CanFestival3. Version 3.0
The CANOpen stack manual

Table of contents

1 -Introduction
1.1) The CanFestival project
1.2) What is CANopen e

2 - CanFestival Features
2.1) Tools . . .
2.2) Standard conformance

3 - How to start
3.1) Host requirements
3.2) How to get CanFestival

4 - Understanding Canfestival
4.1) CanFestival Project tree layout
4.2) Implement CanFestival in your application
4.3) CanFestival CAN interfaces
4.4) CanFestival events scheduling o

5 - Linux Target
5.1) Linux Compilation and installation oo o 0L
5.2) Testing your CanFestival installation

6 - Windows Targets
6.1) Object Dictionary Editor GUI installation.
6.2) CYGWIN . . .
6.3) Visual Studio C++4

7 - Motorola HCS12

7.1) Running a HCS12node. oL

8 - Example and test program:

8.1) TestMasterSlave
8.2) gene SYNC HCS12:
8.3) TestMasterMicroMod

9 - Developing a new node

9.1) Using Dictionary Editor GUL
9.2) Generating the object Dictionary,

10 FAQ

10.1)Generalo
10.2)LINUX .« + o o oo e e e e e
T03)WINB2 .« o o oo e
T0A)VHCSI2 ©

11 Documentation resources

10
10
11
11

12
12
18

18
18
19
19
19

23

12 About the project 2.

12.1) Contributors 2
12.2) Getting support 2
12.3) Contributing 2
12 4)License o 2

1 - Introduction

This document describe the CANOpen layer.CanFestival is an OpenSource (LGPL) CANOpen framework

1.1) The CanFestival project

This project, initiated by Edouard TISSERANT in 2001, as grown thanks to Francis DUPIN and othe
contributors.

Today, CanFestival focuses on providing an ANSI-C platform independent CANOpen stack that ca
be implemented as master or slave nodes on PCs, Real-time IPCs, and Microcontrollers.
CanFestival is a project supported by Lolitech.

1.2) What is CANopen

CANopen is a CAN based high level protocol. It defines some protocols to :
1. Configure a CAN network.
2. Transmit data to a specific node or in broadcast.

3. Administrate the network. For example detecting a not responding node.

The documentation can be found in the Can in automation website :

http://www.can-cia.de/canopen

The most important document about CANopen is the normative CiA Draft Standard 301, version 4.02
You can now download with no cost the specification in Can in automation website.

To continue reading this document, let us assume that you have read some papers introducing CANoper

2 - CanFestival Features

2.1) Tools

The CANopen library is coming with some tools :

1. Object Dictionary editor GUI. WxPython Model-View-Controler based GUI, that help a lot i
generating object dictionary source code for each node.

2. A configure script, that let you chose compile time options such as target CPU/HOST, CAN an
TIMER drivers.
This script have not been generated with autoconf, it have been made keeping micro-controller targe
in mind.

http://www.can-cia.de/canopen

2.2) Standard conformance

a) Multi-Platform
1. Library source code is C-ANSI.
2. Driver and examples coding conventions merely depend on target specific contributor /compiler.

3. Unix compatible interfaces and examples should compile and run on any Unix system (tested on
GNU/Linux and GNU/FreeBSD).

b) CanOpen conformance DS-301

1. Should conform to DS301. V.4.02 13 february 2002.

2. Master and Slave functionality implemented.

3. Sending SYNC implemented.

4. 1 SDO server per node. (update: more than one possible. To be more tested)

5. Unlimited SDO client.

6. SDO transmission mode : normal, expedited download and upload.

7. Unlimited PDO receive.

8. Unlimited PDO transmit.

9. Object Data type implemented : 8, 16, 32 bits values, and fixed length strings.
10. Slave state full implemented.
11. NMT to change slave's state implemented.
12. PDO transmission mode : on request, every reception of 0 to n SYNC, on event.
13. NMT Heartbeat implemented : A node can be either heartbeat producer or receiver.
14. NMT NodeGuard implemented : Not fully implemented.
15. TIME (time Stamp) : Not implemented.
16. EMCY (emergency objects) : Not implemented.

17. PDO Mapping bit per bit implemented.
DS-302

1. Concise DFC : implemented.

3 - How to start

3.1) Host requirements

What you need on your development workstation.

3.1.1) Object Dictionary Editor GUI

1.

2.

3.

Python, with
wxPyhon modules installed (at least version 2.6.3).

Gnosis xml tools. (Optional can also be installed locally to the project automatically will the hel
of a Makefile. Please see 9.1) Using Dictionary Editor GUI)

3.1.2) Linux and Unix-likes

1.

2.

Linux, FreeBSD, Cygwin or any Unix environment with GNU toolchain.

The GNU C compiler (gcc) or any other ANSI-C compiler for your target platform.

. Xpdf, and the official 301 _v04000201.pdf file in order to get GUI context sensitive help. Downloas

the ds301 at http://www.can-cia.org/downloads/ciaspecifications/?71390.
GNU Make

Bash and sed

3.1.3) Windows (for native win32 target)

1.
2.

3.

Visual Studio Express 2005 or worst.
Microsoft platform SDK (requires Genuine Advantage)

Cygwin (for configuration only)

3.2) How to get CanFestival

Please always use CVS, this is the best way to get the most reactive support from the developer communit;

cvs -d:pserver:anonymous@lolitech.dyndns.org: /canfestival login
(type return, without entering a password)
Then, enter :

CVS -

4 -

z3 -d:pserver:anonymous@Ilolitech.dyndns.org: /canfestival co -P CanFestival-3

Understanding Canfestival

4.1) CanFestival Project tree layout

Simplified directory structure.

