devices/e1000e/param-3.16-orig.c
author Edouard Tisserant <edouard.tisserant@gmail.com>
Fri, 14 Sep 2018 17:59:33 +0200
branchstable-1.5
changeset 2710 05359dee3578
parent 2588 792892ab4806
permissions -rw-r--r--
rtdmnet module should follow same (un)loading rules as generic module
/* Intel PRO/1000 Linux driver
 * Copyright(c) 1999 - 2014 Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * The full GNU General Public License is included in this distribution in
 * the file called "COPYING".
 *
 * Contact Information:
 * Linux NICS <linux.nics@intel.com>
 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 */

#include <linux/netdevice.h>
#include <linux/module.h>
#include <linux/pci.h>

#include "e1000.h"

/* This is the only thing that needs to be changed to adjust the
 * maximum number of ports that the driver can manage.
 */
#define E1000_MAX_NIC 32

#define OPTION_UNSET   -1
#define OPTION_DISABLED 0
#define OPTION_ENABLED  1

#define COPYBREAK_DEFAULT 256
unsigned int copybreak = COPYBREAK_DEFAULT;
module_param(copybreak, uint, 0644);
MODULE_PARM_DESC(copybreak,
		 "Maximum size of packet that is copied to a new buffer on receive");

/* All parameters are treated the same, as an integer array of values.
 * This macro just reduces the need to repeat the same declaration code
 * over and over (plus this helps to avoid typo bugs).
 */
#define E1000_PARAM_INIT { [0 ... E1000_MAX_NIC] = OPTION_UNSET }
#define E1000_PARAM(X, desc)					\
	static int X[E1000_MAX_NIC+1] = E1000_PARAM_INIT;	\
	static unsigned int num_##X;				\
	module_param_array_named(X, X, int, &num_##X, 0);	\
	MODULE_PARM_DESC(X, desc);

/* Transmit Interrupt Delay in units of 1.024 microseconds
 * Tx interrupt delay needs to typically be set to something non-zero
 *
 * Valid Range: 0-65535
 */
E1000_PARAM(TxIntDelay, "Transmit Interrupt Delay");
#define DEFAULT_TIDV 8
#define MAX_TXDELAY 0xFFFF
#define MIN_TXDELAY 0

/* Transmit Absolute Interrupt Delay in units of 1.024 microseconds
 *
 * Valid Range: 0-65535
 */
E1000_PARAM(TxAbsIntDelay, "Transmit Absolute Interrupt Delay");
#define DEFAULT_TADV 32
#define MAX_TXABSDELAY 0xFFFF
#define MIN_TXABSDELAY 0

/* Receive Interrupt Delay in units of 1.024 microseconds
 * hardware will likely hang if you set this to anything but zero.
 *
 * Valid Range: 0-65535
 */
E1000_PARAM(RxIntDelay, "Receive Interrupt Delay");
#define MAX_RXDELAY 0xFFFF
#define MIN_RXDELAY 0

/* Receive Absolute Interrupt Delay in units of 1.024 microseconds
 *
 * Valid Range: 0-65535
 */
E1000_PARAM(RxAbsIntDelay, "Receive Absolute Interrupt Delay");
#define MAX_RXABSDELAY 0xFFFF
#define MIN_RXABSDELAY 0

/* Interrupt Throttle Rate (interrupts/sec)
 *
 * Valid Range: 100-100000 or one of: 0=off, 1=dynamic, 3=dynamic conservative
 */
E1000_PARAM(InterruptThrottleRate, "Interrupt Throttling Rate");
#define DEFAULT_ITR 3
#define MAX_ITR 100000
#define MIN_ITR 100

/* IntMode (Interrupt Mode)
 *
 * Valid Range: varies depending on kernel configuration & hardware support
 *
 * legacy=0, MSI=1, MSI-X=2
 *
 * When MSI/MSI-X support is enabled in kernel-
 *   Default Value: 2 (MSI-X) when supported by hardware, 1 (MSI) otherwise
 * When MSI/MSI-X support is not enabled in kernel-
 *   Default Value: 0 (legacy)
 *
 * When a mode is specified that is not allowed/supported, it will be
 * demoted to the most advanced interrupt mode available.
 */
E1000_PARAM(IntMode, "Interrupt Mode");
#define MAX_INTMODE	2
#define MIN_INTMODE	0

