rtdmnet.c : Fixed rt/nrt invertion for both sendmsg and recvmsg... m(
/******************************************************************************
*
* $Id$
*
* Copyright (C) 2006-2008 Florian Pose, Ingenieurgemeinschaft IgH
*
* This file is part of the IgH EtherCAT Master.
*
* The IgH EtherCAT Master is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License version 2, as
* published by the Free Software Foundation.
*
* The IgH EtherCAT Master is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
* Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with the IgH EtherCAT Master; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* ---
*
* The license mentioned above concerns the source code only. Using the
* EtherCAT technology and brand is only permitted in compliance with the
* industrial property and similar rights of Beckhoff Automation GmbH.
*
*****************************************************************************/
/**
\file
EtherCAT domain methods.
*/
/*****************************************************************************/
#include <linux/module.h>
#include "globals.h"
#include "master.h"
#include "slave_config.h"
#include "domain.h"
#include "datagram_pair.h"
/** Extra debug output for redundancy functions.
*/
#define DEBUG_REDUNDANCY 0
/*****************************************************************************/
void ec_domain_clear_data(ec_domain_t *);
/*****************************************************************************/
/** Domain constructor.
*/
void ec_domain_init(
ec_domain_t *domain, /**< EtherCAT domain. */
ec_master_t *master, /**< Parent master. */
unsigned int index /**< Index. */
)
{
unsigned int dev_idx;
domain->master = master;
domain->index = index;
INIT_LIST_HEAD(&domain->fmmu_configs);
domain->data_size = 0;
domain->data = NULL;
domain->data_origin = EC_ORIG_INTERNAL;
domain->logical_base_address = 0x00000000;
INIT_LIST_HEAD(&domain->datagram_pairs);
for (dev_idx = EC_DEVICE_MAIN; dev_idx < ec_master_num_devices(master);
dev_idx++) {
domain->working_counter[dev_idx] = 0x0000;
}
domain->expected_working_counter = 0x0000;
domain->working_counter_changes = 0;
domain->redundancy_active = 0;
domain->notify_jiffies = 0;
}
/*****************************************************************************/
/** Domain destructor.
*/
void ec_domain_clear(ec_domain_t *domain /**< EtherCAT domain */)
{
ec_datagram_pair_t *datagram_pair, *next_pair;
// dequeue and free datagrams
list_for_each_entry_safe(datagram_pair, next_pair,
&domain->datagram_pairs, list) {
ec_datagram_pair_clear(datagram_pair);
kfree(datagram_pair);
}
ec_domain_clear_data(domain);
}
/*****************************************************************************/
/** Frees internally allocated memory.
*/
void ec_domain_clear_data(
ec_domain_t *domain /**< EtherCAT domain. */
)
{
if (domain->data_origin == EC_ORIG_INTERNAL && domain->data) {
kfree(domain->data);
}
domain->data = NULL;
domain->data_origin = EC_ORIG_INTERNAL;
}
/*****************************************************************************/
/** Adds an FMMU configuration to the domain.
*/
void ec_domain_add_fmmu_config(
ec_domain_t *domain, /**< EtherCAT domain. */
ec_fmmu_config_t *fmmu /**< FMMU configuration. */
)
{
fmmu->domain = domain;
domain->data_size += fmmu->data_size;
list_add_tail(&fmmu->list, &domain->fmmu_configs);
EC_MASTER_DBG(domain->master, 1, "Domain %u:"
" Added %u bytes, total %zu.\n",
domain->index, fmmu->data_size, domain->data_size);
}
/*****************************************************************************/
/** Allocates a domain datagram pair and appends it to the list.
*
* The datagrams' types and expected working counters are determined by the
* number of input and output fmmus that share the datagrams.
*
* \retval 0 Success.
* \retval <0 Error code.