./src ANSI-C source of CANOpen stack

/include Exportables Header files

./drivers Interfaces to specific platforms/HW

./drivers/unix Linux and Cygwin 0S interface

./drivers/win32 Native Win32 0S interface
./drivers/timers_xeno Xenomai timers/threads (Linux only)

./drivers/timers_unix Posix timers/threads (Linux, Cygwin)
./drivers/can_peak_linux PeakSystem CAN library interface
./drivers/can_peak_win32 PeakSystem PCAN-Light interface
./drivers/can_uvccm_win32 Acacetus's RS232 ¢‘CAN-uVCCM’’ interface

http://www.can-cia.org/downloads/ciaspecifications/?1390

./drivers/can_virtual Fake CAN network (Linux, Cygwin)
./drivers/hcs12 HCS12 full target interface

./examples Examples

./examples/TestMasterSlave 2 nodes, NMT SYNC SDO PDO, win32+unix
./examples/TestMasterMicroMod 1 node, control Peak I/0 Module, unix
./examples/gene_SYNC_HCS12 Just send periodic SYNC on HCS12
./examples/win32test Ask some DS301 infos to a node (win32)
./objdictgen Object Dictionary editor GUI

./objdictgen/config Pre-defined OD profiles
./objdictgen/examples Some examples/test 0D

./doc Project and CanOpen doc

4.2) Implement CanFestival in your application

Implementation overview

CanFestival Library

Target
interface

libcanfestival $(TARGET).a
canfestival_${TARGET).lib

Application
(master/slave)

Node Management
0D ACCESS
objaccess.c

1
Lo STATE MACHINE
states.c

CanOpen

Mandatory:
- Open CAN interfaces
- Initiate Timers

SYSTEM TIMERS
INTERFACE
timers_xxx.c

SCHEDULING Optional:
timer.c - Declare some callbacks
Each call to the CanFestival APl
provide a pointer to the related
node's CO_Data struct.

Protocols

data integrity in
ho

0S interface

B be made frorm mandatory nodes
unix.c

post_sync
post_TPDO

SYNCHRONIZATION callback.
.or sync.c e
win32.c] Node Callbacks: Initialisation
SERVICE DATA OBJECTS SDOtimeoutEror Called at
sdo.c canSend initialisation
i initialisation of stack,
i PRt
Dynamicaly PROCESSF%%'I.'? OBJECTS e opened.
|

oaded
or Linked

OBJECT DICTIONARY

(GUI generated .c+.h file,
one per node,

to compile and link
with your code)

NETWORK MANAGEMENT
nmtMaster.c + nmtSlave.c
|
AUTO CAN BAUDRATE
Iss.c

CAN DRIVER |,

INTERFACE
can_xxx.c ™
3({CAN DRIVER).s0

DRIVER) dil,
CAN_DRIVERLdII

libcanfestival.a

4.3) CanFestival CAN interfaces

Because most CAN controllers and drivers implement FIFOs, CanFestival consider sending message as a
non bloking operation.
In order to prevent reentrent calls to the stack, messages reception is implemented differently on pnC

and OS.:

1. pC must provide interuption masking for timer and can receive I'T

HW interfaces (for uC)
CanFestival Library

CAN DRIVER
INTERFACE

(can_xxx.c) Application

CAN
DISPATCHING
states.c

canSend
canReceiveloop
SYSTEM TIMERS

INTERFACE SCHEDULING
(timers_xxx.c) J\ timer.c

Callbacks

canDispatch

CreateReceiveTask TimeDispatch

TimerLoop

2. OS must provide a receive thread, a timer thread and a mutex. CAN reception is a bloking operatior

CAN_xxx .dll/.so . 0s CanFestival Library
interface

unix.c or win32.c

CAN)
DISPATCHING §

states.c
Thread
CANReceivelLoop

AN driver interfac
can_xxx.c)

canOpen_driver

SCHEDULIN
timer.c
SYSTEM TIMERS :

INTERFACE creates/
(timers_Xxxx.c) el

CreateReceiveTask .
WaitReceiveTaskEnd

55

Ca n FeStivaI . Start the scheduler with InitNode as the first
integration with - vrveTT
nix and win . stack calls with
U d 32
OS . EnterMutex()
' ‘ LeaveMutex()

4.4) CanFestival events scheduling

A CanOpen node must be able to take delayed actions.

As exemples, periodic sync emission, heartbeat production or SDO timeout need to set some alarm
that will be called later and do the job.

nC generaly do not have enough free timers to handle all the CanOpen needs directly. Moreover
CanFestival internal data may be corrupt by reentrant calls.

CanFestival implement a micro-scheduler (timer.c). It uses only one timer to mimic many timers. I
manage an alarm table, and call alarms at desired time.

_(Alarm A valua

Alarm B Alarm B alarm B alarm B Alarm B
| i ipd iod igd

Clock value).

Scheduler can handle short clock value ranges limitation found on some pC. As an example, value range
for a 16bit clock counter with 4ps tick is crossed within 0.26 seconds... Long alarms must be segmented.

Chronogram illustrate a long alarm (A) and a short periodic alarm (B), with a A value > clock range
> B value. Values t0...t8 are successive setTimer call parameter values. t1 illustrates an intermediate call
to TimeDispatch, caused by a delay longer than clock range. Because of long alarm segmentation, at the
end of t1, TimeDispatch call will not trig any alarm callback.

