
1

The CanFestival CANopen stack manual.

2

CanFestival v3.0 Manual

1 - Introduction . 4
1.1) The CanFestival project 4
1.2) What is CANopen . 4

2 - CanFestival Features . 4
2.1) Tools . 4
2.2) Multi-Platform . 5
2.3) CANopen standard conformance 5

3 - How to start . 6
3.1) Host requirements . 6
3.2) How to get CanFestival 7

4 - Understanding Canfestival . 7
4.1) CanFestival Project tree layout 7
4.2) Implement CanFestival in your application 8
4.3) CanFestival CAN interfaces 8
4.4) CanFestival event scheduling 9

5 - Linux Target . 10
5.1) Linux Compilation and installation 10
5.2) Testing your CanFestival installation 13

6 - Windows Targets . 14
6.1) Object Dictionary Editor GUI installation. 14
6.2) CYGWIN . 14
6.3) Visual Studio C++ . 16
6.4) MSYS . 17

7 - Motorola HCS12 . 19
7.1) Running a HCS12 node 19

8 - Example and test program: 20
8.1) CANOpenShell . 20
8.2) TestMasterSlave . 22
8.3) gene_SYNC_HCS12 : 23
8.4) kerneltest : . 23
8.5) TestMasterMicroMod 24

3

4 CANFESTIVAL V3.0 MANUAL

8.6) TestMasterSlaveLSS 25
8.7) FastScan . 26

9 - Developing a new node . 26
9.1) Using Dictionary Editor GUI 27
9.2) Generating the object Dictionary 33

10 - FAQ . 34
10.1) General . 34
10.2) LINUX . 34
10.3) Win32 . 35
10.4) HCS12 . 35

11 - Documentation resources . 39
11.1) CIA : Can in Automation 39
11.2) Resources and training in CANopen 39
11.3) Elektronikladen HCS12 T -board 39
11.4) Gnu gcc compiler for HC12 39
11.5) Motorola documentation on HC12 39
11.6) Lauterbach debugger for HC12 39
11.7) Python language . 39

12 - About the project . 40
12.1) Contributors . 40
12.2) Getting support . 41
12.3) Contributing . 41
12.4) License . 41

1 -. INTRODUCTION 5

1 - Introduction

CanFestival is an OpenSource (LGPL and GPL) CANopen framework.

1.1) The CanFestival project

This project, initiated by Edouard TISSERANT in 2001, has grown thanks
to Francis DUPIN and other contributors.

Today, CanFestival focuses on providing an ANSI-C platform independent
CANopen stack that can be implemented as master or slave nodes on PCs,
Real-time IPCs, and Microcontrollers.

CanFestival is a project supported by Lolitech.

1.2) What is CANopen

CANopen is a CAN based high level protocol. It de�nes some protocols to :

1. Con�gure a CAN network.

2. Transmit data to a speci�c node or in broadcast.

3. Administrate the network. For example detecting a not responding
node.

The documentation can be found on the CAN in Automation website :
http://www.can-cia.de/canopen
The most important document about CANopen is the normative CiA

Draft Standard 301, version 4.02. You can now download the speci�cation
from the CAN in Automation website at no cost.

To continue reading this document, let us assume that you have read
some papers introducing CANopen .

2 - CanFestival Features

2.1) Tools

The CANopen library is coming with some tools :

1. Object Dictionary editor GUI. WxPython Model-View-Controler based
GUI, that helps a lot in generating object dictionary source code for
each node.

http://www.can-cia.de/canopen

6 CANFESTIVAL V3.0 MANUAL

2. A con�gure script, that let you chose compile time options such as
target CPU/HOST, CAN and TIMER drivers.
This script has not been generated with autoconf, it has been made
keeping micro-controller target in mind.

2.2) Multi-Platform

1. Library source code is C-ANSI.

2. Driver and examples coding conventions merely depend on target spe-
ci�c contributor/compiler.

3. Unix compatible interfaces and examples should compile and run on
any Unix system (tested on GNU/Linux and GNU/FreeBSD).

2.3) CANopen standard conformance

2.3.1) DS-301

Supported features should conform to DS301. V.4.02 13 february 2002.

1. NMT master and slave

2. Heartbeat consumer and producer

3. NodeGuard slave reponder and basic master without tracking

4. SYNC service

5. SDO multiples client and server, segmented and expedited

6. PDO : TPDO and RPDO, with respect to transmission type

7. PDO mapping from/to OD variables bit per bit.

8. EMCY : Send and receive and keeps track of emergency objects

9. Data types : 8 to 64 bits values, �xed length strings.

2.3.2) DS-302

Only concise DFC is supported.

3 -. HOW TO START 7

2.3.3) DS-305

LSS services are fully supported although they have to be enabled at compile
time. Additionally, FastScan LSS service is also optionally enabled.

3 - How to start

3.1) Host requirements

What you need on your development workstation.

3.1.1) Object Dictionary Editor GUI

1. Python, with

2. wxPython modules installed (at least version 2.6.3).

3. Gnosis xml tools. (Optional can also be installed locally to the project
automatically with the help of a Make�le. Please see �Using Dictionary
Editor GUI�)

3.1.2) Linux and Unix-likes

1. Linux, FreeBSD, Cygwin or any Unix environment with GNU toolchain.

2. The GNU C compiler (gcc) or any other ANSI-C compiler for your
target platform.

3. Xpdf, and the o�cial 301_v04000201.pdf �le in order to get GUI con-
text sensitive help.

4. GNU Make

5. Bash and sed

3.1.3) Windows (for native win32 target)

1. Visual Studio Express 2005 or worst.

2. Microsoft platform SDK (requires Genuine Advantage)

3. Cygwin (for con�guration only)

4. MinGW/MSYS

8 CANFESTIVAL V3.0 MANUAL

3.2) How to get CanFestival

Please always use CVS, this is the best way to get the most reactive support
from the developer community :

cvs -d:pserver:anonymous@lolitech.dyndns.org:/canfestival login

(type return, without entering a password)
Then, enter :

cvs -z3 -d:pserver:anonymous@lolitech.dyndns.org:/canfestival co -P CanFestival-3

4 - Understanding Canfestival

4.1) CanFestival Project tree layout

Simpli�ed directory structure.

