Do not call watchdog function while frames are received.
/*
* r8169.c: RealTek 8169/8168/8101 ethernet driver.
*
* Copyright (c) 2002 ShuChen <shuchen@realtek.com.tw>
* Copyright (c) 2003 - 2007 Francois Romieu <romieu@fr.zoreil.com>
* Copyright (c) a lot of people too. Please respect their work.
*
* See MAINTAINERS file for support contact information.
*
* vim: noexpandtab
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/ethtool.h>
#include <linux/mii.h>
#include <linux/if_vlan.h>
#include <linux/crc32.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/pm_runtime.h>
#include <linux/firmware.h>
#include <linux/pci-aspm.h>
#include <linux/prefetch.h>
#include <asm/io.h>
#include <asm/irq.h>
#include "../globals.h"
#include "ecdev.h"
#define RTL8169_VERSION "2.3LK-NAPI"
#define MODULENAME "ec_r8169"
#define PFX MODULENAME ": "
#define FIRMWARE_8168D_1 "rtl_nic/rtl8168d-1.fw"
#define FIRMWARE_8168D_2 "rtl_nic/rtl8168d-2.fw"
#define FIRMWARE_8168E_1 "rtl_nic/rtl8168e-1.fw"
#define FIRMWARE_8168E_2 "rtl_nic/rtl8168e-2.fw"
#define FIRMWARE_8168E_3 "rtl_nic/rtl8168e-3.fw"
#define FIRMWARE_8168F_1 "rtl_nic/rtl8168f-1.fw"
#define FIRMWARE_8168F_2 "rtl_nic/rtl8168f-2.fw"
#define FIRMWARE_8105E_1 "rtl_nic/rtl8105e-1.fw"
#define FIRMWARE_8402_1 "rtl_nic/rtl8402-1.fw"
#define FIRMWARE_8411_1 "rtl_nic/rtl8411-1.fw"
#define FIRMWARE_8106E_1 "rtl_nic/rtl8106e-1.fw"
#define FIRMWARE_8168G_1 "rtl_nic/rtl8168g-1.fw"
#ifdef RTL8169_DEBUG
#define assert(expr) \
if (!(expr)) { \
printk( "Assertion failed! %s,%s,%s,line=%d\n", \
#expr,__FILE__,__func__,__LINE__); \
}
#define dprintk(fmt, args...) \
do { printk(KERN_DEBUG PFX fmt, ## args); } while (0)
#else
#define assert(expr) do {} while (0)
#define dprintk(fmt, args...) do {} while (0)
#endif /* RTL8169_DEBUG */
#define R8169_MSG_DEFAULT \
(NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN)
#define TX_SLOTS_AVAIL(tp) \
(tp->dirty_tx + NUM_TX_DESC - tp->cur_tx)
/* A skbuff with nr_frags needs nr_frags+1 entries in the tx queue */
#define TX_FRAGS_READY_FOR(tp,nr_frags) \
(TX_SLOTS_AVAIL(tp) >= (nr_frags + 1))
/* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
The RTL chips use a 64 element hash table based on the Ethernet CRC. */
static const int multicast_filter_limit = 32;
#define MAX_READ_REQUEST_SHIFT 12
#define TX_DMA_BURST 7 /* Maximum PCI burst, '7' is unlimited */
#define InterFrameGap 0x03 /* 3 means InterFrameGap = the shortest one */
#define R8169_REGS_SIZE 256
#define R8169_NAPI_WEIGHT 64
#define NUM_TX_DESC 64 /* Number of Tx descriptor registers */
#define NUM_RX_DESC 256 /* Number of Rx descriptor registers */
#define R8169_TX_RING_BYTES (NUM_TX_DESC * sizeof(struct TxDesc))
#define R8169_RX_RING_BYTES (NUM_RX_DESC * sizeof(struct RxDesc))
#define RTL8169_TX_TIMEOUT (6*HZ)
#define RTL8169_PHY_TIMEOUT (10*HZ)
/* write/read MMIO register */
#define RTL_W8(reg, val8) writeb ((val8), ioaddr + (reg))
#define RTL_W16(reg, val16) writew ((val16), ioaddr + (reg))
#define RTL_W32(reg, val32) writel ((val32), ioaddr + (reg))
#define RTL_R8(reg) readb (ioaddr + (reg))
#define RTL_R16(reg) readw (ioaddr + (reg))
#define RTL_R32(reg) readl (ioaddr + (reg))
enum mac_version {
RTL_GIGA_MAC_VER_01 = 0,
RTL_GIGA_MAC_VER_02,
RTL_GIGA_MAC_VER_03,
RTL_GIGA_MAC_VER_04,
RTL_GIGA_MAC_VER_05,
RTL_GIGA_MAC_VER_06,
RTL_GIGA_MAC_VER_07,
RTL_GIGA_MAC_VER_08,
RTL_GIGA_MAC_VER_09,
RTL_GIGA_MAC_VER_10,
RTL_GIGA_MAC_VER_11,
RTL_GIGA_MAC_VER_12,
RTL_GIGA_MAC_VER_13,
RTL_GIGA_MAC_VER_14,
RTL_GIGA_MAC_VER_15,
RTL_GIGA_MAC_VER_16,
RTL_GIGA_MAC_VER_17,
RTL_GIGA_MAC_VER_18,
RTL_GIGA_MAC_VER_19,
RTL_GIGA_MAC_VER_20,
RTL_GIGA_MAC_VER_21,
RTL_GIGA_MAC_VER_22,
RTL_GIGA_MAC_VER_23,
RTL_GIGA_MAC_VER_24,
RTL_GIGA_MAC_VER_25,
RTL_GIGA_MAC_VER_26,
RTL_GIGA_MAC_VER_27,
RTL_GIGA_MAC_VER_28,
RTL_GIGA_MAC_VER_29,
RTL_GIGA_MAC_VER_30,
RTL_GIGA_MAC_VER_31,
RTL_GIGA_MAC_VER_32,
RTL_GIGA_MAC_VER_33,
RTL_GIGA_MAC_VER_34,
RTL_GIGA_MAC_VER_35,
RTL_GIGA_MAC_VER_36,
RTL_GIGA_MAC_VER_37,
RTL_GIGA_MAC_VER_38,
RTL_GIGA_MAC_VER_39,
RTL_GIGA_MAC_VER_40,
RTL_GIGA_MAC_VER_41,
RTL_GIGA_MAC_NONE = 0xff,
};
enum rtl_tx_desc_version {
RTL_TD_0 = 0,
RTL_TD_1 = 1,
};
#define JUMBO_1K ETH_DATA_LEN
#define JUMBO_4K (4*1024 - ETH_HLEN - 2)
#define JUMBO_6K (6*1024 - ETH_HLEN - 2)
#define JUMBO_7K (7*1024 - ETH_HLEN - 2)
#define JUMBO_9K (9*1024 - ETH_HLEN - 2)
#define _R(NAME,TD,FW,SZ,B) { \
.name = NAME, \
.txd_version = TD, \
.fw_name = FW, \
.jumbo_max = SZ, \
.jumbo_tx_csum = B \
}
static const struct {
const char *name;
enum rtl_tx_desc_version txd_version;
const char *fw_name;
u16 jumbo_max;
bool jumbo_tx_csum;
} rtl_chip_infos[] = {
/* PCI devices. */
[RTL_GIGA_MAC_VER_01] =
_R("RTL8169", RTL_TD_0, NULL, JUMBO_7K, true),
[RTL_GIGA_MAC_VER_02] =
_R("RTL8169s", RTL_TD_0, NULL, JUMBO_7K, true),
[RTL_GIGA_MAC_VER_03] =
_R("RTL8110s", RTL_TD_0, NULL, JUMBO_7K, true),
[RTL_GIGA_MAC_VER_04] =
_R("RTL8169sb/8110sb", RTL_TD_0, NULL, JUMBO_7K, true),
[RTL_GIGA_MAC_VER_05] =
_R("RTL8169sc/8110sc", RTL_TD_0, NULL, JUMBO_7K, true),
[RTL_GIGA_MAC_VER_06] =
_R("RTL8169sc/8110sc", RTL_TD_0, NULL, JUMBO_7K, true),
/* PCI-E devices. */
[RTL_GIGA_MAC_VER_07] =
_R("RTL8102e", RTL_TD_1, NULL, JUMBO_1K, true),
[RTL_GIGA_MAC_VER_08] =
_R("RTL8102e", RTL_TD_1, NULL, JUMBO_1K, true),
[RTL_GIGA_MAC_VER_09] =
_R("RTL8102e", RTL_TD_1, NULL, JUMBO_1K, true),
[RTL_GIGA_MAC_VER_10] =
_R("RTL8101e", RTL_TD_0, NULL, JUMBO_1K, true),
[RTL_GIGA_MAC_VER_11] =
_R("RTL8168b/8111b", RTL_TD_0, NULL, JUMBO_4K, false),
[RTL_GIGA_MAC_VER_12] =
_R("RTL8168b/8111b", RTL_TD_0, NULL, JUMBO_4K, false),
[RTL_GIGA_MAC_VER_13] =
_R("RTL8101e", RTL_TD_0, NULL, JUMBO_1K, true),
[RTL_GIGA_MAC_VER_14] =
_R("RTL8100e", RTL_TD_0, NULL, JUMBO_1K, true),
[RTL_GIGA_MAC_VER_15] =
_R("RTL8100e", RTL_TD_0, NULL, JUMBO_1K, true),
[RTL_GIGA_MAC_VER_16] =
_R("RTL8101e", RTL_TD_0, NULL, JUMBO_1K, true),
[RTL_GIGA_MAC_VER_17] =
_R("RTL8168b/8111b", RTL_TD_1, NULL, JUMBO_4K, false),
[RTL_GIGA_MAC_VER_18] =
_R("RTL8168cp/8111cp", RTL_TD_1, NULL, JUMBO_6K, false),
[RTL_GIGA_MAC_VER_19] =
_R("RTL8168c/8111c", RTL_TD_1, NULL, JUMBO_6K, false),
[RTL_GIGA_MAC_VER_20] =
_R("RTL8168c/8111c", RTL_TD_1, NULL, JUMBO_6K, false),
[RTL_GIGA_MAC_VER_21] =
_R("RTL8168c/8111c", RTL_TD_1, NULL, JUMBO_6K, false),
[RTL_GIGA_MAC_VER_22] =
_R("RTL8168c/8111c", RTL_TD_1, NULL, JUMBO_6K, false),
[RTL_GIGA_MAC_VER_23] =
_R("RTL8168cp/8111cp", RTL_TD_1, NULL, JUMBO_6K, false),
[RTL_GIGA_MAC_VER_24] =
_R("RTL8168cp/8111cp", RTL_TD_1, NULL, JUMBO_6K, false),
[RTL_GIGA_MAC_VER_25] =
_R("RTL8168d/8111d", RTL_TD_1, FIRMWARE_8168D_1,
JUMBO_9K, false),
[RTL_GIGA_MAC_VER_26] =
_R("RTL8168d/8111d", RTL_TD_1, FIRMWARE_8168D_2,
JUMBO_9K, false),
[RTL_GIGA_MAC_VER_27] =
_R("RTL8168dp/8111dp", RTL_TD_1, NULL, JUMBO_9K, false),
[RTL_GIGA_MAC_VER_28] =
_R("RTL8168dp/8111dp", RTL_TD_1, NULL, JUMBO_9K, false),
[RTL_GIGA_MAC_VER_29] =
_R("RTL8105e", RTL_TD_1, FIRMWARE_8105E_1,
JUMBO_1K, true),
[RTL_GIGA_MAC_VER_30] =
_R("RTL8105e", RTL_TD_1, FIRMWARE_8105E_1,
JUMBO_1K, true),
[RTL_GIGA_MAC_VER_31] =
_R("RTL8168dp/8111dp", RTL_TD_1, NULL, JUMBO_9K, false),
[RTL_GIGA_MAC_VER_32] =
_R("RTL8168e/8111e", RTL_TD_1, FIRMWARE_8168E_1,
JUMBO_9K, false),
[RTL_GIGA_MAC_VER_33] =
_R("RTL8168e/8111e", RTL_TD_1, FIRMWARE_8168E_2,
JUMBO_9K, false),
[RTL_GIGA_MAC_VER_34] =
_R("RTL8168evl/8111evl",RTL_TD_1, FIRMWARE_8168E_3,
JUMBO_9K, false),
[RTL_GIGA_MAC_VER_35] =
_R("RTL8168f/8111f", RTL_TD_1, FIRMWARE_8168F_1,
JUMBO_9K, false),
[RTL_GIGA_MAC_VER_36] =
_R("RTL8168f/8111f", RTL_TD_1, FIRMWARE_8168F_2,
JUMBO_9K, false),
[RTL_GIGA_MAC_VER_37] =
_R("RTL8402", RTL_TD_1, FIRMWARE_8402_1,
JUMBO_1K, true),
[RTL_GIGA_MAC_VER_38] =
_R("RTL8411", RTL_TD_1, FIRMWARE_8411_1,
JUMBO_9K, false),
[RTL_GIGA_MAC_VER_39] =
_R("RTL8106e", RTL_TD_1, FIRMWARE_8106E_1,
JUMBO_1K, true),
[RTL_GIGA_MAC_VER_40] =
_R("RTL8168g/8111g", RTL_TD_1, FIRMWARE_8168G_1,
JUMBO_9K, false),
[RTL_GIGA_MAC_VER_41] =
_R("RTL8168g/8111g", RTL_TD_1, NULL, JUMBO_9K, false),
};
#undef _R
enum cfg_version {
RTL_CFG_0 = 0x00,
RTL_CFG_1,
RTL_CFG_2
};
static DEFINE_PCI_DEVICE_TABLE(rtl8169_pci_tbl) = {
{ PCI_DEVICE(PCI_VENDOR_ID_REALTEK, 0x8129), 0, 0, RTL_CFG_0 },
{ PCI_DEVICE(PCI_VENDOR_ID_REALTEK, 0x8136), 0, 0, RTL_CFG_2 },
{ PCI_DEVICE(PCI_VENDOR_ID_REALTEK, 0x8167), 0, 0, RTL_CFG_0 },
{ PCI_DEVICE(PCI_VENDOR_ID_REALTEK, 0x8168), 0, 0, RTL_CFG_1 },
{ PCI_DEVICE(PCI_VENDOR_ID_REALTEK, 0x8169), 0, 0, RTL_CFG_0 },
{ PCI_VENDOR_ID_DLINK, 0x4300,
PCI_VENDOR_ID_DLINK, 0x4b10, 0, 0, RTL_CFG_1 },
{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4300), 0, 0, RTL_CFG_0 },
{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4302), 0, 0, RTL_CFG_0 },
{ PCI_DEVICE(PCI_VENDOR_ID_AT, 0xc107), 0, 0, RTL_CFG_0 },
{ PCI_DEVICE(0x16ec, 0x0116), 0, 0, RTL_CFG_0 },
{ PCI_VENDOR_ID_LINKSYS, 0x1032,
PCI_ANY_ID, 0x0024, 0, 0, RTL_CFG_0 },
{ 0x0001, 0x8168,
PCI_ANY_ID, 0x2410, 0, 0, RTL_CFG_2 },
{0,},
};
/* prevent driver from being loaded automatically */
//MODULE_DEVICE_TABLE(pci, rtl8169_pci_tbl);
static int rx_buf_sz = 16383;
static int use_dac;
static struct {
u32 msg_enable;
} debug = { -1 };
enum rtl_registers {
MAC0 = 0, /* Ethernet hardware address. */
MAC4 = 4,
MAR0 = 8, /* Multicast filter. */
CounterAddrLow = 0x10,
CounterAddrHigh = 0x14,
TxDescStartAddrLow = 0x20,
TxDescStartAddrHigh = 0x24,
TxHDescStartAddrLow = 0x28,
TxHDescStartAddrHigh = 0x2c,
FLASH = 0x30,
ERSR = 0x36,
ChipCmd = 0x37,
TxPoll = 0x38,
IntrMask = 0x3c,
IntrStatus = 0x3e,
TxConfig = 0x40,
#define TXCFG_AUTO_FIFO (1 << 7) /* 8111e-vl */
#define TXCFG_EMPTY (1 << 11) /* 8111e-vl */
RxConfig = 0x44,
#define RX128_INT_EN (1 << 15) /* 8111c and later */
#define RX_MULTI_EN (1 << 14) /* 8111c only */
#define RXCFG_FIFO_SHIFT 13
/* No threshold before first PCI xfer */
#define RX_FIFO_THRESH (7 << RXCFG_FIFO_SHIFT)
#define RXCFG_DMA_SHIFT 8
/* Unlimited maximum PCI burst. */
#define RX_DMA_BURST (7 << RXCFG_DMA_SHIFT)
RxMissed = 0x4c,
Cfg9346 = 0x50,
Config0 = 0x51,
Config1 = 0x52,
Config2 = 0x53,
#define PME_SIGNAL (1 << 5) /* 8168c and later */
Config3 = 0x54,
Config4 = 0x55,
Config5 = 0x56,
MultiIntr = 0x5c,
PHYAR = 0x60,
PHYstatus = 0x6c,
RxMaxSize = 0xda,
CPlusCmd = 0xe0,
IntrMitigate = 0xe2,
RxDescAddrLow = 0xe4,
RxDescAddrHigh = 0xe8,
EarlyTxThres = 0xec, /* 8169. Unit of 32 bytes. */
#define NoEarlyTx 0x3f /* Max value : no early transmit. */
MaxTxPacketSize = 0xec, /* 8101/8168. Unit of 128 bytes. */
#define TxPacketMax (8064 >> 7)
#define EarlySize 0x27
FuncEvent = 0xf0,
FuncEventMask = 0xf4,
FuncPresetState = 0xf8,
FuncForceEvent = 0xfc,
};
enum rtl8110_registers {
TBICSR = 0x64,
TBI_ANAR = 0x68,
TBI_LPAR = 0x6a,
};
enum rtl8168_8101_registers {
CSIDR = 0x64,
CSIAR = 0x68,
#define CSIAR_FLAG 0x80000000
#define CSIAR_WRITE_CMD 0x80000000
#define CSIAR_BYTE_ENABLE 0x0f
#define CSIAR_BYTE_ENABLE_SHIFT 12
#define CSIAR_ADDR_MASK 0x0fff
#define CSIAR_FUNC_CARD 0x00000000
#define CSIAR_FUNC_SDIO 0x00010000
#define CSIAR_FUNC_NIC 0x00020000
PMCH = 0x6f,
EPHYAR = 0x80,
#define EPHYAR_FLAG 0x80000000
#define EPHYAR_WRITE_CMD 0x80000000
#define EPHYAR_REG_MASK 0x1f
#define EPHYAR_REG_SHIFT 16
#define EPHYAR_DATA_MASK 0xffff
DLLPR = 0xd0,
#define PFM_EN (1 << 6)
DBG_REG = 0xd1,
#define FIX_NAK_1 (1 << 4)
#define FIX_NAK_2 (1 << 3)
TWSI = 0xd2,
MCU = 0xd3,
#define NOW_IS_OOB (1 << 7)
#define TX_EMPTY (1 << 5)
#define RX_EMPTY (1 << 4)
#define RXTX_EMPTY (TX_EMPTY | RX_EMPTY)
#define EN_NDP (1 << 3)
#define EN_OOB_RESET (1 << 2)
#define LINK_LIST_RDY (1 << 1)
EFUSEAR = 0xdc,
#define EFUSEAR_FLAG 0x80000000
#define EFUSEAR_WRITE_CMD 0x80000000
#define EFUSEAR_READ_CMD 0x00000000
#define EFUSEAR_REG_MASK 0x03ff
#define EFUSEAR_REG_SHIFT 8
#define EFUSEAR_DATA_MASK 0xff
};
enum rtl8168_registers {
LED_FREQ = 0x1a,
EEE_LED = 0x1b,
ERIDR = 0x70,
ERIAR = 0x74,
#define ERIAR_FLAG 0x80000000
#define ERIAR_WRITE_CMD 0x80000000
#define ERIAR_READ_CMD 0x00000000
#define ERIAR_ADDR_BYTE_ALIGN 4
#define ERIAR_TYPE_SHIFT 16
#define ERIAR_EXGMAC (0x00 << ERIAR_TYPE_SHIFT)
#define ERIAR_MSIX (0x01 << ERIAR_TYPE_SHIFT)
#define ERIAR_ASF (0x02 << ERIAR_TYPE_SHIFT)
#define ERIAR_MASK_SHIFT 12
#define ERIAR_MASK_0001 (0x1 << ERIAR_MASK_SHIFT)
#define ERIAR_MASK_0011 (0x3 << ERIAR_MASK_SHIFT)
#define ERIAR_MASK_0101 (0x5 << ERIAR_MASK_SHIFT)
#define ERIAR_MASK_1111 (0xf << ERIAR_MASK_SHIFT)
EPHY_RXER_NUM = 0x7c,
OCPDR = 0xb0, /* OCP GPHY access */
#define OCPDR_WRITE_CMD 0x80000000
#define OCPDR_READ_CMD 0x00000000
#define OCPDR_REG_MASK 0x7f
#define OCPDR_GPHY_REG_SHIFT 16
#define OCPDR_DATA_MASK 0xffff
OCPAR = 0xb4,
#define OCPAR_FLAG 0x80000000
#define OCPAR_GPHY_WRITE_CMD 0x8000f060
#define OCPAR_GPHY_READ_CMD 0x0000f060
GPHY_OCP = 0xb8,
RDSAR1 = 0xd0, /* 8168c only. Undocumented on 8168dp */
MISC = 0xf0, /* 8168e only. */
#define TXPLA_RST (1 << 29)
#define DISABLE_LAN_EN (1 << 23) /* Enable GPIO pin */
#define PWM_EN (1 << 22)
#define RXDV_GATED_EN (1 << 19)
#define EARLY_TALLY_EN (1 << 16)
};
enum rtl_register_content {
/* InterruptStatusBits */
SYSErr = 0x8000,
PCSTimeout = 0x4000,
SWInt = 0x0100,
TxDescUnavail = 0x0080,
RxFIFOOver = 0x0040,
LinkChg = 0x0020,
RxOverflow = 0x0010,
TxErr = 0x0008,
TxOK = 0x0004,
RxErr = 0x0002,
RxOK = 0x0001,
/* RxStatusDesc */
RxBOVF = (1 << 24),
RxFOVF = (1 << 23),
RxRWT = (1 << 22),
RxRES = (1 << 21),
RxRUNT = (1 << 20),
RxCRC = (1 << 19),
/* ChipCmdBits */
StopReq = 0x80,
CmdReset = 0x10,
CmdRxEnb = 0x08,
CmdTxEnb = 0x04,
RxBufEmpty = 0x01,
/* TXPoll register p.5 */
HPQ = 0x80, /* Poll cmd on the high prio queue */
NPQ = 0x40, /* Poll cmd on the low prio queue */
FSWInt = 0x01, /* Forced software interrupt */
/* Cfg9346Bits */
Cfg9346_Lock = 0x00,
Cfg9346_Unlock = 0xc0,
/* rx_mode_bits */
AcceptErr = 0x20,
AcceptRunt = 0x10,
AcceptBroadcast = 0x08,
AcceptMulticast = 0x04,
AcceptMyPhys = 0x02,
AcceptAllPhys = 0x01,
#define RX_CONFIG_ACCEPT_MASK 0x3f
/* TxConfigBits */
TxInterFrameGapShift = 24,
TxDMAShift = 8, /* DMA burst value (0-7) is shift this many bits */
/* Config1 register p.24 */
LEDS1 = (1 << 7),
LEDS0 = (1 << 6),
Speed_down = (1 << 4),
MEMMAP = (1 << 3),
IOMAP = (1 << 2),
VPD = (1 << 1),
PMEnable = (1 << 0), /* Power Management Enable */
/* Config2 register p. 25 */
MSIEnable = (1 << 5), /* 8169 only. Reserved in the 8168. */
PCI_Clock_66MHz = 0x01,
PCI_Clock_33MHz = 0x00,
/* Config3 register p.25 */
MagicPacket = (1 << 5), /* Wake up when receives a Magic Packet */
LinkUp = (1 << 4), /* Wake up when the cable connection is re-established */
Jumbo_En0 = (1 << 2), /* 8168 only. Reserved in the 8168b */
Beacon_en = (1 << 0), /* 8168 only. Reserved in the 8168b */
/* Config4 register */
Jumbo_En1 = (1 << 1), /* 8168 only. Reserved in the 8168b */
/* Config5 register p.27 */
BWF = (1 << 6), /* Accept Broadcast wakeup frame */
MWF = (1 << 5), /* Accept Multicast wakeup frame */
UWF = (1 << 4), /* Accept Unicast wakeup frame */
Spi_en = (1 << 3),
LanWake = (1 << 1), /* LanWake enable/disable */
PMEStatus = (1 << 0), /* PME status can be reset by PCI RST# */
/* TBICSR p.28 */
TBIReset = 0x80000000,
TBILoopback = 0x40000000,
TBINwEnable = 0x20000000,
TBINwRestart = 0x10000000,
TBILinkOk = 0x02000000,
TBINwComplete = 0x01000000,
/* CPlusCmd p.31 */
EnableBist = (1 << 15), // 8168 8101
Mac_dbgo_oe = (1 << 14), // 8168 8101
Normal_mode = (1 << 13), // unused
Force_half_dup = (1 << 12), // 8168 8101
Force_rxflow_en = (1 << 11), // 8168 8101
Force_txflow_en = (1 << 10), // 8168 8101
Cxpl_dbg_sel = (1 << 9), // 8168 8101
ASF = (1 << 8), // 8168 8101
PktCntrDisable = (1 << 7), // 8168 8101
Mac_dbgo_sel = 0x001c, // 8168
RxVlan = (1 << 6),
RxChkSum = (1 << 5),
PCIDAC = (1 << 4),
PCIMulRW = (1 << 3),
INTT_0 = 0x0000, // 8168
INTT_1 = 0x0001, // 8168
INTT_2 = 0x0002, // 8168
INTT_3 = 0x0003, // 8168
/* rtl8169_PHYstatus */
TBI_Enable = 0x80,
TxFlowCtrl = 0x40,
RxFlowCtrl = 0x20,
_1000bpsF = 0x10,
_100bps = 0x08,
_10bps = 0x04,
LinkStatus = 0x02,
FullDup = 0x01,
/* _TBICSRBit */
TBILinkOK = 0x02000000,
/* DumpCounterCommand */
CounterDump = 0x8,
};
enum rtl_desc_bit {
/* First doubleword. */
DescOwn = (1 << 31), /* Descriptor is owned by NIC */
RingEnd = (1 << 30), /* End of descriptor ring */
FirstFrag = (1 << 29), /* First segment of a packet */
LastFrag = (1 << 28), /* Final segment of a packet */
};
/* Generic case. */
enum rtl_tx_desc_bit {
/* First doubleword. */
TD_LSO = (1 << 27), /* Large Send Offload */
#define TD_MSS_MAX 0x07ffu /* MSS value */
/* Second doubleword. */
TxVlanTag = (1 << 17), /* Add VLAN tag */
};
/* 8169, 8168b and 810x except 8102e. */
enum rtl_tx_desc_bit_0 {
/* First doubleword. */
#define TD0_MSS_SHIFT 16 /* MSS position (11 bits) */
TD0_TCP_CS = (1 << 16), /* Calculate TCP/IP checksum */
TD0_UDP_CS = (1 << 17), /* Calculate UDP/IP checksum */
TD0_IP_CS = (1 << 18), /* Calculate IP checksum */
};
/* 8102e, 8168c and beyond. */
enum rtl_tx_desc_bit_1 {
/* Second doubleword. */
#define TD1_MSS_SHIFT 18 /* MSS position (11 bits) */
TD1_IP_CS = (1 << 29), /* Calculate IP checksum */
TD1_TCP_CS = (1 << 30), /* Calculate TCP/IP checksum */
TD1_UDP_CS = (1 << 31), /* Calculate UDP/IP checksum */
};
static const struct rtl_tx_desc_info {
struct {
u32 udp;
u32 tcp;
} checksum;
u16 mss_shift;
u16 opts_offset;
} tx_desc_info [] = {
[RTL_TD_0] = {
.checksum = {
.udp = TD0_IP_CS | TD0_UDP_CS,
.tcp = TD0_IP_CS | TD0_TCP_CS
},
.mss_shift = TD0_MSS_SHIFT,
.opts_offset = 0
},
[RTL_TD_1] = {
.checksum = {
.udp = TD1_IP_CS | TD1_UDP_CS,
.tcp = TD1_IP_CS | TD1_TCP_CS
},
.mss_shift = TD1_MSS_SHIFT,
.opts_offset = 1
}
};
enum rtl_rx_desc_bit {
/* Rx private */
PID1 = (1 << 18), /* Protocol ID bit 1/2 */
PID0 = (1 << 17), /* Protocol ID bit 2/2 */
#define RxProtoUDP (PID1)
#define RxProtoTCP (PID0)
#define RxProtoIP (PID1 | PID0)
#define RxProtoMask RxProtoIP
IPFail = (1 << 16), /* IP checksum failed */
UDPFail = (1 << 15), /* UDP/IP checksum failed */
TCPFail = (1 << 14), /* TCP/IP checksum failed */
RxVlanTag = (1 << 16), /* VLAN tag available */
};
#define RsvdMask 0x3fffc000
struct TxDesc {
__le32 opts1;
__le32 opts2;
__le64 addr;
};
struct RxDesc {
__le32 opts1;
__le32 opts2;
__le64 addr;
};
struct ring_info {
struct sk_buff *skb;
u32 len;
u8 __pad[sizeof(void *) - sizeof(u32)];
};
enum features {
RTL_FEATURE_WOL = (1 << 0),
RTL_FEATURE_MSI = (1 << 1),
RTL_FEATURE_GMII = (1 << 2),
};
struct rtl8169_counters {
__le64 tx_packets;
__le64 rx_packets;
__le64 tx_errors;
__le32 rx_errors;
__le16 rx_missed;
__le16 align_errors;
__le32 tx_one_collision;
__le32 tx_multi_collision;
__le64 rx_unicast;
__le64 rx_broadcast;
__le32 rx_multicast;
__le16 tx_aborted;
__le16 tx_underun;
};
enum rtl_flag {
RTL_FLAG_TASK_ENABLED,
RTL_FLAG_TASK_SLOW_PENDING,
RTL_FLAG_TASK_RESET_PENDING,
RTL_FLAG_TASK_PHY_PENDING,
RTL_FLAG_MAX
};
struct rtl8169_stats {
u64 packets;
u64 bytes;
struct u64_stats_sync syncp;
};
struct rtl8169_private {
void __iomem *mmio_addr; /* memory map physical address */
struct pci_dev *pci_dev;
struct net_device *dev;
struct napi_struct napi;
u32 msg_enable;
u16 txd_version;
u16 mac_version;
u32 cur_rx; /* Index into the Rx descriptor buffer of next Rx pkt. */
u32 cur_tx; /* Index into the Tx descriptor buffer of next Rx pkt. */
u32 dirty_rx;
u32 dirty_tx;
struct rtl8169_stats rx_stats;
struct rtl8169_stats tx_stats;
struct TxDesc *TxDescArray; /* 256-aligned Tx descriptor ring */
struct RxDesc *RxDescArray; /* 256-aligned Rx descriptor ring */
dma_addr_t TxPhyAddr;
dma_addr_t RxPhyAddr;
void *Rx_databuff[NUM_RX_DESC]; /* Rx data buffers */
struct ring_info tx_skb[NUM_TX_DESC]; /* Tx data buffers */
struct timer_list timer;
u16 cp_cmd;
u16 event_slow;
struct mdio_ops {
void (*write)(struct rtl8169_private *, int, int);
int (*read)(struct rtl8169_private *, int);
} mdio_ops;
struct pll_power_ops {
void (*down)(struct rtl8169_private *);
void (*up)(struct rtl8169_private *);
} pll_power_ops;
struct jumbo_ops {
void (*enable)(struct rtl8169_private *);
void (*disable)(struct rtl8169_private *);
} jumbo_ops;
struct csi_ops {
void (*write)(struct rtl8169_private *, int, int);
u32 (*read)(struct rtl8169_private *, int);
} csi_ops;
int (*set_speed)(struct net_device *, u8 aneg, u16 sp, u8 dpx, u32 adv);
int (*get_settings)(struct net_device *, struct ethtool_cmd *);
void (*phy_reset_enable)(struct rtl8169_private *tp);
void (*hw_start)(struct net_device *);
unsigned int (*phy_reset_pending)(struct rtl8169_private *tp);
unsigned int (*link_ok)(void __iomem *);
int (*do_ioctl)(struct rtl8169_private *tp, struct mii_ioctl_data *data, int cmd);
struct {
DECLARE_BITMAP(flags, RTL_FLAG_MAX);
struct mutex mutex;
struct work_struct work;
} wk;
unsigned features;
struct mii_if_info mii;
struct rtl8169_counters counters;
u32 saved_wolopts;
u32 opts1_mask;
struct rtl_fw {
const struct firmware *fw;
#define RTL_VER_SIZE 32
char version[RTL_VER_SIZE];
struct rtl_fw_phy_action {
__le32 *code;
size_t size;
} phy_action;
} *rtl_fw;
#define RTL_FIRMWARE_UNKNOWN ERR_PTR(-EAGAIN)
u32 ocp_base;
ec_device_t *ecdev;
unsigned long ec_watchdog_jiffies;
};
MODULE_AUTHOR("Realtek and the Linux r8169 crew <netdev@vger.kernel.org>");
MODULE_DESCRIPTION("RealTek RTL-8169 Gigabit Ethernet driver (EtherCAT)");
module_param(use_dac, int, 0);
MODULE_PARM_DESC(use_dac, "Enable PCI DAC. Unsafe on 32 bit PCI slot.");
module_param_named(debug, debug.msg_enable, int, 0);
MODULE_PARM_DESC(debug, "Debug verbosity level (0=none, ..., 16=all)");
MODULE_LICENSE("GPL");
MODULE_VERSION(EC_MASTER_VERSION);
MODULE_FIRMWARE(FIRMWARE_8168D_1);
MODULE_FIRMWARE(FIRMWARE_8168D_2);
MODULE_FIRMWARE(FIRMWARE_8168E_1);
MODULE_FIRMWARE(FIRMWARE_8168E_2);
MODULE_FIRMWARE(FIRMWARE_8168E_3);
MODULE_FIRMWARE(FIRMWARE_8105E_1);
MODULE_FIRMWARE(FIRMWARE_8168F_1);
MODULE_FIRMWARE(FIRMWARE_8168F_2);
MODULE_FIRMWARE(FIRMWARE_8402_1);
MODULE_FIRMWARE(FIRMWARE_8411_1);
MODULE_FIRMWARE(FIRMWARE_8106E_1);
MODULE_FIRMWARE(FIRMWARE_8168G_1);
static void rtl_lock_work(struct rtl8169_private *tp)
{
mutex_lock(&tp->wk.mutex);
}
static void rtl_unlock_work(struct rtl8169_private *tp)
{
mutex_unlock(&tp->wk.mutex);
}
static void rtl_tx_performance_tweak(struct pci_dev *pdev, u16 force)
{
pcie_capability_clear_and_set_word(pdev, PCI_EXP_DEVCTL,
PCI_EXP_DEVCTL_READRQ, force);
}
struct rtl_cond {
bool (*check)(struct rtl8169_private *);
const char *msg;
};
static void rtl_udelay(unsigned int d)
{
udelay(d);
}
static bool rtl_loop_wait(struct rtl8169_private *tp, const struct rtl_cond *c,
void (*delay)(unsigned int), unsigned int d, int n,
bool high)
{
int i;
for (i = 0; i < n; i++) {
delay(d);
if (c->check(tp) == high)
return true;
}
netif_err(tp, drv, tp->dev, "%s == %d (loop: %d, delay: %d).\n",
c->msg, !high, n, d);
return false;
}
static bool rtl_udelay_loop_wait_high(struct rtl8169_private *tp,
const struct rtl_cond *c,
unsigned int d, int n)
{
return rtl_loop_wait(tp, c, rtl_udelay, d, n, true);
}
static bool rtl_udelay_loop_wait_low(struct rtl8169_private *tp,
const struct rtl_cond *c,
unsigned int d, int n)
{
return rtl_loop_wait(tp, c, rtl_udelay, d, n, false);
}
static bool rtl_msleep_loop_wait_high(struct rtl8169_private *tp,
const struct rtl_cond *c,
unsigned int d, int n)
{
return rtl_loop_wait(tp, c, msleep, d, n, true);
}
static bool rtl_msleep_loop_wait_low(struct rtl8169_private *tp,
const struct rtl_cond *c,
unsigned int d, int n)
{
return rtl_loop_wait(tp, c, msleep, d, n, false);
}
#define DECLARE_RTL_COND(name) \
static bool name ## _check(struct rtl8169_private *); \
\
static const struct rtl_cond name = { \
.check = name ## _check, \
.msg = #name \
}; \
\
static bool name ## _check(struct rtl8169_private *tp)
DECLARE_RTL_COND(rtl_ocpar_cond)
{
void __iomem *ioaddr = tp->mmio_addr;
return RTL_R32(OCPAR) & OCPAR_FLAG;
}
static u32 ocp_read(struct rtl8169_private *tp, u8 mask, u16 reg)
{
void __iomem *ioaddr = tp->mmio_addr;
RTL_W32(OCPAR, ((u32)mask & 0x0f) << 12 | (reg & 0x0fff));
return rtl_udelay_loop_wait_high(tp, &rtl_ocpar_cond, 100, 20) ?
