fp@568: /****************************************************************************** fp@568: * fp@568: * $Id$ fp@568: * fp@568: * Copyright (C) 2007 Florian Pose, Ingenieurgemeinschaft IgH fp@568: * fp@568: * This file is part of the IgH EtherCAT Master. fp@568: * fp@568: * The IgH EtherCAT Master is free software; you can redistribute it fp@568: * and/or modify it under the terms of the GNU General Public License fp@568: * as published by the Free Software Foundation; either version 2 of the fp@568: * License, or (at your option) any later version. fp@568: * fp@568: * The IgH EtherCAT Master is distributed in the hope that it will be fp@568: * useful, but WITHOUT ANY WARRANTY; without even the implied warranty of fp@568: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the fp@568: * GNU General Public License for more details. fp@568: * fp@568: * You should have received a copy of the GNU General Public License fp@568: * along with the IgH EtherCAT Master; if not, write to the Free Software fp@568: * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA fp@568: * fp@568: * The right to use EtherCAT Technology is granted and comes free of fp@568: * charge under condition of compatibility of product made by fp@568: * Licensee. People intending to distribute/sell products based on the fp@568: * code, have to sign an agreement to guarantee that products using fp@568: * software based on IgH EtherCAT master stay compatible with the actual fp@568: * EtherCAT specification (which are released themselves as an open fp@568: * standard) as the (only) precondition to have the right to use EtherCAT fp@568: * Technology, IP and trade marks. fp@568: * fp@568: *****************************************************************************/ fp@568: fp@568: /** fp@568: \file fp@568: EtherCAT driver for e100-compatible NICs. fp@568: */ fp@568: fp@568: /* Former documentation: */ fp@568: fp@568: /******************************************************************************* fp@568: fp@568: Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. fp@568: fp@568: This program is free software; you can redistribute it and/or modify it fp@568: under the terms of the GNU General Public License as published by the Free fp@568: Software Foundation; either version 2 of the License, or (at your option) fp@568: any later version. fp@568: fp@568: This program is distributed in the hope that it will be useful, but WITHOUT fp@568: ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or fp@568: FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for fp@568: more details. fp@568: fp@568: You should have received a copy of the GNU General Public License along with fp@568: this program; if not, write to the Free Software Foundation, Inc., 59 fp@568: Temple Place - Suite 330, Boston, MA 02111-1307, USA. fp@568: fp@568: The full GNU General Public License is included in this distribution in the fp@568: file called LICENSE. fp@568: fp@568: Contact Information: fp@568: Linux NICS fp@568: Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 fp@568: fp@568: *******************************************************************************/ fp@568: fp@568: /* fp@568: * e100.c: Intel(R) PRO/100 ethernet driver fp@568: * fp@568: * (Re)written 2003 by scott.feldman@intel.com. Based loosely on fp@568: * original e100 driver, but better described as a munging of fp@568: * e100, e1000, eepro100, tg3, 8139cp, and other drivers. fp@568: * fp@568: * References: fp@568: * Intel 8255x 10/100 Mbps Ethernet Controller Family, fp@568: * Open Source Software Developers Manual, fp@568: * http://sourceforge.net/projects/e1000 fp@568: * fp@568: * fp@568: * Theory of Operation fp@568: * fp@568: * I. General fp@568: * fp@568: * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet fp@568: * controller family, which includes the 82557, 82558, 82559, 82550, fp@568: * 82551, and 82562 devices. 82558 and greater controllers fp@568: * integrate the Intel 82555 PHY. The controllers are used in fp@568: * server and client network interface cards, as well as in fp@568: * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx fp@568: * configurations. 8255x supports a 32-bit linear addressing fp@568: * mode and operates at 33Mhz PCI clock rate. fp@568: * fp@568: * II. Driver Operation fp@568: * fp@568: * Memory-mapped mode is used exclusively to access the device's fp@568: * shared-memory structure, the Control/Status Registers (CSR). All fp@568: * setup, configuration, and control of the device, including queuing fp@568: * of Tx, Rx, and configuration commands is through the CSR. fp@568: * cmd_lock serializes accesses to the CSR command register. cb_lock fp@568: * protects the shared Command Block List (CBL). fp@568: * fp@568: * 8255x is highly MII-compliant and all access to the PHY go fp@568: * through the Management Data Interface (MDI). Consequently, the fp@568: * driver leverages the mii.c library shared with other MII-compliant fp@568: * devices. fp@568: * fp@568: * Big- and Little-Endian byte order as well as 32- and 64-bit fp@568: * archs are supported. Weak-ordered memory and non-cache-coherent fp@568: * archs are supported. fp@568: * fp@568: * III. Transmit fp@568: * fp@568: * A Tx skb is mapped and hangs off of a TCB. TCBs are linked fp@568: * together in a fixed-size ring (CBL) thus forming the flexible mode fp@568: * memory structure. A TCB marked with the suspend-bit indicates fp@568: * the end of the ring. The last TCB processed suspends the fp@568: * controller, and the controller can be restarted by issue a CU fp@568: * resume command to continue from the suspend point, or a CU start fp@568: * command to start at a given position in the ring. fp@568: * fp@568: * Non-Tx commands (config, multicast setup, etc) are linked fp@568: * into the CBL ring along with Tx commands. The common structure fp@568: * used for both Tx and non-Tx commands is the Command Block (CB). fp@568: * fp@568: * cb_to_use is the next CB to use for queuing a command; cb_to_clean fp@568: * is the next CB to check for completion; cb_to_send is the first fp@568: * CB to start on in case of a previous failure to resume. CB clean fp@568: * up happens in interrupt context in response to a CU interrupt. fp@568: * cbs_avail keeps track of number of free CB resources available. fp@568: * fp@568: * Hardware padding of short packets to minimum packet size is fp@568: * enabled. 82557 pads with 7Eh, while the later controllers pad fp@568: * with 00h. fp@568: * fp@568: * IV. Recieve fp@568: * fp@568: * The Receive Frame Area (RFA) comprises a ring of Receive Frame fp@568: * Descriptors (RFD) + data buffer, thus forming the simplified mode fp@568: * memory structure. Rx skbs are allocated to contain both the RFD fp@568: * and the data buffer, but the RFD is pulled off before the skb is fp@568: * indicated. The data buffer is aligned such that encapsulated fp@568: * protocol headers are u32-aligned. Since the RFD is part of the fp@568: * mapped shared memory, and completion status is contained within fp@568: * the RFD, the RFD must be dma_sync'ed to maintain a consistent fp@568: * view from software and hardware. fp@568: * fp@568: * Under typical operation, the receive unit (RU) is start once, fp@568: * and the controller happily fills RFDs as frames arrive. If fp@568: * replacement RFDs cannot be allocated, or the RU goes non-active, fp@568: * the RU must be restarted. Frame arrival generates an interrupt, fp@568: * and Rx indication and re-allocation happen in the same context, fp@568: * therefore no locking is required. A software-generated interrupt fp@568: * is generated from the watchdog to recover from a failed allocation fp@568: * senario where all Rx resources have been indicated and none re- fp@568: * placed. fp@568: * fp@568: * V. Miscellaneous fp@568: * fp@568: * VLAN offloading of tagging, stripping and filtering is not fp@568: * supported, but driver will accommodate the extra 4-byte VLAN tag fp@568: * for processing by upper layers. Tx/Rx Checksum offloading is not fp@568: * supported. Tx Scatter/Gather is not supported. Jumbo Frames is fp@568: * not supported (hardware limitation). fp@568: * fp@568: * MagicPacket(tm) WoL support is enabled/disabled via ethtool. fp@568: * fp@568: * Thanks to JC (jchapman@katalix.com) for helping with fp@568: * testing/troubleshooting the development driver. fp@568: * fp@568: * TODO: fp@568: * o several entry points race with dev->close fp@568: * o check for tx-no-resources/stop Q races with tx clean/wake Q fp@568: * fp@568: * FIXES: fp@568: * 2005/12/02 - Michael O'Donnell fp@568: * - Stratus87247: protect MDI control register manipulations fp@568: */ fp@568: fp@568: #include fp@568: #include fp@568: #include fp@568: #include fp@568: #include fp@568: #include fp@568: #include fp@568: #include fp@568: #include fp@568: #include fp@568: #include fp@568: #include fp@568: #include fp@568: #include fp@568: #include fp@568: #include fp@568: #include fp@568: fp@568: // EtherCAT includes fp@568: #include "../globals.h" fp@568: #include "ecdev.h" fp@568: fp@568: #define DRV_NAME "ec_e100" fp@568: #define DRV_EXT "-NAPI" fp@568: #define DRV_VERSION "3.5.10-k2"DRV_EXT fp@568: #define DRV_DESCRIPTION "EtherCAT-capable Intel(R) PRO/100 Network Driver" fp@568: #define PFX DRV_NAME ": " fp@568: fp@568: #define E100_WATCHDOG_PERIOD (2 * HZ) fp@568: #define E100_NAPI_WEIGHT 16 fp@568: fp@568: MODULE_DESCRIPTION(DRV_DESCRIPTION); fp@568: MODULE_AUTHOR("Florian Pose "); fp@568: MODULE_LICENSE("GPL"); fp@568: MODULE_VERSION(DRV_VERSION ", master " EC_MASTER_VERSION); fp@568: fp@568: // EtherCAT variables fp@568: static int ec_device_index = -1; fp@568: static int ec_device_master_index = 0; fp@568: struct net_device *e100_ec_netdev = NULL; fp@568: unsigned int e100_device_index = 0; fp@568: fp@568: // EtherCAT module parameters fp@568: module_param(ec_device_index, int, -1); fp@568: module_param(ec_device_master_index, int, 0); fp@568: MODULE_PARM_DESC(ec_device_index, fp@568: "Index of the device reserved for EtherCAT."); fp@568: MODULE_PARM_DESC(ec_device_master_index, fp@568: "Index of the EtherCAT master to register the device."); fp@568: fp@568: void e100_ec_poll(struct net_device *); fp@568: fp@568: static int debug = 3; fp@568: static int eeprom_bad_csum_allow = 0; fp@568: module_param(debug, int, 0); fp@568: module_param(eeprom_bad_csum_allow, int, 0); fp@568: MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); fp@568: MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums"); fp@568: #define DPRINTK(nlevel, klevel, fmt, args...) \ fp@568: (void)((NETIF_MSG_##nlevel & nic->msg_enable) && \ fp@568: printk(KERN_##klevel PFX "%s: %s: " fmt, nic->netdev->name, \ fp@568: __FUNCTION__ , ## args)) fp@568: fp@568: #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\ fp@568: PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \ fp@568: PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich } fp@568: static struct pci_device_id e100_id_table[] = { fp@568: INTEL_8255X_ETHERNET_DEVICE(0x1029, 0), fp@568: INTEL_8255X_ETHERNET_DEVICE(0x1030, 0), fp@568: INTEL_8255X_ETHERNET_DEVICE(0x1031, 3), fp@568: INTEL_8255X_ETHERNET_DEVICE(0x1032, 3), fp@568: INTEL_8255X_ETHERNET_DEVICE(0x1033, 3), fp@568: INTEL_8255X_ETHERNET_DEVICE(0x1034, 3), fp@568: INTEL_8255X_ETHERNET_DEVICE(0x1038, 3), fp@568: INTEL_8255X_ETHERNET_DEVICE(0x1039, 4), fp@568: INTEL_8255X_ETHERNET_DEVICE(0x103A, 4), fp@568: INTEL_8255X_ETHERNET_DEVICE(0x103B, 4), fp@568: INTEL_8255X_ETHERNET_DEVICE(0x103C, 4), fp@568: INTEL_8255X_ETHERNET_DEVICE(0x103D, 4), fp@568: INTEL_8255X_ETHERNET_DEVICE(0x103E, 4), fp@568: INTEL_8255X_ETHERNET_DEVICE(0x1050, 5), fp@568: INTEL_8255X_ETHERNET_DEVICE(0x1051, 5), fp@568: INTEL_8255X_ETHERNET_DEVICE(0x1052, 5), fp@568: INTEL_8255X_ETHERNET_DEVICE(0x1053, 5), fp@568: INTEL_8255X_ETHERNET_DEVICE(0x1054, 5), fp@568: INTEL_8255X_ETHERNET_DEVICE(0x1055, 5), fp@568: INTEL_8255X_ETHERNET_DEVICE(0x1056, 5), fp@568: INTEL_8255X_ETHERNET_DEVICE(0x1057, 5), fp@568: INTEL_8255X_ETHERNET_DEVICE(0x1059, 0), fp@568: INTEL_8255X_ETHERNET_DEVICE(0x1064, 6), fp@568: INTEL_8255X_ETHERNET_DEVICE(0x1065, 6), fp@568: INTEL_8255X_ETHERNET_DEVICE(0x1066, 6), fp@568: INTEL_8255X_ETHERNET_DEVICE(0x1067, 6), fp@568: INTEL_8255X_ETHERNET_DEVICE(0x1068, 6), fp@568: INTEL_8255X_ETHERNET_DEVICE(0x1069, 6), fp@568: INTEL_8255X_ETHERNET_DEVICE(0x106A, 6), fp@568: INTEL_8255X_ETHERNET_DEVICE(0x106B, 6), fp@568: INTEL_8255X_ETHERNET_DEVICE(0x1091, 7), fp@568: INTEL_8255X_ETHERNET_DEVICE(0x1092, 7), fp@568: INTEL_8255X_ETHERNET_DEVICE(0x1093, 7), fp@568: INTEL_8255X_ETHERNET_DEVICE(0x1094, 7), fp@568: INTEL_8255X_ETHERNET_DEVICE(0x1095, 7), fp@568: INTEL_8255X_ETHERNET_DEVICE(0x1209, 0), fp@568: INTEL_8255X_ETHERNET_DEVICE(0x1229, 0), fp@568: INTEL_8255X_ETHERNET_DEVICE(0x2449, 2), fp@568: INTEL_8255X_ETHERNET_DEVICE(0x2459, 2), fp@568: INTEL_8255X_ETHERNET_DEVICE(0x245D, 2), fp@568: INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7), fp@568: { 0, } fp@568: }; fp@568: // prevent from being loaded automatically fp@568: //MODULE_DEVICE_TABLE(pci, e100_id_table); fp@568: fp@568: enum mac { fp@568: mac_82557_D100_A = 0, fp@568: mac_82557_D100_B = 1, fp@568: mac_82557_D100_C = 2, fp@568: mac_82558_D101_A4 = 4, fp@568: mac_82558_D101_B0 = 5, fp@568: mac_82559_D101M = 8, fp@568: mac_82559_D101S = 9, fp@568: mac_82550_D102 = 12, fp@568: mac_82550_D102_C = 13, fp@568: mac_82551_E = 14, fp@568: mac_82551_F = 15, fp@568: mac_82551_10 = 16, fp@568: mac_unknown = 0xFF, fp@568: }; fp@568: fp@568: enum phy { fp@568: phy_100a = 0x000003E0, fp@568: phy_100c = 0x035002A8, fp@568: phy_82555_tx = 0x015002A8, fp@568: phy_nsc_tx = 0x5C002000, fp@568: phy_82562_et = 0x033002A8, fp@568: phy_82562_em = 0x032002A8, fp@568: phy_82562_ek = 