|
1 /****************************************************************************** |
|
2 * |
|
3 * $Id$ |
|
4 * |
|
5 * Copyright (C) 2007-2012 Florian Pose, Ingenieurgemeinschaft IgH |
|
6 * |
|
7 * This file is part of the IgH EtherCAT Master. |
|
8 * |
|
9 * The IgH EtherCAT Master is free software; you can redistribute it and/or |
|
10 * modify it under the terms of the GNU General Public License version 2, as |
|
11 * published by the Free Software Foundation. |
|
12 * |
|
13 * The IgH EtherCAT Master is distributed in the hope that it will be useful, |
|
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General |
|
16 * Public License for more details. |
|
17 * |
|
18 * You should have received a copy of the GNU General Public License along |
|
19 * with the IgH EtherCAT Master; if not, write to the Free Software |
|
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
|
21 * |
|
22 * --- |
|
23 * |
|
24 * The license mentioned above concerns the source code only. Using the |
|
25 * EtherCAT technology and brand is only permitted in compliance with the |
|
26 * industrial property and similar rights of Beckhoff Automation GmbH. |
|
27 * |
|
28 * --- |
|
29 * |
|
30 * vim: noexpandtab |
|
31 * |
|
32 *****************************************************************************/ |
|
33 |
|
34 /** |
|
35 \file |
|
36 EtherCAT driver for e100-compatible NICs. |
|
37 */ |
|
38 |
|
39 /* Former documentation: */ |
|
40 |
|
41 /******************************************************************************* |
|
42 |
|
43 Intel PRO/100 Linux driver |
|
44 Copyright(c) 1999 - 2006 Intel Corporation. |
|
45 |
|
46 This program is free software; you can redistribute it and/or modify it |
|
47 under the terms and conditions of the GNU General Public License, |
|
48 version 2, as published by the Free Software Foundation. |
|
49 |
|
50 This program is distributed in the hope it will be useful, but WITHOUT |
|
51 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
52 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
|
53 more details. |
|
54 |
|
55 You should have received a copy of the GNU General Public License along with |
|
56 this program; if not, write to the Free Software Foundation, Inc., |
|
57 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
|
58 |
|
59 The full GNU General Public License is included in this distribution in |
|
60 the file called "COPYING". |
|
61 |
|
62 Contact Information: |
|
63 Linux NICS <linux.nics@intel.com> |
|
64 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
|
65 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
|
66 |
|
67 *******************************************************************************/ |
|
68 |
|
69 /* |
|
70 * e100.c: Intel(R) PRO/100 ethernet driver |
|
71 * |
|
72 * (Re)written 2003 by scott.feldman@intel.com. Based loosely on |
|
73 * original e100 driver, but better described as a munging of |
|
74 * e100, e1000, eepro100, tg3, 8139cp, and other drivers. |
|
75 * |
|
76 * References: |
|
77 * Intel 8255x 10/100 Mbps Ethernet Controller Family, |
|
78 * Open Source Software Developers Manual, |
|
79 * http://sourceforge.net/projects/e1000 |
|
80 * |
|
81 * |
|
82 * Theory of Operation |
|
83 * |
|
84 * I. General |
|
85 * |
|
86 * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet |
|
87 * controller family, which includes the 82557, 82558, 82559, 82550, |
|
88 * 82551, and 82562 devices. 82558 and greater controllers |
|
89 * integrate the Intel 82555 PHY. The controllers are used in |
|
90 * server and client network interface cards, as well as in |
|
91 * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx |
|
92 * configurations. 8255x supports a 32-bit linear addressing |
|
93 * mode and operates at 33Mhz PCI clock rate. |
|
94 * |
|
95 * II. Driver Operation |
|
96 * |
|
97 * Memory-mapped mode is used exclusively to access the device's |
|
98 * shared-memory structure, the Control/Status Registers (CSR). All |
|
99 * setup, configuration, and control of the device, including queuing |
|
100 * of Tx, Rx, and configuration commands is through the CSR. |
|
101 * cmd_lock serializes accesses to the CSR command register. cb_lock |
|
102 * protects the shared Command Block List (CBL). |
|
103 * |
|
104 * 8255x is highly MII-compliant and all access to the PHY go |
|
105 * through the Management Data Interface (MDI). Consequently, the |
|
106 * driver leverages the mii.c library shared with other MII-compliant |
|
107 * devices. |
|
108 * |
|
109 * Big- and Little-Endian byte order as well as 32- and 64-bit |
|
110 * archs are supported. Weak-ordered memory and non-cache-coherent |
|
111 * archs are supported. |
|
112 * |
|
113 * III. Transmit |
|
114 * |
|
115 * A Tx skb is mapped and hangs off of a TCB. TCBs are linked |
|
116 * together in a fixed-size ring (CBL) thus forming the flexible mode |
|
117 * memory structure. A TCB marked with the suspend-bit indicates |
|
118 * the end of the ring. The last TCB processed suspends the |
|
119 * controller, and the controller can be restarted by issue a CU |
|
120 * resume command to continue from the suspend point, or a CU start |
|
121 * command to start at a given position in the ring. |
|
122 * |
|
123 * Non-Tx commands (config, multicast setup, etc) are linked |
|
124 * into the CBL ring along with Tx commands. The common structure |
|
125 * used for both Tx and non-Tx commands is the Command Block (CB). |
|
126 * |
|
127 * cb_to_use is the next CB to use for queuing a command; cb_to_clean |
|
128 * is the next CB to check for completion; cb_to_send is the first |
|
129 * CB to start on in case of a previous failure to resume. CB clean |
|
130 * up happens in interrupt context in response to a CU interrupt. |
|
131 * cbs_avail keeps track of number of free CB resources available. |
|
132 * |
|
133 * Hardware padding of short packets to minimum packet size is |
|
134 * enabled. 82557 pads with 7Eh, while the later controllers pad |
|
135 * with 00h. |
|
136 * |
|
137 * IV. Receive |
|
138 * |
|
139 * The Receive Frame Area (RFA) comprises a ring of Receive Frame |
|
140 * Descriptors (RFD) + data buffer, thus forming the simplified mode |
|
141 * memory structure. Rx skbs are allocated to contain both the RFD |
|
142 * and the data buffer, but the RFD is pulled off before the skb is |
|
143 * indicated. The data buffer is aligned such that encapsulated |
|
144 * protocol headers are u32-aligned. Since the RFD is part of the |
|
145 * mapped shared memory, and completion status is contained within |
|
146 * the RFD, the RFD must be dma_sync'ed to maintain a consistent |
|
147 * view from software and hardware. |
|
148 * |
|
149 * In order to keep updates to the RFD link field from colliding with |
|
150 * hardware writes to mark packets complete, we use the feature that |
|
151 * hardware will not write to a size 0 descriptor and mark the previous |
|
152 * packet as end-of-list (EL). After updating the link, we remove EL |
|
153 * and only then restore the size such that hardware may use the |
|
154 * previous-to-end RFD. |
|
155 * |
|
156 * Under typical operation, the receive unit (RU) is start once, |
|
157 * and the controller happily fills RFDs as frames arrive. If |
|
158 * replacement RFDs cannot be allocated, or the RU goes non-active, |
|
159 * the RU must be restarted. Frame arrival generates an interrupt, |
|
160 * and Rx indication and re-allocation happen in the same context, |
|
161 * therefore no locking is required. A software-generated interrupt |
|
162 * is generated from the watchdog to recover from a failed allocation |
|
163 * scenario where all Rx resources have been indicated and none re- |
|
164 * placed. |
|
165 * |
|
166 * V. Miscellaneous |
|
167 * |
|
168 * VLAN offloading of tagging, stripping and filtering is not |
|
169 * supported, but driver will accommodate the extra 4-byte VLAN tag |
|
170 * for processing by upper layers. Tx/Rx Checksum offloading is not |
|
171 * supported. Tx Scatter/Gather is not supported. Jumbo Frames is |
|
172 * not supported (hardware limitation). |
|
173 * |
|
174 * MagicPacket(tm) WoL support is enabled/disabled via ethtool. |
|
175 * |
|
176 * Thanks to JC (jchapman@katalix.com) for helping with |
|
177 * testing/troubleshooting the development driver. |
|
178 * |
|
179 * TODO: |
|
180 * o several entry points race with dev->close |
|
181 * o check for tx-no-resources/stop Q races with tx clean/wake Q |
|
182 * |
|
183 * FIXES: |
|
184 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com> |
|
185 * - Stratus87247: protect MDI control register manipulations |
|
186 * 2009/06/01 - Andreas Mohr <andi at lisas dot de> |
|
187 * - add clean lowlevel I/O emulation for cards with MII-lacking PHYs |
|
188 */ |
|
189 |
|
190 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
|
191 |
|
192 #include <linux/module.h> |
|
193 #include <linux/moduleparam.h> |
|
194 #include <linux/kernel.h> |
|
195 #include <linux/types.h> |
|
196 #include <linux/sched.h> |
|
197 #include <linux/slab.h> |
|
198 #include <linux/delay.h> |
|
199 #include <linux/init.h> |
|
200 #include <linux/pci.h> |
|
201 #include <linux/dma-mapping.h> |
|
202 #include <linux/dmapool.h> |
|
203 #include <linux/netdevice.h> |
|
204 #include <linux/etherdevice.h> |
|
205 #include <linux/mii.h> |
|
206 #include <linux/if_vlan.h> |
|
207 #include <linux/skbuff.h> |
|
208 #include <linux/ethtool.h> |
|
209 #include <linux/string.h> |
|
210 #include <linux/firmware.h> |
|
211 #include <linux/rtnetlink.h> |
|
212 #include <asm/unaligned.h> |
|
213 |
|
214 // EtherCAT includes |
|
215 #include "../globals.h" |
|
216 #include "ecdev.h" |
|
217 |
|
218 #define DRV_NAME "ec_e100" |
|
219 #define DRV_EXT "-NAPI" |
|
220 #define DRV_VERSION "3.5.24-k2"DRV_EXT |
|
221 #define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver" |
|
222 #define DRV_COPYRIGHT "Copyright(c) 1999-2006 Intel Corporation" |
|
223 |
|
224 #define E100_WATCHDOG_PERIOD (2 * HZ) |
|
225 #define E100_NAPI_WEIGHT 16 |
|
226 |
|
227 #define FIRMWARE_D101M "e100/d101m_ucode.bin" |
|
228 #define FIRMWARE_D101S "e100/d101s_ucode.bin" |
|
229 #define FIRMWARE_D102E "e100/d102e_ucode.bin" |
|
230 |
|
231 MODULE_DESCRIPTION(DRV_DESCRIPTION); |
|
232 MODULE_AUTHOR(DRV_COPYRIGHT); |
|
233 MODULE_LICENSE("GPL"); |
|
234 MODULE_VERSION(DRV_VERSION); |
|
235 MODULE_FIRMWARE(FIRMWARE_D101M); |
|
236 MODULE_FIRMWARE(FIRMWARE_D101S); |
|
237 MODULE_FIRMWARE(FIRMWARE_D102E); |
|
238 |
|
239 MODULE_DESCRIPTION(DRV_DESCRIPTION); |
|
240 MODULE_AUTHOR("Florian Pose <fp@igh-essen.com>"); |
|
241 MODULE_LICENSE("GPL"); |
|
242 MODULE_VERSION(DRV_VERSION ", master " EC_MASTER_VERSION); |
|
243 |
|
244 void e100_ec_poll(struct net_device *); |
|
245 |
|
246 static int debug = 3; |
|
247 static int eeprom_bad_csum_allow = 0; |
|
248 static int use_io = 0; |
|
249 module_param(debug, int, 0); |
|
250 module_param(eeprom_bad_csum_allow, int, 0); |
|
251 module_param(use_io, int, 0); |
|
252 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); |
|
253 MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums"); |
|
254 MODULE_PARM_DESC(use_io, "Force use of i/o access mode"); |
|
255 |
|
256 #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\ |
|
257 PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \ |
|
258 PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich } |
|
259 static DEFINE_PCI_DEVICE_TABLE(e100_id_table) = { |
|
260 INTEL_8255X_ETHERNET_DEVICE(0x1029, 0), |
|
261 INTEL_8255X_ETHERNET_DEVICE(0x1030, 0), |
|
262 INTEL_8255X_ETHERNET_DEVICE(0x1031, 3), |
|
263 INTEL_8255X_ETHERNET_DEVICE(0x1032, 3), |
|
264 INTEL_8255X_ETHERNET_DEVICE(0x1033, 3), |
|
265 INTEL_8255X_ETHERNET_DEVICE(0x1034, 3), |
|
266 INTEL_8255X_ETHERNET_DEVICE(0x1038, 3), |
|
267 INTEL_8255X_ETHERNET_DEVICE(0x1039, 4), |
|
268 INTEL_8255X_ETHERNET_DEVICE(0x103A, 4), |
|
269 INTEL_8255X_ETHERNET_DEVICE(0x103B, 4), |
|
270 INTEL_8255X_ETHERNET_DEVICE(0x103C, 4), |
|
271 INTEL_8255X_ETHERNET_DEVICE(0x103D, 4), |
|
272 INTEL_8255X_ETHERNET_DEVICE(0x103E, 4), |
|
273 INTEL_8255X_ETHERNET_DEVICE(0x1050, 5), |
|
274 INTEL_8255X_ETHERNET_DEVICE(0x1051, 5), |
|
275 INTEL_8255X_ETHERNET_DEVICE(0x1052, 5), |
|
276 INTEL_8255X_ETHERNET_DEVICE(0x1053, 5), |
|
277 INTEL_8255X_ETHERNET_DEVICE(0x1054, 5), |
|
278 INTEL_8255X_ETHERNET_DEVICE(0x1055, 5), |
|
279 INTEL_8255X_ETHERNET_DEVICE(0x1056, 5), |
|
280 INTEL_8255X_ETHERNET_DEVICE(0x1057, 5), |
|
281 INTEL_8255X_ETHERNET_DEVICE(0x1059, 0), |
|
282 INTEL_8255X_ETHERNET_DEVICE(0x1064, 6), |
|
283 INTEL_8255X_ETHERNET_DEVICE(0x1065, 6), |
|
284 INTEL_8255X_ETHERNET_DEVICE(0x1066, 6), |
|
285 INTEL_8255X_ETHERNET_DEVICE(0x1067, 6), |
|
286 INTEL_8255X_ETHERNET_DEVICE(0x1068, 6), |
|
287 INTEL_8255X_ETHERNET_DEVICE(0x1069, 6), |
|
288 INTEL_8255X_ETHERNET_DEVICE(0x106A, 6), |
|
289 INTEL_8255X_ETHERNET_DEVICE(0x106B, 6), |
|
290 INTEL_8255X_ETHERNET_DEVICE(0x1091, 7), |
|
291 INTEL_8255X_ETHERNET_DEVICE(0x1092, 7), |
|
292 INTEL_8255X_ETHERNET_DEVICE(0x1093, 7), |
|
293 INTEL_8255X_ETHERNET_DEVICE(0x1094, 7), |
|
294 INTEL_8255X_ETHERNET_DEVICE(0x1095, 7), |
|
295 INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7), |
|
296 INTEL_8255X_ETHERNET_DEVICE(0x1209, 0), |
|
297 INTEL_8255X_ETHERNET_DEVICE(0x1229, 0), |
|
298 INTEL_8255X_ETHERNET_DEVICE(0x2449, 2), |
|
299 INTEL_8255X_ETHERNET_DEVICE(0x2459, 2), |
|
300 INTEL_8255X_ETHERNET_DEVICE(0x245D, 2), |
|
301 INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7), |
|
302 { 0, } |
|
303 }; |
|
304 |
|
305 // prevent from being loaded automatically |
|
306 //MODULE_DEVICE_TABLE(pci, e100_id_table); |
|
307 |
|
308 enum mac { |
|
309 mac_82557_D100_A = 0, |
|
310 mac_82557_D100_B = 1, |
|
311 mac_82557_D100_C = 2, |
|
312 mac_82558_D101_A4 = 4, |
|
313 mac_82558_D101_B0 = 5, |
|
314 mac_82559_D101M = 8, |
|
315 mac_82559_D101S = 9, |
|
316 mac_82550_D102 = 12, |
|
317 mac_82550_D102_C = 13, |
|
318 mac_82551_E = 14, |
|
319 mac_82551_F = 15, |
|
320 mac_82551_10 = 16, |
|
321 mac_unknown = 0xFF, |
|
322 }; |
|
323 |
|
324 enum phy { |
|
325 phy_100a = 0x000003E0, |
|
326 phy_100c = 0x035002A8, |
|
327 phy_82555_tx = 0x015002A8, |
|
328 phy_nsc_tx = 0x5C002000, |
|
329 phy_82562_et = 0x033002A8, |
|
330 phy_82562_em = 0x032002A8, |
|
331 phy_82562_ek = 0x031002A8, |
|
332 phy_82562_eh = 0x017002A8, |
|
333 phy_82552_v = 0xd061004d, |
|
334 phy_unknown = 0xFFFFFFFF, |
|
335 }; |
|
336 |
|
337 /* CSR (Control/Status Registers) */ |
|
338 struct csr { |
|
339 struct { |
|
340 u8 status; |
|
341 u8 stat_ack; |
|
342 u8 cmd_lo; |
|
343 u8 cmd_hi; |
|
344 u32 gen_ptr; |
|
345 } scb; |
|
346 u32 port; |
|
347 u16 flash_ctrl; |
|
348 u8 eeprom_ctrl_lo; |
|
349 u8 eeprom_ctrl_hi; |
|
350 u32 mdi_ctrl; |
|
351 u32 rx_dma_count; |
|
352 }; |
|
353 |
|
354 enum scb_status { |
|
355 rus_no_res = 0x08, |
|
356 rus_ready = 0x10, |
|
357 rus_mask = 0x3C, |
|
358 }; |
|
359 |