RTL_R32(OCPDR) : ~0;
}
static void ocp_write(struct rtl8169_private *tp, u8 mask, u16 reg, u32 data)
{
void __iomem *ioaddr = tp->mmio_addr;
RTL_W32(OCPDR, data);
RTL_W32(OCPAR, OCPAR_FLAG | ((u32)mask & 0x0f) << 12 | (reg & 0x0fff));
rtl_udelay_loop_wait_low(tp, &rtl_ocpar_cond, 100, 20);
}
DECLARE_RTL_COND(rtl_eriar_cond)
{
void __iomem *ioaddr = tp->mmio_addr;
return RTL_R32(ERIAR) & ERIAR_FLAG;
}
static void rtl8168_oob_notify(struct rtl8169_private *tp, u8 cmd)
{
void __iomem *ioaddr = tp->mmio_addr;
RTL_W8(ERIDR, cmd);
RTL_W32(ERIAR, 0x800010e8);
msleep(2);
if (!rtl_udelay_loop_wait_low(tp, &rtl_eriar_cond, 100, 5))
return;
ocp_write(tp, 0x1, 0x30, 0x00000001);
}
#define OOB_CMD_RESET 0x00
#define OOB_CMD_DRIVER_START 0x05
#define OOB_CMD_DRIVER_STOP 0x06
static u16 rtl8168_get_ocp_reg(struct rtl8169_private *tp)
{
return (tp->mac_version == RTL_GIGA_MAC_VER_31) ? 0xb8 : 0x10;
}
DECLARE_RTL_COND(rtl_ocp_read_cond)
{
u16 reg;
reg = rtl8168_get_ocp_reg(tp);
return ocp_read(tp, 0x0f, reg) & 0x00000800;
}
static void rtl8168_driver_start(struct rtl8169_private *tp)
{
rtl8168_oob_notify(tp, OOB_CMD_DRIVER_START);
rtl_msleep_loop_wait_high(tp, &rtl_ocp_read_cond, 10, 10);
}
static void rtl8168_driver_stop(struct rtl8169_private *tp)
{
rtl8168_oob_notify(tp, OOB_CMD_DRIVER_STOP);
rtl_msleep_loop_wait_low(tp, &rtl_ocp_read_cond, 10, 10);
}
static int r8168dp_check_dash(struct rtl8169_private *tp)
{
u16 reg = rtl8168_get_ocp_reg(tp);
return (ocp_read(tp, 0x0f, reg) & 0x00008000) ? 1 : 0;
}
static bool rtl_ocp_reg_failure(struct rtl8169_private *tp, u32 reg)
{
if (reg & 0xffff0001) {
netif_err(tp, drv, tp->dev, "Invalid ocp reg %x!\n", reg);
return true;
}
return false;
}
DECLARE_RTL_COND(rtl_ocp_gphy_cond)
{
void __iomem *ioaddr = tp->mmio_addr;
return RTL_R32(GPHY_OCP) & OCPAR_FLAG;
}
static void r8168_phy_ocp_write(struct rtl8169_private *tp, u32 reg, u32 data)
{
void __iomem *ioaddr = tp->mmio_addr;
if (rtl_ocp_reg_failure(tp, reg))
return;
RTL_W32(GPHY_OCP, OCPAR_FLAG | (reg << 15) | data);
rtl_udelay_loop_wait_low(tp, &rtl_ocp_gphy_cond, 25, 10);
}
static u16 r8168_phy_ocp_read(struct rtl8169_private *tp, u32 reg)
{
void __iomem *ioaddr = tp->mmio_addr;
if (rtl_ocp_reg_failure(tp, reg))
return 0;
RTL_W32(GPHY_OCP, reg << 15);
return rtl_udelay_loop_wait_high(tp, &rtl_ocp_gphy_cond, 25, 10) ?
(RTL_R32(GPHY_OCP) & 0xffff) : ~0;
}
static void rtl_w1w0_phy_ocp(struct rtl8169_private *tp, int reg, int p, int m)
{
int val;
val = r8168_phy_ocp_read(tp, reg);
r8168_phy_ocp_write(tp, reg, (val | p) & ~m);
}
static void r8168_mac_ocp_write(struct rtl8169_private *tp, u32 reg, u32 data)
{
void __iomem *ioaddr = tp->mmio_addr;
if (rtl_ocp_reg_failure(tp, reg))
return;
RTL_W32(OCPDR, OCPAR_FLAG | (reg << 15) | data);
}
static u16 r8168_mac_ocp_read(struct rtl8169_private *tp, u32 reg)
{
void __iomem *ioaddr = tp->mmio_addr;
if (rtl_ocp_reg_failure(tp, reg))
return 0;
RTL_W32(OCPDR, reg << 15);
return RTL_R32(OCPDR);
}
#define OCP_STD_PHY_BASE 0xa400
static void r8168g_mdio_write(struct rtl8169_private *tp, int reg, int value)
{
if (reg == 0x1f) {
tp->ocp_base = value ? value << 4 : OCP_STD_PHY_BASE;
return;
}
if (tp->ocp_base != OCP_STD_PHY_BASE)
reg -= 0x10;
r8168_phy_ocp_write(tp, tp->ocp_base + reg * 2, value);
}
static int r8168g_mdio_read(struct rtl8169_private *tp, int reg)
{
if (tp->ocp_base != OCP_STD_PHY_BASE)
reg -= 0x10;
return r8168_phy_ocp_read(tp, tp->ocp_base + reg * 2);
}
DECLARE_RTL_COND(rtl_phyar_cond)
{
void __iomem *ioaddr = tp->mmio_addr;
return RTL_R32(PHYAR) & 0x80000000;
}
static void r8169_mdio_write(struct rtl8169_private *tp, int reg, int value)
{
void __iomem *ioaddr = tp->mmio_addr;
RTL_W32(PHYAR, 0x80000000 | (reg & 0x1f) << 16 | (value & 0xffff));
rtl_udelay_loop_wait_low(tp, &rtl_phyar_cond, 25, 20);
/*
* According to hardware specs a 20us delay is required after write
* complete indication, but before sending next command.
*/
udelay(20);
}
static int r8169_mdio_read(struct rtl8169_private *tp, int reg)
{
void __iomem *ioaddr = tp->mmio_addr;
int value;
RTL_W32(PHYAR, 0x0 | (reg & 0x1f) << 16);
value = rtl_udelay_loop_wait_high(tp, &rtl_phyar_cond, 25, 20) ?
RTL_R32(PHYAR) & 0xffff : ~0;
/*
* According to hardware specs a 20us delay is required after read
* complete indication, but before sending next command.
*/
udelay(20);
return value;
}
static void r8168dp_1_mdio_access(struct rtl8169_private *tp, int reg, u32 data)
{
void __iomem *ioaddr = tp->mmio_addr;
RTL_W32(OCPDR, data | ((reg & OCPDR_REG_MASK) << OCPDR_GPHY_REG_SHIFT));
RTL_W32(OCPAR, OCPAR_GPHY_WRITE_CMD);
RTL_W32(EPHY_RXER_NUM, 0);
rtl_udelay_loop_wait_low(tp, &rtl_ocpar_cond, 1000, 100);
}
static void r8168dp_1_mdio_write(struct rtl8169_private *tp, int reg, int value)
{
r8168dp_1_mdio_access(tp, reg,
OCPDR_WRITE_CMD | (value & OCPDR_DATA_MASK));
}
static int r8168dp_1_mdio_read(struct rtl8169_private *tp, int reg)
{
void __iomem *ioaddr = tp->mmio_addr;
r8168dp_1_mdio_access(tp, reg, OCPDR_READ_CMD);
mdelay(1);
RTL_W32(OCPAR, OCPAR_GPHY_READ_CMD);
RTL_W32(EPHY_RXER_NUM, 0);
return rtl_udelay_loop_wait_high(tp, &rtl_ocpar_cond, 1000, 100) ?
RTL_R32(OCPDR) & OCPDR_DATA_MASK : ~0;
}
#define R8168DP_1_MDIO_ACCESS_BIT 0x00020000
static void r8168dp_2_mdio_start(void __iomem *ioaddr)
{
RTL_W32(0xd0, RTL_R32(0xd0) & ~R8168DP_1_MDIO_ACCESS_BIT);
}
static void r8168dp_2_mdio_stop(void __iomem *ioaddr)
{
RTL_W32(0xd0, RTL_R32(0xd0) | R8168DP_1_MDIO_ACCESS_BIT);
}
static void r8168dp_2_mdio_write(struct rtl8169_private *tp, int reg, int value)
{
void __iomem *ioaddr = tp->mmio_addr;
r8168dp_2_mdio_start(ioaddr);
r8169_mdio_write(tp, reg, value);
r8168dp_2_mdio_stop(ioaddr);
}
static int r8168dp_2_mdio_read(struct rtl8169_private *tp, int reg)
{
void __iomem *ioaddr = tp->mmio_addr;
int value;
r8168dp_2_mdio_start(ioaddr);
value = r8169_mdio_read(tp, reg);
r8168dp_2_mdio_stop(ioaddr);
return value;
}
static void rtl_writephy(struct rtl8169_private *tp, int location, u32 val)
{
tp->mdio_ops.write(tp, location, val);
}
static int rtl_readphy(struct rtl8169_private *tp, int location)
{
return tp->mdio_ops.read(tp, location);
}
static void rtl_patchphy(struct rtl8169_private *tp, int reg_addr, int value)
{
rtl_writephy(tp, reg_addr, rtl_readphy(tp, reg_addr) | value);
}
static void rtl_w1w0_phy(struct rtl8169_private *tp, int reg_addr, int p, int m)
{
int val;
val = rtl_readphy(tp, reg_addr);
rtl_writephy(tp, reg_addr, (val | p) & ~m);
}
static void rtl_mdio_write(struct net_device *dev, int phy_id, int location,
int val)
{
struct rtl8169_private *tp = netdev_priv(dev);
rtl_writephy(tp, location, val);
}
static int rtl_mdio_read(struct net_device *dev, int phy_id, int location)
{
struct rtl8169_private *tp = netdev_priv(dev);
return rtl_readphy(tp, location);
}
DECLARE_RTL_COND(rtl_ephyar_cond)
{
void __iomem *ioaddr = tp->mmio_addr;
return RTL_R32(EPHYAR) & EPHYAR_FLAG;
}
static void rtl_ephy_write(struct rtl8169_private *tp, int reg_addr, int value)
{
void __iomem *ioaddr = tp->mmio_addr;
RTL_W32(EPHYAR, EPHYAR_WRITE_CMD | (value & EPHYAR_DATA_MASK) |
(reg_addr & EPHYAR_REG_MASK) << EPHYAR_REG_SHIFT);
rtl_udelay_loop_wait_low(tp, &rtl_ephyar_cond, 10, 100);
udelay(10);
}
static u16 rtl_ephy_read(struct rtl8169_private *tp, int reg_addr)
{
void __iomem *ioaddr = tp->mmio_addr;
RTL_W32(EPHYAR, (reg_addr & EPHYAR_REG_MASK) << EPHYAR_REG_SHIFT);
return rtl_udelay_loop_wait_high(tp, &rtl_ephyar_cond, 10, 100) ?
RTL_R32(EPHYAR) & EPHYAR_DATA_MASK : ~0;
}
static void rtl_eri_write(struct rtl8169_private *tp, int addr, u32 mask,
u32 val, int type)
{
void __iomem *ioaddr = tp->mmio_addr;
BUG_ON((addr & 3) || (mask == 0));
RTL_W32(ERIDR, val);
RTL_W32(ERIAR, ERIAR_WRITE_CMD | type | mask | addr);
rtl_udelay_loop_wait_low(tp, &rtl_eriar_cond, 100, 100);
}
static u32 rtl_eri_read(struct rtl8169_private *tp, int addr, int type)
{
void __iomem *ioaddr = tp->mmio_addr;
RTL_W32(ERIAR, ERIAR_READ_CMD | type | ERIAR_MASK_1111 | addr);
return rtl_udelay_loop_wait_high(tp, &rtl_eriar_cond, 100, 100) ?
RTL_R32(ERIDR) : ~0;
}
static void rtl_w1w0_eri(struct rtl8169_private *tp, int addr, u32 mask, u32 p,
u32 m, int type)
{
u32 val;
val = rtl_eri_read(tp, addr, type);
rtl_eri_write(tp, addr, mask, (val & ~m) | p, type);
}
struct exgmac_reg {
u16 addr;
u16 mask;
u32 val;
};
static void rtl_write_exgmac_batch(struct rtl8169_private *tp,
const struct exgmac_reg *r, int len)
{
while (len-- > 0) {
rtl_eri_write(tp, r->addr, r->mask, r->val, ERIAR_EXGMAC);
r++;
}
}
DECLARE_RTL_COND(rtl_efusear_cond)
{
void __iomem *ioaddr = tp->mmio_addr;
return RTL_R32(EFUSEAR) & EFUSEAR_FLAG;
}
static u8 rtl8168d_efuse_read(struct rtl8169_private *tp, int reg_addr)
{
void __iomem *ioaddr = tp->mmio_addr;
RTL_W32(EFUSEAR, (reg_addr & EFUSEAR_REG_MASK) << EFUSEAR_REG_SHIFT);
return rtl_udelay_loop_wait_high(tp, &rtl_efusear_cond, 100, 300) ?
RTL_R32(EFUSEAR) & EFUSEAR_DATA_MASK : ~0;
}
static u16 rtl_get_events(struct rtl8169_private *tp)
{
void __iomem *ioaddr = tp->mmio_addr;
return RTL_R16(IntrStatus);
}
static void rtl_ack_events(struct rtl8169_private *tp, u16 bits)
{
void __iomem *ioaddr = tp->mmio_addr;
RTL_W16(IntrStatus, bits);
mmiowb();
}
static void rtl_irq_disable(struct rtl8169_private *tp)
{
void __iomem *ioaddr = tp->mmio_addr;
RTL_W16(IntrMask, 0);
mmiowb();
}
static void rtl_irq_enable(struct rtl8169_private *tp, u16 bits)
{
void __iomem *ioaddr = tp->mmio_addr;
RTL_W16(IntrMask, bits);
}
#define RTL_EVENT_NAPI_RX (RxOK | RxErr)
#define RTL_EVENT_NAPI_TX (TxOK | TxErr)
#define RTL_EVENT_NAPI (RTL_EVENT_NAPI_RX | RTL_EVENT_NAPI_TX)
static void rtl_irq_enable_all(struct rtl8169_private *tp)
{
rtl_irq_enable(tp, RTL_EVENT_NAPI | tp->event_slow);
}
static void rtl8169_irq_mask_and_ack(struct rtl8169_private *tp)
{
void __iomem *ioaddr = tp->mmio_addr;
rtl_irq_disable(tp);
rtl_ack_events(tp, RTL_EVENT_NAPI | tp->event_slow);
RTL_R8(ChipCmd);
}
static unsigned int rtl8169_tbi_reset_pending(struct rtl8169_private *tp)
{
void __iomem *ioaddr = tp->mmio_addr;
return RTL_R32(TBICSR) & TBIReset;
}
static unsigned int rtl8169_xmii_reset_pending(struct rtl8169_private *tp)
{
return rtl_readphy(tp, MII_BMCR) & BMCR_RESET;
}
static unsigned int rtl8169_tbi_link_ok(void __iomem *ioaddr)
{
return RTL_R32(TBICSR) & TBILinkOk;
}
static unsigned int rtl8169_xmii_link_ok(void __iomem *ioaddr)
{
return RTL_R8(PHYstatus) & LinkStatus;
}
static void rtl8169_tbi_reset_enable(struct rtl8169_private *tp)
{
void __iomem *ioaddr = tp->mmio_addr;
RTL_W32(TBICSR, RTL_R32(TBICSR) | TBIReset);
}
static void rtl8169_xmii_reset_enable(struct rtl8169_private *tp)
{
unsigned int val;
val = rtl_readphy(tp, MII_BMCR) | BMCR_RESET;
rtl_writephy(tp, MII_BMCR, val & 0xffff);
}
static void rtl_link_chg_patch(struct rtl8169_private *tp)
{
void __iomem *ioaddr = tp->mmio_addr;
struct net_device *dev = tp->dev;
if (!netif_running(dev))
return;
if (tp->mac_version == RTL_GIGA_MAC_VER_34 ||
tp->mac_version == RTL_GIGA_MAC_VER_38) {
if (RTL_R8(PHYstatus) & _1000bpsF) {
rtl_eri_write(tp, 0x1bc, ERIAR_MASK_1111, 0x00000011,
ERIAR_EXGMAC);
rtl_eri_write(tp, 0x1dc, ERIAR_MASK_1111, 0x00000005,
ERIAR_EXGMAC);
} else if (RTL_R8(PHYstatus) & _100bps) {
rtl_eri_write(tp, 0x1bc, ERIAR_MASK_1111, 0x0000001f,
ERIAR_EXGMAC);
rtl_eri_write(tp, 0x1dc, ERIAR_MASK_1111, 0x00000005,
ERIAR_EXGMAC);
} else {
rtl_eri_write(tp, 0x1bc, ERIAR_MASK_1111, 0x0000001f,
ERIAR_EXGMAC);
rtl_eri_write(tp, 0x1dc, ERIAR_MASK_1111, 0x0000003f,
ERIAR_EXGMAC);
}
/* Reset packet filter */
rtl_w1w0_eri(tp, 0xdc, ERIAR_MASK_0001, 0x00, 0x01,
ERIAR_EXGMAC);
rtl_w1w0_eri(tp, 0xdc, ERIAR_MASK_0001, 0x01, 0x00,
ERIAR_EXGMAC);
} else if (tp->mac_version == RTL_GIGA_MAC_VER_35 ||
tp->mac_version == RTL_GIGA_MAC_VER_36) {
if (RTL_R8(PHYstatus) & _1000bpsF) {
rtl_eri_write(tp, 0x1bc, ERIAR_MASK_1111, 0x00000011,
ERIAR_EXGMAC);
rtl_eri_write(tp, 0x1dc, ERIAR_MASK_1111, 0x00000005,
ERIAR_EXGMAC);
} else {
rtl_eri_write(tp, 0x1bc, ERIAR_MASK_1111, 0x0000001f,
ERIAR_EXGMAC);
rtl_eri_write(tp, 0x1dc, ERIAR_MASK_1111, 0x0000003f,
ERIAR_EXGMAC);
}
} else if (tp->mac_version == RTL_GIGA_MAC_VER_37) {
if (RTL_R8(PHYstatus) & _10bps) {
rtl_eri_write(tp, 0x1d0, ERIAR_MASK_0011, 0x4d02,
ERIAR_EXGMAC);
rtl_eri_write(tp, 0x1dc, ERIAR_MASK_0011, 0x0060,
ERIAR_EXGMAC);
} else {
rtl_eri_write(tp, 0x1d0, ERIAR_MASK_0011, 0x0000,
ERIAR_EXGMAC);
}
}
}
static void __rtl8169_check_link_status(struct net_device *dev,
struct rtl8169_private *tp,
void __iomem *ioaddr, bool pm)
{
if (tp->ecdev) {
ecdev_set_link(tp->ecdev, tp->link_ok(ioaddr) ? 1 : 0);
return;
}
if (tp->link_ok(ioaddr)) {
rtl_link_chg_patch(tp);
/* This is to cancel a scheduled suspend if there's one. */
if (pm)
pm_request_resume(&tp->pci_dev->dev);
netif_carrier_on(dev);
if (net_ratelimit())
netif_info(tp, ifup, dev, "link up\n");
} else {
netif_carrier_off(dev);
netif_info(tp, ifdown, dev, "link down\n");
if (pm)
pm_schedule_suspend(&tp->pci_dev->dev, 5000);
}
}
static void rtl8169_check_link_status(struct net_device *dev,
struct rtl8169_private *tp,
void __iomem *ioaddr)
{
__rtl8169_check_link_status(dev, tp, ioaddr, false);
}
#define WAKE_ANY (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_BCAST | WAKE_MCAST)
static u32 __rtl8169_get_wol(struct rtl8169_private *tp)
{
void __iomem *ioaddr = tp->mmio_addr;
u8 options;
u32 wolopts = 0;
options = RTL_R8(Config1);
if (!(options & PMEnable))
return 0;
options = RTL_R8(Config3);
if (options & LinkUp)
wolopts |= WAKE_PHY;
if (options & MagicPacket)
wolopts |= WAKE_MAGIC;
options = RTL_R8(Config5);
if (options & UWF)
wolopts |= WAKE_UCAST;
if (options & BWF)
wolopts |= WAKE_BCAST;
if (options & MWF)
wolopts |= WAKE_MCAST;
return wolopts;
}
static void rtl8169_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
struct rtl8169_private *tp = netdev_priv(dev);
rtl_lock_work(tp);
wol->supported = WAKE_ANY;
wol->wolopts = __rtl8169_get_wol(tp);
rtl_unlock_work(tp);
}
static void __rtl8169_set_wol(struct rtl8169_private *tp, u32 wolopts)
{
void __iomem *ioaddr = tp->mmio_addr;
unsigned int i;
static const struct {
u32 opt;
u16 reg;
u8 mask;
} cfg[] = {
{ WAKE_PHY, Config3, LinkUp },
{ WAKE_MAGIC, Config3, MagicPacket },
{ WAKE_UCAST, Config5, UWF },
{ WAKE_BCAST, Config5, BWF },
{ WAKE_MCAST, Config5, MWF },
{ WAKE_ANY, Config5, LanWake }
};
u8 options;
RTL_W8(Cfg9346, Cfg9346_Unlock);
for (i = 0; i < ARRAY_SIZE(cfg); i++) {
options = RTL_R8(cfg[i].reg) & ~cfg[i].mask;
if (wolopts & cfg[i].opt)
options |= cfg[i].mask;
RTL_W8(cfg[i].reg, options);
}
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_01 ... RTL_GIGA_MAC_VER_17:
options = RTL_R8(Config1) & ~PMEnable;
if (wolopts)
options |= PMEnable;
RTL_W8(Config1, options);
break;
default:
options = RTL_R8(Config2) & ~PME_SIGNAL;
if (wolopts)
options |= PME_SIGNAL;
RTL_W8(Config2, options);
break;
}
RTL_W8(Cfg9346, Cfg9346_Lock);
}
static int rtl8169_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
struct rtl8169_private *tp = netdev_priv(dev);
rtl_lock_work(tp);
if (wol->wolopts)
tp->features |= RTL_FEATURE_WOL;
else
tp->features &= ~RTL_FEATURE_WOL;
__rtl8169_set_wol(tp, wol->wolopts);
rtl_unlock_work(tp);
device_set_wakeup_enable(&tp->pci_dev->dev, wol->wolopts);
return 0;
}
static const char *rtl_lookup_firmware_name(struct rtl8169_private *tp)
{
return rtl_chip_infos[tp->mac_version].fw_name;
}
static void rtl8169_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
struct rtl8169_private *tp = netdev_priv(dev);
struct rtl_fw *rtl_fw = tp->rtl_fw;
strlcpy(info->driver, MODULENAME, sizeof(info->driver));
strlcpy(info->version, RTL8169_VERSION, sizeof(info->version));
strlcpy(info->bus_info, pci_name(tp->pci_dev), sizeof(info->bus_info));
BUILD_BUG_ON(sizeof(info->fw_version) < sizeof(rtl_fw->version));
if (!IS_ERR_OR_NULL(rtl_fw))
strlcpy(info->fw_version, rtl_fw->version,
sizeof(info->fw_version));
}
static int rtl8169_get_regs_len(struct net_device *dev)
{
return R8169_REGS_SIZE;
}
static int rtl8169_set_speed_tbi(struct net_device *dev,
u8 autoneg, u16 speed, u8 duplex, u32 ignored)
{
struct rtl8169_private *tp = netdev_priv(dev);
void __iomem *ioaddr = tp->mmio_addr;
int ret = 0;
u32 reg;
reg = RTL_R32(TBICSR);
if ((autoneg == AUTONEG_DISABLE) && (speed == SPEED_1000) &&
(duplex == DUPLEX_FULL)) {
RTL_W32(TBICSR, reg & ~(TBINwEnable | TBINwRestart));
} else if (autoneg == AUTONEG_ENABLE)
RTL_W32(TBICSR, reg | TBINwEnable | TBINwRestart);
else {
netif_warn(tp, link, dev,
"incorrect speed setting refused in TBI mode\n");
ret = -EOPNOTSUPP;
}
return ret;
}
static int rtl8169_set_speed_xmii(struct net_device *dev,
u8 autoneg, u16 speed, u8 duplex, u32 adv)
{
struct rtl8169_private *tp = netdev_priv(dev);
int giga_ctrl, bmcr;
int rc = -EINVAL;
rtl_writephy(tp, 0x1f, 0x0000);
if (autoneg == AUTONEG_ENABLE) {
int auto_nego;
auto_nego = rtl_readphy(tp, MII_ADVERTISE);
auto_nego &= ~(ADVERTISE_10HALF | ADVERTISE_10FULL |
ADVERTISE_100HALF | ADVERTISE_100FULL);
if (adv & ADVERTISED_10baseT_Half)
auto_nego |= ADVERTISE_10HALF;
if (adv & ADVERTISED_10baseT_Full)
auto_nego |= ADVERTISE_10FULL;
if (adv & ADVERTISED_100baseT_Half)
auto_nego |= ADVERTISE_100HALF;
if (adv & ADVERTISED_100baseT_Full)
auto_nego |= ADVERTISE_100FULL;
auto_nego |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
giga_ctrl = rtl_readphy(tp, MII_CTRL1000);
giga_ctrl &= ~(ADVERTISE_1000FULL | ADVERTISE_1000HALF);
/* The 8100e/8101e/8102e do Fast Ethernet only. */
if (tp->mii.supports_gmii) {
if (adv & ADVERTISED_1000baseT_Half)
giga_ctrl |= ADVERTISE_1000HALF;
if (adv & ADVERTISED_1000baseT_Full)
giga_ctrl |= ADVERTISE_1000FULL;
} else if (adv & (ADVERTISED_1000baseT_Half |
ADVERTISED_1000baseT_Full)) {
netif_info(tp, link, dev,
"PHY does not support 1000Mbps\n");
goto out;
}
bmcr = BMCR_ANENABLE | BMCR_ANRESTART;
rtl_writephy(tp, MII_ADVERTISE, auto_nego);
rtl_writephy(tp, MII_CTRL1000, giga_ctrl);
} else {
giga_ctrl = 0;
if (speed == SPEED_10)
bmcr = 0;
else if (speed == SPEED_100)
bmcr = BMCR_SPEED100;
else
goto out;
if (duplex == DUPLEX_FULL)
bmcr |= BMCR_FULLDPLX;
}
rtl_writephy(tp, MII_BMCR, bmcr);
if (tp->mac_version == RTL_GIGA_MAC_VER_02 ||
tp->mac_version == RTL_GIGA_MAC_VER_03) {
if ((speed == SPEED_100) && (autoneg != AUTONEG_ENABLE)) {
rtl_writephy(tp, 0x17, 0x2138);
rtl_writephy(tp, 0x0e, 0x0260);
} else {
rtl_writephy(tp, 0x17, 0x2108);
rtl_writephy(tp, 0x0e, 0x0000);
}
}
rc = 0;
out:
return rc;
}
static int rtl8169_set_speed(struct net_device *dev,
u8 autoneg, u16 speed, u8 duplex, u32 advertising)
{
struct rtl8169_private *tp = netdev_priv(dev);
int ret;
ret = tp->set_speed(dev, autoneg, speed, duplex, advertising);
if (ret < 0)
goto out;
if (!tp->ecdev && netif_running(dev) && (autoneg == AUTONEG_ENABLE) &&
(advertising & ADVERTISED_1000baseT_Full)) {
mod_timer(&tp->timer, jiffies + RTL8169_PHY_TIMEOUT);
}
out:
return ret;
}
static int rtl8169_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct rtl8169_private *tp = netdev_priv(dev);
int ret;
if (!tp->ecdev) {
del_timer_sync(&tp->timer);
}
rtl_lock_work(tp);
ret = rtl8169_set_speed(dev, cmd->autoneg, ethtool_cmd_speed(cmd),
cmd->duplex, cmd->advertising);
rtl_unlock_work(tp);
return ret;
}
static netdev_features_t rtl8169_fix_features(struct net_device *dev,
netdev_features_t features)
{
struct rtl8169_private *tp = netdev_priv(dev);
if (dev->mtu > TD_MSS_MAX)
features &= ~NETIF_F_ALL_TSO;
if (dev->mtu > JUMBO_1K &&
!rtl_chip_infos[tp->mac_version].jumbo_tx_csum)
features &= ~NETIF_F_IP_CSUM;
return features;
}
static void __rtl8169_set_features(struct net_device *dev,
netdev_features_t features)
{
struct rtl8169_private *tp = netdev_priv(dev);
netdev_features_t changed = features ^ dev->features;
void __iomem *ioaddr = tp->mmio_addr;
if (!(changed & (NETIF_F_RXALL | NETIF_F_RXCSUM | NETIF_F_HW_VLAN_RX)))
return;
if (changed & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_RX)) {
if (features & NETIF_F_RXCSUM)
tp->cp_cmd |= RxChkSum;
else
tp->cp_cmd &= ~RxChkSum;
if (dev->features & NETIF_F_HW_VLAN_RX)
tp->cp_cmd |= RxVlan;
else
tp->cp_cmd &= ~RxVlan;
RTL_W16(CPlusCmd, tp->cp_cmd);
RTL_R16(CPlusCmd);
}
if (changed & NETIF_F_RXALL) {
int tmp = (RTL_R32(RxConfig) & ~(AcceptErr | AcceptRunt));
if (features & NETIF_F_RXALL)
tmp |= (AcceptErr | AcceptRunt);
RTL_W32(RxConfig, tmp);
}
}
static int rtl8169_set_features(struct net_device *dev,
netdev_features_t features)
{
struct rtl8169_private *tp = netdev_priv(dev);
rtl_lock_work(tp);
__rtl8169_set_features(dev, features);
rtl_unlock_work(tp);
return 0;
}
static inline u32 rtl8169_tx_vlan_tag(struct sk_buff *skb)
{
return (vlan_tx_tag_present(skb)) ?
