fp@673: /******************************************************************************* fp@673: fp@673: fp@673: Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. fp@673: fp@673: This program is free software; you can redistribute it and/or modify it fp@673: under the terms of the GNU General Public License as published by the Free fp@673: Software Foundation; either version 2 of the License, or (at your option) fp@673: any later version. fp@673: fp@673: This program is distributed in the hope that it will be useful, but WITHOUT fp@673: ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or fp@673: FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for fp@673: more details. fp@673: fp@673: You should have received a copy of the GNU General Public License along with fp@673: this program; if not, write to the Free Software Foundation, Inc., 59 fp@673: Temple Place - Suite 330, Boston, MA 02111-1307, USA. fp@673: fp@673: The full GNU General Public License is included in this distribution in the fp@673: file called LICENSE. fp@673: fp@673: Contact Information: fp@673: Linux NICS fp@673: Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 fp@673: fp@673: *******************************************************************************/ fp@673: fp@673: /* ethtool support for e1000 */ fp@673: fp@673: #include "e1000-2.6.13-ethercat.h" fp@673: fp@673: #include fp@673: fp@673: extern char e1000_driver_name[]; fp@673: extern char e1000_driver_version[]; fp@673: fp@673: extern int e1000_up(struct e1000_adapter *adapter); fp@673: extern void e1000_down(struct e1000_adapter *adapter); fp@673: extern void e1000_reset(struct e1000_adapter *adapter); fp@673: extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx); fp@673: extern int e1000_setup_rx_resources(struct e1000_adapter *adapter); fp@673: extern int e1000_setup_tx_resources(struct e1000_adapter *adapter); fp@673: extern void e1000_free_rx_resources(struct e1000_adapter *adapter); fp@673: extern void e1000_free_tx_resources(struct e1000_adapter *adapter); fp@673: extern void e1000_update_stats(struct e1000_adapter *adapter); fp@673: fp@673: struct e1000_stats { fp@673: char stat_string[ETH_GSTRING_LEN]; fp@673: int sizeof_stat; fp@673: int stat_offset; fp@673: }; fp@673: fp@673: #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \ fp@673: offsetof(struct e1000_adapter, m) fp@673: static const struct e1000_stats e1000_gstrings_stats[] = { fp@673: { "rx_packets", E1000_STAT(net_stats.rx_packets) }, fp@673: { "tx_packets", E1000_STAT(net_stats.tx_packets) }, fp@673: { "rx_bytes", E1000_STAT(net_stats.rx_bytes) }, fp@673: { "tx_bytes", E1000_STAT(net_stats.tx_bytes) }, fp@673: { "rx_errors", E1000_STAT(net_stats.rx_errors) }, fp@673: { "tx_errors", E1000_STAT(net_stats.tx_errors) }, fp@673: { "rx_dropped", E1000_STAT(net_stats.rx_dropped) }, fp@673: { "tx_dropped", E1000_STAT(net_stats.tx_dropped) }, fp@673: { "multicast", E1000_STAT(net_stats.multicast) }, fp@673: { "collisions", E1000_STAT(net_stats.collisions) }, fp@673: { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) }, fp@673: { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) }, fp@673: { "rx_crc_errors", E1000_STAT(net_stats.rx_crc_errors) }, fp@673: { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) }, fp@673: { "rx_fifo_errors", E1000_STAT(net_stats.rx_fifo_errors) }, fp@673: { "rx_no_buffer_count", E1000_STAT(stats.rnbc) }, fp@673: { "rx_missed_errors", E1000_STAT(net_stats.rx_missed_errors) }, fp@673: { "tx_aborted_errors", E1000_STAT(net_stats.tx_aborted_errors) }, fp@673: { "tx_carrier_errors", E1000_STAT(net_stats.tx_carrier_errors) }, fp@673: { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) }, fp@673: { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) }, fp@673: { "tx_window_errors", E1000_STAT(net_stats.tx_window_errors) }, fp@673: { "tx_abort_late_coll", E1000_STAT(stats.latecol) }, fp@673: { "tx_deferred_ok", E1000_STAT(stats.dc) }, fp@673: { "tx_single_coll_ok", E1000_STAT(stats.scc) }, fp@673: { "tx_multi_coll_ok", E1000_STAT(stats.mcc) }, fp@673: { "rx_long_length_errors", E1000_STAT(stats.roc) }, fp@673: { "rx_short_length_errors", E1000_STAT(stats.ruc) }, fp@673: { "rx_align_errors", E1000_STAT(stats.algnerrc) }, fp@673: { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) }, fp@673: { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) }, fp@673: { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) }, fp@673: { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) }, fp@673: { "tx_flow_control_xon", E1000_STAT(stats.xontxc) }, fp@673: { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) }, fp@673: { "rx_long_byte_count", E1000_STAT(stats.gorcl) }, fp@673: { "rx_csum_offload_good", E1000_STAT(hw_csum_good) }, fp@673: { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) } fp@673: }; fp@673: #define E1000_STATS_LEN \ fp@673: sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats) fp@673: static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { fp@673: "Register test (offline)", "Eeprom test (offline)", fp@673: "Interrupt test (offline)", "Loopback test (offline)", fp@673: "Link test (on/offline)" fp@673: }; fp@673: #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN fp@673: fp@673: static int fp@673: e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd) fp@673: { fp@673: struct e1000_adapter *adapter = netdev_priv(netdev); fp@673: struct e1000_hw *hw = &adapter->hw; fp@673: fp@673: if(hw->media_type == e1000_media_type_copper) { fp@673: fp@673: ecmd->supported = (SUPPORTED_10baseT_Half | fp@673: SUPPORTED_10baseT_Full | fp@673: SUPPORTED_100baseT_Half | fp@673: SUPPORTED_100baseT_Full | fp@673: SUPPORTED_1000baseT_Full| fp@673: SUPPORTED_Autoneg | fp@673: SUPPORTED_TP); fp@673: fp@673: ecmd->advertising = ADVERTISED_TP; fp@673: fp@673: if(hw->autoneg == 1) { fp@673: ecmd->advertising |= ADVERTISED_Autoneg; fp@673: fp@673: /* the e1000 autoneg seems to match ethtool nicely */ fp@673: fp@673: ecmd->advertising |= hw->autoneg_advertised; fp@673: } fp@673: fp@673: ecmd->port = PORT_TP; fp@673: ecmd->phy_address = hw->phy_addr; fp@673: fp@673: if(hw->mac_type == e1000_82543) fp@673: ecmd->transceiver = XCVR_EXTERNAL; fp@673: else fp@673: ecmd->transceiver = XCVR_INTERNAL; fp@673: fp@673: } else { fp@673: ecmd->supported = (SUPPORTED_1000baseT_Full | fp@673: SUPPORTED_FIBRE | fp@673: SUPPORTED_Autoneg); fp@673: fp@673: ecmd->advertising = (ADVERTISED_1000baseT_Full | fp@673: ADVERTISED_FIBRE | fp@673: ADVERTISED_Autoneg); fp@673: fp@673: ecmd->port = PORT_FIBRE; fp@673: fp@673: if(hw->mac_type >= e1000_82545) fp@673: ecmd->transceiver = XCVR_INTERNAL; fp@673: else fp@673: ecmd->transceiver = XCVR_EXTERNAL; fp@673: } fp@673: fp@673: if ((adapter->ecdev && ecdev_get_link(adapter->ecdev)) fp@673: || (!adapter->ecdev && netif_carrier_ok(adapter->netdev))) { fp@673: e1000_get_speed_and_duplex(hw, &adapter->link_speed, fp@673: &adapter->link_duplex); fp@673: ecmd->speed = adapter->link_speed; fp@673: fp@673: /* unfortunatly FULL_DUPLEX != DUPLEX_FULL fp@673: * and HALF_DUPLEX != DUPLEX_HALF */ fp@673: fp@673: if(adapter->link_duplex == FULL_DUPLEX) fp@673: ecmd->duplex = DUPLEX_FULL; fp@673: else fp@673: ecmd->duplex = DUPLEX_HALF; fp@673: } else { fp@673: ecmd->speed = -1; fp@673: ecmd->duplex = -1; fp@673: } fp@673: fp@673: ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) || fp@673: hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; fp@673: return 0; fp@673: } fp@673: fp@673: static int fp@673: e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd) fp@673: { fp@673: struct e1000_adapter *adapter = netdev_priv(netdev); fp@673: struct e1000_hw *hw = &adapter->hw; fp@673: fp@673: if(ecmd->autoneg == AUTONEG_ENABLE) { fp@673: hw->autoneg = 1; fp@673: if(hw->media_type == e1000_media_type_fiber) fp@673: