fp@2092: /*******************************************************************************
fp@2092: 
fp@2092:   Intel PRO/1000 Linux driver
fp@2092:   Copyright(c) 1999 - 2010 Intel Corporation.
fp@2092: 
fp@2092:   This program is free software; you can redistribute it and/or modify it
fp@2092:   under the terms and conditions of the GNU General Public License,
fp@2092:   version 2, as published by the Free Software Foundation.
fp@2092: 
fp@2092:   This program is distributed in the hope it will be useful, but WITHOUT
fp@2092:   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
fp@2092:   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
fp@2092:   more details.
fp@2092: 
fp@2092:   You should have received a copy of the GNU General Public License along with
fp@2092:   this program; if not, write to the Free Software Foundation, Inc.,
fp@2092:   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
fp@2092: 
fp@2092:   The full GNU General Public License is included in this distribution in
fp@2092:   the file called "COPYING".
fp@2092: 
fp@2092:   Contact Information:
fp@2092:   Linux NICS <linux.nics@intel.com>
fp@2092:   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
fp@2092:   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
fp@2092: 
fp@2092: *******************************************************************************/
fp@2092: 
fp@2092: /*
fp@2092:  * 82562G 10/100 Network Connection
fp@2092:  * 82562G-2 10/100 Network Connection
fp@2092:  * 82562GT 10/100 Network Connection
fp@2092:  * 82562GT-2 10/100 Network Connection
fp@2092:  * 82562V 10/100 Network Connection
fp@2092:  * 82562V-2 10/100 Network Connection
fp@2092:  * 82566DC-2 Gigabit Network Connection
fp@2092:  * 82566DC Gigabit Network Connection
fp@2092:  * 82566DM-2 Gigabit Network Connection
fp@2092:  * 82566DM Gigabit Network Connection
fp@2092:  * 82566MC Gigabit Network Connection
fp@2092:  * 82566MM Gigabit Network Connection
fp@2092:  * 82567LM Gigabit Network Connection
fp@2092:  * 82567LF Gigabit Network Connection
fp@2092:  * 82567V Gigabit Network Connection
fp@2092:  * 82567LM-2 Gigabit Network Connection
fp@2092:  * 82567LF-2 Gigabit Network Connection
fp@2092:  * 82567V-2 Gigabit Network Connection
fp@2092:  * 82567LF-3 Gigabit Network Connection
fp@2092:  * 82567LM-3 Gigabit Network Connection
fp@2092:  * 82567LM-4 Gigabit Network Connection
fp@2092:  * 82577LM Gigabit Network Connection
fp@2092:  * 82577LC Gigabit Network Connection
fp@2092:  * 82578DM Gigabit Network Connection
fp@2092:  * 82578DC Gigabit Network Connection
fp@2092:  * 82579LM Gigabit Network Connection
fp@2092:  * 82579V Gigabit Network Connection
fp@2092:  */
fp@2092: 
fp@2092: #include "e1000.h"
fp@2092: 
fp@2092: #define ICH_FLASH_GFPREG		0x0000
fp@2092: #define ICH_FLASH_HSFSTS		0x0004
fp@2092: #define ICH_FLASH_HSFCTL		0x0006
fp@2092: #define ICH_FLASH_FADDR			0x0008
fp@2092: #define ICH_FLASH_FDATA0		0x0010
fp@2092: #define ICH_FLASH_PR0			0x0074
fp@2092: 
fp@2092: #define ICH_FLASH_READ_COMMAND_TIMEOUT	500
fp@2092: #define ICH_FLASH_WRITE_COMMAND_TIMEOUT	500
fp@2092: #define ICH_FLASH_ERASE_COMMAND_TIMEOUT	3000000
fp@2092: #define ICH_FLASH_LINEAR_ADDR_MASK	0x00FFFFFF
fp@2092: #define ICH_FLASH_CYCLE_REPEAT_COUNT	10
fp@2092: 
fp@2092: #define ICH_CYCLE_READ			0
fp@2092: #define ICH_CYCLE_WRITE			2
fp@2092: #define ICH_CYCLE_ERASE			3
fp@2092: 
fp@2092: #define FLASH_GFPREG_BASE_MASK		0x1FFF
fp@2092: #define FLASH_SECTOR_ADDR_SHIFT		12
fp@2092: 
fp@2092: #define ICH_FLASH_SEG_SIZE_256		256
fp@2092: #define ICH_FLASH_SEG_SIZE_4K		4096
fp@2092: #define ICH_FLASH_SEG_SIZE_8K		8192
fp@2092: #define ICH_FLASH_SEG_SIZE_64K		65536
fp@2092: 
fp@2092: 
fp@2092: #define E1000_ICH_FWSM_RSPCIPHY	0x00000040 /* Reset PHY on PCI Reset */
fp@2092: /* FW established a valid mode */
fp@2092: #define E1000_ICH_FWSM_FW_VALID		0x00008000
fp@2092: 
fp@2092: #define E1000_ICH_MNG_IAMT_MODE		0x2
fp@2092: 
fp@2092: #define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
fp@2092: 				 (ID_LED_DEF1_OFF2 <<  8) | \
fp@2092: 				 (ID_LED_DEF1_ON2  <<  4) | \
fp@2092: 				 (ID_LED_DEF1_DEF2))
fp@2092: 
fp@2092: #define E1000_ICH_NVM_SIG_WORD		0x13
fp@2092: #define E1000_ICH_NVM_SIG_MASK		0xC000
fp@2092: #define E1000_ICH_NVM_VALID_SIG_MASK    0xC0
fp@2092: #define E1000_ICH_NVM_SIG_VALUE         0x80
fp@2092: 
fp@2092: #define E1000_ICH8_LAN_INIT_TIMEOUT	1500
fp@2092: 
fp@2092: #define E1000_FEXTNVM_SW_CONFIG		1
fp@2092: #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
fp@2092: 
fp@2092: #define E1000_FEXTNVM4_BEACON_DURATION_MASK    0x7
fp@2092: #define E1000_FEXTNVM4_BEACON_DURATION_8USEC   0x7
fp@2092: #define E1000_FEXTNVM4_BEACON_DURATION_16USEC  0x3
fp@2092: 
fp@2092: #define PCIE_ICH8_SNOOP_ALL		PCIE_NO_SNOOP_ALL
fp@2092: 
fp@2092: #define E1000_ICH_RAR_ENTRIES		7
fp@2092: 
fp@2092: #define PHY_PAGE_SHIFT 5
fp@2092: #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
fp@2092: 			   ((reg) & MAX_PHY_REG_ADDRESS))
fp@2092: #define IGP3_KMRN_DIAG  PHY_REG(770, 19) /* KMRN Diagnostic */
fp@2092: #define IGP3_VR_CTRL    PHY_REG(776, 18) /* Voltage Regulator Control */
fp@2092: 
fp@2092: #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS	0x0002
fp@2092: #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
fp@2092: #define IGP3_VR_CTRL_MODE_SHUTDOWN	0x0200
fp@2092: 
fp@2092: #define HV_LED_CONFIG		PHY_REG(768, 30) /* LED Configuration */
fp@2092: 
fp@2092: #define SW_FLAG_TIMEOUT    1000 /* SW Semaphore flag timeout in milliseconds */
fp@2092: 
fp@2092: /* SMBus Address Phy Register */
fp@2092: #define HV_SMB_ADDR            PHY_REG(768, 26)
fp@2092: #define HV_SMB_ADDR_MASK       0x007F
fp@2092: #define HV_SMB_ADDR_PEC_EN     0x0200
fp@2092: #define HV_SMB_ADDR_VALID      0x0080
fp@2092: 
fp@2092: /* PHY Power Management Control */
fp@2092: #define HV_PM_CTRL		PHY_REG(770, 17)
fp@2092: 
fp@2092: /* PHY Low Power Idle Control */
fp@2092: #define I82579_LPI_CTRL			PHY_REG(772, 20)
fp@2092: #define I82579_LPI_CTRL_ENABLE_MASK	0x6000
fp@2092: 
fp@2092: /* Strapping Option Register - RO */
fp@2092: #define E1000_STRAP                     0x0000C
fp@2092: #define E1000_STRAP_SMBUS_ADDRESS_MASK  0x00FE0000
fp@2092: #define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
fp@2092: 
fp@2092: /* OEM Bits Phy Register */
fp@2092: #define HV_OEM_BITS            PHY_REG(768, 25)
fp@2092: #define HV_OEM_BITS_LPLU       0x0004 /* Low Power Link Up */
fp@2092: #define HV_OEM_BITS_GBE_DIS    0x0040 /* Gigabit Disable */
fp@2092: #define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
fp@2092: 
fp@2092: #define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
fp@2092: #define E1000_NVM_K1_ENABLE 0x1  /* NVM Enable K1 bit */
fp@2092: 
fp@2092: /* KMRN Mode Control */
fp@2092: #define HV_KMRN_MODE_CTRL      PHY_REG(769, 16)
fp@2092: #define HV_KMRN_MDIO_SLOW      0x0400
fp@2092: 
fp@2092: /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
fp@2092: /* Offset 04h HSFSTS */
fp@2092: union ich8_hws_flash_status {
fp@2092: 	struct ich8_hsfsts {
fp@2092: 		u16 flcdone    :1; /* bit 0 Flash Cycle Done */
fp@2092: 		u16 flcerr     :1; /* bit 1 Flash Cycle Error */
fp@2092: 		u16 dael       :1; /* bit 2 Direct Access error Log */
fp@2092: 		u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
fp@2092: 		u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
fp@2092: 		u16 reserved1  :2; /* bit 13:6 Reserved */
fp@2092: 		u16 reserved2  :6; /* bit 13:6 Reserved */
fp@2092: 		u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
fp@2092: 		u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
fp@2092: 	} hsf_status;
fp@2092: 	u16 regval;
fp@2092: };
fp@2092: 
fp@2092: /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
fp@2092: /* Offset 06h FLCTL */
fp@2092: union ich8_hws_flash_ctrl {
fp@2092: 	struct ich8_hsflctl {
fp@2092: 		u16 flcgo      :1;   /* 0 Flash Cycle Go */
fp@2092: 		u16 flcycle    :2;   /* 2:1 Flash Cycle */
fp@2092: 		u16 reserved   :5;   /* 7:3 Reserved  */
fp@2092: 		u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
fp@2092: 		u16 flockdn    :6;   /* 15:10 Reserved */
fp@2092: 	} hsf_ctrl;
fp@2092: 	u16 regval;
fp@2092: };
fp@2092: 
fp@2092: /* ICH Flash Region Access Permissions */
fp@2092: union ich8_hws_flash_regacc {
fp@2092: 	struct ich8_flracc {
fp@2092: 		u32 grra      :8; /* 0:7 GbE region Read Access */
fp@2092: 		u32 grwa      :8; /* 8:15 GbE region Write Access */
fp@2092: 		u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
fp@2092: 		u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
fp@2092: 	} hsf_flregacc;
fp@2092: 	u16 regval;
fp@2092: };
fp@2092: 
fp@2092: /* ICH Flash Protected Region */
fp@2092: union ich8_flash_protected_range {
fp@2092: 	struct ich8_pr {
fp@2092: 		u32 base:13;     /* 0:12 Protected Range Base */
fp@2092: 		u32 reserved1:2; /* 13:14 Reserved */
fp@2092: 		u32 rpe:1;       /* 15 Read Protection Enable */
fp@2092: 		u32 limit:13;    /* 16:28 Protected Range Limit */
fp@2092: 		u32 reserved2:2; /* 29:30 Reserved */
fp@2092: 		u32 wpe:1;       /* 31 Write Protection Enable */
fp@2092: 	} range;
fp@2092: 	u32 regval;
fp@2092: };
fp@2092: 
fp@2092: static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
fp@2092: static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
fp@2092: static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
fp@2092: static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
fp@2092: static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
fp@2092: 						u32 offset, u8 byte);
fp@2092: static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
fp@2092: 					 u8 *data);
fp@2092: static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
fp@2092: 					 u16 *data);
fp@2092: static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
fp@2092: 					 u8 size, u16 *data);
fp@2092: static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
fp@2092: static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
fp@2092: static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
fp@2092: static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
fp@2092: static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
fp@2092: static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
fp@2092: static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
fp@2092: static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
fp@2092: static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
fp@2092: static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
fp@2092: static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
fp@2092: static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
fp@2092: static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
fp@2092: static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
fp@2092: static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
fp@2092: static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
fp@2092: static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
fp@2092: static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
fp@2092: static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
fp@2092: static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
fp@2092: 
fp@2092: static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
fp@2092: {
fp@2092: 	return readw(hw->flash_address + reg);
fp@2092: }
fp@2092: 
fp@2092: static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
fp@2092: {
fp@2092: 	return readl(hw->flash_address + reg);
fp@2092: }
fp@2092: 
fp@2092: static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
fp@2092: {
fp@2092: 	writew(val, hw->flash_address + reg);
fp@2092: }
fp@2092: 
fp@2092: static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
fp@2092: {
fp@2092: 	writel(val, hw->flash_address + reg);
fp@2092: }
fp@2092: 
fp@2092: #define er16flash(reg)		__er16flash(hw, (reg))
fp@2092: #define er32flash(reg)		__er32flash(hw, (reg))
fp@2092: #define ew16flash(reg,val)	__ew16flash(hw, (reg), (val))
fp@2092: #define ew32flash(reg,val)	__ew32flash(hw, (reg), (val))
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *
fp@2092:  *  Initialize family-specific PHY parameters and function pointers.
fp@2092:  **/
fp@2092: static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
fp@2092: {
fp@2092: 	struct e1000_phy_info *phy = &hw->phy;
fp@2092: 	u32 ctrl, fwsm;
fp@2092: 	s32 ret_val = 0;
fp@2092: 
fp@2092: 	phy->addr                     = 1;
fp@2092: 	phy->reset_delay_us           = 100;
fp@2092: 
fp@2092: 	phy->ops.read_reg             = e1000_read_phy_reg_hv;
fp@2092: 	phy->ops.read_reg_locked      = e1000_read_phy_reg_hv_locked;
fp@2092: 	phy->ops.set_d0_lplu_state    = e1000_set_lplu_state_pchlan;
fp@2092: 	phy->ops.set_d3_lplu_state    = e1000_set_lplu_state_pchlan;
fp@2092: 	phy->ops.write_reg            = e1000_write_phy_reg_hv;
fp@2092: 	phy->ops.write_reg_locked     = e1000_write_phy_reg_hv_locked;
fp@2092: 	phy->ops.power_up             = e1000_power_up_phy_copper;
fp@2092: 	phy->ops.power_down           = e1000_power_down_phy_copper_ich8lan;
fp@2092: 	phy->autoneg_mask             = AUTONEG_ADVERTISE_SPEED_DEFAULT;
fp@2092: 
fp@2092: 	/*
fp@2092: 	 * The MAC-PHY interconnect may still be in SMBus mode
fp@2092: 	 * after Sx->S0.  If the manageability engine (ME) is
fp@2092: 	 * disabled, then toggle the LANPHYPC Value bit to force
fp@2092: 	 * the interconnect to PCIe mode.
fp@2092: 	 */
fp@2092: 	fwsm = er32(FWSM);
fp@2092: 	if (!(fwsm & E1000_ICH_FWSM_FW_VALID)) {
fp@2092: 		ctrl = er32(CTRL);
fp@2092: 		ctrl |=  E1000_CTRL_LANPHYPC_OVERRIDE;
fp@2092: 		ctrl &= ~E1000_CTRL_LANPHYPC_VALUE;
fp@2092: 		ew32(CTRL, ctrl);
fp@2092: 		udelay(10);
fp@2092: 		ctrl &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
fp@2092: 		ew32(CTRL, ctrl);
fp@2092: 		msleep(50);
fp@2092: 
fp@2092: 		/*
fp@2092: 		 * Gate automatic PHY configuration by hardware on
fp@2092: 		 * non-managed 82579
fp@2092: 		 */
fp@2092: 		if (hw->mac.type == e1000_pch2lan)
fp@2092: 			e1000_gate_hw_phy_config_ich8lan(hw, true);
fp@2092: 	}
fp@2092: 
fp@2092: 	/*
fp@2092: 	 * Reset the PHY before any acccess to it.  Doing so, ensures that
fp@2092: 	 * the PHY is in a known good state before we read/write PHY registers.
fp@2092: 	 * The generic reset is sufficient here, because we haven't determined
fp@2092: 	 * the PHY type yet.
fp@2092: 	 */
fp@2092: 	ret_val = e1000e_phy_hw_reset_generic(hw);
fp@2092: 	if (ret_val)
fp@2092: 		goto out;
fp@2092: 
fp@2092: 	/* Ungate automatic PHY configuration on non-managed 82579 */
fp@2092: 	if ((hw->mac.type == e1000_pch2lan)  &&
fp@2092: 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
fp@2092: 		msleep(10);
fp@2092: 		e1000_gate_hw_phy_config_ich8lan(hw, false);
fp@2092: 	}
fp@2092: 
fp@2092: 	phy->id = e1000_phy_unknown;
fp@2092: 	switch (hw->mac.type) {
fp@2092: 	default:
fp@2092: 		ret_val = e1000e_get_phy_id(hw);
fp@2092: 		if (ret_val)
fp@2092: 			goto out;
fp@2092: 		if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
fp@2092: 			break;
fp@2092: 		/* fall-through */
fp@2092: 	case e1000_pch2lan:
fp@2092: 		/*
fp@2092: 		 * In case the PHY needs to be in mdio slow mode,
fp@2092: 		 * set slow mode and try to get the PHY id again.
fp@2092: 		 */
fp@2092: 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
fp@2092: 		if (ret_val)
fp@2092: 			goto out;
fp@2092: 		ret_val = e1000e_get_phy_id(hw);
fp@2092: 		if (ret_val)
fp@2092: 			goto out;
fp@2092: 		break;
fp@2092: 	}
fp@2092: 	phy->type = e1000e_get_phy_type_from_id(phy->id);
fp@2092: 
fp@2092: 	switch (phy->type) {
fp@2092: 	case e1000_phy_82577:
fp@2092: 	case e1000_phy_82579:
fp@2092: 		phy->ops.check_polarity = e1000_check_polarity_82577;
fp@2092: 		phy->ops.force_speed_duplex =
fp@2092: 			e1000_phy_force_speed_duplex_82577;
fp@2092: 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
fp@2092: 		phy->ops.get_info = e1000_get_phy_info_82577;
fp@2092: 		phy->ops.commit = e1000e_phy_sw_reset;
fp@2092: 		break;
fp@2092: 	case e1000_phy_82578:
fp@2092: 		phy->ops.check_polarity = e1000_check_polarity_m88;
fp@2092: 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
fp@2092: 		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
fp@2092: 		phy->ops.get_info = e1000e_get_phy_info_m88;
fp@2092: 		break;
fp@2092: 	default:
fp@2092: 		ret_val = -E1000_ERR_PHY;
fp@2092: 		break;
fp@2092: 	}
fp@2092: 
fp@2092: out:
fp@2092: 	return ret_val;
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *
fp@2092:  *  Initialize family-specific PHY parameters and function pointers.
