fp@2685: goto out; fp@2685: fp@2685: if (!link) fp@2685: goto out; /* No link detected */ fp@2685: fp@2685: mac->get_link_status = false; fp@2685: fp@2685: /* Check if there was DownShift, must be checked fp@2685: * immediately after link-up fp@2685: */ fp@2685: igb_check_downshift(hw); fp@2685: fp@2685: /* If we are forcing speed/duplex, then we simply return since fp@2685: * we have already determined whether we have link or not. fp@2685: */ fp@2685: if (!mac->autoneg) { fp@2685: ret_val = -E1000_ERR_CONFIG; fp@2685: goto out; fp@2685: } fp@2685: fp@2685: /* Auto-Neg is enabled. Auto Speed Detection takes care fp@2685: * of MAC speed/duplex configuration. So we only need to fp@2685: * configure Collision Distance in the MAC. fp@2685: */ fp@2685: igb_config_collision_dist(hw); fp@2685: fp@2685: /* Configure Flow Control now that Auto-Neg has completed. fp@2685: * First, we need to restore the desired flow control fp@2685: * settings because we may have had to re-autoneg with a fp@2685: * different link partner. fp@2685: */ fp@2685: ret_val = igb_config_fc_after_link_up(hw); fp@2685: if (ret_val) fp@2685: hw_dbg("Error configuring flow control\n"); fp@2685: fp@2685: out: fp@2685: return ret_val; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_setup_link - Setup flow control and link settings fp@2685: * @hw: pointer to the HW structure fp@2685: * fp@2685: * Determines which flow control settings to use, then configures flow fp@2685: * control. Calls the appropriate media-specific link configuration fp@2685: * function. Assuming the adapter has a valid link partner, a valid link fp@2685: * should be established. Assumes the hardware has previously been reset fp@2685: * and the transmitter and receiver are not enabled. fp@2685: **/ fp@2685: s32 igb_setup_link(struct e1000_hw *hw) fp@2685: { fp@2685: s32 ret_val = 0; fp@2685: fp@2685: /* In the case of the phy reset being blocked, we already have a link. fp@2685: * We do not need to set it up again. fp@2685: */ fp@2685: if (igb_check_reset_block(hw)) fp@2685: goto out; fp@2685: fp@2685: /* If requested flow control is set to default, set flow control fp@2685: * based on the EEPROM flow control settings. fp@2685: */ fp@2685: if (hw->fc.requested_mode == e1000_fc_default) { fp@2685: ret_val = igb_set_default_fc(hw); fp@2685: if (ret_val) fp@2685: goto out; fp@2685: } fp@2685: fp@2685: /* We want to save off the original Flow Control configuration just fp@2685: * in case we get disconnected and then reconnected into a different fp@2685: * hub or switch with different Flow Control capabilities. fp@2685: */ fp@2685: hw->fc.current_mode = hw->fc.requested_mode; fp@2685: fp@2685: hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode); fp@2685: fp@2685: /* Call the necessary media_type subroutine to configure the link. */ fp@2685: ret_val = hw->mac.ops.setup_physical_interface(hw); fp@2685: if (ret_val) fp@2685: goto out; fp@2685: fp@2685: /* Initialize the flow control address, type, and PAUSE timer fp@2685: * registers to their default values. This is done even if flow fp@2685: * control is disabled, because it does not hurt anything to fp@2685: * initialize these registers. fp@2685: */ fp@2685: hw_dbg("Initializing the Flow Control address, type and timer regs\n"); fp@2685: wr32(E1000_FCT, FLOW_CONTROL_TYPE); fp@2685: wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH); fp@2685: wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW); fp@2685: fp@2685: wr32(E1000_FCTTV, hw->fc.pause_time); fp@2685: fp@2685: ret_val = igb_set_fc_watermarks(hw); fp@2685: fp@2685: out: fp@2685: fp@2685: return ret_val; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_config_collision_dist - Configure collision distance fp@2685: * @hw: pointer to the HW structure fp@2685: * fp@2685: * Configures the collision distance to the default value and is used fp@2685: * during link setup. Currently no func pointer exists and all fp@2685: * implementations are handled in the generic version of this function. fp@2685: **/ fp@2685: void igb_config_collision_dist(struct e1000_hw *hw) fp@2685: { fp@2685: u32 tctl; fp@2685: fp@2685: tctl = rd32(E1000_TCTL); fp@2685: fp@2685: tctl &= ~E1000_TCTL_COLD; fp@2685: tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; fp@2685: fp@2685: wr32(E1000_TCTL, tctl); fp@2685: wrfl(); fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_set_fc_watermarks - Set flow control high/low watermarks fp@2685: * @hw: pointer to the HW structure fp@2685: * fp@2685: * Sets the flow control high/low threshold (watermark) registers. If fp@2685: * flow control XON frame transmission is enabled, then set XON frame fp@2685: * tansmission as well. fp@2685: **/ fp@2685: static s32 igb_set_fc_watermarks(struct e1000_hw *hw) fp@2685: { fp@2685: s32 ret_val = 