TxVlanTag | swab16(vlan_tx_tag_get(skb)) : 0x00;
}
static void rtl8169_rx_vlan_tag(struct RxDesc *desc, struct sk_buff *skb)
{
u32 opts2 = le32_to_cpu(desc->opts2);
if (opts2 & RxVlanTag)
__vlan_hwaccel_put_tag(skb, swab16(opts2 & 0xffff));
}
static int rtl8169_gset_tbi(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct rtl8169_private *tp = netdev_priv(dev);
void __iomem *ioaddr = tp->mmio_addr;
u32 status;
cmd->supported =
SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg | SUPPORTED_FIBRE;
cmd->port = PORT_FIBRE;
cmd->transceiver = XCVR_INTERNAL;
status = RTL_R32(TBICSR);
cmd->advertising = (status & TBINwEnable) ? ADVERTISED_Autoneg : 0;
cmd->autoneg = !!(status & TBINwEnable);
ethtool_cmd_speed_set(cmd, SPEED_1000);
cmd->duplex = DUPLEX_FULL; /* Always set */
return 0;
}
static int rtl8169_gset_xmii(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct rtl8169_private *tp = netdev_priv(dev);
return mii_ethtool_gset(&tp->mii, cmd);
}
static int rtl8169_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct rtl8169_private *tp = netdev_priv(dev);
int rc;
rtl_lock_work(tp);
rc = tp->get_settings(dev, cmd);
rtl_unlock_work(tp);
return rc;
}
static void rtl8169_get_regs(struct net_device *dev, struct ethtool_regs *regs,
void *p)
{
struct rtl8169_private *tp = netdev_priv(dev);
if (regs->len > R8169_REGS_SIZE)
regs->len = R8169_REGS_SIZE;
rtl_lock_work(tp);
memcpy_fromio(p, tp->mmio_addr, regs->len);
rtl_unlock_work(tp);
}
static u32 rtl8169_get_msglevel(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
return tp->msg_enable;
}
static void rtl8169_set_msglevel(struct net_device *dev, u32 value)
{
struct rtl8169_private *tp = netdev_priv(dev);
tp->msg_enable = value;
}
static const char rtl8169_gstrings[][ETH_GSTRING_LEN] = {
"tx_packets",
"rx_packets",
"tx_errors",
"rx_errors",
"rx_missed",
"align_errors",
"tx_single_collisions",
"tx_multi_collisions",
"unicast",
"broadcast",
"multicast",
"tx_aborted",
"tx_underrun",
};
static int rtl8169_get_sset_count(struct net_device *dev, int sset)
{
switch (sset) {
case ETH_SS_STATS:
return ARRAY_SIZE(rtl8169_gstrings);
default:
return -EOPNOTSUPP;
}
}
DECLARE_RTL_COND(rtl_counters_cond)
{
void __iomem *ioaddr = tp->mmio_addr;
return RTL_R32(CounterAddrLow) & CounterDump;
}
static void rtl8169_update_counters(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
void __iomem *ioaddr = tp->mmio_addr;
struct device *d = &tp->pci_dev->dev;
struct rtl8169_counters *counters;
dma_addr_t paddr;
u32 cmd;
/*
* Some chips are unable to dump tally counters when the receiver
* is disabled.
*/
if ((RTL_R8(ChipCmd) & CmdRxEnb) == 0)
return;
counters = dma_alloc_coherent(d, sizeof(*counters), &paddr, GFP_KERNEL);
if (!counters)
return;
RTL_W32(CounterAddrHigh, (u64)paddr >> 32);
cmd = (u64)paddr & DMA_BIT_MASK(32);
RTL_W32(CounterAddrLow, cmd);
RTL_W32(CounterAddrLow, cmd | CounterDump);
if (rtl_udelay_loop_wait_low(tp, &rtl_counters_cond, 10, 1000))
memcpy(&tp->counters, counters, sizeof(*counters));
RTL_W32(CounterAddrLow, 0);
RTL_W32(CounterAddrHigh, 0);
dma_free_coherent(d, sizeof(*counters), counters, paddr);
}
static void rtl8169_get_ethtool_stats(struct net_device *dev,
struct ethtool_stats *stats, u64 *data)
{
struct rtl8169_private *tp = netdev_priv(dev);
ASSERT_RTNL();
rtl8169_update_counters(dev);
data[0] = le64_to_cpu(tp->counters.tx_packets);
data[1] = le64_to_cpu(tp->counters.rx_packets);
data[2] = le64_to_cpu(tp->counters.tx_errors);
data[3] = le32_to_cpu(tp->counters.rx_errors);
data[4] = le16_to_cpu(tp->counters.rx_missed);
data[5] = le16_to_cpu(tp->counters.align_errors);
data[6] = le32_to_cpu(tp->counters.tx_one_collision);
data[7] = le32_to_cpu(tp->counters.tx_multi_collision);
data[8] = le64_to_cpu(tp->counters.rx_unicast);
data[9] = le64_to_cpu(tp->counters.rx_broadcast);
data[10] = le32_to_cpu(tp->counters.rx_multicast);
data[11] = le16_to_cpu(tp->counters.tx_aborted);
data[12] = le16_to_cpu(tp->counters.tx_underun);
}
static void rtl8169_get_strings(struct net_device *dev, u32 stringset, u8 *data)
{
switch(stringset) {
case ETH_SS_STATS:
memcpy(data, *rtl8169_gstrings, sizeof(rtl8169_gstrings));
break;
}
}
static const struct ethtool_ops rtl8169_ethtool_ops = {
.get_drvinfo = rtl8169_get_drvinfo,
.get_regs_len = rtl8169_get_regs_len,
.get_link = ethtool_op_get_link,
.get_settings = rtl8169_get_settings,
.set_settings = rtl8169_set_settings,
.get_msglevel = rtl8169_get_msglevel,
.set_msglevel = rtl8169_set_msglevel,
.get_regs = rtl8169_get_regs,
.get_wol = rtl8169_get_wol,
.set_wol = rtl8169_set_wol,
.get_strings = rtl8169_get_strings,
.get_sset_count = rtl8169_get_sset_count,
.get_ethtool_stats = rtl8169_get_ethtool_stats,
.get_ts_info = ethtool_op_get_ts_info,
};
static void rtl8169_get_mac_version(struct rtl8169_private *tp,
struct net_device *dev, u8 default_version)
{
void __iomem *ioaddr = tp->mmio_addr;
/*
* The driver currently handles the 8168Bf and the 8168Be identically
* but they can be identified more specifically through the test below
* if needed:
*
* (RTL_R32(TxConfig) & 0x700000) == 0x500000 ? 8168Bf : 8168Be
*
* Same thing for the 8101Eb and the 8101Ec:
*
* (RTL_R32(TxConfig) & 0x700000) == 0x200000 ? 8101Eb : 8101Ec
*/
static const struct rtl_mac_info {
u32 mask;
u32 val;
int mac_version;
} mac_info[] = {
/* 8168G family. */
{ 0x7cf00000, 0x4c100000, RTL_GIGA_MAC_VER_41 },
{ 0x7cf00000, 0x4c000000, RTL_GIGA_MAC_VER_40 },
/* 8168F family. */
{ 0x7c800000, 0x48800000, RTL_GIGA_MAC_VER_38 },
{ 0x7cf00000, 0x48100000, RTL_GIGA_MAC_VER_36 },
{ 0x7cf00000, 0x48000000, RTL_GIGA_MAC_VER_35 },
/* 8168E family. */
{ 0x7c800000, 0x2c800000, RTL_GIGA_MAC_VER_34 },
{ 0x7cf00000, 0x2c200000, RTL_GIGA_MAC_VER_33 },
{ 0x7cf00000, 0x2c100000, RTL_GIGA_MAC_VER_32 },
{ 0x7c800000, 0x2c000000, RTL_GIGA_MAC_VER_33 },
/* 8168D family. */
{ 0x7cf00000, 0x28300000, RTL_GIGA_MAC_VER_26 },
{ 0x7cf00000, 0x28100000, RTL_GIGA_MAC_VER_25 },
{ 0x7c800000, 0x28000000, RTL_GIGA_MAC_VER_26 },
/* 8168DP family. */
{ 0x7cf00000, 0x28800000, RTL_GIGA_MAC_VER_27 },
{ 0x7cf00000, 0x28a00000, RTL_GIGA_MAC_VER_28 },
{ 0x7cf00000, 0x28b00000, RTL_GIGA_MAC_VER_31 },
/* 8168C family. */
{ 0x7cf00000, 0x3cb00000, RTL_GIGA_MAC_VER_24 },
{ 0x7cf00000, 0x3c900000, RTL_GIGA_MAC_VER_23 },
{ 0x7cf00000, 0x3c800000, RTL_GIGA_MAC_VER_18 },
{ 0x7c800000, 0x3c800000, RTL_GIGA_MAC_VER_24 },
{ 0x7cf00000, 0x3c000000, RTL_GIGA_MAC_VER_19 },
{ 0x7cf00000, 0x3c200000, RTL_GIGA_MAC_VER_20 },
{ 0x7cf00000, 0x3c300000, RTL_GIGA_MAC_VER_21 },
{ 0x7cf00000, 0x3c400000, RTL_GIGA_MAC_VER_22 },
{ 0x7c800000, 0x3c000000, RTL_GIGA_MAC_VER_22 },
/* 8168B family. */
{ 0x7cf00000, 0x38000000, RTL_GIGA_MAC_VER_12 },
{ 0x7cf00000, 0x38500000, RTL_GIGA_MAC_VER_17 },
{ 0x7c800000, 0x38000000, RTL_GIGA_MAC_VER_17 },
{ 0x7c800000, 0x30000000, RTL_GIGA_MAC_VER_11 },
/* 8101 family. */
{ 0x7cf00000, 0x44900000, RTL_GIGA_MAC_VER_39 },
{ 0x7c800000, 0x44800000, RTL_GIGA_MAC_VER_39 },
{ 0x7c800000, 0x44000000, RTL_GIGA_MAC_VER_37 },
{ 0x7cf00000, 0x40b00000, RTL_GIGA_MAC_VER_30 },
{ 0x7cf00000, 0x40a00000, RTL_GIGA_MAC_VER_30 },
{ 0x7cf00000, 0x40900000, RTL_GIGA_MAC_VER_29 },
{ 0x7c800000, 0x40800000, RTL_GIGA_MAC_VER_30 },
{ 0x7cf00000, 0x34a00000, RTL_GIGA_MAC_VER_09 },
{ 0x7cf00000, 0x24a00000, RTL_GIGA_MAC_VER_09 },
{ 0x7cf00000, 0x34900000, RTL_GIGA_MAC_VER_08 },
{ 0x7cf00000, 0x24900000, RTL_GIGA_MAC_VER_08 },
{ 0x7cf00000, 0x34800000, RTL_GIGA_MAC_VER_07 },
{ 0x7cf00000, 0x24800000, RTL_GIGA_MAC_VER_07 },
{ 0x7cf00000, 0x34000000, RTL_GIGA_MAC_VER_13 },
{ 0x7cf00000, 0x34300000, RTL_GIGA_MAC_VER_10 },
{ 0x7cf00000, 0x34200000, RTL_GIGA_MAC_VER_16 },
{ 0x7c800000, 0x34800000, RTL_GIGA_MAC_VER_09 },
{ 0x7c800000, 0x24800000, RTL_GIGA_MAC_VER_09 },
{ 0x7c800000, 0x34000000, RTL_GIGA_MAC_VER_16 },
/* FIXME: where did these entries come from ? -- FR */
{ 0xfc800000, 0x38800000, RTL_GIGA_MAC_VER_15 },
{ 0xfc800000, 0x30800000, RTL_GIGA_MAC_VER_14 },
/* 8110 family. */
{ 0xfc800000, 0x98000000, RTL_GIGA_MAC_VER_06 },
{ 0xfc800000, 0x18000000, RTL_GIGA_MAC_VER_05 },
{ 0xfc800000, 0x10000000, RTL_GIGA_MAC_VER_04 },
{ 0xfc800000, 0x04000000, RTL_GIGA_MAC_VER_03 },
{ 0xfc800000, 0x00800000, RTL_GIGA_MAC_VER_02 },
{ 0xfc800000, 0x00000000, RTL_GIGA_MAC_VER_01 },
/* Catch-all */
{ 0x00000000, 0x00000000, RTL_GIGA_MAC_NONE }
};
const struct rtl_mac_info *p = mac_info;
u32 reg;
reg = RTL_R32(TxConfig);
while ((reg & p->mask) != p->val)
p++;
tp->mac_version = p->mac_version;
if (tp->mac_version == RTL_GIGA_MAC_NONE) {
netif_notice(tp, probe, dev,
"unknown MAC, using family default\n");
tp->mac_version = default_version;
}
}
static void rtl8169_print_mac_version(struct rtl8169_private *tp)
{
dprintk("mac_version = 0x%02x\n", tp->mac_version);
}
struct phy_reg {
u16 reg;
u16 val;
};
static void rtl_writephy_batch(struct rtl8169_private *tp,
const struct phy_reg *regs, int len)
{
while (len-- > 0) {
rtl_writephy(tp, regs->reg, regs->val);
regs++;
}
}
#define PHY_READ 0x00000000
#define PHY_DATA_OR 0x10000000
#define PHY_DATA_AND 0x20000000
#define PHY_BJMPN 0x30000000
#define PHY_READ_EFUSE 0x40000000
#define PHY_READ_MAC_BYTE 0x50000000
#define PHY_WRITE_MAC_BYTE 0x60000000
#define PHY_CLEAR_READCOUNT 0x70000000
#define PHY_WRITE 0x80000000
#define PHY_READCOUNT_EQ_SKIP 0x90000000
#define PHY_COMP_EQ_SKIPN 0xa0000000
#define PHY_COMP_NEQ_SKIPN 0xb0000000
#define PHY_WRITE_PREVIOUS 0xc0000000
#define PHY_SKIPN 0xd0000000
#define PHY_DELAY_MS 0xe0000000
#define PHY_WRITE_ERI_WORD 0xf0000000
struct fw_info {
u32 magic;
char version[RTL_VER_SIZE];
__le32 fw_start;
__le32 fw_len;
u8 chksum;
} __packed;
#define FW_OPCODE_SIZE sizeof(typeof(*((struct rtl_fw_phy_action *)0)->code))
static bool rtl_fw_format_ok(struct rtl8169_private *tp, struct rtl_fw *rtl_fw)
{
const struct firmware *fw = rtl_fw->fw;
struct fw_info *fw_info = (struct fw_info *)fw->data;
struct rtl_fw_phy_action *pa = &rtl_fw->phy_action;
char *version = rtl_fw->version;
bool rc = false;
if (fw->size < FW_OPCODE_SIZE)
goto out;
if (!fw_info->magic) {
size_t i, size, start;
u8 checksum = 0;
if (fw->size < sizeof(*fw_info))
goto out;
for (i = 0; i < fw->size; i++)
checksum += fw->data[i];
if (checksum != 0)
goto out;
start = le32_to_cpu(fw_info->fw_start);
if (start > fw->size)
goto out;
size = le32_to_cpu(fw_info->fw_len);
if (size > (fw->size - start) / FW_OPCODE_SIZE)
goto out;
memcpy(version, fw_info->version, RTL_VER_SIZE);
pa->code = (__le32 *)(fw->data + start);
pa->size = size;
} else {
if (fw->size % FW_OPCODE_SIZE)
goto out;
strlcpy(version, rtl_lookup_firmware_name(tp), RTL_VER_SIZE);
pa->code = (__le32 *)fw->data;
pa->size = fw->size / FW_OPCODE_SIZE;
}
version[RTL_VER_SIZE - 1] = 0;
rc = true;
out:
return rc;
}
static bool rtl_fw_data_ok(struct rtl8169_private *tp, struct net_device *dev,
struct rtl_fw_phy_action *pa)
{
bool rc = false;
size_t index;
for (index = 0; index < pa->size; index++) {
u32 action = le32_to_cpu(pa->code[index]);
u32 regno = (action & 0x0fff0000) >> 16;
switch(action & 0xf0000000) {
case PHY_READ:
case PHY_DATA_OR:
case PHY_DATA_AND:
case PHY_READ_EFUSE:
case PHY_CLEAR_READCOUNT:
case PHY_WRITE:
case PHY_WRITE_PREVIOUS:
case PHY_DELAY_MS:
break;
case PHY_BJMPN:
if (regno > index) {
netif_err(tp, ifup, tp->dev,
"Out of range of firmware\n");
goto out;
}
break;
case PHY_READCOUNT_EQ_SKIP:
if (index + 2 >= pa->size) {
netif_err(tp, ifup, tp->dev,
"Out of range of firmware\n");
goto out;
}
break;
case PHY_COMP_EQ_SKIPN:
case PHY_COMP_NEQ_SKIPN:
case PHY_SKIPN:
if (index + 1 + regno >= pa->size) {
netif_err(tp, ifup, tp->dev,
"Out of range of firmware\n");
goto out;
}
break;
case PHY_READ_MAC_BYTE:
case PHY_WRITE_MAC_BYTE:
case PHY_WRITE_ERI_WORD:
default:
netif_err(tp, ifup, tp->dev,
"Invalid action 0x%08x\n", action);
goto out;
}
}
rc = true;
out:
return rc;
}
static int rtl_check_firmware(struct rtl8169_private *tp, struct rtl_fw *rtl_fw)
{
struct net_device *dev = tp->dev;
int rc = -EINVAL;
if (!rtl_fw_format_ok(tp, rtl_fw)) {
netif_err(tp, ifup, dev, "invalid firwmare\n");
goto out;
}
if (rtl_fw_data_ok(tp, dev, &rtl_fw->phy_action))
rc = 0;
out:
return rc;
}
static void rtl_phy_write_fw(struct rtl8169_private *tp, struct rtl_fw *rtl_fw)
{
struct rtl_fw_phy_action *pa = &rtl_fw->phy_action;
u32 predata, count;
size_t index;
predata = count = 0;
for (index = 0; index < pa->size; ) {
u32 action = le32_to_cpu(pa->code[index]);
u32 data = action & 0x0000ffff;
u32 regno = (action & 0x0fff0000) >> 16;
if (!action)
break;
switch(action & 0xf0000000) {
case PHY_READ:
predata = rtl_readphy(tp, regno);
count++;
index++;
break;
case PHY_DATA_OR:
predata |= data;
index++;
break;
case PHY_DATA_AND:
predata &= data;
index++;
break;
case PHY_BJMPN:
index -= regno;
break;
case PHY_READ_EFUSE:
predata = rtl8168d_efuse_read(tp, regno);
index++;
break;
case PHY_CLEAR_READCOUNT:
count = 0;
index++;
break;
case PHY_WRITE:
rtl_writephy(tp, regno, data);
index++;
break;
case PHY_READCOUNT_EQ_SKIP:
index += (count == data) ? 2 : 1;
break;
case PHY_COMP_EQ_SKIPN:
if (predata == data)
index += regno;
index++;
break;
case PHY_COMP_NEQ_SKIPN:
if (predata != data)
index += regno;
index++;
break;
case PHY_WRITE_PREVIOUS:
rtl_writephy(tp, regno, predata);
index++;
break;
case PHY_SKIPN:
index += regno + 1;
break;
case PHY_DELAY_MS:
mdelay(data);
index++;
break;
case PHY_READ_MAC_BYTE:
case PHY_WRITE_MAC_BYTE:
case PHY_WRITE_ERI_WORD:
default:
BUG();
}
}
}
static void rtl_release_firmware(struct rtl8169_private *tp)
{
if (!IS_ERR_OR_NULL(tp->rtl_fw)) {
release_firmware(tp->rtl_fw->fw);
kfree(tp->rtl_fw);
}
tp->rtl_fw = RTL_FIRMWARE_UNKNOWN;
}
static void rtl_apply_firmware(struct rtl8169_private *tp)
{
struct rtl_fw *rtl_fw = tp->rtl_fw;
/* TODO: release firmware once rtl_phy_write_fw signals failures. */
if (!IS_ERR_OR_NULL(rtl_fw))
rtl_phy_write_fw(tp, rtl_fw);
}
static void rtl_apply_firmware_cond(struct rtl8169_private *tp, u8 reg, u16 val)
{
if (rtl_readphy(tp, reg) != val)
netif_warn(tp, hw, tp->dev, "chipset not ready for firmware\n");
else
rtl_apply_firmware(tp);
}
static void rtl8169s_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
{ 0x1f, 0x0001 },
{ 0x06, 0x006e },
{ 0x08, 0x0708 },
{ 0x15, 0x4000 },
{ 0x18, 0x65c7 },
{ 0x1f, 0x0001 },
{ 0x03, 0x00a1 },
{ 0x02, 0x0008 },
{ 0x01, 0x0120 },
{ 0x00, 0x1000 },
{ 0x04, 0x0800 },
{ 0x04, 0x0000 },
{ 0x03, 0xff41 },
{ 0x02, 0xdf60 },
{ 0x01, 0x0140 },
{ 0x00, 0x0077 },
{ 0x04, 0x7800 },
{ 0x04, 0x7000 },
{ 0x03, 0x802f },
{ 0x02, 0x4f02 },
{ 0x01, 0x0409 },
{ 0x00, 0xf0f9 },
{ 0x04, 0x9800 },
{ 0x04, 0x9000 },
{ 0x03, 0xdf01 },
{ 0x02, 0xdf20 },
{ 0x01, 0xff95 },
{ 0x00, 0xba00 },
{ 0x04, 0xa800 },
{ 0x04, 0xa000 },
{ 0x03, 0xff41 },
{ 0x02, 0xdf20 },
{ 0x01, 0x0140 },
{ 0x00, 0x00bb },
{ 0x04, 0xb800 },
{ 0x04, 0xb000 },
{ 0x03, 0xdf41 },
{ 0x02, 0xdc60 },
{ 0x01, 0x6340 },
{ 0x00, 0x007d },
{ 0x04, 0xd800 },
{ 0x04, 0xd000 },
{ 0x03, 0xdf01 },
{ 0x02, 0xdf20 },
{ 0x01, 0x100a },
{ 0x00, 0xa0ff },
{ 0x04, 0xf800 },
{ 0x04, 0xf000 },
{ 0x1f, 0x0000 },
{ 0x0b, 0x0000 },
{ 0x00, 0x9200 }
};
rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
}
static void rtl8169sb_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
{ 0x1f, 0x0002 },
{ 0x01, 0x90d0 },
{ 0x1f, 0x0000 }
};
rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
}
static void rtl8169scd_hw_phy_config_quirk(struct rtl8169_private *tp)
{
struct pci_dev *pdev = tp->pci_dev;
if ((pdev->subsystem_vendor != PCI_VENDOR_ID_GIGABYTE) ||
(pdev->subsystem_device != 0xe000))
return;
rtl_writephy(tp, 0x1f, 0x0001);
rtl_writephy(tp, 0x10, 0xf01b);
rtl_writephy(tp, 0x1f, 0x0000);
}
static void rtl8169scd_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
{ 0x1f, 0x0001 },
{ 0x04, 0x0000 },
{ 0x03, 0x00a1 },
{ 0x02, 0x0008 },
{ 0x01, 0x0120 },
{ 0x00, 0x1000 },
{ 0x04, 0x0800 },
{ 0x04, 0x9000 },
{ 0x03, 0x802f },
{ 0x02, 0x4f02 },
{ 0x01, 0x0409 },
{ 0x00, 0xf099 },
{ 0x04, 0x9800 },
{ 0x04, 0xa000 },
{ 0x03, 0xdf01 },
{ 0x02, 0xdf20 },
{ 0x01, 0xff95 },
{ 0x00, 0xba00 },
{ 0x04, 0xa800 },
{ 0x04, 0xf000 },
{ 0x03, 0xdf01 },
{ 0x02, 0xdf20 },
{ 0x01, 0x101a },
{ 0x00, 0xa0ff },
{ 0x04, 0xf800 },
{ 0x04, 0x0000 },
{ 0x1f, 0x0000 },
{ 0x1f, 0x0001 },
{ 0x10, 0xf41b },
{ 0x14, 0xfb54 },
{ 0x18, 0xf5c7 },
{ 0x1f, 0x0000 },
{ 0x1f, 0x0001 },
{ 0x17, 0x0cc0 },
{ 0x1f, 0x0000 }
};
rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
rtl8169scd_hw_phy_config_quirk(tp);
}
static void rtl8169sce_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
{ 0x1f, 0x0001 },
{ 0x04, 0x0000 },
{ 0x03, 0x00a1 },
{ 0x02, 0x0008 },
{ 0x01, 0x0120 },
{ 0x00, 0x1000 },
{ 0x04, 0x0800 },
{ 0x04, 0x9000 },
{ 0x03, 0x802f },
{ 0x02, 0x4f02 },
{ 0x01, 0x0409 },
{ 0x00, 0xf099 },
{ 0x04, 0x9800 },
{ 0x04, 0xa000 },
{ 0x03, 0xdf01 },
{ 0x02, 0xdf20 },
{ 0x01, 0xff95 },
{ 0x00, 0xba00 },
{ 0x04, 0xa800 },
{ 0x04, 0xf000 },
{ 0x03, 0xdf01 },
{ 0x02, 0xdf20 },
{ 0x01, 0x101a },
{ 0x00, 0xa0ff },
{ 0x04, 0xf800 },
{ 0x04, 0x0000 },
{ 0x1f, 0x0000 },
{ 0x1f, 0x0001 },
{ 0x0b, 0x8480 },
{ 0x1f, 0x0000 },
{ 0x1f, 0x0001 },
{ 0x18, 0x67c7 },
{ 0x04, 0x2000 },
{ 0x03, 0x002f },
{ 0x02, 0x4360 },
{ 0x01, 0x0109 },
{ 0x00, 0x3022 },
{ 0x04, 0x2800 },
{ 0x1f, 0x0000 },
{ 0x1f, 0x0001 },
{ 0x17, 0x0cc0 },
{ 0x1f, 0x0000 }
};
rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
}
static void rtl8168bb_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
{ 0x10, 0xf41b },
{ 0x1f, 0x0000 }
};
rtl_writephy(tp, 0x1f, 0x0001);
rtl_patchphy(tp, 0x16, 1 << 0);
rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
}
static void rtl8168bef_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
{ 0x1f, 0x0001 },
{ 0x10, 0xf41b },
{ 0x1f, 0x0000 }
};
rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
}
static void rtl8168cp_1_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
{ 0x1f, 0x0000 },
{ 0x1d, 0x0f00 },
{ 0x1f, 0x0002 },
{ 0x0c, 0x1ec8 },
{ 0x1f, 0x0000 }
};
rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
}
static void rtl8168cp_2_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
{ 0x1f, 0x0001 },
{ 0x1d, 0x3d98 },
{ 0x1f, 0x0000 }
};
rtl_writephy(tp, 0x1f, 0x0000);
rtl_patchphy(tp, 0x14, 1 << 5);
rtl_patchphy(tp, 0x0d, 1 << 5);
rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
}
static void rtl8168c_1_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
{ 0x1f, 0x0001 },
{ 0x12, 0x2300 },
{ 0x1f, 0x0002 },
{ 0x00, 0x88d4 },
{ 0x01, 0x82b1 },
{ 0x03, 0x7002 },
{ 0x08, 0x9e30 },
{ 0x09, 0x01f0 },
{ 0x0a, 0x5500 },
{ 0x0c, 0x00c8 },
{ 0x1f, 0x0003 },
{ 0x12, 0xc096 },
{ 0x16, 0x000a },
{ 0x1f, 0x0000 },
{ 0x1f, 0x0000 },
{ 0x09, 0x2000 },
{ 0x09, 0x0000 }
};
rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
rtl_patchphy(tp, 0x14, 1 << 5);
rtl_patchphy(tp, 0x0d, 1 << 5);
rtl_writephy(tp, 0x1f, 0x0000);
}
static void rtl8168c_2_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
{ 0x1f, 0x0001 },
{ 0x12, 0x2300 },
{ 0x03, 0x802f },
{ 0x02, 0x4f02 },
{ 0x01, 0x0409 },
{ 0x00, 0xf099 },
{ 0x04, 0x9800 },
{ 0x04, 0x9000 },
{ 0x1d, 0x3d98 },
{ 0x1f, 0x0002 },
{ 0x0c, 0x7eb8 },
{ 0x06, 0x0761 },
{ 0x1f, 0x0003 },
{ 0x16, 0x0f0a },
{ 0x1f, 0x0000 }
};
rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
rtl_patchphy(tp, 0x16, 1 << 0);
rtl_patchphy(tp, 0x14, 1 << 5);
rtl_patchphy(tp, 0x0d, 1 << 5);
rtl_writephy(tp, 0x1f, 0x0000);
}
static void rtl8168c_3_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
{ 0x1f, 0x0001 },
{ 0x12, 0x2300 },
{ 0x1d, 0x3d98 },
{ 0x1f, 0x0002 },
{ 0x0c, 0x7eb8 },
{ 0x06, 0x5461 },
{ 0x1f, 0x0003 },
{ 0x16, 0x0f0a },
{ 0x1f, 0x0000 }
};
rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
rtl_patchphy(tp, 0x16, 1 << 0);
rtl_patchphy(tp, 0x14, 1 << 5);