/* Enable Smart Power Down of the PHY
 *
 * Valid Range: 0, 1
 *
 * Default Value: 0 (disabled)
 */
E1000_PARAM(SmartPowerDownEnable, "Enable PHY smart power down");

/* Enable Kumeran Lock Loss workaround
 *
 * Valid Range: 0, 1
 *
 * Default Value: 1 (enabled)
 */
E1000_PARAM(KumeranLockLoss, "Enable Kumeran lock loss workaround");

/* Write Protect NVM
 *
 * Valid Range: 0, 1
 *
 * Default Value: 1 (enabled)
 */
E1000_PARAM(WriteProtectNVM,
	    "Write-protect NVM [WARNING: disabling this can lead to corrupted NVM]");

/* Enable CRC Stripping
 *
 * Valid Range: 0, 1
 *
 * Default Value: 1 (enabled)
 */
E1000_PARAM(CrcStripping,
	    "Enable CRC Stripping, disable if your BMC needs the CRC");

struct e1000_option {
	enum { enable_option, range_option, list_option } type;
	const char *name;
	const char *err;
	int def;
	union {
		/* range_option info */
		struct {
			int min;
			int max;
		} r;
		/* list_option info */
		struct {
			int nr;
			struct e1000_opt_list {
				int i;
				char *str;
			} *p;
		} l;
	} arg;
};

static int e1000_validate_option(unsigned int *value,
				 const struct e1000_option *opt,
				 struct e1000_adapter *adapter)
{
	if (*value == OPTION_UNSET) {
		*value = opt->def;
		return 0;
	}

	switch (opt->type) {
	case enable_option:
		switch (*value) {
		case OPTION_ENABLED:
			dev_info(&adapter->pdev->dev, "%s Enabled\n",
				 opt->name);
			return 0;
		case OPTION_DISABLED:
			dev_info(&adapter->pdev->dev, "%s Disabled\n",
				 opt->name);
			return 0;
		}
		break;
	case range_option:
		if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
			dev_info(&adapter->pdev->dev, "%s set to %i\n",
				 opt->name, *value);
			return 0;
		}
		break;
	case list_option: {
		int i;
		struct e1000_opt_list *ent;

		for (i = 0; i < opt->arg.l.nr; i++) {
			ent = &opt->arg.l.p[i];
			if (*value == ent->i) {
				if (ent->str[0] != '\0')
					dev_info(&adapter->pdev->dev, "%s\n",
						 ent->str);
				return 0;
			}
		}
	}
		break;
	default:
		BUG();
	}

	dev_info(&adapter->pdev->dev, "Invalid %s value specified (%i) %s\n",
		 opt->name, *value, opt->err);
	*value = opt->def;
	return -1;
}

/**
 * e1000e_check_options - Range Checking for Command Line Parameters
 * @adapter: board private structure
 *
 * This routine checks all command line parameters for valid user
 * input.  If an invalid value is given, or if no user specified
 * value exists, a default value is used.  The final value is stored
 * in a variable in the adapter structure.
 **/
void e1000e_check_options(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int bd = adapter->bd_number;

	if (bd >= E1000_MAX_NIC) {
		dev_notice(&adapter->pdev->dev,
			   "Warning: no configuration for board #%i\n", bd);
		dev_notice(&adapter->pdev->dev,
			   "Using defaults for all values\n");
	}

	/* Transmit Interrupt Delay */
	{
		static const struct e1000_option opt = {
			.type = range_option,
			.name = "Transmit Interrupt Delay",
			.err  = "using default of "
				__MODULE_STRING(DEFAULT_TIDV),
			.def  = DEFAULT_TIDV,
			.arg  = { .r = { .min = MIN_TXDELAY,
					 .max = MAX_TXDELAY } }
		};

		if (num_TxIntDelay > bd) {
			adapter->tx_int_delay = TxIntDelay[bd];
			e1000_validate_option(&adapter->tx_int_delay, &opt,
					      adapter);
		} else {
			adapter->tx_int_delay = opt.def;
		}
	}
	/* Transmit Absolute Interrupt Delay */
	{
		static const struct e1000_option opt = {
			.type = range_option,
			.name = "Transmit Absolute Interrupt Delay",
			.err  = "using default of "
				__MODULE_STRING(DEFAULT_TADV),
			.def  = DEFAULT_TADV,
			.arg  = { .r = { .min = MIN_TXABSDELAY,
					 .max = MAX_TXABSDELAY } }
		};