hw->autoneg_advertised = ADVERTISED_1000baseT_Full | fp@673: ADVERTISED_FIBRE | fp@673: ADVERTISED_Autoneg; fp@673: else fp@673: hw->autoneg_advertised = ADVERTISED_10baseT_Half | fp@673: ADVERTISED_10baseT_Full | fp@673: ADVERTISED_100baseT_Half | fp@673: ADVERTISED_100baseT_Full | fp@673: ADVERTISED_1000baseT_Full| fp@673: ADVERTISED_Autoneg | fp@673: ADVERTISED_TP; fp@673: ecmd->advertising = hw->autoneg_advertised; fp@673: } else fp@673: if(e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) fp@673: return -EINVAL; fp@673: fp@673: /* reset the link */ fp@673: fp@673: if (adapter->ecdev || netif_running(adapter->netdev)) { fp@673: e1000_down(adapter); fp@673: e1000_reset(adapter); fp@673: e1000_up(adapter); fp@673: } else fp@673: e1000_reset(adapter); fp@673: fp@673: return 0; fp@673: } fp@673: fp@673: static void fp@673: e1000_get_pauseparam(struct net_device *netdev, fp@673: struct ethtool_pauseparam *pause) fp@673: { fp@673: struct e1000_adapter *adapter = netdev_priv(netdev); fp@673: struct e1000_hw *hw = &adapter->hw; fp@673: fp@673: pause->autoneg = fp@673: (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); fp@673: fp@673: if(hw->fc == e1000_fc_rx_pause) fp@673: pause->rx_pause = 1; fp@673: else if(hw->fc == e1000_fc_tx_pause) fp@673: pause->tx_pause = 1; fp@673: else if(hw->fc == e1000_fc_full) { fp@673: pause->rx_pause = 1; fp@673: pause->tx_pause = 1; fp@673: } fp@673: } fp@673: fp@673: static int fp@673: e1000_set_pauseparam(struct net_device *netdev, fp@673: struct ethtool_pauseparam *pause) fp@673: { fp@673: struct e1000_adapter *adapter = netdev_priv(netdev); fp@673: struct e1000_hw *hw = &adapter->hw; fp@673: fp@673: adapter->fc_autoneg = pause->autoneg; fp@673: fp@673: if(pause->rx_pause && pause->tx_pause) fp@673: hw->fc = e1000_fc_full; fp@673: else if(pause->rx_pause && !pause->tx_pause) fp@673: hw->fc = e1000_fc_rx_pause; fp@673: else if(!pause->rx_pause && pause->tx_pause) fp@673: hw->fc = e1000_fc_tx_pause; fp@673: else if(!pause->rx_pause && !pause->tx_pause) fp@673: hw->fc = e1000_fc_none; fp@673: fp@673: hw->original_fc = hw->fc; fp@673: fp@673: if(adapter->fc_autoneg == AUTONEG_ENABLE) { fp@673: if (adapter->ecdev || netif_running(adapter->netdev)) { fp@673: e1000_down(adapter); fp@673: e1000_up(adapter); fp@673: } else fp@673: e1000_reset(adapter); fp@673: } fp@673: else fp@673: return ((hw->media_type == e1000_media_type_fiber) ? fp@673: e1000_setup_link(hw) : e1000_force_mac_fc(hw)); fp@673: fp@673: return 0; fp@673: } fp@673: fp@673: static uint32_t fp@673: e1000_get_rx_csum(struct net_device *netdev) fp@673: { fp@673: struct e1000_adapter *adapter = netdev_priv(netdev); fp@673: return adapter->rx_csum; fp@673: } fp@673: fp@673: static int fp@673: e1000_set_rx_csum(struct net_device *netdev, uint32_t data) fp@673: { fp@673: struct e1000_adapter *adapter = netdev_priv(netdev); fp@673: adapter->rx_csum = data; fp@673: fp@673: if (adapter->ecdev || netif_running(netdev)) { fp@673: e1000_down(adapter); fp@673: e1000_up(adapter); fp@673: } else fp@673: e1000_reset(adapter); fp@673: return 0; fp@673: } fp@673: fp@673: static uint32_t fp@673: e1000_get_tx_csum(struct net_device *netdev) fp@673: { fp@673: return (netdev->features & NETIF_F_HW_CSUM) != 0; fp@673: } fp@673: fp@673: static int fp@673: e1000_set_tx_csum(struct net_device *netdev, uint32_t data) fp@673: { fp@673: struct e1000_adapter *adapter = netdev_priv(netdev); fp@673: fp@673: if(adapter->hw.mac_type < e1000_82543) { fp@673: if (!data) fp@673: return -EINVAL; fp@673: return 0; fp@673: } fp@673: fp@673: if (data) fp@673: netdev->features |= NETIF_F_HW_CSUM; fp@673: else fp@673: netdev->features &= ~NETIF_F_HW_CSUM; fp@673: fp@673: return 0; fp@673: } fp@673: fp@673: #ifdef NETIF_F_TSO fp@673: static int fp@673: e1000_set_tso(struct net_device *netdev, uint32_t data) fp@673: { fp@673: struct e1000_adapter *adapter = netdev_priv(netdev); fp@673: if((adapter->hw.mac_type < e1000_82544) || fp@673: (adapter->hw.mac_type == e1000_82547)) fp@673: return data ? -EINVAL : 0; fp@673: fp@673: if (data) fp@673: netdev->features |= NETIF_F_TSO; fp@673: else fp@673: netdev->features &= ~NETIF_F_TSO; fp@673: return 0; fp@673: } fp@673: #endif /* NETIF_F_TSO */ fp@673: fp@673: static uint32_t fp@673: e1000_get_msglevel(struct net_device *netdev) fp@673: { fp@673: struct e1000_adapter *adapter = netdev_priv(netdev); fp@673: return adapter->msg_enable; fp@673: } fp@673: fp@673: static void fp@673: e1000_set_msglevel(struct net_device *netdev, uint32_t data) fp@673: { fp@673: struct e1000_adapter *adapter = netdev_priv(netdev); fp@673: adapter->msg_enable = data; fp@673: } fp@673: fp@673: static int fp@673: e1000_get_regs_len(struct net_device *netdev) fp@673: { fp@673: #define E1000_REGS_LEN 32 fp@673: return E1000_REGS_LEN * sizeof(uint32_t); fp@673: } fp@673: fp@673: static void fp@673: e1000_get_regs(struct net_device *netdev, fp@673: struct ethtool_regs *regs, void *p) fp@673: { fp@673: struct e1000_adapter *adapter = netdev_priv(netdev); fp@673: struct e1000_hw *hw = &adapter->hw; fp@673: uint32_t *regs_buff = p; fp@673: uint16_t phy_data; fp@673: fp@673: memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t)); fp@673: fp@673: regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id; fp@673: fp@673: regs_buff[0] = E1000_READ_REG(hw, CTRL); fp@673: regs_buff[1] = E1000_READ_REG(hw, STATUS); fp@673: fp@673: regs_buff[2] = E1000_READ_REG(hw, RCTL); fp@673: regs_buff[3] = E1000_READ_REG(hw, RDLEN); fp@673: regs_buff[4] = E1000_READ_REG(hw, RDH); fp@673: regs_buff[5] = E1000_READ_REG(hw, RDT); fp@673: regs_buff[6] = E1000_READ_REG(hw, RDTR); fp@673: fp@673: regs_buff[7] = E1000_READ_REG(hw, TCTL); fp@673: regs_buff[8] = E1000_READ_REG(hw, TDLEN); fp@673: regs_buff[9] = E1000_READ_REG(hw, TDH); fp@673: regs_buff[10] = E1000_READ_REG(hw, TDT); fp@673: regs_buff[11] = E1000_READ_REG(hw, TIDV); fp@673: fp@673: regs_buff[12] = adapter->hw.phy_type; /* PHY type (IGP=1, M88=0) */ fp@673: if(hw->phy_type == e1000_phy_igp) { fp@673: e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, fp@673: IGP01E1000_PHY_AGC_A); fp@673: e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A & fp@673: IGP01E1000_PHY_PAGE_SELECT, &phy_data); fp@673: regs_buff[13] = (uint32_t)phy_data; /* cable length */ fp@673: e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, fp@673: IGP01E1000_PHY_AGC_B); fp@673: e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B & fp@673: IGP01E1000_PHY_PAGE_SELECT, &phy_data); fp@673: regs_buff[14] = (uint32_t)phy_data; /* cable length */ fp@673: e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, fp@673: IGP01E1000_PHY_AGC_C); fp@673: e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C & fp@673: IGP01E1000_PHY_PAGE_SELECT, &phy_data); fp@673: regs_buff[15] = (uint32_t)phy_data; /* cable length */ fp@673: e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, fp@673: IGP01E1000_PHY_AGC_D); fp@673: e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D & fp@673: IGP01E1000_PHY_PAGE_SELECT, &phy_data); fp@673: regs_buff[16] = (uint32_t)phy_data; /* cable length */ fp@673: regs_buff[17] = 0; /* extended 10bt distance (not needed) */ fp@673: e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0); fp@673: e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS & fp@673: IGP01E1000_PHY_PAGE_SELECT, &phy_data); fp@673: regs_buff[18] = (uint32_t)phy_data; /* cable polarity */ fp@673: e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, fp@673: IGP01E1000_PHY_PCS_INIT_REG); fp@673: e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG & fp@673: IGP01E1000_PHY_PAGE_SELECT, &phy_data); fp@673: regs_buff[19] = (uint32_t)phy_data; /* cable polarity */ fp@673: regs_buff[20] = 0; /* polarity correction enabled (always) */ fp@673: regs_buff[22] = 0; /* phy receive errors (unavailable) */ fp@673: regs_buff[23] = regs_buff[18]; /* mdix mode */ fp@673: e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0); fp@673: } else { fp@673: e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); fp@673: regs_buff[13] = (uint32_t)phy_data; /* cable length */ fp@673: regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */ fp@673: regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */ fp@673: regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */ fp@673: e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); fp@673: regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */ fp@673: regs_buff[18] = regs_buff[13]; /* cable polarity */ fp@673: regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */ fp@673: regs_buff[20] = regs_buff[17]; /* polarity correction */ fp@673: /* phy receive errors */ fp@673: regs_buff[22] = adapter->phy_stats.receive_errors; fp@673: regs_buff[23] = regs_buff[13]; /* mdix mode */ fp@673: } fp@673: regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */ fp@673: e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); fp@673: regs_buff[24] = (uint32_t)phy_data; /* phy local receiver status */ fp@673: regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ fp@673: if(hw->mac_type >= e1000_82540 && fp@673: hw->media_type == e1000_media_type_copper) { fp@673: regs_buff[26] = E1000_READ_REG(hw, MANC); fp@673: } fp@673: } fp@673: fp@673: static int fp@673: e1000_get_eeprom_len(struct net_device *netdev) fp@673: { fp@673: struct e1000_adapter *adapter = netdev_priv(netdev); fp@673: return adapter->hw.eeprom.word_size * 2; fp@673: } fp@673: fp@673: static int fp@673: e1000_get_eeprom(struct net_device *netdev, fp@673: struct ethtool_eeprom *eeprom, uint8_t *bytes) fp@673: { fp@673: struct e1000_adapter *adapter = netdev_priv(netdev); fp@673: struct e1000_hw *hw = &adapter->hw; fp@673: uint16_t *eeprom_buff; fp@673: int first_word, last_word; fp@673: int ret_val = 0; fp@673: uint16_t i; fp@673: fp@673: if(eeprom->len == 0) fp@673: return -EINVAL; fp@673: fp@673: eeprom->magic = hw->vendor_id | (hw->device_id << 16); fp@673: fp@673: first_word = eeprom->offset >> 1; fp@673: last_word = (eeprom->offset + eeprom->len - 1) >> 1; fp@673: fp@673: eeprom_buff = kmalloc(sizeof(uint16_t) * fp@673: (last_word - first_word + 1), GFP_KERNEL); fp@673: if(!eeprom_buff) fp@673: return -ENOMEM; fp@673: fp@673: if(hw->eeprom.type == e1000_eeprom_spi) fp@673: ret_val = e1000_read_eeprom(hw, first_word, fp@673: last_word - first_word + 1, fp@673: eeprom_buff); fp@673: else { fp@673: for (i = 0; i < last_word - first_word + 1; i++) fp@673: if((ret_val = e1000_read_eeprom(hw, first_word + i, 1, fp@673: &eeprom_buff[i]))) fp@673: break; fp@673: } fp@673: fp@673: /* Device's eeprom is always little-endian, word addressable */ fp@673: for (i = 0; i < last_word - first_word + 1; i++) fp@673: le16_to_cpus(&eeprom_buff[i]); fp@673: fp@673: memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1), fp@673: eeprom->len); fp@673: kfree(eeprom_buff); fp@673: fp@673: return ret_val; fp@673: } fp@673: fp@673: static int fp@673: e1000_set_eeprom(struct net_device *netdev, fp@673: struct ethtool_eeprom *eeprom, uint8_t *bytes) fp@673: { fp@673: struct e1000_adapter *adapter = netdev_priv(netdev); fp@673: struct e1000_hw *hw = &adapter->hw; fp@673: uint16_t *eeprom_buff; fp@673: void *ptr; fp@673: int max_len, first_word, last_word, ret_val = 0; fp@673: uint16_t i; fp@673: fp@673: if(eeprom->len == 0) fp@673: return -EOPNOTSUPP; fp@673: fp@673: if(eeprom->magic != (hw->vendor_id | (hw->device_id << 16))) fp@673: return -EFAULT; fp@673: fp@673: max_len = hw->eeprom.word_size * 2; fp@673: fp@673: first_word = eeprom->offset >> 1; fp@673: last_word = (eeprom->offset + eeprom->len - 1) >> 1; fp@673: eeprom_buff = kmalloc(max_len, GFP_KERNEL); fp@673: if(!eeprom_buff) fp@673: return -ENOMEM; fp@673: fp@673: ptr = (void *)eeprom_buff; fp@673: fp@673: if(eeprom->offset & 1) { fp@673: /* need read/modify/write of first changed EEPROM word */ fp@673: /* only the second byte of the word is being modified */ fp@673: ret_val = e1000_read_eeprom(hw, first_word, 1, fp@673: &eeprom_buff[0]); fp@673: ptr++; fp@673: } fp@673: if(((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) { fp@673: /* need read/modify/write of last changed EEPROM word */ fp@673: /* only the first byte of the word is being modified */ fp@673: ret_val = e1000_read_eeprom(hw, last_word, 1, fp@673: &eeprom_buff[last_word - first_word]); fp@673: } fp@673: fp@673: /* Device's eeprom is always little-endian, word addressable */ fp@673: for (i = 0; i < last_word - first_word + 1; i++) fp@673: le16_to_cpus(&eeprom_buff[i]); fp@673: fp@673: memcpy(ptr, bytes, eeprom->len); fp@673: fp@673: for (i = 0; i < last_word - first_word + 1; i++) fp@673: eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]); fp@673: fp@673: ret_val = e1000_write_eeprom(hw, first_word, fp@673: last_word - first_word + 1, eeprom_buff); fp@673: fp@673: /* Update the checksum over the first part of the EEPROM if needed */ fp@673: if((ret_val == 0) && first_word <= EEPROM_CHECKSUM_REG) fp@673: e1000_update_eeprom_checksum(hw); fp@673: fp@673: kfree(eeprom_buff); fp@673: return ret_val; fp@673: } fp@673: fp@673: static void fp@673: e1000_get_drvinfo(struct net_device *netdev, fp@673: struct ethtool_drvinfo *drvinfo) fp@673: { fp@673: struct e1000_adapter *adapter = netdev_priv(netdev); fp@673: fp@673: strncpy(drvinfo->driver, e1000_driver_name, 32); fp@673: strncpy(drvinfo->version, e1000_driver_version, 32); fp@673: strncpy(drvinfo->fw_version, "N/A", 32); fp@673: strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32); fp@673: drvinfo->n_stats = E1000_STATS_LEN; fp@673: drvinfo->testinfo_len = E1000_TEST_LEN; fp@673: drvinfo->regdump_len = e1000_get_regs_len(netdev); fp@673: drvinfo->eedump_len = e1000_get_eeprom_len(netdev); fp@673: } fp@673: fp@673: static void fp@673: e1000_get_ringparam(struct net_device *netdev, fp@673: struct ethtool_ringparam *ring) fp@673: { fp@673: struct e1000_adapter *adapter = netdev_priv(netdev); fp@673: e1000_mac_type mac_type = adapter->hw.mac_type; fp@673: struct e1000_desc_ring *txdr = &adapter->tx_ring; fp@673: struct e1000_desc_ring *rxdr = &adapter->rx_ring; fp@673: fp@673: ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD : fp@673: E1000_MAX_82544_RXD; fp@673: ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD : fp@673: E1000_MAX_82544_TXD; fp@673: ring->rx_mini_max_pending = 0; fp@673: ring->rx_jumbo_max_pending = 0; fp@673: ring->rx_pending = rxdr->count; fp@673: ring->tx_pending = txdr->count; fp@673: ring->rx_mini_pending = 0; fp@673: ring->rx_jumbo_pending = 0; fp@673: } fp@673: fp@673: static int fp@673: e1000_set_ringparam(struct net_device *netdev, fp@673: struct ethtool_ringparam *ring) fp@673: { fp@673: struct e1000_adapter *adapter = netdev_priv(netdev); fp@673: e1000_mac_type mac_type = adapter->hw.mac_type; fp@673: struct e1000_desc_ring *txdr = &adapter->tx_ring; fp@673: struct e1000_desc_ring *rxdr = &adapter->rx_ring; fp@673: struct e1000_desc_ring tx_old, tx_new, rx_old, rx_new; fp@673: int err; fp@673: fp@673: if (adapter->ecdev) fp@673: return -EBUSY; fp@673: fp@673: tx_old = adapter->tx_ring; fp@673: rx_old = adapter->rx_ring; fp@673: fp@673: if((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) fp@673: return -EINVAL; fp@673: fp@673: if(netif_running(adapter->netdev)) fp@673: e1000_down(adapter); fp@673: fp@673: rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD); fp@673: rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ? fp@673: E1000_MAX_RXD : E1000_MAX_82544_RXD)); fp@673: E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE); fp@673: fp@673: txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD); fp@673: txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ? fp@673: E1000_MAX_TXD : E1000_MAX_82544_TXD)); fp@673: E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE); fp@673: fp@673: if(netif_running(adapter->netdev)) { fp@673: /* Try to get new resources before deleting old */ fp@673: if((err = e1000_setup_rx_resources(adapter))) fp@673: goto err_setup_rx; fp@673: if((err = e1000_setup_tx_resources(adapter))) fp@673: goto err_setup_tx; fp@673: fp@673: /* save the new, restore the old in order to free it, fp@673: * then restore the new back again */ fp@673: fp@673: rx_new = adapter->rx_ring; fp@673: tx_new = adapter->tx_ring; fp@673: adapter->rx_ring = rx_old; fp@673: adapter->tx_ring = tx_old; fp@673: e1000_free_rx_resources(adapter); fp@673: e1000_free_tx_resources(adapter); fp@673: adapter->rx_ring = rx_new; fp@673: adapter->tx_ring = tx_new; fp@673: if((err = e1000_up(adapter))) fp@673: return err; fp@673: } fp@673: fp@673: return 0; fp@673: err_setup_tx: fp@673: e1000_free_rx_resources(adapter); fp@673: err_setup_rx: fp@673: adapter->rx_ring = rx_old; fp@673: adapter->tx_ring = tx_old; fp@673: e1000_up(adapter); fp@673: return err; fp@673: } fp@673: fp@673: #define REG_PATTERN_TEST(R, M, W) \ fp@673: { \ fp@673: uint32_t pat, value; \ fp@673: uint32_t test[] = \ fp@673: {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; \ fp@673: for(pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) { \ fp@673: E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W)); \ fp@673: value = E1000_READ_REG(&adapter->hw, R); \ fp@673: if(value != (test[pat] & W & M)) { \ fp@673: DPRINTK(DRV, ERR, "pattern test reg %04X failed: got " \ fp@673: "0x%08X expected 0x%08X\n", \ fp@673: E1000_##R, value, (test[pat] & W & M)); \ fp@673: *data = (adapter->hw.mac_type < e1000_82543) ? \ fp@673: E1000_82542_##R : E1000_##R; \ fp@673: return 1; \ fp@673: } \ fp@673: } \ fp@673: } fp@673: fp@673: #define REG_SET_AND_CHECK(R, M, W) \ fp@673: { \ fp@673: uint32_t value; \ fp@673: E1000_WRITE_REG(&adapter->hw, R, W & M); \ fp@673: value = E1000_READ_REG(&adapter->hw, R); \ fp@673: if((W & M) != (value & M)) { \ fp@673: DPRINTK(DRV, ERR, "set/check reg %04X test failed: got 0x%08X "\ fp@673: "expected 0x%08X\n", E1000_##R, (value & M), (W & M)); \ fp@673: *data = (adapter->hw.mac_type < e1000_82543) ? \ fp@673: E1000_82542_##R : E1000_##R; \ fp@673: return 1; \ fp@673: } \ fp@673: } fp@673: fp@673: static int fp@673: e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data) fp@673: { fp@673: uint32_t value, before, after; fp@673: uint32_t i, toggle; fp@673: fp@673: /* The status register is Read Only, so a write should fail. fp@673: * Some bits that get toggled are ignored. fp@673: */ fp@673: switch (adapter->hw.mac_type) { fp@673: case e1000_82573: fp@673: toggle = 0x7FFFF033; fp@673: break; fp@673: default: fp@673: toggle = 0xFFFFF833; fp@673: break; fp@673: } fp@673: fp@673: before = E1000_READ_REG(&adapter->hw, STATUS); fp@673: value = (E1000_READ_REG(&adapter->hw, STATUS) & toggle); fp@673: E1000_WRITE_REG(&adapter->hw, STATUS, toggle); fp@673: after = E1000_READ_REG(&adapter->hw, STATUS) & toggle; fp@673: if(value != after) { fp@673: DPRINTK(DRV, ERR, "failed STATUS register test got: " fp@673: "0x%08X expected: 0x%08X\n", after, value); fp@673: *data = 1; fp@673: return 1; fp@673: } fp@673: /* restore previous status */ fp@673: E1000_WRITE_REG(&adapter->hw, STATUS, before); fp@673: fp@673: REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF); fp@673: REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF); fp@673: REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF); fp@673: REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF); fp@673: REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF); fp@673: REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF); fp@673: REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF); fp@673: REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF); fp@673: REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF); fp@673: REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8); fp@673: REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF); fp@673: REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF); fp@673: REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF); fp@673: REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF); fp@673: fp@673: REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000); fp@673: REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB); fp@673: REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000); fp@673: fp@673: if(adapter->hw.mac_type >= e1000_82543) { fp@673: fp@673: REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF); fp@673: REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF); fp@673: REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF); fp@673: REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF); fp@673: REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF); fp@673: fp@673: for(i = 0; i < E1000_RAR_ENTRIES; i++) { fp@673: REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF, fp@673: 0xFFFFFFFF); fp@673: REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF, fp@673: 0xFFFFFFFF); fp@673: } fp@673: fp@673: } else { fp@673: fp@673: REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF); fp@673: REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF); fp@673: REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF); fp@673: REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF); fp@673: fp@673: } fp@673: fp@673: for(i = 0; i < E1000_MC_TBL_SIZE; i++) fp@673: REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF); fp@673: fp@673: *data = 0; fp@673: return 0; fp@673: } fp@673: fp@673: static int fp@673: e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data) fp@673: { fp@673: uint16_t temp; fp@673: uint16_t checksum = 0; fp@673: uint16_t i; fp@673: fp@673: *data = 0; fp@673: /* Read and add up the contents of the EEPROM */ fp@673: for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { fp@673: if((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) { fp@673: *data = 1; fp@673: break; fp@673: } fp@673: checksum += temp; fp@673: } fp@673: fp@673: /* If Checksum is not Correct return error else test passed */ fp@673: if((checksum != (uint16_t) EEPROM_SUM) && !(*data)) fp@673: *data = 2; fp@673: fp@673: return *data; fp@673: } fp@673: fp@673: static irqreturn_t fp@673: e1000_test_intr(int irq, fp@673: void *data, fp@673: struct pt_regs *regs) fp@673: { fp@673: struct net_device *netdev = (struct net_device *) data; fp@673: struct e1000_adapter *adapter = netdev_priv(netdev); fp@673: fp@673: adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR); fp@673: fp@673: return IRQ_HANDLED; fp@673: } fp@673: fp@673: static int fp@673: e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data) fp@673: { fp@673: struct net_device *netdev = adapter->netdev; fp@673: uint32_t mask, i=0, shared_int = TRUE; fp@673: uint32_t irq = adapter->pdev->irq; fp@673: fp@673: *data = 0; fp@673: fp@673: /* Hook up test interrupt handler just for this test */ fp@673: if(!request_irq(irq, &e1000_test_intr, 0, netdev->name, netdev)) { fp@673: shared_int = FALSE; fp@673: } else if(request_irq(irq, &e1000_test_intr, SA_SHIRQ, fp@673: netdev->name, netdev)){ fp@673: *data = 1; fp@673: return -1; fp@673: } fp@673: fp@673: /* Disable all the interrupts */ fp@673: E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF); fp@673: msec_delay(10); fp@673: fp@673: /* Test each interrupt */ fp@673: for(; i < 10; i++) { fp@673: fp@673: /* Interrupt to test */ fp@673: mask = 1 << i; fp@673: fp@673: if(!shared_int) { fp@673: /* Disable the interrupt to be reported in fp@673: * the cause register and then force the same fp@673: * interrupt and see if one gets posted. If fp@673: * an interrupt was posted to the bus, the fp@673: * test failed. fp@673: */ fp@673: adapter->test_icr = 0; fp@673: E1000_WRITE_REG(&adapter->hw, IMC, mask); fp@673: E1000_WRITE_REG(&adapter->hw, ICS, mask); fp@673: msec_delay(10); fp@673: fp@673: if(adapter->test_icr & mask) { fp@673: *data = 3; fp@673: break; fp@673: } fp@673: } fp@673: fp@673: /* Enable the interrupt to be reported in fp@673: * the cause register and then force the same fp@673: * interrupt and see if one gets posted. If fp@673: * an interrupt was not posted to the bus, the fp@673: * test failed. fp@673: */ fp@673: adapter->test_icr = 0; fp@673: E1000_WRITE_REG(&adapter->hw, IMS, mask); fp@673: E1000_WRITE_REG(&adapter->hw, ICS, mask); fp@673: msec_delay(10); fp@673: fp@673: if(!