HW interfaces CanFestival Library Application

SYSTEM TIMERS
INTERFACE SCHEDULING

(timers_xxx.c) timer.c

setTimer —— SetAlarm

DelAlarm
etEIapsedTime :

5 - Linux Target

Callbacks

5 TimeDispatch —-:i

Linux target is default configure target.

5.1) Linux Compilation and installation

Call ./configure —help to see all available compile time options.
After invoking ./configure with your platform specific switches, just type make.
./configure [options]
make
make install

5.1.1) Standard Linux node

Configure switch:
--timers=unix
To do a CANopen node running on PC-Linux, you need :

1. A working linux distribution

2. One or more Peak system PC CAN interface and the last Peak Linux driver installed.

5.1.2) Real-Time Linux node

Configure switch:
--timers=xeno
To do a CANopen node running on PC-Linux, you need :

1. A working Linux distribution patched with XENOMATI 2.1 or greater.

2. One or more Peak system PC CAN interface and the last Peak Real Time Linux driver installed.

5.1.3) CAN devices

Curently supported CAN devices and corresponding configure switch:

a) Peak systems Configure switch:

--can=peak_linux

PeakSystems CAN interface is automatically chosen as default CAN interface if libpcan is present i
the system.

Please download driver at http://www.peak-system.com /linux and follow instructions in order to insta
driver on your system.

b) Socket-Can (http://socketcan.berlios.de) Configure switch:
--can=socket

c) LinCan Configure switch:
--can=lincan

d) Virtual CAN interfaces (for test/debug) Configure switch:

--can=virtual

Virtual CAN interface use Unix pipes to emulate a virtual CAN network. Each message issued from
node is repeat to all other nodes. Currently only works with nodes running in the same process, and doe
not support work with Xenomai.

5.2) Testing your CanFestival installation

Sample provided in /example/TestMasterSlave is installed into your system during installation.

TestMasterSlave

Default can driver library is libcanfestival can virtual.so., which will simply pass CAN message
through Unix pipes between Master and Slave.

You may also want to specify different can interface and define some CAN ports. An other exampl
using Peak's dual PCMCIA (configure and install with —can=peak) :

TestMasterSlave -1 libcanfestival_can_peak.so -s 40 -m 41

6 - Windows Targets

CanFestival can be compiled and run on Windows platform. It is possible to use both Cygwin and win3
native runtime environment.

6.1) Object Dictionary Editor GUI installation.
Please refer to 8.2.1)Using Dictionary Editor GUI

http://www.peak-system.com/linux

6.2) CYGWIN
6.2.1) Requirements

Cygwin have to be installed with those packages :

1. gce
2. unzip
3. wget

4. make

Currently, the only supported CAN devices are PeakSystems ones, with PcanLight driver and library.
Please download driver at http://www.peak-system.com/themen/download gb.html and follow in-
structions in order to install driver on your system.
Install Cygwin as required, and the driver for your Peak CAN device.
Open a Cygwin terminal, and follow those instructions:

6.2.2) Cygwin configuration and compilation

a) A single node with PcanLight and Peak CAN-USB adapter Download the PCAN-Light
Zip file for your HW (URL from download page):

wget http://www.peak-system.com/files/usb.zip

Extract its content into your cygwin home (it will create a “Disk” directory):

unzip usb.zip

Configure CanFestival3 providing path to the desired PcanLight implementation:

cd CanFestival-3

export PCAN_INCLUDE="/Disk/PCAN-Light/Api/

export PCAN_HEADER=Pcan_usb.h

export PCAN_LIB="/Disk/PCAN-Light/Lib/Visual\ C++/Pcan_usb.lib

./configure --can=peak_win32

make

In order to test, you have to use another CanFestival node, connect with a CAN cable.

cp ~/Disk/PCAN-Light/Pcan_usb.dll .

./examples/TestMasterSlave/TestMasterSlave \

-1 drivers/can_peak_win32/cygcan_peak_win32.d11l \

-S 500K -M none

Then, on the other node :

./TestMasterSlave -1 my_driver.so -S none -M 500K

Now messages are beeing exchanged between master and slave node.

b) Two nodes with PcanLight and Peak dual PCMCIA-CAN adapter Download the PCAN-
Light Zip file for your HW (URL from download page):
wget http://www.peak-system.com/files/pccard.zip
Extract its content into your cygwin home (it will create a “Disk” directory):
unzip pccard.zip
The configure CanFestival3 providing path to the desired PcanLight implementation:
export PCAN_INCLUDE="/Disk/PCAN-Light/Api/
export PCAN_HEADER=Pcan_pcc.h
export PCAN_LIB="/Disk/PCAN-Light/Lib/Visual\ C++/Pcan_pcc.lib

http://www.peak-system.com/themen/download_gb.html

export PCAN2_HEADER=Pcan_2pcc.
export PCAN2_LIB="/Disk/PCAN-Light/Lib/Visual\ C++/Pcan_2pcc.lib

In order to test, just connect together both CAN ports of the PCMCIA card. Don't forget 120ohm
terminator.

cp ~/Disk/PCAN-Light/Pcan_pcc.dll .

cp ~/Disk/PCAN-Light/Pcan_2pcc.dll .

./examples/TestMasterSlave/TestMasterSlave \

-1 drivers/can_peak_win32/cygcan_peak_win32.d1l1l

Messages are then exchanged between master and slave node, both inside TestMasterSlave's process.