0; fp@2685: u32 fcrtl = 0, fcrth = 0; fp@2685: fp@2685: /* Set the flow control receive threshold registers. Normally, fp@2685: * these registers will be set to a default threshold that may be fp@2685: * adjusted later by the driver's runtime code. However, if the fp@2685: * ability to transmit pause frames is not enabled, then these fp@2685: * registers will be set to 0. fp@2685: */ fp@2685: if (hw->fc.current_mode & e1000_fc_tx_pause) { fp@2685: /* We need to set up the Receive Threshold high and low water fp@2685: * marks as well as (optionally) enabling the transmission of fp@2685: * XON frames. fp@2685: */ fp@2685: fcrtl = hw->fc.low_water; fp@2685: if (hw->fc.send_xon) fp@2685: fcrtl |= E1000_FCRTL_XONE; fp@2685: fp@2685: fcrth = hw->fc.high_water; fp@2685: } fp@2685: wr32(E1000_FCRTL, fcrtl); fp@2685: wr32(E1000_FCRTH, fcrth); fp@2685: fp@2685: return ret_val; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_set_default_fc - Set flow control default values fp@2685: * @hw: pointer to the HW structure fp@2685: * fp@2685: * Read the EEPROM for the default values for flow control and store the fp@2685: * values. fp@2685: **/ fp@2685: static s32 igb_set_default_fc(struct e1000_hw *hw) fp@2685: { fp@2685: s32 ret_val = 0; fp@2685: u16 lan_offset; fp@2685: u16 nvm_data; fp@2685: fp@2685: /* Read and store word 0x0F of the EEPROM. This word contains bits fp@2685: * that determine the hardware's default PAUSE (flow control) mode, fp@2685: * a bit that determines whether the HW defaults to enabling or fp@2685: * disabling auto-negotiation, and the direction of the fp@2685: * SW defined pins. If there is no SW over-ride of the flow fp@2685: * control setting, then the variable hw->fc will fp@2685: * be initialized based on a value in the EEPROM. fp@2685: */ fp@2685: if (hw->mac.type == e1000_i350) { fp@2685: lan_offset = NVM_82580_LAN_FUNC_OFFSET(hw->bus.func); fp@2685: ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG fp@2685: + lan_offset, 1, &nvm_data); fp@2685: } else { fp@2685: ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, fp@2685: 1, &nvm_data); fp@2685: } fp@2685: fp@2685: if (ret_val) { fp@2685: hw_dbg("NVM Read Error\n"); fp@2685: goto out; fp@2685: } fp@2685: fp@2685: if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0) fp@2685: hw->fc.requested_mode = e1000_fc_none; fp@2685: else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == fp@2685: NVM_WORD0F_ASM_DIR) fp@2685: hw->fc.requested_mode = e1000_fc_tx_pause; fp@2685: else fp@2685: hw->fc.requested_mode = e1000_fc_full; fp@2685: fp@2685: out: fp@2685: return ret_val; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_force_mac_fc - Force the MAC's flow control settings fp@2685: * @hw: pointer to the HW structure fp@2685: * fp@2685: * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the fp@2685: * device control register to reflect the adapter settings. TFCE and RFCE fp@2685: * need to be explicitly set by software when a copper PHY is used because fp@2685: * autonegotiation is managed by the PHY rather than the MAC. Software must fp@2685: * also configure these bits when link is forced on a fiber connection. fp@2685: **/ fp@2685: s32 igb_force_mac_fc(struct e1000_hw *hw) fp@2685: { fp@2685: u32 ctrl; fp@2685: s32 ret_val = 0; fp@2685: fp@2685: ctrl = rd32(E1000_CTRL); fp@2685: fp@2685: /* Because we didn't get link via the internal auto-negotiation fp@2685: * mechanism (we either forced link or we got link via PHY fp@2685: * auto-neg), we have to manually enable/disable transmit an fp@2685: * receive flow control. fp@2685: * fp@2685: * The "Case" statement below enables/disable flow control fp@2685: * according to the "hw->fc.current_mode" parameter. fp@2685: * fp@2685: * The possible values of the "fc" parameter are: fp@2685: * 0: Flow control is completely disabled fp@2685: * 1: Rx flow control is enabled (we can receive pause fp@2685: * frames but not send pause frames). fp@2685: * 2: Tx flow control is enabled (we can send pause frames fp@2685: * frames but we do not receive pause frames). fp@2685: * 3: Both Rx and TX flow control (symmetric) is enabled. fp@2685: * other: No other values should be possible at this point. fp@2685: */ fp@2685: hw_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode); fp@2685: fp@2685: switch (hw->fc.current_mode) { fp@2685: case e1000_fc_none: fp@2685: ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); fp@2685: break; fp@2685: case e1000_fc_rx_pause: fp@2685: ctrl &= (~E1000_CTRL_TFCE); fp@2685: ctrl |= E1000_CTRL_RFCE; fp@2685: break; fp@2685: case e1000_fc_tx_pause: fp@2685: ctrl &= (~E1000_CTRL_RFCE); fp@2685: ctrl |= E1000_CTRL_TFCE; fp@2685: break; fp@2685: case e1000_fc_full: fp@2685: ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); fp@2685: break; fp@2685: default: fp@2685: hw_dbg("Flow control param set incorrectly\n"); fp@2685: ret_val = -E1000_ERR_CONFIG; fp@2685: goto out; fp@2685: } fp@2685: fp@2685: wr32(E1000_CTRL, ctrl); fp@2685: fp@2685: out: fp@2685: return ret_val; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_config_fc_after_link_up - Configures flow control after link fp@2685: * @hw: pointer to the HW structure fp@2685: * fp@2685: * Checks the status of auto-negotiation after link up to ensure that the fp@2685: * speed and duplex were not forced. If the link needed to be forced, then fp@2685: * flow control needs to be forced also. If auto-negotiation is enabled fp@2685: * and did not fail, then we configure flow control based on our link fp@2685: * partner. fp@2685: **/ fp@2685: s32 igb_config_fc_after_link_up(struct e1000_hw *hw) fp@2685: { fp@2685: struct e1000_mac_info *mac = &hw->mac; fp@2685: s32 ret_val = 0; fp@2685: u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg; fp@2685: u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg; fp@2685: u16 speed, duplex; fp@2685: fp@2685: /* Check for the case where we have fiber media and auto-neg failed fp@2685: * so we had to force link. In this case, we need to force the fp@2685: * configuration of the MAC to match the "fc" parameter. fp@2685: */ fp@2685: if (mac->autoneg_failed) { fp@2685: if (hw->phy.media_type == e1000_media_type_internal_serdes) fp@2685: ret_val = igb_force_mac_fc(hw); fp@2685: } else { fp@2685: if (hw->phy.media_type == e1000_media_type_copper) fp@2685: ret_val = igb_force_mac_fc(hw); fp@2685: } fp@2685: fp@2685: if (ret_val) { fp@2685: hw_dbg("Error forcing flow control settings\n"); fp@2685: goto out; fp@2685: } fp@2685: fp@2685: /* Check for the case where we have copper media and auto-neg is fp@2685: * enabled. In this case, we need to check and see if Auto-Neg fp@2685: * has completed, and if so, how the PHY and link partner has fp@2685: * flow control configured. fp@2685: */ fp@2685: if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) { fp@2685: /* Read the MII Status Register and check to see if AutoNeg fp@2685: * has completed. We read this twice because this reg has fp@2685: * some "sticky" (latched) bits. fp@2685: */ fp@2685: ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, fp@2685: &mii_status_reg); fp@2685: if (ret_val) fp@2685: goto out; fp@2685: ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, fp@2685: &mii_status_reg); fp@2685: if (ret_val) fp@2685: goto out; fp@2685: fp@2685: if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) { fp@2685: hw_dbg("Copper PHY and Auto Neg has not completed.\n"); fp@2685: goto out; fp@2685: } fp@2685: fp@2685: /* The AutoNeg process has completed, so we now need to fp@2685: * read both the Auto Negotiation Advertisement fp@2685: * Register (Address 4) and the Auto_Negotiation Base fp@2685: * Page Ability Register (Address 5) to determine how fp@2685: * flow control was negotiated. fp@2685: */ fp@2685: ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV, fp@2685: &mii_nway_adv_reg); fp@2685: if (ret_val) fp@2685: goto out; fp@2685: ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY, fp@2685: &mii_nway_lp_ability_reg); fp@2685: if (ret_val) fp@2685: goto out; fp@2685: fp@2685: /* Two bits in the Auto Negotiation Advertisement Register fp@2685: * (Address 4) and two bits in the Auto Negotiation Base fp@2685: * Page Ability Register (Address 5) determine flow control fp@2685: * for both the PHY and the link partner. The following fp@2685: * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, fp@2685: * 1999, describes these PAUSE resolution bits and how flow fp@2685: * control is determined based upon these settings. fp@2685: * NOTE: DC = Don't Care fp@2685: * fp@2685: * LOCAL DEVICE | LINK PARTNER fp@2685: * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution fp@2685: *-------|---------|-------|---------|-------------------- fp@2685: * 0 | 0 | DC | DC | e1000_fc_none fp@2685: * 0 | 1 | 0 | DC | e1000_fc_none fp@2685: * 0 | 1 | 1 | 0 | e1000_fc_none fp@2685: * 0 | 1 | 1 | 1 | e1000_fc_tx_pause fp@2685: * 1 | 0 | 0 | DC | e1000_fc_none fp@2685: * 1 | DC | 1 | DC | e1000_fc_full fp@2685: * 1 | 1 | 0 | 0 | e1000_fc_none fp@2685: * 1 | 1 | 0 | 1 | e1000_fc_rx_pause fp@2685: * fp@2685: * Are both PAUSE bits set to 1? If so, this implies fp@2685: * Symmetric Flow Control is enabled at both ends. The fp@2685: * ASM_DIR bits are irrelevant per the spec. fp@2685: * fp@2685: * For Symmetric Flow Control: fp@2685: * fp@2685: * LOCAL DEVICE | LINK PARTNER fp@2685: * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result fp@2685: *-------|---------|-------|---------|-------------------- fp@2685: * 1 | DC | 1 | DC | E1000_fc_full fp@2685: * fp@2685: */ fp@2685: if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && fp@2685: (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { fp@2685: /* Now we need to check if the user selected RX ONLY fp@2685: * of pause frames. In this case, we had to advertise fp@2685: * FULL flow control because we could not advertise RX fp@2685: * ONLY. Hence, we must now check to see if we need to fp@2685: * turn OFF the TRANSMISSION of PAUSE frames. fp@2685: */ fp@2685: if (hw->fc.requested_mode == e1000_fc_full) { fp@2685: hw->fc.current_mode = e1000_fc_full; fp@2685: hw_dbg("Flow Control = FULL.