fp@2092:  **/
fp@2092: static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
fp@2092: {
fp@2092: 	struct e1000_phy_info *phy = &hw->phy;
fp@2092: 	s32 ret_val;
fp@2092: 	u16 i = 0;
fp@2092: 
fp@2092: 	phy->addr			= 1;
fp@2092: 	phy->reset_delay_us		= 100;
fp@2092: 
fp@2092: 	phy->ops.power_up               = e1000_power_up_phy_copper;
fp@2092: 	phy->ops.power_down             = e1000_power_down_phy_copper_ich8lan;
fp@2092: 
fp@2092: 	/*
fp@2092: 	 * We may need to do this twice - once for IGP and if that fails,
fp@2092: 	 * we'll set BM func pointers and try again
fp@2092: 	 */
fp@2092: 	ret_val = e1000e_determine_phy_address(hw);
fp@2092: 	if (ret_val) {
fp@2092: 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
fp@2092: 		phy->ops.read_reg  = e1000e_read_phy_reg_bm;
fp@2092: 		ret_val = e1000e_determine_phy_address(hw);
fp@2092: 		if (ret_val) {
fp@2092: 			e_dbg("Cannot determine PHY addr. Erroring out\n");
fp@2092: 			return ret_val;
fp@2092: 		}
fp@2092: 	}
fp@2092: 
fp@2092: 	phy->id = 0;
fp@2092: 	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
fp@2092: 	       (i++ < 100)) {
fp@2092: 		msleep(1);
fp@2092: 		ret_val = e1000e_get_phy_id(hw);
fp@2092: 		if (ret_val)
fp@2092: 			return ret_val;
fp@2092: 	}
fp@2092: 
fp@2092: 	/* Verify phy id */
fp@2092: 	switch (phy->id) {
fp@2092: 	case IGP03E1000_E_PHY_ID:
fp@2092: 		phy->type = e1000_phy_igp_3;
fp@2092: 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
fp@2092: 		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
fp@2092: 		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
fp@2092: 		phy->ops.get_info = e1000e_get_phy_info_igp;
fp@2092: 		phy->ops.check_polarity = e1000_check_polarity_igp;
fp@2092: 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
fp@2092: 		break;
fp@2092: 	case IFE_E_PHY_ID:
fp@2092: 	case IFE_PLUS_E_PHY_ID:
fp@2092: 	case IFE_C_E_PHY_ID:
fp@2092: 		phy->type = e1000_phy_ife;
fp@2092: 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
fp@2092: 		phy->ops.get_info = e1000_get_phy_info_ife;
fp@2092: 		phy->ops.check_polarity = e1000_check_polarity_ife;
fp@2092: 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
fp@2092: 		break;
fp@2092: 	case BME1000_E_PHY_ID:
fp@2092: 		phy->type = e1000_phy_bm;
fp@2092: 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
fp@2092: 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
fp@2092: 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
fp@2092: 		phy->ops.commit = e1000e_phy_sw_reset;
fp@2092: 		phy->ops.get_info = e1000e_get_phy_info_m88;
fp@2092: 		phy->ops.check_polarity = e1000_check_polarity_m88;
fp@2092: 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
fp@2092: 		break;
fp@2092: 	default:
fp@2092: 		return -E1000_ERR_PHY;
fp@2092: 		break;
fp@2092: 	}
fp@2092: 
fp@2092: 	return 0;
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *
fp@2092:  *  Initialize family-specific NVM parameters and function
fp@2092:  *  pointers.
fp@2092:  **/
fp@2092: static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
fp@2092: {
fp@2092: 	struct e1000_nvm_info *nvm = &hw->nvm;
fp@2092: 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
fp@2092: 	u32 gfpreg, sector_base_addr, sector_end_addr;
fp@2092: 	u16 i;
fp@2092: 
fp@2092: 	/* Can't read flash registers if the register set isn't mapped. */
fp@2092: 	if (!hw->flash_address) {
fp@2092: 		e_dbg("ERROR: Flash registers not mapped\n");
fp@2092: 		return -E1000_ERR_CONFIG;
fp@2092: 	}
fp@2092: 
fp@2092: 	nvm->type = e1000_nvm_flash_sw;
fp@2092: 
fp@2092: 	gfpreg = er32flash(ICH_FLASH_GFPREG);
fp@2092: 
fp@2092: 	/*
fp@2092: 	 * sector_X_addr is a "sector"-aligned address (4096 bytes)
fp@2092: 	 * Add 1 to sector_end_addr since this sector is included in
fp@2092: 	 * the overall size.
fp@2092: 	 */
fp@2092: 	sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
fp@2092: 	sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
fp@2092: 
fp@2092: 	/* flash_base_addr is byte-aligned */
fp@2092: 	nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
fp@2092: 
fp@2092: 	/*
fp@2092: 	 * find total size of the NVM, then cut in half since the total
fp@2092: 	 * size represents two separate NVM banks.
fp@2092: 	 */
fp@2092: 	nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
fp@2092: 				<< FLASH_SECTOR_ADDR_SHIFT;
fp@2092: 	nvm->flash_bank_size /= 2;
fp@2092: 	/* Adjust to word count */
fp@2092: 	nvm->flash_bank_size /= sizeof(u16);
fp@2092: 
fp@2092: 	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
fp@2092: 
fp@2092: 	/* Clear shadow ram */
fp@2092: 	for (i = 0; i < nvm->word_size; i++) {
fp@2092: 		dev_spec->shadow_ram[i].modified = false;
fp@2092: 		dev_spec->shadow_ram[i].value    = 0xFFFF;
fp@2092: 	}
fp@2092: 
fp@2092: 	return 0;
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *
fp@2092:  *  Initialize family-specific MAC parameters and function
fp@2092:  *  pointers.
fp@2092:  **/
fp@2092: static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
fp@2092: {
fp@2092: 	struct e1000_hw *hw = &adapter->hw;
fp@2092: 	struct e1000_mac_info *mac = &hw->mac;
fp@2092: 
fp@2092: 	/* Set media type function pointer */
fp@2092: 	hw->phy.media_type = e1000_media_type_copper;
fp@2092: 
fp@2092: 	/* Set mta register count */
fp@2092: 	mac->mta_reg_count = 32;
fp@2092: 	/* Set rar entry count */
fp@2092: 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
fp@2092: 	if (mac->type == e1000_ich8lan)
fp@2092: 		mac->rar_entry_count--;
fp@2092: 	/* FWSM register */
fp@2092: 	mac->has_fwsm = true;
fp@2092: 	/* ARC subsystem not supported */
fp@2092: 	mac->arc_subsystem_valid = false;
fp@2092: 	/* Adaptive IFS supported */
fp@2092: 	mac->adaptive_ifs = true;
fp@2092: 
fp@2092: 	/* LED operations */
fp@2092: 	switch (mac->type) {
fp@2092: 	case e1000_ich8lan:
fp@2092: 	case e1000_ich9lan:
fp@2092: 	case e1000_ich10lan:
fp@2092: 		/* check management mode */
fp@2092: 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
fp@2092: 		/* ID LED init */
fp@2092: 		mac->ops.id_led_init = e1000e_id_led_init;
fp@2092: 		/* setup LED */
fp@2092: 		mac->ops.setup_led = e1000e_setup_led_generic;
fp@2092: 		/* cleanup LED */
fp@2092: 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
fp@2092: 		/* turn on/off LED */
fp@2092: 		mac->ops.led_on = e1000_led_on_ich8lan;
fp@2092: 		mac->ops.led_off = e1000_led_off_ich8lan;
fp@2092: 		break;
fp@2092: 	case e1000_pchlan:
fp@2092: 	case e1000_pch2lan:
fp@2092: 		/* check management mode */
fp@2092: 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
fp@2092: 		/* ID LED init */
fp@2092: 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
fp@2092: 		/* setup LED */
fp@2092: 		mac->ops.setup_led = e1000_setup_led_pchlan;
fp@2092: 		/* cleanup LED */
fp@2092: 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
fp@2092: 		/* turn on/off LED */
fp@2092: 		mac->ops.led_on = e1000_led_on_pchlan;
fp@2092: 		mac->ops.led_off = e1000_led_off_pchlan;
fp@2092: 		break;
fp@2092: 	default:
fp@2092: 		break;
fp@2092: 	}
fp@2092: 
fp@2092: 	/* Enable PCS Lock-loss workaround for ICH8 */
fp@2092: 	if (mac->type == e1000_ich8lan)
fp@2092: 		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
fp@2092: 
fp@2092: 	/* Gate automatic PHY configuration by hardware on managed 82579 */
fp@2092: 	if ((mac->type == e1000_pch2lan) &&
fp@2092: 	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
fp@2092: 		e1000_gate_hw_phy_config_ich8lan(hw, true);
fp@2092: 
fp@2092: 	return 0;
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_set_eee_pchlan - Enable/disable EEE support
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *
fp@2092:  *  Enable/disable EEE based on setting in dev_spec structure.  The bits in
fp@2092:  *  the LPI Control register will remain set only if/when link is up.
fp@2092:  **/
fp@2092: static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
fp@2092: {
fp@2092: 	s32 ret_val = 0;
fp@2092: 	u16 phy_reg;
fp@2092: 
fp@2092: 	if (hw->phy.type != e1000_phy_82579)
fp@2092: 		goto out;
fp@2092: 
fp@2092: 	ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
fp@2092: 	if (ret_val)
fp@2092: 		goto out;
fp@2092: 
fp@2092: 	if (hw->dev_spec.ich8lan.eee_disable)
fp@2092: 		phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK;
fp@2092: 	else
fp@2092: 		phy_reg |= I82579_LPI_CTRL_ENABLE_MASK;
fp@2092: 
fp@2092: 	ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
fp@2092: out:
fp@2092: 	return ret_val;
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *
fp@2092:  *  Checks to see of the link status of the hardware has changed.  If a
fp@2092:  *  change in link status has been detected, then we read the PHY registers
fp@2092:  *  to get the current speed/duplex if link exists.
fp@2092:  **/
fp@2092: static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
fp@2092: {
fp@2092: 	struct e1000_mac_info *mac = &hw->mac;
fp@2092: 	s32 ret_val;
fp@2092: 	bool link;
fp@2092: 
fp@2092: 	/*
fp@2092: 	 * We only want to go out to the PHY registers to see if Auto-Neg
fp@2092: 	 * has completed and/or if our link status has changed.  The
fp@2092: 	 * get_link_status flag is set upon receiving a Link Status
fp@2092: 	 * Change or Rx Sequence Error interrupt.
fp@2092: 	 */
fp@2092: 	if (!mac->get_link_status) {
fp@2092: 		ret_val = 0;
fp@2092: 		goto out;
fp@2092: 	}
fp@2092: 
fp@2092: 	/*
fp@2092: 	 * First we want to see if the MII Status Register reports
fp@2092: 	 * link.  If so, then we want to get the current speed/duplex
fp@2092: 	 * of the PHY.
fp@2092: 	 */
fp@2092: 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
fp@2092: 	if (ret_val)
fp@2092: 		goto out;
fp@2092: 
fp@2092: 	if (hw->mac.type == e1000_pchlan) {
fp@2092: 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
fp@2092: 		if (ret_val)
fp@2092: 			goto out;
fp@2092: 	}
fp@2092: 
fp@2092: 	if (!link)
fp@2092: 		goto out; /* No link detected */
fp@2092: 
fp@2092: 	mac->get_link_status = false;
fp@2092: 
fp@2092: 	if (hw->phy.type == e1000_phy_82578) {
fp@2092: 		ret_val = e1000_link_stall_workaround_hv(hw);
fp@2092: 		if (ret_val)
fp@2092: 			goto out;
fp@2092: 	}
fp@2092: 
fp@2092: 	if (hw->mac.type == e1000_pch2lan) {
fp@2092: 		ret_val = e1000_k1_workaround_lv(hw);
fp@2092: 		if (ret_val)
fp@2092: 			goto out;
fp@2092: 	}
fp@2092: 
fp@2092: 	/*
fp@2092: 	 * Check if there was DownShift, must be checked
fp@2092: 	 * immediately after link-up
fp@2092: 	 */
fp@2092: 	e1000e_check_downshift(hw);
fp@2092: 
fp@2092: 	/* Enable/Disable EEE after link up */
fp@2092: 	ret_val = e1000_set_eee_pchlan(hw);
fp@2092: 	if (ret_val)
fp@2092: 		goto out;
fp@2092: 
fp@2092: 	/*
fp@2092: 	 * If we are forcing speed/duplex, then we simply return since
fp@2092: 	 * we have already determined whether we have link or not.
fp@2092: 	 */
fp@2092: 	if (!mac->autoneg) {
fp@2092: 		ret_val = -E1000_ERR_CONFIG;
fp@2092: 		goto out;
fp@2092: 	}
fp@2092: 
fp@2092: 	/*
fp@2092: 	 * Auto-Neg is enabled.  Auto Speed Detection takes care
fp@2092: 	 * of MAC speed/duplex configuration.  So we only need to
fp@2092: 	 * configure Collision Distance in the MAC.
fp@2092: 	 */
fp@2092: 	e1000e_config_collision_dist(hw);
fp@2092: 
fp@2092: 	/*
fp@2092: 	 * Configure Flow Control now that Auto-Neg has completed.
fp@2092: 	 * First, we need to restore the desired flow control
fp@2092: 	 * settings because we may have had to re-autoneg with a
fp@2092: 	 * different link partner.
fp@2092: 	 */
fp@2092: 	ret_val = e1000e_config_fc_after_link_up(hw);
fp@2092: 	if (ret_val)
fp@2092: 		e_dbg("Error configuring flow control\n");
fp@2092: 
fp@2092: out:
fp@2092: 	return ret_val;
fp@2092: }
fp@2092: 
fp@2092: static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
fp@2092: {
fp@2092: 	struct e1000_hw *hw = &adapter->hw;
fp@2092: 	s32 rc;
fp@2092: 
fp@2092: 	rc = e1000_init_mac_params_ich8lan(adapter);
fp@2092: 	if (rc)
fp@2092: 		return rc;
fp@2092: 
fp@2092: 	rc = e1000_init_nvm_params_ich8lan(hw);
fp@2092: 	if (rc)
fp@2092: 		return rc;
fp@2092: 
fp@2092: 	switch (hw->mac.type) {
fp@2092: 	case e1000_ich8lan:
fp@2092: 	case e1000_ich9lan:
fp@2092: 	case e1000_ich10lan:
fp@2092: 		rc = e1000_init_phy_params_ich8lan(hw);
fp@2092: 		break;
fp@2092: 	case e1000_pchlan:
fp@2092: 	case e1000_pch2lan:
fp@2092: 		rc = e1000_init_phy_params_pchlan(hw);
fp@2092: 		break;
fp@2092: 	default:
fp@2092: 		break;
fp@2092: 	}
fp@2092: 	if (rc)
fp@2092: 		return rc;
fp@2092: 
fp@2092: 	if (adapter->hw.phy.type == e1000_phy_ife) {
fp@2092: 		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
fp@2092: 		adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
fp@2092: 	}
fp@2092: 
fp@2092: 	if ((adapter->hw.mac.type == e1000_ich8lan) &&
fp@2092: 	    (adapter->hw.phy.type == e1000_phy_igp_3))
fp@2092: 		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
fp@2092: 
fp@2092: 	/* Disable EEE by default until IEEE802.3az spec is finalized */
fp@2092: 	if (adapter->flags2 & FLAG2_HAS_EEE)
fp@2092: 		adapter->hw.dev_spec.ich8lan.eee_disable = true;
fp@2092: 
fp@2092: 	return 0;
fp@2092: }
fp@2092: 
fp@2092: static DEFINE_MUTEX(nvm_mutex);
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *
fp@2092:  *  Acquires the mutex for performing NVM operations.
fp@2092:  **/
fp@2092: static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
fp@2092: {
fp@2092: 	mutex_lock(&nvm_mutex);
fp@2092: 
fp@2092: 	return 0;
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_release_nvm_ich8lan - Release NVM mutex
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *
fp@2092:  *  Releases the mutex used while performing NVM operations.
fp@2092:  **/
fp@2092: static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
fp@2092: {
fp@2092: 	mutex_unlock(&nvm_mutex);
fp@2092: }
fp@2092: 
fp@2092: static DEFINE_MUTEX(swflag_mutex);
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *
fp@2092:  *  Acquires the software control flag for performing PHY and select
fp@2092:  *  MAC CSR accesses.
fp@2092:  **/
fp@2092: static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
fp@2092: {
fp@2092: 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
fp@2092: 	s32 ret_val = 0;
fp@2092: 
fp@2092: 	mutex_lock(&swflag_mutex);
fp@2092: 
fp@2092: 	while (timeout) {
fp@2092: 		extcnf_ctrl = er32(EXTCNF_CTRL);
fp@2092: 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
fp@2092: 			break;
fp@2092: 
fp@2092: 		mdelay(1);
fp@2092: 		timeout--;
fp@2092: 	}
fp@2092: 
fp@2092: 	if (!timeout) {
fp@2092: 		e_dbg("SW/FW/HW has locked the resource for too long.\n");
fp@2092: 		ret_val = -E1000_ERR_CONFIG;
fp@2092: 		goto out;
fp@2092: 	}
fp@2092: 
fp@2092: 	timeout = SW_FLAG_TIMEOUT;
fp@2092: 
fp@2092: 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
fp@2092: 	ew32(EXTCNF_CTRL, extcnf_ctrl);
fp@2092: 
fp@2092: 	while (timeout) {
fp@2092: 		extcnf_ctrl = er32(EXTCNF_CTRL);
fp@2092: 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
fp@2092: 			break;
fp@2092: 
fp@2092: 		mdelay(1);
fp@2092: 		timeout--;
fp@2092: 	}
fp@2092: 
fp@2092: 	if (!timeout) {
fp@2092: 		e_dbg("Failed to acquire the semaphore.\n");
fp@2092: 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
fp@2092: 		ew32(EXTCNF_CTRL, extcnf_ctrl);
fp@2092: 		ret_val = -E1000_ERR_CONFIG;
fp@2092: 		goto out;
fp@2092: 	}
fp@2092: 
fp@2092: out:
fp@2092: 	if (ret_val)
fp@2092: 		mutex_unlock(&swflag_mutex);
fp@2092: 
fp@2092: 	return ret_val;
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_release_swflag_ich8lan - Release software control flag
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *
fp@2092:  *  Releases the software control flag for performing PHY and select
fp@2092:  *  MAC CSR accesses.
fp@2092:  **/
fp@2092: static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
fp@2092: {
fp@2092: 	u32 extcnf_ctrl;
fp@2092: 
fp@2092: 	extcnf_ctrl = er32(EXTCNF_CTRL);
fp@2092: 	extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
fp@2092: 	ew32(EXTCNF_CTRL, extcnf_ctrl);
fp@2092: 
fp@2092: 	mutex_unlock(&swflag_mutex);
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_check_mng_mode_ich8lan - Checks management mode
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *
fp@2092:  *  This checks if the adapter has any manageability enabled.
fp@2092:  *  This is a function pointer entry point only called by read/write
fp@2092:  *  routines for the PHY and NVM parts.
fp@2092:  **/
fp@2092: static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
fp@2092: {
fp@2092: 	u32 fwsm;
fp@2092: 
fp@2092: 	fwsm = er32(FWSM);
fp@2092: 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
fp@2092: 	       ((fwsm & E1000_FWSM_MODE_MASK) ==
fp@2092: 		(E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_check_mng_mode_pchlan - Checks management mode
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *
fp@2092:  *  This checks if the adapter has iAMT enabled.
fp@2092:  *  This is a function pointer entry point only called by read/write
fp@2092:  *  routines for the PHY and NVM parts.
fp@2092:  **/
fp@2092: static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
fp@2092: {
fp@2092: 	u32 fwsm;
fp@2092: 
fp@2092: 	fwsm = er32(FWSM);
fp@2092: 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
fp@2092: 	       (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *
fp@2092:  *  Checks if firmware is blocking the reset of the PHY.
fp@2092:  *  This is a function pointer entry point only called by
fp@2092:  *  reset routines.
fp@2092:  **/
fp@2092: static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
fp@2092: {
fp@2092: 	u32 fwsm;
fp@2092: 
fp@2092: 	fwsm = er32(FWSM);
fp@2092: 
fp@2092: 	return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *
fp@2092:  *  Assumes semaphore already acquired.
fp@2092:  *
fp@2092:  **/
fp@2092: static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
fp@2092: {
fp@2092: 	u16 phy_data;
fp@2092: 	u32 strap = er32(STRAP);
fp@2092: 	s32 ret_val = 0;
fp@2092: 
fp@2092: 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
fp@2092: 
fp@2092: 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
fp@2092: 	if (ret_val)
fp@2092: 		goto out;
fp@2092: 
fp@2092: 	phy_data &= ~HV_SMB_ADDR_MASK;
fp@2092: 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
fp@2092: 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
fp@2092: 	ret_val = e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
fp@2092: 
fp@2092: out:
fp@2092: 	return ret_val;
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
fp@2092:  *  @hw:   pointer to the HW structure
fp@2092:  *
fp@2092:  *  SW should configure the LCD from the NVM extended configuration region
fp@2092:  *  as a workaround for certain parts.