./src ANSI-C source of \canopen stack

./include Exportables Header files

./drivers Interfaces to specific platforms/HW

./drivers/unix Linux and Cygwin OS interface

./drivers/win32 Native Win32 OS interface

./drivers/timers_xeno Xenomai timers/threads (Linux only)

./drivers/timers_rtai Rtai timers/threads (Linux only)

./drivers/timers_kernel Linux kernel timer/threads

./drivers/timers_unix Posix timers/threads (Linux, Cygwin)

./drivers/can_virtual_kernel Fake CAN network (kernel space)

./drivers/can_serial Serial point to point and PTY hub (*nix only)

./drivers/can_peak_linux PeakSystem CAN library interface

./drivers/can_peak_win32 PeakSystem PCAN-Light interface

./drivers/can_uvccm_win32 Acacetus's RS232 CAN-uVCCM interface

./drivers/can_virtual Fake CAN network (Linux, Cygwin)

./drivers/can_vcom VScom VSCAN interface

./drivers/hcs12 HCS12 full target interface

./examples Examples

./examples/TestMasterSlave 2 nodes, NMT SYNC SDO PDO, win32+unix

./examples/TestMasterSlaveLSS 3 nodes, NMT SYNC SDO PDO LSS, win32+unix

./examples/TestMasterMicroMod 1 node, control Peak I/O Module, unix

./examples/gene_SYNC_HCS12 Just send periodic SYNC on HCS12

./examples/win32test Ask some DS301 infos to a node (win32)

./objdictgen Object Dictionary editor GUI

4 -. UNDERSTANDING CANFESTIVAL 9

./objdictgen/config Pre-defined OD profiles

./objdictgen/examples Some examples/test OD

./doc Documentation source

4.2) Implement CanFestival in your application

4.3) CanFestival CAN interfaces

Because most CAN controllers and drivers implement FIFOs, CanFestival
consider sending message as a non blocking operation.

In order to prevent reentrant calls to the stack, messages reception is
implemented di�erently on µC and OS.:

1. µC must provide interruption masking, mutually excluding timer and
CAN receive interrupts.

10 CANFESTIVAL V3.0 MANUAL

2. OS must provide a receive thread, a timer thread and a mutex. CAN
reception should be a blocking operation.

4.4) CanFestival event scheduling

A CANopen node must be able to take delayed actions.
For instance, periodic sync emission, heartbeat production or SDO time-

out need to set some alarms that will be called later and do the job.
µC generally do not have enough free timers to handle all the CANopen

needs directly. Moreover, CanFestival internal data may be corrupt by reen-
trant calls.

5 -. LINUX TARGET 11

CanFestival implement a micro -scheduler (timer.c). It uses only one
timer to mimic many timers. It manage an alarm table, and call alarms at
desired time.

Scheduler can handle short clock value ranges limitation found on some
µC. As an example, value range for a 16bit clock counter with 4µs tick is
crossed within 0.26 seconds... Long alarms must be segmented.

Chronogram illustrate a long alarm (A) and a short periodic alarm (B),
with a A value > clock range > B value. Values t0...t8 are successive setTimer
call parameter values. t1 illustrates an intermediate call to TimeDispatch,
caused by a delay longer than clock range. Because of long alarm segmenta-
tion, at the end of t1, TimeDispatch call will not trig any alarm callback.

5 - Linux Target

Linux target is default con�gure target.

5.1) Linux Compilation and installation

Call ./con�gure � help to see all available compile time options.
After invoking ./con�gure with your platform speci�c switches, just type

make.

12 CANFESTIVAL V3.0 MANUAL

./configure [options]

make

make install

5.1.1) Standard Linux node

./configure --timers=unix

To do a CANopen node running on PC -Linux, you need :

1. A working linux distribution

2. One or more Peak system PC CAN interface and the last Peak Linux
driver installed.

5.1.2) Real -Time Linux node

With Xenomai :

./configure --timers=xeno

With Rtai :

./configure --timers=rtai

To do a CANopen node running on PC -Linux, you need :

1. A working Linux distribution patched with XENOMAI (2.1 or greater)
or RTAI (3.6).

2. One or more Peak system PC CAN interface and the last Peak Real
Time Linux driver installed.

5.1.3) Linux kernel node

To do a CANopen node running on PC-Linux in kernel space, you need:

1. A working Linux distribution with pre-built 2.6.x.x kernel sources

2. A CAN card driver compatible with CanFestival

5.1.4) CAN devices

Currently supported CAN devices and corresponding con�gure switch:

5 -. LINUX TARGET 13

a) Peak systems

./configure --can=peak_linux

PeakSystems CAN interface is automatically chosen as default CAN interface
if libpcan is present in the system.

Please download driver at http://www.peak -system.com/linux and fol-
low instructions in order to install driver on your system.

b) Socket-Can (http://socketcan.berlios.de)

./configure --can=socket

c) Serial

./configure --can=serial

The CAN serial driver implements a 1:1 serial connection between 2 CAN
devices. For example, you can connect 2 CANFestival applications via a
NULL modem cable.