0x031002A8, fp@568: phy_82562_eh = 0x017002A8, fp@568: phy_unknown = 0xFFFFFFFF, fp@568: }; fp@568: fp@568: /* CSR (Control/Status Registers) */ fp@568: struct csr { fp@568: struct { fp@568: u8 status; fp@568: u8 stat_ack; fp@568: u8 cmd_lo; fp@568: u8 cmd_hi; fp@568: u32 gen_ptr; fp@568: } scb; fp@568: u32 port; fp@568: u16 flash_ctrl; fp@568: u8 eeprom_ctrl_lo; fp@568: u8 eeprom_ctrl_hi; fp@568: u32 mdi_ctrl; fp@568: u32 rx_dma_count; fp@568: }; fp@568: fp@568: enum scb_status { fp@568: rus_ready = 0x10, fp@568: rus_mask = 0x3C, fp@568: }; fp@568: fp@568: enum ru_state { fp@568: RU_SUSPENDED = 0, fp@568: RU_RUNNING = 1, fp@568: RU_UNINITIALIZED = -1, fp@568: }; fp@568: fp@568: enum scb_stat_ack { fp@568: stat_ack_not_ours = 0x00, fp@568: stat_ack_sw_gen = 0x04, fp@568: stat_ack_rnr = 0x10, fp@568: stat_ack_cu_idle = 0x20, fp@568: stat_ack_frame_rx = 0x40, fp@568: stat_ack_cu_cmd_done = 0x80, fp@568: stat_ack_not_present = 0xFF, fp@568: stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx), fp@568: stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done), fp@568: }; fp@568: fp@568: enum scb_cmd_hi { fp@568: irq_mask_none = 0x00, fp@568: irq_mask_all = 0x01, fp@568: irq_sw_gen = 0x02, fp@568: }; fp@568: fp@568: enum scb_cmd_lo { fp@568: cuc_nop = 0x00, fp@568: ruc_start = 0x01, fp@568: ruc_load_base = 0x06, fp@568: cuc_start = 0x10, fp@568: cuc_resume = 0x20, fp@568: cuc_dump_addr = 0x40, fp@568: cuc_dump_stats = 0x50, fp@568: cuc_load_base = 0x60, fp@568: cuc_dump_reset = 0x70, fp@568: }; fp@568: fp@568: enum cuc_dump { fp@568: cuc_dump_complete = 0x0000A005, fp@568: cuc_dump_reset_complete = 0x0000A007, fp@568: }; fp@568: fp@568: enum port { fp@568: software_reset = 0x0000, fp@568: selftest = 0x0001, fp@568: selective_reset = 0x0002, fp@568: }; fp@568: fp@568: enum eeprom_ctrl_lo { fp@568: eesk = 0x01, fp@568: eecs = 0x02, fp@568: eedi = 0x04, fp@568: eedo = 0x08, fp@568: }; fp@568: fp@568: enum mdi_ctrl { fp@568: mdi_write = 0x04000000, fp@568: mdi_read = 0x08000000, fp@568: mdi_ready = 0x10000000, fp@568: }; fp@568: fp@568: enum eeprom_op { fp@568: op_write = 0x05, fp@568: op_read = 0x06, fp@568: op_ewds = 0x10, fp@568: op_ewen = 0x13, fp@568: }; fp@568: fp@568: enum eeprom_offsets { fp@568: eeprom_cnfg_mdix = 0x03, fp@568: eeprom_id = 0x0A, fp@568: eeprom_config_asf = 0x0D, fp@568: eeprom_smbus_addr = 0x90, fp@568: }; fp@568: fp@568: enum eeprom_cnfg_mdix { fp@568: eeprom_mdix_enabled = 0x0080, fp@568: }; fp@568: fp@568: enum eeprom_id { fp@568: eeprom_id_wol = 0x0020, fp@568: }; fp@568: fp@568: enum eeprom_config_asf { fp@568: eeprom_asf = 0x8000, fp@568: eeprom_gcl = 0x4000, fp@568: }; fp@568: fp@568: enum cb_status { fp@568: cb_complete = 0x8000, fp@568: cb_ok = 0x2000, fp@568: }; fp@568: fp@568: enum cb_command { fp@568: cb_nop = 0x0000, fp@568: cb_iaaddr = 0x0001, fp@568: cb_config = 0x0002, fp@568: cb_multi = 0x0003, fp@568: cb_tx = 0x0004, fp@568: cb_ucode = 0x0005, fp@568: cb_dump = 0x0006, fp@568: cb_tx_sf = 0x0008, fp@568: cb_cid = 0x1f00, fp@568: cb_i = 0x2000, fp@568: cb_s = 0x4000, fp@568: cb_el = 0x8000, fp@568: }; fp@568: fp@568: struct rfd { fp@568: u16 status; fp@568: u16 command; fp@568: u32 link; fp@568: u32 rbd; fp@568: u16 actual_size; fp@568: u16 size; fp@568: }; fp@568: fp@568: struct rx { fp@568: struct rx *next, *prev; fp@568: struct sk_buff *skb; fp@568: dma_addr_t dma_addr; fp@568: }; fp@568: fp@568: #if defined(__BIG_ENDIAN_BITFIELD) fp@568: #define X(a,b) b,a fp@568: #else fp@568: #define X(a,b) a,b fp@568: #endif fp@568: struct config { fp@568: /*0*/ u8 X(byte_count:6, pad0:2); fp@568: /*1*/ u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1); fp@568: /*2*/ u8 adaptive_ifs; fp@568: /*3*/ u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1), fp@568: term_write_cache_line:1), pad3:4); fp@568: /*4*/ u8 X(rx_dma_max_count:7, pad4:1); fp@568: /*5*/ u8 X(tx_dma_max_count:7, dma_max_count_enable:1); fp@568: /*6*/ u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1), fp@568: tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1), fp@568: rx_discard_overruns:1), rx_save_bad_frames:1); fp@568: /*7*/ u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2), fp@568: pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1), fp@568: tx_dynamic_tbd:1); fp@568: /*8*/ u8 X(X(mii_mode:1, pad8:6), csma_disabled:1); fp@568: /*9*/ u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1), fp@568: link_status_wake:1), arp_wake:1), mcmatch_wake:1); fp@568: /*10*/ u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2), fp@568: loopback:2); fp@568: /*11*/ u8 X(linear_priority:3, pad11:5); fp@568: /*12*/ u8 X(X(linear_priority_mode:1, pad12:3), ifs:4); fp@568: /*13*/ u8 ip_addr_lo; fp@568: /*14*/ u8 ip_addr_hi; fp@568: /*15*/ u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1), fp@568: wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1), fp@568: pad15_2:1), crs_or_cdt:1); fp@568: /*16*/ u8 fc_delay_lo; fp@568: /*17*/ u8 fc_delay_hi; fp@568: /*18*/ u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1), fp@568: rx_long_ok:1), fc_priority_threshold:3), pad18:1); fp@568: /*19*/ u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1), fp@568: fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1), fp@568: full_duplex_force:1), full_duplex_pin:1); fp@568: /*20*/ u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1); fp@568: /*21*/ u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4); fp@568: /*22*/ u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6); fp@568: u8 pad_d102[9]; fp@568: }; fp@568: fp@568: #define E100_MAX_MULTICAST_ADDRS 64 fp@568: struct multi { fp@568: u16 count; fp@568: u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/]; fp@568: }; fp@568: fp@568: /* Important: keep total struct u32-aligned */ fp@568: #define UCODE_SIZE 134 fp@568: struct cb { fp@568: u16 status; fp@568: u16 command; fp@568: u32 link; fp@568: union { fp@568: u8 iaaddr[ETH_ALEN]; fp@568: u32 ucode[UCODE_SIZE]; fp@568: struct config config; fp@568: struct multi multi; fp@568: struct { fp@568: u32 tbd_array; fp@568: u16 tcb_byte_count; fp@568: u8 threshold; fp@568: u8 tbd_count; fp@568: struct { fp@568: u32 buf_addr; fp@568: u16 size; fp@568: u16 eol; fp@568: } tbd; fp@568: } tcb; fp@568: u32 dump_buffer_addr; fp@568: } u; fp@568: struct cb *next, *prev; fp@568: dma_addr_t dma_addr; fp@568: struct sk_buff *skb; fp@568: }; fp@568: fp@568: enum loopback { fp@568: lb_none = 0, lb_mac = 1, lb_phy = 3, fp@568: }; fp@568: fp@568: struct stats { fp@568: u32 tx_good_frames, tx_max_collisions, tx_late_collisions, fp@568: tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions, fp@568: tx_multiple_collisions, tx_total_collisions; fp@568: u32 rx_good_frames, rx_crc_errors, rx_alignment_errors, fp@568: rx_resource_errors, rx_overrun_errors, rx_cdt_errors, fp@568: rx_short_frame_errors; fp@568: u32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported; fp@568: u16 xmt_tco_frames, rcv_tco_frames; fp@568: u32 complete; fp@568: }; fp@568: fp@568: struct mem { fp@568: struct { fp@568: u32 signature; fp@568: u32 result; fp@568: } selftest; fp@568: struct stats stats; fp@568: u8 dump_buf[596]; fp@568: }; fp@568: fp@568: struct param_range { fp@568: u32 min; fp@568: u32 max; fp@568: u32 count; fp@568: }; fp@568: fp@568: struct params { fp@568: struct param_range rfds; fp@568: struct param_range cbs; fp@568: }; fp@568: fp@568: struct nic { fp@568: /* Begin: frequently used values: keep adjacent for cache effect */ fp@568: u32 msg_enable ____cacheline_aligned; fp@568: struct net_device *netdev; fp@568: struct pci_dev *pdev; fp@568: fp@568: struct rx *rxs ____cacheline_aligned; fp@568: struct rx *rx_to_use; fp@568: struct rx *rx_to_clean; fp@568: struct rfd blank_rfd; fp@568: enum ru_state ru_running; fp@568: fp@568: spinlock_t cb_lock ____cacheline_aligned; fp@568: spinlock_t cmd_lock; fp@568: struct csr __iomem *csr; fp@568: enum scb_cmd_lo cuc_cmd; fp@568: unsigned int cbs_avail; fp@568: struct cb *cbs; fp@568: struct cb *cb_to_use; fp@568: struct cb *cb_to_send; fp@568: struct cb *cb_to_clean; fp@568: u16 tx_command; fp@568: /* End: frequently used values: keep adjacent for cache effect */ fp@568: fp@568: enum { fp@568: ich = (1 << 0), fp@568: promiscuous = (1 << 1), fp@568: multicast_all = (1 << 2), fp@568: wol_magic = (1 << 3), fp@568: ich_10h_workaround = (1 << 4), fp@568: } flags ____cacheline_aligned; fp@568: fp@568: enum mac mac; fp@568: enum phy phy; fp@568: struct params params; fp@568: struct net_device_stats net_stats; fp@568: struct timer_list watchdog; fp@568: struct timer_list blink_timer; fp@568: struct mii_if_info mii; fp@568: struct work_struct tx_timeout_task; fp@568: enum loopback loopback; fp@568: fp@568: struct mem *mem; fp@568: dma_addr_t dma_addr; fp@568: fp@568: dma_addr_t cbs_dma_addr; fp@568: u8 adaptive_ifs; fp@568: u8 tx_threshold; fp@568: u32 tx_frames; fp@568: u32 tx_collisions; fp@568: u32 tx_deferred; fp@568: u32 tx_single_collisions; fp@568: u32 tx_multiple_collisions; fp@568: u32 tx_fc_pause; fp@568: u32 tx_tco_frames; fp@568: fp@568: u32 rx_fc_pause; fp@568: u32 rx_fc_unsupported; fp@568: u32 rx_tco_frames; fp@568: u32 rx_over_length_errors; fp@568: fp@568: u8 rev_id; fp@568: u16 leds; fp@568: u16 eeprom_wc; fp@568: u16 eeprom[256]; fp@568: spinlock_t mdio_lock; fp@568: fp@568: u8 ethercat; fp@568: ec_device_t *ecdev; fp@568: }; fp@568: fp@568: static inline void e100_write_flush(struct nic *nic) fp@568: { fp@568: /* Flush previous PCI writes through intermediate bridges fp@568: * by doing a benign read */ fp@568: (void)readb(&nic->csr->scb.status); fp@568: } fp@568: fp@568: static void e100_enable_irq(struct nic *nic) fp@568: { fp@568: unsigned long flags; fp@568: fp@568: spin_lock_irqsave(&nic->cmd_lock, flags); fp@568: writeb(irq_mask_none, &nic->csr->scb.cmd_hi); fp@568: e100_write_flush(nic); fp@568: spin_unlock_irqrestore(&nic->cmd_lock, flags); fp@568: } fp@568: fp@568: static void e100_disable_irq(struct nic *nic) fp@568: { fp@568: unsigned long flags; fp@568: fp@568: spin_lock_irqsave(&nic->cmd_lock, flags); fp@568: writeb(irq_mask_all, &nic->csr->scb.cmd_hi); fp@568: e100_write_flush(nic); fp@568: spin_unlock_irqrestore(&nic->cmd_lock, flags); fp@568: } fp@568: fp@568: static void e100_hw_reset(struct nic *nic) fp@568: { fp@568: /* Put CU and RU into idle with a selective reset to get fp@568: * device off of PCI bus */ fp@568: writel(selective_reset, &nic->csr->port); fp@568: e100_write_flush(nic); udelay(20); fp@568: fp@568: /* Now fully reset device */ fp@568: writel(software_reset, &nic->csr->port); fp@568: e100_write_flush(nic); udelay(20); fp@568: fp@568: /* Mask off our interrupt line - it's unmasked after reset */ fp@568: e100_disable_irq(nic); fp@568: } fp@568: fp@568: static int e100_self_test(struct nic *nic) fp@568: { fp@568: u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest); fp@568: fp@568: /* Passing the self-test is a pretty good indication fp@568: * that the device can DMA to/from host memory */ fp@568: fp@568: nic->mem->selftest.signature = 0; fp@568: nic->mem->selftest.result = 0xFFFFFFFF; fp@568: fp@568: writel(selftest | dma_addr, &nic->csr->port); fp@568: e100_write_flush(nic); fp@568: /* Wait 10 msec for self-test to complete */ fp@568: msleep(10); fp@568: fp@568: /* Interrupts are enabled after self-test */ fp@568: e100_disable_irq(nic); fp@568: fp@568: /* Check results of self-test */ fp@568: if(nic->mem->selftest.result != 0) { fp@568: DPRINTK(HW, ERR, "Self-test failed: result=0x%08X\n", fp@568: nic->mem->selftest.result); fp@568: return -ETIMEDOUT; fp@568: } fp@568: if(nic->mem->selftest.signature == 0) { fp@568: DPRINTK(HW, ERR, "Self-test failed: timed out\n"); fp@568: return -ETIMEDOUT; fp@568: } fp@568: fp@568: return 0; fp@568: } fp@568: fp@568: static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, u16 data) fp@568: { fp@568: u32 cmd_addr_data[3]; fp@568: u8 ctrl; fp@568: int i, j; fp@568: fp@568: /* Three cmds: write/erase enable, write data, write/erase disable */ fp@568: cmd_addr_data[0] = op_ewen << (addr_len - 2); fp@568: cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) | fp@568: cpu_to_le16(data); fp@568: cmd_addr_data[2] = op_ewds << (addr_len - 2); fp@568: fp@568: /* Bit-bang cmds to write word to eeprom */ fp@568: for(j = 0; j < 3; j++) { fp@568: fp@568: /* Chip select */ fp@568: writeb(eecs | eesk, &nic->csr->eeprom_ctrl_lo); fp@568: e100_write_flush(nic); udelay(4); fp@568: fp@568: for(i = 31; i >= 0; i--) { fp@568: ctrl = (cmd_addr_data[j] & (1 << i)) ? fp@568: eecs | eedi : eecs; fp@568: writeb(ctrl, &nic->csr->eeprom_ctrl_lo); fp@568: e100_write_flush(nic); udelay(4); fp@568: fp@568: writeb(ctrl | eesk, &nic->csr->eeprom_ctrl_lo); fp@568: e100_write_flush(nic); udelay(4); fp@568: } fp@568: /* Wait 10 msec for cmd to complete */ fp@568: msleep(10); fp@568: fp@568: /* Chip deselect */ fp@568: writeb(0, &nic->csr->eeprom_ctrl_lo); fp@568: e100_write_flush(nic); udelay(4); fp@568: } fp@568: }; fp@568: fp@568: /* General technique stolen from the eepro100 driver - very clever */ fp@568: static u16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr) fp@568: { fp@568: u32 cmd_addr_data; fp@568: u16 data = 0; fp@568: u8 ctrl; fp@568: int i; fp@568: fp@568: cmd_addr_data = ((op_read << *addr_len) | addr) << 16; fp@568: fp@568: /* Chip select */ fp@568: writeb(eecs | eesk, &nic->csr->eeprom_ctrl_lo); fp@568: e100_write_flush(nic); udelay(4); fp@568: fp@568: /* Bit-bang to read word from eeprom */ fp@568: for(i = 31; i >= 0; i--) { fp@568: ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs; fp@568: writeb(ctrl, &nic->csr->eeprom_ctrl_lo); fp@568: e100_write_flush(nic); udelay(4); fp@568: fp@568: writeb(ctrl | eesk, &nic->csr->eeprom_ctrl_lo); fp@568: e100_write_flush(nic); udelay(4); fp@568: fp@568: /* Eeprom drives a dummy zero to EEDO after receiving fp@568: * complete address. Use this to adjust addr_len. */ fp@568: ctrl = readb(&nic->csr->eeprom_ctrl_lo); fp@568: if(!