|
360 enum ru_state { |
|
361 RU_SUSPENDED = 0, |
|
362 RU_RUNNING = 1, |
|
363 RU_UNINITIALIZED = -1, |
|
364 }; |
|
365 |
|
366 enum scb_stat_ack { |
|
367 stat_ack_not_ours = 0x00, |
|
368 stat_ack_sw_gen = 0x04, |
|
369 stat_ack_rnr = 0x10, |
|
370 stat_ack_cu_idle = 0x20, |
|
371 stat_ack_frame_rx = 0x40, |
|
372 stat_ack_cu_cmd_done = 0x80, |
|
373 stat_ack_not_present = 0xFF, |
|
374 stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx), |
|
375 stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done), |
|
376 }; |
|
377 |
|
378 enum scb_cmd_hi { |
|
379 irq_mask_none = 0x00, |
|
380 irq_mask_all = 0x01, |
|
381 irq_sw_gen = 0x02, |
|
382 }; |
|
383 |
|
384 enum scb_cmd_lo { |
|
385 cuc_nop = 0x00, |
|
386 ruc_start = 0x01, |
|
387 ruc_load_base = 0x06, |
|
388 cuc_start = 0x10, |
|
389 cuc_resume = 0x20, |
|
390 cuc_dump_addr = 0x40, |
|
391 cuc_dump_stats = 0x50, |
|
392 cuc_load_base = 0x60, |
|
393 cuc_dump_reset = 0x70, |
|
394 }; |
|
395 |
|
396 enum cuc_dump { |
|
397 cuc_dump_complete = 0x0000A005, |
|
398 cuc_dump_reset_complete = 0x0000A007, |
|
399 }; |
|
400 |
|
401 enum port { |
|
402 software_reset = 0x0000, |
|
403 selftest = 0x0001, |
|
404 selective_reset = 0x0002, |
|
405 }; |
|
406 |
|
407 enum eeprom_ctrl_lo { |
|
408 eesk = 0x01, |
|
409 eecs = 0x02, |
|
410 eedi = 0x04, |
|
411 eedo = 0x08, |
|
412 }; |
|
413 |
|
414 enum mdi_ctrl { |
|
415 mdi_write = 0x04000000, |
|
416 mdi_read = 0x08000000, |
|
417 mdi_ready = 0x10000000, |
|
418 }; |
|
419 |
|
420 enum eeprom_op { |
|
421 op_write = 0x05, |
|
422 op_read = 0x06, |
|
423 op_ewds = 0x10, |
|
424 op_ewen = 0x13, |
|
425 }; |
|
426 |
|
427 enum eeprom_offsets { |
|
428 eeprom_cnfg_mdix = 0x03, |
|
429 eeprom_phy_iface = 0x06, |
|
430 eeprom_id = 0x0A, |
|
431 eeprom_config_asf = 0x0D, |
|
432 eeprom_smbus_addr = 0x90, |
|
433 }; |
|
434 |
|
435 enum eeprom_cnfg_mdix { |
|
436 eeprom_mdix_enabled = 0x0080, |
|
437 }; |
|
438 |
|
439 enum eeprom_phy_iface { |
|
440 NoSuchPhy = 0, |
|
441 I82553AB, |
|
442 I82553C, |
|
443 I82503, |
|
444 DP83840, |
|
445 S80C240, |
|
446 S80C24, |
|
447 I82555, |
|
448 DP83840A = 10, |
|
449 }; |
|
450 |
|
451 enum eeprom_id { |
|
452 eeprom_id_wol = 0x0020, |
|
453 }; |
|
454 |
|
455 enum eeprom_config_asf { |
|
456 eeprom_asf = 0x8000, |
|
457 eeprom_gcl = 0x4000, |
|
458 }; |
|
459 |
|
460 enum cb_status { |
|
461 cb_complete = 0x8000, |
|
462 cb_ok = 0x2000, |
|
463 }; |
|
464 |
|
465 enum cb_command { |
|
466 cb_nop = 0x0000, |
|
467 cb_iaaddr = 0x0001, |
|
468 cb_config = 0x0002, |
|
469 cb_multi = 0x0003, |
|
470 cb_tx = 0x0004, |
|
471 cb_ucode = 0x0005, |
|
472 cb_dump = 0x0006, |
|
473 cb_tx_sf = 0x0008, |
|
474 cb_cid = 0x1f00, |
|
475 cb_i = 0x2000, |
|
476 cb_s = 0x4000, |
|
477 cb_el = 0x8000, |
|
478 }; |
|
479 |
|
480 struct rfd { |
|
481 __le16 status; |
|
482 __le16 command; |
|
483 __le32 link; |
|
484 __le32 rbd; |
|
485 __le16 actual_size; |
|
486 __le16 size; |
|
487 }; |
|
488 |
|
489 struct rx { |
|
490 struct rx *next, *prev; |
|
491 struct sk_buff *skb; |
|
492 dma_addr_t dma_addr; |
|
493 }; |
|
494 |
|
495 #if defined(__BIG_ENDIAN_BITFIELD) |
|
496 #define X(a,b) b,a |
|
497 #else |
|
498 #define X(a,b) a,b |
|
499 #endif |
|
500 struct config { |
|
501 /*0*/ u8 X(byte_count:6, pad0:2); |
|
502 /*1*/ u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1); |
|
503 /*2*/ u8 adaptive_ifs; |
|
504 /*3*/ u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1), |
|
505 term_write_cache_line:1), pad3:4); |
|
506 /*4*/ u8 X(rx_dma_max_count:7, pad4:1); |
|
507 /*5*/ u8 X(tx_dma_max_count:7, dma_max_count_enable:1); |
|
508 /*6*/ u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1), |
|
509 tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1), |
|
510 rx_discard_overruns:1), rx_save_bad_frames:1); |
|
511 /*7*/ u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2), |
|
512 pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1), |
|
513 tx_dynamic_tbd:1); |
|
514 /*8*/ u8 X(X(mii_mode:1, pad8:6), csma_disabled:1); |
|
515 /*9*/ u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1), |
|
516 link_status_wake:1), arp_wake:1), mcmatch_wake:1); |
|
517 /*10*/ u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2), |
|
518 loopback:2); |
|
519 /*11*/ u8 X(linear_priority:3, pad11:5); |
|
520 /*12*/ u8 X(X(linear_priority_mode:1, pad12:3), ifs:4); |
|
521 /*13*/ u8 ip_addr_lo; |
|
522 /*14*/ u8 ip_addr_hi; |
|
523 /*15*/ u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1), |
|
524 wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1), |
|
525 pad15_2:1), crs_or_cdt:1); |
|
526 /*16*/ u8 fc_delay_lo; |
|
527 /*17*/ u8 fc_delay_hi; |
|
528 /*18*/ u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1), |
|
529 rx_long_ok:1), fc_priority_threshold:3), pad18:1); |
|
530 /*19*/ u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1), |
|
531 fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1), |
|
532 full_duplex_force:1), full_duplex_pin:1); |
|
533 /*20*/ u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1); |
|
534 /*21*/ u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4); |
|
535 /*22*/ u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6); |
|
536 u8 pad_d102[9]; |
|
537 }; |
|
538 |
|
539 #define E100_MAX_MULTICAST_ADDRS 64 |
|
540 struct multi { |
|
541 __le16 count; |
|
542 u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/]; |
|
543 }; |
|
544 |
|
545 /* Important: keep total struct u32-aligned */ |
|
546 #define UCODE_SIZE 134 |
|
547 struct cb { |
|
548 __le16 status; |
|
549 __le16 command; |
|
550 __le32 link; |
|
551 union { |
|
552 u8 iaaddr[ETH_ALEN]; |
|
553 __le32 ucode[UCODE_SIZE]; |
|
554 struct config config; |
|
555 struct multi multi; |
|
556 struct { |
|
557 u32 tbd_array; |
|
558 u16 tcb_byte_count; |
|
559 u8 threshold; |
|
560 u8 tbd_count; |
|
561 struct { |
|
562 __le32 buf_addr; |
|
563 __le16 size; |
|
564 u16 eol; |
|
565 } tbd; |
|
566 } tcb; |
|
567 __le32 dump_buffer_addr; |
|
568 } u; |
|
569 struct cb *next, *prev; |
|
570 dma_addr_t dma_addr; |
|
571 struct sk_buff *skb; |
|
572 }; |
|
573 |
|
574 enum loopback { |
|
575 lb_none = 0, lb_mac = 1, lb_phy = 3, |
|
576 }; |
|
577 |
|
578 struct stats { |
|
579 __le32 tx_good_frames, tx_max_collisions, tx_late_collisions, |
|
580 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions, |
|
581 tx_multiple_collisions, tx_total_collisions; |
|
582 __le32 rx_good_frames, rx_crc_errors, rx_alignment_errors, |
|
583 rx_resource_errors, rx_overrun_errors, rx_cdt_errors, |
|
584 rx_short_frame_errors; |
|
585 __le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported; |
|
586 __le16 xmt_tco_frames, rcv_tco_frames; |
|
587 __le32 complete; |
|
588 }; |
|
589 |
|
590 struct mem { |
|
591 struct { |
|
592 u32 signature; |
|
593 u32 result; |
|
594 } selftest; |
|
595 struct stats stats; |
|
596 u8 dump_buf[596]; |
|
597 }; |
|
598 |
|
599 struct param_range { |
|
600 u32 min; |
|
601 u32 max; |
|
602 u32 count; |
|
603 }; |
|
604 |
|
605 struct params { |
|
606 struct param_range rfds; |
|
607 struct param_range cbs; |
|
608 }; |
|
609 |
|
610 struct nic { |
|
611 /* Begin: frequently used values: keep adjacent for cache effect */ |
|
612 u32 msg_enable ____cacheline_aligned; |
|
613 struct net_device *netdev; |
|
614 struct pci_dev *pdev; |
|
615 u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data); |
|
616 |
|
617 struct rx *rxs ____cacheline_aligned; |
|
618 struct rx *rx_to_use; |
|
619 struct rx *rx_to_clean; |
|
620 struct rfd blank_rfd; |
|
621 enum ru_state ru_running; |
|
622 |
|
623 spinlock_t cb_lock ____cacheline_aligned; |
|
624 spinlock_t cmd_lock; |
|
625 struct csr __iomem *csr; |
|
626 enum scb_cmd_lo cuc_cmd; |
|
627 unsigned int cbs_avail; |
|
628 struct napi_struct napi; |
|
629 struct cb *cbs; |
|
630 struct cb *cb_to_use; |
|
631 struct cb *cb_to_send; |
|
632 struct cb *cb_to_clean; |
|
633 __le16 tx_command; |
|
634 /* End: frequently used values: keep adjacent for cache effect */ |
|
635 |
|
636 enum { |
|
637 ich = (1 << 0), |
|
638 promiscuous = (1 << 1), |
|
639 multicast_all = (1 << 2), |
|
640 wol_magic = (1 << 3), |
|
641 ich_10h_workaround = (1 << 4), |
|
642 } flags ____cacheline_aligned; |
|
643 |
|
644 enum mac mac; |
|
645 enum phy phy; |
|
646 struct params params; |
|
647 struct timer_list watchdog; |
|
648 struct timer_list blink_timer; |
|
649 struct mii_if_info mii; |
|
650 struct work_struct tx_timeout_task; |
|
651 enum loopback loopback; |
|
652 |
|
653 struct mem *mem; |
|
654 dma_addr_t dma_addr; |
|
655 |
|
656 struct pci_pool *cbs_pool; |
|
657 dma_addr_t cbs_dma_addr; |
|
658 u8 adaptive_ifs; |
|
659 u8 tx_threshold; |
|
660 u32 tx_frames; |
|
661 u32 tx_collisions; |
|
662 |
|
663 u32 tx_deferred; |
|
664 u32 tx_single_collisions; |
|
665 u32 tx_multiple_collisions; |
|
666 u32 tx_fc_pause; |
|
667 u32 tx_tco_frames; |
|
668 |
|
669 u32 rx_fc_pause; |
|
670 u32 rx_fc_unsupported; |
|
671 u32 rx_tco_frames; |
|
672 u32 rx_over_length_errors; |
|
673 |
|
674 u16 leds; |
|
675 u16 eeprom_wc; |
|
676 |
|
677 __le16 eeprom[256]; |
|
678 spinlock_t mdio_lock; |
|
679 const struct firmware *fw; |
|
680 ec_device_t *ecdev; |
|
681 unsigned long ec_watchdog_jiffies; |
|
682 }; |
|
683 |
|
684 static inline void e100_write_flush(struct nic *nic) |
|
685 { |
|
686 /* Flush previous PCI writes through intermediate bridges |
|
687 * by doing a benign read */ |
|
688 (void)ioread8(&nic->csr->scb.status); |
|
689 } |
|
690 |
|
691 static void e100_enable_irq(struct nic *nic) |
|
692 { |
|
693 unsigned long flags; |
|
694 |
|
695 if (nic->ecdev) |
|
696 return; |
|
697 |
|
698 spin_lock_irqsave(&nic->cmd_lock, flags); |
|
699 iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi); |
|
700 e100_write_flush(nic); |
|
701 spin_unlock_irqrestore(&nic->cmd_lock, flags); |
|
702 } |
|
703 |
|
704 static void e100_disable_irq(struct nic *nic) |
|
705 { |
|
706 unsigned long flags = 0; |
|
707 |
|
708 if (!nic->ecdev) |
|
709 spin_lock_irqsave(&nic->cmd_lock, flags); |
|
710 iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi); |
|
711 e100_write_flush(nic); |
|
712 if (!nic->ecdev) |
|
713 spin_unlock_irqrestore(&nic->cmd_lock, flags); |
|
714 } |
|
715 |
|
716 static void e100_hw_reset(struct nic *nic) |
|
717 { |
|
718 /* Put CU and RU into idle with a selective reset to get |
|
719 * device off of PCI bus */ |
|
720 iowrite32(selective_reset, &nic->csr->port); |
|
721 e100_write_flush(nic); udelay(20); |
|
722 |
|
723 /* Now fully reset device */ |
|
724 iowrite32(software_reset, &nic->csr->port); |
|
725 e100_write_flush(nic); udelay(20); |
|
726 |
|
727 /* Mask off our interrupt line - it's unmasked after reset */ |
|
728 e100_disable_irq(nic); |
|
729 } |
|
730 |
|
731 static int e100_self_test(struct nic *nic) |
|
732 { |
|
733 u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest); |
|
734 |
|
735 /* Passing the self-test is a pretty good indication |
|
736 * that the device can DMA to/from host memory */ |
|
737 |
|
738 nic->mem->selftest.signature = 0; |
|
739 nic->mem->selftest.result = 0xFFFFFFFF; |
|
740 |
|
741 iowrite32(selftest | dma_addr, &nic->csr->port); |
|
742 e100_write_flush(nic); |
|
743 /* Wait 10 msec for self-test to complete */ |
|
744 msleep(10); |
|
745 |
|
746 /* Interrupts are enabled after self-test */ |
|
747 e100_disable_irq(nic); |
|
748 |
|
749 /* Check results of self-test */ |
|
750 if (nic->mem->selftest.result != 0) { |
|
751 netif_err(nic, hw, nic->netdev, |
|
752 "Self-test failed: result=0x%08X\n", |
|
753 nic->mem->selftest.result); |
|
754 return -ETIMEDOUT; |
|
755 } |
|
756 if (nic->mem->selftest.signature == 0) { |
|
757 netif_err(nic, hw, nic->netdev, "Self-test failed: timed out\n"); |
|
758 return -ETIMEDOUT; |
|
759 } |
|
760 |
|
761 return 0; |
|
762 } |
|
763 |
|
764 static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data) |
|
765 { |
|
766 u32 cmd_addr_data[3]; |
|
767 u8 ctrl; |
|
768 int i, j; |
|
769 |
|
770 /* Three cmds: write/erase enable, write data, write/erase disable */ |
|
771 cmd_addr_data[0] = op_ewen << (addr_len - 2); |
|
772 cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) | |
|
773 le16_to_cpu(data); |
|
774 cmd_addr_data[2] = op_ewds << (addr_len - 2); |
|
775 |
|
776 /* Bit-bang cmds to write word to eeprom */ |
|
777 for (j = 0; j < 3; j++) { |
|
778 |
|
779 /* Chip select */ |
|
780 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo); |
|
781 e100_write_flush(nic); udelay(4); |
|
782 |
|
783 for (i = 31; i >= 0; i--) { |
|
784 ctrl = (cmd_addr_data[j] & (1 << i)) ? |
|
785 eecs | eedi : eecs; |
|
786 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo); |
|
787 e100_write_flush(nic); udelay(4); |
|
788 |
|
789 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo); |
|
790 e100_write_flush(nic); udelay(4); |
|
791 } |
|
792 /* Wait 10 msec for cmd to complete */ |
|
793 msleep(10); |
|
794 |
|
795 /* Chip deselect */ |
|
796 iowrite8(0, &nic->csr->eeprom_ctrl_lo); |
|
797 e100_write_flush(nic); udelay(4); |
|
798 } |
|
799 }; |
|
800 |
|
801 /* General technique stolen from the eepro100 driver - very clever */ |
|
802 static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr) |
|
803 { |
|
804 u32 cmd_addr_data; |
|
805 u16 data = 0; |
|
806 u8 ctrl; |
|
807 int i; |
|
808 |
|
809 cmd_addr_data = ((op_read << *addr_len) | addr) << 16; |
|
810 |
|
811 /* Chip select */ |
|
812 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo); |
|
813 e100_write_flush(nic); udelay(4); |
|
814 |
|
815 /* Bit-bang to read word from eeprom */ |
|
816 for (i = 31; i >= 0; i--) { |
|
817 ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs; |
|
818 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo); |
|
819 e100_write_flush(nic); udelay(4); |
|
820 |
|
821 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo); |
|
822 e100_write_flush(nic); udelay(4); |
|
823 |
|
824 /* Eeprom drives a dummy zero to EEDO after receiving |
|
825 * complete address. Use this to adjust addr_len. */ |
|
826 ctrl = ioread8(&nic->csr->eeprom_ctrl_lo); |
|
827 if (!(ctrl & eedo) && i > 16) { |
|
828 *addr_len -= (i - 16); |
|
829 i = 17; |
|
830 } |
|
831 |
|
832 data = (data << 1) | (ctrl & eedo ? 1 : 0); |
|
833 } |
|
834 |
|
835 /* Chip deselect */ |
|
836 iowrite8(0, &nic->csr->eeprom_ctrl_lo); |
|
837 e100_write_flush(nic); udelay(4); |
|
838 |
|
839 return cpu_to_le16(data); |
|
840 }; |
|
841 |
|
842 /* Load entire EEPROM image into driver cache and validate checksum */ |
|
843 static int e100_eeprom_load(struct nic *nic) |
|
844 { |
|
845 u16 addr, addr_len = 8, checksum = 0; |
|
846 |
|
847 /* Try reading with an 8-bit addr len to discover actual addr len */ |
|
848 e100_eeprom_read(nic, &addr_len, 0); |
|
849 nic->eeprom_wc = 1 << addr_len; |
|
850 |
|
851 for (addr = 0; addr < nic->eeprom_wc; addr++) { |
|
852 nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr); |