\n"); fp@2685: } else { fp@2685: hw->fc.current_mode = e1000_fc_rx_pause; fp@2685: hw_dbg("Flow Control = RX PAUSE frames only.\n"); fp@2685: } fp@2685: } fp@2685: /* For receiving PAUSE frames ONLY. fp@2685: * fp@2685: * LOCAL DEVICE | LINK PARTNER fp@2685: * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result fp@2685: *-------|---------|-------|---------|-------------------- fp@2685: * 0 | 1 | 1 | 1 | e1000_fc_tx_pause fp@2685: */ fp@2685: else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && fp@2685: (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && fp@2685: (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && fp@2685: (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { fp@2685: hw->fc.current_mode = e1000_fc_tx_pause; fp@2685: hw_dbg("Flow Control = TX PAUSE frames only.\n"); fp@2685: } fp@2685: /* For transmitting PAUSE frames ONLY. fp@2685: * fp@2685: * LOCAL DEVICE | LINK PARTNER fp@2685: * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result fp@2685: *-------|---------|-------|---------|-------------------- fp@2685: * 1 | 1 | 0 | 1 | e1000_fc_rx_pause fp@2685: */ fp@2685: else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && fp@2685: (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && fp@2685: !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && fp@2685: (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { fp@2685: hw->fc.current_mode = e1000_fc_rx_pause; fp@2685: hw_dbg("Flow Control = RX PAUSE frames only.\n"); fp@2685: } fp@2685: /* Per the IEEE spec, at this point flow control should be fp@2685: * disabled. However, we want to consider that we could fp@2685: * be connected to a legacy switch that doesn't advertise fp@2685: * desired flow control, but can be forced on the link fp@2685: * partner. So if we advertised no flow control, that is fp@2685: * what we will resolve to. If we advertised some kind of fp@2685: * receive capability (Rx Pause Only or Full Flow Control) fp@2685: * and the link partner advertised none, we will configure fp@2685: * ourselves to enable Rx Flow Control only. We can do fp@2685: * this safely for two reasons: If the link partner really fp@2685: * didn't want flow control enabled, and we enable Rx, no fp@2685: * harm done since we won't be receiving any PAUSE frames fp@2685: * anyway. If the intent on the link partner was to have fp@2685: * flow control enabled, then by us enabling RX only, we fp@2685: * can at least receive pause frames and process them. fp@2685: * This is a good idea because in most cases, since we are fp@2685: * predominantly a server NIC, more times than not we will fp@2685: * be asked to delay transmission of packets than asking fp@2685: * our link partner to pause transmission of frames. fp@2685: */ fp@2685: else if ((hw->fc.requested_mode == e1000_fc_none) || fp@2685: (hw->fc.requested_mode == e1000_fc_tx_pause) || fp@2685: (hw->fc.strict_ieee)) { fp@2685: hw->fc.current_mode = e1000_fc_none; fp@2685: hw_dbg("Flow Control = NONE.\n"); fp@2685: } else { fp@2685: hw->fc.current_mode = e1000_fc_rx_pause; fp@2685: hw_dbg("Flow Control = RX PAUSE frames only.\n"); fp@2685: } fp@2685: fp@2685: /* Now we need to do one last check... If we auto- fp@2685: * negotiated to HALF DUPLEX, flow control should not be fp@2685: * enabled per IEEE 802.3 spec. fp@2685: */ fp@2685: ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex); fp@2685: if (ret_val) { fp@2685: hw_dbg("Error getting link speed and duplex\n"); fp@2685: goto out; fp@2685: } fp@2685: fp@2685: if (duplex == HALF_DUPLEX) fp@2685: hw->fc.current_mode = e1000_fc_none; fp@2685: fp@2685: /* Now we call a subroutine to actually force the MAC fp@2685: * controller to use the correct flow control settings. fp@2685: */ fp@2685: ret_val = igb_force_mac_fc(hw); fp@2685: if (ret_val) { fp@2685: hw_dbg("Error forcing flow control settings\n"); fp@2685: goto out; fp@2685: } fp@2685: } fp@2685: /* Check for the case where we have SerDes media and auto-neg is fp@2685: * enabled. In this case, we need to check and see if Auto-Neg fp@2685: * has completed, and if so, how the PHY and link partner has fp@2685: * flow control configured. fp@2685: */ fp@2685: if ((hw->phy.media_type == e1000_media_type_internal_serdes) fp@2685: && mac->autoneg) { fp@2685: /* Read the PCS_LSTS and check to see if AutoNeg fp@2685: * has completed. fp@2685: */ fp@2685: pcs_status_reg = rd32(E1000_PCS_LSTAT); fp@2685: fp@2685: if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) { fp@2685: hw_dbg("PCS Auto Neg has not completed.