rtl_patchphy(tp, 0x0d, 1 << 5);
rtl_writephy(tp, 0x1f, 0x0000);
}
static void rtl8168c_4_hw_phy_config(struct rtl8169_private *tp)
{
rtl8168c_3_hw_phy_config(tp);
}
static void rtl8168d_1_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init_0[] = {
/* Channel Estimation */
{ 0x1f, 0x0001 },
{ 0x06, 0x4064 },
{ 0x07, 0x2863 },
{ 0x08, 0x059c },
{ 0x09, 0x26b4 },
{ 0x0a, 0x6a19 },
{ 0x0b, 0xdcc8 },
{ 0x10, 0xf06d },
{ 0x14, 0x7f68 },
{ 0x18, 0x7fd9 },
{ 0x1c, 0xf0ff },
{ 0x1d, 0x3d9c },
{ 0x1f, 0x0003 },
{ 0x12, 0xf49f },
{ 0x13, 0x070b },
{ 0x1a, 0x05ad },
{ 0x14, 0x94c0 },
/*
* Tx Error Issue
* Enhance line driver power
*/
{ 0x1f, 0x0002 },
{ 0x06, 0x5561 },
{ 0x1f, 0x0005 },
{ 0x05, 0x8332 },
{ 0x06, 0x5561 },
/*
* Can not link to 1Gbps with bad cable
* Decrease SNR threshold form 21.07dB to 19.04dB
*/
{ 0x1f, 0x0001 },
{ 0x17, 0x0cc0 },
{ 0x1f, 0x0000 },
{ 0x0d, 0xf880 }
};
rtl_writephy_batch(tp, phy_reg_init_0, ARRAY_SIZE(phy_reg_init_0));
/*
* Rx Error Issue
* Fine Tune Switching regulator parameter
*/
rtl_writephy(tp, 0x1f, 0x0002);
rtl_w1w0_phy(tp, 0x0b, 0x0010, 0x00ef);
rtl_w1w0_phy(tp, 0x0c, 0xa200, 0x5d00);
if (rtl8168d_efuse_read(tp, 0x01) == 0xb1) {
static const struct phy_reg phy_reg_init[] = {
{ 0x1f, 0x0002 },
{ 0x05, 0x669a },
{ 0x1f, 0x0005 },
{ 0x05, 0x8330 },
{ 0x06, 0x669a },
{ 0x1f, 0x0002 }
};
int val;
rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
val = rtl_readphy(tp, 0x0d);
if ((val & 0x00ff) != 0x006c) {
static const u32 set[] = {
0x0065, 0x0066, 0x0067, 0x0068,
0x0069, 0x006a, 0x006b, 0x006c
};
int i;
rtl_writephy(tp, 0x1f, 0x0002);
val &= 0xff00;
for (i = 0; i < ARRAY_SIZE(set); i++)
rtl_writephy(tp, 0x0d, val | set[i]);
}
} else {
static const struct phy_reg phy_reg_init[] = {
{ 0x1f, 0x0002 },
{ 0x05, 0x6662 },
{ 0x1f, 0x0005 },
{ 0x05, 0x8330 },
{ 0x06, 0x6662 }
};
rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
}
/* RSET couple improve */
rtl_writephy(tp, 0x1f, 0x0002);
rtl_patchphy(tp, 0x0d, 0x0300);
rtl_patchphy(tp, 0x0f, 0x0010);
/* Fine tune PLL performance */
rtl_writephy(tp, 0x1f, 0x0002);
rtl_w1w0_phy(tp, 0x02, 0x0100, 0x0600);
rtl_w1w0_phy(tp, 0x03, 0x0000, 0xe000);
rtl_writephy(tp, 0x1f, 0x0005);
rtl_writephy(tp, 0x05, 0x001b);
rtl_apply_firmware_cond(tp, MII_EXPANSION, 0xbf00);
rtl_writephy(tp, 0x1f, 0x0000);
}
static void rtl8168d_2_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init_0[] = {
/* Channel Estimation */
{ 0x1f, 0x0001 },
{ 0x06, 0x4064 },
{ 0x07, 0x2863 },
{ 0x08, 0x059c },
{ 0x09, 0x26b4 },
{ 0x0a, 0x6a19 },
{ 0x0b, 0xdcc8 },
{ 0x10, 0xf06d },
{ 0x14, 0x7f68 },
{ 0x18, 0x7fd9 },
{ 0x1c, 0xf0ff },
{ 0x1d, 0x3d9c },
{ 0x1f, 0x0003 },
{ 0x12, 0xf49f },
{ 0x13, 0x070b },
{ 0x1a, 0x05ad },
{ 0x14, 0x94c0 },
/*
* Tx Error Issue
* Enhance line driver power
*/
{ 0x1f, 0x0002 },
{ 0x06, 0x5561 },
{ 0x1f, 0x0005 },
{ 0x05, 0x8332 },
{ 0x06, 0x5561 },
/*
* Can not link to 1Gbps with bad cable
* Decrease SNR threshold form 21.07dB to 19.04dB
*/
{ 0x1f, 0x0001 },
{ 0x17, 0x0cc0 },
{ 0x1f, 0x0000 },
{ 0x0d, 0xf880 }
};
rtl_writephy_batch(tp, phy_reg_init_0, ARRAY_SIZE(phy_reg_init_0));
if (rtl8168d_efuse_read(tp, 0x01) == 0xb1) {
static const struct phy_reg phy_reg_init[] = {
{ 0x1f, 0x0002 },
{ 0x05, 0x669a },
{ 0x1f, 0x0005 },
{ 0x05, 0x8330 },
{ 0x06, 0x669a },
{ 0x1f, 0x0002 }
};
int val;
rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
val = rtl_readphy(tp, 0x0d);
if ((val & 0x00ff) != 0x006c) {
static const u32 set[] = {
0x0065, 0x0066, 0x0067, 0x0068,
0x0069, 0x006a, 0x006b, 0x006c
};
int i;
rtl_writephy(tp, 0x1f, 0x0002);
val &= 0xff00;
for (i = 0; i < ARRAY_SIZE(set); i++)
rtl_writephy(tp, 0x0d, val | set[i]);
}
} else {
static const struct phy_reg phy_reg_init[] = {
{ 0x1f, 0x0002 },
{ 0x05, 0x2642 },
{ 0x1f, 0x0005 },
{ 0x05, 0x8330 },
{ 0x06, 0x2642 }
};
rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
}
/* Fine tune PLL performance */
rtl_writephy(tp, 0x1f, 0x0002);
rtl_w1w0_phy(tp, 0x02, 0x0100, 0x0600);
rtl_w1w0_phy(tp, 0x03, 0x0000, 0xe000);
/* Switching regulator Slew rate */
rtl_writephy(tp, 0x1f, 0x0002);
rtl_patchphy(tp, 0x0f, 0x0017);
rtl_writephy(tp, 0x1f, 0x0005);
rtl_writephy(tp, 0x05, 0x001b);
rtl_apply_firmware_cond(tp, MII_EXPANSION, 0xb300);
rtl_writephy(tp, 0x1f, 0x0000);
}
static void rtl8168d_3_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
{ 0x1f, 0x0002 },
{ 0x10, 0x0008 },
{ 0x0d, 0x006c },
{ 0x1f, 0x0000 },
{ 0x0d, 0xf880 },
{ 0x1f, 0x0001 },
{ 0x17, 0x0cc0 },
{ 0x1f, 0x0001 },
{ 0x0b, 0xa4d8 },
{ 0x09, 0x281c },
{ 0x07, 0x2883 },
{ 0x0a, 0x6b35 },
{ 0x1d, 0x3da4 },
{ 0x1c, 0xeffd },
{ 0x14, 0x7f52 },
{ 0x18, 0x7fc6 },
{ 0x08, 0x0601 },
{ 0x06, 0x4063 },
{ 0x10, 0xf074 },
{ 0x1f, 0x0003 },
{ 0x13, 0x0789 },
{ 0x12, 0xf4bd },
{ 0x1a, 0x04fd },
{ 0x14, 0x84b0 },
{ 0x1f, 0x0000 },
{ 0x00, 0x9200 },
{ 0x1f, 0x0005 },
{ 0x01, 0x0340 },
{ 0x1f, 0x0001 },
{ 0x04, 0x4000 },
{ 0x03, 0x1d21 },
{ 0x02, 0x0c32 },
{ 0x01, 0x0200 },
{ 0x00, 0x5554 },
{ 0x04, 0x4800 },
{ 0x04, 0x4000 },
{ 0x04, 0xf000 },
{ 0x03, 0xdf01 },
{ 0x02, 0xdf20 },
{ 0x01, 0x101a },
{ 0x00, 0xa0ff },
{ 0x04, 0xf800 },
{ 0x04, 0xf000 },
{ 0x1f, 0x0000 },
{ 0x1f, 0x0007 },
{ 0x1e, 0x0023 },
{ 0x16, 0x0000 },
{ 0x1f, 0x0000 }
};
rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
}
static void rtl8168d_4_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
{ 0x1f, 0x0001 },
{ 0x17, 0x0cc0 },
{ 0x1f, 0x0007 },
{ 0x1e, 0x002d },
{ 0x18, 0x0040 },
{ 0x1f, 0x0000 }
};
rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
rtl_patchphy(tp, 0x0d, 1 << 5);
}
static void rtl8168e_1_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
/* Enable Delay cap */
{ 0x1f, 0x0005 },
{ 0x05, 0x8b80 },
{ 0x06, 0xc896 },
{ 0x1f, 0x0000 },
/* Channel estimation fine tune */
{ 0x1f, 0x0001 },
{ 0x0b, 0x6c20 },
{ 0x07, 0x2872 },
{ 0x1c, 0xefff },
{ 0x1f, 0x0003 },
{ 0x14, 0x6420 },
{ 0x1f, 0x0000 },
/* Update PFM & 10M TX idle timer */
{ 0x1f, 0x0007 },
{ 0x1e, 0x002f },
{ 0x15, 0x1919 },
{ 0x1f, 0x0000 },
{ 0x1f, 0x0007 },
{ 0x1e, 0x00ac },
{ 0x18, 0x0006 },
{ 0x1f, 0x0000 }
};
rtl_apply_firmware(tp);
rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
/* DCO enable for 10M IDLE Power */
rtl_writephy(tp, 0x1f, 0x0007);
rtl_writephy(tp, 0x1e, 0x0023);
rtl_w1w0_phy(tp, 0x17, 0x0006, 0x0000);
rtl_writephy(tp, 0x1f, 0x0000);
/* For impedance matching */
rtl_writephy(tp, 0x1f, 0x0002);
rtl_w1w0_phy(tp, 0x08, 0x8000, 0x7f00);
rtl_writephy(tp, 0x1f, 0x0000);
/* PHY auto speed down */
rtl_writephy(tp, 0x1f, 0x0007);
rtl_writephy(tp, 0x1e, 0x002d);
rtl_w1w0_phy(tp, 0x18, 0x0050, 0x0000);
rtl_writephy(tp, 0x1f, 0x0000);
rtl_w1w0_phy(tp, 0x14, 0x8000, 0x0000);
rtl_writephy(tp, 0x1f, 0x0005);
rtl_writephy(tp, 0x05, 0x8b86);
rtl_w1w0_phy(tp, 0x06, 0x0001, 0x0000);
rtl_writephy(tp, 0x1f, 0x0000);
rtl_writephy(tp, 0x1f, 0x0005);
rtl_writephy(tp, 0x05, 0x8b85);
rtl_w1w0_phy(tp, 0x06, 0x0000, 0x2000);
rtl_writephy(tp, 0x1f, 0x0007);
rtl_writephy(tp, 0x1e, 0x0020);
rtl_w1w0_phy(tp, 0x15, 0x0000, 0x1100);
rtl_writephy(tp, 0x1f, 0x0006);
rtl_writephy(tp, 0x00, 0x5a00);
rtl_writephy(tp, 0x1f, 0x0000);
rtl_writephy(tp, 0x0d, 0x0007);
rtl_writephy(tp, 0x0e, 0x003c);
rtl_writephy(tp, 0x0d, 0x4007);
rtl_writephy(tp, 0x0e, 0x0000);
rtl_writephy(tp, 0x0d, 0x0000);
}
static void rtl_rar_exgmac_set(struct rtl8169_private *tp, u8 *addr)
{
const u16 w[] = {
addr[0] | (addr[1] << 8),
addr[2] | (addr[3] << 8),
addr[4] | (addr[5] << 8)
};
const struct exgmac_reg e[] = {
{ .addr = 0xe0, ERIAR_MASK_1111, .val = w[0] | (w[1] << 16) },
{ .addr = 0xe4, ERIAR_MASK_1111, .val = w[2] },
{ .addr = 0xf0, ERIAR_MASK_1111, .val = w[0] << 16 },
{ .addr = 0xf4, ERIAR_MASK_1111, .val = w[1] | (w[2] << 16) }
};
rtl_write_exgmac_batch(tp, e, ARRAY_SIZE(e));
}
static void rtl8168e_2_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
/* Enable Delay cap */
{ 0x1f, 0x0004 },
{ 0x1f, 0x0007 },
{ 0x1e, 0x00ac },
{ 0x18, 0x0006 },
{ 0x1f, 0x0002 },
{ 0x1f, 0x0000 },
{ 0x1f, 0x0000 },
/* Channel estimation fine tune */
{ 0x1f, 0x0003 },
{ 0x09, 0xa20f },
{ 0x1f, 0x0000 },
{ 0x1f, 0x0000 },
/* Green Setting */
{ 0x1f, 0x0005 },
{ 0x05, 0x8b5b },
{ 0x06, 0x9222 },
{ 0x05, 0x8b6d },
{ 0x06, 0x8000 },
{ 0x05, 0x8b76 },
{ 0x06, 0x8000 },
{ 0x1f, 0x0000 }
};
rtl_apply_firmware(tp);
rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
/* For 4-corner performance improve */
rtl_writephy(tp, 0x1f, 0x0005);
rtl_writephy(tp, 0x05, 0x8b80);
rtl_w1w0_phy(tp, 0x17, 0x0006, 0x0000);
rtl_writephy(tp, 0x1f, 0x0000);
/* PHY auto speed down */
rtl_writephy(tp, 0x1f, 0x0004);
rtl_writephy(tp, 0x1f, 0x0007);
rtl_writephy(tp, 0x1e, 0x002d);
rtl_w1w0_phy(tp, 0x18, 0x0010, 0x0000);
rtl_writephy(tp, 0x1f, 0x0002);
rtl_writephy(tp, 0x1f, 0x0000);
rtl_w1w0_phy(tp, 0x14, 0x8000, 0x0000);
/* improve 10M EEE waveform */
rtl_writephy(tp, 0x1f, 0x0005);
rtl_writephy(tp, 0x05, 0x8b86);
rtl_w1w0_phy(tp, 0x06, 0x0001, 0x0000);
rtl_writephy(tp, 0x1f, 0x0000);
/* Improve 2-pair detection performance */
rtl_writephy(tp, 0x1f, 0x0005);
rtl_writephy(tp, 0x05, 0x8b85);
rtl_w1w0_phy(tp, 0x06, 0x4000, 0x0000);
rtl_writephy(tp, 0x1f, 0x0000);
/* EEE setting */
rtl_w1w0_eri(tp, 0x1b0, ERIAR_MASK_1111, 0x0000, 0x0003, ERIAR_EXGMAC);
rtl_writephy(tp, 0x1f, 0x0005);
rtl_writephy(tp, 0x05, 0x8b85);
rtl_w1w0_phy(tp, 0x06, 0x0000, 0x2000);
rtl_writephy(tp, 0x1f, 0x0004);
rtl_writephy(tp, 0x1f, 0x0007);
rtl_writephy(tp, 0x1e, 0x0020);
rtl_w1w0_phy(tp, 0x15, 0x0000, 0x0100);
rtl_writephy(tp, 0x1f, 0x0002);
rtl_writephy(tp, 0x1f, 0x0000);
rtl_writephy(tp, 0x0d, 0x0007);
rtl_writephy(tp, 0x0e, 0x003c);
rtl_writephy(tp, 0x0d, 0x4007);
rtl_writephy(tp, 0x0e, 0x0000);
rtl_writephy(tp, 0x0d, 0x0000);
/* Green feature */
rtl_writephy(tp, 0x1f, 0x0003);
rtl_w1w0_phy(tp, 0x19, 0x0000, 0x0001);
rtl_w1w0_phy(tp, 0x10, 0x0000, 0x0400);
rtl_writephy(tp, 0x1f, 0x0000);
/* Broken BIOS workaround: feed GigaMAC registers with MAC address. */
rtl_rar_exgmac_set(tp, tp->dev->dev_addr);
}
static void rtl8168f_hw_phy_config(struct rtl8169_private *tp)
{
/* For 4-corner performance improve */
rtl_writephy(tp, 0x1f, 0x0005);
rtl_writephy(tp, 0x05, 0x8b80);
rtl_w1w0_phy(tp, 0x06, 0x0006, 0x0000);
rtl_writephy(tp, 0x1f, 0x0000);
/* PHY auto speed down */
rtl_writephy(tp, 0x1f, 0x0007);
rtl_writephy(tp, 0x1e, 0x002d);
rtl_w1w0_phy(tp, 0x18, 0x0010, 0x0000);
rtl_writephy(tp, 0x1f, 0x0000);
rtl_w1w0_phy(tp, 0x14, 0x8000, 0x0000);
/* Improve 10M EEE waveform */
rtl_writephy(tp, 0x1f, 0x0005);
rtl_writephy(tp, 0x05, 0x8b86);
rtl_w1w0_phy(tp, 0x06, 0x0001, 0x0000);
rtl_writephy(tp, 0x1f, 0x0000);
}
static void rtl8168f_1_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
/* Channel estimation fine tune */
{ 0x1f, 0x0003 },
{ 0x09, 0xa20f },
{ 0x1f, 0x0000 },
/* Modify green table for giga & fnet */
{ 0x1f, 0x0005 },
{ 0x05, 0x8b55 },
{ 0x06, 0x0000 },
{ 0x05, 0x8b5e },
{ 0x06, 0x0000 },
{ 0x05, 0x8b67 },
{ 0x06, 0x0000 },
{ 0x05, 0x8b70 },
{ 0x06, 0x0000 },
{ 0x1f, 0x0000 },
{ 0x1f, 0x0007 },
{ 0x1e, 0x0078 },
{ 0x17, 0x0000 },
{ 0x19, 0x00fb },
{ 0x1f, 0x0000 },
/* Modify green table for 10M */
{ 0x1f, 0x0005 },
{ 0x05, 0x8b79 },
{ 0x06, 0xaa00 },
{ 0x1f, 0x0000 },
/* Disable hiimpedance detection (RTCT) */
{ 0x1f, 0x0003 },
{ 0x01, 0x328a },
{ 0x1f, 0x0000 }
};
rtl_apply_firmware(tp);
rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
rtl8168f_hw_phy_config(tp);
/* Improve 2-pair detection performance */
rtl_writephy(tp, 0x1f, 0x0005);
rtl_writephy(tp, 0x05, 0x8b85);
rtl_w1w0_phy(tp, 0x06, 0x4000, 0x0000);
rtl_writephy(tp, 0x1f, 0x0000);
}
static void rtl8168f_2_hw_phy_config(struct rtl8169_private *tp)
{
rtl_apply_firmware(tp);
rtl8168f_hw_phy_config(tp);
}
static void rtl8411_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
/* Channel estimation fine tune */
{ 0x1f, 0x0003 },
{ 0x09, 0xa20f },
{ 0x1f, 0x0000 },
/* Modify green table for giga & fnet */
{ 0x1f, 0x0005 },
{ 0x05, 0x8b55 },
{ 0x06, 0x0000 },
{ 0x05, 0x8b5e },
{ 0x06, 0x0000 },
{ 0x05, 0x8b67 },
{ 0x06, 0x0000 },
{ 0x05, 0x8b70 },
{ 0x06, 0x0000 },
{ 0x1f, 0x0000 },
{ 0x1f, 0x0007 },
{ 0x1e, 0x0078 },
{ 0x17, 0x0000 },
{ 0x19, 0x00aa },
{ 0x1f, 0x0000 },
/* Modify green table for 10M */
{ 0x1f, 0x0005 },
{ 0x05, 0x8b79 },
{ 0x06, 0xaa00 },
{ 0x1f, 0x0000 },
/* Disable hiimpedance detection (RTCT) */
{ 0x1f, 0x0003 },
{ 0x01, 0x328a },
{ 0x1f, 0x0000 }
};
rtl_apply_firmware(tp);
rtl8168f_hw_phy_config(tp);
/* Improve 2-pair detection performance */
rtl_writephy(tp, 0x1f, 0x0005);
rtl_writephy(tp, 0x05, 0x8b85);
rtl_w1w0_phy(tp, 0x06, 0x4000, 0x0000);
rtl_writephy(tp, 0x1f, 0x0000);
rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
/* Modify green table for giga */
rtl_writephy(tp, 0x1f, 0x0005);
rtl_writephy(tp, 0x05, 0x8b54);
rtl_w1w0_phy(tp, 0x06, 0x0000, 0x0800);
rtl_writephy(tp, 0x05, 0x8b5d);
rtl_w1w0_phy(tp, 0x06, 0x0000, 0x0800);
rtl_writephy(tp, 0x05, 0x8a7c);
rtl_w1w0_phy(tp, 0x06, 0x0000, 0x0100);
rtl_writephy(tp, 0x05, 0x8a7f);
rtl_w1w0_phy(tp, 0x06, 0x0100, 0x0000);
rtl_writephy(tp, 0x05, 0x8a82);
rtl_w1w0_phy(tp, 0x06, 0x0000, 0x0100);
rtl_writephy(tp, 0x05, 0x8a85);
rtl_w1w0_phy(tp, 0x06, 0x0000, 0x0100);
rtl_writephy(tp, 0x05, 0x8a88);
rtl_w1w0_phy(tp, 0x06, 0x0000, 0x0100);
rtl_writephy(tp, 0x1f, 0x0000);
/* uc same-seed solution */
rtl_writephy(tp, 0x1f, 0x0005);
rtl_writephy(tp, 0x05, 0x8b85);
rtl_w1w0_phy(tp, 0x06, 0x8000, 0x0000);
rtl_writephy(tp, 0x1f, 0x0000);
/* eee setting */
rtl_w1w0_eri(tp, 0x1b0, ERIAR_MASK_0001, 0x00, 0x03, ERIAR_EXGMAC);
rtl_writephy(tp, 0x1f, 0x0005);
rtl_writephy(tp, 0x05, 0x8b85);
rtl_w1w0_phy(tp, 0x06, 0x0000, 0x2000);
rtl_writephy(tp, 0x1f, 0x0004);
rtl_writephy(tp, 0x1f, 0x0007);
rtl_writephy(tp, 0x1e, 0x0020);
rtl_w1w0_phy(tp, 0x15, 0x0000, 0x0100);
rtl_writephy(tp, 0x1f, 0x0000);
rtl_writephy(tp, 0x0d, 0x0007);
rtl_writephy(tp, 0x0e, 0x003c);
rtl_writephy(tp, 0x0d, 0x4007);
rtl_writephy(tp, 0x0e, 0x0000);
rtl_writephy(tp, 0x0d, 0x0000);
/* Green feature */
rtl_writephy(tp, 0x1f, 0x0003);
rtl_w1w0_phy(tp, 0x19, 0x0000, 0x0001);
rtl_w1w0_phy(tp, 0x10, 0x0000, 0x0400);
rtl_writephy(tp, 0x1f, 0x0000);
}
static void rtl8168g_1_hw_phy_config(struct rtl8169_private *tp)
{
static const u16 mac_ocp_patch[] = {
0xe008, 0xe01b, 0xe01d, 0xe01f,
0xe021, 0xe023, 0xe025, 0xe027,
0x49d2, 0xf10d, 0x766c, 0x49e2,
0xf00a, 0x1ec0, 0x8ee1, 0xc60a,
0x77c0, 0x4870, 0x9fc0, 0x1ea0,
0xc707, 0x8ee1, 0x9d6c, 0xc603,
0xbe00, 0xb416, 0x0076, 0xe86c,
0xc602, 0xbe00, 0x0000, 0xc602,
0xbe00, 0x0000, 0xc602, 0xbe00,
0x0000, 0xc602, 0xbe00, 0x0000,
0xc602, 0xbe00, 0x0000, 0xc602,
0xbe00, 0x0000, 0xc602, 0xbe00,
0x0000, 0x0000, 0x0000, 0x0000
};
u32 i;
/* Patch code for GPHY reset */
for (i = 0; i < ARRAY_SIZE(mac_ocp_patch); i++)
r8168_mac_ocp_write(tp, 0xf800 + 2*i, mac_ocp_patch[i]);
r8168_mac_ocp_write(tp, 0xfc26, 0x8000);
r8168_mac_ocp_write(tp, 0xfc28, 0x0075);
rtl_apply_firmware(tp);
if (r8168_phy_ocp_read(tp, 0xa460) & 0x0100)
rtl_w1w0_phy_ocp(tp, 0xbcc4, 0x0000, 0x8000);
else
rtl_w1w0_phy_ocp(tp, 0xbcc4, 0x8000, 0x0000);
if (r8168_phy_ocp_read(tp, 0xa466) & 0x0100)
rtl_w1w0_phy_ocp(tp, 0xc41a, 0x0002, 0x0000);
else
rtl_w1w0_phy_ocp(tp, 0xbcc4, 0x0000, 0x0002);
rtl_w1w0_phy_ocp(tp, 0xa442, 0x000c, 0x0000);
rtl_w1w0_phy_ocp(tp, 0xa4b2, 0x0004, 0x0000);
r8168_phy_ocp_write(tp, 0xa436, 0x8012);
rtl_w1w0_phy_ocp(tp, 0xa438, 0x8000, 0x0000);
rtl_w1w0_phy_ocp(tp, 0xc422, 0x4000, 0x2000);
}
static void rtl8102e_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
{ 0x1f, 0x0003 },
{ 0x08, 0x441d },
{ 0x01, 0x9100 },
{ 0x1f, 0x0000 }
};
rtl_writephy(tp, 0x1f, 0x0000);
rtl_patchphy(tp, 0x11, 1 << 12);
rtl_patchphy(tp, 0x19, 1 << 13);
rtl_patchphy(tp, 0x10, 1 << 15);
rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
}
static void rtl8105e_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
{ 0x1f, 0x0005 },
{ 0x1a, 0x0000 },
{ 0x1f, 0x0000 },
{ 0x1f, 0x0004 },
{ 0x1c, 0x0000 },
{ 0x1f, 0x0000 },
{ 0x1f, 0x0001 },
{ 0x15, 0x7701 },
{ 0x1f, 0x0000 }
};
/* Disable ALDPS before ram code */
rtl_writephy(tp, 0x1f, 0x0000);
rtl_writephy(tp, 0x18, 0x0310);
msleep(100);
rtl_apply_firmware(tp);
rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
}
static void rtl8402_hw_phy_config(struct rtl8169_private *tp)
{
/* Disable ALDPS before setting firmware */
rtl_writephy(tp, 0x1f, 0x0000);
rtl_writephy(tp, 0x18, 0x0310);
msleep(20);
rtl_apply_firmware(tp);
/* EEE setting */
rtl_eri_write(tp, 0x1b0, ERIAR_MASK_0011, 0x0000, ERIAR_EXGMAC);
rtl_writephy(tp, 0x1f, 0x0004);
rtl_writephy(tp, 0x10, 0x401f);
rtl_writephy(tp, 0x19, 0x7030);
rtl_writephy(tp, 0x1f, 0x0000);
}
static void rtl8106e_hw_phy_config(struct rtl8169_private *tp)
{
static const struct phy_reg phy_reg_init[] = {
{ 0x1f, 0x0004 },
{ 0x10, 0xc07f },
{ 0x19, 0x7030 },
{ 0x1f, 0x0000 }
};
/* Disable ALDPS before ram code */
rtl_writephy(tp, 0x1f, 0x0000);
rtl_writephy(tp, 0x18, 0x0310);
msleep(100);
rtl_apply_firmware(tp);
rtl_eri_write(tp, 0x1b0, ERIAR_MASK_0011, 0x0000, ERIAR_EXGMAC);
rtl_writephy_batch(tp, phy_reg_init, ARRAY_SIZE(phy_reg_init));
rtl_eri_write(tp, 0x1d0, ERIAR_MASK_0011, 0x0000, ERIAR_EXGMAC);
}
static void rtl_hw_phy_config(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
rtl8169_print_mac_version(tp);
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_01:
break;
case RTL_GIGA_MAC_VER_02:
case RTL_GIGA_MAC_VER_03:
rtl8169s_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_04:
rtl8169sb_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_05:
rtl8169scd_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_06:
rtl8169sce_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_07:
case RTL_GIGA_MAC_VER_08:
case RTL_GIGA_MAC_VER_09:
rtl8102e_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_11:
rtl8168bb_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_12:
rtl8168bef_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_17:
rtl8168bef_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_18:
rtl8168cp_1_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_19:
rtl8168c_1_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_20:
rtl8168c_2_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_21:
rtl8168c_3_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_22:
rtl8168c_4_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_23:
case RTL_GIGA_MAC_VER_24:
rtl8168cp_2_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_25:
rtl8168d_1_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_26:
rtl8168d_2_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_27:
rtl8168d_3_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_28:
rtl8168d_4_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_29:
case RTL_GIGA_MAC_VER_30:
rtl8105e_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_31:
/* None. */
break;
case RTL_GIGA_MAC_VER_32:
case RTL_GIGA_MAC_VER_33:
rtl8168e_1_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_34:
rtl8168e_2_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_35:
rtl8168f_1_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_36:
rtl8168f_2_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_37:
rtl8402_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_38:
rtl8411_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_39:
rtl8106e_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_40:
rtl8168g_1_hw_phy_config(tp);
break;
case RTL_GIGA_MAC_VER_41:
default:
break;
}
}
static void rtl_phy_work(struct rtl8169_private *tp)
{
struct timer_list *timer = &tp->timer;
void __iomem *ioaddr = tp->mmio_addr;
unsigned long timeout = RTL8169_PHY_TIMEOUT;
assert(tp->mac_version > RTL_GIGA_MAC_VER_01);
if (tp->phy_reset_pending(tp)) {
/*
* A busy loop could burn quite a few cycles on nowadays CPU.