fp@2092:  **/
fp@2092: static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
fp@2092: {
fp@2092: 	struct e1000_phy_info *phy = &hw->phy;
fp@2092: 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
fp@2092: 	s32 ret_val = 0;
fp@2092: 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
fp@2092: 
fp@2092: 	/*
fp@2092: 	 * Initialize the PHY from the NVM on ICH platforms.  This
fp@2092: 	 * is needed due to an issue where the NVM configuration is
fp@2092: 	 * not properly autoloaded after power transitions.
fp@2092: 	 * Therefore, after each PHY reset, we will load the
fp@2092: 	 * configuration data out of the NVM manually.
fp@2092: 	 */
fp@2092: 	switch (hw->mac.type) {
fp@2092: 	case e1000_ich8lan:
fp@2092: 		if (phy->type != e1000_phy_igp_3)
fp@2092: 			return ret_val;
fp@2092: 
fp@2092: 		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
fp@2092: 		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
fp@2092: 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
fp@2092: 			break;
fp@2092: 		}
fp@2092: 		/* Fall-thru */
fp@2092: 	case e1000_pchlan:
fp@2092: 	case e1000_pch2lan:
fp@2092: 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
fp@2092: 		break;
fp@2092: 	default:
fp@2092: 		return ret_val;
fp@2092: 	}
fp@2092: 
fp@2092: 	ret_val = hw->phy.ops.acquire(hw);
fp@2092: 	if (ret_val)
fp@2092: 		return ret_val;
fp@2092: 
fp@2092: 	data = er32(FEXTNVM);
fp@2092: 	if (!(data & sw_cfg_mask))
fp@2092: 		goto out;
fp@2092: 
fp@2092: 	/*
fp@2092: 	 * Make sure HW does not configure LCD from PHY
fp@2092: 	 * extended configuration before SW configuration
fp@2092: 	 */
fp@2092: 	data = er32(EXTCNF_CTRL);
fp@2092: 	if (!(hw->mac.type == e1000_pch2lan)) {
fp@2092: 		if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
fp@2092: 			goto out;
fp@2092: 	}
fp@2092: 
fp@2092: 	cnf_size = er32(EXTCNF_SIZE);
fp@2092: 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
fp@2092: 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
fp@2092: 	if (!cnf_size)
fp@2092: 		goto out;
fp@2092: 
fp@2092: 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
fp@2092: 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
fp@2092: 
fp@2092: 	if ((!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
fp@2092: 	    (hw->mac.type == e1000_pchlan)) ||
fp@2092: 	     (hw->mac.type == e1000_pch2lan)) {
fp@2092: 		/*
fp@2092: 		 * HW configures the SMBus address and LEDs when the
fp@2092: 		 * OEM and LCD Write Enable bits are set in the NVM.
fp@2092: 		 * When both NVM bits are cleared, SW will configure
fp@2092: 		 * them instead.
fp@2092: 		 */
fp@2092: 		ret_val = e1000_write_smbus_addr(hw);
fp@2092: 		if (ret_val)
fp@2092: 			goto out;
fp@2092: 
fp@2092: 		data = er32(LEDCTL);
fp@2092: 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
fp@2092: 							(u16)data);
fp@2092: 		if (ret_val)
fp@2092: 			goto out;
fp@2092: 	}
fp@2092: 
fp@2092: 	/* Configure LCD from extended configuration region. */
fp@2092: 
fp@2092: 	/* cnf_base_addr is in DWORD */
fp@2092: 	word_addr = (u16)(cnf_base_addr << 1);
fp@2092: 
fp@2092: 	for (i = 0; i < cnf_size; i++) {
fp@2092: 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
fp@2092: 					 &reg_data);
fp@2092: 		if (ret_val)
fp@2092: 			goto out;
fp@2092: 
fp@2092: 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
fp@2092: 					 1, &reg_addr);
fp@2092: 		if (ret_val)
fp@2092: 			goto out;
fp@2092: 
fp@2092: 		/* Save off the PHY page for future writes. */
fp@2092: 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
fp@2092: 			phy_page = reg_data;
fp@2092: 			continue;
fp@2092: 		}
fp@2092: 
fp@2092: 		reg_addr &= PHY_REG_MASK;
fp@2092: 		reg_addr |= phy_page;
fp@2092: 
fp@2092: 		ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
fp@2092: 						    reg_data);
fp@2092: 		if (ret_val)
fp@2092: 			goto out;
fp@2092: 	}
fp@2092: 
fp@2092: out:
fp@2092: 	hw->phy.ops.release(hw);
fp@2092: 	return ret_val;
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_k1_gig_workaround_hv - K1 Si workaround
fp@2092:  *  @hw:   pointer to the HW structure
fp@2092:  *  @link: link up bool flag
fp@2092:  *
fp@2092:  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
fp@2092:  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
fp@2092:  *  If link is down, the function will restore the default K1 setting located
fp@2092:  *  in the NVM.
fp@2092:  **/
fp@2092: static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
fp@2092: {
fp@2092: 	s32 ret_val = 0;
fp@2092: 	u16 status_reg = 0;
fp@2092: 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
fp@2092: 
fp@2092: 	if (hw->mac.type != e1000_pchlan)
fp@2092: 		goto out;
fp@2092: 
fp@2092: 	/* Wrap the whole flow with the sw flag */
fp@2092: 	ret_val = hw->phy.ops.acquire(hw);
fp@2092: 	if (ret_val)
fp@2092: 		goto out;
fp@2092: 
fp@2092: 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
fp@2092: 	if (link) {
fp@2092: 		if (hw->phy.type == e1000_phy_82578) {
fp@2092: 			ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
fp@2092: 			                                          &status_reg);
fp@2092: 			if (ret_val)
fp@2092: 				goto release;
fp@2092: 
fp@2092: 			status_reg &= BM_CS_STATUS_LINK_UP |
fp@2092: 			              BM_CS_STATUS_RESOLVED |
fp@2092: 			              BM_CS_STATUS_SPEED_MASK;
fp@2092: 
fp@2092: 			if (status_reg == (BM_CS_STATUS_LINK_UP |
fp@2092: 			                   BM_CS_STATUS_RESOLVED |
fp@2092: 			                   BM_CS_STATUS_SPEED_1000))
fp@2092: 				k1_enable = false;
fp@2092: 		}
fp@2092: 
fp@2092: 		if (hw->phy.type == e1000_phy_82577) {
fp@2092: 			ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
fp@2092: 			                                          &status_reg);
fp@2092: 			if (ret_val)
fp@2092: 				goto release;
fp@2092: 
fp@2092: 			status_reg &= HV_M_STATUS_LINK_UP |
fp@2092: 			              HV_M_STATUS_AUTONEG_COMPLETE |
fp@2092: 			              HV_M_STATUS_SPEED_MASK;
fp@2092: 
fp@2092: 			if (status_reg == (HV_M_STATUS_LINK_UP |
fp@2092: 			                   HV_M_STATUS_AUTONEG_COMPLETE |
fp@2092: 			                   HV_M_STATUS_SPEED_1000))
fp@2092: 				k1_enable = false;
fp@2092: 		}
fp@2092: 
fp@2092: 		/* Link stall fix for link up */
fp@2092: 		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
fp@2092: 		                                           0x0100);
fp@2092: 		if (ret_val)
fp@2092: 			goto release;
fp@2092: 
fp@2092: 	} else {
fp@2092: 		/* Link stall fix for link down */
fp@2092: 		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
fp@2092: 		                                           0x4100);
fp@2092: 		if (ret_val)
fp@2092: 			goto release;
fp@2092: 	}
fp@2092: 
fp@2092: 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
fp@2092: 
fp@2092: release:
fp@2092: 	hw->phy.ops.release(hw);
fp@2092: out:
fp@2092: 	return ret_val;
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_configure_k1_ich8lan - Configure K1 power state
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *  @enable: K1 state to configure
fp@2092:  *
fp@2092:  *  Configure the K1 power state based on the provided parameter.
fp@2092:  *  Assumes semaphore already acquired.
fp@2092:  *
fp@2092:  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
fp@2092:  **/
fp@2092: s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
fp@2092: {
fp@2092: 	s32 ret_val = 0;
fp@2092: 	u32 ctrl_reg = 0;
fp@2092: 	u32 ctrl_ext = 0;
fp@2092: 	u32 reg = 0;
fp@2092: 	u16 kmrn_reg = 0;
fp@2092: 
fp@2092: 	ret_val = e1000e_read_kmrn_reg_locked(hw,
fp@2092: 	                                     E1000_KMRNCTRLSTA_K1_CONFIG,
fp@2092: 	                                     &kmrn_reg);
fp@2092: 	if (ret_val)
fp@2092: 		goto out;
fp@2092: 
fp@2092: 	if (k1_enable)
fp@2092: 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
fp@2092: 	else
fp@2092: 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
fp@2092: 
fp@2092: 	ret_val = e1000e_write_kmrn_reg_locked(hw,
fp@2092: 	                                      E1000_KMRNCTRLSTA_K1_CONFIG,
fp@2092: 	                                      kmrn_reg);
fp@2092: 	if (ret_val)
fp@2092: 		goto out;
fp@2092: 
fp@2092: 	udelay(20);
fp@2092: 	ctrl_ext = er32(CTRL_EXT);
fp@2092: 	ctrl_reg = er32(CTRL);
fp@2092: 
fp@2092: 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
fp@2092: 	reg |= E1000_CTRL_FRCSPD;
fp@2092: 	ew32(CTRL, reg);
fp@2092: 
fp@2092: 	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
fp@2092: 	udelay(20);
fp@2092: 	ew32(CTRL, ctrl_reg);
fp@2092: 	ew32(CTRL_EXT, ctrl_ext);
fp@2092: 	udelay(20);
fp@2092: 
fp@2092: out:
fp@2092: 	return ret_val;
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
fp@2092:  *  @hw:       pointer to the HW structure
fp@2092:  *  @d0_state: boolean if entering d0 or d3 device state
fp@2092:  *
fp@2092:  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
fp@2092:  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
fp@2092:  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
fp@2092:  **/
fp@2092: static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
fp@2092: {
fp@2092: 	s32 ret_val = 0;
fp@2092: 	u32 mac_reg;
fp@2092: 	u16 oem_reg;
fp@2092: 
fp@2092: 	if ((hw->mac.type != e1000_pch2lan) && (hw->mac.type != e1000_pchlan))
fp@2092: 		return ret_val;
fp@2092: 
fp@2092: 	ret_val = hw->phy.ops.acquire(hw);
fp@2092: 	if (ret_val)
fp@2092: 		return ret_val;
fp@2092: 
fp@2092: 	if (!(hw->mac.type == e1000_pch2lan)) {
fp@2092: 		mac_reg = er32(EXTCNF_CTRL);
fp@2092: 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
fp@2092: 			goto out;
fp@2092: 	}
fp@2092: 
fp@2092: 	mac_reg = er32(FEXTNVM);
fp@2092: 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
fp@2092: 		goto out;
fp@2092: 
fp@2092: 	mac_reg = er32(PHY_CTRL);
fp@2092: 
fp@2092: 	ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
fp@2092: 	if (ret_val)
fp@2092: 		goto out;
fp@2092: 
fp@2092: 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
fp@2092: 
fp@2092: 	if (d0_state) {
fp@2092: 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
fp@2092: 			oem_reg |= HV_OEM_BITS_GBE_DIS;
fp@2092: 
fp@2092: 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
fp@2092: 			oem_reg |= HV_OEM_BITS_LPLU;
fp@2092: 	} else {
fp@2092: 		if (mac_reg & E1000_PHY_CTRL_NOND0A_GBE_DISABLE)
fp@2092: 			oem_reg |= HV_OEM_BITS_GBE_DIS;
fp@2092: 
fp@2092: 		if (mac_reg & E1000_PHY_CTRL_NOND0A_LPLU)
fp@2092: 			oem_reg |= HV_OEM_BITS_LPLU;
fp@2092: 	}
fp@2092: 	/* Restart auto-neg to activate the bits */
fp@2092: 	if (!e1000_check_reset_block(hw))
fp@2092: 		oem_reg |= HV_OEM_BITS_RESTART_AN;
fp@2092: 	ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
fp@2092: 
fp@2092: out:
fp@2092: 	hw->phy.ops.release(hw);
fp@2092: 
fp@2092: 	return ret_val;
fp@2092: }
fp@2092: 
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
fp@2092:  *  @hw:   pointer to the HW structure
fp@2092:  **/
fp@2092: static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
fp@2092: {
fp@2092: 	s32 ret_val;
fp@2092: 	u16 data;
fp@2092: 
fp@2092: 	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
fp@2092: 	if (ret_val)
fp@2092: 		return ret_val;
fp@2092: 
fp@2092: 	data |= HV_KMRN_MDIO_SLOW;
fp@2092: 
fp@2092: 	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
fp@2092: 
fp@2092: 	return ret_val;
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
fp@2092:  *  done after every PHY reset.
fp@2092:  **/
fp@2092: static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
fp@2092: {
fp@2092: 	s32 ret_val = 0;
fp@2092: 	u16 phy_data;
fp@2092: 
fp@2092: 	if (hw->mac.type != e1000_pchlan)
fp@2092: 		return ret_val;
fp@2092: 
fp@2092: 	/* Set MDIO slow mode before any other MDIO access */
fp@2092: 	if (hw->phy.type == e1000_phy_82577) {
fp@2092: 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
fp@2092: 		if (ret_val)
fp@2092: 			goto out;
fp@2092: 	}
fp@2092: 
fp@2092: 	if (((hw->phy.type == e1000_phy_82577) &&
fp@2092: 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
fp@2092: 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
fp@2092: 		/* Disable generation of early preamble */
fp@2092: 		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
fp@2092: 		if (ret_val)
fp@2092: 			return ret_val;
fp@2092: 
fp@2092: 		/* Preamble tuning for SSC */
fp@2092: 		ret_val = e1e_wphy(hw, PHY_REG(770, 16), 0xA204);
fp@2092: 		if (ret_val)
fp@2092: 			return ret_val;
fp@2092: 	}
fp@2092: 
fp@2092: 	if (hw->phy.type == e1000_phy_82578) {
fp@2092: 		/*
fp@2092: 		 * Return registers to default by doing a soft reset then
fp@2092: 		 * writing 0x3140 to the control register.
fp@2092: 		 */
fp@2092: 		if (hw->phy.revision < 2) {
fp@2092: 			e1000e_phy_sw_reset(hw);
fp@2092: 			ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
fp@2092: 		}
fp@2092: 	}
fp@2092: 
fp@2092: 	/* Select page 0 */
fp@2092: 	ret_val = hw->phy.ops.acquire(hw);
fp@2092: 	if (ret_val)
fp@2092: 		return ret_val;
fp@2092: 
fp@2092: 	hw->phy.addr = 1;
fp@2092: 	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
fp@2092: 	hw->phy.ops.release(hw);
fp@2092: 	if (ret_val)
fp@2092: 		goto out;
fp@2092: 
fp@2092: 	/*
fp@2092: 	 * Configure the K1 Si workaround during phy reset assuming there is
fp@2092: 	 * link so that it disables K1 if link is in 1Gbps.
fp@2092: 	 */
fp@2092: 	ret_val = e1000_k1_gig_workaround_hv(hw, true);
fp@2092: 	if (ret_val)
fp@2092: 		goto out;
fp@2092: 
fp@2092: 	/* Workaround for link disconnects on a busy hub in half duplex */
fp@2092: 	ret_val = hw->phy.ops.acquire(hw);
fp@2092: 	if (ret_val)
fp@2092: 		goto out;
fp@2092: 	ret_val = hw->phy.ops.read_reg_locked(hw,
fp@2092: 	                                      PHY_REG(BM_PORT_CTRL_PAGE, 17),
fp@2092: 	                                      &phy_data);
fp@2092: 	if (ret_val)
fp@2092: 		goto release;
fp@2092: 	ret_val = hw->phy.ops.write_reg_locked(hw,
fp@2092: 	                                       PHY_REG(BM_PORT_CTRL_PAGE, 17),
fp@2092: 	                                       phy_data & 0x00FF);
fp@2092: release:
fp@2092: 	hw->phy.ops.release(hw);
fp@2092: out:
fp@2092: 	return ret_val;
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
fp@2092:  *  @hw:   pointer to the HW structure
fp@2092:  **/
fp@2092: void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
fp@2092: {
fp@2092: 	u32 mac_reg;
fp@2092: 	u16 i;
fp@2092: 
fp@2092: 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
fp@2092: 	for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
fp@2092: 		mac_reg = er32(RAL(i));
fp@2092: 		e1e_wphy(hw, BM_RAR_L(i), (u16)(mac_reg & 0xFFFF));
fp@2092: 		e1e_wphy(hw, BM_RAR_M(i), (u16)((mac_reg >> 16) & 0xFFFF));
fp@2092: 		mac_reg = er32(RAH(i));
fp@2092: 		e1e_wphy(hw, BM_RAR_H(i), (u16)(mac_reg & 0xFFFF));
fp@2092: 		e1e_wphy(hw, BM_RAR_CTRL(i), (u16)((mac_reg >> 16) & 0x8000));
fp@2092: 	}
fp@2092: }
fp@2092: 
fp@2092: static u32 e1000_calc_rx_da_crc(u8 mac[])
fp@2092: {
fp@2092: 	u32 poly = 0xEDB88320;	/* Polynomial for 802.3 CRC calculation */
fp@2092: 	u32 i, j, mask, crc;
fp@2092: 
fp@2092: 	crc = 0xffffffff;
fp@2092: 	for (i = 0; i < 6; i++) {
fp@2092: 		crc = crc ^ mac[i];
fp@2092: 		for (j = 8; j > 0; j--) {
fp@2092: 			mask = (crc & 1) * (-1);
fp@2092: 			crc = (crc >> 1) ^ (poly & mask);
fp@2092: 		}
fp@2092: 	}
fp@2092: 	return ~crc;
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
fp@2092:  *  with 82579 PHY
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
fp@2092:  **/
fp@2092: s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
fp@2092: {
fp@2092: 	s32 ret_val = 0;
fp@2092: 	u16 phy_reg, data;
fp@2092: 	u32 mac_reg;
fp@2092: 	u16 i;
fp@2092: 
fp@2092: 	if (hw->mac.type != e1000_pch2lan)
fp@2092: 		goto out;
fp@2092: 
fp@2092: 	/* disable Rx path while enabling/disabling workaround */
fp@2092: 	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
fp@2092: 	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
fp@2092: 	if (ret_val)
fp@2092: 		goto out;
fp@2092: 
fp@2092: 	if (enable) {
fp@2092: 		/*
fp@2092: 		 * Write Rx addresses (rar_entry_count for RAL/H, +4 for
fp@2092: 		 * SHRAL/H) and initial CRC values to the MAC
fp@2092: 		 */
fp@2092: 		for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
fp@2092: 			u8 mac_addr[ETH_ALEN] = {0};
fp@2092: 			u32 addr_high, addr_low;
fp@2092: 
fp@2092: 			addr_high = er32(RAH(i));
fp@2092: 			if (!(addr_high & E1000_RAH_AV))
fp@2092: 				continue;
fp@2092: 			addr_low = er32(RAL(i));
fp@2092: 			mac_addr[0] = (addr_low & 0xFF);
fp@2092: 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
fp@2092: 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
fp@2092: 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
fp@2092: 			mac_addr[4] = (addr_high & 0xFF);
fp@2092: 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
fp@2092: 
fp@2092: 			ew32(PCH_RAICC(i),
fp@2092: 					e1000_calc_rx_da_crc(mac_addr));
fp@2092: 		}
fp@2092: 
fp@2092: 		/* Write Rx addresses to the PHY */
fp@2092: 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
fp@2092: 
fp@2092: 		/* Enable jumbo frame workaround in the MAC */
fp@2092: 		mac_reg = er32(FFLT_DBG);
fp@2092: 		mac_reg &= ~(1 << 14);
fp@2092: 		mac_reg |= (7 << 15);
fp@2092: 		ew32(FFLT_DBG, mac_reg);
fp@2092: 
fp@2092: 		mac_reg = er32(RCTL);
fp@2092: 		mac_reg |= E1000_RCTL_SECRC;
fp@2092: 		ew32(RCTL, mac_reg);
fp@2092: 
fp@2092: 		ret_val = e1000e_read_kmrn_reg(hw,
fp@2092: 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
fp@2092: 						&data);
fp@2092: 		if (ret_val)
fp@2092: 			goto out;
fp@2092: 		ret_val = e1000e_write_kmrn_reg(hw,
fp@2092: 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
fp@2092: 						data | (1 << 0));
fp@2092: 		if (ret_val)
fp@2092: 			goto out;
fp@2092: 		ret_val = e1000e_read_kmrn_reg(hw,
fp@2092: 						E1000_KMRNCTRLSTA_HD_CTRL,
fp@2092: 						&data);
fp@2092: 		if (ret_val)
fp@2092: 			goto out;
fp@2092: 		data &= ~(0xF << 8);
fp@2092: 		data |= (0xB << 8);
fp@2092: 		ret_val = e1000e_write_kmrn_reg(hw,
fp@2092: 						E1000_KMRNCTRLSTA_HD_CTRL,
fp@2092: 						data);
fp@2092: 		if (ret_val)
fp@2092: 			goto out;
fp@2092: 
fp@2092: 		/* Enable jumbo frame workaround in the PHY */
fp@2092: 		e1e_rphy(hw, PHY_REG(769, 23), &data);
fp@2092: 		data &= ~(0x7F << 5);
fp@2092: 		data |= (0x37 << 5);
fp@2092: 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
fp@2092: 		if (ret_val)
fp@2092: 			goto out;
fp@2092: 		e1e_rphy(hw, PHY_REG(769, 16), &data);
fp@2092: 		data &= ~(1 << 13);
fp@2092: 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
fp@2092: 		if (ret_val)
fp@2092: 			goto out;
fp@2092: 		e1e_rphy(hw, PHY_REG(776, 20), &data);
fp@2092: 		data &= ~(0x3FF << 2);
fp@2092: 		data |= (0x1A << 2);
fp@2092: 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
fp@2092: 		if (ret_val)
fp@2092: 			goto out;
fp@2092: 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xFE00);
fp@2092: 		if (ret_val)
fp@2092: 			goto out;
fp@2092: 		e1e_rphy(hw, HV_PM_CTRL, &data);
fp@2092: 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
fp@2092: 		if (ret_val)
fp@2092: 			goto out;
fp@2092: 	} else {
fp@2092: 		/* Write MAC register values back to h/w defaults */
fp@2092: 		mac_reg = er32(FFLT_DBG);
fp@2092: 		mac_reg &= ~(0xF << 14);
fp@2092: 		ew32(FFLT_DBG, mac_reg);
fp@2092: 
fp@2092: 		mac_reg = er32(RCTL);
fp@2092: 		mac_reg &= ~E1000_RCTL_SECRC;
fp@2092: 		ew32(RCTL, mac_reg);
fp@2092: 
fp@2092: 		ret_val = e1000e_read_kmrn_reg(hw,
fp@2092: 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
fp@2092: 						&data);
fp@2092: 		if (ret_val)
fp@2092: 			goto out;
fp@2092: 		ret_val = e1000e_write_kmrn_reg(hw,
fp@2092: 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
fp@2092: 						data & ~(1 << 0));
fp@2092: 		if (ret_val)
fp@2092: 			goto out;
fp@2092: 		ret_val = e1000e_read_kmrn_reg(hw,
fp@2092: 						E1000_KMRNCTRLSTA_HD_CTRL,
fp@2092: 						&data);
fp@2092: 		if (ret_val)
fp@2092: 			goto out;
fp@2092: 		data &= ~(0xF << 8);
fp@2092: 		data |= (0xB << 8);
fp@2092: 		ret_val = e1000e_write_kmrn_reg(hw,
fp@2092: 						E1000_KMRNCTRLSTA_HD_CTRL,
fp@2092: 						data);
fp@2092: 		if (ret_val)
fp@2092: 			goto out;
fp@2092: 
fp@2092: 		/* Write PHY register values back to h/w defaults */
fp@2092: 		e1e_rphy(hw, PHY_REG(769, 23), &data);
fp@2092: 		data &= ~(0x7F << 5);
fp@2092: 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
fp@2092: 		if (ret_val)
fp@2092: 			goto out;
fp@2092: 		e1e_rphy(hw, PHY_REG(769, 16), &data);
fp@2092: 		data |= (1 << 13);
fp@2092: 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
fp@2092: 		if (ret_val)
fp@2092: 			goto out;
fp@2092: 		e1e_rphy(hw, PHY_REG(776, 20), &data);
fp@2092: 		data &= ~(0x3FF << 2);
fp@2092: 		data |= (0x8 << 2);
fp@2092: 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
fp@2092: 		if (ret_val)
fp@2092: 			goto out;
fp@2092: 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
fp@2092: 		if (ret_val)
fp@2092: 			goto out;
fp@2092: 		e1e_rphy(hw, HV_PM_CTRL, &data);
fp@2092: 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
fp@2092: 		if (ret_val)
fp@2092: 			goto out;
fp@2092: 	}
fp@2092: 
fp@2092: 	/* re-enable Rx path after enabling/disabling workaround */
fp@2092: 	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
fp@2092: 
fp@2092: out:
fp@2092: 	return ret_val;
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
fp@2092:  *  done after every PHY reset.