		if (num_TxAbsIntDelay > bd) {
			adapter->tx_abs_int_delay = TxAbsIntDelay[bd];
			e1000_validate_option(&adapter->tx_abs_int_delay, &opt,
					      adapter);
		} else {
			adapter->tx_abs_int_delay = opt.def;
		}
	}
	/* Receive Interrupt Delay */
	{
		static struct e1000_option opt = {
			.type = range_option,
			.name = "Receive Interrupt Delay",
			.err  = "using default of "
				__MODULE_STRING(DEFAULT_RDTR),
			.def  = DEFAULT_RDTR,
			.arg  = { .r = { .min = MIN_RXDELAY,
					 .max = MAX_RXDELAY } }
		};

		if (num_RxIntDelay > bd) {
			adapter->rx_int_delay = RxIntDelay[bd];
			e1000_validate_option(&adapter->rx_int_delay, &opt,
					      adapter);
		} else {
			adapter->rx_int_delay = opt.def;
		}
	}
	/* Receive Absolute Interrupt Delay */
	{
		static const struct e1000_option opt = {
			.type = range_option,
			.name = "Receive Absolute Interrupt Delay",
			.err  = "using default of "
				__MODULE_STRING(DEFAULT_RADV),
			.def  = DEFAULT_RADV,
			.arg  = { .r = { .min = MIN_RXABSDELAY,
					 .max = MAX_RXABSDELAY } }
		};

		if (num_RxAbsIntDelay > bd) {
			adapter->rx_abs_int_delay = RxAbsIntDelay[bd];
			e1000_validate_option(&adapter->rx_abs_int_delay, &opt,
					      adapter);
		} else {
			adapter->rx_abs_int_delay = opt.def;
		}
	}
	/* Interrupt Throttling Rate */
	{
		static const struct e1000_option opt = {
			.type = range_option,
			.name = "Interrupt Throttling Rate (ints/sec)",
			.err  = "using default of "
				__MODULE_STRING(DEFAULT_ITR),
			.def  = DEFAULT_ITR,
			.arg  = { .r = { .min = MIN_ITR,
					 .max = MAX_ITR } }
		};

		if (num_InterruptThrottleRate > bd) {
			adapter->itr = InterruptThrottleRate[bd];

			/* Make sure a message is printed for non-special
			 * values. And in case of an invalid option, display
			 * warning, use default and go through itr/itr_setting
			 * adjustment logic below
			 */
			if ((adapter->itr > 4) &&
			    e1000_validate_option(&adapter->itr, &opt, adapter))
				adapter->itr = opt.def;
		} else {
			/* If no option specified, use default value and go
			 * through the logic below to adjust itr/itr_setting
			 */
			adapter->itr = opt.def;

			/* Make sure a message is printed for non-special
			 * default values
			 */
			if (adapter->itr > 4)
				dev_info(&adapter->pdev->dev,
					 "%s set to default %d\n", opt.name,
					 adapter->itr);
		}

		adapter->itr_setting = adapter->itr;
		switch (adapter->itr) {
		case 0:
			dev_info(&adapter->pdev->dev, "%s turned off\n",
				 opt.name);
			break;
		case 1:
			dev_info(&adapter->pdev->dev,
				 "%s set to dynamic mode\n", opt.name);
			adapter->itr = 20000;
			break;
		case 2:
			dev_info(&adapter->pdev->dev,
				 "%s Invalid mode - setting default\n",
				 opt.name);
			adapter->itr_setting = opt.def;
			/* fall-through */
		case 3:
			dev_info(&adapter->pdev->dev,
				 "%s set to dynamic conservative mode\n",
				 opt.name);
			adapter->itr = 20000;
			break;
		case 4:
			dev_info(&adapter->pdev->dev,
				 "%s set to simplified (2000-8000 ints) mode\n",
				 opt.name);
			break;
		default:
			/* Save the setting, because the dynamic bits
			 * change itr.
			 *
			 * Clear the lower two bits because
			 * they are used as control.
			 */
			adapter->itr_setting &= ~3;
			break;
		}
	}
	/* Interrupt Mode */
	{
		static struct e1000_option opt = {
			.type = range_option,
			.name = "Interrupt Mode",
#ifndef CONFIG_PCI_MSI
			.err  = "defaulting to 0 (legacy)",
			.def  = E1000E_INT_MODE_LEGACY,
			.arg  = { .r = { .min = 0,
					 .max = 0 } }
#endif
		};