* Let's delay the execution of the timer for a few ticks.
*/
timeout = HZ/10;
goto out_mod_timer;
}
if (tp->link_ok(ioaddr))
return;
netif_warn(tp, link, tp->dev, "PHY reset until link up\n");
tp->phy_reset_enable(tp);
out_mod_timer:
mod_timer(timer, jiffies + timeout);
}
static void rtl_schedule_task(struct rtl8169_private *tp, enum rtl_flag flag)
{
if (!test_and_set_bit(flag, tp->wk.flags))
schedule_work(&tp->wk.work);
}
static void rtl8169_phy_timer(unsigned long __opaque)
{
struct net_device *dev = (struct net_device *)__opaque;
struct rtl8169_private *tp = netdev_priv(dev);
rtl_schedule_task(tp, RTL_FLAG_TASK_PHY_PENDING);
}
static void rtl8169_release_board(struct pci_dev *pdev, struct net_device *dev,
void __iomem *ioaddr)
{
iounmap(ioaddr);
pci_release_regions(pdev);
pci_clear_mwi(pdev);
pci_disable_device(pdev);
free_netdev(dev);
}
DECLARE_RTL_COND(rtl_phy_reset_cond)
{
return tp->phy_reset_pending(tp);
}
static void rtl8169_phy_reset(struct net_device *dev,
struct rtl8169_private *tp)
{
tp->phy_reset_enable(tp);
rtl_msleep_loop_wait_low(tp, &rtl_phy_reset_cond, 1, 100);
}
static bool rtl_tbi_enabled(struct rtl8169_private *tp)
{
void __iomem *ioaddr = tp->mmio_addr;
return (tp->mac_version == RTL_GIGA_MAC_VER_01) &&
(RTL_R8(PHYstatus) & TBI_Enable);
}
static void rtl8169_init_phy(struct net_device *dev, struct rtl8169_private *tp)
{
void __iomem *ioaddr = tp->mmio_addr;
rtl_hw_phy_config(dev);
if (tp->mac_version <= RTL_GIGA_MAC_VER_06) {
dprintk("Set MAC Reg C+CR Offset 0x82h = 0x01h\n");
RTL_W8(0x82, 0x01);
}
pci_write_config_byte(tp->pci_dev, PCI_LATENCY_TIMER, 0x40);
if (tp->mac_version <= RTL_GIGA_MAC_VER_06)
pci_write_config_byte(tp->pci_dev, PCI_CACHE_LINE_SIZE, 0x08);
if (tp->mac_version == RTL_GIGA_MAC_VER_02) {
dprintk("Set MAC Reg C+CR Offset 0x82h = 0x01h\n");
RTL_W8(0x82, 0x01);
dprintk("Set PHY Reg 0x0bh = 0x00h\n");
rtl_writephy(tp, 0x0b, 0x0000); //w 0x0b 15 0 0
}
rtl8169_phy_reset(dev, tp);
rtl8169_set_speed(dev, AUTONEG_ENABLE, SPEED_1000, DUPLEX_FULL,
ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full |
(tp->mii.supports_gmii ?
ADVERTISED_1000baseT_Half |
ADVERTISED_1000baseT_Full : 0));
if (rtl_tbi_enabled(tp))
netif_info(tp, link, dev, "TBI auto-negotiating\n");
}
static void rtl_rar_set(struct rtl8169_private *tp, u8 *addr)
{
void __iomem *ioaddr = tp->mmio_addr;
rtl_lock_work(tp);
RTL_W8(Cfg9346, Cfg9346_Unlock);
RTL_W32(MAC4, addr[4] | addr[5] << 8);
RTL_R32(MAC4);
RTL_W32(MAC0, addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24);
RTL_R32(MAC0);
if (tp->mac_version == RTL_GIGA_MAC_VER_34)
rtl_rar_exgmac_set(tp, addr);
RTL_W8(Cfg9346, Cfg9346_Lock);
rtl_unlock_work(tp);
}
static int rtl_set_mac_address(struct net_device *dev, void *p)
{
struct rtl8169_private *tp = netdev_priv(dev);
struct sockaddr *addr = p;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
rtl_rar_set(tp, dev->dev_addr);
return 0;
}
static int rtl8169_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct rtl8169_private *tp = netdev_priv(dev);
struct mii_ioctl_data *data = if_mii(ifr);
return netif_running(dev) ? tp->do_ioctl(tp, data, cmd) : -ENODEV;
}
static int rtl_xmii_ioctl(struct rtl8169_private *tp,
struct mii_ioctl_data *data, int cmd)
{
switch (cmd) {
case SIOCGMIIPHY:
data->phy_id = 32; /* Internal PHY */
return 0;
case SIOCGMIIREG:
data->val_out = rtl_readphy(tp, data->reg_num & 0x1f);
return 0;
case SIOCSMIIREG:
rtl_writephy(tp, data->reg_num & 0x1f, data->val_in);
return 0;
}
return -EOPNOTSUPP;
}
static int rtl_tbi_ioctl(struct rtl8169_private *tp, struct mii_ioctl_data *data, int cmd)
{
return -EOPNOTSUPP;
}
static void rtl_disable_msi(struct pci_dev *pdev, struct rtl8169_private *tp)
{
if (tp->features & RTL_FEATURE_MSI) {
pci_disable_msi(pdev);
tp->features &= ~RTL_FEATURE_MSI;
}
}
static void rtl_init_mdio_ops(struct rtl8169_private *tp)
{
struct mdio_ops *ops = &tp->mdio_ops;
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_27:
ops->write = r8168dp_1_mdio_write;
ops->read = r8168dp_1_mdio_read;
break;
case RTL_GIGA_MAC_VER_28:
case RTL_GIGA_MAC_VER_31:
ops->write = r8168dp_2_mdio_write;
ops->read = r8168dp_2_mdio_read;
break;
case RTL_GIGA_MAC_VER_40:
case RTL_GIGA_MAC_VER_41:
ops->write = r8168g_mdio_write;
ops->read = r8168g_mdio_read;
break;
default:
ops->write = r8169_mdio_write;
ops->read = r8169_mdio_read;
break;
}
}
static void rtl_speed_down(struct rtl8169_private *tp)
{
u32 adv;
int lpa;
rtl_writephy(tp, 0x1f, 0x0000);
lpa = rtl_readphy(tp, MII_LPA);
if (lpa & (LPA_10HALF | LPA_10FULL))
adv = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full;
else if (lpa & (LPA_100HALF | LPA_100FULL))
adv = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
else
adv = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full |
(tp->mii.supports_gmii ?
ADVERTISED_1000baseT_Half |
ADVERTISED_1000baseT_Full : 0);
rtl8169_set_speed(tp->dev, AUTONEG_ENABLE, SPEED_1000, DUPLEX_FULL,
adv);
}
static void rtl_wol_suspend_quirk(struct rtl8169_private *tp)
{
void __iomem *ioaddr = tp->mmio_addr;
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_25:
case RTL_GIGA_MAC_VER_26:
case RTL_GIGA_MAC_VER_29:
case RTL_GIGA_MAC_VER_30:
case RTL_GIGA_MAC_VER_32:
case RTL_GIGA_MAC_VER_33:
case RTL_GIGA_MAC_VER_34:
case RTL_GIGA_MAC_VER_37:
case RTL_GIGA_MAC_VER_38:
case RTL_GIGA_MAC_VER_39:
case RTL_GIGA_MAC_VER_40:
case RTL_GIGA_MAC_VER_41:
RTL_W32(RxConfig, RTL_R32(RxConfig) |
AcceptBroadcast | AcceptMulticast | AcceptMyPhys);
break;
default:
break;
}
}
static bool rtl_wol_pll_power_down(struct rtl8169_private *tp)
{
if (!(__rtl8169_get_wol(tp) & WAKE_ANY))
return false;
rtl_speed_down(tp);
rtl_wol_suspend_quirk(tp);
return true;
}
static void r810x_phy_power_down(struct rtl8169_private *tp)
{
rtl_writephy(tp, 0x1f, 0x0000);
rtl_writephy(tp, MII_BMCR, BMCR_PDOWN);
}
static void r810x_phy_power_up(struct rtl8169_private *tp)
{
rtl_writephy(tp, 0x1f, 0x0000);
rtl_writephy(tp, MII_BMCR, BMCR_ANENABLE);
}
static void r810x_pll_power_down(struct rtl8169_private *tp)
{
void __iomem *ioaddr = tp->mmio_addr;
if (rtl_wol_pll_power_down(tp))
return;
r810x_phy_power_down(tp);
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_07:
case RTL_GIGA_MAC_VER_08:
case RTL_GIGA_MAC_VER_09:
case RTL_GIGA_MAC_VER_10:
case RTL_GIGA_MAC_VER_13:
case RTL_GIGA_MAC_VER_16:
break;
default:
RTL_W8(PMCH, RTL_R8(PMCH) & ~0x80);
break;
}
}
static void r810x_pll_power_up(struct rtl8169_private *tp)
{
void __iomem *ioaddr = tp->mmio_addr;
r810x_phy_power_up(tp);
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_07:
case RTL_GIGA_MAC_VER_08:
case RTL_GIGA_MAC_VER_09:
case RTL_GIGA_MAC_VER_10:
case RTL_GIGA_MAC_VER_13:
case RTL_GIGA_MAC_VER_16:
break;
default:
RTL_W8(PMCH, RTL_R8(PMCH) | 0x80);
break;
}
}
static void r8168_phy_power_up(struct rtl8169_private *tp)
{
rtl_writephy(tp, 0x1f, 0x0000);
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_11:
case RTL_GIGA_MAC_VER_12:
case RTL_GIGA_MAC_VER_17:
case RTL_GIGA_MAC_VER_18:
case RTL_GIGA_MAC_VER_19:
case RTL_GIGA_MAC_VER_20:
case RTL_GIGA_MAC_VER_21:
case RTL_GIGA_MAC_VER_22:
case RTL_GIGA_MAC_VER_23:
case RTL_GIGA_MAC_VER_24:
case RTL_GIGA_MAC_VER_25:
case RTL_GIGA_MAC_VER_26:
case RTL_GIGA_MAC_VER_27:
case RTL_GIGA_MAC_VER_28:
case RTL_GIGA_MAC_VER_31:
rtl_writephy(tp, 0x0e, 0x0000);
break;
default:
break;
}
rtl_writephy(tp, MII_BMCR, BMCR_ANENABLE);
}
static void r8168_phy_power_down(struct rtl8169_private *tp)
{
rtl_writephy(tp, 0x1f, 0x0000);
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_32:
case RTL_GIGA_MAC_VER_33:
rtl_writephy(tp, MII_BMCR, BMCR_ANENABLE | BMCR_PDOWN);
break;
case RTL_GIGA_MAC_VER_11:
case RTL_GIGA_MAC_VER_12:
case RTL_GIGA_MAC_VER_17:
case RTL_GIGA_MAC_VER_18:
case RTL_GIGA_MAC_VER_19:
case RTL_GIGA_MAC_VER_20:
case RTL_GIGA_MAC_VER_21:
case RTL_GIGA_MAC_VER_22:
case RTL_GIGA_MAC_VER_23:
case RTL_GIGA_MAC_VER_24:
case RTL_GIGA_MAC_VER_25:
case RTL_GIGA_MAC_VER_26:
case RTL_GIGA_MAC_VER_27:
case RTL_GIGA_MAC_VER_28:
case RTL_GIGA_MAC_VER_31:
rtl_writephy(tp, 0x0e, 0x0200);
default:
rtl_writephy(tp, MII_BMCR, BMCR_PDOWN);
break;
}
}
static void r8168_pll_power_down(struct rtl8169_private *tp)
{
void __iomem *ioaddr = tp->mmio_addr;
if ((tp->mac_version == RTL_GIGA_MAC_VER_27 ||
tp->mac_version == RTL_GIGA_MAC_VER_28 ||
tp->mac_version == RTL_GIGA_MAC_VER_31) &&
r8168dp_check_dash(tp)) {
return;
}
if ((tp->mac_version == RTL_GIGA_MAC_VER_23 ||
tp->mac_version == RTL_GIGA_MAC_VER_24) &&
(RTL_R16(CPlusCmd) & ASF)) {
return;
}
if (tp->mac_version == RTL_GIGA_MAC_VER_32 ||
tp->mac_version == RTL_GIGA_MAC_VER_33)
rtl_ephy_write(tp, 0x19, 0xff64);
if (rtl_wol_pll_power_down(tp))
return;
r8168_phy_power_down(tp);
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_25:
case RTL_GIGA_MAC_VER_26:
case RTL_GIGA_MAC_VER_27:
case RTL_GIGA_MAC_VER_28:
case RTL_GIGA_MAC_VER_31:
case RTL_GIGA_MAC_VER_32:
case RTL_GIGA_MAC_VER_33:
RTL_W8(PMCH, RTL_R8(PMCH) & ~0x80);
break;
}
}
static void r8168_pll_power_up(struct rtl8169_private *tp)
{
void __iomem *ioaddr = tp->mmio_addr;
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_25:
case RTL_GIGA_MAC_VER_26:
case RTL_GIGA_MAC_VER_27:
case RTL_GIGA_MAC_VER_28:
case RTL_GIGA_MAC_VER_31:
case RTL_GIGA_MAC_VER_32:
case RTL_GIGA_MAC_VER_33:
RTL_W8(PMCH, RTL_R8(PMCH) | 0x80);
break;
}
r8168_phy_power_up(tp);
}
static void rtl_generic_op(struct rtl8169_private *tp,
void (*op)(struct rtl8169_private *))
{
if (op)
op(tp);
}
static void rtl_pll_power_down(struct rtl8169_private *tp)
{
rtl_generic_op(tp, tp->pll_power_ops.down);
}
static void rtl_pll_power_up(struct rtl8169_private *tp)
{
rtl_generic_op(tp, tp->pll_power_ops.up);
}
static void rtl_init_pll_power_ops(struct rtl8169_private *tp)
{
struct pll_power_ops *ops = &tp->pll_power_ops;
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_07:
case RTL_GIGA_MAC_VER_08:
case RTL_GIGA_MAC_VER_09:
case RTL_GIGA_MAC_VER_10:
case RTL_GIGA_MAC_VER_16:
case RTL_GIGA_MAC_VER_29:
case RTL_GIGA_MAC_VER_30:
case RTL_GIGA_MAC_VER_37:
case RTL_GIGA_MAC_VER_39:
ops->down = r810x_pll_power_down;
ops->up = r810x_pll_power_up;
break;
case RTL_GIGA_MAC_VER_11:
case RTL_GIGA_MAC_VER_12:
case RTL_GIGA_MAC_VER_17:
case RTL_GIGA_MAC_VER_18:
case RTL_GIGA_MAC_VER_19:
case RTL_GIGA_MAC_VER_20:
case RTL_GIGA_MAC_VER_21:
case RTL_GIGA_MAC_VER_22:
case RTL_GIGA_MAC_VER_23:
case RTL_GIGA_MAC_VER_24:
case RTL_GIGA_MAC_VER_25:
case RTL_GIGA_MAC_VER_26:
case RTL_GIGA_MAC_VER_27:
case RTL_GIGA_MAC_VER_28:
case RTL_GIGA_MAC_VER_31:
case RTL_GIGA_MAC_VER_32:
case RTL_GIGA_MAC_VER_33:
case RTL_GIGA_MAC_VER_34:
case RTL_GIGA_MAC_VER_35:
case RTL_GIGA_MAC_VER_36:
case RTL_GIGA_MAC_VER_38:
case RTL_GIGA_MAC_VER_40:
case RTL_GIGA_MAC_VER_41:
ops->down = r8168_pll_power_down;
ops->up = r8168_pll_power_up;
break;
default:
ops->down = NULL;
ops->up = NULL;
break;
}
}
static void rtl_init_rxcfg(struct rtl8169_private *tp)
{
void __iomem *ioaddr = tp->mmio_addr;
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_01:
case RTL_GIGA_MAC_VER_02:
case RTL_GIGA_MAC_VER_03:
case RTL_GIGA_MAC_VER_04:
case RTL_GIGA_MAC_VER_05:
case RTL_GIGA_MAC_VER_06:
case RTL_GIGA_MAC_VER_10:
case RTL_GIGA_MAC_VER_11:
case RTL_GIGA_MAC_VER_12:
case RTL_GIGA_MAC_VER_13:
case RTL_GIGA_MAC_VER_14:
case RTL_GIGA_MAC_VER_15:
case RTL_GIGA_MAC_VER_16:
case RTL_GIGA_MAC_VER_17:
RTL_W32(RxConfig, RX_FIFO_THRESH | RX_DMA_BURST);
break;
case RTL_GIGA_MAC_VER_18:
case RTL_GIGA_MAC_VER_19:
case RTL_GIGA_MAC_VER_20:
case RTL_GIGA_MAC_VER_21:
case RTL_GIGA_MAC_VER_22:
case RTL_GIGA_MAC_VER_23:
case RTL_GIGA_MAC_VER_24:
case RTL_GIGA_MAC_VER_34:
RTL_W32(RxConfig, RX128_INT_EN | RX_MULTI_EN | RX_DMA_BURST);
break;
default:
RTL_W32(RxConfig, RX128_INT_EN | RX_DMA_BURST);
break;
}
}
static void rtl8169_init_ring_indexes(struct rtl8169_private *tp)
{
tp->dirty_tx = tp->dirty_rx = tp->cur_tx = tp->cur_rx = 0;
}
static void rtl_hw_jumbo_enable(struct rtl8169_private *tp)
{
void __iomem *ioaddr = tp->mmio_addr;
RTL_W8(Cfg9346, Cfg9346_Unlock);
rtl_generic_op(tp, tp->jumbo_ops.enable);
RTL_W8(Cfg9346, Cfg9346_Lock);
}
static void rtl_hw_jumbo_disable(struct rtl8169_private *tp)
{
void __iomem *ioaddr = tp->mmio_addr;
RTL_W8(Cfg9346, Cfg9346_Unlock);
rtl_generic_op(tp, tp->jumbo_ops.disable);
RTL_W8(Cfg9346, Cfg9346_Lock);
}
static void r8168c_hw_jumbo_enable(struct rtl8169_private *tp)
{
void __iomem *ioaddr = tp->mmio_addr;
RTL_W8(Config3, RTL_R8(Config3) | Jumbo_En0);
RTL_W8(Config4, RTL_R8(Config4) | Jumbo_En1);
rtl_tx_performance_tweak(tp->pci_dev, 0x2 << MAX_READ_REQUEST_SHIFT);
}
static void r8168c_hw_jumbo_disable(struct rtl8169_private *tp)
{
void __iomem *ioaddr = tp->mmio_addr;
RTL_W8(Config3, RTL_R8(Config3) & ~Jumbo_En0);
RTL_W8(Config4, RTL_R8(Config4) & ~Jumbo_En1);
rtl_tx_performance_tweak(tp->pci_dev, 0x5 << MAX_READ_REQUEST_SHIFT);
}
static void r8168dp_hw_jumbo_enable(struct rtl8169_private *tp)
{
void __iomem *ioaddr = tp->mmio_addr;
RTL_W8(Config3, RTL_R8(Config3) | Jumbo_En0);
}
static void r8168dp_hw_jumbo_disable(struct rtl8169_private *tp)
{
void __iomem *ioaddr = tp->mmio_addr;
RTL_W8(Config3, RTL_R8(Config3) & ~Jumbo_En0);
}
static void r8168e_hw_jumbo_enable(struct rtl8169_private *tp)
{
void __iomem *ioaddr = tp->mmio_addr;
RTL_W8(MaxTxPacketSize, 0x3f);
RTL_W8(Config3, RTL_R8(Config3) | Jumbo_En0);
RTL_W8(Config4, RTL_R8(Config4) | 0x01);
rtl_tx_performance_tweak(tp->pci_dev, 0x2 << MAX_READ_REQUEST_SHIFT);
}
static void r8168e_hw_jumbo_disable(struct rtl8169_private *tp)
{
void __iomem *ioaddr = tp->mmio_addr;
RTL_W8(MaxTxPacketSize, 0x0c);
RTL_W8(Config3, RTL_R8(Config3) & ~Jumbo_En0);
RTL_W8(Config4, RTL_R8(Config4) & ~0x01);
rtl_tx_performance_tweak(tp->pci_dev, 0x5 << MAX_READ_REQUEST_SHIFT);
}
static void r8168b_0_hw_jumbo_enable(struct rtl8169_private *tp)
{
rtl_tx_performance_tweak(tp->pci_dev,
(0x2 << MAX_READ_REQUEST_SHIFT) | PCI_EXP_DEVCTL_NOSNOOP_EN);
}
static void r8168b_0_hw_jumbo_disable(struct rtl8169_private *tp)
{
rtl_tx_performance_tweak(tp->pci_dev,
(0x5 << MAX_READ_REQUEST_SHIFT) | PCI_EXP_DEVCTL_NOSNOOP_EN);
}
static void r8168b_1_hw_jumbo_enable(struct rtl8169_private *tp)
{
void __iomem *ioaddr = tp->mmio_addr;
r8168b_0_hw_jumbo_enable(tp);
RTL_W8(Config4, RTL_R8(Config4) | (1 << 0));
}
static void r8168b_1_hw_jumbo_disable(struct rtl8169_private *tp)
{
void __iomem *ioaddr = tp->mmio_addr;
r8168b_0_hw_jumbo_disable(tp);
RTL_W8(Config4, RTL_R8(Config4) & ~(1 << 0));
}
static void rtl_init_jumbo_ops(struct rtl8169_private *tp)
{
struct jumbo_ops *ops = &tp->jumbo_ops;
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_11:
ops->disable = r8168b_0_hw_jumbo_disable;
ops->enable = r8168b_0_hw_jumbo_enable;
break;
case RTL_GIGA_MAC_VER_12:
case RTL_GIGA_MAC_VER_17:
ops->disable = r8168b_1_hw_jumbo_disable;
ops->enable = r8168b_1_hw_jumbo_enable;
break;
case RTL_GIGA_MAC_VER_18: /* Wild guess. Needs info from Realtek. */
case RTL_GIGA_MAC_VER_19:
case RTL_GIGA_MAC_VER_20:
case RTL_GIGA_MAC_VER_21: /* Wild guess. Needs info from Realtek. */
case RTL_GIGA_MAC_VER_22:
case RTL_GIGA_MAC_VER_23:
case RTL_GIGA_MAC_VER_24:
case RTL_GIGA_MAC_VER_25:
case RTL_GIGA_MAC_VER_26:
ops->disable = r8168c_hw_jumbo_disable;
ops->enable = r8168c_hw_jumbo_enable;
break;
case RTL_GIGA_MAC_VER_27:
case RTL_GIGA_MAC_VER_28:
ops->disable = r8168dp_hw_jumbo_disable;
ops->enable = r8168dp_hw_jumbo_enable;
break;
case RTL_GIGA_MAC_VER_31: /* Wild guess. Needs info from Realtek. */
case RTL_GIGA_MAC_VER_32:
case RTL_GIGA_MAC_VER_33:
case RTL_GIGA_MAC_VER_34:
ops->disable = r8168e_hw_jumbo_disable;
ops->enable = r8168e_hw_jumbo_enable;
break;
/*
* No action needed for jumbo frames with 8169.
* No jumbo for 810x at all.