fp@2092:  **/
fp@2092: static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
fp@2092: {
fp@2092: 	s32 ret_val = 0;
fp@2092: 
fp@2092: 	if (hw->mac.type != e1000_pch2lan)
fp@2092: 		goto out;
fp@2092: 
fp@2092: 	/* Set MDIO slow mode before any other MDIO access */
fp@2092: 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
fp@2092: 
fp@2092: out:
fp@2092: 	return ret_val;
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_k1_gig_workaround_lv - K1 Si workaround
fp@2092:  *  @hw:   pointer to the HW structure
fp@2092:  *
fp@2092:  *  Workaround to set the K1 beacon duration for 82579 parts
fp@2092:  **/
fp@2092: static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
fp@2092: {
fp@2092: 	s32 ret_val = 0;
fp@2092: 	u16 status_reg = 0;
fp@2092: 	u32 mac_reg;
fp@2092: 
fp@2092: 	if (hw->mac.type != e1000_pch2lan)
fp@2092: 		goto out;
fp@2092: 
fp@2092: 	/* Set K1 beacon duration based on 1Gbps speed or otherwise */
fp@2092: 	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
fp@2092: 	if (ret_val)
fp@2092: 		goto out;
fp@2092: 
fp@2092: 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
fp@2092: 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
fp@2092: 		mac_reg = er32(FEXTNVM4);
fp@2092: 		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
fp@2092: 
fp@2092: 		if (status_reg & HV_M_STATUS_SPEED_1000)
fp@2092: 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
fp@2092: 		else
fp@2092: 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
fp@2092: 
fp@2092: 		ew32(FEXTNVM4, mac_reg);
fp@2092: 	}
fp@2092: 
fp@2092: out:
fp@2092: 	return ret_val;
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
fp@2092:  *  @hw:   pointer to the HW structure
fp@2092:  *  @gate: boolean set to true to gate, false to ungate
fp@2092:  *
fp@2092:  *  Gate/ungate the automatic PHY configuration via hardware; perform
fp@2092:  *  the configuration via software instead.
fp@2092:  **/
fp@2092: static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
fp@2092: {
fp@2092: 	u32 extcnf_ctrl;
fp@2092: 
fp@2092: 	if (hw->mac.type != e1000_pch2lan)
fp@2092: 		return;
fp@2092: 
fp@2092: 	extcnf_ctrl = er32(EXTCNF_CTRL);
fp@2092: 
fp@2092: 	if (gate)
fp@2092: 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
fp@2092: 	else
fp@2092: 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
fp@2092: 
fp@2092: 	ew32(EXTCNF_CTRL, extcnf_ctrl);
fp@2092: 	return;
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *
fp@2092:  *  Check the appropriate indication the MAC has finished configuring the
fp@2092:  *  PHY after a software reset.
fp@2092:  **/
fp@2092: static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
fp@2092: {
fp@2092: 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
fp@2092: 
fp@2092: 	/* Wait for basic configuration completes before proceeding */
fp@2092: 	do {
fp@2092: 		data = er32(STATUS);
fp@2092: 		data &= E1000_STATUS_LAN_INIT_DONE;
fp@2092: 		udelay(100);
fp@2092: 	} while ((!data) && --loop);
fp@2092: 
fp@2092: 	/*
fp@2092: 	 * If basic configuration is incomplete before the above loop
fp@2092: 	 * count reaches 0, loading the configuration from NVM will
fp@2092: 	 * leave the PHY in a bad state possibly resulting in no link.
fp@2092: 	 */
fp@2092: 	if (loop == 0)
fp@2092: 		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
fp@2092: 
fp@2092: 	/* Clear the Init Done bit for the next init event */
fp@2092: 	data = er32(STATUS);
fp@2092: 	data &= ~E1000_STATUS_LAN_INIT_DONE;
fp@2092: 	ew32(STATUS, data);
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  **/
fp@2092: static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
fp@2092: {
fp@2092: 	s32 ret_val = 0;
fp@2092: 	u16 reg;
fp@2092: 
fp@2092: 	if (e1000_check_reset_block(hw))
fp@2092: 		goto out;
fp@2092: 
fp@2092: 	/* Allow time for h/w to get to quiescent state after reset */
fp@2092: 	msleep(10);
fp@2092: 
fp@2092: 	/* Perform any necessary post-reset workarounds */
fp@2092: 	switch (hw->mac.type) {
fp@2092: 	case e1000_pchlan:
fp@2092: 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
fp@2092: 		if (ret_val)
fp@2092: 			goto out;
fp@2092: 		break;
fp@2092: 	case e1000_pch2lan:
fp@2092: 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
fp@2092: 		if (ret_val)
fp@2092: 			goto out;
fp@2092: 		break;
fp@2092: 	default:
fp@2092: 		break;
fp@2092: 	}
fp@2092: 
fp@2092: 	/* Dummy read to clear the phy wakeup bit after lcd reset */
fp@2092: 	if (hw->mac.type >= e1000_pchlan)
fp@2092: 		e1e_rphy(hw, BM_WUC, &reg);
fp@2092: 
fp@2092: 	/* Configure the LCD with the extended configuration region in NVM */
fp@2092: 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
fp@2092: 	if (ret_val)
fp@2092: 		goto out;
fp@2092: 
fp@2092: 	/* Configure the LCD with the OEM bits in NVM */
fp@2092: 	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
fp@2092: 
fp@2092: 	/* Ungate automatic PHY configuration on non-managed 82579 */
fp@2092: 	if ((hw->mac.type == e1000_pch2lan) &&
fp@2092: 	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
fp@2092: 		msleep(10);
fp@2092: 		e1000_gate_hw_phy_config_ich8lan(hw, false);
fp@2092: 	}
fp@2092: 
fp@2092: out:
fp@2092: 	return ret_val;
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *
fp@2092:  *  Resets the PHY
fp@2092:  *  This is a function pointer entry point called by drivers
fp@2092:  *  or other shared routines.
fp@2092:  **/
fp@2092: static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
fp@2092: {
fp@2092: 	s32 ret_val = 0;
fp@2092: 
fp@2092: 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
fp@2092: 	if ((hw->mac.type == e1000_pch2lan) &&
fp@2092: 	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
fp@2092: 		e1000_gate_hw_phy_config_ich8lan(hw, true);
fp@2092: 
fp@2092: 	ret_val = e1000e_phy_hw_reset_generic(hw);
fp@2092: 	if (ret_val)
fp@2092: 		goto out;
fp@2092: 
fp@2092: 	ret_val = e1000_post_phy_reset_ich8lan(hw);
fp@2092: 
fp@2092: out:
fp@2092: 	return ret_val;
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *  @active: true to enable LPLU, false to disable
fp@2092:  *
fp@2092:  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
fp@2092:  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
fp@2092:  *  the phy speed. This function will manually set the LPLU bit and restart
fp@2092:  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
fp@2092:  *  since it configures the same bit.
fp@2092:  **/
fp@2092: static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
fp@2092: {
fp@2092: 	s32 ret_val = 0;
fp@2092: 	u16 oem_reg;
fp@2092: 
fp@2092: 	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
fp@2092: 	if (ret_val)
fp@2092: 		goto out;
fp@2092: 
fp@2092: 	if (active)
fp@2092: 		oem_reg |= HV_OEM_BITS_LPLU;
fp@2092: 	else
fp@2092: 		oem_reg &= ~HV_OEM_BITS_LPLU;
fp@2092: 
fp@2092: 	oem_reg |= HV_OEM_BITS_RESTART_AN;
fp@2092: 	ret_val = e1e_wphy(hw, HV_OEM_BITS, oem_reg);
fp@2092: 
fp@2092: out:
fp@2092: 	return ret_val;
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *  @active: true to enable LPLU, false to disable
fp@2092:  *
fp@2092:  *  Sets the LPLU D0 state according to the active flag.  When
fp@2092:  *  activating LPLU this function also disables smart speed
fp@2092:  *  and vice versa.  LPLU will not be activated unless the
fp@2092:  *  device autonegotiation advertisement meets standards of
fp@2092:  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
fp@2092:  *  This is a function pointer entry point only called by
fp@2092:  *  PHY setup routines.
fp@2092:  **/
fp@2092: static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
fp@2092: {
fp@2092: 	struct e1000_phy_info *phy = &hw->phy;
fp@2092: 	u32 phy_ctrl;
fp@2092: 	s32 ret_val = 0;
fp@2092: 	u16 data;
fp@2092: 
fp@2092: 	if (phy->type == e1000_phy_ife)
fp@2092: 		return ret_val;
fp@2092: 
fp@2092: 	phy_ctrl = er32(PHY_CTRL);
fp@2092: 
fp@2092: 	if (active) {
fp@2092: 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
fp@2092: 		ew32(PHY_CTRL, phy_ctrl);
fp@2092: 
fp@2092: 		if (phy->type != e1000_phy_igp_3)
fp@2092: 			return 0;
fp@2092: 
fp@2092: 		/*
fp@2092: 		 * Call gig speed drop workaround on LPLU before accessing
fp@2092: 		 * any PHY registers
fp@2092: 		 */
fp@2092: 		if (hw->mac.type == e1000_ich8lan)
fp@2092: 			e1000e_gig_downshift_workaround_ich8lan(hw);
fp@2092: 
fp@2092: 		/* When LPLU is enabled, we should disable SmartSpeed */
fp@2092: 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
fp@2092: 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
fp@2092: 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
fp@2092: 		if (ret_val)
fp@2092: 			return ret_val;
fp@2092: 	} else {
fp@2092: 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
fp@2092: 		ew32(PHY_CTRL, phy_ctrl);
fp@2092: 
fp@2092: 		if (phy->type != e1000_phy_igp_3)
fp@2092: 			return 0;
fp@2092: 
fp@2092: 		/*
fp@2092: 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
fp@2092: 		 * during Dx states where the power conservation is most
fp@2092: 		 * important.  During driver activity we should enable
fp@2092: 		 * SmartSpeed, so performance is maintained.
fp@2092: 		 */
fp@2092: 		if (phy->smart_speed == e1000_smart_speed_on) {
fp@2092: 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
fp@2092: 					   &data);
fp@2092: 			if (ret_val)
fp@2092: 				return ret_val;
fp@2092: 
fp@2092: 			data |= IGP01E1000_PSCFR_SMART_SPEED;
fp@2092: 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
fp@2092: 					   data);
fp@2092: 			if (ret_val)
fp@2092: 				return ret_val;
fp@2092: 		} else if (phy->smart_speed == e1000_smart_speed_off) {
fp@2092: 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
fp@2092: 					   &data);
fp@2092: 			if (ret_val)
fp@2092: 				return ret_val;
fp@2092: 
fp@2092: 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
fp@2092: 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
fp@2092: 					   data);
fp@2092: 			if (ret_val)
fp@2092: 				return ret_val;
fp@2092: 		}
fp@2092: 	}
fp@2092: 
fp@2092: 	return 0;
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *  @active: true to enable LPLU, false to disable
fp@2092:  *
fp@2092:  *  Sets the LPLU D3 state according to the active flag.  When
fp@2092:  *  activating LPLU this function also disables smart speed
fp@2092:  *  and vice versa.  LPLU will not be activated unless the
fp@2092:  *  device autonegotiation advertisement meets standards of
fp@2092:  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
fp@2092:  *  This is a function pointer entry point only called by
fp@2092:  *  PHY setup routines.
fp@2092:  **/
fp@2092: static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
fp@2092: {
fp@2092: 	struct e1000_phy_info *phy = &hw->phy;
fp@2092: 	u32 phy_ctrl;
fp@2092: 	s32 ret_val;
fp@2092: 	u16 data;
fp@2092: 
fp@2092: 	phy_ctrl = er32(PHY_CTRL);
fp@2092: 
fp@2092: 	if (!active) {
fp@2092: 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
fp@2092: 		ew32(PHY_CTRL, phy_ctrl);
fp@2092: 
fp@2092: 		if (phy->type != e1000_phy_igp_3)
fp@2092: 			return 0;
fp@2092: 
fp@2092: 		/*
fp@2092: 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
fp@2092: 		 * during Dx states where the power conservation is most
fp@2092: 		 * important.  During driver activity we should enable
fp@2092: 		 * SmartSpeed, so performance is maintained.
fp@2092: 		 */
fp@2092: 		if (phy->smart_speed == e1000_smart_speed_on) {
fp@2092: 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
fp@2092: 					   &data);
fp@2092: 			if (ret_val)
fp@2092: 				return ret_val;
fp@2092: 
fp@2092: 			data |= IGP01E1000_PSCFR_SMART_SPEED;
fp@2092: 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
fp@2092: 					   data);
fp@2092: 			if (ret_val)
fp@2092: 				return ret_val;
fp@2092: 		} else if (phy->smart_speed == e1000_smart_speed_off) {
fp@2092: 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
fp@2092: 					   &data);
fp@2092: 			if (ret_val)
fp@2092: 				return ret_val;
fp@2092: 
fp@2092: 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
fp@2092: 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
fp@2092: 					   data);
fp@2092: 			if (ret_val)
fp@2092: 				return ret_val;
fp@2092: 		}
fp@2092: 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
fp@2092: 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
fp@2092: 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
fp@2092: 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
fp@2092: 		ew32(PHY_CTRL, phy_ctrl);
fp@2092: 
fp@2092: 		if (phy->type != e1000_phy_igp_3)
fp@2092: 			return 0;
fp@2092: 
fp@2092: 		/*
fp@2092: 		 * Call gig speed drop workaround on LPLU before accessing
fp@2092: 		 * any PHY registers
fp@2092: 		 */
fp@2092: 		if (hw->mac.type == e1000_ich8lan)
fp@2092: 			e1000e_gig_downshift_workaround_ich8lan(hw);
fp@2092: 
fp@2092: 		/* When LPLU is enabled, we should disable SmartSpeed */
fp@2092: 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
fp@2092: 		if (ret_val)
fp@2092: 			return ret_val;
fp@2092: 
fp@2092: 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
fp@2092: 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
fp@2092: 	}
fp@2092: 
fp@2092: 	return 0;
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *  @bank:  pointer to the variable that returns the active bank
fp@2092:  *
fp@2092:  *  Reads signature byte from the NVM using the flash access registers.