(ctrl & eedo) && i > 16) { fp@568: *addr_len -= (i - 16); fp@568: i = 17; fp@568: } fp@568: fp@568: data = (data << 1) | (ctrl & eedo ? 1 : 0); fp@568: } fp@568: fp@568: /* Chip deselect */ fp@568: writeb(0, &nic->csr->eeprom_ctrl_lo); fp@568: e100_write_flush(nic); udelay(4); fp@568: fp@568: return le16_to_cpu(data); fp@568: }; fp@568: fp@568: /* Load entire EEPROM image into driver cache and validate checksum */ fp@568: static int e100_eeprom_load(struct nic *nic) fp@568: { fp@568: u16 addr, addr_len = 8, checksum = 0; fp@568: fp@568: /* Try reading with an 8-bit addr len to discover actual addr len */ fp@568: e100_eeprom_read(nic, &addr_len, 0); fp@568: nic->eeprom_wc = 1 << addr_len; fp@568: fp@568: for(addr = 0; addr < nic->eeprom_wc; addr++) { fp@568: nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr); fp@568: if(addr < nic->eeprom_wc - 1) fp@568: checksum += cpu_to_le16(nic->eeprom[addr]); fp@568: } fp@568: fp@568: /* The checksum, stored in the last word, is calculated such that fp@568: * the sum of words should be 0xBABA */ fp@568: checksum = le16_to_cpu(0xBABA - checksum); fp@568: if(checksum != nic->eeprom[nic->eeprom_wc - 1]) { fp@568: DPRINTK(PROBE, ERR, "EEPROM corrupted\n"); fp@568: if (!eeprom_bad_csum_allow) fp@568: return -EAGAIN; fp@568: } fp@568: fp@568: return 0; fp@568: } fp@568: fp@568: /* Save (portion of) driver EEPROM cache to device and update checksum */ fp@568: static int e100_eeprom_save(struct nic *nic, u16 start, u16 count) fp@568: { fp@568: u16 addr, addr_len = 8, checksum = 0; fp@568: fp@568: /* Try reading with an 8-bit addr len to discover actual addr len */ fp@568: e100_eeprom_read(nic, &addr_len, 0); fp@568: nic->eeprom_wc = 1 << addr_len; fp@568: fp@568: if(start + count >= nic->eeprom_wc) fp@568: return -EINVAL; fp@568: fp@568: for(addr = start; addr < start + count; addr++) fp@568: e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]); fp@568: fp@568: /* The checksum, stored in the last word, is calculated such that fp@568: * the sum of words should be 0xBABA */ fp@568: for(addr = 0; addr < nic->eeprom_wc - 1; addr++) fp@568: checksum += cpu_to_le16(nic->eeprom[addr]); fp@568: nic->eeprom[nic->eeprom_wc - 1] = le16_to_cpu(0xBABA - checksum); fp@568: e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1, fp@568: nic->eeprom[nic->eeprom_wc - 1]); fp@568: fp@568: return 0; fp@568: } fp@568: fp@568: #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */ fp@568: #define E100_WAIT_SCB_FAST 20 /* delay like the old code */ fp@568: static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr) fp@568: { fp@568: unsigned long flags = 0; fp@568: unsigned int i; fp@568: int err = 0; fp@568: fp@568: if (!nic->ethercat) fp@568: spin_lock_irqsave(&nic->cmd_lock, flags); fp@568: fp@568: /* Previous command is accepted when SCB clears */ fp@568: for(i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) { fp@568: if(likely(!readb(&nic->csr->scb.cmd_lo))) fp@568: break; fp@568: cpu_relax(); fp@568: if(unlikely(i > E100_WAIT_SCB_FAST)) fp@568: udelay(5); fp@568: } fp@568: if(unlikely(i == E100_WAIT_SCB_TIMEOUT)) { fp@568: err = -EAGAIN; fp@568: goto err_unlock; fp@568: } fp@568: fp@568: if(unlikely(cmd != cuc_resume)) fp@568: writel(dma_addr, &nic->csr->scb.gen_ptr); fp@568: writeb(cmd, &nic->csr->scb.cmd_lo); fp@568: fp@568: err_unlock: fp@568: if (!nic->ethercat) fp@568: spin_unlock_irqrestore(&nic->cmd_lock, flags); fp@568: fp@568: return err; fp@568: } fp@568: fp@568: static int e100_exec_cb(struct nic *nic, struct sk_buff *skb, fp@568: void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *)) fp@568: { fp@568: struct cb *cb; fp@568: unsigned long flags = 0; fp@568: int err = 0; fp@568: fp@568: if (!nic->ethercat) fp@568: spin_lock_irqsave(&nic->cb_lock, flags); fp@568: fp@568: if(unlikely(!nic->cbs_avail)) { fp@568: err = -ENOMEM; fp@568: goto err_unlock; fp@568: } fp@568: fp@568: cb = nic->cb_to_use; fp@568: nic->cb_to_use = cb->next; fp@568: nic->cbs_avail--; fp@568: cb->skb = skb; fp@568: fp@568: if(unlikely(!nic->cbs_avail)) fp@568: err = -ENOSPC; fp@568: fp@568: cb_prepare(nic, cb, skb); fp@568: fp@568: /* Order is important otherwise we'll be in a race with h/w: fp@568: * set S-bit in current first, then clear S-bit in previous. */ fp@568: cb->command |= cpu_to_le16(cb_s); fp@568: wmb(); fp@568: cb->prev->command &= cpu_to_le16(~cb_s); fp@568: fp@568: while(nic->cb_to_send != nic->cb_to_use) { fp@568: if(unlikely(e100_exec_cmd(nic, nic->cuc_cmd, fp@568: nic->cb_to_send->dma_addr))) { fp@568: /* Ok, here's where things get sticky. It's fp@568: * possible that we can't schedule the command fp@568: * because the controller is too busy, so fp@568: * let's just queue the command and try again fp@568: * when another command is scheduled. */ fp@568: if(err == -ENOSPC) { fp@568: //request a reset fp@568: if (!nic->ethercat) fp@568: schedule_work(&nic->tx_timeout_task); fp@568: } fp@568: break; fp@568: } else { fp@568: nic->cuc_cmd = cuc_resume; fp@568: nic->cb_to_send = nic->cb_to_send->next; fp@568: } fp@568: } fp@568: fp@568: err_unlock: fp@568: if (!nic->ethercat) fp@568: spin_unlock_irqrestore(&nic->cb_lock, flags); fp@568: fp@568: return err; fp@568: } fp@568: fp@568: static u16 mdio_ctrl(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data) fp@568: { fp@568: u32 data_out = 0; fp@568: unsigned int i; fp@568: unsigned long flags; fp@568: fp@568: fp@568: /* fp@568: * Stratus87247: we shouldn't be writing the MDI control fp@568: * register until the Ready bit shows True. Also, since fp@568: * manipulation of the MDI control registers is a multi-step fp@568: * procedure it should be done under lock. fp@568: */ fp@568: spin_lock_irqsave(&nic->mdio_lock, flags); fp@568: for (i = 100; i; --i) { fp@568: if (readl(&nic->csr->mdi_ctrl) & mdi_ready) fp@568: break; fp@568: udelay(20); fp@568: } fp@568: if (unlikely(!i)) { fp@568: printk("e100.mdio_ctrl(%s) won't go Ready\n", fp@568: nic->netdev->name ); fp@568: spin_unlock_irqrestore(&nic->mdio_lock, flags); fp@568: return 0; /* No way to indicate timeout error */ fp@568: } fp@568: writel((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl); fp@568: fp@568: for (i = 0; i < 100; i++) { fp@568: udelay(20); fp@568: if ((data_out = readl(&nic->csr->mdi_ctrl)) & mdi_ready) fp@568: break; fp@568: } fp@568: spin_unlock_irqrestore(&nic->mdio_lock, flags); fp@568: DPRINTK(HW, DEBUG, fp@568: "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n", fp@568: dir == mdi_read ? "READ" : "WRITE", addr, reg, data, data_out); fp@568: return (u16)data_out; fp@568: } fp@568: fp@568: static int mdio_read(struct net_device *netdev, int addr, int reg) fp@568: { fp@568: return mdio_ctrl(netdev_priv(netdev), addr, mdi_read, reg, 0); fp@568: } fp@568: fp@568: static void mdio_write(struct net_device *netdev, int addr, int reg, int data) fp@568: { fp@568: mdio_ctrl(netdev_priv(netdev), addr, mdi_write, reg, data); fp@568: } fp@568: fp@568: static void e100_get_defaults(struct nic *nic) fp@568: { fp@568: struct param_range rfds = { .min = 16, .max = 256, .count = 256 }; fp@568: struct param_range cbs = { .min = 64, .max = 256, .count = 128 }; fp@568: fp@568: pci_read_config_byte(nic->pdev, PCI_REVISION_ID, &nic->rev_id); fp@568: /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */ fp@568: nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->rev_id; fp@568: if(nic->mac == mac_unknown) fp@568: nic->mac = mac_82557_D100_A; fp@568: fp@568: nic->params.rfds = rfds; fp@568: nic->params.cbs = cbs; fp@568: fp@568: /* Quadwords to DMA into FIFO before starting frame transmit */ fp@568: nic->tx_threshold = 0xE0; fp@568: fp@568: /* no interrupt for every tx completion, delay = 256us if not 557*/ fp@568: nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf | fp@568: ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i)); fp@568: fp@568: /* Template for a freshly allocated RFD */ fp@568: nic->blank_rfd.command = cpu_to_le16(cb_el); fp@568: nic->blank_rfd.rbd = 0xFFFFFFFF; fp@568: nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN); fp@568: fp@568: /* MII setup */ fp@568: nic->mii.phy_id_mask = 0x1F; fp@568: nic->mii.reg_num_mask = 0x1F; fp@568: nic->mii.dev = nic->netdev; fp@568: nic->mii.mdio_read = mdio_read; fp@568: nic->mii.mdio_write = mdio_write; fp@568: } fp@568: fp@568: static void e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb) fp@568: { fp@568: struct config *config = &cb->u.config; fp@568: u8 *c = (u8 *)config; fp@568: fp@568: cb->command = cpu_to_le16(cb_config); fp@568: fp@568: memset(config, 0, sizeof(struct config)); fp@568: fp@568: config->byte_count = 0x16; /* bytes in this struct */ fp@568: config->rx_fifo_limit = 0x8; /* bytes in FIFO before DMA */ fp@568: config->direct_rx_dma = 0x1; /* reserved */ fp@568: config->standard_tcb = 0x1; /* 1=standard, 0=extended */ fp@568: config->standard_stat_counter = 0x1; /* 1=standard, 0=extended */ fp@568: config->rx_discard_short_frames = 0x1; /* 1=discard, 0=pass */ fp@568: config->tx_underrun_retry = 0x3; /* # of underrun retries */ fp@568: config->mii_mode = 0x1; /* 1=MII mode, 0=503 mode */ fp@568: config->pad10 = 0x6; fp@568: config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */ fp@568: config->preamble_length = 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */ fp@568: config->ifs = 0x6; /* x16 = inter frame spacing */ fp@568: config->ip_addr_hi = 0xF2; /* ARP IP filter - not used */ fp@568: config->pad15_1 = 0x1; fp@568: config->pad15_2 = 0x1; fp@568: config->crs_or_cdt = 0x0; /* 0=CRS only, 1=CRS or CDT */ fp@568: config->fc_delay_hi = 0x40; /* time delay for fc frame */ fp@568: config->tx_padding = 0x1; /* 1=pad short frames */ fp@568: config->fc_priority_threshold = 0x7; /* 7=priority fc disabled */ fp@568: config->pad18 = 0x1; fp@568: config->full_duplex_pin = 0x1; /* 1=examine FDX# pin */ fp@568: config->pad20_1 = 0x1F; fp@568: config->fc_priority_location = 0x1; /* 1=byte#31, 0=byte#19 */ fp@568: config->pad21_1 = 0x5; fp@568: fp@568: config->adaptive_ifs = nic->adaptive_ifs; fp@568: config->loopback = nic->loopback; fp@568: fp@568: if(nic->mii.force_media && nic->mii.full_duplex) fp@568: config->full_duplex_force = 0x1; /* 1=force, 0=auto */ fp@568: fp@568: if(nic->flags & promiscuous || nic->loopback) { fp@568: config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */ fp@568: config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */ fp@568: config->promiscuous_mode = 0x1; /* 1=on, 0=off */ fp@568: } fp@568: fp@568: if(nic->flags & multicast_all) fp@568: config->multicast_all = 0x1; /* 1=accept, 0=no */ fp@568: fp@568: /* disable WoL when up */ fp@568: if (nic->ethercat || fp@568: (netif_running(nic->netdev) || !(nic->flags & wol_magic))) fp@568: config->magic_packet_disable = 0x1; /* 1=off, 0=on */ fp@568: fp@568: if(nic->mac >= mac_82558_D101_A4) { fp@568: config->fc_disable = 0x1; /* 1=Tx fc off, 0=Tx fc on */ fp@568: config->mwi_enable = 0x1; /* 1=enable, 0=disable */ fp@568: config->standard_tcb = 0x0; /* 1=standard, 0=extended */ fp@568: config->rx_long_ok = 0x1; /* 1=VLANs ok, 0=standard */ fp@568: if(nic->mac >= mac_82559_D101M) fp@568: config->tno_intr = 0x1; /* TCO stats enable */ fp@568: else fp@568: config->standard_stat_counter = 0x0; fp@568: } fp@568: fp@568: DPRINTK(HW, DEBUG, "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", fp@568: c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]); fp@568: DPRINTK(HW, DEBUG, "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", fp@568: c[8], c[9], c[10], c[11], c[12], c[13], c[14], c[15]); fp@568: DPRINTK(HW, DEBUG, "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", fp@568: c[16], c[17], c[18], c[19], c[20], c[21], c[22], c[23]); fp@568: } fp@568: fp@568: /********************************************************/ fp@568: /* Micro code for 8086:1229 Rev 8 */ fp@568: /********************************************************/ fp@568: fp@568: /* Parameter values for the D101M B-step */ fp@568: #define D101M_CPUSAVER_TIMER_DWORD 78 fp@568: #define D101M_CPUSAVER_BUNDLE_DWORD 65 fp@568: #define D101M_CPUSAVER_MIN_SIZE_DWORD 126 fp@568: fp@568: #define D101M_B_RCVBUNDLE_UCODE \ fp@568: {\ fp@568: 0x00550215, 0xFFFF0437, 0xFFFFFFFF, 0x06A70789, 0xFFFFFFFF, 0x0558FFFF, \ fp@568: 0x000C0001, 0x00101312, 0x000C0008, 0x00380216, \ fp@568: 0x0010009C, 0x00204056, 0x002380CC, 0x00380056, \ fp@568: 0x0010009C, 0x00244C0B, 0x00000800, 0x00124818, \ fp@568: 0x00380438, 0x00000000, 0x00140000, 0x00380555, \ fp@568: 0x00308000, 0x00100662, 0x00100561, 0x000E0408, \ fp@568: 0x00134861, 0x000C0002, 0x00103093, 0x00308000, \ fp@568: 0x00100624, 0x00100561, 0x000E0408, 0x00100861, \ fp@568: 0x000C007E, 0x00222C21, 0x000C0002, 0x00103093, \ fp@568: 0x00380C7A, 0x00080000, 0x00103090, 0x00380C7A, \ fp@568: 0x00000000, 0x00000000, 0x00000000, 0x00000000, \ fp@568: 0x0010009C, 0x00244C2D, 0x00010004, 0x00041000, \ fp@568: 0x003A0437, 0x00044010, 0x0038078A, 0x00000000, \ fp@568: 0x00100099, 0x00206C7A, 0x0010009C, 0x00244C48, \ fp@568: 0x00130824, 0x000C0001, 0x00101213, 0x00260C75, \ fp@568: 0x00041000, 0x00010004, 0x00130826, 0x000C0006, \ fp@568: 0x002206A8, 0x0013C926, 0x00101313, 0x003806A8, \ fp@568: 0x00000000, 0x00000000, 0x00000000, 0x00000000, \ fp@568: 0x00000000, 0x00000000, 0x00000000, 0x00000000, \ fp@568: 0x00080600, 0x00101B10, 0x00050004, 0x00100826, \ fp@568: 0x00101210, 0x00380C34, 0x00000000, 0x00000000, \ fp@568: 0x0021155B, 0x00100099, 0x00206559, 0x0010009C, \ fp@568: 0x00244559, 0x00130836, 0x000C0000, 0x00220C62, \ fp@568: 0x000C0001, 0x00101B13, 0x00229C0E, 0x00210C0E, \ fp@568: 