6.3) Visual Studio C++
6.3.1) Requirements

Minimal Cygwin installation is required at configuration time in order to create specific header files (con
fig.h and cancfg.h). Once this files created, cygwin is not necessary any more.

Project and solution files have been created and tested with Visual Studio Express 2005. Be sure t
have installed Microsoft Platform SDK, as recommended at the end of Visual Studio installation.

6.3.2) Configuration with cygwin

Follow instructions given at 4.2.2)Cygwin configuration and compilation, but do neither call make no
do tests, just do configuration steps. This will create headers files accordingly to your configuratio
parameters, and the desired CAN hardware.

6.3.3) Compilation with Visual Studio

You can either load independents “*.vcproj” project files along your own projects in your own solution o

load the provided “CanFestival-3.ve8.sln” solution files directly.
Build CanFestival-3 project first.

a) PcanLight and the can peak win32 project. Chosen Pcan_xxx.lib and eventually Pcan_ 2x:
files must be added to can _peak win32 project before build of the DLL.

6.3.4) Testing

Copy eventually needed dlls (ie : Pcan Nxxx.lib) into Release or Debug directory, and run the tes
program:
TestMasterSlave.exe -1 can_peak_win32.d11

7 - Motorola HCS12

The examples have been tested on a MC9S12DG255 mounted on a Elektronikladen HCS12 T-board.
Beware that there are a few differences in the MSCAN module of the 68HC12 and HCS12 microcon
troller. For a HC12, you must adapt the driver that we provide for the HCS12.
For the difference MSCAN HC12/HCS12, see the Motorola application note AN2011/D.
Configure switch:
--target=hcs12
To do a CANopen node running on a microncontroller Motorola MC9S12DP256, you need :

1. The compiler GNU gcc for HC11, HC12, HCS12 : m6811-elf.
Download the release 3.1 at : http://m68hcl1.serveftp.org/m68hcll pkg rpm.php

http://m68hc11.serveftp.org/m68hc11_pkg_rpm.php

2. A board with this chip. We are using the T-board from Electronikladden.
3. At least about 40 kBytes of program memory.

4. A tool to flash the memory. (We are using the hight cost Lauterbach debugger).

7.1) Running a HCS12 node
7.1.1) Compiling Canfestival:

./configure -target=hcs12

7.1.2) Compiling and building an example
Enter in the folder of an HCS12 example,
make all
7.1.3) Flashing the memory :
Use your prefered loader ! If you are using a debugger Lauterbach, you can load the bash file : trace32 flash prog
It loads directly the elf file.
7.1.4) Connecting to a serial RS232 console :

Connect the portS(TxDO0) of the HCS12 to a console configured at 19200 bauds 8N1, via a Max232 chip
to adapt the electricals levels. On Linux, you can use minicom. Connecting to a console is usefull to read
the messages, but not required.

7.1.5) Connecting to the CAN network :

Connect the port CANO (pin PMO0, PM1) to the network via a CAN controller. On our board, the CAN
controler is a PCA82C250 chip.

7.1.6) starting the node :
Press the reset of your HCS12 board.

8 - Example and test program:
The “examples” directory contains some test program you can use as example for your own developments.

8.1) TestMasterSlave

st ok ok s ok ok ok ok sk sk ok sk sk ok ok sk ok ok s ok ok s ok ok sk ok ok sk sk ok sk sk ok sk sk ok sk sk ok ok s ok ok sk ok ok sk sk ok sk sk ok sk sk ok sk sk ok ok sk ok
* TestMasterSlave

* % *

A simple example for PC. It does implement 2 CanOpen
nodes in the same process. A master and a slave. Both *
communicate together, exchanging periodically NMT, SYNC,
SDO and PDO. Master configure heartbeat producer time
at 1000 ms for slave node-id 0x02 by concise DCF.

* X X X X X X X
* ¥ X X

Usage: *

x . /TestMasterSlave [OPTIONS]

*

* OPTIONS:

* -1 : Can library ["libcanfestival_can_virtual.so"] *
* *
* Slave:

* -s : bus name ["0"]

* -S : 1M,500K,250K, 125K, 100K, 50K, 20K, 10K, none (disable) *
* *
* Master:

* -m : bus name ["1"]

* -M : 1M,500K,250K,125K,100K,50K, 20K, 10K, none(disable) *
*

*
3k 3k 3k 3k 3k ok 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k Sk sk Sk ok Sk Sk ok ok ok sk 3k 3k 3k 3k 3k 3k 3k 3k sk sk sk sk sk sk ok Sk ok ok sk sk sk sk sk sk sk sk k >k sk sk k

Notes for Concise DCF :

In this example, Master configure heartbeat producer time at 1000 ms for slave node-id 0x02 by concis
DCF according DS-302 profile.

Index 0x1F22 , sub-index 0x00 of the master OD, correspond to the number of entries. This equal to th
maximum possible nodeld (127). Each sub-index points to the Node-ID of the device, to which the configuratio
belongs.

To add more parameters configurations to the slave, the value at sub-index 0x02 must be a binary strear
(little-endian) following this structure :

[nb of entries / index parameter 1 / sub-index parameter 1 / size data parameter 1 / data parameter 1
index parameter n / ...]

(UNS32) (UNS16) (UNS8) (UNS32) (DOMAIN)
So the binary value stream to configure heartbeat producer time must be :

0100000017100002000000e803

The slave node is configured just before the Master entering in Pre_operational state.