*/
case RTL_GIGA_MAC_VER_40:
case RTL_GIGA_MAC_VER_41:
default:
ops->disable = NULL;
ops->enable = NULL;
break;
}
}
DECLARE_RTL_COND(rtl_chipcmd_cond)
{
void __iomem *ioaddr = tp->mmio_addr;
return RTL_R8(ChipCmd) & CmdReset;
}
static void rtl_hw_reset(struct rtl8169_private *tp)
{
void __iomem *ioaddr = tp->mmio_addr;
RTL_W8(ChipCmd, CmdReset);
rtl_udelay_loop_wait_low(tp, &rtl_chipcmd_cond, 100, 100);
}
static void rtl_request_uncached_firmware(struct rtl8169_private *tp)
{
struct rtl_fw *rtl_fw;
const char *name;
int rc = -ENOMEM;
name = rtl_lookup_firmware_name(tp);
if (!name)
goto out_no_firmware;
rtl_fw = kzalloc(sizeof(*rtl_fw), GFP_KERNEL);
if (!rtl_fw)
goto err_warn;
rc = request_firmware(&rtl_fw->fw, name, &tp->pci_dev->dev);
if (rc < 0)
goto err_free;
rc = rtl_check_firmware(tp, rtl_fw);
if (rc < 0)
goto err_release_firmware;
tp->rtl_fw = rtl_fw;
out:
return;
err_release_firmware:
release_firmware(rtl_fw->fw);
err_free:
kfree(rtl_fw);
err_warn:
netif_warn(tp, ifup, tp->dev, "unable to load firmware patch %s (%d)\n",
name, rc);
out_no_firmware:
tp->rtl_fw = NULL;
goto out;
}
static void rtl_request_firmware(struct rtl8169_private *tp)
{
if (IS_ERR(tp->rtl_fw))
rtl_request_uncached_firmware(tp);
}
static void rtl_rx_close(struct rtl8169_private *tp)
{
void __iomem *ioaddr = tp->mmio_addr;
RTL_W32(RxConfig, RTL_R32(RxConfig) & ~RX_CONFIG_ACCEPT_MASK);
}
DECLARE_RTL_COND(rtl_npq_cond)
{
void __iomem *ioaddr = tp->mmio_addr;
return RTL_R8(TxPoll) & NPQ;
}
DECLARE_RTL_COND(rtl_txcfg_empty_cond)
{
void __iomem *ioaddr = tp->mmio_addr;
return RTL_R32(TxConfig) & TXCFG_EMPTY;
}
static void rtl8169_hw_reset(struct rtl8169_private *tp)
{
void __iomem *ioaddr = tp->mmio_addr;
/* Disable interrupts */
rtl8169_irq_mask_and_ack(tp);
rtl_rx_close(tp);
if (tp->mac_version == RTL_GIGA_MAC_VER_27 ||
tp->mac_version == RTL_GIGA_MAC_VER_28 ||
tp->mac_version == RTL_GIGA_MAC_VER_31) {
rtl_udelay_loop_wait_low(tp, &rtl_npq_cond, 20, 42*42);
} else if (tp->mac_version == RTL_GIGA_MAC_VER_34 ||
tp->mac_version == RTL_GIGA_MAC_VER_35 ||
tp->mac_version == RTL_GIGA_MAC_VER_36 ||
tp->mac_version == RTL_GIGA_MAC_VER_37 ||
tp->mac_version == RTL_GIGA_MAC_VER_40 ||
tp->mac_version == RTL_GIGA_MAC_VER_41 ||
tp->mac_version == RTL_GIGA_MAC_VER_38) {
RTL_W8(ChipCmd, RTL_R8(ChipCmd) | StopReq);
rtl_udelay_loop_wait_high(tp, &rtl_txcfg_empty_cond, 100, 666);
} else {
RTL_W8(ChipCmd, RTL_R8(ChipCmd) | StopReq);
udelay(100);
}
rtl_hw_reset(tp);
}
static void rtl_set_rx_tx_config_registers(struct rtl8169_private *tp)
{
void __iomem *ioaddr = tp->mmio_addr;
/* Set DMA burst size and Interframe Gap Time */
RTL_W32(TxConfig, (TX_DMA_BURST << TxDMAShift) |
(InterFrameGap << TxInterFrameGapShift));
}
static void rtl_hw_start(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
tp->hw_start(dev);
if (!tp->ecdev) {
rtl_irq_enable_all(tp);
}
}
static void rtl_set_rx_tx_desc_registers(struct rtl8169_private *tp,
void __iomem *ioaddr)
{
/*
* Magic spell: some iop3xx ARM board needs the TxDescAddrHigh
* register to be written before TxDescAddrLow to work.
* Switching from MMIO to I/O access fixes the issue as well.
*/
RTL_W32(TxDescStartAddrHigh, ((u64) tp->TxPhyAddr) >> 32);
RTL_W32(TxDescStartAddrLow, ((u64) tp->TxPhyAddr) & DMA_BIT_MASK(32));
RTL_W32(RxDescAddrHigh, ((u64) tp->RxPhyAddr) >> 32);
RTL_W32(RxDescAddrLow, ((u64) tp->RxPhyAddr) & DMA_BIT_MASK(32));
}
static u16 rtl_rw_cpluscmd(void __iomem *ioaddr)
{
u16 cmd;
cmd = RTL_R16(CPlusCmd);
RTL_W16(CPlusCmd, cmd);
return cmd;
}
static void rtl_set_rx_max_size(void __iomem *ioaddr, unsigned int rx_buf_sz)
{
/* Low hurts. Let's disable the filtering. */
RTL_W16(RxMaxSize, rx_buf_sz + 1);
}
static void rtl8169_set_magic_reg(void __iomem *ioaddr, unsigned mac_version)
{
static const struct rtl_cfg2_info {
u32 mac_version;
u32 clk;
u32 val;
} cfg2_info [] = {
{ RTL_GIGA_MAC_VER_05, PCI_Clock_33MHz, 0x000fff00 }, // 8110SCd
{ RTL_GIGA_MAC_VER_05, PCI_Clock_66MHz, 0x000fffff },
{ RTL_GIGA_MAC_VER_06, PCI_Clock_33MHz, 0x00ffff00 }, // 8110SCe
{ RTL_GIGA_MAC_VER_06, PCI_Clock_66MHz, 0x00ffffff }
};
const struct rtl_cfg2_info *p = cfg2_info;
unsigned int i;
u32 clk;
clk = RTL_R8(Config2) & PCI_Clock_66MHz;
for (i = 0; i < ARRAY_SIZE(cfg2_info); i++, p++) {
if ((p->mac_version == mac_version) && (p->clk == clk)) {
RTL_W32(0x7c, p->val);
break;
}
}
}
static void rtl_set_rx_mode(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
void __iomem *ioaddr = tp->mmio_addr;
u32 mc_filter[2]; /* Multicast hash filter */
int rx_mode;
u32 tmp = 0;
if (dev->flags & IFF_PROMISC) {
/* Unconditionally log net taps. */
netif_notice(tp, link, dev, "Promiscuous mode enabled\n");
rx_mode =
AcceptBroadcast | AcceptMulticast | AcceptMyPhys |
AcceptAllPhys;
mc_filter[1] = mc_filter[0] = 0xffffffff;
} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
(dev->flags & IFF_ALLMULTI)) {
/* Too many to filter perfectly -- accept all multicasts. */
rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
mc_filter[1] = mc_filter[0] = 0xffffffff;
} else {
struct netdev_hw_addr *ha;
rx_mode = AcceptBroadcast | AcceptMyPhys;
mc_filter[1] = mc_filter[0] = 0;
netdev_for_each_mc_addr(ha, dev) {
int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
rx_mode |= AcceptMulticast;
}
}
if (dev->features & NETIF_F_RXALL)
rx_mode |= (AcceptErr | AcceptRunt);
tmp = (RTL_R32(RxConfig) & ~RX_CONFIG_ACCEPT_MASK) | rx_mode;
if (tp->mac_version > RTL_GIGA_MAC_VER_06) {
u32 data = mc_filter[0];
mc_filter[0] = swab32(mc_filter[1]);
mc_filter[1] = swab32(data);
}
if (tp->mac_version == RTL_GIGA_MAC_VER_35)
mc_filter[1] = mc_filter[0] = 0xffffffff;
RTL_W32(MAR0 + 4, mc_filter[1]);
RTL_W32(MAR0 + 0, mc_filter[0]);
RTL_W32(RxConfig, tmp);
}
static void rtl_hw_start_8169(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
void __iomem *ioaddr = tp->mmio_addr;
struct pci_dev *pdev = tp->pci_dev;
if (tp->mac_version == RTL_GIGA_MAC_VER_05) {
RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) | PCIMulRW);
pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08);
}
RTL_W8(Cfg9346, Cfg9346_Unlock);
if (tp->mac_version == RTL_GIGA_MAC_VER_01 ||
tp->mac_version == RTL_GIGA_MAC_VER_02 ||
tp->mac_version == RTL_GIGA_MAC_VER_03 ||
tp->mac_version == RTL_GIGA_MAC_VER_04)
RTL_W8(ChipCmd, CmdTxEnb | CmdRxEnb);
rtl_init_rxcfg(tp);
RTL_W8(EarlyTxThres, NoEarlyTx);
rtl_set_rx_max_size(ioaddr, rx_buf_sz);
if (tp->mac_version == RTL_GIGA_MAC_VER_01 ||
tp->mac_version == RTL_GIGA_MAC_VER_02 ||
tp->mac_version == RTL_GIGA_MAC_VER_03 ||
tp->mac_version == RTL_GIGA_MAC_VER_04)
rtl_set_rx_tx_config_registers(tp);
tp->cp_cmd |= rtl_rw_cpluscmd(ioaddr) | PCIMulRW;
if (tp->mac_version == RTL_GIGA_MAC_VER_02 ||
tp->mac_version == RTL_GIGA_MAC_VER_03) {
dprintk("Set MAC Reg C+CR Offset 0xE0. "
"Bit-3 and bit-14 MUST be 1\n");
tp->cp_cmd |= (1 << 14);
}
RTL_W16(CPlusCmd, tp->cp_cmd);
rtl8169_set_magic_reg(ioaddr, tp->mac_version);
/*
* Undocumented corner. Supposedly:
* (TxTimer << 12) | (TxPackets << 8) | (RxTimer << 4) | RxPackets
*/
RTL_W16(IntrMitigate, 0x0000);
rtl_set_rx_tx_desc_registers(tp, ioaddr);
if (tp->mac_version != RTL_GIGA_MAC_VER_01 &&
tp->mac_version != RTL_GIGA_MAC_VER_02 &&
tp->mac_version != RTL_GIGA_MAC_VER_03 &&
tp->mac_version != RTL_GIGA_MAC_VER_04) {
RTL_W8(ChipCmd, CmdTxEnb | CmdRxEnb);
rtl_set_rx_tx_config_registers(tp);
}
RTL_W8(Cfg9346, Cfg9346_Lock);
/* Initially a 10 us delay. Turned it into a PCI commit. - FR */
RTL_R8(IntrMask);
RTL_W32(RxMissed, 0);
rtl_set_rx_mode(dev);
/* no early-rx interrupts */
RTL_W16(MultiIntr, RTL_R16(MultiIntr) & 0xF000);
}
static void rtl_csi_write(struct rtl8169_private *tp, int addr, int value)
{
if (tp->csi_ops.write)
tp->csi_ops.write(tp, addr, value);
}
static u32 rtl_csi_read(struct rtl8169_private *tp, int addr)
{
return tp->csi_ops.read ? tp->csi_ops.read(tp, addr) : ~0;
}
static void rtl_csi_access_enable(struct rtl8169_private *tp, u32 bits)
{
u32 csi;
csi = rtl_csi_read(tp, 0x070c) & 0x00ffffff;
rtl_csi_write(tp, 0x070c, csi | bits);
}
static void rtl_csi_access_enable_1(struct rtl8169_private *tp)
{
rtl_csi_access_enable(tp, 0x17000000);
}
static void rtl_csi_access_enable_2(struct rtl8169_private *tp)
{
rtl_csi_access_enable(tp, 0x27000000);
}
DECLARE_RTL_COND(rtl_csiar_cond)
{
void __iomem *ioaddr = tp->mmio_addr;
return RTL_R32(CSIAR) & CSIAR_FLAG;
}
static void r8169_csi_write(struct rtl8169_private *tp, int addr, int value)
{
void __iomem *ioaddr = tp->mmio_addr;
RTL_W32(CSIDR, value);
RTL_W32(CSIAR, CSIAR_WRITE_CMD | (addr & CSIAR_ADDR_MASK) |
CSIAR_BYTE_ENABLE << CSIAR_BYTE_ENABLE_SHIFT);
rtl_udelay_loop_wait_low(tp, &rtl_csiar_cond, 10, 100);
}
static u32 r8169_csi_read(struct rtl8169_private *tp, int addr)
{
void __iomem *ioaddr = tp->mmio_addr;
RTL_W32(CSIAR, (addr & CSIAR_ADDR_MASK) |
CSIAR_BYTE_ENABLE << CSIAR_BYTE_ENABLE_SHIFT);
return rtl_udelay_loop_wait_high(tp, &rtl_csiar_cond, 10, 100) ?
RTL_R32(CSIDR) : ~0;
}
static void r8402_csi_write(struct rtl8169_private *tp, int addr, int value)
{
void __iomem *ioaddr = tp->mmio_addr;
RTL_W32(CSIDR, value);
RTL_W32(CSIAR, CSIAR_WRITE_CMD | (addr & CSIAR_ADDR_MASK) |
CSIAR_BYTE_ENABLE << CSIAR_BYTE_ENABLE_SHIFT |
CSIAR_FUNC_NIC);
rtl_udelay_loop_wait_low(tp, &rtl_csiar_cond, 10, 100);
}
static u32 r8402_csi_read(struct rtl8169_private *tp, int addr)
{
void __iomem *ioaddr = tp->mmio_addr;
RTL_W32(CSIAR, (addr & CSIAR_ADDR_MASK) | CSIAR_FUNC_NIC |
CSIAR_BYTE_ENABLE << CSIAR_BYTE_ENABLE_SHIFT);
return rtl_udelay_loop_wait_high(tp, &rtl_csiar_cond, 10, 100) ?
RTL_R32(CSIDR) : ~0;
}
static void rtl_init_csi_ops(struct rtl8169_private *tp)
{
struct csi_ops *ops = &tp->csi_ops;
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_01:
case RTL_GIGA_MAC_VER_02:
case RTL_GIGA_MAC_VER_03:
case RTL_GIGA_MAC_VER_04:
case RTL_GIGA_MAC_VER_05:
case RTL_GIGA_MAC_VER_06:
case RTL_GIGA_MAC_VER_10:
case RTL_GIGA_MAC_VER_11:
case RTL_GIGA_MAC_VER_12:
case RTL_GIGA_MAC_VER_13:
case RTL_GIGA_MAC_VER_14:
case RTL_GIGA_MAC_VER_15:
case RTL_GIGA_MAC_VER_16:
case RTL_GIGA_MAC_VER_17:
ops->write = NULL;
ops->read = NULL;
break;
case RTL_GIGA_MAC_VER_37:
case RTL_GIGA_MAC_VER_38:
ops->write = r8402_csi_write;
ops->read = r8402_csi_read;
break;
default:
ops->write = r8169_csi_write;
ops->read = r8169_csi_read;
break;
}
}
struct ephy_info {
unsigned int offset;
u16 mask;
u16 bits;
};
static void rtl_ephy_init(struct rtl8169_private *tp, const struct ephy_info *e,
int len)
{
u16 w;
while (len-- > 0) {
w = (rtl_ephy_read(tp, e->offset) & ~e->mask) | e->bits;
rtl_ephy_write(tp, e->offset, w);
e++;
}
}
static void rtl_disable_clock_request(struct pci_dev *pdev)
{
pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL,
PCI_EXP_LNKCTL_CLKREQ_EN);
}
static void rtl_enable_clock_request(struct pci_dev *pdev)
{
pcie_capability_set_word(pdev, PCI_EXP_LNKCTL,
PCI_EXP_LNKCTL_CLKREQ_EN);
}
#define R8168_CPCMD_QUIRK_MASK (\
EnableBist | \
Mac_dbgo_oe | \
Force_half_dup | \
Force_rxflow_en | \
Force_txflow_en | \
Cxpl_dbg_sel | \
ASF | \
PktCntrDisable | \
Mac_dbgo_sel)
static void rtl_hw_start_8168bb(struct rtl8169_private *tp)
{
void __iomem *ioaddr = tp->mmio_addr;
struct pci_dev *pdev = tp->pci_dev;
RTL_W8(Config3, RTL_R8(Config3) & ~Beacon_en);
RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) & ~R8168_CPCMD_QUIRK_MASK);
rtl_tx_performance_tweak(pdev,
(0x5 << MAX_READ_REQUEST_SHIFT) | PCI_EXP_DEVCTL_NOSNOOP_EN);
}
static void rtl_hw_start_8168bef(struct rtl8169_private *tp)
{
void __iomem *ioaddr = tp->mmio_addr;
rtl_hw_start_8168bb(tp);
RTL_W8(MaxTxPacketSize, TxPacketMax);
RTL_W8(Config4, RTL_R8(Config4) & ~(1 << 0));
}
static void __rtl_hw_start_8168cp(struct rtl8169_private *tp)
{
void __iomem *ioaddr = tp->mmio_addr;
struct pci_dev *pdev = tp->pci_dev;
RTL_W8(Config1, RTL_R8(Config1) | Speed_down);
RTL_W8(Config3, RTL_R8(Config3) & ~Beacon_en);
rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT);
rtl_disable_clock_request(pdev);
RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) & ~R8168_CPCMD_QUIRK_MASK);
}
static void rtl_hw_start_8168cp_1(struct rtl8169_private *tp)
{
static const struct ephy_info e_info_8168cp[] = {
{ 0x01, 0, 0x0001 },
{ 0x02, 0x0800, 0x1000 },
{ 0x03, 0, 0x0042 },
{ 0x06, 0x0080, 0x0000 },
{ 0x07, 0, 0x2000 }
};
rtl_csi_access_enable_2(tp);
rtl_ephy_init(tp, e_info_8168cp, ARRAY_SIZE(e_info_8168cp));
__rtl_hw_start_8168cp(tp);
}
static void rtl_hw_start_8168cp_2(struct rtl8169_private *tp)
{
void __iomem *ioaddr = tp->mmio_addr;
struct pci_dev *pdev = tp->pci_dev;
rtl_csi_access_enable_2(tp);
RTL_W8(Config3, RTL_R8(Config3) & ~Beacon_en);
rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT);
RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) & ~R8168_CPCMD_QUIRK_MASK);
}
static void rtl_hw_start_8168cp_3(struct rtl8169_private *tp)
{
void __iomem *ioaddr = tp->mmio_addr;
struct pci_dev *pdev = tp->pci_dev;
rtl_csi_access_enable_2(tp);
RTL_W8(Config3, RTL_R8(Config3) & ~Beacon_en);
/* Magic. */
RTL_W8(DBG_REG, 0x20);
RTL_W8(MaxTxPacketSize, TxPacketMax);
rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT);
RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) & ~R8168_CPCMD_QUIRK_MASK);
}
static void rtl_hw_start_8168c_1(struct rtl8169_private *tp)
{
void __iomem *ioaddr = tp->mmio_addr;
static const struct ephy_info e_info_8168c_1[] = {
{ 0x02, 0x0800, 0x1000 },
{ 0x03, 0, 0x0002 },
{ 0x06, 0x0080, 0x0000 }
};
rtl_csi_access_enable_2(tp);
RTL_W8(DBG_REG, 0x06 | FIX_NAK_1 | FIX_NAK_2);
rtl_ephy_init(tp, e_info_8168c_1, ARRAY_SIZE(e_info_8168c_1));
__rtl_hw_start_8168cp(tp);
}
static void rtl_hw_start_8168c_2(struct rtl8169_private *tp)
{
static const struct ephy_info e_info_8168c_2[] = {
{ 0x01, 0, 0x0001 },
{ 0x03, 0x0400, 0x0220 }
};
rtl_csi_access_enable_2(tp);
rtl_ephy_init(tp, e_info_8168c_2, ARRAY_SIZE(e_info_8168c_2));
__rtl_hw_start_8168cp(tp);
}
static void rtl_hw_start_8168c_3(struct rtl8169_private *tp)
{
rtl_hw_start_8168c_2(tp);
}
static void rtl_hw_start_8168c_4(struct rtl8169_private *tp)
{
rtl_csi_access_enable_2(tp);
__rtl_hw_start_8168cp(tp);
}
static void rtl_hw_start_8168d(struct rtl8169_private *tp)
{
void __iomem *ioaddr = tp->mmio_addr;
struct pci_dev *pdev = tp->pci_dev;
rtl_csi_access_enable_2(tp);
rtl_disable_clock_request(pdev);
RTL_W8(MaxTxPacketSize, TxPacketMax);
rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT);
RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) & ~R8168_CPCMD_QUIRK_MASK);
}
static void rtl_hw_start_8168dp(struct rtl8169_private *tp)
{
void __iomem *ioaddr = tp->mmio_addr;
struct pci_dev *pdev = tp->pci_dev;
rtl_csi_access_enable_1(tp);
rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT);
RTL_W8(MaxTxPacketSize, TxPacketMax);
rtl_disable_clock_request(pdev);
}
static void rtl_hw_start_8168d_4(struct rtl8169_private *tp)
{
void __iomem *ioaddr = tp->mmio_addr;
struct pci_dev *pdev = tp->pci_dev;
static const struct ephy_info e_info_8168d_4[] = {
{ 0x0b, ~0, 0x48 },
{ 0x19, 0x20, 0x50 },
{ 0x0c, ~0, 0x20 }
};
int i;
rtl_csi_access_enable_1(tp);
rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT);
RTL_W8(MaxTxPacketSize, TxPacketMax);
for (i = 0; i < ARRAY_SIZE(e_info_8168d_4); i++) {
const struct ephy_info *e = e_info_8168d_4 + i;
u16 w;
w = rtl_ephy_read(tp, e->offset);
rtl_ephy_write(tp, 0x03, (w & e->mask) | e->bits);
}
rtl_enable_clock_request(pdev);
}
static void rtl_hw_start_8168e_1(struct rtl8169_private *tp)
{
void __iomem *ioaddr = tp->mmio_addr;
struct pci_dev *pdev = tp->pci_dev;
static const struct ephy_info e_info_8168e_1[] = {
{ 0x00, 0x0200, 0x0100 },
{ 0x00, 0x0000, 0x0004 },
{ 0x06, 0x0002, 0x0001 },
{ 0x06, 0x0000, 0x0030 },
{ 0x07, 0x0000, 0x2000 },
{ 0x00, 0x0000, 0x0020 },
{ 0x03, 0x5800, 0x2000 },
{ 0x03, 0x0000, 0x0001 },
{ 0x01, 0x0800, 0x1000 },
{ 0x07, 0x0000, 0x4000 },
{ 0x1e, 0x0000, 0x2000 },
{ 0x19, 0xffff, 0xfe6c },
{ 0x0a, 0x0000, 0x0040 }
};
rtl_csi_access_enable_2(tp);
rtl_ephy_init(tp, e_info_8168e_1, ARRAY_SIZE(e_info_8168e_1));
rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT);
RTL_W8(MaxTxPacketSize, TxPacketMax);
rtl_disable_clock_request(pdev);
/* Reset tx FIFO pointer */
RTL_W32(MISC, RTL_R32(MISC) | TXPLA_RST);
RTL_W32(MISC, RTL_R32(MISC) & ~TXPLA_RST);
RTL_W8(Config5, RTL_R8(Config5) & ~Spi_en);
}
static void rtl_hw_start_8168e_2(struct rtl8169_private *tp)
{
void __iomem *ioaddr = tp->mmio_addr;
struct pci_dev *pdev = tp->pci_dev;
static const struct ephy_info e_info_8168e_2[] = {
{ 0x09, 0x0000, 0x0080 },
{ 0x19, 0x0000, 0x0224 }
};
rtl_csi_access_enable_1(tp);
rtl_ephy_init(tp, e_info_8168e_2, ARRAY_SIZE(e_info_8168e_2));
rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT);
rtl_eri_write(tp, 0xc0, ERIAR_MASK_0011, 0x0000, ERIAR_EXGMAC);
rtl_eri_write(tp, 0xb8, ERIAR_MASK_0011, 0x0000, ERIAR_EXGMAC);
rtl_eri_write(tp, 0xc8, ERIAR_MASK_1111, 0x00100002, ERIAR_EXGMAC);
rtl_eri_write(tp, 0xe8, ERIAR_MASK_1111, 0x00100006, ERIAR_EXGMAC);
rtl_eri_write(tp, 0xcc, ERIAR_MASK_1111, 0x00000050, ERIAR_EXGMAC);
rtl_eri_write(tp, 0xd0, ERIAR_MASK_1111, 0x07ff0060, ERIAR_EXGMAC);
rtl_w1w0_eri(tp, 0x1b0, ERIAR_MASK_0001, 0x10, 0x00, ERIAR_EXGMAC);
rtl_w1w0_eri(tp, 0x0d4, ERIAR_MASK_0011, 0x0c00, 0xff00, ERIAR_EXGMAC);
RTL_W8(MaxTxPacketSize, EarlySize);
rtl_disable_clock_request(pdev);
RTL_W32(TxConfig, RTL_R32(TxConfig) | TXCFG_AUTO_FIFO);
RTL_W8(MCU, RTL_R8(MCU) & ~NOW_IS_OOB);
/* Adjust EEE LED frequency */
RTL_W8(EEE_LED, RTL_R8(EEE_LED) & ~0x07);
RTL_W8(DLLPR, RTL_R8(DLLPR) | PFM_EN);
RTL_W32(MISC, RTL_R32(MISC) | PWM_EN);
RTL_W8(Config5, RTL_R8(Config5) & ~Spi_en);
}
static void rtl_hw_start_8168f(struct rtl8169_private *tp)
{
void __iomem *ioaddr = tp->mmio_addr;
struct pci_dev *pdev = tp->pci_dev;
rtl_csi_access_enable_2(tp);
rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT);
rtl_eri_write(tp, 0xc0, ERIAR_MASK_0011, 0x0000, ERIAR_EXGMAC);
rtl_eri_write(tp, 0xb8, ERIAR_MASK_0011, 0x0000, ERIAR_EXGMAC);
rtl_eri_write(tp, 0xc8, ERIAR_MASK_1111, 0x00100002, ERIAR_EXGMAC);
rtl_eri_write(tp, 0xe8, ERIAR_MASK_1111, 0x00100006, ERIAR_EXGMAC);
rtl_w1w0_eri(tp, 0xdc, ERIAR_MASK_0001, 0x00, 0x01, ERIAR_EXGMAC);
rtl_w1w0_eri(tp, 0xdc, ERIAR_MASK_0001, 0x01, 0x00, ERIAR_EXGMAC);
rtl_w1w0_eri(tp, 0x1b0, ERIAR_MASK_0001, 0x10, 0x00, ERIAR_EXGMAC);
rtl_w1w0_eri(tp, 0x1d0, ERIAR_MASK_0001, 0x10, 0x00, ERIAR_EXGMAC);
rtl_eri_write(tp, 0xcc, ERIAR_MASK_1111, 0x00000050, ERIAR_EXGMAC);
rtl_eri_write(tp, 0xd0, ERIAR_MASK_1111, 0x00000060, ERIAR_EXGMAC);
RTL_W8(MaxTxPacketSize, EarlySize);
rtl_disable_clock_request(pdev);
RTL_W32(TxConfig, RTL_R32(TxConfig) | TXCFG_AUTO_FIFO);
RTL_W8(MCU, RTL_R8(MCU) & ~NOW_IS_OOB);
RTL_W8(DLLPR, RTL_R8(DLLPR) | PFM_EN);
RTL_W32(MISC, RTL_R32(MISC) | PWM_EN);
RTL_W8(Config5, RTL_R8(Config5) & ~Spi_en);
}
static void rtl_hw_start_8168f_1(struct rtl8169_private *tp)
{
void __iomem *ioaddr = tp->mmio_addr;
static const struct ephy_info e_info_8168f_1[] = {
{ 0x06, 0x00c0, 0x0020 },
{ 0x08, 0x0001, 0x0002 },
{ 0x09, 0x0000, 0x0080 },
{ 0x19, 0x0000, 0x0224 }
};
rtl_hw_start_8168f(tp);
rtl_ephy_init(tp, e_info_8168f_1, ARRAY_SIZE(e_info_8168f_1));
rtl_w1w0_eri(tp, 0x0d4, ERIAR_MASK_0011, 0x0c00, 0xff00, ERIAR_EXGMAC);
/* Adjust EEE LED frequency */
RTL_W8(EEE_LED, RTL_R8(EEE_LED) & ~0x07);
}
static void rtl_hw_start_8411(struct rtl8169_private *tp)
{
static const struct ephy_info e_info_8168f_1[] = {
{ 0x06, 0x00c0, 0x0020 },
{ 0x0f, 0xffff, 0x5200 },
{ 0x1e, 0x0000, 0x4000 },
{ 0x19, 0x0000, 0x0224 }
};
rtl_hw_start_8168f(tp);
rtl_ephy_init(tp, e_info_8168f_1, ARRAY_SIZE(e_info_8168f_1));
rtl_w1w0_eri(tp, 0x0d4, ERIAR_MASK_0011, 0x0c00, 0x0000, ERIAR_EXGMAC);
}
static void rtl_hw_start_8168g_1(struct rtl8169_private *tp)
{
void __iomem *ioaddr = tp->mmio_addr;
struct pci_dev *pdev = tp->pci_dev;
rtl_eri_write(tp, 0xc8, ERIAR_MASK_0101, 0x080002, ERIAR_EXGMAC);
rtl_eri_write(tp, 0xcc, ERIAR_MASK_0001, 0x38, ERIAR_EXGMAC);
rtl_eri_write(tp, 0xd0, ERIAR_MASK_0001, 0x48, ERIAR_EXGMAC);
rtl_eri_write(tp, 0xe8, ERIAR_MASK_1111, 0x00100006, ERIAR_EXGMAC);
rtl_csi_access_enable_1(tp);
rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT);
rtl_w1w0_eri(tp, 0xdc, ERIAR_MASK_0001, 0x00, 0x01, ERIAR_EXGMAC);
rtl_w1w0_eri(tp, 0xdc, ERIAR_MASK_0001, 0x01, 0x00, ERIAR_EXGMAC);
RTL_W8(ChipCmd, CmdTxEnb | CmdRxEnb);
RTL_W32(MISC, RTL_R32(MISC) & ~RXDV_GATED_EN);
RTL_W8(MaxTxPacketSize, EarlySize);
rtl_eri_write(tp, 0xc0, ERIAR_MASK_0011, 0x0000, ERIAR_EXGMAC);
rtl_eri_write(tp, 0xb8, ERIAR_MASK_0011, 0x0000, ERIAR_EXGMAC);
/* Adjust EEE LED frequency */
RTL_W8(EEE_LED, RTL_R8(EEE_LED) & ~0x07);
rtl_w1w0_eri(tp, 0x2fc, ERIAR_MASK_0001, 0x01, 0x02, ERIAR_EXGMAC);
}
static void rtl_hw_start_8168(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
void __iomem *ioaddr = tp->mmio_addr;
RTL_W8(Cfg9346, Cfg9346_Unlock);