0x00226C0E, 0x00216C0E, 0x0022FC0E, 0x00215C0E, \ fp@568: 0x00214C0E, 0x00380555, 0x00010004, 0x00041000, \ fp@568: 0x00278C67, 0x00040800, 0x00018100, 0x003A0437, \ fp@568: 0x00130826, 0x000C0001, 0x00220559, 0x00101313, \ fp@568: 0x00380559, 0x00000000, 0x00000000, 0x00000000, \ fp@568: 0x00000000, 0x00000000, 0x00000000, 0x00000000, \ fp@568: 0x00000000, 0x00130831, 0x0010090B, 0x00124813, \ fp@568: 0x000CFF80, 0x002606AB, 0x00041000, 0x00010004, \ fp@568: 0x003806A8, 0x00000000, 0x00000000, 0x00000000, \ fp@568: } fp@568: fp@568: /********************************************************/ fp@568: /* Micro code for 8086:1229 Rev 9 */ fp@568: /********************************************************/ fp@568: fp@568: /* Parameter values for the D101S */ fp@568: #define D101S_CPUSAVER_TIMER_DWORD 78 fp@568: #define D101S_CPUSAVER_BUNDLE_DWORD 67 fp@568: #define D101S_CPUSAVER_MIN_SIZE_DWORD 128 fp@568: fp@568: #define D101S_RCVBUNDLE_UCODE \ fp@568: {\ fp@568: 0x00550242, 0xFFFF047E, 0xFFFFFFFF, 0x06FF0818, 0xFFFFFFFF, 0x05A6FFFF, \ fp@568: 0x000C0001, 0x00101312, 0x000C0008, 0x00380243, \ fp@568: 0x0010009C, 0x00204056, 0x002380D0, 0x00380056, \ fp@568: 0x0010009C, 0x00244F8B, 0x00000800, 0x00124818, \ fp@568: 0x0038047F, 0x00000000, 0x00140000, 0x003805A3, \ fp@568: 0x00308000, 0x00100610, 0x00100561, 0x000E0408, \ fp@568: 0x00134861, 0x000C0002, 0x00103093, 0x00308000, \ fp@568: 0x00100624, 0x00100561, 0x000E0408, 0x00100861, \ fp@568: 0x000C007E, 0x00222FA1, 0x000C0002, 0x00103093, \ fp@568: 0x00380F90, 0x00080000, 0x00103090, 0x00380F90, \ fp@568: 0x00000000, 0x00000000, 0x00000000, 0x00000000, \ fp@568: 0x0010009C, 0x00244FAD, 0x00010004, 0x00041000, \ fp@568: 0x003A047E, 0x00044010, 0x00380819, 0x00000000, \ fp@568: 0x00100099, 0x00206FFD, 0x0010009A, 0x0020AFFD, \ fp@568: 0x0010009C, 0x00244FC8, 0x00130824, 0x000C0001, \ fp@568: 0x00101213, 0x00260FF7, 0x00041000, 0x00010004, \ fp@568: 0x00130826, 0x000C0006, 0x00220700, 0x0013C926, \ fp@568: 0x00101313, 0x00380700, 0x00000000, 0x00000000, \ fp@568: 0x00000000, 0x00000000, 0x00000000, 0x00000000, \ fp@568: 0x00080600, 0x00101B10, 0x00050004, 0x00100826, \ fp@568: 0x00101210, 0x00380FB6, 0x00000000, 0x00000000, \ fp@568: 0x002115A9, 0x00100099, 0x002065A7, 0x0010009A, \ fp@568: 0x0020A5A7, 0x0010009C, 0x002445A7, 0x00130836, \ fp@568: 0x000C0000, 0x00220FE4, 0x000C0001, 0x00101B13, \ fp@568: 0x00229F8E, 0x00210F8E, 0x00226F8E, 0x00216F8E, \ fp@568: 0x0022FF8E, 0x00215F8E, 0x00214F8E, 0x003805A3, \ fp@568: 0x00010004, 0x00041000, 0x00278FE9, 0x00040800, \ fp@568: 0x00018100, 0x003A047E, 0x00130826, 0x000C0001, \ fp@568: 0x002205A7, 0x00101313, 0x003805A7, 0x00000000, \ fp@568: 0x00000000, 0x00000000, 0x00000000, 0x00000000, \ fp@568: 0x00000000, 0x00000000, 0x00000000, 0x00130831, \ fp@568: 0x0010090B, 0x00124813, 0x000CFF80, 0x00260703, \ fp@568: 0x00041000, 0x00010004, 0x00380700 \ fp@568: } fp@568: fp@568: /********************************************************/ fp@568: /* Micro code for the 8086:1229 Rev F/10 */ fp@568: /********************************************************/ fp@568: fp@568: /* Parameter values for the D102 E-step */ fp@568: #define D102_E_CPUSAVER_TIMER_DWORD 42 fp@568: #define D102_E_CPUSAVER_BUNDLE_DWORD 54 fp@568: #define D102_E_CPUSAVER_MIN_SIZE_DWORD 46 fp@568: fp@568: #define D102_E_RCVBUNDLE_UCODE \ fp@568: {\ fp@568: 0x007D028F, 0x0E4204F9, 0x14ED0C85, 0x14FA14E9, 0x0EF70E36, 0x1FFF1FFF, \ fp@568: 0x00E014B9, 0x00000000, 0x00000000, 0x00000000, \ fp@568: 0x00E014BD, 0x00000000, 0x00000000, 0x00000000, \ fp@568: 0x00E014D5, 0x00000000, 0x00000000, 0x00000000, \ fp@568: 0x00000000, 0x00000000, 0x00000000, 0x00000000, \ fp@568: 0x00E014C1, 0x00000000, 0x00000000, 0x00000000, \ fp@568: 0x00000000, 0x00000000, 0x00000000, 0x00000000, \ fp@568: 0x00000000, 0x00000000, 0x00000000, 0x00000000, \ fp@568: 0x00000000, 0x00000000, 0x00000000, 0x00000000, \ fp@568: 0x00E014C8, 0x00000000, 0x00000000, 0x00000000, \ fp@568: 0x00200600, 0x00E014EE, 0x00000000, 0x00000000, \ fp@568: 0x0030FF80, 0x00940E46, 0x00038200, 0x00102000, \ fp@568: 0x00E00E43, 0x00000000, 0x00000000, 0x00000000, \ fp@568: 0x00300006, 0x00E014FB, 0x00000000, 0x00000000, \ fp@568: 0x00000000, 0x00000000, 0x00000000, 0x00000000, \ fp@568: 0x00000000, 0x00000000, 0x00000000, 0x00000000, \ fp@568: 0x00000000, 0x00000000, 0x00000000, 0x00000000, \ fp@568: 0x00906E41, 0x00800E3C, 0x00E00E39, 0x00000000, \ fp@568: 0x00906EFD, 0x00900EFD, 0x00E00EF8, 0x00000000, \ fp@568: 0x00000000, 0x00000000, 0x00000000, 0x00000000, \ fp@568: 0x00000000, 0x00000000, 0x00000000, 0x00000000, \ fp@568: 0x00000000, 0x00000000, 0x00000000, 0x00000000, \ fp@568: 0x00000000, 0x00000000, 0x00000000, 0x00000000, \ fp@568: 0x00000000, 0x00000000, 0x00000000, 0x00000000, \ fp@568: 0x00000000, 0x00000000, 0x00000000, 0x00000000, \ fp@568: 0x00000000, 0x00000000, 0x00000000, 0x00000000, \ fp@568: 0x00000000, 0x00000000, 0x00000000, 0x00000000, \ fp@568: 0x00000000, 0x00000000, 0x00000000, 0x00000000, \ fp@568: 0x00000000, 0x00000000, 0x00000000, 0x00000000, \ fp@568: 0x00000000, 0x00000000, 0x00000000, 0x00000000, \ fp@568: 0x00000000, 0x00000000, 0x00000000, 0x00000000, \ fp@568: 0x00000000, 0x00000000, 0x00000000, 0x00000000, \ fp@568: 0x00000000, 0x00000000, 0x00000000, 0x00000000, \ fp@568: } fp@568: fp@568: static void e100_setup_ucode(struct nic *nic, struct cb *cb, struct sk_buff *skb) fp@568: { fp@568: /* *INDENT-OFF* */ fp@568: static struct { fp@568: u32 ucode[UCODE_SIZE + 1]; fp@568: u8 mac; fp@568: u8 timer_dword; fp@568: u8 bundle_dword; fp@568: u8 min_size_dword; fp@568: } ucode_opts[] = { fp@568: { D101M_B_RCVBUNDLE_UCODE, fp@568: mac_82559_D101M, fp@568: D101M_CPUSAVER_TIMER_DWORD, fp@568: D101M_CPUSAVER_BUNDLE_DWORD, fp@568: D101M_CPUSAVER_MIN_SIZE_DWORD }, fp@568: { D101S_RCVBUNDLE_UCODE, fp@568: mac_82559_D101S, fp@568: D101S_CPUSAVER_TIMER_DWORD, fp@568: D101S_CPUSAVER_BUNDLE_DWORD, fp@568: D101S_CPUSAVER_MIN_SIZE_DWORD }, fp@568: { D102_E_RCVBUNDLE_UCODE, fp@568: mac_82551_F, fp@568: D102_E_CPUSAVER_TIMER_DWORD, fp@568: D102_E_CPUSAVER_BUNDLE_DWORD, fp@568: D102_E_CPUSAVER_MIN_SIZE_DWORD }, fp@568: { D102_E_RCVBUNDLE_UCODE, fp@568: mac_82551_10, fp@568: D102_E_CPUSAVER_TIMER_DWORD, fp@568: D102_E_CPUSAVER_BUNDLE_DWORD, fp@568: D102_E_CPUSAVER_MIN_SIZE_DWORD }, fp@568: { {0}, 0, 0, 0, 0} fp@568: }, *opts; fp@568: /* *INDENT-ON* */ fp@568: fp@568: /************************************************************************* fp@568: * CPUSaver parameters fp@568: * fp@568: * All CPUSaver parameters are 16-bit literals that are part of a fp@568: * "move immediate value" instruction. By changing the value of fp@568: * the literal in the instruction before the code is loaded, the fp@568: * driver can change the algorithm. fp@568: * fp@568: * INTDELAY - This loads the dead-man timer with its inital value. fp@568: * When this timer expires the interrupt is asserted, and the fp@568: * timer is reset each time a new packet is received. (see fp@568: * BUNDLEMAX below to set the limit on number of chained packets) fp@568: * The current default is 0x600 or 1536. Experiments show that fp@568: * the value should probably stay within the 0x200 - 0x1000. fp@568: * fp@568: * BUNDLEMAX - fp@568: * This sets the maximum number of frames that will be bundled. In fp@568: * some situations, such as the TCP windowing algorithm, it may be fp@568: * better to limit the growth of the bundle size than let it go as fp@568: * high as it can, because that could cause too much added latency. fp@568: * The default is six, because this is the number of packets in the fp@568: * default TCP window size. A value of 1 would make CPUSaver indicate fp@568: * an interrupt for every frame received. If you do not want to put fp@568: * a limit on the bundle size, set this value to xFFFF. fp@568: * fp@568: * BUNDLESMALL - fp@568: * This contains a bit-mask describing the minimum size frame that fp@568: * will be bundled. The default masks the lower 7 bits, which means fp@568: * that any frame less than 128 bytes in length will not be bundled, fp@568: * but will instead immediately generate an interrupt. This does fp@568: * not affect the current bundle in any way. Any frame that is 128 fp@568: * bytes or large will be bundled normally. This feature is meant fp@568: * to provide immediate indication of ACK frames in a TCP environment. fp@568: * Customers were seeing poor performance when a machine with CPUSaver fp@568: * enabled was sending but not receiving. The delay introduced when fp@568: * the ACKs were received was enough to reduce total throughput, because fp@568: * the sender would sit idle until the ACK was finally seen. fp@568: * fp@568: * The current default is 0xFF80, which masks out the lower 7 bits. fp@568: * This means that any frame which is x7F (127) bytes or smaller fp@568: * will cause an immediate interrupt. Because this value must be a fp@568: * bit mask, there are only a few valid values that can be used. To fp@568: * turn this feature off, the driver can write the value xFFFF to the fp@568: * lower word of this instruction (in the same way that the other fp@568: * parameters are used). Likewise, a value of 0xF800 (2047) would fp@568: * cause an interrupt to be generated for every frame, because all fp@568: * standard Ethernet frames are <= 2047 bytes in length. fp@568: *************************************************************************/ fp@568: fp@568: /* if you wish to disable the ucode functionality, while maintaining the fp@568: * workarounds it provides, set the following defines to: fp@568: * BUNDLESMALL 0 fp@568: * BUNDLEMAX 1 fp@568: * INTDELAY 1 fp@568: */ fp@568: #define BUNDLESMALL 1 fp@568: #define BUNDLEMAX (u16)6 fp@568: #define INTDELAY (u16)1536 /* 0x600 */ fp@568: fp@568: /* do not load u-code for ICH devices */ fp@568: if (nic->flags & ich) fp@568: goto noloaducode; fp@568: fp@568: /* Search for ucode match against h/w rev_id */ fp@568: for (opts = ucode_opts; opts->mac; opts++) { fp@568: int i; fp@568: u32 *ucode = opts->ucode; fp@568: if (nic->mac != opts->mac) fp@568: continue; fp@568: fp@568: /* Insert user-tunable settings */ fp@568: ucode[opts->timer_dword] &= 0xFFFF0000; fp@568: ucode[opts->timer_dword] |= INTDELAY; fp@568: ucode[opts->bundle_dword] &= 0xFFFF0000; fp@568: ucode[opts->bundle_dword] |= BUNDLEMAX; fp@568: ucode[opts->min_size_dword] &= 0xFFFF0000; fp@568: ucode[opts->min_size_dword] |= (BUNDLESMALL) ? 0xFFFF : 0xFF80; fp@568: fp@568: for (i = 0; i < UCODE_SIZE; i++) fp@568: cb->u.ucode[i] = cpu_to_le32(ucode[i]); fp@568: cb->command = cpu_to_le16(cb_ucode | cb_el); fp@568: return; fp@568: } fp@568: fp@568: noloaducode: fp@568: cb->command = cpu_to_le16(cb_nop | cb_el); fp@568: } fp@568: fp@568: static inline int e100_exec_cb_wait(struct nic *nic, struct sk_buff *skb, fp@568: void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *)) fp@568: { fp@568: int err = 0, counter = 50; fp@568: struct cb *cb = nic->cb_to_clean; fp@568: fp@568: if ((err = e100_exec_cb(nic, NULL, e100_setup_ucode))) fp@568: DPRINTK(PROBE,ERR, "ucode cmd failed with error %d\n", err); fp@568: fp@568: /* must restart cuc */ fp@568: nic->cuc_cmd = cuc_start; fp@568: fp@568: /* wait for completion */ fp@568: e100_write_flush(nic); fp@568: udelay(10); fp@568: fp@568: /* wait for possibly (ouch) 500ms */ fp@568: while (!(cb->status & cpu_to_le16(cb_complete))) { fp@568: msleep(10); fp@568: if (!--counter) break; fp@568: } fp@568: fp@568: /* ack any interupts, something could have been set */ fp@568: writeb(~0, &nic->csr->scb.stat_ack); fp@568: fp@568: /* if the command failed, or is not OK, notify and return */ fp@568: if (!counter || !(cb->status & cpu_to_le16(cb_ok))) { fp@568: DPRINTK(PROBE,ERR, "ucode load failed\n"); fp@568: err = -EPERM; fp@568: } fp@568: fp@568: return err; fp@568: } fp@568: fp@568: static void e100_setup_iaaddr(struct nic *nic, struct cb *cb, fp@568: struct sk_buff *skb) fp@568: { fp@568: cb->command = cpu_to_le16(cb_iaaddr); fp@568: memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN); fp@568: } fp@568: fp@568: static void e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb) fp@568: { fp@568: cb->command = cpu_to_le16(cb_dump); fp@568: cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr + fp@568: offsetof(struct mem, dump_buf)); fp@568: } fp@568: fp@568: #define NCONFIG_AUTO_SWITCH 0x0080 fp@568: #define MII_NSC_CONG MII_RESV1 fp@568: #define NSC_CONG_ENABLE 0x0100 fp@568: #define NSC_CONG_TXREADY 0x0400 fp@568: #define ADVERTISE_FC_SUPPORTED 0x0400 fp@568: static int e100_phy_init(struct nic *nic) fp@568: { fp@568: struct net_device *netdev = nic->netdev; fp@568: u32 addr; fp@568: u16 bmcr, stat, id_lo, id_hi, cong; fp@568: fp@568: /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */ fp@568: for(addr = 0; addr < 32; addr++) { fp@568: nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr; fp@568: bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR); fp@568: stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR); fp@568: stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR); fp@568: if(!