|
853 if (addr < nic->eeprom_wc - 1) |
|
854 checksum += le16_to_cpu(nic->eeprom[addr]); |
|
855 } |
|
856 |
|
857 /* The checksum, stored in the last word, is calculated such that |
|
858 * the sum of words should be 0xBABA */ |
|
859 if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) { |
|
860 netif_err(nic, probe, nic->netdev, "EEPROM corrupted\n"); |
|
861 if (!eeprom_bad_csum_allow) |
|
862 return -EAGAIN; |
|
863 } |
|
864 |
|
865 return 0; |
|
866 } |
|
867 |
|
868 /* Save (portion of) driver EEPROM cache to device and update checksum */ |
|
869 static int e100_eeprom_save(struct nic *nic, u16 start, u16 count) |
|
870 { |
|
871 u16 addr, addr_len = 8, checksum = 0; |
|
872 |
|
873 /* Try reading with an 8-bit addr len to discover actual addr len */ |
|
874 e100_eeprom_read(nic, &addr_len, 0); |
|
875 nic->eeprom_wc = 1 << addr_len; |
|
876 |
|
877 if (start + count >= nic->eeprom_wc) |
|
878 return -EINVAL; |
|
879 |
|
880 for (addr = start; addr < start + count; addr++) |
|
881 e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]); |
|
882 |
|
883 /* The checksum, stored in the last word, is calculated such that |
|
884 * the sum of words should be 0xBABA */ |
|
885 for (addr = 0; addr < nic->eeprom_wc - 1; addr++) |
|
886 checksum += le16_to_cpu(nic->eeprom[addr]); |
|
887 nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum); |
|
888 e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1, |
|
889 nic->eeprom[nic->eeprom_wc - 1]); |
|
890 |
|
891 return 0; |
|
892 } |
|
893 |
|
894 #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */ |
|
895 #define E100_WAIT_SCB_FAST 20 /* delay like the old code */ |
|
896 static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr) |
|
897 { |
|
898 unsigned long flags = 0; |
|
899 unsigned int i; |
|
900 int err = 0; |
|
901 |
|
902 if (!nic->ecdev) |
|
903 spin_lock_irqsave(&nic->cmd_lock, flags); |
|
904 |
|
905 /* Previous command is accepted when SCB clears */ |
|
906 for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) { |
|
907 if (likely(!ioread8(&nic->csr->scb.cmd_lo))) |
|
908 break; |
|
909 cpu_relax(); |
|
910 if (unlikely(i > E100_WAIT_SCB_FAST)) |
|
911 udelay(5); |
|
912 } |
|
913 if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) { |
|
914 err = -EAGAIN; |
|
915 goto err_unlock; |
|
916 } |
|
917 |
|
918 if (unlikely(cmd != cuc_resume)) |
|
919 iowrite32(dma_addr, &nic->csr->scb.gen_ptr); |
|
920 iowrite8(cmd, &nic->csr->scb.cmd_lo); |
|
921 |
|
922 err_unlock: |
|
923 if (!nic->ecdev) |
|
924 spin_unlock_irqrestore(&nic->cmd_lock, flags); |
|
925 |
|
926 return err; |
|
927 } |
|
928 |
|
929 static int e100_exec_cb(struct nic *nic, struct sk_buff *skb, |
|
930 void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *)) |
|
931 { |
|
932 struct cb *cb; |
|
933 unsigned long flags = 0; |
|
934 int err = 0; |
|
935 |
|
936 if (!nic->ecdev) |
|
937 spin_lock_irqsave(&nic->cb_lock, flags); |
|
938 |
|
939 if (unlikely(!nic->cbs_avail)) { |
|
940 err = -ENOMEM; |
|
941 goto err_unlock; |
|
942 } |
|
943 |
|
944 cb = nic->cb_to_use; |
|
945 nic->cb_to_use = cb->next; |
|
946 nic->cbs_avail--; |
|
947 cb->skb = skb; |
|
948 |
|
949 if (unlikely(!nic->cbs_avail)) |
|
950 err = -ENOSPC; |
|
951 |
|
952 cb_prepare(nic, cb, skb); |
|
953 |
|
954 /* Order is important otherwise we'll be in a race with h/w: |
|
955 * set S-bit in current first, then clear S-bit in previous. */ |
|
956 cb->command |= cpu_to_le16(cb_s); |
|
957 wmb(); |
|
958 cb->prev->command &= cpu_to_le16(~cb_s); |
|
959 |
|
960 while (nic->cb_to_send != nic->cb_to_use) { |
|
961 if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd, |
|
962 nic->cb_to_send->dma_addr))) { |
|
963 /* Ok, here's where things get sticky. It's |
|
964 * possible that we can't schedule the command |
|
965 * because the controller is too busy, so |
|
966 * let's just queue the command and try again |
|
967 * when another command is scheduled. */ |
|
968 if (err == -ENOSPC) { |
|
969 //request a reset |
|
970 schedule_work(&nic->tx_timeout_task); |
|
971 } |
|
972 break; |
|
973 } else { |
|
974 nic->cuc_cmd = cuc_resume; |
|
975 nic->cb_to_send = nic->cb_to_send->next; |
|
976 } |
|
977 } |
|
978 |
|
979 err_unlock: |
|
980 if (!nic->ecdev) |
|
981 spin_unlock_irqrestore(&nic->cb_lock, flags); |
|
982 |
|
983 return err; |
|
984 } |
|
985 |
|
986 static int mdio_read(struct net_device *netdev, int addr, int reg) |
|
987 { |
|
988 struct nic *nic = netdev_priv(netdev); |
|
989 return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0); |
|
990 } |
|
991 |
|
992 static void mdio_write(struct net_device *netdev, int addr, int reg, int data) |
|
993 { |
|
994 struct nic *nic = netdev_priv(netdev); |
|
995 |
|
996 nic->mdio_ctrl(nic, addr, mdi_write, reg, data); |
|
997 } |
|
998 |
|
999 /* the standard mdio_ctrl() function for usual MII-compliant hardware */ |
|
1000 static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data) |
|
1001 { |
|
1002 u32 data_out = 0; |
|
1003 unsigned int i; |
|
1004 unsigned long flags = 0; |
|
1005 |
|
1006 |
|
1007 /* |
|
1008 * Stratus87247: we shouldn't be writing the MDI control |
|
1009 * register until the Ready bit shows True. Also, since |
|
1010 * manipulation of the MDI control registers is a multi-step |
|
1011 * procedure it should be done under lock. |
|
1012 */ |
|
1013 if (!nic->ecdev) |
|
1014 spin_lock_irqsave(&nic->mdio_lock, flags); |
|
1015 for (i = 100; i; --i) { |
|
1016 if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready) |
|
1017 break; |
|
1018 udelay(20); |
|
1019 } |
|
1020 if (unlikely(!i)) { |
|
1021 netdev_err(nic->netdev, "e100.mdio_ctrl won't go Ready\n"); |
|
1022 if (!nic->ecdev) |
|
1023 spin_unlock_irqrestore(&nic->mdio_lock, flags); |
|
1024 return 0; /* No way to indicate timeout error */ |
|
1025 } |
|
1026 iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl); |
|
1027 |
|
1028 for (i = 0; i < 100; i++) { |
|
1029 udelay(20); |
|
1030 if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready) |
|
1031 break; |
|
1032 } |
|
1033 if (!nic->ecdev) |
|
1034 spin_unlock_irqrestore(&nic->mdio_lock, flags); |
|
1035 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, |
|
1036 "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n", |
|
1037 dir == mdi_read ? "READ" : "WRITE", |
|
1038 addr, reg, data, data_out); |
|
1039 return (u16)data_out; |
|
1040 } |
|
1041 |
|
1042 /* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */ |
|
1043 static u16 mdio_ctrl_phy_82552_v(struct nic *nic, |
|
1044 u32 addr, |
|
1045 u32 dir, |
|
1046 u32 reg, |
|
1047 u16 data) |
|
1048 { |
|
1049 if ((reg == MII_BMCR) && (dir == mdi_write)) { |
|
1050 if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) { |
|
1051 u16 advert = mdio_read(nic->netdev, nic->mii.phy_id, |
|
1052 MII_ADVERTISE); |
|
1053 |
|
1054 /* |
|
1055 * Workaround Si issue where sometimes the part will not |
|
1056 * autoneg to 100Mbps even when advertised. |
|
1057 */ |
|
1058 if (advert & ADVERTISE_100FULL) |
|
1059 data |= BMCR_SPEED100 | BMCR_FULLDPLX; |
|
1060 else if (advert & ADVERTISE_100HALF) |
|
1061 data |= BMCR_SPEED100; |
|
1062 } |
|
1063 } |
|
1064 return mdio_ctrl_hw(nic, addr, dir, reg, data); |
|
1065 } |
|
1066 |
|
1067 /* Fully software-emulated mdio_ctrl() function for cards without |
|
1068 * MII-compliant PHYs. |
|
1069 * For now, this is mainly geared towards 80c24 support; in case of further |
|
1070 * requirements for other types (i82503, ...?) either extend this mechanism |
|
1071 * or split it, whichever is cleaner. |
|
1072 */ |
|
1073 static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic, |
|
1074 u32 addr, |
|
1075 u32 dir, |
|
1076 u32 reg, |
|
1077 u16 data) |
|
1078 { |
|
1079 /* might need to allocate a netdev_priv'ed register array eventually |
|
1080 * to be able to record state changes, but for now |
|
1081 * some fully hardcoded register handling ought to be ok I guess. */ |
|
1082 |
|
1083 if (dir == mdi_read) { |
|
1084 switch (reg) { |
|
1085 case MII_BMCR: |
|
1086 /* Auto-negotiation, right? */ |
|
1087 return BMCR_ANENABLE | |
|
1088 BMCR_FULLDPLX; |
|
1089 case MII_BMSR: |
|
1090 return BMSR_LSTATUS /* for mii_link_ok() */ | |
|
1091 BMSR_ANEGCAPABLE | |
|
1092 BMSR_10FULL; |
|
1093 case MII_ADVERTISE: |
|
1094 /* 80c24 is a "combo card" PHY, right? */ |
|
1095 return ADVERTISE_10HALF | |
|
1096 ADVERTISE_10FULL; |
|
1097 default: |
|
1098 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, |
|
1099 "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n", |
|
1100 dir == mdi_read ? "READ" : "WRITE", |
|
1101 addr, reg, data); |
|
1102 return 0xFFFF; |
|
1103 } |
|
1104 } else { |
|
1105 switch (reg) { |
|
1106 default: |
|
1107 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, |
|
1108 "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n", |
|
1109 dir == mdi_read ? "READ" : "WRITE", |
|
1110 addr, reg, data); |
|
1111 return 0xFFFF; |
|
1112 } |
|
1113 } |
|
1114 } |
|
1115 static inline int e100_phy_supports_mii(struct nic *nic) |
|
1116 { |
|
1117 /* for now, just check it by comparing whether we |
|
1118 are using MII software emulation. |
|
1119 */ |
|
1120 return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated); |
|
1121 } |
|
1122 |
|
1123 static void e100_get_defaults(struct nic *nic) |
|
1124 { |
|
1125 struct param_range rfds = { .min = 16, .max = 256, .count = 256 }; |
|
1126 struct param_range cbs = { .min = 64, .max = 256, .count = 128 }; |
|
1127 |
|
1128 /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */ |
|
1129 nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision; |
|
1130 if (nic->mac == mac_unknown) |
|
1131 nic->mac = mac_82557_D100_A; |
|
1132 |
|
1133 nic->params.rfds = rfds; |
|
1134 nic->params.cbs = cbs; |
|
1135 |
|
1136 /* Quadwords to DMA into FIFO before starting frame transmit */ |
|
1137 nic->tx_threshold = 0xE0; |
|
1138 |
|
1139 /* no interrupt for every tx completion, delay = 256us if not 557 */ |
|
1140 nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf | |
|
1141 ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i)); |
|
1142 |
|
1143 /* Template for a freshly allocated RFD */ |
|
1144 nic->blank_rfd.command = 0; |
|
1145 nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF); |
|
1146 nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN); |
|
1147 |
|
1148 /* MII setup */ |
|
1149 nic->mii.phy_id_mask = 0x1F; |
|
1150 nic->mii.reg_num_mask = 0x1F; |
|
1151 nic->mii.dev = nic->netdev; |
|
1152 nic->mii.mdio_read = mdio_read; |
|
1153 nic->mii.mdio_write = mdio_write; |
|
1154 } |
|
1155 |
|
1156 static void e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb) |
|
1157 { |
|
1158 struct config *config = &cb->u.config; |
|
1159 u8 *c = (u8 *)config; |
|
1160 |
|
1161 cb->command = cpu_to_le16(cb_config); |
|
1162 |
|
1163 memset(config, 0, sizeof(struct config)); |
|
1164 |
|
1165 config->byte_count = 0x16; /* bytes in this struct */ |
|
1166 config->rx_fifo_limit = 0x8; /* bytes in FIFO before DMA */ |
|
1167 config->direct_rx_dma = 0x1; /* reserved */ |
|
1168 config->standard_tcb = 0x1; /* 1=standard, 0=extended */ |
|
1169 config->standard_stat_counter = 0x1; /* 1=standard, 0=extended */ |
|
1170 config->rx_discard_short_frames = 0x1; /* 1=discard, 0=pass */ |
|
1171 config->tx_underrun_retry = 0x3; /* # of underrun retries */ |
|
1172 if (e100_phy_supports_mii(nic)) |
|
1173 config->mii_mode = 1; /* 1=MII mode, 0=i82503 mode */ |
|
1174 config->pad10 = 0x6; |
|
1175 config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */ |
|
1176 config->preamble_length = 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */ |
|
1177 config->ifs = 0x6; /* x16 = inter frame spacing */ |
|
1178 config->ip_addr_hi = 0xF2; /* ARP IP filter - not used */ |
|
1179 config->pad15_1 = 0x1; |
|
1180 config->pad15_2 = 0x1; |
|
1181 config->crs_or_cdt = 0x0; /* 0=CRS only, 1=CRS or CDT */ |
|
1182 config->fc_delay_hi = 0x40; /* time delay for fc frame */ |
|
1183 config->tx_padding = 0x1; /* 1=pad short frames */ |
|
1184 config->fc_priority_threshold = 0x7; /* 7=priority fc disabled */ |
|
1185 config->pad18 = 0x1; |
|
1186 config->full_duplex_pin = 0x1; /* 1=examine FDX# pin */ |
|
1187 config->pad20_1 = 0x1F; |
|
1188 config->fc_priority_location = 0x1; /* 1=byte#31, 0=byte#19 */ |
|
1189 config->pad21_1 = 0x5; |
|
1190 |
|
1191 config->adaptive_ifs = nic->adaptive_ifs; |
|
1192 config->loopback = nic->loopback; |
|
1193 |
|
1194 if (nic->mii.force_media && nic->mii.full_duplex) |
|
1195 config->full_duplex_force = 0x1; /* 1=force, 0=auto */ |
|
1196 |
|
1197 if (nic->flags & promiscuous || nic->loopback) { |
|
1198 config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */ |
|
1199 config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */ |
|
1200 config->promiscuous_mode = 0x1; /* 1=on, 0=off */ |
|
1201 } |
|
1202 |
|
1203 if (nic->flags & multicast_all) |
|
1204 config->multicast_all = 0x1; /* 1=accept, 0=no */ |
|
1205 |
|
1206 /* disable WoL when up */ |
|
1207 if (nic->ecdev || |
|
1208 (netif_running(nic->netdev) || !(nic->flags & wol_magic))) |
|
1209 config->magic_packet_disable = 0x1; /* 1=off, 0=on */ |
|
1210 |
|
1211 if (nic->mac >= mac_82558_D101_A4) { |
|
1212 config->fc_disable = 0x1; /* 1=Tx fc off, 0=Tx fc on */ |
|
1213 config->mwi_enable = 0x1; /* 1=enable, 0=disable */ |
|
1214 config->standard_tcb = 0x0; /* 1=standard, 0=extended */ |
|
1215 config->rx_long_ok = 0x1; /* 1=VLANs ok, 0=standard */ |
|
1216 if (nic->mac >= mac_82559_D101M) { |
|
1217 config->tno_intr = 0x1; /* TCO stats enable */ |
|
1218 /* Enable TCO in extended config */ |
|
1219 if (nic->mac >= mac_82551_10) { |
|
1220 config->byte_count = 0x20; /* extended bytes */ |
|
1221 config->rx_d102_mode = 0x1; /* GMRC for TCO */ |
|
1222 } |
|
1223 } else { |
|
1224 config->standard_stat_counter = 0x0; |
|
1225 } |
|
1226 } |
|
1227 |
|
1228 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, |
|
1229 "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", |
|
1230 c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]); |
|
1231 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, |
|
1232 "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", |
|
1233 c[8], c[9], c[10], c[11], c[12], c[13], c[14], c[15]); |
|
1234 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, |
|
1235 "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", |
|
1236 c[16], c[17], c[18], c[19], c[20], c[21], c[22], c[23]); |
|
1237 } |
|
1238 |
|
1239 /************************************************************************* |
|
1240 * CPUSaver parameters |
|
1241 * |
|
1242 * All CPUSaver parameters are 16-bit literals that are part of a |
|
1243 * "move immediate value" instruction. By changing the value of |
|
1244 * the literal in the instruction before the code is loaded, the |
|
1245 * driver can change the algorithm. |
|
1246 * |
|