fp@2092:  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
fp@2092:  **/
fp@2092: static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
fp@2092: {
fp@2092: 	u32 eecd;
fp@2092: 	struct e1000_nvm_info *nvm = &hw->nvm;
fp@2092: 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
fp@2092: 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
fp@2092: 	u8 sig_byte = 0;
fp@2092: 	s32 ret_val = 0;
fp@2092: 
fp@2092: 	switch (hw->mac.type) {
fp@2092: 	case e1000_ich8lan:
fp@2092: 	case e1000_ich9lan:
fp@2092: 		eecd = er32(EECD);
fp@2092: 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
fp@2092: 		    E1000_EECD_SEC1VAL_VALID_MASK) {
fp@2092: 			if (eecd & E1000_EECD_SEC1VAL)
fp@2092: 				*bank = 1;
fp@2092: 			else
fp@2092: 				*bank = 0;
fp@2092: 
fp@2092: 			return 0;
fp@2092: 		}
fp@2092: 		e_dbg("Unable to determine valid NVM bank via EEC - "
fp@2092: 		       "reading flash signature\n");
fp@2092: 		/* fall-thru */
fp@2092: 	default:
fp@2092: 		/* set bank to 0 in case flash read fails */
fp@2092: 		*bank = 0;
fp@2092: 
fp@2092: 		/* Check bank 0 */
fp@2092: 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
fp@2092: 		                                        &sig_byte);
fp@2092: 		if (ret_val)
fp@2092: 			return ret_val;
fp@2092: 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
fp@2092: 		    E1000_ICH_NVM_SIG_VALUE) {
fp@2092: 			*bank = 0;
fp@2092: 			return 0;
fp@2092: 		}
fp@2092: 
fp@2092: 		/* Check bank 1 */
fp@2092: 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
fp@2092: 		                                        bank1_offset,
fp@2092: 		                                        &sig_byte);
fp@2092: 		if (ret_val)
fp@2092: 			return ret_val;
fp@2092: 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
fp@2092: 		    E1000_ICH_NVM_SIG_VALUE) {
fp@2092: 			*bank = 1;
fp@2092: 			return 0;
fp@2092: 		}
fp@2092: 
fp@2092: 		e_dbg("ERROR: No valid NVM bank present\n");
fp@2092: 		return -E1000_ERR_NVM;
fp@2092: 	}
fp@2092: 
fp@2092: 	return 0;
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *  @offset: The offset (in bytes) of the word(s) to read.
fp@2092:  *  @words: Size of data to read in words
fp@2092:  *  @data: Pointer to the word(s) to read at offset.
fp@2092:  *
fp@2092:  *  Reads a word(s) from the NVM using the flash access registers.
fp@2092:  **/
fp@2092: static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
fp@2092: 				  u16 *data)
fp@2092: {
fp@2092: 	struct e1000_nvm_info *nvm = &hw->nvm;
fp@2092: 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
fp@2092: 	u32 act_offset;
fp@2092: 	s32 ret_val = 0;
fp@2092: 	u32 bank = 0;
fp@2092: 	u16 i, word;
fp@2092: 
fp@2092: 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
fp@2092: 	    (words == 0)) {
fp@2092: 		e_dbg("nvm parameter(s) out of bounds\n");
fp@2092: 		ret_val = -E1000_ERR_NVM;
fp@2092: 		goto out;
fp@2092: 	}
fp@2092: 
fp@2092: 	nvm->ops.acquire(hw);
fp@2092: 
fp@2092: 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
fp@2092: 	if (ret_val) {
fp@2092: 		e_dbg("Could not detect valid bank, assuming bank 0\n");
fp@2092: 		bank = 0;
fp@2092: 	}
fp@2092: 
fp@2092: 	act_offset = (bank) ? nvm->flash_bank_size : 0;
fp@2092: 	act_offset += offset;
fp@2092: 
fp@2092: 	ret_val = 0;
fp@2092: 	for (i = 0; i < words; i++) {
fp@2092: 		if ((dev_spec->shadow_ram) &&
fp@2092: 		    (dev_spec->shadow_ram[offset+i].modified)) {
fp@2092: 			data[i] = dev_spec->shadow_ram[offset+i].value;
fp@2092: 		} else {
fp@2092: 			ret_val = e1000_read_flash_word_ich8lan(hw,
fp@2092: 								act_offset + i,
fp@2092: 								&word);
fp@2092: 			if (ret_val)
fp@2092: 				break;
fp@2092: 			data[i] = word;
fp@2092: 		}
fp@2092: 	}
fp@2092: 
fp@2092: 	nvm->ops.release(hw);
fp@2092: 
fp@2092: out:
fp@2092: 	if (ret_val)
fp@2092: 		e_dbg("NVM read error: %d\n", ret_val);
fp@2092: 
fp@2092: 	return ret_val;
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_flash_cycle_init_ich8lan - Initialize flash
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *
fp@2092:  *  This function does initial flash setup so that a new read/write/erase cycle
fp@2092:  *  can be started.
fp@2092:  **/
fp@2092: static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
fp@2092: {
fp@2092: 	union ich8_hws_flash_status hsfsts;
fp@2092: 	s32 ret_val = -E1000_ERR_NVM;
fp@2092: 	s32 i = 0;
fp@2092: 
fp@2092: 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
fp@2092: 
fp@2092: 	/* Check if the flash descriptor is valid */
fp@2092: 	if (hsfsts.hsf_status.fldesvalid == 0) {
fp@2092: 		e_dbg("Flash descriptor invalid.  "
fp@2092: 			 "SW Sequencing must be used.\n");
fp@2092: 		return -E1000_ERR_NVM;
fp@2092: 	}
fp@2092: 
fp@2092: 	/* Clear FCERR and DAEL in hw status by writing 1 */
fp@2092: 	hsfsts.hsf_status.flcerr = 1;
fp@2092: 	hsfsts.hsf_status.dael = 1;
fp@2092: 
fp@2092: 	ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
fp@2092: 
fp@2092: 	/*
fp@2092: 	 * Either we should have a hardware SPI cycle in progress
fp@2092: 	 * bit to check against, in order to start a new cycle or
fp@2092: 	 * FDONE bit should be changed in the hardware so that it
fp@2092: 	 * is 1 after hardware reset, which can then be used as an
fp@2092: 	 * indication whether a cycle is in progress or has been
fp@2092: 	 * completed.
fp@2092: 	 */
fp@2092: 
fp@2092: 	if (hsfsts.hsf_status.flcinprog == 0) {
fp@2092: 		/*
fp@2092: 		 * There is no cycle running at present,
fp@2092: 		 * so we can start a cycle.
fp@2092: 		 * Begin by setting Flash Cycle Done.
fp@2092: 		 */
fp@2092: 		hsfsts.hsf_status.flcdone = 1;
fp@2092: 		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
fp@2092: 		ret_val = 0;
fp@2092: 	} else {
fp@2092: 		/*
fp@2092: 		 * Otherwise poll for sometime so the current
fp@2092: 		 * cycle has a chance to end before giving up.
fp@2092: 		 */
fp@2092: 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
fp@2092: 			hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
fp@2092: 			if (hsfsts.hsf_status.flcinprog == 0) {
fp@2092: 				ret_val = 0;
fp@2092: 				break;
fp@2092: 			}
fp@2092: 			udelay(1);
fp@2092: 		}
fp@2092: 		if (ret_val == 0) {
fp@2092: 			/*
fp@2092: 			 * Successful in waiting for previous cycle to timeout,
fp@2092: 			 * now set the Flash Cycle Done.
fp@2092: 			 */
fp@2092: 			hsfsts.hsf_status.flcdone = 1;
fp@2092: 			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
fp@2092: 		} else {
fp@2092: 			e_dbg("Flash controller busy, cannot get access\n");
fp@2092: 		}
fp@2092: 	}
fp@2092: 
fp@2092: 	return ret_val;
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *  @timeout: maximum time to wait for completion
fp@2092:  *
fp@2092:  *  This function starts a flash cycle and waits for its completion.
fp@2092:  **/
fp@2092: static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
fp@2092: {
fp@2092: 	union ich8_hws_flash_ctrl hsflctl;
fp@2092: 	union ich8_hws_flash_status hsfsts;
fp@2092: 	s32 ret_val = -E1000_ERR_NVM;
fp@2092: 	u32 i = 0;
fp@2092: 
fp@2092: 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
fp@2092: 	hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
fp@2092: 	hsflctl.hsf_ctrl.flcgo = 1;
fp@2092: 	ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
fp@2092: 
fp@2092: 	/* wait till FDONE bit is set to 1 */
fp@2092: 	do {
fp@2092: 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
fp@2092: 		if (hsfsts.hsf_status.flcdone == 1)
fp@2092: 			break;
fp@2092: 		udelay(1);
fp@2092: 	} while (i++ < timeout);
fp@2092: 
fp@2092: 	if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
fp@2092: 		return 0;
fp@2092: 
fp@2092: 	return ret_val;
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_read_flash_word_ich8lan - Read word from flash
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *  @offset: offset to data location
fp@2092:  *  @data: pointer to the location for storing the data
fp@2092:  *
fp@2092:  *  Reads the flash word at offset into data.  Offset is converted
fp@2092:  *  to bytes before read.
fp@2092:  **/
fp@2092: static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
fp@2092: 					 u16 *data)
fp@2092: {
fp@2092: 	/* Must convert offset into bytes. */
fp@2092: 	offset <<= 1;
fp@2092: 
fp@2092: 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_read_flash_byte_ich8lan - Read byte from flash
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *  @offset: The offset of the byte to read.
fp@2092:  *  @data: Pointer to a byte to store the value read.
fp@2092:  *
fp@2092:  *  Reads a single byte from the NVM using the flash access registers.
fp@2092:  **/
fp@2092: static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
fp@2092: 					 u8 *data)
fp@2092: {
fp@2092: 	s32 ret_val;
fp@2092: 	u16 word = 0;
fp@2092: 
fp@2092: 	ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
fp@2092: 	if (ret_val)
fp@2092: 		return ret_val;
fp@2092: 
fp@2092: 	*data = (u8)word;
fp@2092: 
fp@2092: 	return 0;
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *  @offset: The offset (in bytes) of the byte or word to read.
fp@2092:  *  @size: Size of data to read, 1=byte 2=word
fp@2092:  *  @data: Pointer to the word to store the value read.
fp@2092:  *
fp@2092:  *  Reads a byte or word from the NVM using the flash access registers.
fp@2092:  **/
fp@2092: static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
fp@2092: 					 u8 size, u16 *data)
fp@2092: {
fp@2092: 	union ich8_hws_flash_status hsfsts;
fp@2092: 	union ich8_hws_flash_ctrl hsflctl;
fp@2092: 	u32 flash_linear_addr;
fp@2092: 	u32 flash_data = 0;
fp@2092: 	s32 ret_val = -E1000_ERR_NVM;
fp@2092: 	u8 count = 0;
fp@2092: 
fp@2092: 	if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
fp@2092: 		return -E1000_ERR_NVM;
fp@2092: 
fp@2092: 	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
fp@2092: 			    hw->nvm.flash_base_addr;
fp@2092: 
fp@2092: 	do {
fp@2092: 		udelay(1);
fp@2092: 		/* Steps */
fp@2092: 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
fp@2092: 		if (ret_val != 0)
fp@2092: 			break;
fp@2092: 
fp@2092: 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
fp@2092: 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
fp@2092: 		hsflctl.hsf_ctrl.fldbcount = size - 1;
fp@2092: 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
fp@2092: 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
fp@2092: 
fp@2092: 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
fp@2092: 
fp@2092: 		ret_val = e1000_flash_cycle_ich8lan(hw,
fp@2092: 						ICH_FLASH_READ_COMMAND_TIMEOUT);
fp@2092: 
fp@2092: 		/*
fp@2092: 		 * Check if FCERR is set to 1, if set to 1, clear it
fp@2092: 		 * and try the whole sequence a few more times, else
fp@2092: 		 * read in (shift in) the Flash Data0, the order is
fp@2092: 		 * least significant byte first msb to lsb
fp@2092: 		 */
fp@2092: 		if (ret_val == 0) {
fp@2092: 			flash_data = er32flash(ICH_FLASH_FDATA0);
fp@2092: 			if (size == 1) {
fp@2092: 				*data = (u8)(flash_data & 0x000000FF);
fp@2092: 			} else if (size == 2) {
fp@2092: 				*data = (u16)(flash_data & 0x0000FFFF);
fp@2092: 			}
fp@2092: 			break;
fp@2092: 		} else {
fp@2092: 			/*
fp@2092: 			 * If we've gotten here, then things are probably
fp@2092: 			 * completely hosed, but if the error condition is
fp@2092: 			 * detected, it won't hurt to give it another try...
fp@2092: 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
fp@2092: 			 */
fp@2092: 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
fp@2092: 			if (hsfsts.hsf_status.flcerr == 1) {
fp@2092: 				/* Repeat for some time before giving up. */
fp@2092: 				continue;
fp@2092: 			} else if (hsfsts.hsf_status.flcdone == 0) {
fp@2092: 				e_dbg("Timeout error - flash cycle "
fp@2092: 					 "did not complete.\n");
fp@2092: 				break;
fp@2092: 			}
fp@2092: 		}
fp@2092: 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
fp@2092: 
fp@2092: 	return ret_val;
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *  @offset: The offset (in bytes) of the word(s) to write.
fp@2092:  *  @words: Size of data to write in words
fp@2092:  *  @data: Pointer to the word(s) to write at offset.
fp@2092:  *
fp@2092:  *  Writes a byte or word to the NVM using the flash access registers.
fp@2092:  **/
fp@2092: static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
fp@2092: 				   u16 *data)
fp@2092: {
fp@2092: 	struct e1000_nvm_info *nvm = &hw->nvm;
fp@2092: 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
fp@2092: 	u16 i;
fp@2092: 
fp@2092: 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
fp@2092: 	    (words == 0)) {
fp@2092: 		e_dbg("nvm parameter(s) out of bounds\n");
fp@2092: 		return -E1000_ERR_NVM;
fp@2092: 	}
fp@2092: 
fp@2092: 	nvm->ops.acquire(hw);
fp@2092: 
fp@2092: 	for (i = 0; i < words; i++) {
fp@2092: 		dev_spec->shadow_ram[offset+i].modified = true;
fp@2092: 		dev_spec->shadow_ram[offset+i].value = data[i];
fp@2092: 	}
fp@2092: 
fp@2092: 	nvm->ops.release(hw);
fp@2092: 
fp@2092: 	return 0;
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *
fp@2092:  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
fp@2092:  *  which writes the checksum to the shadow ram.  The changes in the shadow
fp@2092:  *  ram are then committed to the EEPROM by processing each bank at a time
fp@2092:  *  checking for the modified bit and writing only the pending changes.
fp@2092:  *  After a successful commit, the shadow ram is cleared and is ready for
fp@2092:  *  future writes.
fp@2092:  **/
fp@2092: static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
fp@2092: {
fp@2092: 	struct e1000_nvm_info *nvm = &hw->nvm;
fp@2092: 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
fp@2092: 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
fp@2092: 	s32 ret_val;
fp@2092: 	u16 data;
fp@2092: 
fp@2092: 	ret_val = e1000e_update_nvm_checksum_generic(hw);
fp@2092: 	if (ret_val)
fp@2092: 		goto out;
fp@2092: 
fp@2092: 	if (nvm->type != e1000_nvm_flash_sw)
fp@2092: 		goto out;
fp@2092: 
fp@2092: 	nvm->ops.acquire(hw);
fp@2092: 
fp@2092: 	/*
fp@2092: 	 * We're writing to the opposite bank so if we're on bank 1,
fp@2092: 	 * write to bank 0 etc.  We also need to erase the segment that
fp@2092: 	 * is going to be written
fp@2092: 	 */
fp@2092: 	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
fp@2092: 	if (ret_val) {
fp@2092: 		e_dbg("Could not detect valid bank, assuming bank 0\n");
fp@2092: 		bank = 0;
fp@2092: 	}
fp@2092: 
fp@2092: 	if (bank == 0) {
fp@2092: 		new_bank_offset = nvm->flash_bank_size;
fp@2092: 		old_bank_offset = 0;
fp@2092: 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
fp@2092: 		if (ret_val)
fp@2092: 			goto release;
fp@2092: 	} else {
fp@2092: 		old_bank_offset = nvm->flash_bank_size;
fp@2092: 		new_bank_offset = 0;
fp@2092: 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
fp@2092: 		if (ret_val)
fp@2092: 			goto release;
fp@2092: 	}
fp@2092: 
fp@2092: 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
fp@2092: 		/*
fp@2092: 		 * Determine whether to write the value stored
fp@2092: 		 * in the other NVM bank or a modified value stored
fp@2092: 		 * in the shadow RAM
fp@2092: 		 */
fp@2092: 		if (dev_spec->shadow_ram[i].modified) {
fp@2092: 			data = dev_spec->shadow_ram[i].value;
fp@2092: 		} else {
fp@2092: 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
fp@2092: 			                                        old_bank_offset,
fp@2092: 			                                        &data);
fp@2092: 			if (ret_val)
fp@2092: 				break;
fp@2092: 		}
fp@2092: 
fp@2092: 		/*
fp@2092: 		 * If the word is 0x13, then make sure the signature bits
fp@2092: 		 * (15:14) are 11b until the commit has completed.
fp@2092: 		 * This will allow us to write 10b which indicates the
fp@2092: 		 * signature is valid.  We want to do this after the write
fp@2092: 		 * has completed so that we don't mark the segment valid
fp@2092: 		 * while the write is still in progress
fp@2092: 		 */
fp@2092: 		if (i == E1000_ICH_NVM_SIG_WORD)
fp@2092: 			data |= E1000_ICH_NVM_SIG_MASK;
fp@2092: 
fp@2092: 		/* Convert offset to bytes. */
fp@2092: 		act_offset = (i + new_bank_offset) << 1;
fp@2092: 
fp@2092: 		udelay(100);
fp@2092: 		/* Write the bytes to the new bank. */
fp@2092: 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
fp@2092: 							       act_offset,
fp@2092: 							       (u8)data);
fp@2092: 		if (ret_val)
fp@2092: 			break;
fp@2092: 
fp@2092: 		udelay(100);
fp@2092: 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
fp@2092: 							  act_offset + 1,
fp@2092: 							  (u8)(data >> 8));
fp@2092: 		if (ret_val)
fp@2092: 			break;
fp@2092: 	}
fp@2092: 
fp@2092: 	/*
fp@2092: 	 * Don't bother writing the segment valid bits if sector
fp@2092: 	 * programming failed.
fp@2092: 	 */
fp@2092: 	if (ret_val) {
fp@2092: 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
fp@2092: 		e_dbg("Flash commit failed.\n");
fp@2092: 		goto release;
fp@2092: 	}
fp@2092: 
fp@2092: 	/*
fp@2092: 	 * Finally validate the new segment by setting bit 15:14
fp@2092: 	 * to 10b in word 0x13 , this can be done without an
fp@2092: 	 * erase as well since these bits are 11 to start with
fp@2092: 	 * and we need to change bit 14 to 0b
fp@2092: 	 */
fp@2092: 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
fp@2092: 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
fp@2092: 	if (ret_val)
fp@2092: 		goto release;
fp@2092: 
fp@2092: 	data &= 0xBFFF;
fp@2092: 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
fp@2092: 						       act_offset * 2 + 1,
fp@2092: 						       (u8)(data >> 8));
fp@2092: 	if (ret_val)
fp@2092: 		goto release;
fp@2092: 
fp@2092: 	/*
fp@2092: 	 * And invalidate the previously valid segment by setting
fp@2092: 	 * its signature word (0x13) high_byte to 0b. This can be
fp@2092: 	 * done without an erase because flash erase sets all bits
fp@2092: 	 * to 1's. We can write 1's to 0's without an erase
fp@2092: 	 */
fp@2092: 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
fp@2092: 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
fp@2092: 	if (ret_val)
fp@2092: 		goto release;
fp@2092: 
fp@2092: 	/* Great!  Everything worked, we can now clear the cached entries. */
fp@2092: 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
fp@2092: 		dev_spec->shadow_ram[i].modified = false;
fp@2092: 		dev_spec->shadow_ram[i].value = 0xFFFF;
fp@2092: 	}
fp@2092: 
fp@2092: release:
fp@2092: 	nvm->ops.release(hw);
fp@2092: 
fp@2092: 	/*
fp@2092: 	 * Reload the EEPROM, or else modifications will not appear
fp@2092: 	 * until after the next adapter reset.
fp@2092: 	 */
fp@2092: 	if (!ret_val) {
fp@2092: 		e1000e_reload_nvm(hw);
fp@2092: 		msleep(10);
fp@2092: 	}
fp@2092: 
fp@2092: out:
fp@2092: 	if (ret_val)
fp@2092: 		e_dbg("NVM update error: %d\n", ret_val);
fp@2092: 
fp@2092: 	return ret_val;
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *
fp@2092:  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
fp@2092:  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
fp@2092:  *  calculated, in which case we need to calculate the checksum and set bit 6.