RTL_W8(MaxTxPacketSize, TxPacketMax);
rtl_set_rx_max_size(ioaddr, rx_buf_sz);
tp->cp_cmd |= RTL_R16(CPlusCmd) | PktCntrDisable | INTT_1;
RTL_W16(CPlusCmd, tp->cp_cmd);
RTL_W16(IntrMitigate, 0x5151);
/* Work around for RxFIFO overflow. */
if (tp->mac_version == RTL_GIGA_MAC_VER_11) {
tp->event_slow |= RxFIFOOver | PCSTimeout;
tp->event_slow &= ~RxOverflow;
}
rtl_set_rx_tx_desc_registers(tp, ioaddr);
rtl_set_rx_mode(dev);
RTL_W32(TxConfig, (TX_DMA_BURST << TxDMAShift) |
(InterFrameGap << TxInterFrameGapShift));
RTL_R8(IntrMask);
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_11:
rtl_hw_start_8168bb(tp);
break;
case RTL_GIGA_MAC_VER_12:
case RTL_GIGA_MAC_VER_17:
rtl_hw_start_8168bef(tp);
break;
case RTL_GIGA_MAC_VER_18:
rtl_hw_start_8168cp_1(tp);
break;
case RTL_GIGA_MAC_VER_19:
rtl_hw_start_8168c_1(tp);
break;
case RTL_GIGA_MAC_VER_20:
rtl_hw_start_8168c_2(tp);
break;
case RTL_GIGA_MAC_VER_21:
rtl_hw_start_8168c_3(tp);
break;
case RTL_GIGA_MAC_VER_22:
rtl_hw_start_8168c_4(tp);
break;
case RTL_GIGA_MAC_VER_23:
rtl_hw_start_8168cp_2(tp);
break;
case RTL_GIGA_MAC_VER_24:
rtl_hw_start_8168cp_3(tp);
break;
case RTL_GIGA_MAC_VER_25:
case RTL_GIGA_MAC_VER_26:
case RTL_GIGA_MAC_VER_27:
rtl_hw_start_8168d(tp);
break;
case RTL_GIGA_MAC_VER_28:
rtl_hw_start_8168d_4(tp);
break;
case RTL_GIGA_MAC_VER_31:
rtl_hw_start_8168dp(tp);
break;
case RTL_GIGA_MAC_VER_32:
case RTL_GIGA_MAC_VER_33:
rtl_hw_start_8168e_1(tp);
break;
case RTL_GIGA_MAC_VER_34:
rtl_hw_start_8168e_2(tp);
break;
case RTL_GIGA_MAC_VER_35:
case RTL_GIGA_MAC_VER_36:
rtl_hw_start_8168f_1(tp);
break;
case RTL_GIGA_MAC_VER_38:
rtl_hw_start_8411(tp);
break;
case RTL_GIGA_MAC_VER_40:
case RTL_GIGA_MAC_VER_41:
rtl_hw_start_8168g_1(tp);
break;
default:
printk(KERN_ERR PFX "%s: unknown chipset (mac_version = %d).\n",
dev->name, tp->mac_version);
break;
}
RTL_W8(ChipCmd, CmdTxEnb | CmdRxEnb);
RTL_W8(Cfg9346, Cfg9346_Lock);
RTL_W16(MultiIntr, RTL_R16(MultiIntr) & 0xF000);
}
#define R810X_CPCMD_QUIRK_MASK (\
EnableBist | \
Mac_dbgo_oe | \
Force_half_dup | \
Force_rxflow_en | \
Force_txflow_en | \
Cxpl_dbg_sel | \
ASF | \
PktCntrDisable | \
Mac_dbgo_sel)
static void rtl_hw_start_8102e_1(struct rtl8169_private *tp)
{
void __iomem *ioaddr = tp->mmio_addr;
struct pci_dev *pdev = tp->pci_dev;
static const struct ephy_info e_info_8102e_1[] = {
{ 0x01, 0, 0x6e65 },
{ 0x02, 0, 0x091f },
{ 0x03, 0, 0xc2f9 },
{ 0x06, 0, 0xafb5 },
{ 0x07, 0, 0x0e00 },
{ 0x19, 0, 0xec80 },
{ 0x01, 0, 0x2e65 },
{ 0x01, 0, 0x6e65 }
};
u8 cfg1;
rtl_csi_access_enable_2(tp);
RTL_W8(DBG_REG, FIX_NAK_1);
rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT);
RTL_W8(Config1,
LEDS1 | LEDS0 | Speed_down | MEMMAP | IOMAP | VPD | PMEnable);
RTL_W8(Config3, RTL_R8(Config3) & ~Beacon_en);
cfg1 = RTL_R8(Config1);
if ((cfg1 & LEDS0) && (cfg1 & LEDS1))
RTL_W8(Config1, cfg1 & ~LEDS0);
rtl_ephy_init(tp, e_info_8102e_1, ARRAY_SIZE(e_info_8102e_1));
}
static void rtl_hw_start_8102e_2(struct rtl8169_private *tp)
{
void __iomem *ioaddr = tp->mmio_addr;
struct pci_dev *pdev = tp->pci_dev;
rtl_csi_access_enable_2(tp);
rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT);
RTL_W8(Config1, MEMMAP | IOMAP | VPD | PMEnable);
RTL_W8(Config3, RTL_R8(Config3) & ~Beacon_en);
}
static void rtl_hw_start_8102e_3(struct rtl8169_private *tp)
{
rtl_hw_start_8102e_2(tp);
rtl_ephy_write(tp, 0x03, 0xc2f9);
}
static void rtl_hw_start_8105e_1(struct rtl8169_private *tp)
{
void __iomem *ioaddr = tp->mmio_addr;
static const struct ephy_info e_info_8105e_1[] = {
{ 0x07, 0, 0x4000 },
{ 0x19, 0, 0x0200 },
{ 0x19, 0, 0x0020 },
{ 0x1e, 0, 0x2000 },
{ 0x03, 0, 0x0001 },
{ 0x19, 0, 0x0100 },
{ 0x19, 0, 0x0004 },
{ 0x0a, 0, 0x0020 }
};
/* Force LAN exit from ASPM if Rx/Tx are not idle */
RTL_W32(FuncEvent, RTL_R32(FuncEvent) | 0x002800);
/* Disable Early Tally Counter */
RTL_W32(FuncEvent, RTL_R32(FuncEvent) & ~0x010000);
RTL_W8(MCU, RTL_R8(MCU) | EN_NDP | EN_OOB_RESET);
RTL_W8(DLLPR, RTL_R8(DLLPR) | PFM_EN);
rtl_ephy_init(tp, e_info_8105e_1, ARRAY_SIZE(e_info_8105e_1));
}
static void rtl_hw_start_8105e_2(struct rtl8169_private *tp)
{
rtl_hw_start_8105e_1(tp);
rtl_ephy_write(tp, 0x1e, rtl_ephy_read(tp, 0x1e) | 0x8000);
}
static void rtl_hw_start_8402(struct rtl8169_private *tp)
{
void __iomem *ioaddr = tp->mmio_addr;
static const struct ephy_info e_info_8402[] = {
{ 0x19, 0xffff, 0xff64 },
{ 0x1e, 0, 0x4000 }
};
rtl_csi_access_enable_2(tp);
/* Force LAN exit from ASPM if Rx/Tx are not idle */
RTL_W32(FuncEvent, RTL_R32(FuncEvent) | 0x002800);
RTL_W32(TxConfig, RTL_R32(TxConfig) | TXCFG_AUTO_FIFO);
RTL_W8(MCU, RTL_R8(MCU) & ~NOW_IS_OOB);
rtl_ephy_init(tp, e_info_8402, ARRAY_SIZE(e_info_8402));
rtl_tx_performance_tweak(tp->pci_dev, 0x5 << MAX_READ_REQUEST_SHIFT);
rtl_eri_write(tp, 0xc8, ERIAR_MASK_1111, 0x00000002, ERIAR_EXGMAC);
rtl_eri_write(tp, 0xe8, ERIAR_MASK_1111, 0x00000006, ERIAR_EXGMAC);
rtl_w1w0_eri(tp, 0xdc, ERIAR_MASK_0001, 0x00, 0x01, ERIAR_EXGMAC);
rtl_w1w0_eri(tp, 0xdc, ERIAR_MASK_0001, 0x01, 0x00, ERIAR_EXGMAC);
rtl_eri_write(tp, 0xc0, ERIAR_MASK_0011, 0x0000, ERIAR_EXGMAC);
rtl_eri_write(tp, 0xb8, ERIAR_MASK_0011, 0x0000, ERIAR_EXGMAC);
rtl_w1w0_eri(tp, 0x0d4, ERIAR_MASK_0011, 0x0e00, 0xff00, ERIAR_EXGMAC);
}
static void rtl_hw_start_8106(struct rtl8169_private *tp)
{
void __iomem *ioaddr = tp->mmio_addr;
/* Force LAN exit from ASPM if Rx/Tx are not idle */
RTL_W32(FuncEvent, RTL_R32(FuncEvent) | 0x002800);
RTL_W32(MISC, (RTL_R32(MISC) | DISABLE_LAN_EN) & ~EARLY_TALLY_EN);
RTL_W8(MCU, RTL_R8(MCU) | EN_NDP | EN_OOB_RESET);
RTL_W8(DLLPR, RTL_R8(DLLPR) & ~PFM_EN);
}
static void rtl_hw_start_8101(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
void __iomem *ioaddr = tp->mmio_addr;
struct pci_dev *pdev = tp->pci_dev;
if (tp->mac_version >= RTL_GIGA_MAC_VER_30)
tp->event_slow &= ~RxFIFOOver;
if (tp->mac_version == RTL_GIGA_MAC_VER_13 ||
tp->mac_version == RTL_GIGA_MAC_VER_16)
pcie_capability_set_word(pdev, PCI_EXP_DEVCTL,
PCI_EXP_DEVCTL_NOSNOOP_EN);
RTL_W8(Cfg9346, Cfg9346_Unlock);
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_07:
rtl_hw_start_8102e_1(tp);
break;
case RTL_GIGA_MAC_VER_08:
rtl_hw_start_8102e_3(tp);
break;
case RTL_GIGA_MAC_VER_09:
rtl_hw_start_8102e_2(tp);
break;
case RTL_GIGA_MAC_VER_29:
rtl_hw_start_8105e_1(tp);
break;
case RTL_GIGA_MAC_VER_30:
rtl_hw_start_8105e_2(tp);
break;
case RTL_GIGA_MAC_VER_37:
rtl_hw_start_8402(tp);
break;
case RTL_GIGA_MAC_VER_39:
rtl_hw_start_8106(tp);
break;
}
RTL_W8(Cfg9346, Cfg9346_Lock);
RTL_W8(MaxTxPacketSize, TxPacketMax);
rtl_set_rx_max_size(ioaddr, rx_buf_sz);
tp->cp_cmd &= ~R810X_CPCMD_QUIRK_MASK;
RTL_W16(CPlusCmd, tp->cp_cmd);
RTL_W16(IntrMitigate, 0x0000);
rtl_set_rx_tx_desc_registers(tp, ioaddr);
RTL_W8(ChipCmd, CmdTxEnb | CmdRxEnb);
rtl_set_rx_tx_config_registers(tp);
RTL_R8(IntrMask);
rtl_set_rx_mode(dev);
RTL_W16(MultiIntr, RTL_R16(MultiIntr) & 0xf000);
}
static int rtl8169_change_mtu(struct net_device *dev, int new_mtu)
{
struct rtl8169_private *tp = netdev_priv(dev);
if (new_mtu < ETH_ZLEN ||
new_mtu > rtl_chip_infos[tp->mac_version].jumbo_max)
return -EINVAL;
if (new_mtu > ETH_DATA_LEN)
rtl_hw_jumbo_enable(tp);
else
rtl_hw_jumbo_disable(tp);
dev->mtu = new_mtu;
netdev_update_features(dev);
return 0;
}
static inline void rtl8169_make_unusable_by_asic(struct RxDesc *desc)
{
desc->addr = cpu_to_le64(0x0badbadbadbadbadull);
desc->opts1 &= ~cpu_to_le32(DescOwn | RsvdMask);
}
static void rtl8169_free_rx_databuff(struct rtl8169_private *tp,
void **data_buff, struct RxDesc *desc)
{
dma_unmap_single(&tp->pci_dev->dev, le64_to_cpu(desc->addr), rx_buf_sz,
DMA_FROM_DEVICE);
kfree(*data_buff);
*data_buff = NULL;
rtl8169_make_unusable_by_asic(desc);
}
static inline void rtl8169_mark_to_asic(struct RxDesc *desc, u32 rx_buf_sz)
{
u32 eor = le32_to_cpu(desc->opts1) & RingEnd;
desc->opts1 = cpu_to_le32(DescOwn | eor | rx_buf_sz);
}
static inline void rtl8169_map_to_asic(struct RxDesc *desc, dma_addr_t mapping,
u32 rx_buf_sz)
{
desc->addr = cpu_to_le64(mapping);
wmb();
rtl8169_mark_to_asic(desc, rx_buf_sz);
}
static inline void *rtl8169_align(void *data)
{
return (void *)ALIGN((long)data, 16);
}
static struct sk_buff *rtl8169_alloc_rx_data(struct rtl8169_private *tp,
struct RxDesc *desc)
{
void *data;
dma_addr_t mapping;
struct device *d = &tp->pci_dev->dev;
struct net_device *dev = tp->dev;
int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
data = kmalloc_node(rx_buf_sz, GFP_KERNEL, node);
if (!data)
return NULL;
if (rtl8169_align(data) != data) {
kfree(data);
data = kmalloc_node(rx_buf_sz + 15, GFP_KERNEL, node);
if (!data)
return NULL;
}
mapping = dma_map_single(d, rtl8169_align(data), rx_buf_sz,
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(d, mapping))) {
if (net_ratelimit())
netif_err(tp, drv, tp->dev, "Failed to map RX DMA!\n");
goto err_out;
}
rtl8169_map_to_asic(desc, mapping, rx_buf_sz);
return data;
err_out:
kfree(data);
return NULL;
}
static void rtl8169_rx_clear(struct rtl8169_private *tp)
{
unsigned int i;
for (i = 0; i < NUM_RX_DESC; i++) {
if (tp->Rx_databuff[i]) {
rtl8169_free_rx_databuff(tp, tp->Rx_databuff + i,
tp->RxDescArray + i);
}
}
}
static inline void rtl8169_mark_as_last_descriptor(struct RxDesc *desc)
{
desc->opts1 |= cpu_to_le32(RingEnd);
}
static int rtl8169_rx_fill(struct rtl8169_private *tp)
{
unsigned int i;
for (i = 0; i < NUM_RX_DESC; i++) {
void *data;
if (tp->Rx_databuff[i])
continue;
data = rtl8169_alloc_rx_data(tp, tp->RxDescArray + i);
if (!data) {
rtl8169_make_unusable_by_asic(tp->RxDescArray + i);
goto err_out;
}
tp->Rx_databuff[i] = data;
}
rtl8169_mark_as_last_descriptor(tp->RxDescArray + NUM_RX_DESC - 1);
return 0;
err_out:
rtl8169_rx_clear(tp);
return -ENOMEM;
}
static int rtl8169_init_ring(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
rtl8169_init_ring_indexes(tp);
memset(tp->tx_skb, 0x0, NUM_TX_DESC * sizeof(struct ring_info));
memset(tp->Rx_databuff, 0x0, NUM_RX_DESC * sizeof(void *));
return rtl8169_rx_fill(tp);
}
static void rtl8169_unmap_tx_skb(struct device *d, struct ring_info *tx_skb,
struct TxDesc *desc)
{
unsigned int len = tx_skb->len;
dma_unmap_single(d, le64_to_cpu(desc->addr), len, DMA_TO_DEVICE);
desc->opts1 = 0x00;
desc->opts2 = 0x00;
desc->addr = 0x00;
tx_skb->len = 0;
}
static void rtl8169_tx_clear_range(struct rtl8169_private *tp, u32 start,
unsigned int n)
{
unsigned int i;
for (i = 0; i < n; i++) {
unsigned int entry = (start + i) % NUM_TX_DESC;
struct ring_info *tx_skb = tp->tx_skb + entry;
unsigned int len = tx_skb->len;
if (len) {
struct sk_buff *skb = tx_skb->skb;
rtl8169_unmap_tx_skb(&tp->pci_dev->dev, tx_skb,
tp->TxDescArray + entry);
if (skb) {
tp->dev->stats.tx_dropped++;
if (!tp->ecdev) {
dev_kfree_skb(skb);
}
tx_skb->skb = NULL;
}
}
}
}
static void rtl8169_tx_clear(struct rtl8169_private *tp)
{
rtl8169_tx_clear_range(tp, tp->dirty_tx, NUM_TX_DESC);
tp->cur_tx = tp->dirty_tx = 0;
}
static void rtl_reset_work(struct rtl8169_private *tp)
{
struct net_device *dev = tp->dev;
int i;
napi_disable(&tp->napi);
netif_stop_queue(dev);
synchronize_sched();
rtl8169_hw_reset(tp);
for (i = 0; i < NUM_RX_DESC; i++)
rtl8169_mark_to_asic(tp->RxDescArray + i, rx_buf_sz);
rtl8169_tx_clear(tp);
rtl8169_init_ring_indexes(tp);
napi_enable(&tp->napi);
rtl_hw_start(dev);
netif_wake_queue(dev);
rtl8169_check_link_status(dev, tp, tp->mmio_addr);
}
static void rtl8169_tx_timeout(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
if (!tp->ecdev) {
rtl_schedule_task(tp, RTL_FLAG_TASK_RESET_PENDING);
}
}
static int rtl8169_xmit_frags(struct rtl8169_private *tp, struct sk_buff *skb,
u32 *opts)
{
struct skb_shared_info *info = skb_shinfo(skb);
unsigned int cur_frag, entry;
struct TxDesc * uninitialized_var(txd);
struct device *d = &tp->pci_dev->dev;
entry = tp->cur_tx;
for (cur_frag = 0; cur_frag < info->nr_frags; cur_frag++) {
const skb_frag_t *frag = info->frags + cur_frag;
dma_addr_t mapping;
u32 status, len;
void *addr;
entry = (entry + 1) % NUM_TX_DESC;
txd = tp->TxDescArray + entry;
len = skb_frag_size(frag);
addr = skb_frag_address(frag);
mapping = dma_map_single(d, addr, len, DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(d, mapping))) {
if (net_ratelimit())
netif_err(tp, drv, tp->dev,
"Failed to map TX fragments DMA!\n");
goto err_out;
}
/* Anti gcc 2.95.3 bugware (sic) */
status = opts[0] | len |
(RingEnd * !((entry + 1) % NUM_TX_DESC));
txd->opts1 = cpu_to_le32(status);
txd->opts2 = cpu_to_le32(opts[1]);
txd->addr = cpu_to_le64(mapping);
tp->tx_skb[entry].len = len;
}
if (cur_frag) {
tp->tx_skb[entry].skb = skb;
txd->opts1 |= cpu_to_le32(LastFrag);
}
return cur_frag;
err_out:
rtl8169_tx_clear_range(tp, tp->cur_tx + 1, cur_frag);
return -EIO;
}
static inline void rtl8169_tso_csum(struct rtl8169_private *tp,
struct sk_buff *skb, u32 *opts)
{
const struct rtl_tx_desc_info *info = tx_desc_info + tp->txd_version;
u32 mss = skb_shinfo(skb)->gso_size;
int offset = info->opts_offset;
if (mss) {
opts[0] |= TD_LSO;
opts[offset] |= min(mss, TD_MSS_MAX) << info->mss_shift;
} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
const struct iphdr *ip = ip_hdr(skb);
if (ip->protocol == IPPROTO_TCP)
opts[offset] |= info->checksum.tcp;
else if (ip->protocol == IPPROTO_UDP)
opts[offset] |= info->checksum.udp;
else
WARN_ON_ONCE(1);
}
}
static netdev_tx_t rtl8169_start_xmit(struct sk_buff *skb,
struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
unsigned int entry = tp->cur_tx % NUM_TX_DESC;
struct TxDesc *txd = tp->TxDescArray + entry;
void __iomem *ioaddr = tp->mmio_addr;
struct device *d = &tp->pci_dev->dev;
dma_addr_t mapping;
u32 status, len;
u32 opts[2];
int frags;
if (unlikely(!TX_FRAGS_READY_FOR(tp, skb_shinfo(skb)->nr_frags))) {
netif_err(tp, drv, dev, "BUG! Tx Ring full when queue awake!\n");
goto err_stop_0;
}
/* 8168evl does not automatically pad to minimum length. */
if (unlikely(tp->mac_version == RTL_GIGA_MAC_VER_34 &&
skb->len < ETH_ZLEN)) {
if (skb_padto(skb, ETH_ZLEN))
goto err_update_stats;
skb_put(skb, ETH_ZLEN - skb->len);
}
if (unlikely(le32_to_cpu(txd->opts1) & DescOwn))
goto err_stop_0;
len = skb_headlen(skb);
mapping = dma_map_single(d, skb->data, len, DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(d, mapping))) {
if (net_ratelimit())
netif_err(tp, drv, dev, "Failed to map TX DMA!\n");
goto err_dma_0;
}
tp->tx_skb[entry].len = len;
txd->addr = cpu_to_le64(mapping);
opts[1] = cpu_to_le32(rtl8169_tx_vlan_tag(skb));
opts[0] = DescOwn;
rtl8169_tso_csum(tp, skb, opts);
frags = rtl8169_xmit_frags(tp, skb, opts);
if (frags < 0)
goto err_dma_1;
else if (frags)
opts[0] |= FirstFrag;
else {
opts[0] |= FirstFrag | LastFrag;
tp->tx_skb[entry].skb = skb;
}
txd->opts2 = cpu_to_le32(opts[1]);
skb_tx_timestamp(skb);
wmb();
/* Anti gcc 2.95.3 bugware (sic) */
status = opts[0] | len | (RingEnd * !((entry + 1) % NUM_TX_DESC));
txd->opts1 = cpu_to_le32(status);
tp->cur_tx += frags + 1;
wmb();
RTL_W8(TxPoll, NPQ);
mmiowb();
if (!TX_FRAGS_READY_FOR(tp, MAX_SKB_FRAGS)) {
/* Avoid wrongly optimistic queue wake-up: rtl_tx thread must
* not miss a ring update when it notices a stopped queue.
*/
smp_wmb();
if (!tp->ecdev) {
netif_stop_queue(dev);
}
/* Sync with rtl_tx:
* - publish queue status and cur_tx ring index (write barrier)
* - refresh dirty_tx ring index (read barrier).
* May the current thread have a pessimistic view of the ring
* status and forget to wake up queue, a racing rtl_tx thread
* can't.
*/
smp_mb();
if (!tp->ecdev && TX_FRAGS_READY_FOR(tp, MAX_SKB_FRAGS))
netif_wake_queue(dev);
}
return NETDEV_TX_OK;
err_dma_1:
rtl8169_unmap_tx_skb(d, tp->tx_skb + entry, txd);
err_dma_0:
if (!tp->ecdev) {
dev_kfree_skb(skb);
}
err_update_stats:
dev->stats.tx_dropped++;
return NETDEV_TX_OK;
err_stop_0:
if (!tp->ecdev) {
netif_stop_queue(dev);
}
dev->stats.tx_dropped++;
return NETDEV_TX_BUSY;
}
static void rtl8169_pcierr_interrupt(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
struct pci_dev *pdev = tp->pci_dev;
u16 pci_status, pci_cmd;
pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
pci_read_config_word(pdev, PCI_STATUS, &pci_status);
netif_err(tp, intr, dev, "PCI error (cmd = 0x%04x, status = 0x%04x)\n",
pci_cmd, pci_status);
/*
* The recovery sequence below admits a very elaborated explanation:
* - it seems to work;
* - I did not see what else could be done;
* - it makes iop3xx happy.
*
* Feel free to adjust to your needs.
*/
if (pdev->broken_parity_status)
pci_cmd &= ~PCI_COMMAND_PARITY;
else
pci_cmd |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY;
pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
pci_write_config_word(pdev, PCI_STATUS,
pci_status & (PCI_STATUS_DETECTED_PARITY |
PCI_STATUS_SIG_SYSTEM_ERROR | PCI_STATUS_REC_MASTER_ABORT |
PCI_STATUS_REC_TARGET_ABORT | PCI_STATUS_SIG_TARGET_ABORT));
/* The infamous DAC f*ckup only happens at boot time */
if ((tp->cp_cmd & PCIDAC) && !tp->dirty_rx && !tp->cur_rx) {
void __iomem *ioaddr = tp->mmio_addr;
netif_info(tp, intr, dev, "disabling PCI DAC\n");
tp->cp_cmd &= ~PCIDAC;
RTL_W16(CPlusCmd, tp->cp_cmd);
dev->features &= ~NETIF_F_HIGHDMA;
}
rtl8169_hw_reset(tp);
rtl_schedule_task(tp, RTL_FLAG_TASK_RESET_PENDING);
}
static void rtl_tx(struct net_device *dev, struct rtl8169_private *tp)
{
unsigned int dirty_tx, tx_left;
dirty_tx = tp->dirty_tx;
smp_rmb();
tx_left = tp->cur_tx - dirty_tx;
while (tx_left > 0) {
unsigned int entry = dirty_tx % NUM_TX_DESC;
struct ring_info *tx_skb = tp->tx_skb + entry;
u32 status;
rmb();
status = le32_to_cpu(tp->TxDescArray[entry].opts1);
if (status & DescOwn)
break;
rtl8169_unmap_tx_skb(&tp->pci_dev->dev, tx_skb,
tp->TxDescArray + entry);
if (status & LastFrag) {
u64_stats_update_begin(&tp->tx_stats.syncp);
tp->tx_stats.packets++;
tp->tx_stats.bytes += tx_skb->skb->len;
u64_stats_update_end(&tp->tx_stats.syncp);
if (!tp->ecdev) {
dev_kfree_skb(tx_skb->skb);
}
tx_skb->skb = NULL;
}
dirty_tx++;
tx_left--;
}
if (tp->dirty_tx != dirty_tx) {
tp->dirty_tx = dirty_tx;
/* Sync with rtl8169_start_xmit:
* - publish dirty_tx ring index (write barrier)
* - refresh cur_tx ring index and queue status (read barrier)
* May the current thread miss the stopped queue condition,
* a racing xmit thread can only have a right view of the
* ring status.
*/
smp_mb();
if (!tp->ecdev && netif_queue_stopped(dev) &&
TX_FRAGS_READY_FOR(tp, MAX_SKB_FRAGS)) {
netif_wake_queue(dev);
}
/*
* 8168 hack: TxPoll requests are lost when the Tx packets are
* too close. Let's kick an extra TxPoll request when a burst
* of start_xmit activity is detected (if it is not detected,
* it is slow enough). -- FR
*/
if (tp->cur_tx != dirty_tx) {
void __iomem *ioaddr = tp->mmio_addr;
RTL_W8(TxPoll, NPQ);
}
}
}
static inline int rtl8169_fragmented_frame(u32 status)
{
return (status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag);
}
static inline void rtl8169_rx_csum(struct sk_buff *skb, u32 opts1)
{
u32 status = opts1 & RxProtoMask;
if (((status == RxProtoTCP) && !(opts1 & TCPFail)) ||
((status == RxProtoUDP) && !(opts1 & UDPFail)))
skb->ip_summed = CHECKSUM_UNNECESSARY;
else
skb_checksum_none_assert(skb);
}
static struct sk_buff *rtl8169_try_rx_copy(void *data,
struct rtl8169_private *tp,
int pkt_size,
dma_addr_t addr)
{
struct sk_buff *skb;
struct device *d = &tp->pci_dev->dev;
data = rtl8169_align(data);
dma_sync_single_for_cpu(d, addr, pkt_size, DMA_FROM_DEVICE);
prefetch(data);
skb = netdev_alloc_skb_ip_align(tp->dev, pkt_size);
if (skb)
memcpy(skb->data, data, pkt_size);
dma_sync_single_for_device(d, addr, pkt_size, DMA_FROM_DEVICE);
return skb;
}
static int rtl_rx(struct net_device *dev, struct rtl8169_private *tp, u32 budget)
{
unsigned int cur_rx, rx_left;
unsigned int count;
cur_rx = tp->cur_rx;
rx_left = NUM_RX_DESC + tp->dirty_rx - cur_rx;
rx_left = min(rx_left, budget);
for (; rx_left > 0; rx_left--, cur_rx++) {
unsigned int entry = cur_rx % NUM_RX_DESC;
struct RxDesc *desc = tp->RxDescArray + entry;
u32 status;
rmb();
status = le32_to_cpu(desc->opts1) & tp->opts1_mask;
if (status & DescOwn)
break;
if (unlikely(status & RxRES)) {
netif_info(tp, rx_err, dev, "Rx ERROR. status = %08x\n",
status);
dev->stats.rx_errors++;
if (status & (RxRWT | RxRUNT))
dev->stats.rx_length_errors++;
if (status & RxCRC)
dev->stats.rx_crc_errors++;
if (status & RxFOVF) {
if (!tp->ecdev) {
rtl_schedule_task(tp, RTL_FLAG_TASK_RESET_PENDING);
}
dev->stats.rx_fifo_errors++;
}
if ((status & (RxRUNT | RxCRC)) &&
!(status & (RxRWT | RxFOVF)) &&
(dev->features & NETIF_F_RXALL))
goto process_pkt;
} else {
struct sk_buff *skb;
dma_addr_t addr;
int pkt_size;
process_pkt:
addr = le64_to_cpu(desc->addr);
if (likely(!(dev->features & NETIF_F_RXFCS)))
pkt_size = (status & 0x00003fff) - 4;
else
pkt_size = status & 0x00003fff;
/*
* The driver does not support incoming fragmented
* frames. They are seen as a symptom of over-mtu
* sized frames.