8.2) gene SYNC HCS12:

This is a simple CanOpen node that only send cyclic SYNC message. It demonstrate implementation o

HCS12 based board.

8.3) TestMasterMicroMod

sk ok ok o ok ok sk ok ok sk sk ok ok sk ok ok s ok ok s ok ok sk ok ok sk sk ok sk sk ok ok sk ok ok s ok ok s ok ok s ok ok sk sk ok sk sk ok ok sk ok ok s ok ok s ok ok sk ok
TestMasterMicroMod

* % *x

A simple example for PC.
A Can0Open master that control a MicroMod module: *
setup module TPDO 1 transmit type
- setup module RPDO 1 transmit type
- setup module hearbeatbeat period
- disable others TPDOs

- set state to operational

* ¥ X X X ¥ X X *
|

* ¥ X X *

¥ X X X X X KX K XK K X X X X X X ¥ *

send periodic SYNC

send periodic RPDO 1 to Micromod (digital output)
listen Micromod's TPDO 1 (digital input)

Mapping RPDO 1 bit per bit (digital input)

Usage:
./TestMasterMicroMod [OPTIONS]

OPTIONS:
-1 : Can library ["libcanfestival_can_virtual.so"]

Slave:
-i : Slave Node id format [0x01 , 0x7F]

Master:
-m : bus name ["1"]
-M : 1M,500K, 250K, 125K, 100K, 50K, 20K, 10K

* % X X *

* ¥

*
*

3k >k >k >k >k 3k 3k 5k 5k 3K 5k >k >k >k >k >k >k 3k 5k 5k 5k 5k >k >k >k >k >k 3k 3k 5k 5k 5k 5k >k %k >k >k >k 3k 3k 5k 5k 5k 5k >k %k >k >k %k %k >k 3k >k >k >k >k %k %k >k >k >k >k

9 - Developing a new node

Using provided examples as a base for your new node is generally a good idea. You can also use the

provided *.od files as a base for your node object dictionary.

Creating a new CanOpen node implies to define the Object Dictionary of this node. For that, developer
have to provide a C file. This C file contains the definition of all dictionary entries, and some kind of index

table that helps the stack to access some entries directly.

9.1)

The Object Dictionary Editor is a WxPython based GUI that is used to create the C file needed to create

a new C

9.1.1)

You first have to download and install Gnosis XML modules. This is automated by a Makefile rule.

cd o
make
Now

Using Dictionary Editor GUI

anOpen node.

Installation and usage on Linux

bjdictgen

start the editor.

python objdictedit.py [od files...]

9.1.2)

Install Python (at least version 2.4) and wxPython (at least version 2.6.3.2).
Cygwin users can install Gnosis XML utils the same as Linux use. Just call make.

cd o
make

Installation and usage on Windows

bjdictgen

Others will have to download and intall Gnosis XML by hand :

Gnos

is Utils:

http://freshmeat.net/projects/gnosisxml/

http://www.gnosis.cx/download/Gnosis_Utils.More/Gnosis_Utils-1.2.1.win32-py24.exe

Get latest version.
Download CanFestival archive and uncompress it.
val3\objdicgten, and double-click on objdictedit.py.

Use windows file explorer to go into CanFest;

9.1.3) About

The Object Dictionary editor GUI is a python application that use the Model-View-Controller desig
pattern. It depends on WxPython to display view on any supported platform.

.. About CAN Festival

CAN ~Z...

CanFestival is an OpenSource (LGPL)
CANOpen framework.

SIEIEa

http://canfestival.sourceforge.net

Copyright ©: Edouard TISSERANT, Francis
DUPIN and Laurent BESSARD

Version: CAN Festival 3.0

Contributor : LIVIC
http://www.inrets.fr/ur/livic

Supported by : LOLITech
http://www.lolitech.fr

9.1.4) Main view

Top list let you choose dictionary section, bottom left list is the selected index in that dictionary, an
bottom right list are edited sub-indexes.

"¢ Objdictedit - TestMaster.
File Edit Add Help

=12l

TestMaster |

0x0001-0x0FFF Data Type Definitions

Communication Parameters

0x1000-0x1029
0x1200-0x12FF
0x1400-0x15FF
0x1600-0x17FF

SDO Parameters
Receive PDO Parameters
Recelve PDO Mapping -

[Have Callbacks

0x1000 Device Type
0x1001 Error Register
0x1005 SYNC COBID

subindex name type value access | save |

0x00 |Number of Entries
0x1006 Communication / Cycle Period I—

INTEGERS 4

Read Only MNo

0x1016 Consumer Heartbeat Time 0x01 |Vendor D INTEGER32 0x00000000 Read Only MNo
0x1018 Identity 0x02 |Product Code INTEGER32 0x00000000 Read Only No
0x03 |Rewision Number INTEGER32 0x00000000 Read Only No
0x04 Serial Number INTEGER32 0x00000000 Read Only No

Add | HiE] 0|

\ |Subindex: 0x0¢ [Identity: Mandatory entry of struct ARRAY. A

-Edit Add Help

New Ctrl4+N
Open Ctri+0
Save Ctrl+S
Save As... Alt+S
Close Ctrl+w
Import XML file

Build Dictionary Ctrl+B
Exit

Add Help
Refresh

Mode infos
DS-301 Profile

- Help

SDO Server
SDO Client

PDO Transmit
PDO Receive
Map Variable

User Type

DS-301 Standard F1
CAM Festival Docs F2
About

9.1.5) New node

Edit your node name, ID and type. Choose your inherited specific profile.