1247 * INTDELAY - This loads the dead-man timer with its initial value. |
|
1248 * When this timer expires the interrupt is asserted, and the |
|
1249 * timer is reset each time a new packet is received. (see |
|
1250 * BUNDLEMAX below to set the limit on number of chained packets) |
|
1251 * The current default is 0x600 or 1536. Experiments show that |
|
1252 * the value should probably stay within the 0x200 - 0x1000. |
|
1253 * |
|
1254 * BUNDLEMAX - |
|
1255 * This sets the maximum number of frames that will be bundled. In |
|
1256 * some situations, such as the TCP windowing algorithm, it may be |
|
1257 * better to limit the growth of the bundle size than let it go as |
|
1258 * high as it can, because that could cause too much added latency. |
|
1259 * The default is six, because this is the number of packets in the |
|
1260 * default TCP window size. A value of 1 would make CPUSaver indicate |
|
1261 * an interrupt for every frame received. If you do not want to put |
|
1262 * a limit on the bundle size, set this value to xFFFF. |
|
1263 * |
|
1264 * BUNDLESMALL - |
|
1265 * This contains a bit-mask describing the minimum size frame that |
|
1266 * will be bundled. The default masks the lower 7 bits, which means |
|
1267 * that any frame less than 128 bytes in length will not be bundled, |
|
1268 * but will instead immediately generate an interrupt. This does |
|
1269 * not affect the current bundle in any way. Any frame that is 128 |
|
1270 * bytes or large will be bundled normally. This feature is meant |
|
1271 * to provide immediate indication of ACK frames in a TCP environment. |
|
1272 * Customers were seeing poor performance when a machine with CPUSaver |
|
1273 * enabled was sending but not receiving. The delay introduced when |
|
1274 * the ACKs were received was enough to reduce total throughput, because |
|
1275 * the sender would sit idle until the ACK was finally seen. |
|
1276 * |
|
1277 * The current default is 0xFF80, which masks out the lower 7 bits. |
|
1278 * This means that any frame which is x7F (127) bytes or smaller |
|
1279 * will cause an immediate interrupt. Because this value must be a |
|
1280 * bit mask, there are only a few valid values that can be used. To |
|
1281 * turn this feature off, the driver can write the value xFFFF to the |
|
1282 * lower word of this instruction (in the same way that the other |
|
1283 * parameters are used). Likewise, a value of 0xF800 (2047) would |
|
1284 * cause an interrupt to be generated for every frame, because all |
|
1285 * standard Ethernet frames are <= 2047 bytes in length. |
|
1286 *************************************************************************/ |
|
1287 |
|
1288 /* if you wish to disable the ucode functionality, while maintaining the |
|
1289 * workarounds it provides, set the following defines to: |
|
1290 * BUNDLESMALL 0 |
|
1291 * BUNDLEMAX 1 |
|
1292 * INTDELAY 1 |
|
1293 */ |
|
1294 #define BUNDLESMALL 1 |
|
1295 #define BUNDLEMAX (u16)6 |
|
1296 #define INTDELAY (u16)1536 /* 0x600 */ |
|
1297 |
|
1298 /* Initialize firmware */ |
|
1299 static const struct firmware *e100_request_firmware(struct nic *nic) |
|
1300 { |
|
1301 const char *fw_name; |
|
1302 const struct firmware *fw = nic->fw; |
|
1303 u8 timer, bundle, min_size; |
|
1304 int err = 0; |
|
1305 |
|
1306 /* do not load u-code for ICH devices */ |
|
1307 if (nic->flags & ich) |
|
1308 return NULL; |
|
1309 |
|
1310 /* Search for ucode match against h/w revision */ |
|
1311 if (nic->mac == mac_82559_D101M) |
|
1312 fw_name = FIRMWARE_D101M; |
|
1313 else if (nic->mac == mac_82559_D101S) |
|
1314 fw_name = FIRMWARE_D101S; |
|
1315 else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10) |
|
1316 fw_name = FIRMWARE_D102E; |
|
1317 else /* No ucode on other devices */ |
|
1318 return NULL; |
|
1319 |
|
1320 /* If the firmware has not previously been loaded, request a pointer |
|
1321 * to it. If it was previously loaded, we are reinitializing the |
|
1322 * adapter, possibly in a resume from hibernate, in which case |
|
1323 * request_firmware() cannot be used. |
|
1324 */ |
|
1325 if (!fw) |
|
1326 err = request_firmware(&fw, fw_name, &nic->pdev->dev); |
|
1327 |
|
1328 if (err) { |
|
1329 netif_err(nic, probe, nic->netdev, |
|
1330 "Failed to load firmware \"%s\": %d\n", |
|
1331 fw_name, err); |
|
1332 return ERR_PTR(err); |
|
1333 } |
|
1334 |
|
1335 /* Firmware should be precisely UCODE_SIZE (words) plus three bytes |
|
1336 indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */ |
|
1337 if (fw->size != UCODE_SIZE * 4 + 3) { |
|
1338 netif_err(nic, probe, nic->netdev, |
|
1339 "Firmware \"%s\" has wrong size %zu\n", |
|
1340 fw_name, fw->size); |
|
1341 release_firmware(fw); |
|
1342 return ERR_PTR(-EINVAL); |
|
1343 } |
|
1344 |
|
1345 /* Read timer, bundle and min_size from end of firmware blob */ |
|
1346 timer = fw->data[UCODE_SIZE * 4]; |
|
1347 bundle = fw->data[UCODE_SIZE * 4 + 1]; |
|
1348 min_size = fw->data[UCODE_SIZE * 4 + 2]; |
|
1349 |
|
1350 if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE || |
|
1351 min_size >= UCODE_SIZE) { |
|
1352 netif_err(nic, probe, nic->netdev, |
|
1353 "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n", |
|
1354 fw_name, timer, bundle, min_size); |
|
1355 release_firmware(fw); |
|
1356 return ERR_PTR(-EINVAL); |
|
1357 } |
|
1358 |
|
1359 /* OK, firmware is validated and ready to use. Save a pointer |
|
1360 * to it in the nic */ |
|
1361 nic->fw = fw; |
|
1362 return fw; |
|
1363 } |
|
1364 |
|
1365 static void e100_setup_ucode(struct nic *nic, struct cb *cb, |
|
1366 struct sk_buff *skb) |
|
1367 { |
|
1368 const struct firmware *fw = (void *)skb; |
|
1369 u8 timer, bundle, min_size; |
|
1370 |
|
1371 /* It's not a real skb; we just abused the fact that e100_exec_cb |
|
1372 will pass it through to here... */ |
|
1373 cb->skb = NULL; |
|
1374 |
|
1375 /* firmware is stored as little endian already */ |
|
1376 memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4); |
|
1377 |
|
1378 /* Read timer, bundle and min_size from end of firmware blob */ |
|
1379 timer = fw->data[UCODE_SIZE * 4]; |
|
1380 bundle = fw->data[UCODE_SIZE * 4 + 1]; |
|
1381 min_size = fw->data[UCODE_SIZE * 4 + 2]; |
|
1382 |
|
1383 /* Insert user-tunable settings in cb->u.ucode */ |
|
1384 cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000); |
|
1385 cb->u.ucode[timer] |= cpu_to_le32(INTDELAY); |
|
1386 cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000); |
|
1387 cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX); |
|
1388 cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000); |
|
1389 cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80); |
|
1390 |
|
1391 cb->command = cpu_to_le16(cb_ucode | cb_el); |
|
1392 } |
|
1393 |
|
1394 static inline int e100_load_ucode_wait(struct nic *nic) |
|
1395 { |
|
1396 const struct firmware *fw; |
|
1397 int err = 0, counter = 50; |
|
1398 struct cb *cb = nic->cb_to_clean; |
|
1399 |
|
1400 fw = e100_request_firmware(nic); |
|
1401 /* If it's NULL, then no ucode is required */ |
|
1402 if (!fw || IS_ERR(fw)) |
|
1403 return PTR_ERR(fw); |
|
1404 |
|
1405 if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode))) |
|
1406 netif_err(nic, probe, nic->netdev, |
|
1407 "ucode cmd failed with error %d\n", err); |
|
1408 |
|
1409 /* must restart cuc */ |
|
1410 nic->cuc_cmd = cuc_start; |
|
1411 |
|
1412 /* wait for completion */ |
|
1413 e100_write_flush(nic); |
|
1414 udelay(10); |
|
1415 |
|
1416 /* wait for possibly (ouch) 500ms */ |
|
1417 while (!(cb->status & cpu_to_le16(cb_complete))) { |
|
1418 msleep(10); |
|
1419 if (!--counter) break; |
|
1420 } |
|
1421 |
|
1422 /* ack any interrupts, something could have been set */ |
|
1423 iowrite8(~0, &nic->csr->scb.stat_ack); |
|
1424 |
|
1425 /* if the command failed, or is not OK, notify and return */ |
|
1426 if (!counter || !(cb->status & cpu_to_le16(cb_ok))) { |
|
1427 netif_err(nic, probe, nic->netdev, "ucode load failed\n"); |
|
1428 err = -EPERM; |
|
1429 } |
|
1430 |
|
1431 return err; |
|
1432 } |
|
1433 |
|
1434 static void e100_setup_iaaddr(struct nic *nic, struct cb *cb, |
|
1435 struct sk_buff *skb) |
|
1436 { |
|
1437 cb->command = cpu_to_le16(cb_iaaddr); |
|
1438 memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN); |
|
1439 } |
|
1440 |
|
1441 static void e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb) |
|
1442 { |
|
1443 cb->command = cpu_to_le16(cb_dump); |
|
1444 cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr + |
|
1445 offsetof(struct mem, dump_buf)); |
|
1446 } |
|
1447 |
|
1448 static int e100_phy_check_without_mii(struct nic *nic) |
|
1449 { |
|
1450 u8 phy_type; |
|
1451 int without_mii; |
|
1452 |
|
1453 phy_type = (nic->eeprom[eeprom_phy_iface] >> 8) & 0x0f; |
|
1454 |
|
1455 switch (phy_type) { |
|
1456 case NoSuchPhy: /* Non-MII PHY; UNTESTED! */ |
|
1457 case I82503: /* Non-MII PHY; UNTESTED! */ |
|
1458 case S80C24: /* Non-MII PHY; tested and working */ |
|
1459 /* paragraph from the FreeBSD driver, "FXP_PHY_80C24": |
|
1460 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter |
|
1461 * doesn't have a programming interface of any sort. The |
|
1462 * media is sensed automatically based on how the link partner |
|
1463 * is configured. This is, in essence, manual configuration. |
|
1464 */ |
|
1465 netif_info(nic, probe, nic->netdev, |
|
1466 "found MII-less i82503 or 80c24 or other PHY\n"); |
|
1467 |
|
1468 nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated; |
|
1469 nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */ |
|
1470 |
|
1471 /* these might be needed for certain MII-less cards... |
|
1472 * nic->flags |= ich; |
|
1473 * nic->flags |= ich_10h_workaround; */ |
|
1474 |
|
1475 without_mii = 1; |
|
1476 break; |
|
1477 default: |
|
1478 without_mii = 0; |
|
1479 break; |
|
1480 } |
|
1481 return without_mii; |
|
1482 } |
|
1483 |
|
1484 #define NCONFIG_AUTO_SWITCH 0x0080 |
|
1485 #define MII_NSC_CONG MII_RESV1 |
|
1486 #define NSC_CONG_ENABLE 0x0100 |
|
1487 #define NSC_CONG_TXREADY 0x0400 |
|
1488 #define ADVERTISE_FC_SUPPORTED 0x0400 |
|
1489 static int e100_phy_init(struct nic *nic) |
|
1490 { |
|
1491 struct net_device *netdev = nic->netdev; |
|
1492 u32 addr; |
|
1493 u16 bmcr, stat, id_lo, id_hi, cong; |
|
1494 |
|
1495 /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */ |
|
1496 for (addr = 0; addr < 32; addr++) { |
|
1497 nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr; |
|
1498 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR); |
|
1499 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR); |
|
1500 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR); |
|
1501 if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0)))) |
|
1502 break; |
|
1503 } |
|
1504 if (addr == 32) { |
|
1505 /* uhoh, no PHY detected: check whether we seem to be some |
|
1506 * weird, rare variant which is *known* to not have any MII. |
|
1507 * But do this AFTER MII checking only, since this does |
|
1508 * lookup of EEPROM values which may easily be unreliable. */ |
|
1509 if (e100_phy_check_without_mii(nic)) |
|
1510 return 0; /* simply return and hope for the best */ |
|
1511 else { |
|
1512 /* for unknown cases log a fatal error */ |
|
1513 netif_err(nic, hw, nic->netdev, |
|
1514 "Failed to locate any known PHY, aborting\n"); |
|
1515 return -EAGAIN; |
|
1516 } |
|
1517 } else |
|
1518 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, |
|
1519 "phy_addr = %d\n", nic->mii.phy_id); |
|
1520 |
|
1521 /* Get phy ID */ |
|
1522 id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1); |
|
1523 id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2); |
|
1524 nic->phy = (u32)id_hi << 16 | (u32)id_lo; |
|
1525 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, |
|
1526 "phy ID = 0x%08X\n", nic->phy); |
|
1527 |
|
1528 /* Select the phy and isolate the rest */ |
|
1529 for (addr = 0; addr < 32; addr++) { |
|
1530 if (addr != nic->mii.phy_id) { |
|
1531 mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE); |
|
1532 } else if (nic->phy != phy_82552_v) { |
|
1533 bmcr = mdio_read(netdev, addr, MII_BMCR); |
|
1534 mdio_write(netdev, addr, MII_BMCR, |
|
1535 bmcr & ~BMCR_ISOLATE); |
|
1536 } |
|
1537 } |
|
1538 /* |
|
1539 * Workaround for 82552: |
|
1540 * Clear the ISOLATE bit on selected phy_id last (mirrored on all |
|
1541 * other phy_id's) using bmcr value from addr discovery loop above. |
|
1542 */ |
|
1543 if (nic->phy == phy_82552_v) |
|
1544 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, |
|
1545 bmcr & ~BMCR_ISOLATE); |
|
1546 |
|
1547 /* Handle National tx phys */ |
|
1548 #define NCS_PHY_MODEL_MASK 0xFFF0FFFF |
|
1549 if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) { |
|
1550 /* Disable congestion control */ |
|
1551 cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG); |
|
1552 cong |= NSC_CONG_TXREADY; |
|
1553 cong &= ~NSC_CONG_ENABLE; |
|
1554 mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong); |
|
1555 } |
|
1556 |
|
1557 if (nic->phy == phy_82552_v) { |
|
1558 u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE); |
|
1559 |
|
1560 /* assign special tweaked mdio_ctrl() function */ |
|
1561 nic->mdio_ctrl = mdio_ctrl_phy_82552_v; |
|
1562 |
|
1563 /* Workaround Si not advertising flow-control during autoneg */ |
|
1564 advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; |
|
1565 mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert); |
|
1566 |
|
1567 /* Reset for the above changes to take effect */ |
|
1568 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR); |
|
1569 bmcr |= BMCR_RESET; |
|
1570 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr); |
|
1571 } else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) && |
|
1572 (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) && |
|
1573 !(nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))) { |
|
1574 /* enable/disable MDI/MDI-X auto-switching. */ |
|
1575 mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG, |
|
1576 nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH); |
|
1577 } |
|
1578 |
|
1579 return 0; |
|
1580 } |
|
1581 |
|
1582 static int e100_hw_init(struct nic *nic) |
|
1583 { |
|
1584 int err; |
|
1585 |
|
1586 e100_hw_reset(nic); |
|
1587 |
|
1588 netif_err(nic, hw, nic->netdev, "e100_hw_init\n"); |
|
1589 if (!in_interrupt() && (err = e100_self_test(nic))) |
|
1590 return err; |
|
1591 |
|
1592 if ((err = e100_phy_init(nic))) |
|
1593 return err; |
|
1594 if ((err = e100_exec_cmd(nic, cuc_load_base, 0))) |
|
1595 return err; |
|
1596 if ((err = e100_exec_cmd(nic, ruc_load_base, 0))) |
|
1597 return err; |
|
1598 if ((err = e100_load_ucode_wait(nic))) |
|
1599 return err; |
|
1600 if ((err = e100_exec_cb(nic, NULL, e100_configure))) |
|
1601 return err; |
|
1602 if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr))) |
|
1603 return err; |
|
1604 if ((err = e100_exec_cmd(nic, cuc_dump_addr, |