*/
int ec_domain_add_datagram_pair(
ec_domain_t *domain, /**< EtherCAT domain. */
uint32_t logical_offset, /**< Logical offset. */
size_t data_size, /**< Size of the data. */
uint8_t *data, /**< Process data. */
const unsigned int used[] /**< Slave config counter for in/out. */
)
{
ec_datagram_pair_t *datagram_pair;
int ret;
if (!(datagram_pair = kmalloc(sizeof(ec_datagram_pair_t), GFP_KERNEL))) {
EC_MASTER_ERR(domain->master,
"Failed to allocate domain datagram pair!\n");
return -ENOMEM;
}
ret = ec_datagram_pair_init(datagram_pair, domain, logical_offset, data,
data_size, used);
if (ret) {
kfree(datagram_pair);
return ret;
}
domain->expected_working_counter +=
datagram_pair->expected_working_counter;
EC_MASTER_DBG(domain->master, 1,
"Adding datagram pair with expected WC %u.\n",
datagram_pair->expected_working_counter);
list_add_tail(&datagram_pair->list, &domain->datagram_pairs);
return 0;
}
/*****************************************************************************/
/** Domain finish helper function.
*
* Detects, if a slave configuration has already been taken into account for
* a datagram's expected working counter calculation.
*
* Walks through the list of all FMMU configurations for the current datagram
* and ends before the current datagram.
*
* \return Non-zero if slave connfig was already counted.
*/
int shall_count(
const ec_fmmu_config_t *cur_fmmu, /**< Current FMMU with direction to
search for. */
const ec_fmmu_config_t *first_fmmu /**< Datagram's first FMMU. */
)
{
for (; first_fmmu != cur_fmmu;
first_fmmu = list_entry(first_fmmu->list.next,
ec_fmmu_config_t, list)) {
if (first_fmmu->sc == cur_fmmu->sc
&& first_fmmu->dir == cur_fmmu->dir) {
return 0; // was already counted
}
}
return 1;
}
/*****************************************************************************/
/** Finishes a domain.
*
* This allocates the necessary datagrams and writes the correct logical
* addresses to every configured FMMU.
*
* \todo Check for FMMUs that do not fit into any datagram.
*
* \retval 0 Success
* \retval <0 Error code.
*/
int ec_domain_finish(
ec_domain_t *domain, /**< EtherCAT domain. */
uint32_t base_address /**< Logical base address. */
)
{
uint32_t datagram_offset;
size_t datagram_size;
unsigned int datagram_count;
unsigned int datagram_used[EC_DIR_COUNT];
ec_fmmu_config_t *fmmu;
const ec_fmmu_config_t *datagram_first_fmmu = NULL;
const ec_datagram_pair_t *datagram_pair;
int ret;
domain->logical_base_address = base_address;
if (domain->data_size && domain->data_origin == EC_ORIG_INTERNAL) {
if (!(domain->data =
(uint8_t *) kmalloc(domain->data_size, GFP_KERNEL))) {
EC_MASTER_ERR(domain->master, "Failed to allocate %zu bytes"
" internal memory for domain %u!\n",
domain->data_size, domain->index);
return -ENOMEM;
}
}
// Cycle through all domain FMMUs and
// - correct the logical base addresses
// - set up the datagrams to carry the process data
// - calculate the datagrams' expected working counters
datagram_offset = 0;
datagram_size = 0;
datagram_count = 0;
datagram_used[EC_DIR_OUTPUT] = 0;
datagram_used[EC_DIR_INPUT] = 0;
if (!list_empty(&domain->fmmu_configs)) {
datagram_first_fmmu =
list_entry(domain->fmmu_configs.next, ec_fmmu_config_t, list);
}
list_for_each_entry(fmmu, &domain->fmmu_configs, list) {
// Correct logical FMMU address
fmmu->logical_start_address += base_address;
// Increment Input/Output counter to determine datagram types
// and calculate expected working counters
if (shall_count(fmmu, datagram_first_fmmu)) {
datagram_used[fmmu->dir]++;
}
// If the current FMMU's data do not fit in the current datagram,
// allocate a new one.