(adapter->test_icr & mask)) { fp@673: *data = 4; fp@673: break; fp@673: } fp@673: fp@673: if(!shared_int) { fp@673: /* Disable the other interrupts to be reported in fp@673: * the cause register and then force the other fp@673: * interrupts and see if any get posted. If fp@673: * an interrupt was posted to the bus, the fp@673: * test failed. fp@673: */ fp@673: adapter->test_icr = 0; fp@673: E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF); fp@673: E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF); fp@673: msec_delay(10); fp@673: fp@673: if(adapter->test_icr) { fp@673: *data = 5; fp@673: break; fp@673: } fp@673: } fp@673: } fp@673: fp@673: /* Disable all the interrupts */ fp@673: E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF); fp@673: msec_delay(10); fp@673: fp@673: /* Unhook test interrupt handler */ fp@673: free_irq(irq, netdev); fp@673: fp@673: return *data; fp@673: } fp@673: fp@673: static void fp@673: e1000_free_desc_rings(struct e1000_adapter *adapter) fp@673: { fp@673: struct e1000_desc_ring *txdr = &adapter->test_tx_ring; fp@673: struct e1000_desc_ring *rxdr = &adapter->test_rx_ring; fp@673: struct pci_dev *pdev = adapter->pdev; fp@673: int i; fp@673: fp@673: if(txdr->desc && txdr->buffer_info) { fp@673: for(i = 0; i < txdr->count; i++) { fp@673: if(txdr->buffer_info[i].dma) fp@673: pci_unmap_single(pdev, txdr->buffer_info[i].dma, fp@673: txdr->buffer_info[i].length, fp@673: PCI_DMA_TODEVICE); fp@673: if(txdr->buffer_info[i].skb) fp@673: dev_kfree_skb(txdr->buffer_info[i].skb); fp@673: } fp@673: } fp@673: fp@673: if(rxdr->desc && rxdr->buffer_info) { fp@673: for(i = 0; i < rxdr->count; i++) { fp@673: if(rxdr->buffer_info[i].dma) fp@673: pci_unmap_single(pdev, rxdr->buffer_info[i].dma, fp@673: rxdr->buffer_info[i].length, fp@673: PCI_DMA_FROMDEVICE); fp@673: if(rxdr->buffer_info[i].skb) fp@673: dev_kfree_skb(rxdr->buffer_info[i].skb); fp@673: } fp@673: } fp@673: fp@673: if(txdr->desc) fp@673: pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma); fp@673: if(rxdr->desc) fp@673: pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma); fp@673: fp@673: if(txdr->buffer_info) fp@673: kfree(txdr->buffer_info); fp@673: if(rxdr->buffer_info) fp@673: kfree(rxdr->buffer_info); fp@673: fp@673: return; fp@673: } fp@673: fp@673: static int fp@673: e1000_setup_desc_rings(struct e1000_adapter *adapter) fp@673: { fp@673: struct e1000_desc_ring *txdr = &adapter->test_tx_ring; fp@673: struct e1000_desc_ring *rxdr = &adapter->test_rx_ring; fp@673: struct pci_dev *pdev = adapter->pdev; fp@673: uint32_t rctl; fp@673: int size, i, ret_val; fp@673: fp@673: /* Setup Tx descriptor ring and Tx buffers */ fp@673: fp@673: if(!txdr->count) fp@673: txdr->count = E1000_DEFAULT_TXD; fp@673: fp@673: size = txdr->count * sizeof(struct e1000_buffer); fp@673: if(!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) { fp@673: ret_val = 1; fp@673: goto err_nomem; fp@673: } fp@673: memset(txdr->buffer_info, 0, size); fp@673: fp@673: txdr->size = txdr->count * sizeof(struct e1000_tx_desc); fp@673: E1000_ROUNDUP(txdr->size, 4096); fp@673: if(!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) { fp@673: ret_val = 2; fp@673: goto err_nomem; fp@673: } fp@673: memset(txdr->desc, 0, txdr->size); fp@673: txdr->next_to_use = txdr->next_to_clean = 0; fp@673: fp@673: E1000_WRITE_REG(&adapter->hw, TDBAL, fp@673: ((uint64_t) txdr->dma & 0x00000000FFFFFFFF)); fp@673: E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32)); fp@673: E1000_WRITE_REG(&adapter->hw, TDLEN, fp@673: txdr->count * sizeof(struct e1000_tx_desc)); fp@673: E1000_WRITE_REG(&adapter->hw, TDH, 0); fp@673: E1000_WRITE_REG(&adapter->hw, TDT, 0); fp@673: E1000_WRITE_REG(&adapter->hw, TCTL, fp@673: E1000_TCTL_PSP | E1000_TCTL_EN | fp@673: E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | fp@673: E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT); fp@673: fp@673: for(i = 0; i < txdr->count; i++) { fp@673: struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i); fp@673: struct sk_buff *skb; fp@673: unsigned int size = 1024; fp@673: fp@673: if(!(skb = alloc_skb(size, GFP_KERNEL))) { fp@673: ret_val = 3; fp@673: goto err_nomem; fp@673: } fp@673: skb_put(skb, size); fp@673: txdr->buffer_info[i].skb = skb; fp@673: txdr->buffer_info[i].length = skb->len; fp@673: txdr->buffer_info[i].dma = fp@673: pci_map_single(pdev, skb->data, skb->len, fp@673: PCI_DMA_TODEVICE); fp@673: tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma); fp@673: tx_desc->lower.data = cpu_to_le32(skb->len); fp@673: tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | fp@673: E1000_TXD_CMD_IFCS | fp@673: E1000_TXD_CMD_RPS); fp@673: tx_desc->upper.data = 0; fp@673: } fp@673: fp@673: /* Setup Rx descriptor ring and Rx buffers */ fp@673: fp@673: if(!rxdr->count) fp@673: rxdr->count = E1000_DEFAULT_RXD; fp@673: fp@673: size = rxdr->count * sizeof(struct e1000_buffer); fp@673: if(!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) { fp@673: ret_val = 4; fp@673: goto err_nomem; fp@673: } fp@673: memset(rxdr->buffer_info, 0, size); fp@673: fp@673: rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc); fp@673: if(!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) { fp@673: ret_val = 5; fp@673: goto err_nomem; fp@673: } fp@673: memset(rxdr->desc, 0, rxdr->size); fp@673: rxdr->next_to_use = rxdr->next_to_clean = 0; fp@673: fp@673: rctl = E1000_READ_REG(&adapter->hw, RCTL); fp@673: E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN); fp@673: E1000_WRITE_REG(&adapter->hw, RDBAL, fp@673: ((uint64_t) rxdr->dma & 0xFFFFFFFF)); fp@673: E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32)); fp@673: E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size); fp@673: E1000_WRITE_REG(&adapter->hw, RDH, 0); fp@673: E1000_WRITE_REG(&adapter->hw, RDT, 0); fp@673: rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | fp@673: E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | fp@673: (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT); fp@673: E1000_WRITE_REG(&adapter->hw, RCTL, rctl); fp@673: fp@673: for(i = 0; i < rxdr->count; i++) { fp@673: struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i); fp@673: struct sk_buff *skb; fp@673: fp@673: if(!