\n"); fp@2685: return ret_val; fp@2685: } fp@2685: fp@2685: /* The AutoNeg process has completed, so we now need to fp@2685: * read both the Auto Negotiation Advertisement fp@2685: * Register (PCS_ANADV) and the Auto_Negotiation Base fp@2685: * Page Ability Register (PCS_LPAB) to determine how fp@2685: * flow control was negotiated. fp@2685: */ fp@2685: pcs_adv_reg = rd32(E1000_PCS_ANADV); fp@2685: pcs_lp_ability_reg = rd32(E1000_PCS_LPAB); fp@2685: fp@2685: /* Two bits in the Auto Negotiation Advertisement Register fp@2685: * (PCS_ANADV) and two bits in the Auto Negotiation Base fp@2685: * Page Ability Register (PCS_LPAB) determine flow control fp@2685: * for both the PHY and the link partner. The following fp@2685: * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, fp@2685: * 1999, describes these PAUSE resolution bits and how flow fp@2685: * control is determined based upon these settings. fp@2685: * NOTE: DC = Don't Care fp@2685: * fp@2685: * LOCAL DEVICE | LINK PARTNER fp@2685: * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution fp@2685: *-------|---------|-------|---------|-------------------- fp@2685: * 0 | 0 | DC | DC | e1000_fc_none fp@2685: * 0 | 1 | 0 | DC | e1000_fc_none fp@2685: * 0 | 1 | 1 | 0 | e1000_fc_none fp@2685: * 0 | 1 | 1 | 1 | e1000_fc_tx_pause fp@2685: * 1 | 0 | 0 | DC | e1000_fc_none fp@2685: * 1 | DC | 1 | DC | e1000_fc_full fp@2685: * 1 | 1 | 0 | 0 | e1000_fc_none fp@2685: * 1 | 1 | 0 | 1 | e1000_fc_rx_pause fp@2685: * fp@2685: * Are both PAUSE bits set to 1? If so, this implies fp@2685: * Symmetric Flow Control is enabled at both ends. The fp@2685: * ASM_DIR bits are irrelevant per the spec. fp@2685: * fp@2685: * For Symmetric Flow Control: fp@2685: * fp@2685: * LOCAL DEVICE | LINK PARTNER fp@2685: * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result fp@2685: *-------|---------|-------|---------|-------------------- fp@2685: * 1 | DC | 1 | DC | e1000_fc_full fp@2685: * fp@2685: */ fp@2685: if ((pcs_adv_reg & E1000_TXCW_PAUSE) && fp@2685: (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) { fp@2685: /* Now we need to check if the user selected Rx ONLY fp@2685: * of pause frames. In this case, we had to advertise fp@2685: * FULL flow control because we could not advertise Rx fp@2685: * ONLY. Hence, we must now check to see if we need to fp@2685: * turn OFF the TRANSMISSION of PAUSE frames. fp@2685: */ fp@2685: if (hw->fc.requested_mode == e1000_fc_full) { fp@2685: hw->fc.current_mode = e1000_fc_full; fp@2685: hw_dbg("Flow Control = FULL.\n"); fp@2685: } else { fp@2685: hw->fc.current_mode = e1000_fc_rx_pause; fp@2685: hw_dbg("Flow Control = Rx PAUSE frames only.\n"); fp@2685: } fp@2685: } fp@2685: /* For receiving PAUSE frames ONLY. fp@2685: * fp@2685: * LOCAL DEVICE | LINK PARTNER fp@2685: * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result fp@2685: *-------|---------|-------|---------|-------------------- fp@2685: * 0 | 1 | 1 | 1 | e1000_fc_tx_pause fp@2685: */ fp@2685: else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) && fp@2685: (pcs_adv_reg & E1000_TXCW_ASM_DIR) && fp@2685: (pcs_lp_ability_reg & E1000_TXCW_PAUSE) && fp@2685: (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) { fp@2685: hw->fc.current_mode = e1000_fc_tx_pause; fp@2685: hw_dbg("Flow Control = Tx PAUSE frames only.\n"); fp@2685: } fp@2685: /* For transmitting PAUSE frames ONLY. fp@2685: * fp@2685: * LOCAL DEVICE | LINK PARTNER fp@2685: * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result fp@2685: *-------|---------|-------|---------|-------------------- fp@2685: * 1 | 1 | 0 | 1 | e1000_fc_rx_pause fp@2685: */ fp@2685: else if ((pcs_adv_reg & E1000_TXCW_PAUSE) && fp@2685: (pcs_adv_reg & E1000_TXCW_ASM_DIR) && fp@2685: !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) && fp@2685: (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) { fp@2685: hw->fc.current_mode = e1000_fc_rx_pause; fp@2685: hw_dbg("Flow Control = Rx PAUSE frames only.\n"); fp@2685: } else { fp@2685: /* Per the IEEE spec, at this point flow control fp@2685: * should be disabled. fp@2685: */ fp@2685: hw->fc.current_mode = e1000_fc_none; fp@2685: hw_dbg("Flow Control = NONE.