if (datagram_size + fmmu->data_size > EC_MAX_DATA_SIZE) {
ret = ec_domain_add_datagram_pair(domain,
domain->logical_base_address + datagram_offset,
datagram_size, domain->data + datagram_offset,
datagram_used);
if (ret < 0)
return ret;
datagram_offset += datagram_size;
datagram_size = 0;
datagram_count++;
datagram_used[EC_DIR_OUTPUT] = 0;
datagram_used[EC_DIR_INPUT] = 0;
datagram_first_fmmu = fmmu;
}
datagram_size += fmmu->data_size;
}
/* Allocate last datagram pair, if data are left (this is also the case if
* the process data fit into a single datagram) */
if (datagram_size) {
ret = ec_domain_add_datagram_pair(domain,
domain->logical_base_address + datagram_offset,
datagram_size, domain->data + datagram_offset,
datagram_used);
if (ret < 0)
return ret;
datagram_count++;
}
EC_MASTER_INFO(domain->master, "Domain%u: Logical address 0x%08x,"
" %zu byte, expected working counter %u.\n", domain->index,
domain->logical_base_address, domain->data_size,
domain->expected_working_counter);
list_for_each_entry(datagram_pair, &domain->datagram_pairs, list) {
const ec_datagram_t *datagram =
&datagram_pair->datagrams[EC_DEVICE_MAIN];
EC_MASTER_INFO(domain->master, " Datagram %s: Logical offset 0x%08x,"
" %zu byte, type %s.\n", datagram->name,
EC_READ_U32(datagram->address), datagram->data_size,
ec_datagram_type_string(datagram));
}
return 0;
}
/*****************************************************************************/
/** Get the number of FMMU configurations of the domain.
*/
unsigned int ec_domain_fmmu_count(const ec_domain_t *domain)
{
const ec_fmmu_config_t *fmmu;
unsigned int num = 0;
list_for_each_entry(fmmu, &domain->fmmu_configs, list) {
num++;
}
return num;
}
/*****************************************************************************/
/** Get a certain FMMU configuration via its position in the list.
*
* \return FMMU at position \a pos, or NULL.
*/
const ec_fmmu_config_t *ec_domain_find_fmmu(
const ec_domain_t *domain, /**< EtherCAT domain. */
unsigned int pos /**< List position. */
)
{
const ec_fmmu_config_t *fmmu;
list_for_each_entry(fmmu, &domain->fmmu_configs, list) {
if (pos--)
continue;
return fmmu;
}
return NULL;
}
/*****************************************************************************/
#if EC_MAX_NUM_DEVICES > 1
/** Process received data.
*/
int data_changed(
uint8_t *send_buffer,
const ec_datagram_t *datagram,
size_t offset,
size_t size
)
{
uint8_t *sent = send_buffer + offset;
uint8_t *recv = datagram->data + offset;
size_t i;
for (i = 0; i < size; i++) {
if (recv[i] != sent[i]) {
return 1;
}
}
return 0;
}
#endif
/******************************************************************************
* Application interface
*****************************************************************************/
int ecrt_domain_reg_pdo_entry_list(ec_domain_t *domain,
const ec_pdo_entry_reg_t *regs)
{
const ec_pdo_entry_reg_t *reg;
ec_slave_config_t *sc;
int ret;
EC_MASTER_DBG(domain->master, 1, "ecrt_domain_reg_pdo_entry_list("
"domain = 0x%p, regs = 0x%p)\n", domain, regs);
for (reg = regs; reg->index; reg++) {
sc = ecrt_master_slave_config_err(domain->master, reg->alias,
reg->position, reg->vendor_id, reg->product_code);
if (IS_ERR(sc))
return PTR_ERR(sc);
ret = ecrt_slave_config_reg_pdo_entry(sc, reg->index,
reg->subindex, domain, reg->bit_position);
if (ret < 0)
return ret;
*reg->offset = ret;
}
return 0;
}
/*****************************************************************************/
size_t ecrt_domain_size(const ec_domain_t *domain)
{
return domain->data_size;
}
/*****************************************************************************/
void ecrt_domain_external_memory(ec_domain_t *domain, uint8_t *mem)