" Create a new Node)4

Mame MNetworl
IMyNDde LLEI=
O Mode Guarding
Node D : ® Heartbeat
| 3
Type:: ED?JDSH-ZEJE Profile
master [:l [4].Generate SYNC
Profile L1 Emergency suppor
DS-401 '+] O save configuration
[store EDS
X Amnulerl &P valider

9.1.6) Node info

Edit your node name, ID and type.

odemios B

Mame .

TestMaster

Node 1D ;

Ox00

Type :

master [¢|

X Agnulerl &P valider

9.1.7) Profile editor
Chose the used profile to edit.

- Add Help

Refresh Ctrl+R

Mode infos
DS-301 Profile

Pick up optional chosen profile entries.

. Edit DS-401 Profile X

Possible Profile Current Profile

0x6000 Read Inputs 8 Bit

0x6002 Polarity Input 8 Bit

0x6003 Filter Constant Input 8 Bit
0x6005 Global Interrupt Enable Digit:
0x6006 Interrupt Mask Any Change ¢ :l
0x6007 Interrupt Mask Low to High &
0x6008 Interrupt Mask High to Low &
0x6100 Read Inputs 16 Bit

0x6102 Polarity Input 18 Bit il
0x6103 Filter Constant Input 16 Bit
0x6106 Interrupt Mask High to Low 1
0x6107 Interrupt Mask Low to High 1
0x6120 Read Input 4 Byte

NwR122 Palarity Innnt 32 Rir |

A] 2l

&P valider |

1 X Annuler

9.1.8) User types

Use User Types to implement value boundaries, and string lentgth

. Add User Type X

Type . Malues
REAL32 & Minimum 3.14

Maximum I

Je Agnulerl &P valider

9.1.9) Mapped variable

Add your own specific dictionary entries and associated mapped variables.

. Add Map Variable X

INdex : Type
|ox2000 @ VAR
Name : O ARRAY

|Undefined O REC |

X Agnulerl &P valider

9.1.10) Integrated help

Using F'1 key, you can get context sensitive help.

vl Xpdf: ../doc/301_v04000201.pdf

Object 1018h: Identity Object

The object at index 1018h contains general information about the device.

The Vendor ID (sub-index 1h) contains a unique value allocated to each manufacturer.

The manufacturer-specific Product code (sub-index 2h) identifies a specific device version.

The manufacturer-specific Revision number (sub-index 3h) consists of a major revision number and a
miror revision number. The major revision number identifies a specific CANapen behaviour. If the
CANopen functionality is expanded, the major revision has to be incremented. The minor revision
number iderntifies different versions with the same CANopen behaviour.

A 16 15 0
major revision number minor revision number
MSB LsB
Figure 83 Structure of Revision number

The manufacturer-specific Serial number (sub-index 4h) identifies a specific device.

OBJECT DESCRIPTION

INDEX 1018h

Name Identity Object |
Object Code RECORD

Data Type Identity

Category Mandatory

-|-|-.I
] V9 b [P s aros e o0 @] 2] o]

In order to do that, official 301 v04000201.pdf file must be placed into doc/ directory, and xpdf mus
be present on your system.

F2 key open HTML CanFestival help.

.. CAN Festival Reference

(timers_xxx.c) timer.c
TimeDispatch

CreateReceiveTa

TimerLoop

CanFestival Scheduling

A CanOpen must be able to take delayed actions. < alarm s vatue >
As exemples, periodic sync emission, heartbeat A
production or 5DO timeout need to set some Magm® Mams MamA

alarms that will be called later and do the job.

UC generaly do not have many anough free
timers to handle all the CanOpen needs directly.
Moreover, CanFestival internal data may be
corrupt by reentrant calls.

Clock value

CanFestival implement a mini-scheduler
(timer.c). It uses only one timer to mimic many
timers. It manage an alarm table, and call alarms
at time.

Scheduler can handle short clock value ranges limitation found on some UC. As an example, value rang
counter with 4ps tick is crossed within 0.26 seconds... Long alarms must be segmented.

Chronogram illustrate a long alarm (A) and a short periodic alarm (B), with a A value > clock range > By
I 1
=

9.2) Generating the object Dictionary

Once object dictionary has been edited and saved, you have to generate object dictionary C code for your
CanFestival node.

9.2.1) With GUI

Menu entry “File/Build Dictionary”.

New Ctrl4+M
Open Ctri+0
Save Ctri+S
Save As.., Alt+S
Close Ctri+W
Import XML file

Exit

Choose C file to create or overwrite. Header file will be also created with the same prefix as C file.

9.2.2) With command line

Usage of objdictgen.py :
python objdictgen.py XMLFilePath CfilePath

10 - FAQ

10.1) General
10.1.1) Does the code compiles on Windows ?

Yes, with both Cygwin and Visual Studio C++.
Because CANopen layer is coded with C, put a compilation option /TC or /TP if you plan to mix
C++ files. See the MSDN documentation about that.

10.1.2) How to fit the library to an other microcontroler ?

First, be sure that you have at least 40K bytes of program memory, and about 2k of RAM.

You have to create target specific interface to HW resources. Take model on bundled interfaces provided
in drivers/ and create your own interface. You also have to update Makefile.in files for target specific cflags
and options. Chose —targer= configure switch to compile your specific interface.

You are welcome to contribute-back your own interfaces ! Other Canfestival users will use it and
provide feedback, tests and enhancements.