fp@2092:  **/
fp@2092: static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
fp@2092: {
fp@2092: 	s32 ret_val;
fp@2092: 	u16 data;
fp@2092: 
fp@2092: 	/*
fp@2092: 	 * Read 0x19 and check bit 6.  If this bit is 0, the checksum
fp@2092: 	 * needs to be fixed.  This bit is an indication that the NVM
fp@2092: 	 * was prepared by OEM software and did not calculate the
fp@2092: 	 * checksum...a likely scenario.
fp@2092: 	 */
fp@2092: 	ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
fp@2092: 	if (ret_val)
fp@2092: 		return ret_val;
fp@2092: 
fp@2092: 	if ((data & 0x40) == 0) {
fp@2092: 		data |= 0x40;
fp@2092: 		ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
fp@2092: 		if (ret_val)
fp@2092: 			return ret_val;
fp@2092: 		ret_val = e1000e_update_nvm_checksum(hw);
fp@2092: 		if (ret_val)
fp@2092: 			return ret_val;
fp@2092: 	}
fp@2092: 
fp@2092: 	return e1000e_validate_nvm_checksum_generic(hw);
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *
fp@2092:  *  To prevent malicious write/erase of the NVM, set it to be read-only
fp@2092:  *  so that the hardware ignores all write/erase cycles of the NVM via
fp@2092:  *  the flash control registers.  The shadow-ram copy of the NVM will
fp@2092:  *  still be updated, however any updates to this copy will not stick
fp@2092:  *  across driver reloads.
fp@2092:  **/
fp@2092: void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
fp@2092: {
fp@2092: 	struct e1000_nvm_info *nvm = &hw->nvm;
fp@2092: 	union ich8_flash_protected_range pr0;
fp@2092: 	union ich8_hws_flash_status hsfsts;
fp@2092: 	u32 gfpreg;
fp@2092: 
fp@2092: 	nvm->ops.acquire(hw);
fp@2092: 
fp@2092: 	gfpreg = er32flash(ICH_FLASH_GFPREG);
fp@2092: 
fp@2092: 	/* Write-protect GbE Sector of NVM */
fp@2092: 	pr0.regval = er32flash(ICH_FLASH_PR0);
fp@2092: 	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
fp@2092: 	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
fp@2092: 	pr0.range.wpe = true;
fp@2092: 	ew32flash(ICH_FLASH_PR0, pr0.regval);
fp@2092: 
fp@2092: 	/*
fp@2092: 	 * Lock down a subset of GbE Flash Control Registers, e.g.
fp@2092: 	 * PR0 to prevent the write-protection from being lifted.
fp@2092: 	 * Once FLOCKDN is set, the registers protected by it cannot
fp@2092: 	 * be written until FLOCKDN is cleared by a hardware reset.
fp@2092: 	 */
fp@2092: 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
fp@2092: 	hsfsts.hsf_status.flockdn = true;
fp@2092: 	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
fp@2092: 
fp@2092: 	nvm->ops.release(hw);
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *  @offset: The offset (in bytes) of the byte/word to read.
fp@2092:  *  @size: Size of data to read, 1=byte 2=word
fp@2092:  *  @data: The byte(s) to write to the NVM.
fp@2092:  *
fp@2092:  *  Writes one/two bytes to the NVM using the flash access registers.
fp@2092:  **/
fp@2092: static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
fp@2092: 					  u8 size, u16 data)
fp@2092: {
fp@2092: 	union ich8_hws_flash_status hsfsts;
fp@2092: 	union ich8_hws_flash_ctrl hsflctl;
fp@2092: 	u32 flash_linear_addr;
fp@2092: 	u32 flash_data = 0;
fp@2092: 	s32 ret_val;
fp@2092: 	u8 count = 0;
fp@2092: 
fp@2092: 	if (size < 1 || size > 2 || data > size * 0xff ||
fp@2092: 	    offset > ICH_FLASH_LINEAR_ADDR_MASK)
fp@2092: 		return -E1000_ERR_NVM;
fp@2092: 
fp@2092: 	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
fp@2092: 			    hw->nvm.flash_base_addr;
fp@2092: 
fp@2092: 	do {
fp@2092: 		udelay(1);
fp@2092: 		/* Steps */
fp@2092: 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
fp@2092: 		if (ret_val)
fp@2092: 			break;
fp@2092: 
fp@2092: 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
fp@2092: 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
fp@2092: 		hsflctl.hsf_ctrl.fldbcount = size -1;
fp@2092: 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
fp@2092: 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
fp@2092: 
fp@2092: 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
fp@2092: 
fp@2092: 		if (size == 1)
fp@2092: 			flash_data = (u32)data & 0x00FF;
fp@2092: 		else
fp@2092: 			flash_data = (u32)data;
fp@2092: 
fp@2092: 		ew32flash(ICH_FLASH_FDATA0, flash_data);
fp@2092: 
fp@2092: 		/*
fp@2092: 		 * check if FCERR is set to 1 , if set to 1, clear it
fp@2092: 		 * and try the whole sequence a few more times else done
fp@2092: 		 */
fp@2092: 		ret_val = e1000_flash_cycle_ich8lan(hw,
fp@2092: 					       ICH_FLASH_WRITE_COMMAND_TIMEOUT);
fp@2092: 		if (!ret_val)
fp@2092: 			break;
fp@2092: 
fp@2092: 		/*
fp@2092: 		 * If we're here, then things are most likely
fp@2092: 		 * completely hosed, but if the error condition
fp@2092: 		 * is detected, it won't hurt to give it another
fp@2092: 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
fp@2092: 		 */
fp@2092: 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
fp@2092: 		if (hsfsts.hsf_status.flcerr == 1)
fp@2092: 			/* Repeat for some time before giving up. */
fp@2092: 			continue;
fp@2092: 		if (hsfsts.hsf_status.flcdone == 0) {
fp@2092: 			e_dbg("Timeout error - flash cycle "
fp@2092: 				 "did not complete.");
fp@2092: 			break;
fp@2092: 		}
fp@2092: 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
fp@2092: 
fp@2092: 	return ret_val;
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *  @offset: The index of the byte to read.
fp@2092:  *  @data: The byte to write to the NVM.
fp@2092:  *
fp@2092:  *  Writes a single byte to the NVM using the flash access registers.
fp@2092:  **/
fp@2092: static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
fp@2092: 					  u8 data)
fp@2092: {
fp@2092: 	u16 word = (u16)data;
fp@2092: 
fp@2092: 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *  @offset: The offset of the byte to write.
fp@2092:  *  @byte: The byte to write to the NVM.
fp@2092:  *
fp@2092:  *  Writes a single byte to the NVM using the flash access registers.
fp@2092:  *  Goes through a retry algorithm before giving up.
fp@2092:  **/
fp@2092: static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
fp@2092: 						u32 offset, u8 byte)
fp@2092: {
fp@2092: 	s32 ret_val;
fp@2092: 	u16 program_retries;
fp@2092: 
fp@2092: 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
fp@2092: 	if (!ret_val)
fp@2092: 		return ret_val;
fp@2092: 
fp@2092: 	for (program_retries = 0; program_retries < 100; program_retries++) {
fp@2092: 		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
fp@2092: 		udelay(100);
fp@2092: 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
fp@2092: 		if (!ret_val)
fp@2092: 			break;
fp@2092: 	}
fp@2092: 	if (program_retries == 100)
fp@2092: 		return -E1000_ERR_NVM;
fp@2092: 
fp@2092: 	return 0;
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *  @bank: 0 for first bank, 1 for second bank, etc.
fp@2092:  *
fp@2092:  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
fp@2092:  *  bank N is 4096 * N + flash_reg_addr.
fp@2092:  **/
fp@2092: static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
fp@2092: {
fp@2092: 	struct e1000_nvm_info *nvm = &hw->nvm;
fp@2092: 	union ich8_hws_flash_status hsfsts;
fp@2092: 	union ich8_hws_flash_ctrl hsflctl;
fp@2092: 	u32 flash_linear_addr;
fp@2092: 	/* bank size is in 16bit words - adjust to bytes */
fp@2092: 	u32 flash_bank_size = nvm->flash_bank_size * 2;
fp@2092: 	s32 ret_val;
fp@2092: 	s32 count = 0;
fp@2092: 	s32 j, iteration, sector_size;
fp@2092: 
fp@2092: 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
fp@2092: 
fp@2092: 	/*
fp@2092: 	 * Determine HW Sector size: Read BERASE bits of hw flash status
fp@2092: 	 * register
fp@2092: 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
fp@2092: 	 *     consecutive sectors.  The start index for the nth Hw sector
fp@2092: 	 *     can be calculated as = bank * 4096 + n * 256
fp@2092: 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
fp@2092: 	 *     The start index for the nth Hw sector can be calculated
fp@2092: 	 *     as = bank * 4096
fp@2092: 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
fp@2092: 	 *     (ich9 only, otherwise error condition)
fp@2092: 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
fp@2092: 	 */
fp@2092: 	switch (hsfsts.hsf_status.berasesz) {
fp@2092: 	case 0:
fp@2092: 		/* Hw sector size 256 */
fp@2092: 		sector_size = ICH_FLASH_SEG_SIZE_256;
fp@2092: 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
fp@2092: 		break;
fp@2092: 	case 1:
fp@2092: 		sector_size = ICH_FLASH_SEG_SIZE_4K;
fp@2092: 		iteration = 1;
fp@2092: 		break;
fp@2092: 	case 2:
fp@2092: 		sector_size = ICH_FLASH_SEG_SIZE_8K;
fp@2092: 		iteration = 1;
fp@2092: 		break;
fp@2092: 	case 3:
fp@2092: 		sector_size = ICH_FLASH_SEG_SIZE_64K;
fp@2092: 		iteration = 1;
fp@2092: 		break;
fp@2092: 	default:
fp@2092: 		return -E1000_ERR_NVM;
fp@2092: 	}
fp@2092: 
fp@2092: 	/* Start with the base address, then add the sector offset. */
fp@2092: 	flash_linear_addr = hw->nvm.flash_base_addr;
fp@2092: 	flash_linear_addr += (bank) ? flash_bank_size : 0;
fp@2092: 
fp@2092: 	for (j = 0; j < iteration ; j++) {
fp@2092: 		do {
fp@2092: 			/* Steps */
fp@2092: 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
fp@2092: 			if (ret_val)
fp@2092: 				return ret_val;
fp@2092: 
fp@2092: 			/*
fp@2092: 			 * Write a value 11 (block Erase) in Flash
fp@2092: 			 * Cycle field in hw flash control
fp@2092: 			 */
fp@2092: 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
fp@2092: 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
fp@2092: 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
fp@2092: 
fp@2092: 			/*
fp@2092: 			 * Write the last 24 bits of an index within the
fp@2092: 			 * block into Flash Linear address field in Flash
fp@2092: 			 * Address.
fp@2092: 			 */
fp@2092: 			flash_linear_addr += (j * sector_size);
fp@2092: 			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
fp@2092: 
fp@2092: 			ret_val = e1000_flash_cycle_ich8lan(hw,
fp@2092: 					       ICH_FLASH_ERASE_COMMAND_TIMEOUT);
fp@2092: 			if (ret_val == 0)
fp@2092: 				break;
fp@2092: 
fp@2092: 			/*
fp@2092: 			 * Check if FCERR is set to 1.  If 1,
fp@2092: 			 * clear it and try the whole sequence
fp@2092: 			 * a few more times else Done
fp@2092: 			 */
fp@2092: 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
fp@2092: 			if (hsfsts.hsf_status.flcerr == 1)
fp@2092: 				/* repeat for some time before giving up */
fp@2092: 				continue;
fp@2092: 			else if (hsfsts.hsf_status.flcdone == 0)
fp@2092: 				return ret_val;
fp@2092: 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
fp@2092: 	}
fp@2092: 
fp@2092: 	return 0;
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_valid_led_default_ich8lan - Set the default LED settings
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *  @data: Pointer to the LED settings
fp@2092:  *
fp@2092:  *  Reads the LED default settings from the NVM to data.  If the NVM LED
fp@2092:  *  settings is all 0's or F's, set the LED default to a valid LED default
fp@2092:  *  setting.
fp@2092:  **/
fp@2092: static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
fp@2092: {
fp@2092: 	s32 ret_val;
fp@2092: 
fp@2092: 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
fp@2092: 	if (ret_val) {
fp@2092: 		e_dbg("NVM Read Error\n");
fp@2092: 		return ret_val;
fp@2092: 	}
fp@2092: 
fp@2092: 	if (*data == ID_LED_RESERVED_0000 ||
fp@2092: 	    *data == ID_LED_RESERVED_FFFF)
fp@2092: 		*data = ID_LED_DEFAULT_ICH8LAN;
fp@2092: 
fp@2092: 	return 0;
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_id_led_init_pchlan - store LED configurations
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *
fp@2092:  *  PCH does not control LEDs via the LEDCTL register, rather it uses
fp@2092:  *  the PHY LED configuration register.
fp@2092:  *
fp@2092:  *  PCH also does not have an "always on" or "always off" mode which
fp@2092:  *  complicates the ID feature.  Instead of using the "on" mode to indicate
fp@2092:  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
fp@2092:  *  use "link_up" mode.  The LEDs will still ID on request if there is no
fp@2092:  *  link based on logic in e1000_led_[on|off]_pchlan().
fp@2092:  **/
fp@2092: static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
fp@2092: {
fp@2092: 	struct e1000_mac_info *mac = &hw->mac;
fp@2092: 	s32 ret_val;
fp@2092: 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
fp@2092: 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
fp@2092: 	u16 data, i, temp, shift;
fp@2092: 
fp@2092: 	/* Get default ID LED modes */
fp@2092: 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
fp@2092: 	if (ret_val)
fp@2092: 		goto out;
fp@2092: 
fp@2092: 	mac->ledctl_default = er32(LEDCTL);
fp@2092: 	mac->ledctl_mode1 = mac->ledctl_default;
fp@2092: 	mac->ledctl_mode2 = mac->ledctl_default;
fp@2092: 
fp@2092: 	for (i = 0; i < 4; i++) {
fp@2092: 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
fp@2092: 		shift = (i * 5);
fp@2092: 		switch (temp) {
fp@2092: 		case ID_LED_ON1_DEF2:
fp@2092: 		case ID_LED_ON1_ON2:
fp@2092: 		case ID_LED_ON1_OFF2:
fp@2092: 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
fp@2092: 			mac->ledctl_mode1 |= (ledctl_on << shift);
fp@2092: 			break;
fp@2092: 		case ID_LED_OFF1_DEF2:
fp@2092: 		case ID_LED_OFF1_ON2:
fp@2092: 		case ID_LED_OFF1_OFF2:
fp@2092: 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
fp@2092: 			mac->ledctl_mode1 |= (ledctl_off << shift);
fp@2092: 			break;
fp@2092: 		default:
fp@2092: 			/* Do nothing */
fp@2092: 			break;
fp@2092: 		}
fp@2092: 		switch (temp) {
fp@2092: 		case ID_LED_DEF1_ON2:
fp@2092: 		case ID_LED_ON1_ON2:
fp@2092: 		case ID_LED_OFF1_ON2:
fp@2092: 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
fp@2092: 			mac->ledctl_mode2 |= (ledctl_on << shift);
fp@2092: 			break;
fp@2092: 		case ID_LED_DEF1_OFF2:
fp@2092: 		case ID_LED_ON1_OFF2:
fp@2092: 		case ID_LED_OFF1_OFF2:
fp@2092: 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
fp@2092: 			mac->ledctl_mode2 |= (ledctl_off << shift);
fp@2092: 			break;
fp@2092: 		default:
fp@2092: 			/* Do nothing */
fp@2092: 			break;
fp@2092: 		}
fp@2092: 	}
fp@2092: 
fp@2092: out:
fp@2092: 	return ret_val;
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *
fp@2092:  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
fp@2092:  *  register, so the the bus width is hard coded.
fp@2092:  **/
fp@2092: static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
fp@2092: {
fp@2092: 	struct e1000_bus_info *bus = &hw->bus;
fp@2092: 	s32 ret_val;
fp@2092: 
fp@2092: 	ret_val = e1000e_get_bus_info_pcie(hw);
fp@2092: 
fp@2092: 	/*
fp@2092: 	 * ICH devices are "PCI Express"-ish.  They have
fp@2092: 	 * a configuration space, but do not contain
fp@2092: 	 * PCI Express Capability registers, so bus width
fp@2092: 	 * must be hardcoded.
fp@2092: 	 */
fp@2092: 	if (bus->width == e1000_bus_width_unknown)
fp@2092: 		bus->width = e1000_bus_width_pcie_x1;
fp@2092: 
fp@2092: 	return ret_val;
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_reset_hw_ich8lan - Reset the hardware
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *
fp@2092:  *  Does a full reset of the hardware which includes a reset of the PHY and
fp@2092:  *  MAC.
fp@2092:  **/
fp@2092: static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
fp@2092: {
fp@2092: 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
fp@2092: 	u16 reg;
fp@2092: 	u32 ctrl, icr, kab;
fp@2092: 	s32 ret_val;
fp@2092: 
fp@2092: 	/*
fp@2092: 	 * Prevent the PCI-E bus from sticking if there is no TLP connection
fp@2092: 	 * on the last TLP read/write transaction when MAC is reset.
fp@2092: 	 */
fp@2092: 	ret_val = e1000e_disable_pcie_master(hw);
fp@2092: 	if (ret_val)
fp@2092: 		e_dbg("PCI-E Master disable polling has failed.\n");
fp@2092: 
fp@2092: 	e_dbg("Masking off all interrupts\n");
fp@2092: 	ew32(IMC, 0xffffffff);
fp@2092: 
fp@2092: 	/*
fp@2092: 	 * Disable the Transmit and Receive units.  Then delay to allow
fp@2092: 	 * any pending transactions to complete before we hit the MAC
fp@2092: 	 * with the global reset.
fp@2092: 	 */
fp@2092: 	ew32(RCTL, 0);
fp@2092: 	ew32(TCTL, E1000_TCTL_PSP);
fp@2092: 	e1e_flush();
fp@2092: 
fp@2092: 	msleep(10);
fp@2092: 
fp@2092: 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
fp@2092: 	if (hw->mac.type == e1000_ich8lan) {
fp@2092: 		/* Set Tx and Rx buffer allocation to 8k apiece. */
fp@2092: 		ew32(PBA, E1000_PBA_8K);
fp@2092: 		/* Set Packet Buffer Size to 16k. */
fp@2092: 		ew32(PBS, E1000_PBS_16K);
fp@2092: 	}
fp@2092: 
fp@2092: 	if (hw->mac.type == e1000_pchlan) {
fp@2092: 		/* Save the NVM K1 bit setting*/
fp@2092: 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &reg);
fp@2092: 		if (ret_val)
fp@2092: 			return ret_val;
fp@2092: 
fp@2092: 		if (reg & E1000_NVM_K1_ENABLE)
fp@2092: 			dev_spec->nvm_k1_enabled = true;
fp@2092: 		else
fp@2092: 			dev_spec->nvm_k1_enabled = false;
fp@2092: 	}
fp@2092: 
fp@2092: 	ctrl = er32(CTRL);
fp@2092: 
fp@2092: 	if (!e1000_check_reset_block(hw)) {
fp@2092: 		/*
fp@2092: 		 * Full-chip reset requires MAC and PHY reset at the same
fp@2092: 		 * time to make sure the interface between MAC and the
fp@2092: 		 * external PHY is reset.
fp@2092: 		 */
fp@2092: 		ctrl |= E1000_CTRL_PHY_RST;
fp@2092: 
fp@2092: 		/*
fp@2092: 		 * Gate automatic PHY configuration by hardware on
fp@2092: 		 * non-managed 82579
fp@2092: 		 */
fp@2092: 		if ((hw->mac.type == e1000_pch2lan) &&
fp@2092: 		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
fp@2092: 			e1000_gate_hw_phy_config_ich8lan(hw, true);
fp@2092: 	}
fp@2092: 	ret_val = e1000_acquire_swflag_ich8lan(hw);
fp@2092: 	e_dbg("Issuing a global reset to ich8lan\n");
fp@2092: 	ew32(CTRL, (ctrl | E1000_CTRL_RST));
fp@2092: 	msleep(20);
fp@2092: 
fp@2092: 	if (!ret_val)
fp@2092: 		e1000_release_swflag_ich8lan(hw);
fp@2092: 
fp@2092: 	if (ctrl & E1000_CTRL_PHY_RST) {
fp@2092: 		ret_val = hw->phy.ops.get_cfg_done(hw);
fp@2092: 		if (ret_val)
fp@2092: 			goto out;
fp@2092: 
fp@2092: 		ret_val = e1000_post_phy_reset_ich8lan(hw);
fp@2092: 		if (ret_val)
fp@2092: 			goto out;
fp@2092: 	}
fp@2092: 
fp@2092: 	/*
fp@2092: 	 * For PCH, this write will make sure that any noise
fp@2092: 	 * will be detected as a CRC error and be dropped rather than show up
fp@2092: 	 * as a bad packet to the DMA engine.