Also with this driver comes a software hub, for up to 16 CANFestival
apps to be connected on a single PC, with an optional connection to another
CAN driver. Note that only the serial driver is supported at this time. The
hub uses ptys (pseudo ttys) available on a *nix like system.

d) LinCan

./configure --can=lincan

e) Virtual CAN interfaces (for test/debug)

./configure --can=virtual

or, for kernel space:

./configure --can=kernel_virtual

Virtual CAN interface use Unix pipes to emulate a virtual CAN network.
Each message issued from a node is repeat to all other nodes. Currently only
works with nodes running in the same process, and does not support work
with Xenomai or RTAI.

f) VScom

./configure --can=vscom

The VSCAN API archive will be automatically downloaded and decom-
pressed (unzip required). See www.vscom.de for available adapters.

http://www.peak-system.com/linux
http://www.vscom.de/1_1_05.htm

14 CANFESTIVAL V3.0 MANUAL

5.1.5) LSS services

Canfestival optionally supports LSS services but they must be enabled.

./configure --enable-lss

Additionally, the FastScan LSS service can also be enabled.

./configure --enable-lss --enable-lss-fs

5.2) Testing your CanFestival installation

5.2.1) User space

Sample provided in /example/TestMasterSlave is installed into your system
during installation.

TestMasterSlave

Default CAN driver library is libcanfestival_can_virtual.so., which will
simply pass CAN messages through Unix pipes between Master and Slave.

You may also want to specify di�erent can interface and de�ne some CAN
ports. Another example using Peak's dual PCMCIA (con�gure and install
with �can=peak) :

TestMasterSlave -l libcanfestival_can_peak.so -s 40 -m 41

If the LSS services are enabled the sample provided in /example/TestMasterSlaveLSS
will be also installed. It behaves the same as TestMasterSlave except that
there are 2 slave nodes without a valid nodeID so the the initializations is
done via the LSS services. If FastScan optional service is enabled the example
will use it.

5.2.2) Kernel space

example/kerneltest

It's based on TestMasterSlave example and has the same functionality.
Uses virtual can driver as default too. After successful installation you can
insert the module by typing: modprobe canf_ktest Module control is done
by simple console 'canf_ktest_console' which is used to start/stop sending
data.

6 -. WINDOWS TARGETS 15

6 - Windows Targets

CanFestival can be compiled and run on Windows platform. It is possible to
use both Cygwin and win32 native runtime environment.

6.1) Object Dictionary Editor GUI installation.

Please refer to 8.2.1)Using Dictionary Editor GUI

6.2) CYGWIN

6.2.1) Requirements

Cygwin have to be installed with those packages :

1. gcc

2. unzip

3. wget

4. make

Currently, the only supported CAN devices are PeakSystems ones, with
PcanLight driver and library.

Please download driver at http://www.peak -system.com/themen/download_gb.html
and follow instructions in order to install driver on your system.

Install Cygwin as required, and the driver for your Peak CAN device.
Open a Cygwin terminal, and follow those instructions:

6.2.2) Cygwin con�guration and compilation

a) A single node with PcanLight and Peak CAN -USB adapter
Download the PCAN-Light Zip �le for your HW (URL from download page
):

wget http://www.peak -system.com/files/usb.zip

Extract its content into your cygwin home (it will create a �Disk� direc-
tory):

unzip usb.zip

http://www.peak-system.com/themen/download_gb.html

16 CANFESTIVAL V3.0 MANUAL

Con�gure CanFestival3 providing path to the desired PcanLight imple-
mentation:

cd CanFestival -3

export PCAN_INCLUDE=~/Disk/PCAN-Light/Api/

export PCAN_HEADER=Pcan_usb.h

export PCAN_LIB=~/Disk/PCAN-Light/Lib/Visual\ C++/Pcan_usb.lib

./configure --can=peak_win32

make

In order to test, you have to use another CanFestival node, connect with
a CAN cable.

cp ~/Disk/PCAN-Light/Pcan_usb.dll .

./examples/TestMasterSlave/TestMasterSlave \

-l drivers/can_peak_win32/cygcan_peak_win32.dll \

-S 500K -M none

Then, on the other node :

./TestMasterSlave -l my_driver.so -S none -M 500K

Now messages are being exchanged between master and slave node.

b) Two nodes with PcanLight and Peak dual PCMCIA -CAN
adapter Download the PCAN-Light Zip �le for your HW (URL from
download page):

wget http://www.peak-system.com/files/pccard.zip

Extract its content into your cygwin home (it will create a �Disk� direc-
tory):

unzip pccard.zip

The con�gure CanFestival3 providing path to the desired PcanLight im-
plementation:

export PCAN_INCLUDE=~/Disk/PCAN-Light/Api/

export PCAN_HEADER=Pcan_pcc.h

export PCAN_LIB=~/Disk/PCAN-Light/Lib/Visual\ C++/Pcan_pcc.lib

export PCAN2_HEADER=Pcan_2pcc.h

export PCAN2_LIB=~/Disk/PCAN-Light/Lib/Visual\ C++/Pcan_2pcc.lib

6 -. WINDOWS TARGETS 17

In order to test, just connect together both CAN ports of the PCMCIA
card. Don't forget 120ohms terminator.

cp ~/Disk/PCAN-Light/Pcan_pcc.dll .

cp ~/Disk/PCAN-Light/Pcan_2pcc.dll .

./examples/TestMasterSlave/TestMasterSlave \

-l drivers/can_peak_win32/cygcan_peak_win32.dll

Messages are then exchanged between master and slave node, both inside
TestMasterSlave's process.

6.3) Visual Studio C++

6.3.1) Requirements

Minimal Cygwin installation is required at con�guration time in order to
create speci�c header �les (con�g.h and cancfg.h). Once this �les created,
cygwin is not necessary any more.

Project and solution �les have been created and tested with Visual Stu-
dio Express 2005. Be sure to have installed Microsoft Platform SDK, as
recommended at the end of Visual Studio installation.

6.3.2) Con�guration with cygwin

Follow instructions given at Cygwin con�guration and compilation, but do
neither call make nor do tests, just do con�guration steps. This will create
headers �les accordingly to your con�guration parameters, and the desired
CAN hardware.

6.3.3) Compilation with Visual Studio

You can either load independent �*.vcproj� project �les along your own
projects in your own solution or load the provided �CanFestival -3.vc8.sln�
solution �les directly.