|
1605 nic->dma_addr + offsetof(struct mem, stats)))) |
|
1606 return err; |
|
1607 if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0))) |
|
1608 return err; |
|
1609 |
|
1610 e100_disable_irq(nic); |
|
1611 |
|
1612 return 0; |
|
1613 } |
|
1614 |
|
1615 static void e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb) |
|
1616 { |
|
1617 struct net_device *netdev = nic->netdev; |
|
1618 struct netdev_hw_addr *ha; |
|
1619 u16 i, count = min(netdev_mc_count(netdev), E100_MAX_MULTICAST_ADDRS); |
|
1620 |
|
1621 cb->command = cpu_to_le16(cb_multi); |
|
1622 cb->u.multi.count = cpu_to_le16(count * ETH_ALEN); |
|
1623 i = 0; |
|
1624 netdev_for_each_mc_addr(ha, netdev) { |
|
1625 if (i == count) |
|
1626 break; |
|
1627 memcpy(&cb->u.multi.addr[i++ * ETH_ALEN], &ha->addr, |
|
1628 ETH_ALEN); |
|
1629 } |
|
1630 } |
|
1631 |
|
1632 static void e100_set_multicast_list(struct net_device *netdev) |
|
1633 { |
|
1634 struct nic *nic = netdev_priv(netdev); |
|
1635 |
|
1636 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, |
|
1637 "mc_count=%d, flags=0x%04X\n", |
|
1638 netdev_mc_count(netdev), netdev->flags); |
|
1639 |
|
1640 if (netdev->flags & IFF_PROMISC) |
|
1641 nic->flags |= promiscuous; |
|
1642 else |
|
1643 nic->flags &= ~promiscuous; |
|
1644 |
|
1645 if (netdev->flags & IFF_ALLMULTI || |
|
1646 netdev_mc_count(netdev) > E100_MAX_MULTICAST_ADDRS) |
|
1647 nic->flags |= multicast_all; |
|
1648 else |
|
1649 nic->flags &= ~multicast_all; |
|
1650 |
|
1651 e100_exec_cb(nic, NULL, e100_configure); |
|
1652 e100_exec_cb(nic, NULL, e100_multi); |
|
1653 } |
|
1654 |
|
1655 static void e100_update_stats(struct nic *nic) |
|
1656 { |
|
1657 struct net_device *dev = nic->netdev; |
|
1658 struct net_device_stats *ns = &dev->stats; |
|
1659 struct stats *s = &nic->mem->stats; |
|
1660 __le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause : |
|
1661 (nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames : |
|
1662 &s->complete; |
|
1663 |
|
1664 /* Device's stats reporting may take several microseconds to |
|
1665 * complete, so we're always waiting for results of the |
|
1666 * previous command. */ |
|
1667 |
|
1668 if (*complete == cpu_to_le32(cuc_dump_reset_complete)) { |
|
1669 *complete = 0; |
|
1670 nic->tx_frames = le32_to_cpu(s->tx_good_frames); |
|
1671 nic->tx_collisions = le32_to_cpu(s->tx_total_collisions); |
|
1672 ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions); |
|
1673 ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions); |
|
1674 ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs); |
|
1675 ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns); |
|
1676 ns->collisions += nic->tx_collisions; |
|
1677 ns->tx_errors += le32_to_cpu(s->tx_max_collisions) + |
|
1678 le32_to_cpu(s->tx_lost_crs); |
|
1679 ns->rx_length_errors += le32_to_cpu(s->rx_short_frame_errors) + |
|
1680 nic->rx_over_length_errors; |
|
1681 ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors); |
|
1682 ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors); |
|
1683 ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors); |
|
1684 ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors); |
|
1685 ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors); |
|
1686 ns->rx_errors += le32_to_cpu(s->rx_crc_errors) + |
|
1687 le32_to_cpu(s->rx_alignment_errors) + |
|
1688 le32_to_cpu(s->rx_short_frame_errors) + |
|
1689 le32_to_cpu(s->rx_cdt_errors); |
|
1690 nic->tx_deferred += le32_to_cpu(s->tx_deferred); |
|
1691 nic->tx_single_collisions += |
|
1692 le32_to_cpu(s->tx_single_collisions); |
|
1693 nic->tx_multiple_collisions += |
|
1694 le32_to_cpu(s->tx_multiple_collisions); |
|
1695 if (nic->mac >= mac_82558_D101_A4) { |
|
1696 nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause); |
|
1697 nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause); |
|
1698 nic->rx_fc_unsupported += |
|
1699 le32_to_cpu(s->fc_rcv_unsupported); |
|
1700 if (nic->mac >= mac_82559_D101M) { |
|
1701 nic->tx_tco_frames += |
|
1702 le16_to_cpu(s->xmt_tco_frames); |
|
1703 nic->rx_tco_frames += |
|
1704 le16_to_cpu(s->rcv_tco_frames); |
|
1705 } |
|
1706 } |
|
1707 } |
|
1708 |
|
1709 |
|
1710 if (e100_exec_cmd(nic, cuc_dump_reset, 0)) |
|
1711 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, |
|
1712 "exec cuc_dump_reset failed\n"); |
|
1713 } |
|
1714 |
|
1715 static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex) |
|
1716 { |
|
1717 /* Adjust inter-frame-spacing (IFS) between two transmits if |
|
1718 * we're getting collisions on a half-duplex connection. */ |
|
1719 |
|
1720 if (duplex == DUPLEX_HALF) { |
|
1721 u32 prev = nic->adaptive_ifs; |
|
1722 u32 min_frames = (speed == SPEED_100) ? 1000 : 100; |
|
1723 |
|
1724 if ((nic->tx_frames / 32 < nic->tx_collisions) && |
|
1725 (nic->tx_frames > min_frames)) { |
|
1726 if (nic->adaptive_ifs < 60) |
|
1727 nic->adaptive_ifs += 5; |
|
1728 } else if (nic->tx_frames < min_frames) { |
|
1729 if (nic->adaptive_ifs >= 5) |
|
1730 nic->adaptive_ifs -= 5; |
|
1731 } |
|
1732 if (nic->adaptive_ifs != prev) |
|
1733 e100_exec_cb(nic, NULL, e100_configure); |
|
1734 } |
|
1735 } |
|
1736 |
|
1737 static void e100_watchdog(unsigned long data) |
|
1738 { |
|
1739 struct nic *nic = (struct nic *)data; |
|
1740 struct ethtool_cmd cmd; |
|
1741 |
|
1742 if (nic->ecdev) { |
|
1743 ecdev_set_link(nic->ecdev, mii_link_ok(&nic->mii) ? 1 : 0); |
|
1744 return; |
|
1745 } |
|
1746 |
|
1747 netif_printk(nic, timer, KERN_DEBUG, nic->netdev, |
|
1748 "right now = %ld\n", jiffies); |
|
1749 |
|
1750 /* mii library handles link maintenance tasks */ |
|
1751 |
|
1752 mii_ethtool_gset(&nic->mii, &cmd); |
|
1753 |
|
1754 if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) { |
|
1755 netdev_info(nic->netdev, "NIC Link is Up %u Mbps %s Duplex\n", |
|
1756 cmd.speed == SPEED_100 ? 100 : 10, |
|
1757 cmd.duplex == DUPLEX_FULL ? "Full" : "Half"); |
|
1758 } else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) { |
|
1759 netdev_info(nic->netdev, "NIC Link is Down\n"); |
|
1760 } |
|
1761 |
|
1762 mii_check_link(&nic->mii); |
|
1763 |
|
1764 /* Software generated interrupt to recover from (rare) Rx |
|
1765 * allocation failure. |
|
1766 * Unfortunately have to use a spinlock to not re-enable interrupts |
|
1767 * accidentally, due to hardware that shares a register between the |
|
1768 * interrupt mask bit and the SW Interrupt generation bit */ |
|
1769 spin_lock_irq(&nic->cmd_lock); |
|
1770 iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi); |
|
1771 e100_write_flush(nic); |
|
1772 spin_unlock_irq(&nic->cmd_lock); |
|
1773 |
|
1774 e100_update_stats(nic); |
|
1775 e100_adjust_adaptive_ifs(nic, cmd.speed, cmd.duplex); |
|
1776 |
|
1777 if (nic->mac <= mac_82557_D100_C) |
|
1778 /* Issue a multicast command to workaround a 557 lock up */ |
|
1779 e100_set_multicast_list(nic->netdev); |
|
1780 |
|
1781 if (nic->flags & ich && cmd.speed==SPEED_10 && cmd.duplex==DUPLEX_HALF) |
|
1782 /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */ |
|
1783 nic->flags |= ich_10h_workaround; |
|
1784 else |
|
1785 nic->flags &= ~ich_10h_workaround; |
|
1786 |
|
1787 mod_timer(&nic->watchdog, |
|
1788 round_jiffies(jiffies + E100_WATCHDOG_PERIOD)); |
|
1789 } |
|
1790 |
|
1791 static void e100_xmit_prepare(struct nic *nic, struct cb *cb, |
|
1792 struct sk_buff *skb) |
|
1793 { |
|
1794 cb->command = nic->tx_command; |
|
1795 /* interrupt every 16 packets regardless of delay */ |
|
1796 if ((nic->cbs_avail & ~15) == nic->cbs_avail) |
|
1797 cb->command |= cpu_to_le16(cb_i); |
|
1798 cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd); |
|
1799 cb->u.tcb.tcb_byte_count = 0; |
|
1800 cb->u.tcb.threshold = nic->tx_threshold; |
|
1801 cb->u.tcb.tbd_count = 1; |
|
1802 cb->u.tcb.tbd.buf_addr = cpu_to_le32(pci_map_single(nic->pdev, |
|
1803 skb->data, skb->len, PCI_DMA_TODEVICE)); |
|
1804 /* check for mapping failure? */ |
|
1805 cb->u.tcb.tbd.size = cpu_to_le16(skb->len); |
|
1806 } |
|
1807 |
|
1808 static netdev_tx_t e100_xmit_frame(struct sk_buff *skb, |
|
1809 struct net_device *netdev) |
|
1810 { |
|
1811 struct nic *nic = netdev_priv(netdev); |
|
1812 int err; |
|
1813 |
|
1814 if (nic->flags & ich_10h_workaround) { |
|
1815 /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang. |
|
1816 Issue a NOP command followed by a 1us delay before |
|
1817 issuing the Tx command. */ |
|
1818 if (e100_exec_cmd(nic, cuc_nop, 0)) |
|
1819 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, |
|
1820 "exec cuc_nop failed\n"); |
|
1821 udelay(1); |
|
1822 } |
|
1823 |
|
1824 err = e100_exec_cb(nic, skb, e100_xmit_prepare); |
|
1825 |
|
1826 switch (err) { |
|
1827 case -ENOSPC: |
|
1828 /* We queued the skb, but now we're out of space. */ |
|
1829 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, |
|
1830 "No space for CB\n"); |
|
1831 if (!nic->ecdev) |
|
1832 netif_stop_queue(netdev); |
|
1833 break; |
|
1834 case -ENOMEM: |
|
1835 /* This is a hard error - log it. */ |
|
1836 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, |
|
1837 "Out of Tx resources, returning skb\n"); |
|
1838 if (!nic->ecdev) |
|
1839 netif_stop_queue(netdev); |
|
1840 return NETDEV_TX_BUSY; |
|
1841 } |
|
1842 |
|
1843 return NETDEV_TX_OK; |
|
1844 } |
|
1845 |
|
1846 static int e100_tx_clean(struct nic *nic) |
|
1847 { |
|
1848 struct net_device *dev = nic->netdev; |
|
1849 struct cb *cb; |
|
1850 int tx_cleaned = 0; |
|
1851 |
|
1852 if (!nic->ecdev) |
|
1853 spin_lock(&nic->cb_lock); |
|
1854 |
|
1855 /* Clean CBs marked complete */ |
|
1856 for (cb = nic->cb_to_clean; |
|
1857 cb->status & cpu_to_le16(cb_complete); |
|
1858 cb = nic->cb_to_clean = cb->next) { |
|
1859 rmb(); /* read skb after status */ |
|
1860 netif_printk(nic, tx_done, KERN_DEBUG, nic->netdev, |
|
1861 "cb[%d]->status = 0x%04X\n", |
|
1862 (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)), |
|
1863 cb->status); |
|
1864 |
|
1865 if (likely(cb->skb != NULL)) { |
|
1866 dev->stats.tx_packets++; |
|
1867 dev->stats.tx_bytes += cb->skb->len; |
|
1868 |
|
1869 pci_unmap_single(nic->pdev, |
|
1870 le32_to_cpu(cb->u.tcb.tbd.buf_addr), |
|
1871 le16_to_cpu(cb->u.tcb.tbd.size), |
|
1872 PCI_DMA_TODEVICE); |
|
1873 if (!nic->ecdev) |
|
1874 dev_kfree_skb_any(cb->skb); |
|
1875 cb->skb = NULL; |
|
1876 tx_cleaned = 1; |
|
1877 } |
|
1878 cb->status = 0; |
|
1879 nic->cbs_avail++; |
|
1880 } |
|
1881 |
|
1882 if (!nic->ecdev) { |
|
1883 spin_unlock(&nic->cb_lock); |
|
1884 |
|
1885 /* Recover from running out of Tx resources in xmit_frame */ |
|
1886 if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev))) |
|
1887 netif_wake_queue(nic->netdev); |
|
1888 } |
|
1889 |
|
1890 return tx_cleaned; |
|
1891 } |
|
1892 |
|
1893 static void e100_clean_cbs(struct nic *nic) |
|
1894 { |
|
1895 if (nic->cbs) { |
|
1896 while (nic->cbs_avail != nic->params.cbs.count) { |
|
1897 struct cb *cb = nic->cb_to_clean; |
|
1898 if (cb->skb) { |
|
1899 pci_unmap_single(nic->pdev, |
|
1900 le32_to_cpu(cb->u.tcb.tbd.buf_addr), |
|
1901 le16_to_cpu(cb->u.tcb.tbd.size), |
|
1902 PCI_DMA_TODEVICE); |
|
1903 if (!nic->ecdev) |
|
1904 dev_kfree_skb(cb->skb); |
|
1905 } |
|
1906 nic->cb_to_clean = nic->cb_to_clean->next; |
|
1907 nic->cbs_avail++; |
|
1908 } |
|
1909 pci_pool_free(nic->cbs_pool, nic->cbs, nic->cbs_dma_addr); |
|
1910 nic->cbs = NULL; |
|
1911 nic->cbs_avail = 0; |
|
1912 } |
|
1913 nic->cuc_cmd = cuc_start; |
|
1914 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = |
|
1915 nic->cbs; |
|
1916 } |
|
1917 |
|
1918 static int e100_alloc_cbs(struct nic *nic) |
|
1919 { |
|
1920 struct cb *cb; |
|
1921 unsigned int i, count = nic->params.cbs.count; |
|
1922 |
|
1923 nic->cuc_cmd = cuc_start; |
|
1924 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL; |
|
1925 nic->cbs_avail = 0; |
|
1926 |
|
1927 nic->cbs = pci_pool_alloc(nic->cbs_pool, GFP_KERNEL, |
|
1928 &nic->cbs_dma_addr); |
|
1929 if (!nic->cbs) |
|
1930 return -ENOMEM; |
|
1931 memset(nic->cbs, 0, count * sizeof(struct cb)); |
|
1932 |
|
1933 for (cb = nic->cbs, i = 0; i < count; cb++, i++) { |
|
1934 cb->next = (i + 1 < count) ? cb + 1 : nic->cbs; |
|
1935 cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1; |
|
1936 |
|
1937 cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb); |
|
1938 cb->link = cpu_to_le32(nic->cbs_dma_addr + |
|
1939 ((i+1) % count) * sizeof(struct cb)); |
|
1940 } |
|
1941 |
|
1942 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs; |
|
1943 nic->cbs_avail = count; |
|
1944 |
|
1945 return 0; |
|
1946 } |
|
1947 |
|
1948 static inline void e100_start_receiver(struct nic *nic, struct rx *rx) |
|
1949 { |
|
1950 if (!nic->rxs) return; |
|
1951 if (RU_SUSPENDED != nic->ru_running) return; |
|
1952 |
|
1953 /* handle init time starts */ |
|
1954 if (!rx) rx = nic->rxs; |
|
1955 |
|
1956 /* (Re)start RU if suspended or idle and RFA is non-NULL */ |
|
1957 if (rx->skb) { |
|
1958 e100_exec_cmd(nic, ruc_start, rx->dma_addr); |
|
1959 nic->ru_running = RU_RUNNING; |
|
1960 } |
|
1961 } |
|
1962 |
|
1963 #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN) |
|
1964 static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx) |
|
1965 { |
|
1966 if (!(rx->skb = netdev_alloc_skb_ip_align(nic->netdev, RFD_BUF_LEN))) |
|
1967 return -ENOMEM; |
|
1968 |
|
1969 /* Init, and map the RFD. */ |
|
1970 skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd)); |
|
1971 rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data, |
|
1972 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); |
|
1973 |
|
1974 if (pci_dma_mapping_error(nic->pdev, rx->dma_addr)) { |
|
1975 dev_kfree_skb_any(rx->skb); |
|
1976 rx->skb = NULL; |
|
1977 rx->dma_addr = 0; |
|
1978 return -ENOMEM; |
|
1979 } |
|
1980 |
|
1981 /* Link the RFD to end of RFA by linking previous RFD to |
|
1982 * this one. We are safe to touch the previous RFD because |
|
1983 * it is protected by the before last buffer's el bit being set */ |
|
1984 if (rx->prev->skb) { |
|
1985 struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data; |
|
1986 put_unaligned_le32(rx->dma_addr, &prev_rfd->link); |
|
1987 pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr, |
|
1988 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL); |
|
1989 } |
|
1990 |
|
1991 return 0; |
|
1992 } |
|
1993 |
|
1994 static int e100_rx_indicate(struct nic *nic, struct rx *rx, |
|
1995 unsigned int *work_done, unsigned int work_to_do) |
|
1996 { |
|
1997 struct net_device *dev = nic->netdev; |
|
1998 struct sk_buff *skb = rx->skb; |
|
1999 struct rfd *rfd = (struct rfd *)skb->data; |
|
2000 u16 rfd_status, actual_size; |
|
2001 |
|
2002 if (unlikely(work_done && *work_done >= work_to_do)) |
|
2003 return -EAGAIN; |
|
2004 |
|
2005 /* Need to sync before taking a peek at cb_complete bit */ |
|
2006 pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr, |
|
2007 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL); |