fp@2092: 	 */
fp@2092: 	if (hw->mac.type == e1000_pchlan)
fp@2092: 		ew32(CRC_OFFSET, 0x65656565);
fp@2092: 
fp@2092: 	ew32(IMC, 0xffffffff);
fp@2092: 	icr = er32(ICR);
fp@2092: 
fp@2092: 	kab = er32(KABGTXD);
fp@2092: 	kab |= E1000_KABGTXD_BGSQLBIAS;
fp@2092: 	ew32(KABGTXD, kab);
fp@2092: 
fp@2092: out:
fp@2092: 	return ret_val;
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_init_hw_ich8lan - Initialize the hardware
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *
fp@2092:  *  Prepares the hardware for transmit and receive by doing the following:
fp@2092:  *   - initialize hardware bits
fp@2092:  *   - initialize LED identification
fp@2092:  *   - setup receive address registers
fp@2092:  *   - setup flow control
fp@2092:  *   - setup transmit descriptors
fp@2092:  *   - clear statistics
fp@2092:  **/
fp@2092: static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
fp@2092: {
fp@2092: 	struct e1000_mac_info *mac = &hw->mac;
fp@2092: 	u32 ctrl_ext, txdctl, snoop;
fp@2092: 	s32 ret_val;
fp@2092: 	u16 i;
fp@2092: 
fp@2092: 	e1000_initialize_hw_bits_ich8lan(hw);
fp@2092: 
fp@2092: 	/* Initialize identification LED */
fp@2092: 	ret_val = mac->ops.id_led_init(hw);
fp@2092: 	if (ret_val)
fp@2092: 		e_dbg("Error initializing identification LED\n");
fp@2092: 		/* This is not fatal and we should not stop init due to this */
fp@2092: 
fp@2092: 	/* Setup the receive address. */
fp@2092: 	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
fp@2092: 
fp@2092: 	/* Zero out the Multicast HASH table */
fp@2092: 	e_dbg("Zeroing the MTA\n");
fp@2092: 	for (i = 0; i < mac->mta_reg_count; i++)
fp@2092: 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
fp@2092: 
fp@2092: 	/*
fp@2092: 	 * The 82578 Rx buffer will stall if wakeup is enabled in host and
fp@2092: 	 * the ME.  Reading the BM_WUC register will clear the host wakeup bit.
fp@2092: 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
fp@2092: 	 */
fp@2092: 	if (hw->phy.type == e1000_phy_82578) {
fp@2092: 		hw->phy.ops.read_reg(hw, BM_WUC, &i);
fp@2092: 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
fp@2092: 		if (ret_val)
fp@2092: 			return ret_val;
fp@2092: 	}
fp@2092: 
fp@2092: 	/* Setup link and flow control */
fp@2092: 	ret_val = e1000_setup_link_ich8lan(hw);
fp@2092: 
fp@2092: 	/* Set the transmit descriptor write-back policy for both queues */
fp@2092: 	txdctl = er32(TXDCTL(0));
fp@2092: 	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
fp@2092: 		 E1000_TXDCTL_FULL_TX_DESC_WB;
fp@2092: 	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
fp@2092: 		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
fp@2092: 	ew32(TXDCTL(0), txdctl);
fp@2092: 	txdctl = er32(TXDCTL(1));
fp@2092: 	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
fp@2092: 		 E1000_TXDCTL_FULL_TX_DESC_WB;
fp@2092: 	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
fp@2092: 		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
fp@2092: 	ew32(TXDCTL(1), txdctl);
fp@2092: 
fp@2092: 	/*
fp@2092: 	 * ICH8 has opposite polarity of no_snoop bits.
fp@2092: 	 * By default, we should use snoop behavior.
fp@2092: 	 */
fp@2092: 	if (mac->type == e1000_ich8lan)
fp@2092: 		snoop = PCIE_ICH8_SNOOP_ALL;
fp@2092: 	else
fp@2092: 		snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
fp@2092: 	e1000e_set_pcie_no_snoop(hw, snoop);
fp@2092: 
fp@2092: 	ctrl_ext = er32(CTRL_EXT);
fp@2092: 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
fp@2092: 	ew32(CTRL_EXT, ctrl_ext);
fp@2092: 
fp@2092: 	/*
fp@2092: 	 * Clear all of the statistics registers (clear on read).  It is
fp@2092: 	 * important that we do this after we have tried to establish link
fp@2092: 	 * because the symbol error count will increment wildly if there
fp@2092: 	 * is no link.
fp@2092: 	 */
fp@2092: 	e1000_clear_hw_cntrs_ich8lan(hw);
fp@2092: 
fp@2092: 	return 0;
fp@2092: }
fp@2092: /**
fp@2092:  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *
fp@2092:  *  Sets/Clears required hardware bits necessary for correctly setting up the
fp@2092:  *  hardware for transmit and receive.
fp@2092:  **/
fp@2092: static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
fp@2092: {
fp@2092: 	u32 reg;
fp@2092: 
fp@2092: 	/* Extended Device Control */
fp@2092: 	reg = er32(CTRL_EXT);
fp@2092: 	reg |= (1 << 22);
fp@2092: 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
fp@2092: 	if (hw->mac.type >= e1000_pchlan)
fp@2092: 		reg |= E1000_CTRL_EXT_PHYPDEN;
fp@2092: 	ew32(CTRL_EXT, reg);
fp@2092: 
fp@2092: 	/* Transmit Descriptor Control 0 */
fp@2092: 	reg = er32(TXDCTL(0));
fp@2092: 	reg |= (1 << 22);
fp@2092: 	ew32(TXDCTL(0), reg);
fp@2092: 
fp@2092: 	/* Transmit Descriptor Control 1 */
fp@2092: 	reg = er32(TXDCTL(1));
fp@2092: 	reg |= (1 << 22);
fp@2092: 	ew32(TXDCTL(1), reg);
fp@2092: 
fp@2092: 	/* Transmit Arbitration Control 0 */
fp@2092: 	reg = er32(TARC(0));
fp@2092: 	if (hw->mac.type == e1000_ich8lan)
fp@2092: 		reg |= (1 << 28) | (1 << 29);
fp@2092: 	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
fp@2092: 	ew32(TARC(0), reg);
fp@2092: 
fp@2092: 	/* Transmit Arbitration Control 1 */
fp@2092: 	reg = er32(TARC(1));
fp@2092: 	if (er32(TCTL) & E1000_TCTL_MULR)
fp@2092: 		reg &= ~(1 << 28);
fp@2092: 	else
fp@2092: 		reg |= (1 << 28);
fp@2092: 	reg |= (1 << 24) | (1 << 26) | (1 << 30);
fp@2092: 	ew32(TARC(1), reg);
fp@2092: 
fp@2092: 	/* Device Status */
fp@2092: 	if (hw->mac.type == e1000_ich8lan) {
fp@2092: 		reg = er32(STATUS);
fp@2092: 		reg &= ~(1 << 31);
fp@2092: 		ew32(STATUS, reg);
fp@2092: 	}
fp@2092: 
fp@2092: 	/*
fp@2092: 	 * work-around descriptor data corruption issue during nfs v2 udp
fp@2092: 	 * traffic, just disable the nfs filtering capability
fp@2092: 	 */
fp@2092: 	reg = er32(RFCTL);
fp@2092: 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
fp@2092: 	ew32(RFCTL, reg);
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_setup_link_ich8lan - Setup flow control and link settings
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *
fp@2092:  *  Determines which flow control settings to use, then configures flow
fp@2092:  *  control.  Calls the appropriate media-specific link configuration
fp@2092:  *  function.  Assuming the adapter has a valid link partner, a valid link
fp@2092:  *  should be established.  Assumes the hardware has previously been reset
fp@2092:  *  and the transmitter and receiver are not enabled.
fp@2092:  **/
fp@2092: static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
fp@2092: {
fp@2092: 	s32 ret_val;
fp@2092: 
fp@2092: 	if (e1000_check_reset_block(hw))
fp@2092: 		return 0;
fp@2092: 
fp@2092: 	/*
fp@2092: 	 * ICH parts do not have a word in the NVM to determine
fp@2092: 	 * the default flow control setting, so we explicitly
fp@2092: 	 * set it to full.
fp@2092: 	 */
fp@2092: 	if (hw->fc.requested_mode == e1000_fc_default) {
fp@2092: 		/* Workaround h/w hang when Tx flow control enabled */
fp@2092: 		if (hw->mac.type == e1000_pchlan)
fp@2092: 			hw->fc.requested_mode = e1000_fc_rx_pause;
fp@2092: 		else
fp@2092: 			hw->fc.requested_mode = e1000_fc_full;
fp@2092: 	}
fp@2092: 
fp@2092: 	/*
fp@2092: 	 * Save off the requested flow control mode for use later.  Depending
fp@2092: 	 * on the link partner's capabilities, we may or may not use this mode.
fp@2092: 	 */
fp@2092: 	hw->fc.current_mode = hw->fc.requested_mode;
fp@2092: 
fp@2092: 	e_dbg("After fix-ups FlowControl is now = %x\n",
fp@2092: 		hw->fc.current_mode);
fp@2092: 
fp@2092: 	/* Continue to configure the copper link. */
fp@2092: 	ret_val = e1000_setup_copper_link_ich8lan(hw);
fp@2092: 	if (ret_val)
fp@2092: 		return ret_val;
fp@2092: 
fp@2092: 	ew32(FCTTV, hw->fc.pause_time);
fp@2092: 	if ((hw->phy.type == e1000_phy_82578) ||
fp@2092: 	    (hw->phy.type == e1000_phy_82579) ||
fp@2092: 	    (hw->phy.type == e1000_phy_82577)) {
fp@2092: 		ew32(FCRTV_PCH, hw->fc.refresh_time);
fp@2092: 
fp@2092: 		ret_val = hw->phy.ops.write_reg(hw,
fp@2092: 		                             PHY_REG(BM_PORT_CTRL_PAGE, 27),
fp@2092: 		                             hw->fc.pause_time);
fp@2092: 		if (ret_val)
fp@2092: 			return ret_val;
fp@2092: 	}
fp@2092: 
fp@2092: 	return e1000e_set_fc_watermarks(hw);
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *
fp@2092:  *  Configures the kumeran interface to the PHY to wait the appropriate time
fp@2092:  *  when polling the PHY, then call the generic setup_copper_link to finish
fp@2092:  *  configuring the copper link.
fp@2092:  **/
fp@2092: static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
fp@2092: {
fp@2092: 	u32 ctrl;
fp@2092: 	s32 ret_val;
fp@2092: 	u16 reg_data;
fp@2092: 
fp@2092: 	ctrl = er32(CTRL);
fp@2092: 	ctrl |= E1000_CTRL_SLU;
fp@2092: 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
fp@2092: 	ew32(CTRL, ctrl);
fp@2092: 
fp@2092: 	/*
fp@2092: 	 * Set the mac to wait the maximum time between each iteration
fp@2092: 	 * and increase the max iterations when polling the phy;
fp@2092: 	 * this fixes erroneous timeouts at 10Mbps.
fp@2092: 	 */
fp@2092: 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
fp@2092: 	if (ret_val)
fp@2092: 		return ret_val;
fp@2092: 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
fp@2092: 	                               &reg_data);
fp@2092: 	if (ret_val)
fp@2092: 		return ret_val;
fp@2092: 	reg_data |= 0x3F;
fp@2092: 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
fp@2092: 	                                reg_data);
fp@2092: 	if (ret_val)
fp@2092: 		return ret_val;
fp@2092: 
fp@2092: 	switch (hw->phy.type) {
fp@2092: 	case e1000_phy_igp_3:
fp@2092: 		ret_val = e1000e_copper_link_setup_igp(hw);
fp@2092: 		if (ret_val)
fp@2092: 			return ret_val;
fp@2092: 		break;
fp@2092: 	case e1000_phy_bm:
fp@2092: 	case e1000_phy_82578:
fp@2092: 		ret_val = e1000e_copper_link_setup_m88(hw);
fp@2092: 		if (ret_val)
fp@2092: 			return ret_val;
fp@2092: 		break;
fp@2092: 	case e1000_phy_82577:
fp@2092: 	case e1000_phy_82579:
fp@2092: 		ret_val = e1000_copper_link_setup_82577(hw);
fp@2092: 		if (ret_val)
fp@2092: 			return ret_val;
fp@2092: 		break;
fp@2092: 	case e1000_phy_ife:
fp@2092: 		ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL,
fp@2092: 		                               &reg_data);
fp@2092: 		if (ret_val)
fp@2092: 			return ret_val;
fp@2092: 
fp@2092: 		reg_data &= ~IFE_PMC_AUTO_MDIX;
fp@2092: 
fp@2092: 		switch (hw->phy.mdix) {
fp@2092: 		case 1:
fp@2092: 			reg_data &= ~IFE_PMC_FORCE_MDIX;
fp@2092: 			break;
fp@2092: 		case 2:
fp@2092: 			reg_data |= IFE_PMC_FORCE_MDIX;
fp@2092: 			break;
fp@2092: 		case 0:
fp@2092: 		default:
fp@2092: 			reg_data |= IFE_PMC_AUTO_MDIX;
fp@2092: 			break;
fp@2092: 		}
fp@2092: 		ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL,
fp@2092: 		                                reg_data);
fp@2092: 		if (ret_val)
fp@2092: 			return ret_val;
fp@2092: 		break;
fp@2092: 	default:
fp@2092: 		break;
fp@2092: 	}
fp@2092: 	return e1000e_setup_copper_link(hw);
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *  @speed: pointer to store current link speed
fp@2092:  *  @duplex: pointer to store the current link duplex
fp@2092:  *
fp@2092:  *  Calls the generic get_speed_and_duplex to retrieve the current link
fp@2092:  *  information and then calls the Kumeran lock loss workaround for links at
fp@2092:  *  gigabit speeds.
fp@2092:  **/
fp@2092: static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
fp@2092: 					  u16 *duplex)
fp@2092: {
fp@2092: 	s32 ret_val;
fp@2092: 
fp@2092: 	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
fp@2092: 	if (ret_val)
fp@2092: 		return ret_val;
fp@2092: 
fp@2092: 	if ((hw->mac.type == e1000_ich8lan) &&
fp@2092: 	    (hw->phy.type == e1000_phy_igp_3) &&
fp@2092: 	    (*speed == SPEED_1000)) {
fp@2092: 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
fp@2092: 	}
fp@2092: 
fp@2092: 	return ret_val;
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *
fp@2092:  *  Work-around for 82566 Kumeran PCS lock loss:
fp@2092:  *  On link status change (i.e. PCI reset, speed change) and link is up and
fp@2092:  *  speed is gigabit-
fp@2092:  *    0) if workaround is optionally disabled do nothing
fp@2092:  *    1) wait 1ms for Kumeran link to come up
fp@2092:  *    2) check Kumeran Diagnostic register PCS lock loss bit
fp@2092:  *    3) if not set the link is locked (all is good), otherwise...
fp@2092:  *    4) reset the PHY
fp@2092:  *    5) repeat up to 10 times
fp@2092:  *  Note: this is only called for IGP3 copper when speed is 1gb.
fp@2092:  **/
fp@2092: static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
fp@2092: {
fp@2092: 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
fp@2092: 	u32 phy_ctrl;
fp@2092: 	s32 ret_val;
fp@2092: 	u16 i, data;
fp@2092: 	bool link;
fp@2092: 
fp@2092: 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
fp@2092: 		return 0;
fp@2092: 
fp@2092: 	/*
fp@2092: 	 * Make sure link is up before proceeding.  If not just return.
fp@2092: 	 * Attempting this while link is negotiating fouled up link
fp@2092: 	 * stability
fp@2092: 	 */
fp@2092: 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
fp@2092: 	if (!link)
fp@2092: 		return 0;
fp@2092: 
fp@2092: 	for (i = 0; i < 10; i++) {
fp@2092: 		/* read once to clear */
fp@2092: 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
fp@2092: 		if (ret_val)
fp@2092: 			return ret_val;
fp@2092: 		/* and again to get new status */
fp@2092: 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
fp@2092: 		if (ret_val)
fp@2092: 			return ret_val;
fp@2092: 
fp@2092: 		/* check for PCS lock */
fp@2092: 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
fp@2092: 			return 0;
fp@2092: 
fp@2092: 		/* Issue PHY reset */
fp@2092: 		e1000_phy_hw_reset(hw);
fp@2092: 		mdelay(5);
fp@2092: 	}
fp@2092: 	/* Disable GigE link negotiation */
fp@2092: 	phy_ctrl = er32(PHY_CTRL);
fp@2092: 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
fp@2092: 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
fp@2092: 	ew32(PHY_CTRL, phy_ctrl);
fp@2092: 
fp@2092: 	/*
fp@2092: 	 * Call gig speed drop workaround on Gig disable before accessing
fp@2092: 	 * any PHY registers
fp@2092: 	 */
fp@2092: 	e1000e_gig_downshift_workaround_ich8lan(hw);
fp@2092: 
fp@2092: 	/* unable to acquire PCS lock */
fp@2092: 	return -E1000_ERR_PHY;
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *  @state: boolean value used to set the current Kumeran workaround state
fp@2092:  *
fp@2092:  *  If ICH8, set the current Kumeran workaround state (enabled - true
fp@2092:  *  /disabled - false).
fp@2092:  **/
fp@2092: void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
fp@2092: 						 bool state)
fp@2092: {
fp@2092: 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
fp@2092: 
fp@2092: 	if (hw->mac.type != e1000_ich8lan) {
fp@2092: 		e_dbg("Workaround applies to ICH8 only.\n");
fp@2092: 		return;
fp@2092: 	}
fp@2092: 
fp@2092: 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *
fp@2092:  *  Workaround for 82566 power-down on D3 entry:
fp@2092:  *    1) disable gigabit link
fp@2092:  *    2) write VR power-down enable
fp@2092:  *    3) read it back
fp@2092:  *  Continue if successful, else issue LCD reset and repeat
fp@2092:  **/
fp@2092: void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
fp@2092: {
fp@2092: 	u32 reg;
fp@2092: 	u16 data;
fp@2092: 	u8  retry = 0;
fp@2092: 
fp@2092: 	if (hw->phy.type != e1000_phy_igp_3)
fp@2092: 		return;
fp@2092: 
fp@2092: 	/* Try the workaround twice (if needed) */
fp@2092: 	do {
fp@2092: 		/* Disable link */
fp@2092: 		reg = er32(PHY_CTRL);
fp@2092: 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
fp@2092: 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
fp@2092: 		ew32(PHY_CTRL, reg);
fp@2092: 
fp@2092: 		/*
fp@2092: 		 * Call gig speed drop workaround on Gig disable before
fp@2092: 		 * accessing any PHY registers
fp@2092: 		 */
fp@2092: 		if (hw->mac.type == e1000_ich8lan)
fp@2092: 			e1000e_gig_downshift_workaround_ich8lan(hw);
fp@2092: 
fp@2092: 		/* Write VR power-down enable */
fp@2092: 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
fp@2092: 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
fp@2092: 		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
fp@2092: 
fp@2092: 		/* Read it back and test */
fp@2092: 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
fp@2092: 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
fp@2092: 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
fp@2092: 			break;
fp@2092: 
fp@2092: 		/* Issue PHY reset and repeat at most one more time */
fp@2092: 		reg = er32(CTRL);
fp@2092: 		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
fp@2092: 		retry++;
fp@2092: 	} while (retry);
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *
fp@2092:  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
fp@2092:  *  LPLU, Gig disable, MDIC PHY reset):
fp@2092:  *    1) Set Kumeran Near-end loopback
fp@2092:  *    2) Clear Kumeran Near-end loopback
fp@2092:  *  Should only be called for ICH8[m] devices with IGP_3 Phy.