Build CanFestival -3 project �rst.

a) PcanLight and the can_peak_win32 project. Chosen Pcan_xxx.lib
and eventually Pcan_2xxx.lib �les must be added to can_peak_win32 project
before build of the DLL.

18 CANFESTIVAL V3.0 MANUAL

6.3.4) Testing

Copy eventually needed dlls (ie : Pcan_Nxxx.lib) into Release or Debug
directory, and run the test program:

TestMasterSlave.exe -l can_peak_win32.dll

6.4) MSYS

6.4.1) Requirements

Download from : http://sourceforge.net/project/show�les.php?group_id=2435

1. MSYS-1.0.10.exe

2. MinGW-5.1.3.exe

3. mingwPORT (which contains wget-1.9.1)

Please download driver at http://www.peak-system.com/themen/download_gb.html
and follow instructions in order to install driver on your system. Install MSYS
and MingW as required, and the driver for your Peak CAN device. Open a
MSYS terminal, and follow those instructions:

� extract wget-1.9.1-mingwPORT.tar.bz2

� copy wget.exe in c:\ msys\ 1.0\ bin\

� start MSYS and check the �le /etc/fstab contain the line c:/MinGW
/mingw

6.4.2) MSYS con�guration and compilation

Instructions for compilation are nearly the same as CYGWIN part.

a) A single node with PcanLight and Peak CAN-USB adapter
Download the PCAN-Light Zip �le for your HW (URL from download page
):

wget http://www.peak-system.com/files/usb.zip

Extract its content into your MSYS's home (it will create a " Disk"
directory):

6 -. WINDOWS TARGETS 19

unzip usb.zip

Con�gure CanFestival3 providing path to the desired PcanLight imple-
mentation:

cd CanFestival-3

export PCAN_INCLUDE=~/Disk/PCAN-Light/Api/

export PCAN_HEADER=Pcan_usb.h

export PCAN_LIB=~/Disk/PCAN-Light/Lib/Visual\ C++/Pcan_usb.lib

./configure --can=peak_win32

make

In order to test, you have to use another CanFestival node, connect with
a CAN cable.

cp ~/Disk/PCAN-Light/Pcan_usb.dll .

./examples/TestMasterSlave/TestMasterSlave \

-l drivers/can_peak_win32/cygcan_peak_win32.dll \

-S 500K -M none

Then, on the other node :

./TestMasterSlave -l my_driver.so -S none -M 500K -m 0

Now messages are being exchanged between master and slave node.

b) Two nodes with PcanLight and Peak dual PCMCIA-CAN adapter
Download the PCAN-Light Zip �le for your HW (URL from download page
):

wget http://www.peak-system.com/files/pccard.zip

Extract its content into your MSYS's home (it will create a " Disk" directory):

unzip pccard.zip

The con�gure CanFestival3 providing path to the desired PcanLight imple-
mentation:

export PCAN_INCLUDE=~/Disk/PCAN-Light/Api/

export PCAN_HEADER=Pcan_pcc.h}

export PCAN_LIB=~/Disk/PCAN-Light/Lib/Visual\ C++/Pcan_pcc.lib

export PCAN2_HEADER=Pcan_2pcc.h

export PCAN2_LIB=~/Disk/PCAN-Light/Lib/Visual\ C++/Pcan_2pcc.lib

20 CANFESTIVAL V3.0 MANUAL

In order to test, just connect together both CAN ports of the PCMCIA
card. Don't forget 120ohms terminator.

cp~/Disk/PCAN-Light/Pcan_pcc.dll ~.

cp ~/Disk/PCAN-Light/Pcan_2pcc.dll ~.

./examples/TestMasterSlave/TestMasterSlave \

-l drivers/can_peak_win32/cygcan_peak_win32.dll -m 0 -s 1

Messages are then exchanged between master and slave node, both inside
TestMasterSlave's process.

7 - Motorola HCS12

The examples have been tested on a MC9S12DG255 mounted on a Elektron-
ikladen HCS12 T -board.

Beware that there are few di�erences in the MSCAN module of the
68HC12 and HCS12 microcontroller. For a HC12, you must adapt the driver
that we provide for the HCS12.

For the di�erence MSCAN HC12/HCS12, see the Motorola application
note AN2011/D.

Con�gure switch:

--target=hcs12

To do a CANopen node running on a microncontroller Motorola MC9S12DP256,
you need :

1. The compiler GNU gcc for HC11, HC12, HCS12 : m6811 -elf.
Download the release 3.1 at : http://m68hc11.serveftp.org/m68hc11_pkg_rpm.php

2. A board with this chip. We are using the T -board from Electron-
ikladen.

3. At least about 40 kBytes of program memory.

4. A tool to �ash the memory. (We are using the high cost Lauterbach
debugger).

7.1) Running a HCS12 node

7.1.1) Compiling Canfestival:

./configure --target=hcs12

http://m68hc11.serveftp.org/m68hc11_pkg_rpm.php

8 -. EXAMPLE AND TEST PROGRAM: 21

7.1.2) Compiling and building an example

Enter in the folder of an HCS12 example,

make all

7.1.3) Flashing the memory :

Use your preferred loader ! If you are using a debugger Lauterbach, you can
load the bash �le : trace32_�ash_programmer.cmm. It loads directly the
elf �le.

7.1.4) Connecting to a serial RS232 console :

Connect the portS(TxD0) of the HCS12 to a console con�gured at 19200
bauds 8N1, via a Max232 chip to adapt the electrical levels. On Linux, you
can use minicom. Connecting to a console is useful to read the messages, but
not required.

7.1.5) Connecting to the CAN network :

Connect the port CAN0 (pin PM0, PM1) to the network via a CAN con-
troller. On our board, the CAN controller is a PCA82C250 chip.

7.1.6) starting the node :

Press the reset of your HCS12 board.