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, fp@673: GFP_KERNEL))) { fp@673: ret_val = 6; fp@673: goto err_nomem; fp@673: } fp@673: skb_reserve(skb, NET_IP_ALIGN); fp@673: rxdr->buffer_info[i].skb = skb; fp@673: rxdr->buffer_info[i].length = E1000_RXBUFFER_2048; fp@673: rxdr->buffer_info[i].dma = fp@673: pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048, fp@673: PCI_DMA_FROMDEVICE); fp@673: rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma); fp@673: memset(skb->data, 0x00, skb->len); fp@673: } fp@673: fp@673: return 0; fp@673: fp@673: err_nomem: fp@673: e1000_free_desc_rings(adapter); fp@673: return ret_val; fp@673: } fp@673: fp@673: static void fp@673: e1000_phy_disable_receiver(struct e1000_adapter *adapter) fp@673: { fp@673: /* Write out to PHY registers 29 and 30 to disable the Receiver. */ fp@673: e1000_write_phy_reg(&adapter->hw, 29, 0x001F); fp@673: e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC); fp@673: e1000_write_phy_reg(&adapter->hw, 29, 0x001A); fp@673: e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0); fp@673: } fp@673: fp@673: static void fp@673: e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter) fp@673: { fp@673: uint16_t phy_reg; fp@673: fp@673: /* Because we reset the PHY above, we need to re-force TX_CLK in the fp@673: * Extended PHY Specific Control Register to 25MHz clock. This fp@673: * value defaults back to a 2.5MHz clock when the PHY is reset. fp@673: */ fp@673: e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg); fp@673: phy_reg |= M88E1000_EPSCR_TX_CLK_25; fp@673: e1000_write_phy_reg(&adapter->hw, fp@673: M88E1000_EXT_PHY_SPEC_CTRL, phy_reg); fp@673: fp@673: /* In addition, because of the s/w reset above, we need to enable fp@673: * CRS on TX. This must be set for both full and half duplex fp@673: * operation. fp@673: */ fp@673: e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg); fp@673: phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX; fp@673: e1000_write_phy_reg(&adapter->hw, fp@673: M88E1000_PHY_SPEC_CTRL, phy_reg); fp@673: } fp@673: fp@673: static int fp@673: e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter) fp@673: { fp@673: uint32_t ctrl_reg; fp@673: uint16_t phy_reg; fp@673: fp@673: /* Setup the Device Control Register for PHY loopback test. */ fp@673: fp@673: ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL); fp@673: ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */ fp@673: E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ fp@673: E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ fp@673: E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */ fp@673: E1000_CTRL_FD); /* Force Duplex to FULL */ fp@673: fp@673: E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg); fp@673: fp@673: /* Read the PHY Specific Control Register (0x10) */ fp@673: e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg); fp@673: fp@673: /* Clear Auto-Crossover bits in PHY Specific Control Register fp@673: * (bits 6:5). fp@673: */ fp@673: phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE; fp@673: e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg); fp@673: fp@673: /* Perform software reset on the PHY */ fp@673: e1000_phy_reset(&adapter->hw); fp@673: fp@673: /* Have to setup TX_CLK and TX_CRS after software reset */ fp@673: e1000_phy_reset_clk_and_crs(adapter); fp@673: fp@673: e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100); fp@673: fp@673: /* Wait for reset to complete. */ fp@673: udelay(500); fp@673: fp@673: /* Have to setup TX_CLK and TX_CRS after software reset */ fp@673: e1000_phy_reset_clk_and_crs(adapter); fp@673: fp@673: /* Write out to PHY registers 29 and 30 to disable the Receiver. */ fp@673: e1000_phy_disable_receiver(adapter); fp@673: fp@673: /* Set the loopback bit in the PHY control register. */ fp@673: e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg); fp@673: phy_reg |= MII_CR_LOOPBACK; fp@673: e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg); fp@673: fp@673: /* Setup TX_CLK and TX_CRS one more time. */ fp@673: e1000_phy_reset_clk_and_crs(adapter); fp@673: fp@673: /* Check Phy Configuration */ fp@673: e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg); fp@673: if(phy_reg != 0x4100) fp@673: return 9; fp@673: fp@673: e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg); fp@673: if(phy_reg != 0x0070) fp@673: return 10; fp@673: fp@673: e1000_read_phy_reg(&adapter->hw, 29, &phy_reg); fp@673: if(phy_reg != 0x001A) fp@673: return 11; fp@673: fp@673: return 0; fp@673: } fp@673: fp@673: static int fp@673: e1000_integrated_phy_loopback(struct e1000_adapter *adapter) fp@673: { fp@673: uint32_t ctrl_reg = 0; fp@673: uint32_t stat_reg = 0; fp@673: fp@673: adapter->hw.autoneg = FALSE; fp@673: fp@673: if(adapter->hw.phy_type == e1000_phy_m88) { fp@673: /* Auto-MDI/MDIX Off */ fp@673: e1000_write_phy_reg(&adapter->hw, fp@673: M88E1000_PHY_SPEC_CTRL, 0x0808); fp@673: /* reset to update Auto-MDI/MDIX */ fp@673: e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140); fp@673: /* autoneg off */ fp@673: e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140); fp@673: } fp@673: /* force 1000, set loopback */ fp@673: e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140); fp@673: fp@673: /* Now set up the MAC to the same speed/duplex as the PHY. */ fp@673: ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL); fp@673: ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ fp@673: ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ fp@673: E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ fp@673: E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ fp@673: E1000_CTRL_FD); /* Force Duplex to FULL */ fp@673: fp@673: if(adapter->hw.media_type == e1000_media_type_copper && fp@673: adapter->hw.phy_type == e1000_phy_m88) { fp@673: ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ fp@673: } else { fp@673: /* Set the ILOS bit on the fiber Nic is half fp@673: * duplex link is detected. */ fp@673: stat_reg = E1000_READ_REG(&adapter->hw, STATUS); fp@673: if((stat_reg & E1000_STATUS_FD) == 0) fp@673: ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); fp@673: } fp@673: fp@673: E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg); fp@673: fp@673: /* Disable the receiver on the PHY so when a cable is plugged in, the fp@673: * PHY does not begin to autoneg when a cable is reconnected to the NIC. fp@673: */ fp@673: if(adapter->hw.phy_type == e1000_phy_m88) fp@673: e1000_phy_disable_receiver(adapter); fp@673: fp@673: udelay(500); fp@673: fp@673: return 0; fp@673: } fp@673: fp@673: static int fp@673: e1000_set_phy_loopback(struct e1000_adapter *adapter) fp@673: { fp@673: uint16_t phy_reg = 0; fp@673: uint16_t count = 0; fp@673: fp@673: switch (adapter->hw.mac_type) { fp@673: case e1000_82543: fp@673: if(adapter->hw.media_type == e1000_media_type_copper) { fp@673: /* Attempt to setup Loopback mode on Non-integrated PHY. fp@673: * Some PHY registers get corrupted at random, so fp@673: * attempt this 10 times. fp@673: */ fp@673: while(e1000_nonintegrated_phy_loopback(adapter) && fp@673: count++ < 10); fp@673: if(count < 11) fp@673: return 0; fp@673: } fp@673: break; fp@673: fp@673: case e1000_82544: fp@673: case e1000_82540: fp@673: case e1000_82545: fp@673: case e1000_82545_rev_3: fp@673: case e1000_82546: fp@673: case e1000_82546_rev_3: fp@673: case e1000_82541: fp@673: case e1000_82541_rev_2: fp@673: case e1000_82547: fp@673: case e1000_82547_rev_2: fp@673: case e1000_82573: fp@673: return e1000_integrated_phy_loopback(adapter); fp@673: break; fp@673: fp@673: default: fp@673: /* Default PHY loopback work is to read the MII fp@673: * control register and assert bit 14 (loopback mode). fp@673: */ fp@673: e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg); fp@673: phy_reg |= MII_CR_LOOPBACK; fp@673: e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg); fp@673: return 0; fp@673: break; fp@673: } fp@673: fp@673: return 8; fp@673: } fp@673: fp@673: static int fp@673: e1000_setup_loopback_test(struct e1000_adapter *adapter) fp@673: { fp@673: uint32_t rctl; fp@673: fp@673: if(adapter->hw.media_type == e1000_media_type_fiber || fp@673: adapter->hw.media_type == e1000_media_type_internal_serdes) { fp@673: if(adapter->hw.mac_type == e1000_82545 || fp@673: adapter->hw.mac_type == e1000_82546 || fp@673: adapter->hw.mac_type == e1000_82545_rev_3 || fp@673: adapter->hw.mac_type == e1000_82546_rev_3) fp@673: return e1000_set_phy_loopback(adapter); fp@673: else { fp@673: rctl = E1000_READ_REG(&adapter->hw, RCTL); fp@673: rctl |= E1000_RCTL_LBM_TCVR; fp@673: E1000_WRITE_REG(&adapter->hw, RCTL, rctl); fp@673: return 0; fp@673: } fp@673: } else if(adapter->hw.media_type == e1000_media_type_copper) fp@673: return e1000_set_phy_loopback(adapter); fp@673: fp@673: return 7; fp@673: } fp@673: fp@673: static void fp@673: e1000_loopback_cleanup(struct e1000_adapter *adapter) fp@673: { fp@673: uint32_t rctl; fp@673: uint16_t phy_reg; fp@673: fp@673: rctl = E1000_READ_REG(&adapter->hw, RCTL); fp@673: rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); fp@673: E1000_WRITE_REG(&adapter->hw, RCTL, rctl); fp@673: fp@673: if(adapter->hw.media_type == e1000_media_type_copper || fp@673: ((adapter->hw.media_type == e1000_media_type_fiber || fp@673: adapter->hw.media_type == e1000_media_type_internal_serdes) && fp@673: (adapter->hw.mac_type == e1000_82545 || fp@673: adapter->hw.mac_type == e1000_82546 || fp@673: adapter->hw.mac_type == e1000_82545_rev_3 || fp@673: adapter->hw.mac_type == e1000_82546_rev_3))) { fp@673: adapter->hw.autoneg = TRUE; fp@673: e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg); fp@673: if(phy_reg & MII_CR_LOOPBACK) { fp@673: phy_reg &= ~MII_CR_LOOPBACK; fp@673: e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg); fp@673: e1000_phy_reset(&adapter->hw); fp@673: } fp@673: } fp@673: } fp@673: fp@673: static void fp@673: e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size) fp@673: { fp@673: memset(skb->data, 0xFF, frame_size); fp@673: frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size; fp@673: memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); fp@673: memset(&skb->data[frame_size / 2 + 10], 0xBE, 1); fp@673: memset(&skb->data[frame_size / 2 + 12], 0xAF, 1); fp@673: } fp@673: fp@673: static int fp@673: e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size) fp@673: { fp@673: frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size; fp@673: if(*(skb->data + 3) == 0xFF) { fp@673: if((*(skb->data + frame_size / 2 + 10) == 0xBE) && fp@673: (*(skb->data + frame_size / 2 + 12) == 0xAF)) { fp@673: return 0; fp@673: } fp@673: } fp@673: return 13; fp@673: } fp@673: fp@673: static int fp@673: e1000_run_loopback_test(struct e1000_adapter *adapter) fp@673: { fp@673: struct e1000_desc_ring *txdr = &adapter->test_tx_ring; fp@673: struct e1000_desc_ring *rxdr = &adapter->test_rx_ring; fp@673: struct pci_dev *pdev = adapter->pdev; fp@673: int i, j, k, l, lc, good_cnt, ret_val=0; fp@673: unsigned long time; fp@673: fp@673: E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1); fp@673: fp@673: /* Calculate the loop count based on the largest descriptor ring fp@673: * The idea is to wrap the largest ring a number of times using 64 fp@673: * send/receive pairs during each loop fp@673: */ fp@673: fp@673: if(rxdr->count <= txdr->count) fp@673: lc = ((txdr->count / 64) * 2) + 1; fp@673: else fp@673: lc = ((rxdr->count / 64) * 2) + 1; fp@673: fp@673: k = l = 0; fp@673: for(j = 0; j <= lc; j++) { /* loop count loop */ fp@673: for(i = 0; i < 64; i++) { /* send the packets */ fp@673: e1000_create_lbtest_frame(txdr->buffer_info[i].skb, fp@673: 1024); fp@673: pci_dma_sync_single_for_device(pdev, fp@673: txdr->buffer_info[k].dma, fp@673: txdr->buffer_info[k].length, fp@673: PCI_DMA_TODEVICE); fp@673: if(unlikely(++k == txdr->count)) k = 0; fp@673: } fp@673: E1000_WRITE_REG(&adapter->hw, TDT, k); fp@673: msec_delay(200); fp@673: time = jiffies; /* set the start time for the receive */ fp@673: good_cnt = 0; fp@673: do { /* receive the sent packets */ fp@673: pci_dma_sync_single_for_cpu(pdev, fp@673: rxdr->buffer_info[l].dma, fp@673: rxdr->buffer_info[l].length, fp@673: PCI_DMA_FROMDEVICE); fp@673: fp@673: ret_val = e1000_check_lbtest_frame( fp@673: rxdr->buffer_info[l].skb, fp@673: 1024); fp@673: if(!ret_val) fp@673: good_cnt++; fp@673: if(unlikely(++l == rxdr->count)) l = 0; fp@673: /* time + 20 msecs (200 msecs on 2.4) is more than fp@673: * enough time to complete the receives, if it's fp@673: * exceeded, break and error off fp@673: */ fp@673: } while (good_cnt < 64 && jiffies < (time + 20)); fp@673: if(good_cnt != 64) { fp@673: ret_val = 13; /* ret_val is the same as mis-compare */ fp@673: break; fp@673: } fp@673: if(jiffies >= (time + 2)) { fp@673: ret_val = 14; /* error code for time out error */ fp@673: break; fp@673: } fp@673: } /* end loop count loop */ fp@673: return ret_val; fp@673: } fp@673: fp@673: static int fp@673: e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data) fp@673: { fp@673: if((*data = e1000_setup_desc_rings(adapter))) goto err_loopback; fp@673: if((*data = e1000_setup_loopback_test(adapter))) goto err_loopback; fp@673: *data = e1000_run_loopback_test(adapter); fp@673: e1000_loopback_cleanup(adapter); fp@673: e1000_free_desc_rings(adapter); fp@673: err_loopback: fp@673: return *data; fp@673: } fp@673: fp@673: static int fp@673: e1000_link_test(struct e1000_adapter *adapter, uint64_t *data) fp@673: { fp@673: *data = 0; fp@673: if (adapter->hw.media_type == e1000_media_type_internal_serdes) { fp@673: int i = 0; fp@673: adapter->hw.serdes_link_down = TRUE; fp@673: fp@673: /* On some blade server designs, link establishment fp@673: * could take as long as 2-3 minutes */ fp@673: do { fp@673: e1000_check_for_link(&adapter->hw); fp@673: if (adapter->hw.serdes_link_down == FALSE) fp@673: return *data; fp@673: msec_delay(20); fp@673: } while (i++ < 3750); fp@673: fp@673: *data = 1; fp@673: } else { fp@673: e1000_check_for_link(&adapter->hw); fp@673: if(adapter->hw.autoneg) /* if auto_neg is set wait for it */ fp@673: msec_delay(4000); fp@673: fp@673: if(!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) { fp@673: *data = 1; fp@673: } fp@673: } fp@673: return *data; fp@673: } fp@673: fp@673: static int fp@673: e1000_diag_test_count(struct net_device *netdev) fp@673: { fp@673: return E1000_TEST_LEN; fp@673: } fp@673: fp@673: static void fp@673: e1000_diag_test(struct net_device *netdev, fp@673: struct ethtool_test *eth_test, uint64_t *data) fp@673: { fp@673: struct e1000_adapter *adapter = netdev_priv(netdev); fp@673: boolean_t if_running = adapter->ecdev || netif_running(netdev); fp@673: fp@673: if(eth_test->flags == ETH_TEST_FL_OFFLINE) { fp@673: /* Offline tests */ fp@673: fp@673: /* save speed, duplex, autoneg settings */ fp@673: uint16_t autoneg_advertised = adapter->hw.autoneg_advertised; fp@673: uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex; fp@673: uint8_t autoneg = adapter->hw.autoneg; fp@673: fp@673: /* Link test performed before hardware reset so autoneg doesn't fp@673: * interfere with test result */ fp@673: if(e1000_link_test(adapter, &data[4])) fp@673: eth_test->flags |= ETH_TEST_FL_FAILED; fp@673: fp@673: if(if_running) fp@673: e1000_down(adapter); fp@673: else fp@673: e1000_reset(adapter); fp@673: fp@673: if(e1000_reg_test(adapter, &data[0])) fp@673: eth_test->flags |= ETH_TEST_FL_FAILED; fp@673: fp@673: e1000_reset(adapter); fp@673: if(e1000_eeprom_test(adapter, &data[1])) fp@673: eth_test->flags |= ETH_TEST_FL_FAILED; fp@673: fp@673: e1000_reset(adapter); fp@673: if(e1000_intr_test(adapter, &data[2])) fp@673: eth_test->flags |= ETH_TEST_FL_FAILED; fp@673: fp@673: e1000_reset(adapter); fp@673: if(e1000_loopback_test(adapter, &data[3])) fp@673: eth_test->flags |= ETH_TEST_FL_FAILED; fp@673: fp@673: /* restore speed, duplex, autoneg settings */ fp@673: adapter->hw.autoneg_advertised = autoneg_advertised; fp@673: adapter->hw.forced_speed_duplex = forced_speed_duplex; fp@673: adapter->hw.autoneg = autoneg; fp@673: fp@673: e1000_reset(adapter); fp@673: if(if_running) fp@673: e1000_up(adapter); fp@673: } else { fp@673: /* Online tests */ fp@673: if(e1000_link_test(adapter, &data[4])) fp@673: eth_test->flags |= ETH_TEST_FL_FAILED; fp@673: fp@673: /* Offline tests aren't run; pass by default */ fp@673: data[0] = 0; fp@673: data[1] = 0; fp@673: data[2] = 0; fp@673: data[3] = 0; fp@673: } fp@673: } fp@673: fp@673: static void fp@673: e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) fp@673: { fp@673: struct e1000_adapter *adapter = netdev_priv(netdev); fp@673: struct e1000_hw *hw = &adapter->hw; fp@673: fp@673: switch(adapter->hw.device_id) { fp@673: case E1000_DEV_ID_82542: fp@673: case E1000_DEV_ID_82543GC_FIBER: fp@673: case E1000_DEV_ID_82543GC_COPPER: fp@673: case E1000_DEV_ID_82544EI_FIBER: fp@673: case E1000_DEV_ID_82546EB_QUAD_COPPER: fp@673: case E1000_DEV_ID_82545EM_FIBER: fp@673: case E1000_DEV_ID_82545EM_COPPER: fp@673: wol->supported = 0; fp@673: wol->wolopts = 0; fp@673: return; fp@673: fp@673: case E1000_DEV_ID_82546EB_FIBER: fp@673: case E1000_DEV_ID_82546GB_FIBER: fp@673: /* Wake events only supported on port A for dual fiber */ fp@673: if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) { fp@673: wol->supported = 0; fp@673: wol->wolopts = 0; fp@673: return; fp@673: } fp@673: /* Fall Through */ fp@673: fp@673: default: fp@673: wol->supported = WAKE_UCAST | WAKE_MCAST | fp@673: WAKE_BCAST | WAKE_MAGIC; fp@673: fp@673: wol->wolopts = 0; fp@673: if(adapter->wol & E1000_WUFC_EX) fp@673: wol->wolopts |= WAKE_UCAST; fp@673: if(adapter->wol & E1000_WUFC_MC) fp@673: wol->wolopts |= WAKE_MCAST; fp@673: if(adapter->wol & E1000_WUFC_BC) fp@673: wol->wolopts |= WAKE_BCAST; fp@673: if(adapter->wol & E1000_WUFC_MAG) fp@673: wol->wolopts |= WAKE_MAGIC; fp@673: return; fp@673: } fp@673: } fp@673: fp@673: static int fp@673: e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) fp@673: { fp@673: struct e1000_adapter *adapter = netdev_priv(netdev); fp@673: struct e1000_hw *hw = &adapter->hw; fp@673: fp@673: switch(adapter->hw.device_id) { fp@673: case E1000_DEV_ID_82542: fp@673: case E1000_DEV_ID_82543GC_FIBER: fp@673: case E1000_DEV_ID_82543GC_COPPER: fp@673: case E1000_DEV_ID_82544EI_FIBER: fp@673: case E1000_DEV_ID_82546EB_QUAD_COPPER: fp@673: case E1000_DEV_ID_82545EM_FIBER: fp@673: case E1000_DEV_ID_82545EM_COPPER: fp@673: return wol->wolopts ? -EOPNOTSUPP : 0; fp@673: fp@673: case E1000_DEV_ID_82546EB_FIBER: fp@673: case E1000_DEV_ID_82546GB_FIBER: fp@673: /* Wake events only supported on port A for dual fiber */ fp@673: if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) fp@673: return wol->wolopts ? -EOPNOTSUPP : 0; fp@673: /* Fall Through */ fp@673: fp@673: default: fp@673: if(wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE)) fp@673: return -EOPNOTSUPP; fp@673: fp@673: adapter->wol = 0; fp@673: fp@673: if(wol->wolopts & WAKE_UCAST) fp@673: adapter->wol |= E1000_WUFC_EX; fp@673: if(wol->wolopts & WAKE_MCAST) fp@673: adapter->wol |= E1000_WUFC_MC; fp@673: if(wol->wolopts & WAKE_BCAST) fp@673: adapter->wol |= E1000_WUFC_BC; fp@673: if(wol->wolopts & WAKE_MAGIC) fp@673: adapter->wol |= E1000_WUFC_MAG; fp@673: } fp@673: fp@673: return 0; fp@673: } fp@673: fp@673: /* toggle LED 4 times per second = 2 "blinks" per second */ fp@673: #define E1000_ID_INTERVAL (HZ/4) fp@673: fp@673: /* bit defines for adapter->led_status */ fp@673: #define E1000_LED_ON 0 fp@673: fp@673: static void fp@673: e1000_led_blink_callback(unsigned long data) fp@673: { fp@673: struct e1000_adapter *adapter = (struct e1000_adapter *) data; fp@673: fp@673: if(test_and_change_bit(E1000_LED_ON, &adapter->led_status)) fp@673: e1000_led_off(&adapter->hw); fp@673: else fp@673: e1000_led_on(&adapter->hw); fp@673: fp@673: mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL); fp@673: } fp@673: fp@673: static int fp@673: e1000_phys_id(struct net_device *netdev, uint32_t data) fp@673: { fp@673: struct e1000_adapter *adapter = netdev_priv(netdev); fp@673: fp@673: if(!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ)) fp@673: data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ); fp@673: fp@673: if(adapter->hw.mac_type < e1000_82573) { fp@673: if(!adapter->blink_timer.function) { fp@673: init_timer(&adapter->blink_timer); fp@673: adapter->blink_timer.function = e1000_led_blink_callback; fp@673: adapter->blink_timer.data = (unsigned long) adapter; fp@673: } fp@673: e1000_setup_led(&adapter->hw); fp@673: mod_timer(&adapter->blink_timer, jiffies); fp@673: msleep_interruptible(data * 1000); fp@673: del_timer_sync(&adapter->blink_timer); fp@673: } fp@673: else { fp@673: E1000_WRITE_REG(&adapter->hw, LEDCTL, (E1000_LEDCTL_LED2_BLINK_RATE | fp@673: E1000_LEDCTL_LED1_BLINK | E1000_LEDCTL_LED2_BLINK | fp@673: (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) | fp@673: (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED1_MODE_SHIFT) | fp@673: (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED0_MODE_SHIFT))); fp@673: msleep_interruptible(data * 1000); fp@673: } fp@673: fp@673: e1000_led_off(&adapter->hw); fp@673: clear_bit(E1000_LED_ON, &adapter->led_status); fp@673: e1000_cleanup_led(&adapter->hw); fp@673: fp@673: return 0; fp@673: } fp@673: fp@673: static int fp@673: e1000_nway_reset(struct net_device *netdev) fp@673: { fp@673: struct e1000_adapter *adapter = netdev_priv(netdev); fp@673: if (adapter->ecdev || netif_running(netdev)) { fp@673: e1000_down(adapter); fp@673: e1000_up(adapter); fp@673: } fp@673: return 0; fp@673: } fp@673: fp@673: static int fp@673: e1000_get_stats_count(struct net_device *netdev) fp@673: { fp@673: return E1000_STATS_LEN; fp@673: } fp@673: fp@673: static void fp@673: e1000_get_ethtool_stats(struct net_device *netdev, fp@673: struct ethtool_stats *stats, uint64_t *data) fp@673: { fp@673: struct e1000_adapter *adapter = netdev_priv(netdev); fp@673: int i; fp@673: fp@673: e1000_update_stats(adapter); fp@673: for(i = 0; i < E1000_STATS_LEN; i++) { fp@673: char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset; fp@673: data[i] = (e1000_gstrings_stats[i].sizeof_stat == fp@673: sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p; fp@673: } fp@673: } fp@673: fp@673: static void fp@673: e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data) fp@673: { fp@673: int i; fp@673: fp@673: switch(stringset) { fp@673: case ETH_SS_TEST: fp@673: memcpy(data, *e1000_gstrings_test, fp@673: E1000_TEST_LEN*ETH_GSTRING_LEN); fp@673: break; fp@673: case ETH_SS_STATS: fp@673: for (i=0; i < E1000_STATS_LEN; i++) { fp@673: memcpy(data + i * ETH_GSTRING_LEN, fp@673: e1000_gstrings_stats[i].stat_string, fp@673: ETH_GSTRING_LEN); fp@673: } fp@673: break; fp@673: } fp@673: } fp@673: fp@673: struct ethtool_ops e1000_ethtool_ops = { fp@673: .get_settings = e1000_get_settings, fp@673: .set_settings = e1000_set_settings, fp@673: .get_drvinfo = e1000_get_drvinfo, fp@673: .get_regs_len = e1000_get_regs_len, fp@673: .get_regs = e1000_get_regs, fp@673: .get_wol = e1000_get_wol, fp@673: .set_wol = e1000_set_wol, fp@673: .get_msglevel = e1000_get_msglevel, fp@673: .set_msglevel = e1000_set_msglevel, fp@673: .nway_reset = e1000_nway_reset, fp@673: .get_link = ethtool_op_get_link, fp@673: .get_eeprom_len = e1000_get_eeprom_len, fp@673: .get_eeprom = e1000_get_eeprom, fp@673: .set_eeprom = e1000_set_eeprom, fp@673: .get_ringparam = e1000_get_ringparam, fp@673: .set_ringparam = e1000_set_ringparam, fp@673: .get_pauseparam = e1000_get_pauseparam, fp@673: .set_pauseparam = e1000_set_pauseparam, fp@673: .get_rx_csum = e1000_get_rx_csum, fp@673: .set_rx_csum = e1000_set_rx_csum, fp@673: .get_tx_csum = e1000_get_tx_csum, fp@673: .set_tx_csum = e1000_set_tx_csum, fp@673: .get_sg = ethtool_op_get_sg, fp@673: .set_sg = ethtool_op_set_sg, fp@673: #ifdef NETIF_F_TSO fp@673: .get_tso = ethtool_op_get_tso, fp@673: .set_tso = e1000_set_tso, fp@673: #endif fp@673: .self_test_count = e1000_diag_test_count, fp@673: .self_test = e1000_diag_test, fp@673: .get_strings = e1000_get_strings, fp@673: .phys_id = e1000_phys_id, fp@673: .get_stats_count = e1000_get_stats_count, fp@673: .get_ethtool_stats = e1000_get_ethtool_stats, fp@673: }; fp@673: fp@673: void e1000_set_ethtool_ops(struct net_device *netdev) fp@673: { fp@673: SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops); fp@673: }