#ifdef CONFIG_PCI_MSI
		if (adapter->flags & FLAG_HAS_MSIX) {
			opt.err = kstrdup("defaulting to 2 (MSI-X)",
					  GFP_KERNEL);
			opt.def = E1000E_INT_MODE_MSIX;
			opt.arg.r.max = E1000E_INT_MODE_MSIX;
		} else {
			opt.err = kstrdup("defaulting to 1 (MSI)", GFP_KERNEL);
			opt.def = E1000E_INT_MODE_MSI;
			opt.arg.r.max = E1000E_INT_MODE_MSI;
		}

		if (!opt.err) {
			dev_err(&adapter->pdev->dev,
				"Failed to allocate memory\n");
			return;
		}
#endif

		if (num_IntMode > bd) {
			unsigned int int_mode = IntMode[bd];

			e1000_validate_option(&int_mode, &opt, adapter);
			adapter->int_mode = int_mode;
		} else {
			adapter->int_mode = opt.def;
		}

#ifdef CONFIG_PCI_MSI
		kfree(opt.err);
#endif
	}
	/* Smart Power Down */
	{
		static const struct e1000_option opt = {
			.type = enable_option,
			.name = "PHY Smart Power Down",
			.err  = "defaulting to Disabled",
			.def  = OPTION_DISABLED
		};

		if (num_SmartPowerDownEnable > bd) {
			unsigned int spd = SmartPowerDownEnable[bd];

			e1000_validate_option(&spd, &opt, adapter);
			if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) && spd)
				adapter->flags |= FLAG_SMART_POWER_DOWN;
		}
	}
	/* CRC Stripping */
	{
		static const struct e1000_option opt = {
			.type = enable_option,
			.name = "CRC Stripping",
			.err  = "defaulting to Enabled",
			.def  = OPTION_ENABLED
		};

		if (num_CrcStripping > bd) {
			unsigned int crc_stripping = CrcStripping[bd];

			e1000_validate_option(&crc_stripping, &opt, adapter);
			if (crc_stripping == OPTION_ENABLED) {
				adapter->flags2 |= FLAG2_CRC_STRIPPING;
				adapter->flags2 |= FLAG2_DFLT_CRC_STRIPPING;
			}
		} else {
			adapter->flags2 |= FLAG2_CRC_STRIPPING;
			adapter->flags2 |= FLAG2_DFLT_CRC_STRIPPING;
		}
	}
	/* Kumeran Lock Loss Workaround */
	{
		static const struct e1000_option opt = {
			.type = enable_option,
			.name = "Kumeran Lock Loss Workaround",
			.err  = "defaulting to Enabled",
			.def  = OPTION_ENABLED
		};
		bool enabled = opt.def;

		if (num_KumeranLockLoss > bd) {
			unsigned int kmrn_lock_loss = KumeranLockLoss[bd];

			e1000_validate_option(&kmrn_lock_loss, &opt, adapter);
			enabled = kmrn_lock_loss;
		}

		if (hw->mac.type == e1000_ich8lan)
			e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw,
								     enabled);
	}
	/* Write-protect NVM */
	{
		static const struct e1000_option opt = {
			.type = enable_option,
			.name = "Write-protect NVM",
			.err  = "defaulting to Enabled",
			.def  = OPTION_ENABLED
		};

		if (adapter->flags & FLAG_IS_ICH) {
			if (num_WriteProtectNVM > bd) {
				unsigned int write_protect_nvm =
				    WriteProtectNVM[bd];
				e1000_validate_option(&write_protect_nvm, &opt,
						      adapter);
				if (write_protect_nvm)
					adapter->flags |= FLAG_READ_ONLY_NVM;
			} else {
				if (opt.def)
					adapter->flags |= FLAG_READ_ONLY_NVM;
			}
		}
	}
}