*/
if (unlikely(rtl8169_fragmented_frame(status))) {
dev->stats.rx_dropped++;
dev->stats.rx_length_errors++;
goto release_descriptor;
}
if (tp->ecdev) {
struct device *d = &tp->pci_dev->dev;
/* reusing parts of rtl8169_try_rx_copy() */
tp->Rx_databuff[entry] = rtl8169_align(tp->Rx_databuff[entry]);
dma_sync_single_for_cpu(d, addr, pkt_size, DMA_FROM_DEVICE);
prefetch(tp->Rx_databuff[entry]);
ecdev_receive(tp->ecdev, tp->Rx_databuff[entry], pkt_size);
dma_sync_single_for_device(d, addr, pkt_size, DMA_FROM_DEVICE);
// No need to detect link status as
// long as frames are received: Reset watchdog.
tp->ec_watchdog_jiffies = jiffies;
}
else {
skb = rtl8169_try_rx_copy(tp->Rx_databuff[entry],
tp, pkt_size, addr);
if (!skb) {
dev->stats.rx_dropped++;
goto release_descriptor;
}
rtl8169_rx_csum(skb, status);
skb_put(skb, pkt_size);
skb->protocol = eth_type_trans(skb, dev);
rtl8169_rx_vlan_tag(desc, skb);
napi_gro_receive(&tp->napi, skb);
u64_stats_update_begin(&tp->rx_stats.syncp);
tp->rx_stats.packets++;
tp->rx_stats.bytes += pkt_size;
u64_stats_update_end(&tp->rx_stats.syncp);
}
}
release_descriptor:
desc->opts2 = 0;
wmb();
rtl8169_mark_to_asic(desc, rx_buf_sz);
}
count = cur_rx - tp->cur_rx;
tp->cur_rx = cur_rx;
tp->dirty_rx += count;
return count;
}
static irqreturn_t rtl8169_interrupt(int irq, void *dev_instance)
{
struct net_device *dev = dev_instance;
struct rtl8169_private *tp = netdev_priv(dev);
int handled = 0;
u16 status;
status = rtl_get_events(tp);
if (status && status != 0xffff) {
status &= RTL_EVENT_NAPI | tp->event_slow;
if (status) {
handled = 1;
rtl_irq_disable(tp);
napi_schedule(&tp->napi);
}
}
return IRQ_RETVAL(handled);
}
/*
* Workqueue context.
*/
static void rtl_slow_event_work(struct rtl8169_private *tp)
{
struct net_device *dev = tp->dev;
u16 status;
status = rtl_get_events(tp) & tp->event_slow;
rtl_ack_events(tp, status);
if (unlikely(!tp->ecdev && (status & RxFIFOOver))) {
switch (tp->mac_version) {
/* Work around for rx fifo overflow */
case RTL_GIGA_MAC_VER_11:
netif_stop_queue(dev);
/* XXX - Hack alert. See rtl_task(). */
set_bit(RTL_FLAG_TASK_RESET_PENDING, tp->wk.flags);
default:
break;
}
}
if (unlikely(!tp->ecdev && (status & SYSErr)))
rtl8169_pcierr_interrupt(dev);
if (status & LinkChg)
__rtl8169_check_link_status(dev, tp, tp->mmio_addr, true);
if (!tp->ecdev) {
rtl_irq_enable_all(tp);
}
}
static void rtl_task(struct work_struct *work)
{
static const struct {
int bitnr;
void (*action)(struct rtl8169_private *);
} rtl_work[] = {
/* XXX - keep rtl_slow_event_work() as first element. */
{ RTL_FLAG_TASK_SLOW_PENDING, rtl_slow_event_work },
{ RTL_FLAG_TASK_RESET_PENDING, rtl_reset_work },
{ RTL_FLAG_TASK_PHY_PENDING, rtl_phy_work }
};
struct rtl8169_private *tp =
container_of(work, struct rtl8169_private, wk.work);
struct net_device *dev = tp->dev;
int i;
rtl_lock_work(tp);
if (!netif_running(dev) ||
!test_bit(RTL_FLAG_TASK_ENABLED, tp->wk.flags))
goto out_unlock;
for (i = 0; i < ARRAY_SIZE(rtl_work); i++) {
bool pending;
pending = test_and_clear_bit(rtl_work[i].bitnr, tp->wk.flags);
if (pending)
rtl_work[i].action(tp);
}
out_unlock:
rtl_unlock_work(tp);
}
static void ec_poll(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
u16 status;
status = rtl_get_events(tp);
rtl_ack_events(tp, status & ~tp->event_slow);
if (status & RTL_EVENT_NAPI_RX) {
rtl_rx(dev, tp, 100); // FIXME
}
if (status & RTL_EVENT_NAPI_TX) {
rtl_tx(dev, tp);
}
if (jiffies - tp->ec_watchdog_jiffies >= 2 * HZ) {
void __iomem *ioaddr = tp->mmio_addr;
ecdev_set_link(tp->ecdev, tp->link_ok(ioaddr) ? 1 : 0);
tp->ec_watchdog_jiffies = jiffies;
}
}
static int rtl8169_poll(struct napi_struct *napi, int budget)
{
struct rtl8169_private *tp = container_of(napi, struct rtl8169_private, napi);
struct net_device *dev = tp->dev;
u16 enable_mask = RTL_EVENT_NAPI | tp->event_slow;
int work_done= 0;
u16 status;
status = rtl_get_events(tp);
rtl_ack_events(tp, status & ~tp->event_slow);
if (status & RTL_EVENT_NAPI_RX)
work_done = rtl_rx(dev, tp, (u32) budget);
if (status & RTL_EVENT_NAPI_TX)
rtl_tx(dev, tp);
if (status & tp->event_slow) {
enable_mask &= ~tp->event_slow;
rtl_schedule_task(tp, RTL_FLAG_TASK_SLOW_PENDING);
}
if (work_done < budget) {
napi_complete(napi);
rtl_irq_enable(tp, enable_mask);
mmiowb();
}
return work_done;
}
static void rtl8169_rx_missed(struct net_device *dev, void __iomem *ioaddr)
{
struct rtl8169_private *tp = netdev_priv(dev);
if (tp->mac_version > RTL_GIGA_MAC_VER_06)
return;
dev->stats.rx_missed_errors += (RTL_R32(RxMissed) & 0xffffff);
RTL_W32(RxMissed, 0);
}
static void rtl8169_down(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
void __iomem *ioaddr = tp->mmio_addr;
if (!tp->ecdev) {
del_timer_sync(&tp->timer);
napi_disable(&tp->napi);
netif_stop_queue(dev);
}
rtl8169_hw_reset(tp);
/*
* At this point device interrupts can not be enabled in any function,
* as netif_running is not true (rtl8169_interrupt, rtl8169_reset_task)
* and napi is disabled (rtl8169_poll).
*/
rtl8169_rx_missed(dev, ioaddr);
/* Give a racing hard_start_xmit a few cycles to complete. */
synchronize_sched();
rtl8169_tx_clear(tp);
rtl8169_rx_clear(tp);
rtl_pll_power_down(tp);
}
static int rtl8169_close(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
struct pci_dev *pdev = tp->pci_dev;
pm_runtime_get_sync(&pdev->dev);
/* Update counters before going down */
rtl8169_update_counters(dev);
rtl_lock_work(tp);
clear_bit(RTL_FLAG_TASK_ENABLED, tp->wk.flags);
rtl8169_down(dev);
rtl_unlock_work(tp);
if (!tp->ecdev) {
free_irq(pdev->irq, dev);
}
dma_free_coherent(&pdev->dev, R8169_RX_RING_BYTES, tp->RxDescArray,
tp->RxPhyAddr);
dma_free_coherent(&pdev->dev, R8169_TX_RING_BYTES, tp->TxDescArray,
tp->TxPhyAddr);
tp->TxDescArray = NULL;
tp->RxDescArray = NULL;
pm_runtime_put_sync(&pdev->dev);
return 0;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void rtl8169_netpoll(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
rtl8169_interrupt(tp->pci_dev->irq, dev);
}
#endif
static int rtl_open(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
void __iomem *ioaddr = tp->mmio_addr;
struct pci_dev *pdev = tp->pci_dev;
int retval = -ENOMEM;
pm_runtime_get_sync(&pdev->dev);
/*
* Rx and Tx descriptors needs 256 bytes alignment.
* dma_alloc_coherent provides more.
*/
tp->TxDescArray = dma_alloc_coherent(&pdev->dev, R8169_TX_RING_BYTES,
&tp->TxPhyAddr, GFP_KERNEL);
if (!tp->TxDescArray)
goto err_pm_runtime_put;
tp->RxDescArray = dma_alloc_coherent(&pdev->dev, R8169_RX_RING_BYTES,
&tp->RxPhyAddr, GFP_KERNEL);
if (!tp->RxDescArray)
goto err_free_tx_0;
retval = rtl8169_init_ring(dev);
if (retval < 0)
goto err_free_rx_1;
INIT_WORK(&tp->wk.work, rtl_task);
smp_mb();
rtl_request_firmware(tp);
if (!tp->ecdev) {
retval = request_irq(pdev->irq, rtl8169_interrupt,
(tp->features & RTL_FEATURE_MSI) ? 0 : IRQF_SHARED,
dev->name, dev);
if (retval < 0)
goto err_release_fw_2;
}
rtl_lock_work(tp);
set_bit(RTL_FLAG_TASK_ENABLED, tp->wk.flags);
if (!tp->ecdev) {
napi_enable(&tp->napi);
}
rtl8169_init_phy(dev, tp);
__rtl8169_set_features(dev, dev->features);
rtl_pll_power_up(tp);
rtl_hw_start(dev);
if (!tp->ecdev) {
netif_start_queue(dev);
}
rtl_unlock_work(tp);
tp->saved_wolopts = 0;
pm_runtime_put_noidle(&pdev->dev);
rtl8169_check_link_status(dev, tp, ioaddr);
out:
return retval;
err_release_fw_2:
rtl_release_firmware(tp);
rtl8169_rx_clear(tp);
err_free_rx_1:
dma_free_coherent(&pdev->dev, R8169_RX_RING_BYTES, tp->RxDescArray,
tp->RxPhyAddr);
tp->RxDescArray = NULL;
err_free_tx_0:
dma_free_coherent(&pdev->dev, R8169_TX_RING_BYTES, tp->TxDescArray,
tp->TxPhyAddr);
tp->TxDescArray = NULL;
err_pm_runtime_put:
pm_runtime_put_noidle(&pdev->dev);
goto out;
}
static struct rtnl_link_stats64 *
rtl8169_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
{
struct rtl8169_private *tp = netdev_priv(dev);
void __iomem *ioaddr = tp->mmio_addr;
unsigned int start;
if (netif_running(dev))
rtl8169_rx_missed(dev, ioaddr);
do {
start = u64_stats_fetch_begin_bh(&tp->rx_stats.syncp);
stats->rx_packets = tp->rx_stats.packets;
stats->rx_bytes = tp->rx_stats.bytes;
} while (u64_stats_fetch_retry_bh(&tp->rx_stats.syncp, start));
do {
start = u64_stats_fetch_begin_bh(&tp->tx_stats.syncp);
stats->tx_packets = tp->tx_stats.packets;
stats->tx_bytes = tp->tx_stats.bytes;
} while (u64_stats_fetch_retry_bh(&tp->tx_stats.syncp, start));
stats->rx_dropped = dev->stats.rx_dropped;
stats->tx_dropped = dev->stats.tx_dropped;
stats->rx_length_errors = dev->stats.rx_length_errors;
stats->rx_errors = dev->stats.rx_errors;
stats->rx_crc_errors = dev->stats.rx_crc_errors;
stats->rx_fifo_errors = dev->stats.rx_fifo_errors;
stats->rx_missed_errors = dev->stats.rx_missed_errors;
return stats;
}
static void rtl8169_net_suspend(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
if (!netif_running(dev))
return;
netif_device_detach(dev);
netif_stop_queue(dev);
rtl_lock_work(tp);
napi_disable(&tp->napi);
clear_bit(RTL_FLAG_TASK_ENABLED, tp->wk.flags);
rtl_unlock_work(tp);
rtl_pll_power_down(tp);
}
#ifdef CONFIG_PM
static int rtl8169_suspend(struct device *device)
{
struct pci_dev *pdev = to_pci_dev(device);
struct net_device *dev = pci_get_drvdata(pdev);
struct rtl8169_private *tp = netdev_priv(dev);
if (tp->ecdev) {
return -EBUSY;
}
rtl8169_net_suspend(dev);
return 0;
}
static void __rtl8169_resume(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
netif_device_attach(dev);
rtl_pll_power_up(tp);
rtl_lock_work(tp);
napi_enable(&tp->napi);
set_bit(RTL_FLAG_TASK_ENABLED, tp->wk.flags);
rtl_unlock_work(tp);
rtl_schedule_task(tp, RTL_FLAG_TASK_RESET_PENDING);
}
static int rtl8169_resume(struct device *device)
{
struct pci_dev *pdev = to_pci_dev(device);
struct net_device *dev = pci_get_drvdata(pdev);
struct rtl8169_private *tp = netdev_priv(dev);
if (tp->ecdev) {
return -EBUSY;
}
rtl8169_init_phy(dev, tp);
if (netif_running(dev))
__rtl8169_resume(dev);
return 0;
}
static int rtl8169_runtime_suspend(struct device *device)
{
struct pci_dev *pdev = to_pci_dev(device);
struct net_device *dev = pci_get_drvdata(pdev);
struct rtl8169_private *tp = netdev_priv(dev);
if (tp->ecdev) {
return -EBUSY;
}
if (!tp->TxDescArray)
return 0;
rtl_lock_work(tp);
tp->saved_wolopts = __rtl8169_get_wol(tp);
__rtl8169_set_wol(tp, WAKE_ANY);
rtl_unlock_work(tp);
rtl8169_net_suspend(dev);
return 0;
}
static int rtl8169_runtime_resume(struct device *device)
{
struct pci_dev *pdev = to_pci_dev(device);
struct net_device *dev = pci_get_drvdata(pdev);
struct rtl8169_private *tp = netdev_priv(dev);
if (tp->ecdev) {
return -EBUSY;
}
if (!tp->TxDescArray)
return 0;
rtl_lock_work(tp);
__rtl8169_set_wol(tp, tp->saved_wolopts);
tp->saved_wolopts = 0;
rtl_unlock_work(tp);
rtl8169_init_phy(dev, tp);
__rtl8169_resume(dev);
return 0;
}
static int rtl8169_runtime_idle(struct device *device)
{
struct pci_dev *pdev = to_pci_dev(device);
struct net_device *dev = pci_get_drvdata(pdev);
struct rtl8169_private *tp = netdev_priv(dev);
return tp->TxDescArray ? -EBUSY : 0;
}
static const struct dev_pm_ops rtl8169_pm_ops = {
.suspend = rtl8169_suspend,
.resume = rtl8169_resume,
.freeze = rtl8169_suspend,
.thaw = rtl8169_resume,
.poweroff = rtl8169_suspend,
.restore = rtl8169_resume,
.runtime_suspend = rtl8169_runtime_suspend,
.runtime_resume = rtl8169_runtime_resume,
.runtime_idle = rtl8169_runtime_idle,
};
#define RTL8169_PM_OPS (&rtl8169_pm_ops)
#else /* !CONFIG_PM */
#define RTL8169_PM_OPS NULL
#endif /* !CONFIG_PM */
static void rtl_wol_shutdown_quirk(struct rtl8169_private *tp)
{
void __iomem *ioaddr = tp->mmio_addr;
/* WoL fails with 8168b when the receiver is disabled. */
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_11:
case RTL_GIGA_MAC_VER_12:
case RTL_GIGA_MAC_VER_17:
pci_clear_master(tp->pci_dev);
RTL_W8(ChipCmd, CmdRxEnb);
/* PCI commit */
RTL_R8(ChipCmd);
break;
default:
break;
}
}
static void rtl_shutdown(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct rtl8169_private *tp = netdev_priv(dev);
struct device *d = &pdev->dev;
pm_runtime_get_sync(d);
rtl8169_net_suspend(dev);
/* Restore original MAC address */
rtl_rar_set(tp, dev->perm_addr);
rtl8169_hw_reset(tp);
if (system_state == SYSTEM_POWER_OFF) {
if (__rtl8169_get_wol(tp) & WAKE_ANY) {
rtl_wol_suspend_quirk(tp);
rtl_wol_shutdown_quirk(tp);
}
pci_wake_from_d3(pdev, true);
pci_set_power_state(pdev, PCI_D3hot);
}
pm_runtime_put_noidle(d);
}
static void rtl_remove_one(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct rtl8169_private *tp = netdev_priv(dev);
if (tp->mac_version == RTL_GIGA_MAC_VER_27 ||
tp->mac_version == RTL_GIGA_MAC_VER_28 ||
tp->mac_version == RTL_GIGA_MAC_VER_31) {
rtl8168_driver_stop(tp);
}
cancel_work_sync(&tp->wk.work);
if (tp->ecdev) {
ecdev_close(tp->ecdev);
ecdev_withdraw(tp->ecdev);
} else {
netif_napi_del(&tp->napi);
unregister_netdev(dev);
}
rtl_release_firmware(tp);
if (pci_dev_run_wake(pdev))
pm_runtime_get_noresume(&pdev->dev);
/* restore original MAC address */
rtl_rar_set(tp, dev->perm_addr);
rtl_disable_msi(pdev, tp);
rtl8169_release_board(pdev, dev, tp->mmio_addr);
pci_set_drvdata(pdev, NULL);
}
static const struct net_device_ops rtl_netdev_ops = {
.ndo_open = rtl_open,
.ndo_stop = rtl8169_close,
.ndo_get_stats64 = rtl8169_get_stats64,
.ndo_start_xmit = rtl8169_start_xmit,
.ndo_tx_timeout = rtl8169_tx_timeout,
.ndo_validate_addr = eth_validate_addr,
.ndo_change_mtu = rtl8169_change_mtu,
.ndo_fix_features = rtl8169_fix_features,
.ndo_set_features = rtl8169_set_features,
.ndo_set_mac_address = rtl_set_mac_address,
.ndo_do_ioctl = rtl8169_ioctl,
.ndo_set_rx_mode = rtl_set_rx_mode,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = rtl8169_netpoll,
#endif
};
static const struct rtl_cfg_info {
void (*hw_start)(struct net_device *);
unsigned int region;
unsigned int align;
u16 event_slow;
unsigned features;
u8 default_ver;
} rtl_cfg_infos [] = {
[RTL_CFG_0] = {
.hw_start = rtl_hw_start_8169,
.region = 1,
.align = 0,
.event_slow = SYSErr | LinkChg | RxOverflow | RxFIFOOver,
.features = RTL_FEATURE_GMII,
.default_ver = RTL_GIGA_MAC_VER_01,
},
[RTL_CFG_1] = {
.hw_start = rtl_hw_start_8168,
.region = 2,
.align = 8,
.event_slow = SYSErr | LinkChg | RxOverflow,
.features = RTL_FEATURE_GMII | RTL_FEATURE_MSI,
.default_ver = RTL_GIGA_MAC_VER_11,
},
[RTL_CFG_2] = {
.hw_start = rtl_hw_start_8101,
.region = 2,
.align = 8,
.event_slow = SYSErr | LinkChg | RxOverflow | RxFIFOOver |
PCSTimeout,
.features = RTL_FEATURE_MSI,
.default_ver = RTL_GIGA_MAC_VER_13,
}
};
/* Cfg9346_Unlock assumed. */
static unsigned rtl_try_msi(struct rtl8169_private *tp,
const struct rtl_cfg_info *cfg)
{
void __iomem *ioaddr = tp->mmio_addr;
unsigned msi = 0;
u8 cfg2;
cfg2 = RTL_R8(Config2) & ~MSIEnable;
if (cfg->features & RTL_FEATURE_MSI) {
if (pci_enable_msi(tp->pci_dev)) {
netif_info(tp, hw, tp->dev, "no MSI. Back to INTx.\n");
} else {
cfg2 |= MSIEnable;
msi = RTL_FEATURE_MSI;
}
}
if (tp->mac_version <= RTL_GIGA_MAC_VER_06)
RTL_W8(Config2, cfg2);
return msi;
}
DECLARE_RTL_COND(rtl_link_list_ready_cond)
{
void __iomem *ioaddr = tp->mmio_addr;
return RTL_R8(MCU) & LINK_LIST_RDY;
}
DECLARE_RTL_COND(rtl_rxtx_empty_cond)
{
void __iomem *ioaddr = tp->mmio_addr;
return (RTL_R8(MCU) & RXTX_EMPTY) == RXTX_EMPTY;
}
static void rtl_hw_init_8168g(struct rtl8169_private *tp)
{
void __iomem *ioaddr = tp->mmio_addr;
u32 data;
tp->ocp_base = OCP_STD_PHY_BASE;
RTL_W32(MISC, RTL_R32(MISC) | RXDV_GATED_EN);
if (!rtl_udelay_loop_wait_high(tp, &rtl_txcfg_empty_cond, 100, 42))
return;
if (!rtl_udelay_loop_wait_high(tp, &rtl_rxtx_empty_cond, 100, 42))
return;
RTL_W8(ChipCmd, RTL_R8(ChipCmd) & ~(CmdTxEnb | CmdRxEnb));
msleep(1);
RTL_W8(MCU, RTL_R8(MCU) & ~NOW_IS_OOB);
data = r8168_mac_ocp_read(tp, 0xe8de);
data &= ~(1 << 14);
r8168_mac_ocp_write(tp, 0xe8de, data);
if (!rtl_udelay_loop_wait_high(tp, &rtl_link_list_ready_cond, 100, 42))
return;
data = r8168_mac_ocp_read(tp, 0xe8de);
data |= (1 << 15);
r8168_mac_ocp_write(tp, 0xe8de, data);
if (!rtl_udelay_loop_wait_high(tp, &rtl_link_list_ready_cond, 100, 42))
return;
}
static void rtl_hw_initialize(struct rtl8169_private *tp)
{
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_40:
case RTL_GIGA_MAC_VER_41:
rtl_hw_init_8168g(tp);
break;
default:
break;
}
}
static int
rtl_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
{
const struct rtl_cfg_info *cfg = rtl_cfg_infos + ent->driver_data;
const unsigned int region = cfg->region;
struct rtl8169_private *tp;
struct mii_if_info *mii;
struct net_device *dev;
void __iomem *ioaddr;
int chipset, i;
int rc;
if (netif_msg_drv(&debug)) {
printk(KERN_INFO "%s Gigabit Ethernet driver %s loaded\n",
MODULENAME, RTL8169_VERSION);
}
dev = alloc_etherdev(sizeof (*tp));
if (!dev) {
rc = -ENOMEM;
goto out;
}
SET_NETDEV_DEV(dev, &pdev->dev);
dev->netdev_ops = &rtl_netdev_ops;
tp = netdev_priv(dev);
tp->dev = dev;
tp->pci_dev = pdev;
tp->msg_enable = netif_msg_init(debug.msg_enable, R8169_MSG_DEFAULT);
mii = &tp->mii;
mii->dev = dev;
mii->mdio_read = rtl_mdio_read;
mii->mdio_write = rtl_mdio_write;
mii->phy_id_mask = 0x1f;
mii->reg_num_mask = 0x1f;
mii->supports_gmii = !!(cfg->features & RTL_FEATURE_GMII);
/* disable ASPM completely as that cause random device stop working
* problems as well as full system hangs for some PCIe devices users */
pci_disable_link_state(pdev, PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1 |
PCIE_LINK_STATE_CLKPM);
/* enable device (incl. PCI PM wakeup and hotplug setup) */
rc = pci_enable_device(pdev);
if (rc < 0) {
netif_err(tp, probe, dev, "enable failure\n");
goto err_out_free_dev_1;
}
if (pci_set_mwi(pdev) < 0)
netif_info(tp, probe, dev, "Mem-Wr-Inval unavailable\n");
/* make sure PCI base addr 1 is MMIO */
if (!(pci_resource_flags(pdev, region) & IORESOURCE_MEM)) {
netif_err(tp, probe, dev,
"region #%d not an MMIO resource, aborting\n",
region);
rc = -ENODEV;
goto err_out_mwi_2;
}
/* check for weird/broken PCI region reporting */
if (pci_resource_len(pdev, region) < R8169_REGS_SIZE) {
netif_err(tp, probe, dev,
"Invalid PCI region size(s), aborting\n");
rc = -ENODEV;
goto err_out_mwi_2;
}
rc = pci_request_regions(pdev, MODULENAME);
if (rc < 0) {
netif_err(tp, probe, dev, "could not request regions\n");
goto err_out_mwi_2;
}
tp->cp_cmd = RxChkSum;
if ((sizeof(dma_addr_t) > 4) &&
!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) && use_dac) {
tp->cp_cmd |= PCIDAC;
dev->features |= NETIF_F_HIGHDMA;
} else {
rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
if (rc < 0) {
netif_err(tp, probe, dev, "DMA configuration failed\n");
goto err_out_free_res_3;
}
}
/* ioremap MMIO region */
ioaddr = ioremap(pci_resource_start(pdev, region), R8169_REGS_SIZE);
if (!ioaddr) {
netif_err(tp, probe, dev, "cannot remap MMIO, aborting\n");
rc = -EIO;
goto err_out_free_res_3;
}
tp->mmio_addr = ioaddr;
if (!pci_is_pcie(pdev))
netif_info(tp, probe, dev, "not PCI Express\n");
/* Identify chip attached to board */
rtl8169_get_mac_version(tp, dev, cfg->default_ver);
rtl_init_rxcfg(tp);
rtl_irq_disable(tp);
rtl_hw_initialize(tp);
rtl_hw_reset(tp);
rtl_ack_events(tp, 0xffff);
pci_set_master(pdev);
/*
* Pretend we are using VLANs; This bypasses a nasty bug where
* Interrupts stop flowing on high load on 8110SCd controllers.
*/
if (tp->mac_version == RTL_GIGA_MAC_VER_05)
tp->cp_cmd |= RxVlan;
rtl_init_mdio_ops(tp);
rtl_init_pll_power_ops(tp);
rtl_init_jumbo_ops(tp);
rtl_init_csi_ops(tp);
rtl8169_print_mac_version(tp);
chipset = tp->mac_version;
tp->txd_version = rtl_chip_infos[chipset].txd_version;
RTL_W8(Cfg9346, Cfg9346_Unlock);
RTL_W8(Config1, RTL_R8(Config1) | PMEnable);
RTL_W8(Config5, RTL_R8(Config5) & PMEStatus);
if ((RTL_R8(Config3) & (LinkUp | MagicPacket)) != 0)
tp->features |= RTL_FEATURE_WOL;
if ((RTL_R8(Config5) & (UWF | BWF | MWF)) != 0)
tp->features |= RTL_FEATURE_WOL;
tp->features |= rtl_try_msi(tp, cfg);
RTL_W8(Cfg9346, Cfg9346_Lock);
if (rtl_tbi_enabled(tp)) {
tp->set_speed = rtl8169_set_speed_tbi;
tp->get_settings = rtl8169_gset_tbi;
tp->phy_reset_enable = rtl8169_tbi_reset_enable;
tp->phy_reset_pending = rtl8169_tbi_reset_pending;
tp->link_ok = rtl8169_tbi_link_ok;
tp->do_ioctl = rtl_tbi_ioctl;
} else {
tp->set_speed = rtl8169_set_speed_xmii;
tp->get_settings = rtl8169_gset_xmii;
tp->phy_reset_enable = rtl8169_xmii_reset_enable;
tp->phy_reset_pending = rtl8169_xmii_reset_pending;
tp->link_ok = rtl8169_xmii_link_ok;
tp->do_ioctl = rtl_xmii_ioctl;
}
mutex_init(&tp->wk.mutex);
/* Get MAC address */
for (i = 0; i < ETH_ALEN; i++)
dev->dev_addr[i] = RTL_R8(MAC0 + i);
memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
SET_ETHTOOL_OPS(dev, &rtl8169_ethtool_ops);
dev->watchdog_timeo = RTL8169_TX_TIMEOUT;
netif_napi_add(dev, &tp->napi, rtl8169_poll, R8169_NAPI_WEIGHT);
/* don't enable SG, IP_CSUM and TSO by default - it might not work
* properly for all devices */
dev->features |= NETIF_F_RXCSUM |
NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
NETIF_F_RXCSUM | NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
NETIF_F_HIGHDMA;
if (tp->mac_version == RTL_GIGA_MAC_VER_05)
/* 8110SCd requires hardware Rx VLAN - disallow toggling */
dev->hw_features &= ~NETIF_F_HW_VLAN_RX;
dev->hw_features |= NETIF_F_RXALL;
dev->hw_features |= NETIF_F_RXFCS;
tp->hw_start = cfg->hw_start;
tp->event_slow = cfg->event_slow;
tp->opts1_mask = (tp->mac_version != RTL_GIGA_MAC_VER_01) ?
~(RxBOVF | RxFOVF) : ~0;
init_timer(&tp->timer);
tp->timer.data = (unsigned long) dev;
tp->timer.function = rtl8169_phy_timer;
tp->rtl_fw = RTL_FIRMWARE_UNKNOWN;
// offer device to EtherCAT master module
tp->ecdev = ecdev_offer(dev, ec_poll, THIS_MODULE);
tp->ec_watchdog_jiffies = jiffies;
if (!tp->ecdev) {
rc = register_netdev(dev);
if (rc < 0)
goto err_out_msi_4;
}
pci_set_drvdata(pdev, dev);
netif_info(tp, probe, dev, "%s at 0x%p, %pM, XID %08x IRQ %d\n",
rtl_chip_infos[chipset].name, ioaddr, dev->dev_addr,
(u32)(RTL_R32(TxConfig) & 0x9cf0f8ff), pdev->irq);
if (rtl_chip_infos[chipset].jumbo_max != JUMBO_1K) {
netif_info(tp, probe, dev, "jumbo features [frames: %d bytes, "
"tx checksumming: %s]\n",
rtl_chip_infos[chipset].jumbo_max,
rtl_chip_infos[chipset].jumbo_tx_csum ? "ok" : "ko");
}
if (tp->mac_version == RTL_GIGA_MAC_VER_27 ||
tp->mac_version == RTL_GIGA_MAC_VER_28 ||
tp->mac_version == RTL_GIGA_MAC_VER_31) {
rtl8168_driver_start(tp);
}
device_set_wakeup_enable(&pdev->dev, tp->features & RTL_FEATURE_WOL);
if (pci_dev_run_wake(pdev))
pm_runtime_put_noidle(&pdev->dev);
if (tp->ecdev) {
rc = ecdev_open(tp->ecdev);
if (rc) {
ecdev_withdraw(tp->ecdev);
goto err_out_msi_4;
}
}
else {
netif_carrier_off(dev);
}
out:
return rc;
err_out_msi_4:
netif_napi_del(&tp->napi);
rtl_disable_msi(pdev, tp);
iounmap(ioaddr);
err_out_free_res_3:
pci_release_regions(pdev);
err_out_mwi_2:
pci_clear_mwi(pdev);
pci_disable_device(pdev);
err_out_free_dev_1:
free_netdev(dev);
goto out;
}
static struct pci_driver rtl8169_pci_driver = {
.name = MODULENAME,
.id_table = rtl8169_pci_tbl,
.probe = rtl_init_one,
.remove = rtl_remove_one,
.shutdown = rtl_shutdown,
.driver.pm = RTL8169_PM_OPS,
};
module_pci_driver(rtl8169_pci_driver);