\n"); fp@2685: } fp@2685: fp@2685: /* Now we call a subroutine to actually force the MAC fp@2685: * controller to use the correct flow control settings. fp@2685: */ fp@2685: pcs_ctrl_reg = rd32(E1000_PCS_LCTL); fp@2685: pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL; fp@2685: wr32(E1000_PCS_LCTL, pcs_ctrl_reg); fp@2685: fp@2685: ret_val = igb_force_mac_fc(hw); fp@2685: if (ret_val) { fp@2685: hw_dbg("Error forcing flow control settings\n"); fp@2685: return ret_val; fp@2685: } fp@2685: } fp@2685: fp@2685: out: fp@2685: return ret_val; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_get_speed_and_duplex_copper - Retrieve current speed/duplex fp@2685: * @hw: pointer to the HW structure fp@2685: * @speed: stores the current speed fp@2685: * @duplex: stores the current duplex fp@2685: * fp@2685: * Read the status register for the current speed/duplex and store the current fp@2685: * speed and duplex for copper connections. fp@2685: **/ fp@2685: s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, fp@2685: u16 *duplex) fp@2685: { fp@2685: u32 status; fp@2685: fp@2685: status = rd32(E1000_STATUS); fp@2685: if (status & E1000_STATUS_SPEED_1000) { fp@2685: *speed = SPEED_1000; fp@2685: hw_dbg("1000 Mbs, "); fp@2685: } else if (status & E1000_STATUS_SPEED_100) { fp@2685: *speed = SPEED_100; fp@2685: hw_dbg("100 Mbs, "); fp@2685: } else { fp@2685: *speed = SPEED_10; fp@2685: hw_dbg("10 Mbs, "); fp@2685: } fp@2685: fp@2685: if (status & E1000_STATUS_FD) { fp@2685: *duplex = FULL_DUPLEX; fp@2685: hw_dbg("Full Duplex\n"); fp@2685: } else { fp@2685: *duplex = HALF_DUPLEX; fp@2685: hw_dbg("Half Duplex\n"); fp@2685: } fp@2685: fp@2685: return 0; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_get_hw_semaphore - Acquire hardware semaphore fp@2685: * @hw: pointer to the HW structure fp@2685: * fp@2685: * Acquire the HW semaphore to access the PHY or NVM fp@2685: **/ fp@2685: s32 igb_get_hw_semaphore(struct e1000_hw *hw) fp@2685: { fp@2685: u32 swsm; fp@2685: s32 ret_val = 0; fp@2685: s32 timeout = hw->nvm.word_size + 1; fp@2685: s32 i = 0; fp@2685: fp@2685: /* Get the SW semaphore */ fp@2685: while (i < timeout) { fp@2685: swsm = rd32(E1000_SWSM); fp@2685: if (!(swsm & E1000_SWSM_SMBI)) fp@2685: break; fp@2685: fp@2685: udelay(50); fp@2685: i++; fp@2685: } fp@2685: fp@2685: if (i == timeout) { fp@2685: hw_dbg("Driver can't access device - SMBI bit is set.\n"); fp@2685: ret_val = -E1000_ERR_NVM; fp@2685: goto out; fp@2685: } fp@2685: fp@2685: /* Get the FW semaphore. */ fp@2685: for (i = 0; i < timeout; i++) { fp@2685: swsm = rd32(E1000_SWSM); fp@2685: wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI); fp@2685: fp@2685: /* Semaphore acquired if bit latched */ fp@2685: if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI) fp@2685: break; fp@2685: fp@2685: udelay(50); fp@2685: } fp@2685: fp@2685: if (i == timeout) { fp@2685: /* Release semaphores */ fp@2685: igb_put_hw_semaphore(hw); fp@2685: hw_dbg("Driver can't access the NVM\n"); fp@2685: ret_val = -E1000_ERR_NVM; fp@2685: goto out; fp@2685: } fp@2685: fp@2685: out: fp@2685: return ret_val; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_put_hw_semaphore - Release hardware semaphore fp@2685: * @hw: pointer to the HW structure fp@2685: * fp@2685: * Release hardware semaphore used to access the PHY or NVM fp@2685: **/ fp@2685: void igb_put_hw_semaphore(struct e1000_hw *hw) fp@2685: { fp@2685: u32 swsm; fp@2685: fp@2685: swsm = rd32(E1000_SWSM); fp@2685: fp@2685: swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); fp@2685: fp@2685: wr32(E1000_SWSM, swsm); fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_get_auto_rd_done - Check for auto read completion fp@2685: * @hw: pointer to the HW structure fp@2685: * fp@2685: * Check EEPROM for Auto Read done bit. fp@2685: **/ fp@2685: s32 igb_get_auto_rd_done(struct e1000_hw *hw) fp@2685: { fp@2685: s32 i = 0; fp@2685: s32 ret_val = 0; fp@2685: fp@2685: fp@2685: while (i < AUTO_READ_DONE_TIMEOUT) { fp@2685: if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD) fp@2685: break; fp@2685: usleep_range(1000, 2000); fp@2685: i++; fp@2685: } fp@2685: fp@2685: if (i == AUTO_READ_DONE_TIMEOUT) { fp@2685: hw_dbg("Auto read by HW from NVM has not completed.\n"); fp@2685: ret_val = -E1000_ERR_RESET; fp@2685: goto out; fp@2685: } fp@2685: fp@2685: out: fp@2685: return ret_val; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_valid_led_default - Verify a valid default LED config fp@2685: * @hw: pointer to the HW structure fp@2685: * @data: pointer to the NVM (EEPROM) fp@2685: * fp@2685: * Read the EEPROM for the current default LED configuration. If the fp@2685: * LED configuration is not valid, set to a valid LED configuration. fp@2685: **/ fp@2685: static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data) fp@2685: { fp@2685: s32 ret_val; fp@2685: fp@2685: ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); fp@2685: if (ret_val) { fp@2685: hw_dbg("NVM Read Error\n"); fp@2685: goto out; fp@2685: } fp@2685: fp@2685: if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) { fp@2685: switch (hw->phy.media_type) { fp@2685: case e1000_media_type_internal_serdes: fp@2685: *data = ID_LED_DEFAULT_82575_SERDES; fp@2685: break; fp@2685: case e1000_media_type_copper: fp@2685: default: fp@2685: *data = ID_LED_DEFAULT; fp@2685: break; fp@2685: } fp@2685: } fp@2685: out: fp@2685: return ret_val; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_id_led_init - fp@2685: * @hw: pointer to the HW structure fp@2685: * fp@2685: **/ fp@2685: s32 igb_id_led_init(struct e1000_hw *hw) fp@2685: { fp@2685: struct e1000_mac_info *mac = &hw->mac; fp@2685: s32 ret_val; fp@2685: const u32 ledctl_mask = 0x000000FF; fp@2685: const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; fp@2685: const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; fp@2685: u16 data, i, temp; fp@2685: const u16 led_mask = 0x0F; fp@2685: fp@2685: /* i210 and i211 devices have different LED mechanism */ fp@2685: if ((hw->mac.type == e1000_i210) || fp@2685: (hw->mac.type == e1000_i211)) fp@2685: ret_val = igb_valid_led_default_i210(hw, &data); fp@2685: else fp@2685: ret_val = igb_valid_led_default(hw, &data); fp@2685: fp@2685: if (ret_val) fp@2685: goto out; fp@2685: fp@2685: mac->ledctl_default = rd32(E1000_LEDCTL); fp@2685: mac->ledctl_mode1 = mac->ledctl_default; fp@2685: mac->ledctl_mode2 = mac->ledctl_default; fp@2685: fp@2685: for (i = 0; i < 4; i++) { fp@2685: temp = (data >> (i << 2)) & led_mask; fp@2685: switch (temp) { fp@2685: case ID_LED_ON1_DEF2: fp@2685: case ID_LED_ON1_ON2: fp@2685: case ID_LED_ON1_OFF2: fp@2685: mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); fp@2685: mac->ledctl_mode1 |= ledctl_on << (i << 3); fp@2685: break; fp@2685: case ID_LED_OFF1_DEF2: fp@2685: case ID_LED_OFF1_ON2: fp@2685: case ID_LED_OFF1_OFF2: fp@2685: mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); fp@2685: mac->ledctl_mode1 |= ledctl_off << (i << 3); fp@2685: break; fp@2685: default: fp@2685: /* Do nothing */ fp@2685: break; fp@2685: } fp@2685: switch (temp) { fp@2685: case ID_LED_DEF1_ON2: fp@2685: case ID_LED_ON1_ON2: fp@2685: case ID_LED_OFF1_ON2: fp@2685: mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); fp@2685: mac->ledctl_mode2 |= ledctl_on << (i << 3); fp@2685: break; fp@2685: case ID_LED_DEF1_OFF2: fp@2685: case ID_LED_ON1_OFF2: fp@2685: case ID_LED_OFF1_OFF2: fp@2685: mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); fp@2685: mac->ledctl_mode2 |= ledctl_off << (i << 3); fp@2685: break; fp@2685: default: fp@2685: /* Do nothing */ fp@2685: break; fp@2685: } fp@2685: } fp@2685: fp@2685: out: fp@2685: return ret_val; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_cleanup_led - Set LED config to default operation fp@2685: * @hw: pointer to the HW structure fp@2685: * fp@2685: * Remove the current LED configuration and set the LED configuration fp@2685: * to the default value, saved from the EEPROM. fp@2685: **/ fp@2685: s32 igb_cleanup_led(struct e1000_hw *hw) fp@2685: { fp@2685: wr32(E1000_LEDCTL, hw->mac.ledctl_default); fp@2685: return 0; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_blink_led - Blink LED fp@2685: * @hw: pointer to the HW structure fp@2685: * fp@2685: * Blink the led's which are set to be on. fp@2685: **/ fp@2685: s32 igb_blink_led(struct e1000_hw *hw) fp@2685: { fp@2685: u32 ledctl_blink = 0; fp@2685: u32 i; fp@2685: fp@2685: if (hw->phy.media_type == e1000_media_type_fiber) { fp@2685: /* always blink LED0 for PCI-E fiber */ fp@2685: ledctl_blink = E1000_LEDCTL_LED0_BLINK | fp@2685: (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); fp@2685: } else { fp@2685: /* Set the blink bit for each LED that's "on" (0x0E) fp@2685: * (or "off" if inverted) in ledctl_mode2. The blink fp@2685: * logic in hardware only works when mode is set to "on" fp@2685: * so it must be changed accordingly when the mode is fp@2685: * "off" and inverted. fp@2685: */ fp@2685: ledctl_blink = hw->mac.ledctl_mode2; fp@2685: for (i = 0; i < 32; i += 8) { fp@2685: u32 mode = (hw->mac.ledctl_mode2 >> i) & fp@2685: E1000_LEDCTL_LED0_MODE_MASK; fp@2685: u32 led_default = hw->mac.ledctl_default >> i; fp@2685: fp@2685: if ((!(led_default & E1000_LEDCTL_LED0_IVRT) && fp@2685: (mode == E1000_LEDCTL_MODE_LED_ON)) || fp@2685: ((led_default & E1000_LEDCTL_LED0_IVRT) && fp@2685: (mode == E1000_LEDCTL_MODE_LED_OFF))) { fp@2685: ledctl_blink &= fp@2685: ~(E1000_LEDCTL_LED0_MODE_MASK << i); fp@2685: ledctl_blink |= (E1000_LEDCTL_LED0_BLINK | fp@2685: E1000_LEDCTL_MODE_LED_ON) << i; fp@2685: } fp@2685: } fp@2685: } fp@2685: fp@2685: wr32(E1000_LEDCTL, ledctl_blink); fp@2685: fp@2685: return 0; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_led_off - Turn LED off fp@2685: * @hw: pointer to the HW structure fp@2685: * fp@2685: * Turn LED off. fp@2685: **/ fp@2685: s32 igb_led_off(struct e1000_hw *hw) fp@2685: { fp@2685: switch (hw->phy.media_type) { fp@2685: case e1000_media_type_copper: fp@2685: wr32(E1000_LEDCTL, hw->mac.ledctl_mode1); fp@2685: break; fp@2685: default: fp@2685: break; fp@2685: } fp@2685: fp@2685: return 0; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_disable_pcie_master - Disables PCI-express master access fp@2685: * @hw: pointer to the HW structure fp@2685: * fp@2685: * Returns 0 (0) if successful, else returns -10 fp@2685: * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused fp@2685: * the master requests to be disabled. fp@2685: * fp@2685: * Disables PCI-Express master access and verifies there are no pending fp@2685: * requests. fp@2685: **/ fp@2685: s32 igb_disable_pcie_master(struct e1000_hw *hw) fp@2685: { fp@2685: u32 ctrl; fp@2685: s32 timeout = MASTER_DISABLE_TIMEOUT; fp@2685: s32 ret_val = 0; fp@2685: fp@2685: if (hw->bus.type != e1000_bus_type_pci_express) fp@2685: goto out; fp@2685: fp@2685: ctrl = rd32(E1000_CTRL); fp@2685: ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; fp@2685: wr32(E1000_CTRL, ctrl); fp@2685: fp@2685: while (timeout) { fp@2685: if (!(rd32(E1000_STATUS) & fp@2685: E1000_STATUS_GIO_MASTER_ENABLE)) fp@2685: break; fp@2685: udelay(100); fp@2685: timeout--; fp@2685: } fp@2685: fp@2685: if (!timeout) { fp@2685: hw_dbg("Master requests are pending.\n"); fp@2685: ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING; fp@2685: goto out; fp@2685: } fp@2685: fp@2685: out: fp@2685: return ret_val; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_validate_mdi_setting - Verify MDI/MDIx settings fp@2685: * @hw: pointer to the HW structure fp@2685: * fp@2685: * Verify that when not using auto-negotitation that MDI/MDIx is correctly fp@2685: * set, which is forced to MDI mode only. fp@2685: **/ fp@2685: s32 igb_validate_mdi_setting(struct e1000_hw *hw) fp@2685: { fp@2685: s32 ret_val = 0; fp@2685: fp@2685: /* All MDI settings are supported on 82580 and newer. */ fp@2685: if (hw->mac.type >= e1000_82580) fp@2685: goto out; fp@2685: fp@2685: if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) { fp@2685: hw_dbg("Invalid MDI setting detected\n"); fp@2685: hw->phy.mdix = 1; fp@2685: ret_val = -E1000_ERR_CONFIG; fp@2685: goto out; fp@2685: } fp@2685: fp@2685: out: fp@2685: return ret_val; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_write_8bit_ctrl_reg - Write a 8bit CTRL register fp@2685: * @hw: pointer to the HW structure fp@2685: * @reg: 32bit register offset such as E1000_SCTL fp@2685: * @offset: register offset to write to fp@2685: * @data: data to write at register offset fp@2685: * fp@2685: * Writes an address/data control type register. There are several of these fp@2685: * and they all have the format address << 8 | data and bit 31 is polled for fp@2685: * completion. fp@2685: **/ fp@2685: s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, fp@2685: u32 offset, u8 data) fp@2685: { fp@2685: u32 i, regvalue = 0; fp@2685: s32 ret_val = 0; fp@2685: fp@2685: /* Set up the address and data */ fp@2685: regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT); fp@2685: wr32(reg, regvalue); fp@2685: fp@2685: /* Poll the ready bit to see if the MDI read completed */ fp@2685: for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) { fp@2685: udelay(5); fp@2685: regvalue = rd32(reg); fp@2685: if (regvalue & E1000_GEN_CTL_READY) fp@2685: break; fp@2685: } fp@2685: if (!(regvalue & E1000_GEN_CTL_READY)) { fp@2685: hw_dbg("Reg %08x did not indicate ready\n", reg); fp@2685: ret_val = -E1000_ERR_PHY; fp@2685: goto out; fp@2685: } fp@2685: fp@2685: out: fp@2685: return ret_val; fp@2685: } fp@2685: fp@2685: /** fp@2685: * igb_enable_mng_pass_thru - Enable processing of ARP's fp@2685: * @hw: pointer to the HW structure fp@2685: * fp@2685: * Verifies the hardware needs to leave interface enabled so that frames can fp@2685: * be directed to and from the management interface. fp@2685: **/ fp@2685: bool igb_enable_mng_pass_thru(struct e1000_hw *hw) fp@2685: { fp@2685: u32 manc; fp@2685: u32 fwsm, factps; fp@2685: bool ret_val = false; fp@2685: fp@2685: if (!hw->mac.asf_firmware_present) fp@2685: goto out; fp@2685: fp@2685: manc = rd32(E1000_MANC); fp@2685: fp@2685: if (!(manc & E1000_MANC_RCV_TCO_EN)) fp@2685: goto out; fp@2685: fp@2685: if (hw->mac.arc_subsystem_valid) { fp@2685: fwsm = rd32(E1000_FWSM); fp@2685: factps = rd32(E1000_FACTPS); fp@2685: fp@2685: if (!(factps & E1000_FACTPS_MNGCG) && fp@2685: ((fwsm & E1000_FWSM_MODE_MASK) == fp@2685: (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) { fp@2685: ret_val = true; fp@2685: goto out; fp@2685: } fp@2685: } else { fp@2685: if ((manc & E1000_MANC_SMBUS_EN) && fp@2685: !(manc & E1000_MANC_ASF_EN)) { fp@2685: ret_val = true; fp@2685: goto out; fp@2685: } fp@2685: } fp@2685: fp@2685: out: fp@2685: return ret_val; fp@2685: }