|
2008 rfd_status = le16_to_cpu(rfd->status); |
|
2009 |
|
2010 netif_printk(nic, rx_status, KERN_DEBUG, nic->netdev, |
|
2011 "status=0x%04X\n", rfd_status); |
|
2012 rmb(); /* read size after status bit */ |
|
2013 |
|
2014 /* If data isn't ready, nothing to indicate */ |
|
2015 if (unlikely(!(rfd_status & cb_complete))) { |
|
2016 /* If the next buffer has the el bit, but we think the receiver |
|
2017 * is still running, check to see if it really stopped while |
|
2018 * we had interrupts off. |
|
2019 * This allows for a fast restart without re-enabling |
|
2020 * interrupts */ |
|
2021 if ((le16_to_cpu(rfd->command) & cb_el) && |
|
2022 (RU_RUNNING == nic->ru_running)) |
|
2023 |
|
2024 if (ioread8(&nic->csr->scb.status) & rus_no_res) |
|
2025 nic->ru_running = RU_SUSPENDED; |
|
2026 pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr, |
|
2027 sizeof(struct rfd), |
|
2028 PCI_DMA_FROMDEVICE); |
|
2029 return -ENODATA; |
|
2030 } |
|
2031 |
|
2032 /* Get actual data size */ |
|
2033 actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF; |
|
2034 if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd))) |
|
2035 actual_size = RFD_BUF_LEN - sizeof(struct rfd); |
|
2036 |
|
2037 /* Get data */ |
|
2038 pci_unmap_single(nic->pdev, rx->dma_addr, |
|
2039 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); |
|
2040 |
|
2041 /* If this buffer has the el bit, but we think the receiver |
|
2042 * is still running, check to see if it really stopped while |
|
2043 * we had interrupts off. |
|
2044 * This allows for a fast restart without re-enabling interrupts. |
|
2045 * This can happen when the RU sees the size change but also sees |
|
2046 * the el bit set. */ |
|
2047 if ((le16_to_cpu(rfd->command) & cb_el) && |
|
2048 (RU_RUNNING == nic->ru_running)) { |
|
2049 |
|
2050 if (ioread8(&nic->csr->scb.status) & rus_no_res) |
|
2051 nic->ru_running = RU_SUSPENDED; |
|
2052 } |
|
2053 |
|
2054 if (!nic->ecdev) { |
|
2055 /* Pull off the RFD and put the actual data (minus eth hdr) */ |
|
2056 skb_reserve(skb, sizeof(struct rfd)); |
|
2057 skb_put(skb, actual_size); |
|
2058 skb->protocol = eth_type_trans(skb, nic->netdev); |
|
2059 } |
|
2060 |
|
2061 if (unlikely(!(rfd_status & cb_ok))) { |
|
2062 if (!nic->ecdev) { |
|
2063 /* Don't indicate if hardware indicates errors */ |
|
2064 dev_kfree_skb_any(skb); |
|
2065 } |
|
2066 } else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN) { |
|
2067 /* Don't indicate oversized frames */ |
|
2068 nic->rx_over_length_errors++; |
|
2069 if (!nic->ecdev) |
|
2070 dev_kfree_skb_any(skb); |
|
2071 } else { |
|
2072 dev->stats.rx_packets++; |
|
2073 dev->stats.rx_bytes += actual_size; |
|
2074 if (nic->ecdev) { |
|
2075 ecdev_receive(nic->ecdev, |
|
2076 skb->data + sizeof(struct rfd), actual_size); |
|
2077 |
|
2078 // No need to detect link status as |
|
2079 // long as frames are received: Reset watchdog. |
|
2080 nic->ec_watchdog_jiffies = jiffies; |
|
2081 } else { |
|
2082 netif_receive_skb(skb); |
|
2083 } |
|
2084 if (work_done) |
|
2085 (*work_done)++; |
|
2086 } |
|
2087 |
|
2088 if (nic->ecdev) { |
|
2089 // make receive frame descriptior usable again |
|
2090 memcpy(skb->data, &nic->blank_rfd, sizeof(struct rfd)); |
|
2091 rx->dma_addr = pci_map_single(nic->pdev, skb->data, |
|
2092 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); |
|
2093 if (pci_dma_mapping_error(nic->pdev, rx->dma_addr)) { |
|
2094 rx->dma_addr = 0; |
|
2095 } |
|
2096 |
|
2097 /* Link the RFD to end of RFA by linking previous RFD to |
|
2098 * this one. We are safe to touch the previous RFD because |
|
2099 * it is protected by the before last buffer's el bit being set */ |
|
2100 if (rx->prev->skb) { |
|
2101 struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data; |
|
2102 put_unaligned_le32(rx->dma_addr, &prev_rfd->link); |
|
2103 pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr, |
|
2104 sizeof(struct rfd), PCI_DMA_TODEVICE); |
|
2105 } |
|
2106 } else { |
|
2107 rx->skb = NULL; |
|
2108 } |
|
2109 |
|
2110 return 0; |
|
2111 } |
|
2112 |
|
2113 static void e100_rx_clean(struct nic *nic, unsigned int *work_done, |
|
2114 unsigned int work_to_do) |
|
2115 { |
|
2116 struct rx *rx; |
|
2117 int restart_required = 0, err = 0; |
|
2118 struct rx *old_before_last_rx, *new_before_last_rx; |
|
2119 struct rfd *old_before_last_rfd, *new_before_last_rfd; |
|
2120 |
|
2121 /* Indicate newly arrived packets */ |
|
2122 for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) { |
|
2123 err = e100_rx_indicate(nic, rx, work_done, work_to_do); |
|
2124 /* Hit quota or no more to clean */ |
|
2125 if (-EAGAIN == err || -ENODATA == err) |
|
2126 break; |
|
2127 } |
|
2128 |
|
2129 |
|
2130 /* On EAGAIN, hit quota so have more work to do, restart once |
|
2131 * cleanup is complete. |
|
2132 * Else, are we already rnr? then pay attention!!! this ensures that |
|
2133 * the state machine progression never allows a start with a |
|
2134 * partially cleaned list, avoiding a race between hardware |
|
2135 * and rx_to_clean when in NAPI mode */ |
|
2136 if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running) |
|
2137 restart_required = 1; |
|
2138 |
|
2139 old_before_last_rx = nic->rx_to_use->prev->prev; |
|
2140 old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data; |
|
2141 |
|
2142 if (!nic->ecdev) { |
|
2143 /* Alloc new skbs to refill list */ |
|
2144 for(rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) { |
|
2145 if(unlikely(e100_rx_alloc_skb(nic, rx))) |
|
2146 break; /* Better luck next time (see watchdog) */ |
|
2147 } |
|
2148 } |
|
2149 |
|
2150 new_before_last_rx = nic->rx_to_use->prev->prev; |
|
2151 if (new_before_last_rx != old_before_last_rx) { |
|
2152 /* Set the el-bit on the buffer that is before the last buffer. |
|
2153 * This lets us update the next pointer on the last buffer |
|
2154 * without worrying about hardware touching it. |
|
2155 * We set the size to 0 to prevent hardware from touching this |
|
2156 * buffer. |
|
2157 * When the hardware hits the before last buffer with el-bit |
|
2158 * and size of 0, it will RNR interrupt, the RUS will go into |
|
2159 * the No Resources state. It will not complete nor write to |
|
2160 * this buffer. */ |
|
2161 new_before_last_rfd = |
|
2162 (struct rfd *)new_before_last_rx->skb->data; |
|
2163 new_before_last_rfd->size = 0; |
|
2164 new_before_last_rfd->command |= cpu_to_le16(cb_el); |
|
2165 pci_dma_sync_single_for_device(nic->pdev, |
|
2166 new_before_last_rx->dma_addr, sizeof(struct rfd), |
|
2167 PCI_DMA_BIDIRECTIONAL); |
|
2168 |
|
2169 /* Now that we have a new stopping point, we can clear the old |
|
2170 * stopping point. We must sync twice to get the proper |
|
2171 * ordering on the hardware side of things. */ |
|
2172 old_before_last_rfd->command &= ~cpu_to_le16(cb_el); |
|
2173 pci_dma_sync_single_for_device(nic->pdev, |
|
2174 old_before_last_rx->dma_addr, sizeof(struct rfd), |
|
2175 PCI_DMA_BIDIRECTIONAL); |
|
2176 old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN); |
|
2177 pci_dma_sync_single_for_device(nic->pdev, |
|
2178 old_before_last_rx->dma_addr, sizeof(struct rfd), |
|
2179 PCI_DMA_BIDIRECTIONAL); |
|
2180 } |
|
2181 |
|
2182 if (restart_required) { |
|
2183 // ack the rnr? |
|
2184 iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack); |
|
2185 e100_start_receiver(nic, nic->rx_to_clean); |
|
2186 if (work_done) |
|
2187 (*work_done)++; |
|
2188 } |
|
2189 } |
|
2190 |
|
2191 static void e100_rx_clean_list(struct nic *nic) |
|
2192 { |
|
2193 struct rx *rx; |
|
2194 unsigned int i, count = nic->params.rfds.count; |
|
2195 |
|
2196 nic->ru_running = RU_UNINITIALIZED; |
|
2197 |
|
2198 if (nic->rxs) { |
|
2199 for (rx = nic->rxs, i = 0; i < count; rx++, i++) { |
|
2200 if (rx->skb) { |
|
2201 pci_unmap_single(nic->pdev, rx->dma_addr, |
|
2202 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); |
|
2203 dev_kfree_skb(rx->skb); |
|
2204 } |
|
2205 } |
|
2206 kfree(nic->rxs); |
|
2207 nic->rxs = NULL; |
|
2208 } |
|
2209 |
|
2210 nic->rx_to_use = nic->rx_to_clean = NULL; |
|
2211 } |
|
2212 |
|
2213 static int e100_rx_alloc_list(struct nic *nic) |
|
2214 { |
|
2215 struct rx *rx; |
|
2216 unsigned int i, count = nic->params.rfds.count; |
|
2217 struct rfd *before_last; |
|
2218 |
|
2219 nic->rx_to_use = nic->rx_to_clean = NULL; |
|
2220 nic->ru_running = RU_UNINITIALIZED; |
|
2221 |
|
2222 if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_ATOMIC))) |
|
2223 return -ENOMEM; |
|
2224 |
|
2225 for (rx = nic->rxs, i = 0; i < count; rx++, i++) { |
|
2226 rx->next = (i + 1 < count) ? rx + 1 : nic->rxs; |
|
2227 rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1; |
|
2228 if (e100_rx_alloc_skb(nic, rx)) { |
|
2229 e100_rx_clean_list(nic); |
|
2230 return -ENOMEM; |
|
2231 } |
|
2232 } |
|
2233 |
|
2234 if (!nic->ecdev) { |
|
2235 /* Set the el-bit on the buffer that is before the last buffer. |
|
2236 * This lets us update the next pointer on the last buffer without |
|
2237 * worrying about hardware touching it. |
|
2238 * We set the size to 0 to prevent hardware from touching this buffer. |
|
2239 * When the hardware hits the before last buffer with el-bit and size |
|
2240 * of 0, it will RNR interrupt, the RU will go into the No Resources |
|
2241 * state. It will not complete nor write to this buffer. */ |
|
2242 rx = nic->rxs->prev->prev; |
|
2243 before_last = (struct rfd *)rx->skb->data; |
|
2244 before_last->command |= cpu_to_le16(cb_el); |
|
2245 before_last->size = 0; |
|
2246 pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr, |
|
2247 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL); |
|
2248 } |
|
2249 |
|
2250 nic->rx_to_use = nic->rx_to_clean = nic->rxs; |
|
2251 nic->ru_running = RU_SUSPENDED; |
|
2252 |
|
2253 return 0; |
|
2254 } |
|
2255 |
|
2256 static irqreturn_t e100_intr(int irq, void *dev_id) |
|
2257 { |
|
2258 struct net_device *netdev = dev_id; |
|
2259 struct nic *nic = netdev_priv(netdev); |
|
2260 u8 stat_ack = ioread8(&nic->csr->scb.stat_ack); |
|
2261 |
|
2262 netif_printk(nic, intr, KERN_DEBUG, nic->netdev, |
|
2263 "stat_ack = 0x%02X\n", stat_ack); |
|
2264 |
|
2265 if (stat_ack == stat_ack_not_ours || /* Not our interrupt */ |
|
2266 stat_ack == stat_ack_not_present) /* Hardware is ejected */ |
|
2267 return IRQ_NONE; |
|
2268 |
|
2269 /* Ack interrupt(s) */ |
|
2270 iowrite8(stat_ack, &nic->csr->scb.stat_ack); |
|
2271 |
|
2272 /* We hit Receive No Resource (RNR); restart RU after cleaning */ |
|
2273 if (stat_ack & stat_ack_rnr) |
|
2274 nic->ru_running = RU_SUSPENDED; |
|
2275 |
|
2276 if (!nic->ecdev && likely(napi_schedule_prep(&nic->napi))) { |
|
2277 e100_disable_irq(nic); |
|
2278 __napi_schedule(&nic->napi); |
|
2279 } |
|
2280 |
|
2281 return IRQ_HANDLED; |
|
2282 } |
|
2283 |
|
2284 void e100_ec_poll(struct net_device *netdev) |
|
2285 { |
|
2286 struct nic *nic = netdev_priv(netdev); |
|
2287 |
|
2288 e100_rx_clean(nic, NULL, 100); |
|
2289 e100_tx_clean(nic); |
|
2290 |
|
2291 if (jiffies - nic->ec_watchdog_jiffies >= 2 * HZ) { |
|
2292 e100_watchdog((unsigned long) nic); |
|
2293 nic->ec_watchdog_jiffies = jiffies; |
|
2294 } |
|
2295 } |
|
2296 |
|
2297 |
|
2298 static int e100_poll(struct napi_struct *napi, int budget) |
|
2299 { |
|
2300 struct nic *nic = container_of(napi, struct nic, napi); |
|
2301 unsigned int work_done = 0; |
|
2302 |
|
2303 e100_rx_clean(nic, &work_done, budget); |
|
2304 e100_tx_clean(nic); |
|
2305 |
|
2306 /* If budget not fully consumed, exit the polling mode */ |
|
2307 if (work_done < budget) { |
|
2308 napi_complete(napi); |
|
2309 e100_enable_irq(nic); |
|
2310 } |
|
2311 |
|
2312 return work_done; |
|
2313 } |
|
2314 |
|
2315 #ifdef CONFIG_NET_POLL_CONTROLLER |
|
2316 static void e100_netpoll(struct net_device *netdev) |
|
2317 { |
|
2318 struct nic *nic = netdev_priv(netdev); |
|
2319 |
|
2320 e100_disable_irq(nic); |
|
2321 e100_intr(nic->pdev->irq, netdev); |
|
2322 e100_tx_clean(nic); |
|
2323 e100_enable_irq(nic); |
|
2324 } |
|
2325 #endif |
|
2326 |
|
2327 static int e100_set_mac_address(struct net_device *netdev, void *p) |
|
2328 { |
|
2329 struct nic *nic = netdev_priv(netdev); |
|
2330 struct sockaddr *addr = p; |
|
2331 |
|
2332 if (!is_valid_ether_addr(addr->sa_data)) |
|
2333 return -EADDRNOTAVAIL; |
|
2334 |
|
2335 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); |
|
2336 e100_exec_cb(nic, NULL, e100_setup_iaaddr); |
|
2337 |
|
2338 return 0; |
|
2339 } |
|
2340 |
|
2341 static int e100_change_mtu(struct net_device *netdev, int new_mtu) |
|
2342 { |
|
2343 if (new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN) |
|
2344 return -EINVAL; |
|
2345 netdev->mtu = new_mtu; |
|
2346 return 0; |
|
2347 } |
|
2348 |
|
2349 static int e100_asf(struct nic *nic) |
|
2350 { |
|
2351 /* ASF can be enabled from eeprom */ |
|
2352 return((nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) && |
|
2353 (nic->eeprom[eeprom_config_asf] & eeprom_asf) && |
|
2354 !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) && |
|
2355 ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE)); |
|
2356 } |
|
2357 |
|
2358 static int e100_up(struct nic *nic) |
|
2359 { |
|
2360 int err; |
|
2361 |
|
2362 if ((err = e100_rx_alloc_list(nic))) |
|
2363 return err; |
|
2364 if ((err = e100_alloc_cbs(nic))) |
|
2365 goto err_rx_clean_list; |
|
2366 if ((err = e100_hw_init(nic))) |
|
2367 goto err_clean_cbs; |
|
2368 e100_set_multicast_list(nic->netdev); |
|
2369 e100_start_receiver(nic, NULL); |
|
2370 if (!nic->ecdev) { |
|
2371 mod_timer(&nic->watchdog, jiffies); |
|
2372 } |
|
2373 if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED, |
|
2374 nic->netdev->name, nic->netdev))) |
|
2375 goto err_no_irq; |
|
2376 if (!nic->ecdev) { |
|
2377 netif_wake_queue(nic->netdev); |
|
2378 napi_enable(&nic->napi); |
|
2379 /* enable ints _after_ enabling poll, preventing a race between |
|
2380 * disable ints+schedule */ |
|
2381 e100_enable_irq(nic); |
|
2382 } |
|
2383 return 0; |
|
2384 |
|
2385 err_no_irq: |
|
2386 if (!nic->ecdev) |
|
2387 del_timer_sync(&nic->watchdog); |
|
2388 err_clean_cbs: |
|
2389 e100_clean_cbs(nic); |
|
2390 err_rx_clean_list: |
|
2391 e100_rx_clean_list(nic); |
|
2392 return err; |
|
2393 } |
|
2394 |
|
2395 static void e100_down(struct nic *nic) |
|
2396 { |
|
2397 if (!nic->ecdev) { |
|
2398 /* wait here for poll to complete */ |
|
2399 napi_disable(&nic->napi); |
|
2400 netif_stop_queue(nic->netdev); |
|
2401 } |
|
2402 e100_hw_reset(nic); |
|
2403 free_irq(nic->pdev->irq, nic->netdev); |
|
2404 if (!nic->ecdev) { |
|
2405 del_timer_sync(&nic->watchdog); |
|
2406 netif_carrier_off(nic->netdev); |
|
2407 } |
|
2408 e100_clean_cbs(nic); |
|
2409 e100_rx_clean_list(nic); |
|
2410 } |
|
2411 |
|
2412 static void e100_tx_timeout(struct net_device *netdev) |
|
2413 { |
|
2414 struct nic *nic = netdev_priv(netdev); |
|
2415 |
|