fp@2092:  **/
fp@2092: void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
fp@2092: {
fp@2092: 	s32 ret_val;
fp@2092: 	u16 reg_data;
fp@2092: 
fp@2092: 	if ((hw->mac.type != e1000_ich8lan) ||
fp@2092: 	    (hw->phy.type != e1000_phy_igp_3))
fp@2092: 		return;
fp@2092: 
fp@2092: 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
fp@2092: 				      &reg_data);
fp@2092: 	if (ret_val)
fp@2092: 		return;
fp@2092: 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
fp@2092: 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
fp@2092: 				       reg_data);
fp@2092: 	if (ret_val)
fp@2092: 		return;
fp@2092: 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
fp@2092: 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
fp@2092: 				       reg_data);
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000e_disable_gig_wol_ich8lan - disable gig during WoL
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *
fp@2092:  *  During S0 to Sx transition, it is possible the link remains at gig
fp@2092:  *  instead of negotiating to a lower speed.  Before going to Sx, set
fp@2092:  *  'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
fp@2092:  *  to a lower speed.
fp@2092:  *
fp@2092:  *  Should only be called for applicable parts.
fp@2092:  **/
fp@2092: void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw)
fp@2092: {
fp@2092: 	u32 phy_ctrl;
fp@2092: 	s32 ret_val;
fp@2092: 
fp@2092: 	phy_ctrl = er32(PHY_CTRL);
fp@2092: 	phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU | E1000_PHY_CTRL_GBE_DISABLE;
fp@2092: 	ew32(PHY_CTRL, phy_ctrl);
fp@2092: 
fp@2092: 	if (hw->mac.type >= e1000_pchlan) {
fp@2092: 		e1000_oem_bits_config_ich8lan(hw, true);
fp@2092: 		ret_val = hw->phy.ops.acquire(hw);
fp@2092: 		if (ret_val)
fp@2092: 			return;
fp@2092: 		e1000_write_smbus_addr(hw);
fp@2092: 		hw->phy.ops.release(hw);
fp@2092: 	}
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *
fp@2092:  *  Return the LED back to the default configuration.
fp@2092:  **/
fp@2092: static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
fp@2092: {
fp@2092: 	if (hw->phy.type == e1000_phy_ife)
fp@2092: 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
fp@2092: 
fp@2092: 	ew32(LEDCTL, hw->mac.ledctl_default);
fp@2092: 	return 0;
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_led_on_ich8lan - Turn LEDs on
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *
fp@2092:  *  Turn on the LEDs.
fp@2092:  **/
fp@2092: static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
fp@2092: {
fp@2092: 	if (hw->phy.type == e1000_phy_ife)
fp@2092: 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
fp@2092: 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
fp@2092: 
fp@2092: 	ew32(LEDCTL, hw->mac.ledctl_mode2);
fp@2092: 	return 0;
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_led_off_ich8lan - Turn LEDs off
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *
fp@2092:  *  Turn off the LEDs.
fp@2092:  **/
fp@2092: static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
fp@2092: {
fp@2092: 	if (hw->phy.type == e1000_phy_ife)
fp@2092: 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
fp@2092: 			       (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
fp@2092: 
fp@2092: 	ew32(LEDCTL, hw->mac.ledctl_mode1);
fp@2092: 	return 0;
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_setup_led_pchlan - Configures SW controllable LED
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *
fp@2092:  *  This prepares the SW controllable LED for use.
fp@2092:  **/
fp@2092: static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
fp@2092: {
fp@2092: 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
fp@2092: 					(u16)hw->mac.ledctl_mode1);
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_cleanup_led_pchlan - Restore the default LED operation
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *
fp@2092:  *  Return the LED back to the default configuration.
fp@2092:  **/
fp@2092: static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
fp@2092: {
fp@2092: 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
fp@2092: 					(u16)hw->mac.ledctl_default);
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_led_on_pchlan - Turn LEDs on
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *
fp@2092:  *  Turn on the LEDs.
fp@2092:  **/
fp@2092: static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
fp@2092: {
fp@2092: 	u16 data = (u16)hw->mac.ledctl_mode2;
fp@2092: 	u32 i, led;
fp@2092: 
fp@2092: 	/*
fp@2092: 	 * If no link, then turn LED on by setting the invert bit
fp@2092: 	 * for each LED that's mode is "link_up" in ledctl_mode2.
fp@2092: 	 */
fp@2092: 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
fp@2092: 		for (i = 0; i < 3; i++) {
fp@2092: 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
fp@2092: 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
fp@2092: 			    E1000_LEDCTL_MODE_LINK_UP)
fp@2092: 				continue;
fp@2092: 			if (led & E1000_PHY_LED0_IVRT)
fp@2092: 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
fp@2092: 			else
fp@2092: 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
fp@2092: 		}
fp@2092: 	}
fp@2092: 
fp@2092: 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_led_off_pchlan - Turn LEDs off
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *
fp@2092:  *  Turn off the LEDs.
fp@2092:  **/
fp@2092: static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
fp@2092: {
fp@2092: 	u16 data = (u16)hw->mac.ledctl_mode1;
fp@2092: 	u32 i, led;
fp@2092: 
fp@2092: 	/*
fp@2092: 	 * If no link, then turn LED off by clearing the invert bit
fp@2092: 	 * for each LED that's mode is "link_up" in ledctl_mode1.
fp@2092: 	 */
fp@2092: 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
fp@2092: 		for (i = 0; i < 3; i++) {
fp@2092: 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
fp@2092: 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
fp@2092: 			    E1000_LEDCTL_MODE_LINK_UP)
fp@2092: 				continue;
fp@2092: 			if (led & E1000_PHY_LED0_IVRT)
fp@2092: 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
fp@2092: 			else
fp@2092: 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
fp@2092: 		}
fp@2092: 	}
fp@2092: 
fp@2092: 	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *
fp@2092:  *  Read appropriate register for the config done bit for completion status
fp@2092:  *  and configure the PHY through s/w for EEPROM-less parts.
fp@2092:  *
fp@2092:  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
fp@2092:  *  config done bit, so only an error is logged and continues.  If we were
fp@2092:  *  to return with error, EEPROM-less silicon would not be able to be reset
fp@2092:  *  or change link.
fp@2092:  **/
fp@2092: static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
fp@2092: {
fp@2092: 	s32 ret_val = 0;
fp@2092: 	u32 bank = 0;
fp@2092: 	u32 status;
fp@2092: 
fp@2092: 	e1000e_get_cfg_done(hw);
fp@2092: 
fp@2092: 	/* Wait for indication from h/w that it has completed basic config */
fp@2092: 	if (hw->mac.type >= e1000_ich10lan) {
fp@2092: 		e1000_lan_init_done_ich8lan(hw);
fp@2092: 	} else {
fp@2092: 		ret_val = e1000e_get_auto_rd_done(hw);
fp@2092: 		if (ret_val) {
fp@2092: 			/*
fp@2092: 			 * When auto config read does not complete, do not
fp@2092: 			 * return with an error. This can happen in situations
fp@2092: 			 * where there is no eeprom and prevents getting link.
fp@2092: 			 */
fp@2092: 			e_dbg("Auto Read Done did not complete\n");
fp@2092: 			ret_val = 0;
fp@2092: 		}
fp@2092: 	}
fp@2092: 
fp@2092: 	/* Clear PHY Reset Asserted bit */
fp@2092: 	status = er32(STATUS);
fp@2092: 	if (status & E1000_STATUS_PHYRA)
fp@2092: 		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
fp@2092: 	else
fp@2092: 		e_dbg("PHY Reset Asserted not set - needs delay\n");
fp@2092: 
fp@2092: 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
fp@2092: 	if (hw->mac.type <= e1000_ich9lan) {
fp@2092: 		if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
fp@2092: 		    (hw->phy.type == e1000_phy_igp_3)) {
fp@2092: 			e1000e_phy_init_script_igp3(hw);
fp@2092: 		}
fp@2092: 	} else {
fp@2092: 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
fp@2092: 			/* Maybe we should do a basic PHY config */
fp@2092: 			e_dbg("EEPROM not present\n");
fp@2092: 			ret_val = -E1000_ERR_CONFIG;
fp@2092: 		}
fp@2092: 	}
fp@2092: 
fp@2092: 	return ret_val;
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
fp@2092:  * @hw: pointer to the HW structure
fp@2092:  *
fp@2092:  * In the case of a PHY power down to save power, or to turn off link during a
fp@2092:  * driver unload, or wake on lan is not enabled, remove the link.
fp@2092:  **/
fp@2092: static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
fp@2092: {
fp@2092: 	/* If the management interface is not enabled, then power down */
fp@2092: 	if (!(hw->mac.ops.check_mng_mode(hw) ||
fp@2092: 	      hw->phy.ops.check_reset_block(hw)))
fp@2092: 		e1000_power_down_phy_copper(hw);
fp@2092: }
fp@2092: 
fp@2092: /**
fp@2092:  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
fp@2092:  *  @hw: pointer to the HW structure
fp@2092:  *
fp@2092:  *  Clears hardware counters specific to the silicon family and calls
fp@2092:  *  clear_hw_cntrs_generic to clear all general purpose counters.
fp@2092:  **/
fp@2092: static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
fp@2092: {
fp@2092: 	u16 phy_data;
fp@2092: 
fp@2092: 	e1000e_clear_hw_cntrs_base(hw);
fp@2092: 
fp@2092: 	er32(ALGNERRC);
fp@2092: 	er32(RXERRC);
fp@2092: 	er32(TNCRS);
fp@2092: 	er32(CEXTERR);
fp@2092: 	er32(TSCTC);
fp@2092: 	er32(TSCTFC);
fp@2092: 
fp@2092: 	er32(MGTPRC);
fp@2092: 	er32(MGTPDC);
fp@2092: 	er32(MGTPTC);
fp@2092: 
fp@2092: 	er32(IAC);
fp@2092: 	er32(ICRXOC);
fp@2092: 
fp@2092: 	/* Clear PHY statistics registers */
fp@2092: 	if ((hw->phy.type == e1000_phy_82578) ||
fp@2092: 	    (hw->phy.type == e1000_phy_82579) ||
fp@2092: 	    (hw->phy.type == e1000_phy_82577)) {
fp@2092: 		hw->phy.ops.read_reg(hw, HV_SCC_UPPER, &phy_data);
fp@2092: 		hw->phy.ops.read_reg(hw, HV_SCC_LOWER, &phy_data);
fp@2092: 		hw->phy.ops.read_reg(hw, HV_ECOL_UPPER, &phy_data);
fp@2092: 		hw->phy.ops.read_reg(hw, HV_ECOL_LOWER, &phy_data);
fp@2092: 		hw->phy.ops.read_reg(hw, HV_MCC_UPPER, &phy_data);
fp@2092: 		hw->phy.ops.read_reg(hw, HV_MCC_LOWER, &phy_data);
fp@2092: 		hw->phy.ops.read_reg(hw, HV_LATECOL_UPPER, &phy_data);
fp@2092: 		hw->phy.ops.read_reg(hw, HV_LATECOL_LOWER, &phy_data);
fp@2092: 		hw->phy.ops.read_reg(hw, HV_COLC_UPPER, &phy_data);
fp@2092: 		hw->phy.ops.read_reg(hw, HV_COLC_LOWER, &phy_data);
fp@2092: 		hw->phy.ops.read_reg(hw, HV_DC_UPPER, &phy_data);
fp@2092: 		hw->phy.ops.read_reg(hw, HV_DC_LOWER, &phy_data);
fp@2092: 		hw->phy.ops.read_reg(hw, HV_TNCRS_UPPER, &phy_data);
fp@2092: 		hw->phy.ops.read_reg(hw, HV_TNCRS_LOWER, &phy_data);
fp@2092: 	}
fp@2092: }
fp@2092: 
fp@2092: static struct e1000_mac_operations ich8_mac_ops = {
fp@2092: 	.id_led_init		= e1000e_id_led_init,
fp@2092: 	/* check_mng_mode dependent on mac type */
fp@2092: 	.check_for_link		= e1000_check_for_copper_link_ich8lan,
fp@2092: 	/* cleanup_led dependent on mac type */
fp@2092: 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
fp@2092: 	.get_bus_info		= e1000_get_bus_info_ich8lan,
fp@2092: 	.set_lan_id		= e1000_set_lan_id_single_port,
fp@2092: 	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
fp@2092: 	/* led_on dependent on mac type */
fp@2092: 	/* led_off dependent on mac type */
fp@2092: 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
fp@2092: 	.reset_hw		= e1000_reset_hw_ich8lan,
fp@2092: 	.init_hw		= e1000_init_hw_ich8lan,
fp@2092: 	.setup_link		= e1000_setup_link_ich8lan,
fp@2092: 	.setup_physical_interface= e1000_setup_copper_link_ich8lan,
fp@2092: 	/* id_led_init dependent on mac type */
fp@2092: };
fp@2092: 
fp@2092: static struct e1000_phy_operations ich8_phy_ops = {
fp@2092: 	.acquire		= e1000_acquire_swflag_ich8lan,
fp@2092: 	.check_reset_block	= e1000_check_reset_block_ich8lan,
fp@2092: 	.commit			= NULL,
fp@2092: 	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
fp@2092: 	.get_cable_length	= e1000e_get_cable_length_igp_2,
fp@2092: 	.read_reg		= e1000e_read_phy_reg_igp,
fp@2092: 	.release		= e1000_release_swflag_ich8lan,
fp@2092: 	.reset			= e1000_phy_hw_reset_ich8lan,
fp@2092: 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
fp@2092: 	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
fp@2092: 	.write_reg		= e1000e_write_phy_reg_igp,
fp@2092: };
fp@2092: 
fp@2092: static struct e1000_nvm_operations ich8_nvm_ops = {
fp@2092: 	.acquire		= e1000_acquire_nvm_ich8lan,
fp@2092: 	.read		 	= e1000_read_nvm_ich8lan,
fp@2092: 	.release		= e1000_release_nvm_ich8lan,
fp@2092: 	.update			= e1000_update_nvm_checksum_ich8lan,
fp@2092: 	.valid_led_default	= e1000_valid_led_default_ich8lan,
fp@2092: 	.validate		= e1000_validate_nvm_checksum_ich8lan,
fp@2092: 	.write			= e1000_write_nvm_ich8lan,
fp@2092: };
fp@2092: 
fp@2092: struct e1000_info e1000_ich8_info = {
fp@2092: 	.mac			= e1000_ich8lan,
fp@2092: 	.flags			= FLAG_HAS_WOL
fp@2092: 				  | FLAG_IS_ICH
fp@2092: 				  | FLAG_RX_CSUM_ENABLED
fp@2092: 				  | FLAG_HAS_CTRLEXT_ON_LOAD
fp@2092: 				  | FLAG_HAS_AMT
fp@2092: 				  | FLAG_HAS_FLASH
fp@2092: 				  | FLAG_APME_IN_WUC,
fp@2092: 	.pba			= 8,
fp@2092: 	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
fp@2092: 	.get_variants		= e1000_get_variants_ich8lan,
fp@2092: 	.mac_ops		= &ich8_mac_ops,
fp@2092: 	.phy_ops		= &ich8_phy_ops,
fp@2092: 	.nvm_ops		= &ich8_nvm_ops,
fp@2092: };
fp@2092: 
fp@2092: struct e1000_info e1000_ich9_info = {
fp@2092: 	.mac			= e1000_ich9lan,
fp@2092: 	.flags			= FLAG_HAS_JUMBO_FRAMES
fp@2092: 				  | FLAG_IS_ICH
fp@2092: 				  | FLAG_HAS_WOL
fp@2092: 				  | FLAG_RX_CSUM_ENABLED
fp@2092: 				  | FLAG_HAS_CTRLEXT_ON_LOAD
fp@2092: 				  | FLAG_HAS_AMT
fp@2092: 				  | FLAG_HAS_ERT
fp@2092: 				  | FLAG_HAS_FLASH
fp@2092: 				  | FLAG_APME_IN_WUC,
fp@2092: 	.pba			= 10,
fp@2092: 	.max_hw_frame_size	= DEFAULT_JUMBO,
fp@2092: 	.get_variants		= e1000_get_variants_ich8lan,
fp@2092: 	.mac_ops		= &ich8_mac_ops,
fp@2092: 	.phy_ops		= &ich8_phy_ops,
fp@2092: 	.nvm_ops		= &ich8_nvm_ops,
fp@2092: };
fp@2092: 
fp@2092: struct e1000_info e1000_ich10_info = {
fp@2092: 	.mac			= e1000_ich10lan,
fp@2092: 	.flags			= FLAG_HAS_JUMBO_FRAMES
fp@2092: 				  | FLAG_IS_ICH
fp@2092: 				  | FLAG_HAS_WOL
fp@2092: 				  | FLAG_RX_CSUM_ENABLED
fp@2092: 				  | FLAG_HAS_CTRLEXT_ON_LOAD
fp@2092: 				  | FLAG_HAS_AMT
fp@2092: 				  | FLAG_HAS_ERT
fp@2092: 				  | FLAG_HAS_FLASH
fp@2092: 				  | FLAG_APME_IN_WUC,
fp@2092: 	.pba			= 10,
fp@2092: 	.max_hw_frame_size	= DEFAULT_JUMBO,
fp@2092: 	.get_variants		= e1000_get_variants_ich8lan,
fp@2092: 	.mac_ops		= &ich8_mac_ops,
fp@2092: 	.phy_ops		= &ich8_phy_ops,
fp@2092: 	.nvm_ops		= &ich8_nvm_ops,
fp@2092: };
fp@2092: 
fp@2092: struct e1000_info e1000_pch_info = {
fp@2092: 	.mac			= e1000_pchlan,
fp@2092: 	.flags			= FLAG_IS_ICH
fp@2092: 				  | FLAG_HAS_WOL
fp@2092: 				  | FLAG_RX_CSUM_ENABLED
fp@2092: 				  | FLAG_HAS_CTRLEXT_ON_LOAD
fp@2092: 				  | FLAG_HAS_AMT
fp@2092: 				  | FLAG_HAS_FLASH
fp@2092: 				  | FLAG_HAS_JUMBO_FRAMES
fp@2092: 				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
fp@2092: 				  | FLAG_APME_IN_WUC,
fp@2092: 	.flags2			= FLAG2_HAS_PHY_STATS,
fp@2092: 	.pba			= 26,
fp@2092: 	.max_hw_frame_size	= 4096,
fp@2092: 	.get_variants		= e1000_get_variants_ich8lan,
fp@2092: 	.mac_ops		= &ich8_mac_ops,
fp@2092: 	.phy_ops		= &ich8_phy_ops,
fp@2092: 	.nvm_ops		= &ich8_nvm_ops,
fp@2092: };
fp@2092: 
fp@2092: struct e1000_info e1000_pch2_info = {
fp@2092: 	.mac			= e1000_pch2lan,
fp@2092: 	.flags			= FLAG_IS_ICH
fp@2092: 				  | FLAG_HAS_WOL
fp@2092: 				  | FLAG_RX_CSUM_ENABLED
fp@2092: 				  | FLAG_HAS_CTRLEXT_ON_LOAD
fp@2092: 				  | FLAG_HAS_AMT
fp@2092: 				  | FLAG_HAS_FLASH
fp@2092: 				  | FLAG_HAS_JUMBO_FRAMES
fp@2092: 				  | FLAG_APME_IN_WUC,
fp@2092: 	.flags2			= FLAG2_HAS_PHY_STATS
fp@2092: 				  | FLAG2_HAS_EEE,
fp@2092: 	.pba			= 26,
fp@2092: 	.max_hw_frame_size	= DEFAULT_JUMBO,
fp@2092: 	.get_variants		= e1000_get_variants_ich8lan,
fp@2092: 	.mac_ops		= &ich8_mac_ops,
fp@2092: 	.phy_ops		= &ich8_phy_ops,
fp@2092: 	.nvm_ops		= &ich8_nvm_ops,
fp@2092: };