8 - Example and test program:

The �examples� directory contains some test program you can use as example
for your own developments.

8.1) CANOpenShell

This example provides a node that can execute some user commands through
stdin.

With this example you can:

1. scan network (reset all nodes and display node's bootup message)

2. start / stop /reset a remote node

22 CANFESTIVAL V3.0 MANUAL

3. get informations about a remote node

4. read / write a speci�c entry of a remote node

The node can be started as a master node or a slave node. The only
di�erence is that when is started as a master, all nodes on the network are
reseted.

The �rst command must be the "load" command.

**

* CANOpenShell *

* *

* MANDATORY COMMAND (must be the first command) *

* load#CanLibraryPath,channel,baudrate,nodeid,type (0:slave, 1:master) *

* *

* NETWORK: (if nodeid=0x00 : broadcast) *

* ssta#nodeid : Start a node *

* ssto#nodeid : Stop a node *

* srst#nodeid : Reset a node *

* scan : Reset all nodes and print message when bootup *

* wait#seconds : Sleep for n seconds *

* *

* SDO: (size in bytes) *

* info#nodeid *

* rsdo#nodeid,index,subindex : read sdo *

* ex : rsdo#42,1018,01 *

* wsdo#nodeid,index,subindex,size,data : write sdo *

* ex : wsdo#42,6200,01,01,FF *

* *

* Note: All numbers are hex *

* *

* help : Display this menu *

* quit : Quit application *

**

Minimal launch command :

./CANOpenShell load#libcanfestival_can_peak_linux.so,32,125K,8,0

This command start the node as a slave with nodeid 8 at 125K on channel
32.

Advanced launch command :

8 -. EXAMPLE AND TEST PROGRAM: 23

./CANOpenShell load#libcanfestival_can_peak_linux.so,32,125K,8,1 \

help \

wait#5 \

wsdo#42,6200,01,01,FF

This command starts the node as a master with nodeid 8 at 125K on channel
32, displays help menu, wait 5 seconds for node's NMT bootup, and write
FF value at index 6200, subindex 01 to the remote node with id 42.

8.2) TestMasterSlave

**

* TestMasterSlave *

* *

* A simple example for PC. It does implement 2 CanOpen *

* nodes in the same process. A master and a slave. Both *

* communicate together, exchanging periodically NMT, SYNC, *

* SDO and PDO. Master configure heartbeat producer time *

* at 1000 ms for slave node-id 0x02 by concise DCF. *

* *

* Usage: *

* ./TestMasterSlave [OPTIONS] *

* *

* OPTIONS: *

* -l : Can library ["libcanfestival_can_virtual.so"] *

* *

* Slave: *

* -s : bus name ["0"] *

* -S : 1M,500K,250K,125K,100K,50K,20K,10K,none(disable) *

* *

* Master: *

* -m : bus name ["1"] *

* -M : 1M,500K,250K,125K,100K,50K,20K,10K,none(disable) *

* *

**

Notes aboute use of concise DCF :
In this example, Master con�gure heartbeat producer time at 1000 ms

for slave node -id 0x02 by concise DCF according DS -302 pro�le.
Index 0x1F22, sub-index 0x00 of the master OD, correspond to the num-

ber of entries. This equal to the maximum possible nodeId (127). Each

24 CANFESTIVAL V3.0 MANUAL

sub -index points to the Node -ID of the device, to which the con�guration
belongs.

To add more parameters con�gurations to the slave, the value at sub -
index 0x02 must be a binary stream (little -endian) following this structure
:

(UNS32) nb of entries

(UNS16) index parameter 1

(UNS8) sub -index parameter 1

(UNS32) size data parameter 1

(DOMAIN) data parameter 1

(UNS16) index parameter 2

(UNS8) sub -index parameter 2

(UNS32) size data parameter 2

(DOMAIN) data parameter 2

....

(UNS16) index parameter n

(UNS8) sub -index parameter n

(UNS32) size data parameter n

(DOMAIN) data parameter n

So the binary value stream to con�gure heartbeat producer time must be
:

0100000017100002000000e803

The slave node is con�gured just before the Master entering in Pre_operational
state.

8.3) gene_SYNC_HCS12 :

This is a simple CANopen node that only send cyclic SYNC message. It
demonstrate implementation on HCS12 based board.

8.4) kerneltest :

Example based on TestMasterSlave slightly modi�ed to suit kernel space req-
uisites. It will do the same as TestMasterSlave but in kernel space sending

8 -. EXAMPLE AND TEST PROGRAM: 25

kernel messages (displayed by dmesg for example). It is designed as exter-
nal kernel module implemented as character device. There is a shell script
called 'insert.sh', which will insert the module and create a new device �le
/dev/canf_ktest (used to sending commands to module). To actual send-
ing commands you can use simple console named 'canf_ktest_console'. The
module is dependent on a another separate module 'canfestival.ko' imple-
menting CanOpen stack which exports requisite functions. Canfestival.ko
module is then dependent on CAN card driver module, by default CAN
virtual driver will be loaded. After installing modules (make install), all
dependencies are solved automatically by kernel. To run the example type:

sh run.sh

It will insert required modules, start console, and after quitting console it'll
remove modules from kernel.