2416 /* Reset outside of interrupt context, to avoid request_irq |
|
2417 * in interrupt context */ |
|
2418 schedule_work(&nic->tx_timeout_task); |
|
2419 } |
|
2420 |
|
2421 static void e100_tx_timeout_task(struct work_struct *work) |
|
2422 { |
|
2423 struct nic *nic = container_of(work, struct nic, tx_timeout_task); |
|
2424 struct net_device *netdev = nic->netdev; |
|
2425 |
|
2426 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, |
|
2427 "scb.status=0x%02X\n", ioread8(&nic->csr->scb.status)); |
|
2428 |
|
2429 rtnl_lock(); |
|
2430 if (netif_running(netdev)) { |
|
2431 e100_down(netdev_priv(netdev)); |
|
2432 e100_up(netdev_priv(netdev)); |
|
2433 } |
|
2434 rtnl_unlock(); |
|
2435 } |
|
2436 |
|
2437 static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode) |
|
2438 { |
|
2439 int err; |
|
2440 struct sk_buff *skb; |
|
2441 |
|
2442 /* Use driver resources to perform internal MAC or PHY |
|
2443 * loopback test. A single packet is prepared and transmitted |
|
2444 * in loopback mode, and the test passes if the received |
|
2445 * packet compares byte-for-byte to the transmitted packet. */ |
|
2446 |
|
2447 if ((err = e100_rx_alloc_list(nic))) |
|
2448 return err; |
|
2449 if ((err = e100_alloc_cbs(nic))) |
|
2450 goto err_clean_rx; |
|
2451 |
|
2452 /* ICH PHY loopback is broken so do MAC loopback instead */ |
|
2453 if (nic->flags & ich && loopback_mode == lb_phy) |
|
2454 loopback_mode = lb_mac; |
|
2455 |
|
2456 nic->loopback = loopback_mode; |
|
2457 if ((err = e100_hw_init(nic))) |
|
2458 goto err_loopback_none; |
|
2459 |
|
2460 if (loopback_mode == lb_phy) |
|
2461 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, |
|
2462 BMCR_LOOPBACK); |
|
2463 |
|
2464 e100_start_receiver(nic, NULL); |
|
2465 |
|
2466 if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) { |
|
2467 err = -ENOMEM; |
|
2468 goto err_loopback_none; |
|
2469 } |
|
2470 skb_put(skb, ETH_DATA_LEN); |
|
2471 memset(skb->data, 0xFF, ETH_DATA_LEN); |
|
2472 e100_xmit_frame(skb, nic->netdev); |
|
2473 |
|
2474 msleep(10); |
|
2475 |
|
2476 pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr, |
|
2477 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); |
|
2478 |
|
2479 if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd), |
|
2480 skb->data, ETH_DATA_LEN)) |
|
2481 err = -EAGAIN; |
|
2482 |
|
2483 err_loopback_none: |
|
2484 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0); |
|
2485 nic->loopback = lb_none; |
|
2486 e100_clean_cbs(nic); |
|
2487 e100_hw_reset(nic); |
|
2488 err_clean_rx: |
|
2489 e100_rx_clean_list(nic); |
|
2490 return err; |
|
2491 } |
|
2492 |
|
2493 #define MII_LED_CONTROL 0x1B |
|
2494 #define E100_82552_LED_OVERRIDE 0x19 |
|
2495 #define E100_82552_LED_ON 0x000F /* LEDTX and LED_RX both on */ |
|
2496 #define E100_82552_LED_OFF 0x000A /* LEDTX and LED_RX both off */ |
|
2497 static void e100_blink_led(unsigned long data) |
|
2498 { |
|
2499 struct nic *nic = (struct nic *)data; |
|
2500 enum led_state { |
|
2501 led_on = 0x01, |
|
2502 led_off = 0x04, |
|
2503 led_on_559 = 0x05, |
|
2504 led_on_557 = 0x07, |
|
2505 }; |
|
2506 u16 led_reg = MII_LED_CONTROL; |
|
2507 |
|
2508 if (nic->phy == phy_82552_v) { |
|
2509 led_reg = E100_82552_LED_OVERRIDE; |
|
2510 |
|
2511 nic->leds = (nic->leds == E100_82552_LED_ON) ? |
|
2512 E100_82552_LED_OFF : E100_82552_LED_ON; |
|
2513 } else { |
|
2514 nic->leds = (nic->leds & led_on) ? led_off : |
|
2515 (nic->mac < mac_82559_D101M) ? led_on_557 : |
|
2516 led_on_559; |
|
2517 } |
|
2518 mdio_write(nic->netdev, nic->mii.phy_id, led_reg, nic->leds); |
|
2519 mod_timer(&nic->blink_timer, jiffies + HZ / 4); |
|
2520 } |
|
2521 |
|
2522 static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd) |
|
2523 { |
|
2524 struct nic *nic = netdev_priv(netdev); |
|
2525 return mii_ethtool_gset(&nic->mii, cmd); |
|
2526 } |
|
2527 |
|
2528 static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd) |
|
2529 { |
|
2530 struct nic *nic = netdev_priv(netdev); |
|
2531 int err; |
|
2532 |
|
2533 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET); |
|
2534 err = mii_ethtool_sset(&nic->mii, cmd); |
|
2535 e100_exec_cb(nic, NULL, e100_configure); |
|
2536 |
|
2537 return err; |
|
2538 } |
|
2539 |
|
2540 static void e100_get_drvinfo(struct net_device *netdev, |
|
2541 struct ethtool_drvinfo *info) |
|
2542 { |
|
2543 struct nic *nic = netdev_priv(netdev); |
|
2544 strcpy(info->driver, DRV_NAME); |
|
2545 strcpy(info->version, DRV_VERSION); |
|
2546 strcpy(info->fw_version, "N/A"); |
|
2547 strcpy(info->bus_info, pci_name(nic->pdev)); |
|
2548 } |
|
2549 |
|
2550 #define E100_PHY_REGS 0x1C |
|
2551 static int e100_get_regs_len(struct net_device *netdev) |
|
2552 { |
|
2553 struct nic *nic = netdev_priv(netdev); |
|
2554 return 1 + E100_PHY_REGS + sizeof(nic->mem->dump_buf); |
|
2555 } |
|
2556 |
|
2557 static void e100_get_regs(struct net_device *netdev, |
|
2558 struct ethtool_regs *regs, void *p) |
|
2559 { |
|
2560 struct nic *nic = netdev_priv(netdev); |
|
2561 u32 *buff = p; |
|
2562 int i; |
|
2563 |
|
2564 regs->version = (1 << 24) | nic->pdev->revision; |
|
2565 buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 | |
|
2566 ioread8(&nic->csr->scb.cmd_lo) << 16 | |
|
2567 ioread16(&nic->csr->scb.status); |
|
2568 for (i = E100_PHY_REGS; i >= 0; i--) |
|
2569 buff[1 + E100_PHY_REGS - i] = |
|
2570 mdio_read(netdev, nic->mii.phy_id, i); |
|
2571 memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf)); |
|
2572 e100_exec_cb(nic, NULL, e100_dump); |
|
2573 msleep(10); |
|
2574 memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf, |
|
2575 sizeof(nic->mem->dump_buf)); |
|
2576 } |
|
2577 |
|
2578 static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) |
|
2579 { |
|
2580 struct nic *nic = netdev_priv(netdev); |
|
2581 wol->supported = (nic->mac >= mac_82558_D101_A4) ? WAKE_MAGIC : 0; |
|
2582 wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0; |
|
2583 } |
|
2584 |
|
2585 static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) |
|
2586 { |
|
2587 struct nic *nic = netdev_priv(netdev); |
|
2588 |
|
2589 if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) || |
|
2590 !device_can_wakeup(&nic->pdev->dev)) |
|
2591 return -EOPNOTSUPP; |
|
2592 |
|
2593 if (wol->wolopts) |
|
2594 nic->flags |= wol_magic; |
|
2595 else |
|
2596 nic->flags &= ~wol_magic; |
|
2597 |
|
2598 device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts); |
|
2599 |
|
2600 e100_exec_cb(nic, NULL, e100_configure); |
|
2601 |
|
2602 return 0; |
|
2603 } |
|
2604 |
|
2605 static u32 e100_get_msglevel(struct net_device *netdev) |
|
2606 { |
|
2607 struct nic *nic = netdev_priv(netdev); |
|
2608 return nic->msg_enable; |
|
2609 } |
|
2610 |
|
2611 static void e100_set_msglevel(struct net_device *netdev, u32 value) |
|
2612 { |
|
2613 struct nic *nic = netdev_priv(netdev); |
|
2614 nic->msg_enable = value; |
|
2615 } |
|
2616 |
|
2617 static int e100_nway_reset(struct net_device *netdev) |
|
2618 { |
|
2619 struct nic *nic = netdev_priv(netdev); |
|
2620 return mii_nway_restart(&nic->mii); |
|
2621 } |
|
2622 |
|
2623 static u32 e100_get_link(struct net_device *netdev) |
|
2624 { |
|
2625 struct nic *nic = netdev_priv(netdev); |
|
2626 return mii_link_ok(&nic->mii); |
|
2627 } |
|
2628 |
|
2629 static int e100_get_eeprom_len(struct net_device *netdev) |
|
2630 { |
|
2631 struct nic *nic = netdev_priv(netdev); |
|
2632 return nic->eeprom_wc << 1; |
|
2633 } |
|
2634 |
|
2635 #define E100_EEPROM_MAGIC 0x1234 |
|
2636 static int e100_get_eeprom(struct net_device *netdev, |
|
2637 struct ethtool_eeprom *eeprom, u8 *bytes) |
|
2638 { |
|
2639 struct nic *nic = netdev_priv(netdev); |
|
2640 |
|
2641 eeprom->magic = E100_EEPROM_MAGIC; |
|
2642 memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len); |
|
2643 |
|
2644 return 0; |
|
2645 } |
|
2646 |
|
2647 static int e100_set_eeprom(struct net_device *netdev, |
|
2648 struct ethtool_eeprom *eeprom, u8 *bytes) |
|
2649 { |
|
2650 struct nic *nic = netdev_priv(netdev); |
|
2651 |
|
2652 if (eeprom->magic != E100_EEPROM_MAGIC) |
|
2653 return -EINVAL; |
|
2654 |
|
2655 memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len); |
|
2656 |
|
2657 return e100_eeprom_save(nic, eeprom->offset >> 1, |
|
2658 (eeprom->len >> 1) + 1); |
|
2659 } |
|
2660 |
|
2661 static void e100_get_ringparam(struct net_device *netdev, |
|
2662 struct ethtool_ringparam *ring) |
|
2663 { |
|
2664 struct nic *nic = netdev_priv(netdev); |
|
2665 struct param_range *rfds = &nic->params.rfds; |
|
2666 struct param_range *cbs = &nic->params.cbs; |
|
2667 |
|
2668 ring->rx_max_pending = rfds->max; |
|
2669 ring->tx_max_pending = cbs->max; |
|
2670 ring->rx_mini_max_pending = 0; |
|
2671 ring->rx_jumbo_max_pending = 0; |
|
2672 ring->rx_pending = rfds->count; |
|
2673 ring->tx_pending = cbs->count; |
|
2674 ring->rx_mini_pending = 0; |
|
2675 ring->rx_jumbo_pending = 0; |
|
2676 } |
|
2677 |
|
2678 static int e100_set_ringparam(struct net_device *netdev, |
|
2679 struct ethtool_ringparam *ring) |
|
2680 { |
|
2681 struct nic *nic = netdev_priv(netdev); |
|
2682 struct param_range *rfds = &nic->params.rfds; |
|
2683 struct param_range *cbs = &nic->params.cbs; |
|
2684 |
|
2685 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) |
|
2686 return -EINVAL; |
|
2687 |
|
2688 if (netif_running(netdev)) |
|
2689 e100_down(nic); |
|
2690 rfds->count = max(ring->rx_pending, rfds->min); |
|
2691 rfds->count = min(rfds->count, rfds->max); |
|
2692 cbs->count = max(ring->tx_pending, cbs->min); |
|
2693 cbs->count = min(cbs->count, cbs->max); |
|
2694 netif_info(nic, drv, nic->netdev, "Ring Param settings: rx: %d, tx %d\n", |
|
2695 rfds->count, cbs->count); |
|
2696 if (netif_running(netdev)) |
|
2697 e100_up(nic); |
|
2698 |
|
2699 return 0; |
|
2700 } |
|
2701 |
|
2702 static const char e100_gstrings_test[][ETH_GSTRING_LEN] = { |
|
2703 "Link test (on/offline)", |
|
2704 "Eeprom test (on/offline)", |
|
2705 "Self test (offline)", |
|
2706 "Mac loopback (offline)", |
|
2707 "Phy loopback (offline)", |
|
2708 }; |
|
2709 #define E100_TEST_LEN ARRAY_SIZE(e100_gstrings_test) |
|
2710 |
|
2711 static void e100_diag_test(struct net_device *netdev, |
|
2712 struct ethtool_test *test, u64 *data) |
|
2713 { |
|
2714 struct ethtool_cmd cmd; |
|
2715 struct nic *nic = netdev_priv(netdev); |
|
2716 int i, err __attribute__ ((unused)); |
|
2717 |
|
2718 memset(data, 0, E100_TEST_LEN * sizeof(u64)); |
|
2719 data[0] = !mii_link_ok(&nic->mii); |
|
2720 data[1] = e100_eeprom_load(nic); |
|
2721 if (test->flags & ETH_TEST_FL_OFFLINE) { |
|
2722 |
|
2723 /* save speed, duplex & autoneg settings */ |
|
2724 err = mii_ethtool_gset(&nic->mii, &cmd); |
|
2725 |
|
2726 if (netif_running(netdev)) |
|
2727 e100_down(nic); |
|
2728 data[2] = e100_self_test(nic); |
|
2729 data[3] = e100_loopback_test(nic, lb_mac); |
|
2730 data[4] = e100_loopback_test(nic, lb_phy); |
|
2731 |
|
2732 /* restore speed, duplex & autoneg settings */ |
|
2733 err = mii_ethtool_sset(&nic->mii, &cmd); |
|
2734 |
|
2735 if (netif_running(netdev)) |
|
2736 e100_up(nic); |
|
2737 } |
|
2738 for (i = 0; i < E100_TEST_LEN; i++) |
|
2739 test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0; |
|
2740 |
|
2741 msleep_interruptible(4 * 1000); |
|
2742 } |
|
2743 |
|
2744 static int e100_phys_id(struct net_device *netdev, u32 data) |
|
2745 { |
|
2746 struct nic *nic = netdev_priv(netdev); |
|
2747 u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE : |
|
2748 MII_LED_CONTROL; |
|
2749 |
|
2750 if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ)) |
|
2751 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ); |
|
2752 mod_timer(&nic->blink_timer, jiffies); |
|
2753 msleep_interruptible(data * 1000); |
|
2754 del_timer_sync(&nic->blink_timer); |
|
2755 mdio_write(netdev, nic->mii.phy_id, led_reg, 0); |
|
2756 |
|
2757 return 0; |
|
2758 } |
|
2759 |
|
2760 static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = { |
|
2761 "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors", |
|
2762 "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions", |
|
2763 "rx_length_errors", "rx_over_errors", "rx_crc_errors", |
|
2764 "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors", |
|
2765 "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors", |
|
2766 "tx_heartbeat_errors", "tx_window_errors", |
|
2767 /* device-specific stats */ |
|
2768 "tx_deferred", "tx_single_collisions", "tx_multi_collisions", |
|
2769 "tx_flow_control_pause", "rx_flow_control_pause", |
|
2770 "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets", |
|
2771 }; |
|
2772 #define E100_NET_STATS_LEN 21 |
|
2773 #define E100_STATS_LEN ARRAY_SIZE(e100_gstrings_stats) |
|
2774 |
|
2775 static int e100_get_sset_count(struct net_device *netdev, int sset) |
|
2776 { |
|
2777 switch (sset) { |
|
2778 case ETH_SS_TEST: |
|
2779 return E100_TEST_LEN; |
|
2780 case ETH_SS_STATS: |
|
2781 return E100_STATS_LEN; |
|
2782 default: |
|
2783 return -EOPNOTSUPP; |
|
2784 } |
|
2785 } |
|
2786 |
|
2787 static void e100_get_ethtool_stats(struct net_device *netdev, |
|
2788 struct ethtool_stats *stats, u64 *data) |
|
2789 { |
|
2790 struct nic *nic = netdev_priv(netdev); |
|
2791 int i; |
|
2792 |
|
2793 for (i = 0; i < E100_NET_STATS_LEN; i++) |
|
2794 data[i] = ((unsigned long *)&netdev->stats)[i]; |
|
2795 |
|
2796 data[i++] = nic->tx_deferred; |
|
2797 data[i++] = nic->tx_single_collisions; |
|
2798 data[i++] = nic->tx_multiple_collisions; |
|
2799 data[i++] = nic->tx_fc_pause; |
|
2800 data[i++] = nic->rx_fc_pause; |
|
2801 data[i++] = nic->rx_fc_unsupported; |
|
2802 data[i++] = nic->tx_tco_frames; |
|
2803 data[i++] = nic->rx_tco_frames; |
|
2804 } |
|
2805 |
|
2806 static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data) |
|
2807 { |
|
2808 switch (stringset) { |
|
2809 case ETH_SS_TEST: |
|
2810 memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test)); |
|
2811 break; |
|
2812 case ETH_SS_STATS: |
|
2813 memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats)); |
|
2814 break; |
|
2815 } |
|
2816 } |
|
2817 |
|
2818 static const struct ethtool_ops e100_ethtool_ops = { |
|
2819 .get_settings = e100_get_settings, |
|
2820 .set_settings = e100_set_settings, |
|
2821 .get_drvinfo = e100_get_drvinfo, |
|
2822 .get_regs_len = e100_get_regs_len, |
|
2823 .get_regs = e100_get_regs, |
|
2824 .get_wol = e100_get_wol, |
|
2825 .set_wol = e100_set_wol, |
|
2826 .get_msglevel = e100_get_msglevel, |
|
2827 .set_msglevel = e100_set_msglevel, |
|
2828 .nway_reset = e100_nway_reset, |
|
2829 .get_link = e100_get_link, |
|
2830 .get_eeprom_len = e100_get_eeprom_len, |
|
2831 .get_eeprom = e100_get_eeprom, |
|
2832 .set_eeprom = e100_set_eeprom, |
|
2833 .get_ringparam = e100_get_ringparam, |
|
2834 .set_ringparam = e100_set_ringparam, |
|
2835 .self_test = e100_diag_test, |
|
2836 .get_strings = e100_get_strings, |
|
2837 .phys_id = e100_phys_id, |