10.1.3) Is CanFestival3 conform to DS301 v.4.02 ?

Thanks to Philippe Foureys (IUT of Valence), a slave node have been tested with the National Instrument
CanOpen Conformance Test. It passed the test with success.

Some very small unconformity have been found in very unusual situations, for example in the SDO
code response to wrong messages.

10.2) LINUX
10.2.1) How to use a Peaksystem CAN board ?

Just install peak driver and then compile and install Canfestival. Peak driver is detected at compile time

10.2.2) How to use an unsupported CAN board ?

You have to install the specific driver on your system, with necessary libs and headers.
Use can_peak.c/h or can_virtual.c/h as an example, and adapt it to your driver API.
Execute configure script and choose --can=mydriver

10.3) Win32

Compatibility:

1. Code was compiled MS VisualStudio 2003.NET and VisualStudio 2005.NET for WindowsXP wit.
ANSI and UNICODE configurations and for WindowsCE 5.0.

2. Some preliminary testing was done, but not enough to be used in mission critical projects.
Additional Features:

1. Non-integral integers support implementation UNS24, UNS40, UNS48 etc.

2. When enable debug output with DEBUG _ WAR_CONSOLE_ ON or DEBUG _ERR CONSOLE
you can navigate in CanFestival source code by double clicking at diagnostic lines in VisualStu
dio.NET 200X Debug Output Window.

Custom size integral types such as INTEGER24, UNS40, INTEGERS56 etc. have been defined as 64 bit
integers. You will need to replace sizeof(TYPE) operators to sizeof TYPE definitions in generated code
i.e. replace sizeof(UNS40) with sizeof UNS40.

10.4) HCS12
10.4.1) Which board are you using ?
A T-board from elektronikladen with a MC9S12DP256 or MC9S12DG256.

10.4.2) Does the code compile with an other compiler than GNU gcc ?

It is known to work with Metrowerks CodeWarrior. Here are some tips from Philippe Foureys. :

a) Interrupt functions

i) Code for GCC: // prototype
void __attribute__((interrupt))timer3Hdl (void):
// function
void __attribute__((interrupt))timer3Hdl(void){...}

ii) Code for CodeWarrior // protoype
void interrupt timer3Hd1(void);
// function
pragma CODE_SEG__NEAR_SEG_NON_BANKED
void interrupt timer3Hdl(void)
{...}
pragma CODE_SEG_DEFAULT

b) Interrupt lock, unlock

i) Code for GCC void unlock (void)

{

__asm__ __volatile__("cli");

}

void lock (void)

{

unsigned short mask;

__asm__ __volatile__("tpa\n\tsei":"=d" (mask));
}

ii) Code for CodeWarrior void unlock (void)
{
+
void lock (void)
{
unsigned short mask;
asm

{
tpa:tsei:"=d" (mask) ;
}
}

asm("cli");

c) Initialize function

i) Code for GCC void initCanHCS12 (void)
{
//Init the HCS12 microcontroler for CanOpen
initHCS120) ;
// Init the HCS12 CAN driver
const canBusInit bi0 = {

0, /* no low power */
0, /* no time stamp */
1, /* enable MSCAN */
0, /* clock source : oscillator (In fact, it is not used)
0, /* no loop back */
0, /* no listen only x/
0, /* no low pass filter for wk up */

CAN_Baudrates [CAN_BAUDRATE_250K],
{

0x00, /* Filter on 16 bits.
See Motorola Block Guide V02.14 fig 4-3 */

0x00, OxFF,
0x00, OxFF,
0x00, OxFF,
0x00, OxFF,
0x00, OxFF,
0x00, OxFF,
0x00, OxFF,
0x00, OxFF,
}

}s

ii) Code for CodeWarrior

{

/%
/%
/%
/%
/%
/%
/%
/%

filter
filter
filter
filter
filter
filter
filter
filter

0

W W NN+~ = O

hight accept all msg

low accept all msg

hight filter all of msg
low filter all of msg
hight filter most of msg
low filter most of msg
hight filter most of msg
low filter most of msg

//Init the HCS12 microcontroler for CanOpen

initHCS12();

// Init the HCS12 CAN driver

const canBusInit bi0 = {

0, /* no low power */

0, /* no time stamp */

1, /* enable MSCAN */

0, /* clock source : oscillator (In fact, it is not used)
0, /* no loop back x/

0, /* no listen only */

0, /* no low pass filter for wk up */

{

1, /*x clksrc */

3, /* brp x/

0, /* sjw x/

0, /*x samp */

1, /* tseg2 */

12,/* tsegl */

1,

{

0x00, /* Filter on 16 bits.

See Motorola Block Guide V02.14 fig 4-3 */

0x00, OxFF, /* filter O hight accept all msg
0x00, OxFF, /% filter 0 low accept all msg

0x00, OxFF, /* filter 1 hight filter all of msg
0x00, OxFF, /* filter 1 low filter all of msg
0x00, OxFF, /* filter 2 hight filter most of msg
0x00, OxFF, /* filter 2 low filter most of msg
0x00, OxFF, /% filter 3 hight filter most of msg
0x00, OxFF, /* filter 3 low filter most of msg

}

s

*/
*/
*/
*/
*/
*/
*/
*/

void initCanHCS12 (void)

*/
*/
*/
*/
*/
*/
*/
*/

10.4.3) Who to use warnings and errors messages ?