8.5) TestMasterMicroMod

**

* TestMasterMicroMod *

* *

* A simple example for PC. *

* A CanOpen master that control a MicroMod module: *

* - setup module TPDO 1 transmit type *

* - setup module RPDO 1 transmit type *

* - setup module hearbeatbeat period *

* - disable others TPDOs *

* - set state to operational *

* - send periodic SYNC *

* - send periodic RPDO 1 to Micromod (digital output) *

* - listen Micromod's TPDO 1 (digital input) *

* - Mapping RPDO 1 bit per bit (digital input) *

* *

* Usage: *

* ./TestMasterMicroMod [OPTIONS] *

* *

* OPTIONS: *

* -l : Can library ["libcanfestival_can_virtual.so"] *

* *

* Slave: *

* -i : Slave Node id format [0x01 , 0x7F] *

26 CANFESTIVAL V3.0 MANUAL

* *

* Master: *

* -m : bus name ["1"] *

* -M : 1M,500K,250K,125K,100K,50K,20K,10K *

* *

**

8.6) TestMasterSlaveLSS

**

* TestMasterSlaveLSS *

* *

* A LSS example for PC. It does implement 3 CanOpen *

* nodes in the same process. A master and 2 slaves. All *

* communicate together, exchanging periodically NMT, SYNC, *

* SDO and PDO. Master configure heartbeat producer time *

* at 1000 ms for the slaves by concise DCF. *

* *

* Usage: *

* ./TestMasterSlaveLSS [OPTIONS] *

* *

* OPTIONS: *

* -l : Can library ["libcanfestival_can_virtual.so"] *

* *

* SlaveA: *

* -a : bus name ["0"] *

* -A : 1M,500K,250K,125K,100K,50K,20K,10K,none(disable) *

* *

* SlaveB: *

* -b : bus name ["1"] *

* -B : 1M,500K,250K,125K,100K,50K,20K,10K,none(disable) *

* *

* Master: *

* -m : bus name ["2"] *

* -M : 1M,500K,250K,125K,100K,50K,20K,10K,none(disable) *

* *

**

The function used to request LSS services is con�gNetworkNode. It works
similar to writeNetworkDict and its model is the following:

UNS8 configNetworkNode (CO_Data* d, UNS8 command, void *dat1, void* dat2,

9 -. DEVELOPING A NEW NODE 27

LSSCallback_t Callback)

8.7) FastScan

FastScan is a special LSS service that allow the dynamically identi�cation of
the slave nodes even if they do not have a valid nodeID. This identi�cation
is based on the LSS address, composed by vendor ID, product code, revi-
sion number and serial number (refer to the DS305 for more information).
The LSS address can be partially known or fully unknown. To represent
this fact in Canfestival, we use the structure lss_fs_transfer_t. The pa-
rameter FS_LSS_ID is an array of four elements which represents the four
elements of the LSS address. The other parameter, FS_BitChecked, is also
an array and it represents how many bits of each LSS address element are
UNKNOWN. The next example is taken from TestMasterSlaveLSS, where
only the last two digits (8 bits) of vendor ID and product code are unknown
and revision number and serial number are totally unknown.

lss_fs_transfer_t lss_fs;

/* The VendorID and ProductCode are partialy known, */

/* except the last two digits (8 bits). */

lss_fs.FS_LSS_ID[0]=Vendor_ID;

lss_fs.FS_BitChecked[0]=8;

lss_fs.FS_LSS_ID[1]=Product_Code;

lss_fs.FS_BitChecked[1]=8;

/* serialNumber and RevisionNumber are unknown, */

/* i.e. the 8 digits (32bits) are unknown. */

lss_fs.FS_BitChecked[2]=32;

lss_fs.FS_BitChecked[3]=32;

res=configNetworkNode(&d,LSS_IDENT_FASTSCAN,&lss_fs,0,CheckLSSAndContinue);

9 - Developing a new node

Using provided examples as a base for your new node is generally a good
idea. You can also use the provided *.od �les as a base for your node object
dictionary.

Creating a new CANopen node implies to de�ne the Object Dictionary
of this node. For that, developer has to provide a C �le. This C �le contains
the de�nition of all dictionary entries, and some kind of index table that
helps the stack to access some entries directly.

28 CANFESTIVAL V3.0 MANUAL

9.1) Using Dictionary Editor GUI

The Object Dictionary Editor is a WxPython based GUI that is used to
create the C �le needed to create a new CANopen node.

9.1.1) Installation and usage on Linux

You �rst have to download and install Gnosis XML modules. This is auto-
mated by a Make�le rule.

cd objdictgen

make

Now start the editor.

python objdictedit.py [od files...]

9.1.2) Installation and usage on Windows

Install Python (at least version 2.4) and wxPython (at least version 2.6.3.2).
Cygwin users can install Gnosis XML utils the same as Linux use. Just

call make.

cd objdictgen

make

Others will have to download and install Gnosis XML by hand :

Gnosis Utils:

http://freshmeat.net/projects/gnosisxml/

http://www.gnosis.cx/download/

Get latest version.

Download CanFestival archive and uncompress it. Use windows �le ex-
plorer to go into CanFestival3\objdicgten, and double -click on objdicte-
dit.py.

9.1.3) About

The Object Dictionary editor GUI is a python application that use the Model-
View-Controller design pattern. It depends on WxPython to display view on
any supported platform.

9 -. DEVELOPING A NEW NODE 29

9.1.4) Main view

Top list let you choose dictionary section, bottom left list is the selected
index in that dictionary, and bottom right list are edited sub -indexes.

30 CANFESTIVAL V3.0 MANUAL

9.1.5) New node

Edit your node name and type. Choose your inherited speci�c pro�le.

9 -. DEVELOPING A NEW NODE 31

9.1.6) Node info

Edit your node name and type.

9.1.7) Pro�le editor

Chose the used pro�le to edit.

Pick up optional chosen pro�le entries.

32 CANFESTIVAL V3.0 MANUAL

9.1.8) User types

Use User Types to implement value boundaries, and string length

9.1.9) Mapped variable

Add your own speci�c dictionary entries and associated mapped variables.

9 -. DEVELOPING A NEW NODE 33

9.1.10) Integrated help

Using F1 key, you can get context sensitive help.

In order to do that, o�cial 301_v04000201.pdf �le must be placed into
doc/ directory, and xpdf must be present on your system.

F2 key open HTML CanFestival help.

34 CANFESTIVAL V3.0 MANUAL

9.2) Generating the object Dictionary

Once object dictionary has been edited and saved, you have to generate
object dictionary C code for your CanFestival node.