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0)))) fp@568: break; fp@568: } fp@568: DPRINTK(HW, DEBUG, "phy_addr = %d\n", nic->mii.phy_id); fp@568: if(addr == 32) fp@568: return -EAGAIN; fp@568: fp@568: /* Selected the phy and isolate the rest */ fp@568: for(addr = 0; addr < 32; addr++) { fp@568: if(addr != nic->mii.phy_id) { fp@568: mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE); fp@568: } else { fp@568: bmcr = mdio_read(netdev, addr, MII_BMCR); fp@568: mdio_write(netdev, addr, MII_BMCR, fp@568: bmcr & ~BMCR_ISOLATE); fp@568: } fp@568: } fp@568: fp@568: /* Get phy ID */ fp@568: id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1); fp@568: id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2); fp@568: nic->phy = (u32)id_hi << 16 | (u32)id_lo; fp@568: DPRINTK(HW, DEBUG, "phy ID = 0x%08X\n", nic->phy); fp@568: fp@568: /* Handle National tx phys */ fp@568: #define NCS_PHY_MODEL_MASK 0xFFF0FFFF fp@568: if((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) { fp@568: /* Disable congestion control */ fp@568: cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG); fp@568: cong |= NSC_CONG_TXREADY; fp@568: cong &= ~NSC_CONG_ENABLE; fp@568: mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong); fp@568: } fp@568: fp@568: if((nic->mac >= mac_82550_D102) || ((nic->flags & ich) && fp@568: (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000))) { fp@568: /* enable/disable MDI/MDI-X auto-switching. fp@568: MDI/MDI-X auto-switching is disabled for 82551ER/QM chips */ fp@568: if((nic->mac == mac_82551_E) || (nic->mac == mac_82551_F) || fp@568: (nic->mac == mac_82551_10) || (nic->mii.force_media) || fp@568: !(nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled)) fp@568: mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG, 0); fp@568: else fp@568: mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG, NCONFIG_AUTO_SWITCH); fp@568: } fp@568: fp@568: return 0; fp@568: } fp@568: fp@568: static int e100_hw_init(struct nic *nic) fp@568: { fp@568: int err; fp@568: fp@568: e100_hw_reset(nic); fp@568: fp@568: DPRINTK(HW, ERR, "e100_hw_init\n"); fp@568: if(!in_interrupt() && (err = e100_self_test(nic))) fp@568: return err; fp@568: fp@568: if((err = e100_phy_init(nic))) fp@568: return err; fp@568: if((err = e100_exec_cmd(nic, cuc_load_base, 0))) fp@568: return err; fp@568: if((err = e100_exec_cmd(nic, ruc_load_base, 0))) fp@568: return err; fp@568: if ((err = e100_exec_cb_wait(nic, NULL, e100_setup_ucode))) fp@568: return err; fp@568: if((err = e100_exec_cb(nic, NULL, e100_configure))) fp@568: return err; fp@568: if((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr))) fp@568: return err; fp@568: if((err = e100_exec_cmd(nic, cuc_dump_addr, fp@568: nic->dma_addr + offsetof(struct mem, stats)))) fp@568: return err; fp@568: if((err = e100_exec_cmd(nic, cuc_dump_reset, 0))) fp@568: return err; fp@568: fp@568: e100_disable_irq(nic); fp@568: fp@568: return 0; fp@568: } fp@568: fp@568: static void e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb) fp@568: { fp@568: struct net_device *netdev = nic->netdev; fp@568: struct dev_mc_list *list = netdev->mc_list; fp@568: u16 i, count = min(netdev->mc_count, E100_MAX_MULTICAST_ADDRS); fp@568: fp@568: cb->command = cpu_to_le16(cb_multi); fp@568: cb->u.multi.count = cpu_to_le16(count * ETH_ALEN); fp@568: for(i = 0; list && i < count; i++, list = list->next) fp@568: memcpy(&cb->u.multi.addr[i*ETH_ALEN], &list->dmi_addr, fp@568: ETH_ALEN); fp@568: } fp@568: fp@568: static void e100_set_multicast_list(struct net_device *netdev) fp@568: { fp@568: struct nic *nic = netdev_priv(netdev); fp@568: fp@568: DPRINTK(HW, DEBUG, "mc_count=%d, flags=0x%04X\n", fp@568: netdev->mc_count, netdev->flags); fp@568: fp@568: if(netdev->flags & IFF_PROMISC) fp@568: nic->flags |= promiscuous; fp@568: else fp@568: nic->flags &= ~promiscuous; fp@568: fp@568: if(netdev->flags & IFF_ALLMULTI || fp@568: netdev->mc_count > E100_MAX_MULTICAST_ADDRS) fp@568: nic->flags |= multicast_all; fp@568: else fp@568: nic->flags &= ~multicast_all; fp@568: fp@568: e100_exec_cb(nic, NULL, e100_configure); fp@568: e100_exec_cb(nic, NULL, e100_multi); fp@568: } fp@568: fp@568: static void e100_update_stats(struct nic *nic) fp@568: { fp@568: struct net_device_stats *ns = &nic->net_stats; fp@568: struct stats *s = &nic->mem->stats; fp@568: u32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause : fp@568: (nic->mac < mac_82559_D101M) ? (u32 *)&s->xmt_tco_frames : fp@568: &s->complete; fp@568: fp@568: /* Device's stats reporting may take several microseconds to fp@568: * complete, so where always waiting for results of the fp@568: * previous command. */ fp@568: fp@568: if(*complete == le32_to_cpu(cuc_dump_reset_complete)) { fp@568: *complete = 0; fp@568: nic->tx_frames = le32_to_cpu(s->tx_good_frames); fp@568: nic->tx_collisions = le32_to_cpu(s->tx_total_collisions); fp@568: ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions); fp@568: ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions); fp@568: ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs); fp@568: ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns); fp@568: ns->collisions += nic->tx_collisions; fp@568: ns->tx_errors += le32_to_cpu(s->tx_max_collisions) + fp@568: le32_to_cpu(s->tx_lost_crs); fp@568: ns->rx_length_errors += le32_to_cpu(s->rx_short_frame_errors) + fp@568: nic->rx_over_length_errors; fp@568: ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors); fp@568: ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors); fp@568: ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors); fp@568: ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors); fp@568: ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors); fp@568: ns->rx_errors += le32_to_cpu(s->rx_crc_errors) + fp@568: le32_to_cpu(s->rx_alignment_errors) + fp@568: le32_to_cpu(s->rx_short_frame_errors) + fp@568: le32_to_cpu(s->rx_cdt_errors); fp@568: nic->tx_deferred += le32_to_cpu(s->tx_deferred); fp@568: nic->tx_single_collisions += fp@568: le32_to_cpu(s->tx_single_collisions); fp@568: nic->tx_multiple_collisions += fp@568: le32_to_cpu(s->tx_multiple_collisions); fp@568: if(nic->mac >= mac_82558_D101_A4) { fp@568: nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause); fp@568: nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause); fp@568: nic->rx_fc_unsupported += fp@568: le32_to_cpu(s->fc_rcv_unsupported); fp@568: if(nic->mac >= mac_82559_D101M) { fp@568: nic->tx_tco_frames += fp@568: le16_to_cpu(s->xmt_tco_frames); fp@568: nic->rx_tco_frames += fp@568: le16_to_cpu(s->rcv_tco_frames); fp@568: } fp@568: } fp@568: } fp@568: fp@568: fp@568: if(e100_exec_cmd(nic, cuc_dump_reset, 0)) fp@568: DPRINTK(TX_ERR, DEBUG, "exec cuc_dump_reset failed\n"); fp@568: } fp@568: fp@568: static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex) fp@568: { fp@568: /* Adjust inter-frame-spacing (IFS) between two transmits if fp@568: * we're getting collisions on a half-duplex connection. */ fp@568: fp@568: if(duplex == DUPLEX_HALF) { fp@568: u32 prev = nic->adaptive_ifs; fp@568: u32 min_frames = (speed == SPEED_100) ? 1000 : 100; fp@568: fp@568: if((nic->tx_frames / 32 < nic->tx_collisions) && fp@568: (nic->tx_frames > min_frames)) { fp@568: if(nic->adaptive_ifs < 60) fp@568: nic->adaptive_ifs += 5; fp@568: } else if (nic->tx_frames < min_frames) { fp@568: if(nic->adaptive_ifs >= 5) fp@568: nic->adaptive_ifs -= 5; fp@568: } fp@568: if(nic->adaptive_ifs != prev) fp@568: e100_exec_cb(nic, NULL, e100_configure); fp@568: } fp@568: } fp@568: fp@568: static void e100_watchdog(unsigned long data) fp@568: { fp@568: struct nic *nic = (struct nic *)data; fp@568: struct ethtool_cmd cmd; fp@568: fp@568: DPRINTK(TIMER, DEBUG, "right now = %ld\n", jiffies); fp@568: fp@568: /* mii library handles link maintenance tasks */ fp@568: fp@568: if (nic->ethercat) { fp@670: ecdev_set_link(nic->ecdev, mii_link_ok(&nic->mii) ? 1 : 0); fp@568: goto finish; fp@568: } fp@568: fp@568: mii_ethtool_gset(&nic->mii, &cmd); fp@568: fp@568: if(mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) { fp@568: DPRINTK(LINK, INFO, "link up, %sMbps, %s-duplex\n", fp@568: cmd.speed == SPEED_100 ? "100" : "10", fp@568: cmd.duplex == DUPLEX_FULL ? "full" : "half"); fp@568: } else if(!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) { fp@568: DPRINTK(LINK, INFO, "link down\n"); fp@568: } fp@568: fp@568: mii_check_link(&nic->mii); fp@568: fp@568: /* Software generated interrupt to recover from (rare) Rx fp@568: * allocation failure. fp@568: * Unfortunately have to use a spinlock to not re-enable interrupts fp@568: * accidentally, due to hardware that shares a register between the fp@568: * interrupt mask bit and the SW Interrupt generation bit */ fp@568: spin_lock_irq(&nic->cmd_lock); fp@568: writeb(readb(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi); fp@568: e100_write_flush(nic); fp@568: spin_unlock_irq(&nic->cmd_lock); fp@568: fp@568: e100_update_stats(nic); fp@568: e100_adjust_adaptive_ifs(nic, cmd.speed, cmd.duplex); fp@568: fp@568: if(nic->mac <= mac_82557_D100_C) fp@568: /* Issue a multicast command to workaround a 557 lock up */ fp@568: e100_set_multicast_list(nic->netdev); fp@568: fp@568: if(nic->flags & ich && cmd.speed==SPEED_10 && cmd.duplex==DUPLEX_HALF) fp@568: /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */ fp@568: nic->flags |= ich_10h_workaround; fp@568: else fp@568: nic->flags &= ~ich_10h_workaround; fp@568: fp@568: finish: fp@568: mod_timer(&nic->watchdog, jiffies + E100_WATCHDOG_PERIOD); fp@568: } fp@568: fp@568: static void e100_xmit_prepare(struct nic *nic, struct cb *cb, fp@568: struct sk_buff *skb) fp@568: { fp@568: cb->command = nic->tx_command; fp@568: /* interrupt every 16 packets regardless of delay */ fp@568: if((nic->cbs_avail & ~15) == nic->cbs_avail) fp@568: cb->command |= cpu_to_le16(cb_i); fp@568: cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd); fp@568: cb->u.tcb.tcb_byte_count = 0; fp@568: cb->u.tcb.threshold = nic->tx_threshold; fp@568: cb->u.tcb.tbd_count = 1; fp@568: cb->u.tcb.tbd.buf_addr = cpu_to_le32(pci_map_single(nic->pdev, fp@568: skb->data, skb->len, PCI_DMA_TODEVICE)); fp@568: /* check for mapping failure? */ fp@568: cb->u.tcb.tbd.size = cpu_to_le16(skb->len); fp@568: } fp@568: fp@568: static int e100_xmit_frame(struct sk_buff *skb, struct net_device *netdev) fp@568: { fp@568: struct nic *nic = netdev_priv(netdev); fp@568: int err; fp@568: fp@568: if(nic->flags & ich_10h_workaround) { fp@568: /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang. fp@568: Issue a NOP command followed by a 1us delay before fp@568: issuing the Tx command. */ fp@568: if(e100_exec_cmd(nic, cuc_nop, 0)) fp@568: DPRINTK(TX_ERR, DEBUG, "exec cuc_nop failed\n"); fp@568: udelay(1); fp@568: } fp@568: fp@568: err = e100_exec_cb(nic, skb, e100_xmit_prepare); fp@568: fp@568: switch(err) { fp@568: case -ENOSPC: fp@568: /* We queued the skb, but now we're out of space. */ fp@568: DPRINTK(TX_ERR, DEBUG, "No space for CB\n"); fp@568: if (!nic->ethercat) fp@568: netif_stop_queue(netdev); fp@568: break; fp@568: case -ENOMEM: fp@568: /* This is a hard error - log it. */ fp@568: DPRINTK(TX_ERR, DEBUG, "Out of Tx resources, returning skb\n"); fp@568: if (!nic->ethercat) fp@568: netif_stop_queue(netdev); fp@568: return 1; fp@568: } fp@568: fp@568: netdev->trans_start = jiffies; fp@568: return 0; fp@568: } fp@568: fp@568: static int e100_tx_clean(struct nic *nic) fp@568: { fp@568: struct cb *cb; fp@568: int tx_cleaned = 0; fp@568: fp@568: printk(KERN_DEBUG DRV_NAME " tx_clean(%X)\n", (unsigned) nic); // FIXME fp@568: fp@568: if (!nic->cb_to_clean) { // FIXME fp@568: printk(KERN_WARNING DRV_NAME "cb_to_clean is NULL!\n"); fp@568: return 0; fp@568: } fp@568: fp@568: if (!nic->ethercat) fp@568: spin_lock(&nic->cb_lock); fp@568: fp@568: DPRINTK(TX_DONE, DEBUG, "cb->status = 0x%04X\n", fp@568: nic->cb_to_clean->status); fp@568: fp@568: /* Clean CBs marked complete */ fp@568: for(cb = nic->cb_to_clean; fp@568: cb->status & cpu_to_le16(cb_complete); fp@568: cb = nic->cb_to_clean = cb->next) { fp@568: if(likely(cb->skb != NULL)) { fp@568: nic->net_stats.tx_packets++; fp@568: nic->net_stats.tx_bytes += cb->skb->len; fp@568: fp@568: pci_unmap_single(nic->pdev, fp@568: le32_to_cpu(cb->u.tcb.tbd.buf_addr), fp@568: le16_to_cpu(cb->u.tcb.tbd.size), fp@568: PCI_DMA_TODEVICE); fp@568: if (!nic->ethercat) fp@568: dev_kfree_skb_any(cb->skb); fp@568: cb->skb = NULL; fp@568: tx_cleaned = 1; fp@568: } fp@568: cb->status = 0; fp@568: nic->cbs_avail++; fp@568: } fp@568: fp@568: if (!nic->ethercat) { fp@568: spin_unlock(&nic->cb_lock); fp@568: fp@568: /* Recover from running out of Tx resources in xmit_frame */ fp@568: if(unlikely(tx_cleaned && netif_queue_stopped(nic->netdev))) fp@568: netif_wake_queue(nic->netdev); fp@568: } fp@568: fp@568: return tx_cleaned; fp@568: } fp@568: fp@568: static void e100_clean_cbs(struct nic *nic) fp@568: { fp@568: if(nic->cbs) { fp@568: while(nic->cbs_avail != nic->params.cbs.count) { fp@568: struct cb *cb = nic->cb_to_clean; fp@568: if(cb->skb) { fp@568: pci_unmap_single(nic->pdev, fp@568: le32_to_cpu(cb->u.tcb.tbd.buf_addr), fp@568: le16_to_cpu(cb->u.tcb.tbd.size), fp@568: PCI_DMA_TODEVICE); fp@568: dev_kfree_skb(cb->skb); fp@568: } fp@568: nic->cb_to_clean = nic->cb_to_clean->next; fp@568: nic->cbs_avail++; fp@568: } fp@568: pci_free_consistent(nic->pdev, fp@568: sizeof(struct cb) * nic->params.cbs.count, fp@568: nic->cbs, nic->cbs_dma_addr); fp@568: nic->cbs = NULL; fp@568: nic->cbs_avail = 0; fp@568: } fp@568: nic->cuc_cmd = cuc_start; fp@568: nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = fp@568: nic->cbs; fp@568: } fp@568: fp@568: static int e100_alloc_cbs(struct nic *nic) fp@568: { fp@568: struct cb *cb; fp@568: unsigned int i, count = nic->params.cbs.count; fp@568: fp@568: nic->cuc_cmd = cuc_start; fp@568: nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL; fp@568: nic->cbs_avail = 0; fp@568: fp@568: nic->cbs = pci_alloc_consistent(nic->pdev, fp@568: sizeof(struct cb) * count, &nic->cbs_dma_addr); fp@568: if(!nic->cbs) fp@568: return -ENOMEM; fp@568: fp@568: for(cb = nic->cbs, i = 0; i < count; cb++, i++) { fp@568: cb->next = (i + 1 < count) ? cb + 1 : nic->cbs; fp@568: cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1; fp@568: fp@568: cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb); fp@568: cb->link = cpu_to_le32(nic->cbs_dma_addr + fp@568: ((i+1) % count) * sizeof(struct cb)); fp@568: cb->skb = NULL; fp@568: } fp@568: fp@568: nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs; fp@568: nic->cbs_avail = count; fp@568: fp@568: return 0; fp@568: } fp@568: fp@568: static inline void e100_start_receiver(struct nic *nic, struct rx *rx) fp@568: { fp@568: if(!nic->rxs) return; fp@568: if(RU_SUSPENDED != nic->ru_running) return; fp@568: fp@568: /* handle init time starts */ fp@568: if(!rx) rx = nic->rxs; fp@568: fp@568: /* (Re)start RU if suspended or idle and RFA is non-NULL */ fp@568: if(rx->skb) { fp@568: e100_exec_cmd(nic, ruc_start, rx->dma_addr); fp@568: nic->ru_running = RU_RUNNING; fp@568: } fp@568: } fp@568: fp@568: #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN) fp@568: static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx) fp@568: { fp@568: if(!