{
EC_MASTER_DBG(domain->master, 1, "ecrt_domain_external_memory("
"domain = 0x%p, mem = 0x%p)\n", domain, mem);
down(&domain->master->master_sem);
ec_domain_clear_data(domain);
domain->data = mem;
domain->data_origin = EC_ORIG_EXTERNAL;
up(&domain->master->master_sem);
}
/*****************************************************************************/
uint8_t *ecrt_domain_data(ec_domain_t *domain)
{
return domain->data;
}
/*****************************************************************************/
void ecrt_domain_process(ec_domain_t *domain)
{
uint16_t wc_sum[EC_MAX_NUM_DEVICES] = {}, wc_total;
ec_datagram_pair_t *pair;
#if EC_MAX_NUM_DEVICES > 1
uint16_t datagram_pair_wc, redundant_wc;
unsigned int datagram_offset;
ec_fmmu_config_t *fmmu = list_first_entry(&domain->fmmu_configs,
ec_fmmu_config_t, list);
unsigned int redundancy;
#endif
unsigned int dev_idx;
#ifdef EC_RT_SYSLOG
unsigned int wc_change;
#endif
#if DEBUG_REDUNDANCY
EC_MASTER_DBG(domain->master, 1, "domain %u process\n", domain->index);
#endif
list_for_each_entry(pair, &domain->datagram_pairs, list) {
#if EC_MAX_NUM_DEVICES > 1
datagram_pair_wc = ec_datagram_pair_process(pair, wc_sum);
#else
ec_datagram_pair_process(pair, wc_sum);
#endif
#if EC_MAX_NUM_DEVICES > 1
if (ec_master_num_devices(domain->master) > 1) {
ec_datagram_t *main_datagram = &pair->datagrams[EC_DEVICE_MAIN];
uint32_t logical_datagram_address =
EC_READ_U32(main_datagram->address);
size_t datagram_size = main_datagram->data_size;
#if DEBUG_REDUNDANCY
EC_MASTER_DBG(domain->master, 1, "dgram %s log=%u\n",
main_datagram->name, logical_datagram_address);
#endif
/* Redundancy: Go through FMMU configs to detect data changes. */
list_for_each_entry_from(fmmu, &domain->fmmu_configs, list) {
ec_datagram_t *backup_datagram =
&pair->datagrams[EC_DEVICE_BACKUP];
if (fmmu->dir != EC_DIR_INPUT) {
continue;
}
if (fmmu->logical_start_address >=
logical_datagram_address + datagram_size) {
// fmmu data contained in next datagram pair
break;
}
datagram_offset =
fmmu->logical_start_address - logical_datagram_address;
#if DEBUG_REDUNDANCY
EC_MASTER_DBG(domain->master, 1,
"input fmmu log=%u size=%u offset=%u\n",
fmmu->logical_start_address, fmmu->data_size,
datagram_offset);
if (domain->master->debug_level > 0) {
ec_print_data(pair->send_buffer + datagram_offset,
fmmu->data_size);
ec_print_data(main_datagram->data + datagram_offset,
fmmu->data_size);
ec_print_data(backup_datagram->data + datagram_offset,
fmmu->data_size);
}
#endif
if (data_changed(pair->send_buffer, main_datagram,
datagram_offset, fmmu->data_size)) {
/* data changed on main link: no copying necessary. */
#if DEBUG_REDUNDANCY
EC_MASTER_DBG(domain->master, 1, "main changed\n");
#endif
} else if (data_changed(pair->send_buffer, backup_datagram,
datagram_offset, fmmu->data_size)) {
/* data changed on backup link: copy to main memory. */
#if DEBUG_REDUNDANCY
EC_MASTER_DBG(domain->master, 1, "backup changed\n");
#endif
memcpy(main_datagram->data + datagram_offset,
backup_datagram->data + datagram_offset,
fmmu->data_size);
} else if (datagram_pair_wc ==
pair->expected_working_counter) {
/* no change, but WC complete: use main data. */
#if DEBUG_REDUNDANCY
EC_MASTER_DBG(domain->master, 1,
"no change but complete\n");
#endif
} else {
/* no change and WC incomplete: mark WC as zero to avoid
* data.dependent WC flickering. */
datagram_pair_wc = 0;
#if DEBUG_REDUNDANCY
EC_MASTER_DBG(domain->master, 1,
"no change and incomplete\n");
#endif
}
}
}
#endif // EC_MAX_NUM_DEVICES > 1
}
#if EC_MAX_NUM_DEVICES > 1
redundant_wc = 0;
for (dev_idx = EC_DEVICE_BACKUP;
dev_idx < ec_master_num_devices(domain->master); dev_idx++) {