9.2.1) With GUI

Menu entry �File/Build Dictionary�.

Choose C �le to create or overwrite. Header �le will be also created with
the same pre�x as C �le.

10 -. FAQ 35

9.2.2) With command line

Usage of objdictgen.py :

python objdictgen.py XMLFilePath CfilePath

10 - FAQ

10.1) General

10.1.1) Does the code compiles on Windows ?

Yes, with both Cygwin and Visual Studio C++.
Because CANopen layer is coded with C, put a compilation option /TC

or /TP if you plan to mix C++ �les. See the MSDN documentation about
that.

10.1.2) How to �t the library to an other microcontrï¾÷ler ?

First, be sure that you have at least 40K bytes of program memory, and
about 2k of RAM.

You have to create target speci�c interface to HW resources. Take model
on bundled interfaces provided in drivers/ and create your own interface.
You also have to update Make�le.in �les for target speci�c c�ags and options.
Choose �target= con�gure switch to compile your speci�c interface.

You are welcome to contribute -back your own interfaces! Other Canfes-
tival users will use it and provide feedback, tests and enhancements.

10.1.3) Is CanFestival3 conform to DS301 v.4.02 ?

Thanks to Philippe Foureys (IUT of Valence), a slave node have been tested
with the National Instrument CANopen Conformance Test. It passed the
test with success.

Some very small unconformity have been found in very unusual situations,
for example in the SDO code response to wrong messages.

10.2) LINUX

10.2.1) How to use a Peaksystem CAN board ?

Just install peak driver and then compile and install Canfestival. Peak driver
is detected at compile time.

36 CANFESTIVAL V3.0 MANUAL

10.2.2) How to use an unsupported CAN board ?

You have to install the speci�c driver on your system, with necessary libs
and headers.

Use can_peak.c/h or can_virtual.c/h as an example, and adapt it to
your driver API.

Execute con�gure script and choose �can=mydriver

10.3) Win32

Compatibility:

1. Code was compiled MS VisualStudio 2003.NET and VisualStudio 2005.NET
for WindowsXP with ANSI and UNICODE con�gurations and for
WindowsCE 5.0.

2. Some preliminary testing was done, but not enough to be used in mis-
sion critical projects.

Additional Features:

1. Non -integral integers support implementation UNS24, UNS40, UNS48
etc.

2. When enable debug output with DEBUG_WAR_CONSOLE_ON or
DEBUG_ERR_CONSOLE_ON, you can navigate in CanFestival source
code by double clicking at diagnostic lines in VisualStudio.NET 200X
Debug Output Window.

Custom size integral types such as INTEGER24, UNS40, INTEGER56 etc.
have been de�ned as 64 bits integers. You will need to replace sizeof(TYPE)
operators to sizeof_TYPE de�nitions in generated code, i.e. replace sizeof(UNS40)
with sizeof_UNS40.

10.4) HCS12

10.4.1) Which board are you using ?

A T -board from elektronikladen with a MC9S12DP256 or MC9S12DG256.

10.4.2) Does the code compile with an other compiler than GNU
gcc ?

It is known to work with Metrowerks CodeWarrior. Here are some tips from
Philippe Foureys. :

10 -. FAQ 37

a) Interrupt functions

i) Code for GCC:

// prototype

void __attribute__((interrupt))timer3Hdl(void):

// function

void __attribute__((interrupt))timer3Hdl(void){...}

ii) Code for CodeWarrior

// protoype

void interrupt timer3Hdl(void);

// function

pragma CODE_SEG__NEAR_SEG_NON_BANKED

void interrupt timer3Hdl(void)

{...}

pragma CODE_SEG_DEFAULT

b) Interrupt lock, unlock

i) Code for GCC

void unlock (void)

{

__asm__ __volatile__("cli");

}

void lock (void)

{

unsigned short mask;

__asm__ __volatile__("tpa\n\tsei":"=d"(mask));

}

ii) Code for CodeWarrior

void unlock (void)

{

__asm("cli");

}

void lock (void)

{

38 CANFESTIVAL V3.0 MANUAL

unsigned short mask;

__asm

{

tpa:tsei:"=d"(mask);

}

}

c) Initialize function

i) Code for GCC

void initCanHCS12 (void)

{

//Init the HCS12 microcontroler for CanOpen

initHCS12();

// Init the HCS12 CAN driver

const canBusInit bi0 = {

0, /* no low power */

0, /* no time stamp */

1, /* enable MSCAN */

0, /* clock source : oscillator (In fact, it is not used) */

0, /* no loop back */

0, /* no listen only */

0, /* no low pass filter for wk up */

CAN_Baudrates[CAN_BAUDRATE_250K],

{

0x00, /* Filter on 16 bits.

See Motorola Block Guide V02.14 fig 4-3 */

0x00, 0xFF, /* filter 0 hight accept all msg */

0x00, 0xFF, /* filter 0 low accept all msg */

0x00, 0xFF, /* filter 1 hight filter all of msg */

0x00, 0xFF, /* filter 1 low filter all of msg */

0x00, 0xFF, /* filter 2 hight filter most of msg */

0x00, 0xFF, /* filter 2 low filter most of msg */

0x00, 0xFF, /* filter 3 hight filter most of msg */

0x00, 0xFF, /* filter 3 low filter most of msg */

}

};

ii) Code for CodeWarrior

10 -. FAQ 39

void initCanHCS12 (void)

{

//Init the HCS12 microcontroler for CanOpen

initHCS12();

// Init the HCS12 CAN driver

const canBusInit bi0 = {

0, /* no low power */

0, /* no time stamp */

1, /* enable MSCAN */

0, /* clock source : oscillator (In fact, it is not used) */

0, /* no loop back */

0, /* no listen only */

0, /* no low pass filter for wk up */

{

1, /* clksrc */

3, /* brp */

0, /* sjw */

0, /* samp */

1, /* tseg2 */

12,/* tseg1 */

},

{

0x00, /* Filter on 16 bits.