(rx->skb = dev_alloc_skb(RFD_BUF_LEN + NET_IP_ALIGN))) fp@568: return -ENOMEM; fp@568: fp@568: /* Align, init, and map the RFD. */ fp@568: rx->skb->dev = nic->netdev; fp@568: skb_reserve(rx->skb, NET_IP_ALIGN); fp@568: memcpy(rx->skb->data, &nic->blank_rfd, sizeof(struct rfd)); fp@568: rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data, fp@568: RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); fp@568: fp@568: if(pci_dma_mapping_error(rx->dma_addr)) { fp@568: dev_kfree_skb_any(rx->skb); fp@568: rx->skb = NULL; fp@568: rx->dma_addr = 0; fp@568: return -ENOMEM; fp@568: } fp@568: fp@568: /* Link the RFD to end of RFA by linking previous RFD to fp@568: * this one, and clearing EL bit of previous. */ fp@568: if(rx->prev->skb) { fp@568: struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data; fp@568: put_unaligned(cpu_to_le32(rx->dma_addr), fp@568: (u32 *)&prev_rfd->link); fp@568: wmb(); fp@568: prev_rfd->command &= ~cpu_to_le16(cb_el); fp@568: pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr, fp@568: sizeof(struct rfd), PCI_DMA_TODEVICE); fp@568: } fp@568: fp@568: return 0; fp@568: } fp@568: fp@568: static int e100_rx_indicate(struct nic *nic, struct rx *rx, fp@568: unsigned int *work_done, unsigned int work_to_do) fp@568: { fp@568: struct sk_buff *skb = rx->skb; fp@568: struct rfd *rfd = (struct rfd *)skb->data; fp@568: u16 rfd_status, actual_size; fp@568: fp@568: if(unlikely(work_done && *work_done >= work_to_do)) fp@568: return -EAGAIN; fp@568: fp@568: /* Need to sync before taking a peek at cb_complete bit */ fp@568: pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr, fp@568: sizeof(struct rfd), PCI_DMA_FROMDEVICE); fp@568: rfd_status = le16_to_cpu(rfd->status); fp@568: fp@568: DPRINTK(RX_STATUS, DEBUG, "status=0x%04X\n", rfd_status); fp@568: fp@568: /* If data isn't ready, nothing to indicate */ fp@568: if(unlikely(!(rfd_status & cb_complete))) fp@568: return -ENODATA; fp@568: fp@568: /* Get actual data size */ fp@568: actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF; fp@568: if(unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd))) fp@568: actual_size = RFD_BUF_LEN - sizeof(struct rfd); fp@568: fp@568: /* Get data */ fp@568: pci_unmap_single(nic->pdev, rx->dma_addr, fp@568: RFD_BUF_LEN, PCI_DMA_FROMDEVICE); fp@568: fp@568: /* this allows for a fast restart without re-enabling interrupts */ fp@568: if(le16_to_cpu(rfd->command) & cb_el) fp@568: nic->ru_running = RU_SUSPENDED; fp@568: fp@568: /* Pull off the RFD and put the actual data (minus eth hdr) */ fp@568: skb_reserve(skb, sizeof(struct rfd)); fp@568: skb_put(skb, actual_size); fp@568: skb->protocol = eth_type_trans(skb, nic->netdev); fp@568: fp@568: if(unlikely(!(rfd_status & cb_ok))) { fp@568: /* Don't indicate if hardware indicates errors */ fp@568: if (!nic->ethercat) fp@568: dev_kfree_skb_any(skb); fp@568: } else if(actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN) { fp@568: /* Don't indicate oversized frames */ fp@568: nic->rx_over_length_errors++; fp@568: if (!nic->ethercat) fp@568: dev_kfree_skb_any(skb); fp@568: } else { fp@568: nic->net_stats.rx_packets++; fp@568: nic->net_stats.rx_bytes += actual_size; fp@568: nic->netdev->last_rx = jiffies; fp@568: if (!nic->ethercat) fp@568: netif_receive_skb(skb); fp@568: else { fp@568: //ecdev_receive(e100_ec_dev, &rx_ring[ring_offset + 4], pkt_size); fp@568: } fp@568: if(work_done) fp@568: (*work_done)++; fp@568: } fp@568: fp@568: rx->skb = NULL; fp@568: fp@568: return 0; fp@568: } fp@568: fp@568: static void e100_rx_clean(struct nic *nic, unsigned int *work_done, fp@568: unsigned int work_to_do) fp@568: { fp@568: struct rx *rx; fp@568: int restart_required = 0; fp@568: struct rx *rx_to_start = NULL; fp@568: fp@568: /* are we already rnr? then pay attention!!! this ensures that fp@568: * the state machine progression never allows a start with a fp@568: * partially cleaned list, avoiding a race between hardware fp@568: * and rx_to_clean when in NAPI mode */ fp@568: if(RU_SUSPENDED == nic->ru_running) fp@568: restart_required = 1; fp@568: fp@568: /* Indicate newly arrived packets */ fp@568: for(rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) { fp@568: int err = e100_rx_indicate(nic, rx, work_done, work_to_do); fp@568: if(-EAGAIN == err) { fp@568: /* hit quota so have more work to do, restart once fp@568: * cleanup is complete */ fp@568: restart_required = 0; fp@568: break; fp@568: } else if(-ENODATA == err) fp@568: break; /* No more to clean */ fp@568: } fp@568: fp@568: /* save our starting point as the place we'll restart the receiver */ fp@568: if(restart_required) fp@568: rx_to_start = nic->rx_to_clean; fp@568: fp@568: /* Alloc new skbs to refill list */ fp@568: for(rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) { fp@568: if(unlikely(e100_rx_alloc_skb(nic, rx))) fp@568: break; /* Better luck next time (see watchdog) */ fp@568: } fp@568: fp@568: if(restart_required) { fp@568: // ack the rnr? fp@568: writeb(stat_ack_rnr, &nic->csr->scb.stat_ack); fp@568: e100_start_receiver(nic, rx_to_start); fp@568: if(work_done) fp@568: (*work_done)++; fp@568: } fp@568: } fp@568: fp@568: static void e100_rx_clean_list(struct nic *nic) fp@568: { fp@568: struct rx *rx; fp@568: unsigned int i, count = nic->params.rfds.count; fp@568: fp@568: nic->ru_running = RU_UNINITIALIZED; fp@568: fp@568: if(nic->rxs) { fp@568: for(rx = nic->rxs, i = 0; i < count; rx++, i++) { fp@568: if(rx->skb) { fp@568: pci_unmap_single(nic->pdev, rx->dma_addr, fp@568: RFD_BUF_LEN, PCI_DMA_FROMDEVICE); fp@568: dev_kfree_skb(rx->skb); // FIXME fp@568: } fp@568: } fp@568: kfree(nic->rxs); fp@568: nic->rxs = NULL; fp@568: } fp@568: fp@568: nic->rx_to_use = nic->rx_to_clean = NULL; fp@568: } fp@568: fp@568: static int e100_rx_alloc_list(struct nic *nic) fp@568: { fp@568: struct rx *rx; fp@568: unsigned int i, count = nic->params.rfds.count; fp@568: fp@568: nic->rx_to_use = nic->rx_to_clean = NULL; fp@568: nic->ru_running = RU_UNINITIALIZED; fp@568: fp@568: if(!(nic->rxs = kmalloc(sizeof(struct rx) * count, GFP_ATOMIC))) fp@568: return -ENOMEM; fp@568: memset(nic->rxs, 0, sizeof(struct rx) * count); fp@568: fp@568: for(rx = nic->rxs, i = 0; i < count; rx++, i++) { fp@568: rx->next = (i + 1 < count) ? rx + 1 : nic->rxs; fp@568: rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1; fp@568: if(e100_rx_alloc_skb(nic, rx)) { fp@568: e100_rx_clean_list(nic); fp@568: return -ENOMEM; fp@568: } fp@568: } fp@568: fp@568: nic->rx_to_use = nic->rx_to_clean = nic->rxs; fp@568: nic->ru_running = RU_SUSPENDED; fp@568: fp@568: return 0; fp@568: } fp@568: fp@568: static irqreturn_t e100_intr(int irq, void *dev_id, struct pt_regs *regs) fp@568: { fp@568: struct net_device *netdev = dev_id; fp@568: struct nic *nic = netdev_priv(netdev); fp@568: u8 stat_ack = readb(&nic->csr->scb.stat_ack); fp@568: fp@568: DPRINTK(INTR, DEBUG, "stat_ack = 0x%02X\n", stat_ack); fp@568: fp@568: if(stat_ack == stat_ack_not_ours || /* Not our interrupt */ fp@568: stat_ack == stat_ack_not_present) /* Hardware is ejected */ fp@568: return IRQ_NONE; fp@568: fp@568: /* Ack interrupt(s) */ fp@568: writeb(stat_ack, &nic->csr->scb.stat_ack); fp@568: fp@568: /* We hit Receive No Resource (RNR); restart RU after cleaning */ fp@568: if(stat_ack & stat_ack_rnr) fp@568: nic->ru_running = RU_SUSPENDED; fp@568: fp@568: if(!nic->ethercat && likely(netif_rx_schedule_prep(netdev))) { fp@568: e100_disable_irq(nic); fp@568: __netif_rx_schedule(netdev); fp@568: } fp@568: fp@568: return IRQ_HANDLED; fp@568: } fp@568: fp@568: void e100_ec_poll(struct net_device *netdev) fp@568: { fp@568: struct nic *nic = netdev_priv(netdev); fp@568: static unsigned int cleaned = 0; fp@568: fp@568: cleaned += e100_tx_clean(nic); fp@568: fp@568: if (cleaned >= 1000) { fp@568: printk(KERN_INFO DRV_NAME " %u frames sent.\n", cleaned); fp@568: cleaned = 0; fp@568: } fp@568: } fp@568: fp@568: static int e100_poll(struct net_device *netdev, int *budget) fp@568: { fp@568: struct nic *nic = netdev_priv(netdev); fp@568: unsigned int work_to_do = min(netdev->quota, *budget); fp@568: unsigned int work_done = 0; fp@568: int tx_cleaned; fp@568: fp@568: e100_rx_clean(nic, &work_done, work_to_do); fp@568: tx_cleaned = e100_tx_clean(nic); fp@568: fp@568: /* If no Rx and Tx cleanup work was done, exit polling mode. */ fp@568: if(!nic->ethercat && fp@568: ((!tx_cleaned && (work_done == 0)) || !netif_running(netdev))) { fp@568: netif_rx_complete(netdev); fp@568: e100_enable_irq(nic); fp@568: return 0; fp@568: } fp@568: fp@568: *budget -= work_done; fp@568: netdev->quota -= work_done; fp@568: fp@568: return 1; fp@568: } fp@568: fp@568: #ifdef CONFIG_NET_POLL_CONTROLLER fp@568: static void e100_netpoll(struct net_device *netdev) fp@568: { fp@568: struct nic *nic = netdev_priv(netdev); fp@568: fp@568: if (nic->ethercat) fp@568: return; fp@568: fp@568: e100_disable_irq(nic); fp@568: e100_intr(nic->pdev->irq, netdev, NULL); fp@568: e100_tx_clean(nic); fp@568: e100_enable_irq(nic); fp@568: } fp@568: #endif fp@568: fp@568: static struct net_device_stats *e100_get_stats(struct net_device *netdev) fp@568: { fp@568: struct nic *nic = netdev_priv(netdev); fp@568: return &nic->net_stats; fp@568: } fp@568: fp@568: static int e100_set_mac_address(struct net_device *netdev, void *p) fp@568: { fp@568: struct nic *nic = netdev_priv(netdev); fp@568: struct sockaddr *addr = p; fp@568: fp@568: if (!is_valid_ether_addr(addr->sa_data)) fp@568: return -EADDRNOTAVAIL; fp@568: fp@568: memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); fp@568: e100_exec_cb(nic, NULL, e100_setup_iaaddr); fp@568: fp@568: return 0; fp@568: } fp@568: fp@568: static int e100_change_mtu(struct net_device *netdev, int new_mtu) fp@568: { fp@568: if(new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN) fp@568: return -EINVAL; fp@568: netdev->mtu = new_mtu; fp@568: return 0; fp@568: } fp@568: fp@568: #ifdef CONFIG_PM fp@568: static int e100_asf(struct nic *nic) fp@568: { fp@568: /* ASF can be enabled from eeprom */ fp@568: return((nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) && fp@568: (nic->eeprom[eeprom_config_asf] & eeprom_asf) && fp@568: !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) && fp@568: ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE)); fp@568: } fp@568: #endif fp@568: fp@568: static int e100_up(struct nic *nic) fp@568: { fp@568: int err; fp@568: fp@568: if((err = e100_rx_alloc_list(nic))) fp@568: return err; fp@568: if((err = e100_alloc_cbs(nic))) fp@568: goto err_rx_clean_list; fp@568: if((err = e100_hw_init(nic))) fp@568: goto err_clean_cbs; fp@568: if (!nic->ethercat) { fp@568: e100_set_multicast_list(nic->netdev); fp@568: e100_start_receiver(nic, NULL); // FIXME fp@568: } fp@568: mod_timer(&nic->watchdog, jiffies); fp@568: if (!nic->ethercat) { fp@568: if((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED, fp@568: nic->netdev->name, nic->netdev))) fp@568: goto err_no_irq; fp@568: netif_wake_queue(nic->netdev); fp@568: netif_poll_enable(nic->netdev); fp@568: /* enable ints _after_ enabling poll, preventing a race between fp@568: * disable ints+schedule */ fp@568: e100_enable_irq(nic); fp@568: } fp@568: return 0; fp@568: fp@568: err_no_irq: fp@568: del_timer_sync(&nic->watchdog); fp@568: err_clean_cbs: fp@568: e100_clean_cbs(nic); fp@568: err_rx_clean_list: fp@568: e100_rx_clean_list(nic); fp@568: return err; fp@568: } fp@568: fp@568: static void e100_down(struct nic *nic) fp@568: { fp@568: if (!nic->ethercat) { fp@568: /* wait here for poll to complete */ fp@568: netif_poll_disable(nic->netdev); fp@568: netif_stop_queue(nic->netdev); fp@568: } fp@568: e100_hw_reset(nic); fp@568: if (!nic->ethercat) fp@568: free_irq(nic->pdev->irq, nic->netdev); fp@568: del_timer_sync(&nic->watchdog); fp@568: if (!nic->ethercat) fp@568: netif_carrier_off(nic->netdev); fp@568: e100_clean_cbs(nic); fp@568: e100_rx_clean_list(nic); fp@568: } fp@568: fp@568: static void e100_tx_timeout(struct net_device *netdev) fp@568: { fp@568: struct nic *nic = netdev_priv(netdev); fp@568: fp@568: /* Reset outside of interrupt context, to avoid request_irq fp@568: * in interrupt context */ fp@568: schedule_work(&nic->tx_timeout_task); // FIXME fp@568: } fp@568: fp@568: static void e100_tx_timeout_task(struct net_device *netdev) fp@568: { fp@568: struct nic *nic = netdev_priv(netdev); fp@568: fp@568: DPRINTK(TX_ERR, DEBUG, "scb.status=0x%02X\n", fp@568: readb(&nic->csr->scb.status)); fp@568: e100_down(netdev_priv(netdev)); fp@568: e100_up(netdev_priv(netdev)); fp@568: } fp@568: fp@568: static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode) fp@568: { fp@568: int err; fp@568: struct sk_buff *skb; fp@568: fp@568: /* Use driver resources to perform internal MAC or PHY fp@568: * loopback test. A single packet is prepared and transmitted fp@568: * in loopback mode, and the test passes if the received fp@568: * packet compares byte-for-byte to the transmitted packet. */ fp@568: fp@568: if((err = e100_rx_alloc_list(nic))) fp@568: return err; fp@568: if((err = e100_alloc_cbs(nic))) fp@568: goto err_clean_rx; fp@568: fp@568: /* ICH PHY loopback is broken so do MAC loopback instead */ fp@568: if(nic->flags & ich && loopback_mode == lb_phy) fp@568: loopback_mode = lb_mac; fp@568: fp@568: nic->loopback = loopback_mode; fp@568: if((err = e100_hw_init(nic))) fp@568: goto err_loopback_none; fp@568: fp@568: if(loopback_mode == lb_phy) fp@568: mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, fp@568: BMCR_LOOPBACK); fp@568: fp@568: e100_start_receiver(nic, NULL); fp@568: fp@568: if(!