*/

a)

b)

10.4.4)

No. Today it seems that the port of gcc is bogged for using the banked memory. So, unfortunately, we

DEBUG YDMIBUCONSO#NIsg- Printing Printing short|Sending num-
_ON _CAN WarTo- long mes- | message on|ber and value
Console sage on|console. (num-|in a PDO., only
console ber and valuelif the node is a
only) slave, in opera-
tional state.
DEF DEF 1 yes
DEF DEF 0 yes
DEF UNDEF |1
DEF UNDEF |0
UNDEF X X
Warnings messages
DEBUG EBRBBUWONSODE |PrintMsg- |Printing |Printing Sending num-
_ ON _CAN | ER- |ErrTo- long mes-|short mes-|ber and value
ROR Console sage on|sage on|in a PDO., only
console console. if the node is a
(number and |slave, in opera-
value only) |tional state.
DEF DEF X 1 yes yes
DEF DEF X 0 yes yes
DEF UNDEF X 1 yes
DEF UNDEF X 0 yes
UNDEF X DEF X yes
UNDEF X UNDEF |X

Errors messages

are limited to 48 Kbytes of memory code.

Does the code works in banked memory ?

10.4.5) What GCC version are you using ?
We are using the stable RPM release 2.2 :

1. GNU Gece 3.0.4. Build 20030501
2. Newlib 1.10.0 Build 20030421
3. GNU Binutils 2.12.1 Build 20030427

11 - Documentation resources

a) CIA : Can in Automation Many documentation on CANopen.
http://www.can-cia.de

b) Resources and training in CANopen http://www.esacademy.com

c) Elektronikladen HCS12 T-board http://www.elektronikladen.de/en hcs12tb.html

d) Gnu gcc compiler for HC12 http://m68hcll.serveftp.org/m68hcll port.php

e) Motorola documentation on HC12 http://www.freescale.com/webapp/sps/site/prod summar
f) Lauterbach debugger for HC12 http://www.lauterbach.com

g) Python language http://www.python.org

http://www.can-cia.de/
http://www.esacademy.com/
http://www.elektronikladen.de/en_hcs12tb.html
http://m68hc11.serveftp.org/m68hc11_port.php
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MC9S12DP256
http://www.lauterbach.com/
http://www.python.org/

12 - About the project

12.1) Contributors

Unité mixte de recherche INRETS-LCPC

sur les Interractions Véhicule-Infrastructure-Conducteur
14, route de la miniere

78000 Versailles

FRANCE

Tel : +33 140 43 29 01

http://www.inrets.fr /ur/livic

Contributors : Francis DUPIN

LOLI Tech

Laurent ROMIEUX
Logiciel Libre et Technologie

LOLITECH

204, rue du Haut du Pin

88470 Saint-Michel sur Meurthe

FRANCE

Tel : +33 3 29 52 95 67

http://www.lolitech.fr

Contributors : Edouard TISSERANT (Original author)
Laurent BESSARD

Many thanks to the other contributors for their great work:
Raphael ZULLIGER

David DUMINY (sté A6R)

Zakaria BELAMRI

12.2) Getting support

Send your feedback and bug reports to canfestival-devel@lists.sourceforge.net.
For commercial support, training and specific integration and developments, please ask LOLITECH
(see contributors).

12.3) Contributing

You are free to contribute your specific interfaces back to the project. This way, you can hope to get
support from CanFestival users community:.

Please send your patch to canfestival-devel@lists.sourceforge.net.

Feel free to create some new predefined DS-4xx profiles (*.prf) in objdictgen/config, as much as possible
respectful to the official specifications.

http://www.inrets.fr/ur/livic
http://www.lolitech.fr/
mailto:canfestival-devel@lists.sourceforge.net
mailto:canfestival-devel@lists.sourceforge.net

12.4) License

All the project is licensed with LGPL. This mean you can link CanFestival with any code without bein
obliged to publish it.
#This file is part of CanFestival, a library implementing CanOpen Stack.
#
#Copyright (C): Edouard TISSERANT, Francis DUPIN and Laurent BESSARD
#
#See COPYING file for copyrights details.
#
#This library is free software; you can redistribute it and/or
#modify it under the terms of the GNU Lesser General Public
#License as published by the Free Software Foundation; either
#version 2.1 of the License, or (at your option) any later version.
#
#This library is distributed in the hope that it will be useful,
#but WITHOUT ANY WARRANTY; without even the implied warranty of
#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
#Lesser General Public License for more details.
#
#You should have received a copy of the GNU Lesser General Public
#License along with this library; if not, write to the Free Software
#Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

	Introduction
	The CanFestival project
	What is CANopen

	CanFestival Features
	Tools
	Standard conformance

	How to start
	Host requirements
	How to get CanFestival

	Understanding Canfestival
	CanFestival Project tree layout
	Implement CanFestival in your application
	CanFestival CAN interfaces
	CanFestival events scheduling

	Linux Target
	Linux Compilation and installation
	Testing your CanFestival installation

	Windows Targets
	Object Dictionary Editor GUI installation.
	CYGWIN
	Visual Studio C++

	Motorola HCS12
	Running a HCS12 node

	Example and test program:
	TestMasterSlave
	gene_SYNC_HCS12 :
	TestMasterMicroMod

	Developing a new node
	Using Dictionary Editor GUI
	Generating the object Dictionary

	FAQ
	General
	LINUX
	Win32
	HCS12

	Documentation resources
	About the project
	Contributors
	Getting support
	Contributing
	License