See Motorola Block Guide V02.14 fig 4-3 */

0x00, 0xFF, /* filter 0 hight accept all msg */

0x00, 0xFF, /* filter 0 low accept all msg */

0x00, 0xFF, /* filter 1 hight filter all of msg */

0x00, 0xFF, /* filter 1 low filter all of msg */

0x00, 0xFF, /* filter 2 hight filter most of msg */

0x00, 0xFF, /* filter 2 low filter most of msg */

0x00, 0xFF, /* filter 3 hight filter most of msg */

0x00, 0xFF, /* filter 3 low filter most of msg */

}

};

10.4.3) Does the code works in banked memory ?

No. Today it seems that the port of gcc is bogged for using the banked
memory. So, unfortunately, we are limited to 48 Kbytes of memory code.

40 CANFESTIVAL V3.0 MANUAL

10.4.4) What GCC version are you using ?

We are using the stable RPM release 2.2 :

1. GNU Gcc 3.0.4. Build 20030501

2. Newlib 1.10.0 Build 20030421

3. GNU Binutils 2.12.1 Build 20030427

11 - Documentation resources

11.1) CIA : Can in Automation

http://www.can -cia.de

11.2) Resources and training in CANopen

http://www.esacademy.com

11.3) Elektronikladen HCS12 T -board

http://www.elektronikladen.de/en_hcs12tb.html

11.4) Gnu gcc compiler for HC12

http://m68hc11.serveftp.org/m68hc11_port.php

11.5) Motorola documentation on HC12

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MC9S12DP256

11.6) Lauterbach debugger for HC12

http://www.lauterbach.com

11.7) Python language

http://www.python.org

http://www.can-cia.de/
http://www.esacademy.com/
http://www.elektronikladen.de/en_hcs12tb.html
http://m68hc11.serveftp.org/m68hc11_port.php
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MC9S12DP256
http://www.lauterbach.com/
http://www.python.org/

12 -. ABOUT THE PROJECT 41

12 - About the project

12.1) Contributors

Unitï¾÷ mixte de recherche INRETS -LCPC
sur les Interractions Vï¾÷hicule -Infrastructure -Conducteur
14, route de la miniï¾÷re
78000 Versailles
FRANCE
Tel : +33 1 40 43 29 01
http://www.inrets.fr/ur/livic
Contributors : Francis DUPIN
Camille BOSSARD
Laurent ROMIEUX

LOLITECH 24, rue Pierre Evrat 204, rue du Haut du Pin
88100 Saint-DiÃ©-des-Vosges
FRANCE
Tel : +33 3 29 57 60 42
http://www.lolitech.fr
Contributors : Edouard TISSERANT (Original author)
Laurent BESSARD

Many thanks to the other contributors for their great work:
Raphael ZULLIGER
David DUMINY (stï¾÷ A6R)
Zakaria BELAMRI

http://www.inrets.fr/ur/livic
http://www.lolitech.fr/

42 CANFESTIVAL V3.0 MANUAL

12.2) Getting support

Send your feedback and bug reports to canfestival-devel@lists.sourceforge.net.
For commercial support, training and speci�c integration and develop-

ments, please ask LOLITECH (see contributors).

12.3) Contributing

You are free to contribute your speci�c interfaces back to the project. This
way, you can hope to get support from CanFestival users community.

Please send your patch to canfestival -devel@lists.sourceforge.net.
Feel free to create some new prede�ned DS -4xx pro�les (*.prf) in obj-

dictgen/con�g, as much as possible respectful to the o�cial speci�cations.

12.4) License

All the project is licensed with LGPL. This mean you can link CanFestival
with any code without being obliged to publish it.

#This file is part of CanFestival, a library implementing CanOpen Stack.

#

#Copyright (C): Edouard TISSERANT, Francis DUPIN and Laurent BESSARD

#

#See COPYING file for copyrights details.

#

#This library is free software; you can redistribute it and/or

#modify it under the terms of the GNU Lesser General Public

#License as published by the Free Software Foundation; either

#version 2.1 of the License, or (at your option) any later version.

#

#This library is distributed in the hope that it will be useful,

#but WITHOUT ANY WARRANTY; without even the implied warranty of

#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

#Lesser General Public License for more details.

#

#You should have received a copy of the GNU Lesser General Public

#License along with this library; if not, write to the Free Software

#Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

mailto:canfestival-devel@lists.sourceforge.net
mailto:canfestival-devel@lists.sourceforge.net

	Introduction
	The CanFestival project
	What is CANopen

	CanFestival Features
	Tools
	Multi-Platform
	CANopen standard conformance

	How to start
	Host requirements
	How to get CanFestival

	Understanding Canfestival
	CanFestival Project tree layout
	Implement CanFestival in your application
	CanFestival CAN interfaces
	CanFestival event scheduling

	Linux Target
	Linux Compilation and installation
	Testing your CanFestival installation

	Windows Targets
	Object Dictionary Editor GUI installation.
	CYGWIN
	Visual Studio C++
	MSYS

	Motorola HCS12
	Running a HCS12 node

	Example and test program:
	CANOpenShell
	TestMasterSlave
	gene_SYNC_HCS12 :
	kerneltest :
	TestMasterMicroMod
	TestMasterSlaveLSS
	FastScan

	Developing a new node
	Using Dictionary Editor GUI
	Generating the object Dictionary

	FAQ
	General
	LINUX
	Win32
	HCS12

	Documentation resources
	CIA : Can in Automation
	Resources and training in CANopen
	Elektronikladen HCS12 T -board
	Gnu gcc compiler for HC12
	Motorola documentation on HC12
	Lauterbach debugger for HC12
	Python language

	About the project
	Contributors
	Getting support
	Contributing
	License