(skb = dev_alloc_skb(ETH_DATA_LEN))) { fp@568: err = -ENOMEM; fp@568: goto err_loopback_none; fp@568: } fp@568: skb_put(skb, ETH_DATA_LEN); fp@568: memset(skb->data, 0xFF, ETH_DATA_LEN); fp@568: e100_xmit_frame(skb, nic->netdev); fp@568: fp@568: msleep(10); fp@568: fp@568: pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr, fp@568: RFD_BUF_LEN, PCI_DMA_FROMDEVICE); fp@568: fp@568: if(memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd), fp@568: skb->data, ETH_DATA_LEN)) fp@568: err = -EAGAIN; fp@568: fp@568: err_loopback_none: fp@568: mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0); fp@568: nic->loopback = lb_none; fp@568: e100_clean_cbs(nic); fp@568: e100_hw_reset(nic); fp@568: err_clean_rx: fp@568: e100_rx_clean_list(nic); fp@568: return err; fp@568: } fp@568: fp@568: #define MII_LED_CONTROL 0x1B fp@568: static void e100_blink_led(unsigned long data) fp@568: { fp@568: struct nic *nic = (struct nic *)data; fp@568: enum led_state { fp@568: led_on = 0x01, fp@568: led_off = 0x04, fp@568: led_on_559 = 0x05, fp@568: led_on_557 = 0x07, fp@568: }; fp@568: fp@568: nic->leds = (nic->leds & led_on) ? led_off : fp@568: (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559; fp@568: mdio_write(nic->netdev, nic->mii.phy_id, MII_LED_CONTROL, nic->leds); fp@568: mod_timer(&nic->blink_timer, jiffies + HZ / 4); fp@568: } fp@568: fp@568: static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd) fp@568: { fp@568: struct nic *nic = netdev_priv(netdev); fp@568: return mii_ethtool_gset(&nic->mii, cmd); fp@568: } fp@568: fp@568: static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd) fp@568: { fp@568: struct nic *nic = netdev_priv(netdev); fp@568: int err; fp@568: fp@568: mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET); fp@568: err = mii_ethtool_sset(&nic->mii, cmd); fp@568: e100_exec_cb(nic, NULL, e100_configure); fp@568: fp@568: return err; fp@568: } fp@568: fp@568: static void e100_get_drvinfo(struct net_device *netdev, fp@568: struct ethtool_drvinfo *info) fp@568: { fp@568: struct nic *nic = netdev_priv(netdev); fp@568: strcpy(info->driver, DRV_NAME); fp@568: strcpy(info->version, DRV_VERSION); fp@568: strcpy(info->fw_version, "N/A"); fp@568: strcpy(info->bus_info, pci_name(nic->pdev)); fp@568: } fp@568: fp@568: static int e100_get_regs_len(struct net_device *netdev) fp@568: { fp@568: struct nic *nic = netdev_priv(netdev); fp@568: #define E100_PHY_REGS 0x1C fp@568: #define E100_REGS_LEN 1 + E100_PHY_REGS + \ fp@568: sizeof(nic->mem->dump_buf) / sizeof(u32) fp@568: return E100_REGS_LEN * sizeof(u32); fp@568: } fp@568: fp@568: static void e100_get_regs(struct net_device *netdev, fp@568: struct ethtool_regs *regs, void *p) fp@568: { fp@568: struct nic *nic = netdev_priv(netdev); fp@568: u32 *buff = p; fp@568: int i; fp@568: fp@568: regs->version = (1 << 24) | nic->rev_id; fp@568: buff[0] = readb(&nic->csr->scb.cmd_hi) << 24 | fp@568: readb(&nic->csr->scb.cmd_lo) << 16 | fp@568: readw(&nic->csr->scb.status); fp@568: for(i = E100_PHY_REGS; i >= 0; i--) fp@568: buff[1 + E100_PHY_REGS - i] = fp@568: mdio_read(netdev, nic->mii.phy_id, i); fp@568: memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf)); fp@568: e100_exec_cb(nic, NULL, e100_dump); fp@568: msleep(10); fp@568: memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf, fp@568: sizeof(nic->mem->dump_buf)); fp@568: } fp@568: fp@568: static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) fp@568: { fp@568: struct nic *nic = netdev_priv(netdev); fp@568: wol->supported = (nic->mac >= mac_82558_D101_A4) ? WAKE_MAGIC : 0; fp@568: wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0; fp@568: } fp@568: fp@568: static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) fp@568: { fp@568: struct nic *nic = netdev_priv(netdev); fp@568: fp@568: if(wol->wolopts != WAKE_MAGIC && wol->wolopts != 0) fp@568: return -EOPNOTSUPP; fp@568: fp@568: if(wol->wolopts) fp@568: nic->flags |= wol_magic; fp@568: else fp@568: nic->flags &= ~wol_magic; fp@568: fp@568: e100_exec_cb(nic, NULL, e100_configure); fp@568: fp@568: return 0; fp@568: } fp@568: fp@568: static u32 e100_get_msglevel(struct net_device *netdev) fp@568: { fp@568: struct nic *nic = netdev_priv(netdev); fp@568: return nic->msg_enable; fp@568: } fp@568: fp@568: static void e100_set_msglevel(struct net_device *netdev, u32 value) fp@568: { fp@568: struct nic *nic = netdev_priv(netdev); fp@568: nic->msg_enable = value; fp@568: } fp@568: fp@568: static int e100_nway_reset(struct net_device *netdev) fp@568: { fp@568: struct nic *nic = netdev_priv(netdev); fp@568: return mii_nway_restart(&nic->mii); fp@568: } fp@568: fp@568: static u32 e100_get_link(struct net_device *netdev) fp@568: { fp@568: struct nic *nic = netdev_priv(netdev); fp@568: return mii_link_ok(&nic->mii); fp@568: } fp@568: fp@568: static int e100_get_eeprom_len(struct net_device *netdev) fp@568: { fp@568: struct nic *nic = netdev_priv(netdev); fp@568: return nic->eeprom_wc << 1; fp@568: } fp@568: fp@568: #define E100_EEPROM_MAGIC 0x1234 fp@568: static int e100_get_eeprom(struct net_device *netdev, fp@568: struct ethtool_eeprom *eeprom, u8 *bytes) fp@568: { fp@568: struct nic *nic = netdev_priv(netdev); fp@568: fp@568: eeprom->magic = E100_EEPROM_MAGIC; fp@568: memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len); fp@568: fp@568: return 0; fp@568: } fp@568: fp@568: static int e100_set_eeprom(struct net_device *netdev, fp@568: struct ethtool_eeprom *eeprom, u8 *bytes) fp@568: { fp@568: struct nic *nic = netdev_priv(netdev); fp@568: fp@568: if(eeprom->magic != E100_EEPROM_MAGIC) fp@568: return -EINVAL; fp@568: fp@568: memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len); fp@568: fp@568: return e100_eeprom_save(nic, eeprom->offset >> 1, fp@568: (eeprom->len >> 1) + 1); fp@568: } fp@568: fp@568: static void e100_get_ringparam(struct net_device *netdev, fp@568: struct ethtool_ringparam *ring) fp@568: { fp@568: struct nic *nic = netdev_priv(netdev); fp@568: struct param_range *rfds = &nic->params.rfds; fp@568: struct param_range *cbs = &nic->params.cbs; fp@568: fp@568: ring->rx_max_pending = rfds->max; fp@568: ring->tx_max_pending = cbs->max; fp@568: ring->rx_mini_max_pending = 0; fp@568: ring->rx_jumbo_max_pending = 0; fp@568: ring->rx_pending = rfds->count; fp@568: ring->tx_pending = cbs->count; fp@568: ring->rx_mini_pending = 0; fp@568: ring->rx_jumbo_pending = 0; fp@568: } fp@568: fp@568: static int e100_set_ringparam(struct net_device *netdev, fp@568: struct ethtool_ringparam *ring) fp@568: { fp@568: struct nic *nic = netdev_priv(netdev); fp@568: struct param_range *rfds = &nic->params.rfds; fp@568: struct param_range *cbs = &nic->params.cbs; fp@568: fp@568: if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) fp@568: return -EINVAL; fp@568: fp@568: if(netif_running(netdev)) fp@568: e100_down(nic); fp@568: rfds->count = max(ring->rx_pending, rfds->min); fp@568: rfds->count = min(rfds->count, rfds->max); fp@568: cbs->count = max(ring->tx_pending, cbs->min); fp@568: cbs->count = min(cbs->count, cbs->max); fp@568: DPRINTK(DRV, INFO, "Ring Param settings: rx: %d, tx %d\n", fp@568: rfds->count, cbs->count); fp@568: if(netif_running(netdev)) fp@568: e100_up(nic); fp@568: fp@568: return 0; fp@568: } fp@568: fp@568: static const char e100_gstrings_test[][ETH_GSTRING_LEN] = { fp@568: "Link test (on/offline)", fp@568: "Eeprom test (on/offline)", fp@568: "Self test (offline)", fp@568: "Mac loopback (offline)", fp@568: "Phy loopback (offline)", fp@568: }; fp@568: #define E100_TEST_LEN sizeof(e100_gstrings_test) / ETH_GSTRING_LEN fp@568: fp@568: static int e100_diag_test_count(struct net_device *netdev) fp@568: { fp@568: return E100_TEST_LEN; fp@568: } fp@568: fp@568: static void e100_diag_test(struct net_device *netdev, fp@568: struct ethtool_test *test, u64 *data) fp@568: { fp@568: struct ethtool_cmd cmd; fp@568: struct nic *nic = netdev_priv(netdev); fp@568: int i, err; fp@568: fp@568: memset(data, 0, E100_TEST_LEN * sizeof(u64)); fp@568: data[0] = !mii_link_ok(&nic->mii); fp@568: data[1] = e100_eeprom_load(nic); fp@568: if(test->flags & ETH_TEST_FL_OFFLINE) { fp@568: fp@568: /* save speed, duplex & autoneg settings */ fp@568: err = mii_ethtool_gset(&nic->mii, &cmd); fp@568: fp@568: if(netif_running(netdev)) fp@568: e100_down(nic); fp@568: data[2] = e100_self_test(nic); fp@568: data[3] = e100_loopback_test(nic, lb_mac); fp@568: data[4] = e100_loopback_test(nic, lb_phy); fp@568: fp@568: /* restore speed, duplex & autoneg settings */ fp@568: err = mii_ethtool_sset(&nic->mii, &cmd); fp@568: fp@568: if(netif_running(netdev)) fp@568: e100_up(nic); fp@568: } fp@568: for(i = 0; i < E100_TEST_LEN; i++) fp@568: test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0; fp@568: fp@568: msleep_interruptible(4 * 1000); fp@568: } fp@568: fp@568: static int e100_phys_id(struct net_device *netdev, u32 data) fp@568: { fp@568: struct nic *nic = netdev_priv(netdev); fp@568: fp@568: if(!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ)) fp@568: data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ); fp@568: mod_timer(&nic->blink_timer, jiffies); fp@568: msleep_interruptible(data * 1000); fp@568: del_timer_sync(&nic->blink_timer); fp@568: mdio_write(netdev, nic->mii.phy_id, MII_LED_CONTROL, 0); fp@568: fp@568: return 0; fp@568: } fp@568: fp@568: static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = { fp@568: "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors", fp@568: "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions", fp@568: "rx_length_errors", "rx_over_errors", "rx_crc_errors", fp@568: "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors", fp@568: "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors", fp@568: "tx_heartbeat_errors", "tx_window_errors", fp@568: /* device-specific stats */ fp@568: "tx_deferred", "tx_single_collisions", "tx_multi_collisions", fp@568: "tx_flow_control_pause", "rx_flow_control_pause", fp@568: "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets", fp@568: }; fp@568: #define E100_NET_STATS_LEN 21 fp@568: #define E100_STATS_LEN sizeof(e100_gstrings_stats) / ETH_GSTRING_LEN fp@568: fp@568: static int e100_get_stats_count(struct net_device *netdev) fp@568: { fp@568: return E100_STATS_LEN; fp@568: } fp@568: fp@568: static void e100_get_ethtool_stats(struct net_device *netdev, fp@568: struct ethtool_stats *stats, u64 *data) fp@568: { fp@568: struct nic *nic = netdev_priv(netdev); fp@568: int i; fp@568: fp@568: for(i = 0; i < E100_NET_STATS_LEN; i++) fp@568: data[i] = ((unsigned long *)&nic->net_stats)[i]; fp@568: fp@568: data[i++] = nic->tx_deferred; fp@568: data[i++] = nic->tx_single_collisions; fp@568: data[i++] = nic->tx_multiple_collisions; fp@568: data[i++] = nic->tx_fc_pause; fp@568: data[i++] = nic->rx_fc_pause; fp@568: data[i++] = nic->rx_fc_unsupported; fp@568: data[i++] = nic->tx_tco_frames; fp@568: data[i++] = nic->rx_tco_frames; fp@568: } fp@568: fp@568: static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data) fp@568: { fp@568: switch(stringset) { fp@568: case ETH_SS_TEST: fp@568: memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test)); fp@568: break; fp@568: case ETH_SS_STATS: fp@568: memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats)); fp@568: break; fp@568: } fp@568: } fp@568: fp@568: static struct ethtool_ops e100_ethtool_ops = { fp@568: .get_settings = e100_get_settings, fp@568: .set_settings = e100_set_settings, fp@568: .get_drvinfo = e100_get_drvinfo, fp@568: .get_regs_len = e100_get_regs_len, fp@568: .get_regs = e100_get_regs, fp@568: .get_wol = e100_get_wol, fp@568: .set_wol = e100_set_wol, fp@568: .get_msglevel = e100_get_msglevel, fp@568: .set_msglevel = e100_set_msglevel, fp@568: .nway_reset = e100_nway_reset, fp@568: .get_link = e100_get_link, fp@568: .get_eeprom_len = e100_get_eeprom_len, fp@568: .get_eeprom = e100_get_eeprom, fp@568: .set_eeprom = e100_set_eeprom, fp@568: .get_ringparam = e100_get_ringparam, fp@568: .set_ringparam = e100_set_ringparam, fp@568: .self_test_count = e100_diag_test_count, fp@568: .self_test = e100_diag_test, fp@568: .get_strings = e100_get_strings, fp@568: .phys_id = e100_phys_id, fp@568: .get_stats_count = e100_get_stats_count, fp@568: .get_ethtool_stats = e100_get_ethtool_stats, fp@568: .get_perm_addr = ethtool_op_get_perm_addr, fp@568: }; fp@568: fp@568: static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) fp@568: { fp@568: struct nic *nic = netdev_priv(netdev); fp@568: fp@568: return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL); fp@568: } fp@568: fp@568: static int e100_alloc(struct nic *nic) fp@568: { fp@568: nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem), fp@568: &nic->dma_addr); fp@568: return nic->mem ? 0 : -ENOMEM; fp@568: } fp@568: fp@568: static void e100_free(struct nic *nic) fp@568: { fp@568: if(nic->mem) { fp@568: pci_free_consistent(nic->pdev, sizeof(struct mem), fp@568: nic->mem, nic->dma_addr); fp@568: nic->mem = NULL; fp@568: } fp@568: } fp@568: fp@568: static int e100_open(struct net_device *netdev) fp@568: { fp@568: struct nic *nic = netdev_priv(netdev); fp@568: int err = 0; fp@568: fp@568: if (!nic->ethercat) fp@568: netif_carrier_off(netdev); fp@568: if((err = e100_up(nic))) fp@568: DPRINTK(IFUP, ERR, "Cannot open interface, aborting.