redundant_wc += wc_sum[dev_idx];
}
redundancy = redundant_wc > 0;
if (redundancy != domain->redundancy_active) {
#ifdef EC_RT_SYSLOG
if (redundancy) {
EC_MASTER_WARN(domain->master,
"Domain %u: Redundant link in use!\n",
domain->index);
} else {
EC_MASTER_INFO(domain->master,
"Domain %u: Redundant link unused again.\n",
domain->index);
}
#endif
domain->redundancy_active = redundancy;
}
#else
domain->redundancy_active = 0;
#endif
#ifdef EC_RT_SYSLOG
wc_change = 0;
#endif
wc_total = 0;
for (dev_idx = EC_DEVICE_MAIN;
dev_idx < ec_master_num_devices(domain->master); dev_idx++) {
if (wc_sum[dev_idx] != domain->working_counter[dev_idx]) {
#ifdef EC_RT_SYSLOG
wc_change = 1;
#endif
domain->working_counter[dev_idx] = wc_sum[dev_idx];
}
wc_total += wc_sum[dev_idx];
}
#ifdef EC_RT_SYSLOG
if (wc_change) {
domain->working_counter_changes++;
}
if (domain->working_counter_changes &&
jiffies - domain->notify_jiffies > HZ) {
domain->notify_jiffies = jiffies;
if (domain->working_counter_changes == 1) {
EC_MASTER_INFO(domain->master, "Domain %u: Working counter"
" changed to %u/%u", domain->index,
wc_total, domain->expected_working_counter);
} else {
EC_MASTER_INFO(domain->master, "Domain %u: %u working counter"
" changes - now %u/%u", domain->index,
domain->working_counter_changes,
wc_total, domain->expected_working_counter);
}
#if EC_MAX_NUM_DEVICES > 1
if (ec_master_num_devices(domain->master) > 1) {
printk(" (");
for (dev_idx = EC_DEVICE_MAIN;
dev_idx < ec_master_num_devices(domain->master);
dev_idx++) {
printk("%u", domain->working_counter[dev_idx]);
if (dev_idx + 1 < ec_master_num_devices(domain->master)) {
printk("+");
}
}
printk(")");
}
#endif
printk(".\n");
domain->working_counter_changes = 0;
}
#endif
}
/*****************************************************************************/
void ecrt_domain_queue(ec_domain_t *domain)
{
ec_datagram_pair_t *datagram_pair;
ec_device_index_t dev_idx;
list_for_each_entry(datagram_pair, &domain->datagram_pairs, list) {
#if EC_MAX_NUM_DEVICES > 1
/* copy main data to send buffer */
memcpy(datagram_pair->send_buffer,
datagram_pair->datagrams[EC_DEVICE_MAIN].data,
datagram_pair->datagrams[EC_DEVICE_MAIN].data_size);
#endif
ec_master_queue_datagram(domain->master,
&datagram_pair->datagrams[EC_DEVICE_MAIN]);
/* copy main data to backup datagram */
for (dev_idx = EC_DEVICE_BACKUP;
dev_idx < ec_master_num_devices(domain->master); dev_idx++) {
memcpy(datagram_pair->datagrams[dev_idx].data,
datagram_pair->datagrams[EC_DEVICE_MAIN].data,
datagram_pair->datagrams[EC_DEVICE_MAIN].data_size);
ec_master_queue_datagram(domain->master,
&datagram_pair->datagrams[dev_idx]);
}
}
}
/*****************************************************************************/
void ecrt_domain_state(const ec_domain_t *domain, ec_domain_state_t *state)
{
unsigned int dev_idx;
uint16_t wc = 0;
for (dev_idx = EC_DEVICE_MAIN;
dev_idx < ec_master_num_devices(domain->master); dev_idx++) {
wc += domain->working_counter[dev_idx];
}
state->working_counter = wc;
if (wc) {
if (wc == domain->expected_working_counter) {
state->wc_state = EC_WC_COMPLETE;
} else {
state->wc_state = EC_WC_INCOMPLETE;
}
} else {
state->wc_state = EC_WC_ZERO;
}
state->redundancy_active = domain->redundancy_active;
}
/*****************************************************************************/
/** \cond */
EXPORT_SYMBOL(ecrt_domain_reg_pdo_entry_list);
EXPORT_SYMBOL(ecrt_domain_size);
EXPORT_SYMBOL(ecrt_domain_external_memory);
EXPORT_SYMBOL(ecrt_domain_data);
EXPORT_SYMBOL(ecrt_domain_process);
EXPORT_SYMBOL(ecrt_domain_queue);
EXPORT_SYMBOL(ecrt_domain_state);
/** \endcond */
/*****************************************************************************/