|
2838 .get_ethtool_stats = e100_get_ethtool_stats, |
|
2839 .get_sset_count = e100_get_sset_count, |
|
2840 }; |
|
2841 |
|
2842 static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) |
|
2843 { |
|
2844 struct nic *nic = netdev_priv(netdev); |
|
2845 |
|
2846 return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL); |
|
2847 } |
|
2848 |
|
2849 static int e100_alloc(struct nic *nic) |
|
2850 { |
|
2851 nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem), |
|
2852 &nic->dma_addr); |
|
2853 return nic->mem ? 0 : -ENOMEM; |
|
2854 } |
|
2855 |
|
2856 static void e100_free(struct nic *nic) |
|
2857 { |
|
2858 if (nic->mem) { |
|
2859 pci_free_consistent(nic->pdev, sizeof(struct mem), |
|
2860 nic->mem, nic->dma_addr); |
|
2861 nic->mem = NULL; |
|
2862 } |
|
2863 } |
|
2864 |
|
2865 static int e100_open(struct net_device *netdev) |
|
2866 { |
|
2867 struct nic *nic = netdev_priv(netdev); |
|
2868 int err = 0; |
|
2869 |
|
2870 if (!nic->ecdev) |
|
2871 netif_carrier_off(netdev); |
|
2872 if ((err = e100_up(nic))) |
|
2873 netif_err(nic, ifup, nic->netdev, "Cannot open interface, aborting\n"); |
|
2874 return err; |
|
2875 } |
|
2876 |
|
2877 static int e100_close(struct net_device *netdev) |
|
2878 { |
|
2879 e100_down(netdev_priv(netdev)); |
|
2880 return 0; |
|
2881 } |
|
2882 |
|
2883 static const struct net_device_ops e100_netdev_ops = { |
|
2884 .ndo_open = e100_open, |
|
2885 .ndo_stop = e100_close, |
|
2886 .ndo_start_xmit = e100_xmit_frame, |
|
2887 .ndo_validate_addr = eth_validate_addr, |
|
2888 .ndo_set_multicast_list = e100_set_multicast_list, |
|
2889 .ndo_set_mac_address = e100_set_mac_address, |
|
2890 .ndo_change_mtu = e100_change_mtu, |
|
2891 .ndo_do_ioctl = e100_do_ioctl, |
|
2892 .ndo_tx_timeout = e100_tx_timeout, |
|
2893 #ifdef CONFIG_NET_POLL_CONTROLLER |
|
2894 .ndo_poll_controller = e100_netpoll, |
|
2895 #endif |
|
2896 }; |
|
2897 |
|
2898 static int __devinit e100_probe(struct pci_dev *pdev, |
|
2899 const struct pci_device_id *ent) |
|
2900 { |
|
2901 struct net_device *netdev; |
|
2902 struct nic *nic; |
|
2903 int err; |
|
2904 |
|
2905 if (!(netdev = alloc_etherdev(sizeof(struct nic)))) { |
|
2906 if (((1 << debug) - 1) & NETIF_MSG_PROBE) |
|
2907 pr_err("Etherdev alloc failed, aborting\n"); |
|
2908 return -ENOMEM; |
|
2909 } |
|
2910 |
|
2911 netdev->netdev_ops = &e100_netdev_ops; |
|
2912 SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops); |
|
2913 netdev->watchdog_timeo = E100_WATCHDOG_PERIOD; |
|
2914 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); |
|
2915 |
|
2916 nic = netdev_priv(netdev); |
|
2917 netif_napi_add(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT); |
|
2918 nic->netdev = netdev; |
|
2919 nic->pdev = pdev; |
|
2920 nic->msg_enable = (1 << debug) - 1; |
|
2921 nic->mdio_ctrl = mdio_ctrl_hw; |
|
2922 pci_set_drvdata(pdev, netdev); |
|
2923 |
|
2924 if ((err = pci_enable_device(pdev))) { |
|
2925 netif_err(nic, probe, nic->netdev, "Cannot enable PCI device, aborting\n"); |
|
2926 goto err_out_free_dev; |
|
2927 } |
|
2928 |
|
2929 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { |
|
2930 netif_err(nic, probe, nic->netdev, "Cannot find proper PCI device base address, aborting\n"); |
|
2931 err = -ENODEV; |
|
2932 goto err_out_disable_pdev; |
|
2933 } |
|
2934 |
|
2935 if ((err = pci_request_regions(pdev, DRV_NAME))) { |
|
2936 netif_err(nic, probe, nic->netdev, "Cannot obtain PCI resources, aborting\n"); |
|
2937 goto err_out_disable_pdev; |
|
2938 } |
|
2939 |
|
2940 if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) { |
|
2941 netif_err(nic, probe, nic->netdev, "No usable DMA configuration, aborting\n"); |
|
2942 goto err_out_free_res; |
|
2943 } |
|
2944 |
|
2945 SET_NETDEV_DEV(netdev, &pdev->dev); |
|
2946 |
|
2947 if (use_io) |
|
2948 netif_info(nic, probe, nic->netdev, "using i/o access mode\n"); |
|
2949 |
|
2950 nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr)); |
|
2951 if (!nic->csr) { |
|
2952 netif_err(nic, probe, nic->netdev, "Cannot map device registers, aborting\n"); |
|
2953 err = -ENOMEM; |
|
2954 goto err_out_free_res; |
|
2955 } |
|
2956 |
|
2957 if (ent->driver_data) |
|
2958 nic->flags |= ich; |
|
2959 else |
|
2960 nic->flags &= ~ich; |
|
2961 |
|
2962 e100_get_defaults(nic); |
|
2963 |
|
2964 /* locks must be initialized before calling hw_reset */ |
|
2965 spin_lock_init(&nic->cb_lock); |
|
2966 spin_lock_init(&nic->cmd_lock); |
|
2967 spin_lock_init(&nic->mdio_lock); |
|
2968 |
|
2969 /* Reset the device before pci_set_master() in case device is in some |
|
2970 * funky state and has an interrupt pending - hint: we don't have the |
|
2971 * interrupt handler registered yet. */ |
|
2972 e100_hw_reset(nic); |
|
2973 |
|
2974 pci_set_master(pdev); |
|
2975 |
|
2976 init_timer(&nic->watchdog); |
|
2977 nic->watchdog.function = e100_watchdog; |
|
2978 nic->watchdog.data = (unsigned long)nic; |
|
2979 init_timer(&nic->blink_timer); |
|
2980 nic->blink_timer.function = e100_blink_led; |
|
2981 nic->blink_timer.data = (unsigned long)nic; |
|
2982 |
|
2983 INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task); |
|
2984 |
|
2985 if ((err = e100_alloc(nic))) { |
|
2986 netif_err(nic, probe, nic->netdev, "Cannot alloc driver memory, aborting\n"); |
|
2987 goto err_out_iounmap; |
|
2988 } |
|
2989 |
|
2990 if ((err = e100_eeprom_load(nic))) |
|
2991 goto err_out_free; |
|
2992 |
|
2993 e100_phy_init(nic); |
|
2994 |
|
2995 memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN); |
|
2996 memcpy(netdev->perm_addr, nic->eeprom, ETH_ALEN); |
|
2997 if (!is_valid_ether_addr(netdev->perm_addr)) { |
|
2998 if (!eeprom_bad_csum_allow) { |
|
2999 netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, aborting\n"); |
|
3000 err = -EAGAIN; |
|
3001 goto err_out_free; |
|
3002 } else { |
|
3003 netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, you MUST configure one.\n"); |
|
3004 } |
|
3005 } |
|
3006 |
|
3007 /* Wol magic packet can be enabled from eeprom */ |
|
3008 if ((nic->mac >= mac_82558_D101_A4) && |
|
3009 (nic->eeprom[eeprom_id] & eeprom_id_wol)) { |
|
3010 nic->flags |= wol_magic; |
|
3011 device_set_wakeup_enable(&pdev->dev, true); |
|
3012 } |
|
3013 |
|
3014 /* ack any pending wake events, disable PME */ |
|
3015 pci_pme_active(pdev, false); |
|
3016 |
|
3017 // offer device to EtherCAT master module |
|
3018 nic->ecdev = ecdev_offer(netdev, e100_ec_poll, THIS_MODULE); |
|
3019 |
|
3020 if (!nic->ecdev) { |
|
3021 strcpy(netdev->name, "eth%d"); |
|
3022 if ((err = register_netdev(netdev))) { |
|
3023 netif_err(nic, probe, nic->netdev, |
|
3024 "Cannot register net device, aborting\n"); |
|
3025 goto err_out_free; |
|
3026 } |
|
3027 } |
|
3028 |
|
3029 nic->cbs_pool = pci_pool_create(netdev->name, |
|
3030 nic->pdev, |
|
3031 nic->params.cbs.max * sizeof(struct cb), |
|
3032 sizeof(u32), |
|
3033 0); |
|
3034 netif_info(nic, probe, nic->netdev, |
|
3035 "addr 0x%llx, irq %d, MAC addr %pM\n", |
|
3036 (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0), |
|
3037 pdev->irq, netdev->dev_addr); |
|
3038 |
|
3039 if (nic->ecdev) { |
|
3040 if (ecdev_open(nic->ecdev)) { |
|
3041 ecdev_withdraw(nic->ecdev); |
|
3042 goto err_out_free; |
|
3043 } |
|
3044 } |
|
3045 |
|
3046 return 0; |
|
3047 |
|
3048 err_out_free: |
|
3049 e100_free(nic); |
|
3050 err_out_iounmap: |
|
3051 pci_iounmap(pdev, nic->csr); |
|
3052 err_out_free_res: |
|
3053 pci_release_regions(pdev); |
|
3054 err_out_disable_pdev: |
|
3055 pci_disable_device(pdev); |
|
3056 err_out_free_dev: |
|
3057 pci_set_drvdata(pdev, NULL); |
|
3058 free_netdev(netdev); |
|
3059 return err; |
|
3060 } |
|
3061 |
|
3062 static void __devexit e100_remove(struct pci_dev *pdev) |
|
3063 { |
|
3064 struct net_device *netdev = pci_get_drvdata(pdev); |
|
3065 |
|
3066 if (netdev) { |
|
3067 struct nic *nic = netdev_priv(netdev); |
|
3068 if (nic->ecdev) { |
|
3069 ecdev_close(nic->ecdev); |
|
3070 ecdev_withdraw(nic->ecdev); |
|
3071 } else { |
|
3072 unregister_netdev(netdev); |
|
3073 } |
|
3074 |
|
3075 e100_free(nic); |
|
3076 pci_iounmap(pdev, nic->csr); |
|
3077 pci_pool_destroy(nic->cbs_pool); |
|
3078 free_netdev(netdev); |
|
3079 pci_release_regions(pdev); |
|
3080 pci_disable_device(pdev); |
|
3081 pci_set_drvdata(pdev, NULL); |
|
3082 } |
|
3083 } |
|
3084 |
|
3085 #define E100_82552_SMARTSPEED 0x14 /* SmartSpeed Ctrl register */ |
|
3086 #define E100_82552_REV_ANEG 0x0200 /* Reverse auto-negotiation */ |
|
3087 #define E100_82552_ANEG_NOW 0x0400 /* Auto-negotiate now */ |
|
3088 static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake) |
|
3089 { |
|
3090 struct net_device *netdev = pci_get_drvdata(pdev); |
|
3091 struct nic *nic = netdev_priv(netdev); |
|
3092 |
|
3093 if (netif_running(netdev)) |
|
3094 e100_down(nic); |
|
3095 netif_device_detach(netdev); |
|
3096 |
|
3097 pci_save_state(pdev); |
|
3098 |
|
3099 if ((nic->flags & wol_magic) | e100_asf(nic)) { |
|
3100 /* enable reverse auto-negotiation */ |
|
3101 if (nic->phy == phy_82552_v) { |
|
3102 u16 smartspeed = mdio_read(netdev, nic->mii.phy_id, |
|
3103 E100_82552_SMARTSPEED); |
|
3104 |
|
3105 mdio_write(netdev, nic->mii.phy_id, |
|
3106 E100_82552_SMARTSPEED, smartspeed | |
|
3107 E100_82552_REV_ANEG | E100_82552_ANEG_NOW); |
|
3108 } |
|
3109 *enable_wake = true; |
|
3110 } else { |
|
3111 *enable_wake = false; |
|
3112 } |
|
3113 |
|
3114 pci_disable_device(pdev); |
|
3115 } |
|
3116 |
|
3117 static int __e100_power_off(struct pci_dev *pdev, bool wake) |
|
3118 { |
|
3119 if (wake) |
|
3120 return pci_prepare_to_sleep(pdev); |
|
3121 |
|
3122 pci_wake_from_d3(pdev, false); |
|
3123 pci_set_power_state(pdev, PCI_D3hot); |
|
3124 |
|
3125 return 0; |
|
3126 } |
|
3127 |
|
3128 #ifdef CONFIG_PM |
|
3129 static int e100_suspend(struct pci_dev *pdev, pm_message_t state) |
|
3130 { |
|
3131 bool wake; |
|
3132 __e100_shutdown(pdev, &wake); |
|
3133 return __e100_power_off(pdev, wake); |
|
3134 } |
|
3135 |
|
3136 static int e100_resume(struct pci_dev *pdev) |
|
3137 { |
|
3138 struct net_device *netdev = pci_get_drvdata(pdev); |
|
3139 struct nic *nic = netdev_priv(netdev); |
|
3140 |
|
3141 pci_set_power_state(pdev, PCI_D0); |
|
3142 pci_restore_state(pdev); |
|
3143 /* ack any pending wake events, disable PME */ |
|
3144 pci_enable_wake(pdev, 0, 0); |
|
3145 |
|
3146 /* disable reverse auto-negotiation */ |
|
3147 if (nic->phy == phy_82552_v) { |
|
3148 u16 smartspeed = mdio_read(netdev, nic->mii.phy_id, |
|
3149 E100_82552_SMARTSPEED); |
|
3150 |
|
3151 mdio_write(netdev, nic->mii.phy_id, |
|
3152 E100_82552_SMARTSPEED, |
|
3153 smartspeed & ~(E100_82552_REV_ANEG)); |
|
3154 } |
|
3155 |
|
3156 netif_device_attach(netdev); |
|
3157 if (netif_running(netdev)) |
|
3158 e100_up(nic); |
|
3159 |
|
3160 return 0; |
|
3161 } |
|
3162 #endif /* CONFIG_PM */ |
|
3163 |
|
3164 static void e100_shutdown(struct pci_dev *pdev) |
|
3165 { |
|
3166 bool wake; |
|
3167 __e100_shutdown(pdev, &wake); |
|
3168 if (system_state == SYSTEM_POWER_OFF) |
|
3169 __e100_power_off(pdev, wake); |
|
3170 } |
|
3171 |
|
3172 /* ------------------ PCI Error Recovery infrastructure -------------- */ |
|
3173 /** |
|
3174 * e100_io_error_detected - called when PCI error is detected. |
|
3175 * @pdev: Pointer to PCI device |
|
3176 * @state: The current pci connection state |
|
3177 */ |
|
3178 static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) |
|
3179 { |
|
3180 struct net_device *netdev = pci_get_drvdata(pdev); |
|
3181 struct nic *nic = netdev_priv(netdev); |
|
3182 |
|
3183 if (nic->ecdev) |
|
3184 return -EBUSY; |
|
3185 |
|
3186 netif_device_detach(netdev); |
|
3187 |
|
3188 if (state == pci_channel_io_perm_failure) |
|
3189 return PCI_ERS_RESULT_DISCONNECT; |
|
3190 |
|
3191 if (netif_running(netdev)) |
|
3192 e100_down(nic); |
|
3193 pci_disable_device(pdev); |
|
3194 |
|
3195 /* Request a slot reset. */ |
|
3196 return PCI_ERS_RESULT_NEED_RESET; |
|
3197 } |
|
3198 |
|
3199 /** |
|
3200 * e100_io_slot_reset - called after the pci bus has been reset. |
|
3201 * @pdev: Pointer to PCI device |
|
3202 * |
|
3203 * Restart the card from scratch. |
|
3204 */ |
|
3205 static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev) |
|
3206 { |
|
3207 struct net_device *netdev = pci_get_drvdata(pdev); |
|
3208 struct nic *nic = netdev_priv(netdev); |
|
3209 |
|
3210 if (nic->ecdev) |
|
3211 return -EBUSY; |
|
3212 |
|
3213 if (pci_enable_device(pdev)) { |
|
3214 pr_err("Cannot re-enable PCI device after reset\n"); |
|
3215 return PCI_ERS_RESULT_DISCONNECT; |
|
3216 } |
|
3217 pci_set_master(pdev); |
|
3218 |
|
3219 /* Only one device per card can do a reset */ |
|
3220 if (0 != PCI_FUNC(pdev->devfn)) |
|
3221 return PCI_ERS_RESULT_RECOVERED; |
|
3222 e100_hw_reset(nic); |
|
3223 e100_phy_init(nic); |
|
3224 |
|
3225 return PCI_ERS_RESULT_RECOVERED; |
|
3226 } |
|
3227 |
|
3228 /** |
|
3229 * e100_io_resume - resume normal operations |
|
3230 * @pdev: Pointer to PCI device |
|
3231 * |
|
3232 * Resume normal operations after an error recovery |
|
3233 * sequence has been completed. |
|
3234 */ |
|
3235 static void e100_io_resume(struct pci_dev *pdev) |
|
3236 { |
|
3237 struct net_device *netdev = pci_get_drvdata(pdev); |
|
3238 struct nic *nic = netdev_priv(netdev); |
|
3239 |
|
3240 /* ack any pending wake events, disable PME */ |
|
3241 pci_enable_wake(pdev, 0, 0); |
|
3242 |
|
3243 if (!nic->ecdev) |
|
3244 netif_device_attach(netdev); |
|
3245 if (nic->ecdev || netif_running(netdev)) { |
|
3246 e100_open(netdev); |
|
3247 if (!nic->ecdev) |
|
3248 mod_timer(&nic->watchdog, jiffies); |
|
3249 } |
|
3250 } |
|
3251 |
|
3252 static struct pci_error_handlers e100_err_handler = { |
|
3253 .error_detected = e100_io_error_detected, |
|
3254 .slot_reset = e100_io_slot_reset, |
|
3255 .resume = e100_io_resume, |
|
3256 }; |
|
3257 |
|
3258 static struct pci_driver e100_driver = { |
|
3259 .name = DRV_NAME, |
|
3260 .id_table = e100_id_table, |
|
3261 .probe = e100_probe, |
|
3262 .remove = __devexit_p(e100_remove), |
|
3263 #ifdef CONFIG_PM |
|
3264 /* Power Management hooks */ |
|
3265 .suspend = e100_suspend, |
|
3266 .resume = e100_resume, |
|
3267 #endif |
|
3268 .shutdown = e100_shutdown, |
|
3269 .err_handler = &e100_err_handler, |
|
3270 }; |
|
3271 |
|
3272 static int __init e100_init_module(void) |
|
3273 { |
|
3274 if (((1 << debug) - 1) & NETIF_MSG_DRV) { |
|
3275 pr_info("%s %s, %s\n", DRV_NAME, DRV_DESCRIPTION, DRV_VERSION); |
|
3276 pr_info("%s\n", DRV_COPYRIGHT); |
|
3277 } |
|
3278 return pci_register_driver(&e100_driver); |
|
3279 } |
|
3280 |
|
3281 static void __exit e100_cleanup_module(void) |
|
3282 { |
|
3283 printk(KERN_INFO DRV_NAME " cleaning up module...\n"); |
|
3284 pci_unregister_driver(&e100_driver); |
|
3285 printk(KERN_INFO DRV_NAME " module cleaned up.\n"); |
|
3286 } |
|
3287 |
|
3288 module_init(e100_init_module); |
|
3289 module_exit(e100_cleanup_module); |