\n"); fp@568: return err; fp@568: } fp@568: fp@568: static int e100_close(struct net_device *netdev) fp@568: { fp@568: e100_down(netdev_priv(netdev)); fp@568: return 0; fp@568: } fp@568: fp@568: static int __devinit e100_probe(struct pci_dev *pdev, fp@568: const struct pci_device_id *ent) fp@568: { fp@568: struct net_device *netdev; fp@568: struct nic *nic; fp@568: int err; fp@568: fp@568: if(!(netdev = alloc_etherdev(sizeof(struct nic)))) { fp@568: if(((1 << debug) - 1) & NETIF_MSG_PROBE) fp@568: printk(KERN_ERR PFX "Etherdev alloc failed, abort.\n"); fp@568: return -ENOMEM; fp@568: } fp@568: fp@568: netdev->open = e100_open; fp@568: netdev->stop = e100_close; fp@568: netdev->hard_start_xmit = e100_xmit_frame; fp@568: netdev->get_stats = e100_get_stats; fp@568: netdev->set_multicast_list = e100_set_multicast_list; fp@568: netdev->set_mac_address = e100_set_mac_address; fp@568: netdev->change_mtu = e100_change_mtu; fp@568: netdev->do_ioctl = e100_do_ioctl; fp@568: SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops); fp@568: netdev->tx_timeout = e100_tx_timeout; fp@568: netdev->watchdog_timeo = E100_WATCHDOG_PERIOD; fp@568: netdev->poll = e100_poll; fp@568: netdev->weight = E100_NAPI_WEIGHT; fp@568: #ifdef CONFIG_NET_POLL_CONTROLLER fp@568: netdev->poll_controller = e100_netpoll; fp@568: #endif fp@568: strcpy(netdev->name, pci_name(pdev)); fp@568: fp@568: nic = netdev_priv(netdev); fp@568: nic->netdev = netdev; fp@568: nic->pdev = pdev; fp@568: nic->msg_enable = (1 << debug) - 1; fp@568: pci_set_drvdata(pdev, netdev); fp@568: fp@568: if (e100_device_index++ == ec_device_index) { fp@568: nic->ethercat = 1; fp@568: e100_ec_netdev = netdev; fp@568: } fp@568: else { fp@568: nic->ethercat = 0; fp@568: } fp@568: nic->ecdev = NULL; fp@568: fp@568: if((err = pci_enable_device(pdev))) { fp@568: DPRINTK(PROBE, ERR, "Cannot enable PCI device, aborting.\n"); fp@568: goto err_out_free_dev; fp@568: } fp@568: fp@568: if(!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { fp@568: DPRINTK(PROBE, ERR, "Cannot find proper PCI device " fp@568: "base address, aborting.\n"); fp@568: err = -ENODEV; fp@568: goto err_out_disable_pdev; fp@568: } fp@568: fp@568: if((err = pci_request_regions(pdev, DRV_NAME))) { fp@568: DPRINTK(PROBE, ERR, "Cannot obtain PCI resources, aborting.\n"); fp@568: goto err_out_disable_pdev; fp@568: } fp@568: fp@568: if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) { fp@568: DPRINTK(PROBE, ERR, "No usable DMA configuration, aborting.\n"); fp@568: goto err_out_free_res; fp@568: } fp@568: fp@568: SET_MODULE_OWNER(netdev); fp@568: SET_NETDEV_DEV(netdev, &pdev->dev); fp@568: fp@568: nic->csr = ioremap(pci_resource_start(pdev, 0), sizeof(struct csr)); fp@568: if(!nic->csr) { fp@568: DPRINTK(PROBE, ERR, "Cannot map device registers, aborting.\n"); fp@568: err = -ENOMEM; fp@568: goto err_out_free_res; fp@568: } fp@568: fp@568: if(ent->driver_data) fp@568: nic->flags |= ich; fp@568: else fp@568: nic->flags &= ~ich; fp@568: fp@568: e100_get_defaults(nic); fp@568: fp@568: /* locks must be initialized before calling hw_reset */ fp@568: spin_lock_init(&nic->cb_lock); fp@568: spin_lock_init(&nic->cmd_lock); fp@568: spin_lock_init(&nic->mdio_lock); fp@568: fp@568: /* Reset the device before pci_set_master() in case device is in some fp@568: * funky state and has an interrupt pending - hint: we don't have the fp@568: * interrupt handler registered yet. */ fp@568: e100_hw_reset(nic); fp@568: fp@568: pci_set_master(pdev); fp@568: fp@568: init_timer(&nic->watchdog); fp@568: nic->watchdog.function = e100_watchdog; fp@568: nic->watchdog.data = (unsigned long)nic; fp@568: init_timer(&nic->blink_timer); fp@568: nic->blink_timer.function = e100_blink_led; fp@568: nic->blink_timer.data = (unsigned long)nic; fp@568: fp@568: INIT_WORK(&nic->tx_timeout_task, fp@568: (void (*)(void *))e100_tx_timeout_task, netdev); fp@568: fp@568: if((err = e100_alloc(nic))) { fp@568: DPRINTK(PROBE, ERR, "Cannot alloc driver memory, aborting.\n"); fp@568: goto err_out_iounmap; fp@568: } fp@568: fp@568: if((err = e100_eeprom_load(nic))) fp@568: goto err_out_free; fp@568: fp@568: e100_phy_init(nic); fp@568: fp@568: memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN); fp@568: memcpy(netdev->perm_addr, nic->eeprom, ETH_ALEN); fp@568: if(!is_valid_ether_addr(netdev->perm_addr)) { fp@568: DPRINTK(PROBE, ERR, "Invalid MAC address from " fp@568: "EEPROM, aborting.\n"); fp@568: err = -EAGAIN; fp@568: goto err_out_free; fp@568: } fp@568: fp@568: /* Wol magic packet can be enabled from eeprom */ fp@568: if((nic->mac >= mac_82558_D101_A4) && fp@568: (nic->eeprom[eeprom_id] & eeprom_id_wol)) fp@568: nic->flags |= wol_magic; fp@568: fp@568: /* ack any pending wake events, disable PME */ fp@568: err = pci_enable_wake(pdev, 0, 0); fp@568: if (err) fp@568: DPRINTK(PROBE, ERR, "Error clearing wake event\n"); fp@568: fp@568: if (!nic->ethercat) { fp@568: strcpy(netdev->name, "eth%d"); fp@568: if((err = register_netdev(netdev))) { fp@568: DPRINTK(PROBE, ERR, "Cannot register net device, aborting.\n"); fp@568: goto err_out_free; fp@568: } fp@568: } fp@568: else { fp@568: strcpy(netdev->name, "ec0"); fp@568: } fp@568: fp@568: DPRINTK(PROBE, INFO, "addr 0x%llx, irq %d, " fp@568: "MAC addr %02X:%02X:%02X:%02X:%02X:%02X\n", fp@568: (unsigned long long)pci_resource_start(pdev, 0), pdev->irq, fp@568: netdev->dev_addr[0], netdev->dev_addr[1], netdev->dev_addr[2], fp@568: netdev->dev_addr[3], netdev->dev_addr[4], netdev->dev_addr[5]); fp@568: fp@568: return 0; fp@568: fp@568: err_out_free: fp@568: e100_free(nic); fp@568: err_out_iounmap: fp@568: iounmap(nic->csr); fp@568: err_out_free_res: fp@568: pci_release_regions(pdev); fp@568: err_out_disable_pdev: fp@568: pci_disable_device(pdev); fp@568: err_out_free_dev: fp@568: pci_set_drvdata(pdev, NULL); fp@568: free_netdev(netdev); fp@568: return err; fp@568: } fp@568: fp@568: static void __devexit e100_remove(struct pci_dev *pdev) fp@568: { fp@568: struct net_device *netdev = pci_get_drvdata(pdev); fp@568: fp@568: if(netdev) { fp@568: struct nic *nic = netdev_priv(netdev); fp@568: if (!nic->ethercat) fp@568: unregister_netdev(netdev); fp@568: e100_free(nic); fp@568: iounmap(nic->csr); fp@568: free_netdev(netdev); fp@568: pci_release_regions(pdev); fp@568: pci_disable_device(pdev); fp@568: pci_set_drvdata(pdev, NULL); fp@568: } fp@568: } fp@568: fp@568: #ifdef CONFIG_PM fp@568: static int e100_suspend(struct pci_dev *pdev, pm_message_t state) fp@568: { fp@568: struct net_device *netdev = pci_get_drvdata(pdev); fp@568: struct nic *nic = netdev_priv(netdev); fp@568: int retval; fp@568: fp@568: if (nic->ethercat || netif_running(netdev)) fp@568: e100_down(nic); fp@568: e100_hw_reset(nic); fp@568: if (!nic->ethercat) fp@568: netif_device_detach(netdev); fp@568: fp@568: pci_save_state(pdev); fp@568: retval = pci_enable_wake(pdev, pci_choose_state(pdev, state), fp@568: nic->flags & (wol_magic | e100_asf(nic))); fp@568: if (retval) fp@568: DPRINTK(PROBE,ERR, "Error enabling wake\n"); fp@568: pci_disable_device(pdev); fp@568: retval = pci_set_power_state(pdev, pci_choose_state(pdev, state)); fp@568: if (retval) fp@568: DPRINTK(PROBE,ERR, "Error %d setting power state\n", retval); fp@568: fp@568: return 0; fp@568: } fp@568: fp@568: static int e100_resume(struct pci_dev *pdev) fp@568: { fp@568: struct net_device *netdev = pci_get_drvdata(pdev); fp@568: struct nic *nic = netdev_priv(netdev); fp@568: int retval; fp@568: fp@568: retval = pci_set_power_state(pdev, PCI_D0); fp@568: if (retval) fp@568: DPRINTK(PROBE,ERR, "Error waking adapter\n"); fp@568: pci_restore_state(pdev); fp@568: /* ack any pending wake events, disable PME */ fp@568: retval = pci_enable_wake(pdev, 0, 0); fp@568: if (retval) fp@568: DPRINTK(PROBE,ERR, "Error clearing wake events\n"); fp@568: fp@568: if (!nic->ethercat) fp@568: netif_device_attach(netdev); fp@568: if (nic->ethercat || netif_running(netdev)) fp@568: e100_up(nic); fp@568: fp@568: return 0; fp@568: } fp@568: #endif fp@568: fp@568: fp@568: static void e100_shutdown(struct pci_dev *pdev) fp@568: { fp@568: struct net_device *netdev = pci_get_drvdata(pdev); fp@568: struct nic *nic = netdev_priv(netdev); fp@568: int retval; fp@568: fp@568: #ifdef CONFIG_PM fp@568: retval = pci_enable_wake(pdev, 0, nic->flags & (wol_magic | e100_asf(nic))); fp@568: #else fp@568: retval = pci_enable_wake(pdev, 0, nic->flags & (wol_magic)); fp@568: #endif fp@568: if (retval) fp@568: DPRINTK(PROBE,ERR, "Error enabling wake\n"); fp@568: } fp@568: fp@568: /* ------------------ PCI Error Recovery infrastructure -------------- */ fp@568: /** fp@568: * e100_io_error_detected - called when PCI error is detected. fp@568: * @pdev: Pointer to PCI device fp@568: * @state: The current pci conneection state fp@568: */ fp@568: static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) fp@568: { fp@568: struct net_device *netdev = pci_get_drvdata(pdev); fp@568: struct nic *nic = netdev_priv(netdev); fp@568: fp@568: /* Similar to calling e100_down(), but avoids adpater I/O. */ fp@568: netdev->stop(netdev); fp@568: fp@568: if (!nic->ethercat) { fp@568: /* Detach; put netif into state similar to hotplug unplug. */ fp@568: netif_poll_enable(netdev); fp@568: netif_device_detach(netdev); fp@568: } fp@568: fp@568: /* Request a slot reset. */ fp@568: return PCI_ERS_RESULT_NEED_RESET; fp@568: } fp@568: fp@568: /** fp@568: * e100_io_slot_reset - called after the pci bus has been reset. fp@568: * @pdev: Pointer to PCI device fp@568: * fp@568: * Restart the card from scratch. fp@568: */ fp@568: static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev) fp@568: { fp@568: struct net_device *netdev = pci_get_drvdata(pdev); fp@568: struct nic *nic = netdev_priv(netdev); fp@568: fp@568: if (pci_enable_device(pdev)) { fp@568: printk(KERN_ERR "e100: Cannot re-enable PCI device after reset.\n"); fp@568: return PCI_ERS_RESULT_DISCONNECT; fp@568: } fp@568: pci_set_master(pdev); fp@568: fp@568: /* Only one device per card can do a reset */ fp@568: if (0 != PCI_FUNC(pdev->devfn)) fp@568: return PCI_ERS_RESULT_RECOVERED; fp@568: e100_hw_reset(nic); fp@568: e100_phy_init(nic); fp@568: fp@568: return PCI_ERS_RESULT_RECOVERED; fp@568: } fp@568: fp@568: /** fp@568: * e100_io_resume - resume normal operations fp@568: * @pdev: Pointer to PCI device fp@568: * fp@568: * Resume normal operations after an error recovery fp@568: * sequence has been completed. fp@568: */ fp@568: static void e100_io_resume(struct pci_dev *pdev) fp@568: { fp@568: struct net_device *netdev = pci_get_drvdata(pdev); fp@568: struct nic *nic = netdev_priv(netdev); fp@568: fp@568: /* ack any pending wake events, disable PME */ fp@568: pci_enable_wake(pdev, 0, 0); fp@568: fp@568: if (!nic->ethercat) fp@568: netif_device_attach(netdev); fp@568: if (nic->ethercat || netif_running(netdev)) { fp@568: e100_open(netdev); fp@568: mod_timer(&nic->watchdog, jiffies); fp@568: } fp@568: } fp@568: fp@568: static struct pci_error_handlers e100_err_handler = { fp@568: .error_detected = e100_io_error_detected, fp@568: .slot_reset = e100_io_slot_reset, fp@568: .resume = e100_io_resume, fp@568: }; fp@568: fp@568: static struct pci_driver e100_driver = { fp@568: .name = DRV_NAME, fp@568: .id_table = e100_id_table, fp@568: .probe = e100_probe, fp@568: .remove = __devexit_p(e100_remove), fp@568: #ifdef CONFIG_PM fp@568: .suspend = e100_suspend, fp@568: .resume = e100_resume, fp@568: #endif fp@568: .shutdown = e100_shutdown, fp@568: .err_handler = &e100_err_handler, fp@568: }; fp@568: fp@568: static int __init e100_init_module(void) fp@568: { fp@568: struct nic *nic; fp@568: fp@568: printk(KERN_INFO DRV_NAME " " DRV_DESCRIPTION " " DRV_VERSION fp@568: ", master " EC_MASTER_VERSION "\n"); fp@568: printk(KERN_INFO DRV_NAME " ec_device_index is %i\n", ec_device_index); fp@568: fp@568: if (pci_module_init(&e100_driver) < 0) { fp@568: printk(KERN_ERR DRV_NAME " Failed to init PCI module.\n"); fp@568: goto out_return; fp@568: } fp@568: fp@568: if (e100_ec_netdev) { fp@568: nic = netdev_priv(e100_ec_netdev); fp@568: printk(KERN_INFO DRV_NAME " Registering EtherCAT device...\n"); fp@568: if (!(nic->ecdev = ecdev_register(ec_device_master_index, fp@568: e100_ec_netdev, e100_ec_poll, THIS_MODULE))) { fp@568: printk(KERN_ERR DRV_NAME " Failed to register EtherCAT device!\n"); fp@568: goto out_pci; fp@568: } fp@568: printk(KERN_INFO DRV_NAME " Opening EtherCAT device...\n"); fp@568: if (ecdev_open(nic->ecdev)) { fp@568: printk(KERN_ERR DRV_NAME " Failed to open EtherCAT device!\n"); fp@568: goto out_unregister; fp@568: } fp@568: fp@568: printk(KERN_INFO DRV_NAME " EtherCAT device ready.\n"); fp@568: } else { fp@568: printk(KERN_WARNING DRV_NAME " No EtherCAT device registered!\n"); fp@568: } fp@568: fp@568: return 0; fp@568: fp@568: out_unregister: fp@568: printk(KERN_INFO DRV_NAME " Unregistering EtherCAT device...\n"); fp@568: ecdev_unregister(ec_device_master_index, nic->ecdev); fp@568: out_pci: fp@568: pci_unregister_driver(&e100_driver); fp@568: out_return: fp@568: return -1; fp@568: } fp@568: fp@568: static void __exit e100_cleanup_module(void) fp@568: { fp@568: printk(KERN_INFO DRV_NAME " Cleaning up module...\n"); fp@568: fp@568: if (e100_ec_netdev) { fp@568: struct nic *nic = netdev_priv(e100_ec_netdev); fp@568: printk(KERN_INFO DRV_NAME " Closing EtherCAT device...\n"); fp@568: ecdev_close(nic->ecdev); fp@568: printk(KERN_INFO DRV_NAME " Unregistering EtherCAT device...\n"); fp@568: ecdev_unregister(ec_device_master_index, nic->ecdev); fp@568: } fp@568: fp@568: pci_unregister_driver(&e100_driver); fp@568: fp@568: printk(KERN_INFO DRV_NAME " module cleaned up.\n"); fp@568: } fp@568: fp@568: module_init(e100_init_module); fp@568: module_exit(e100_cleanup_module);