Updated configure and fixes in Makefiles.in for cygwin compiling.
/*
This file is part of CanFestival, a library implementing CanOpen Stack.
Copyright (C): Edouard TISSERANT and Francis DUPIN
See COPYING file for copyrights details.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "states.h"
#include "def.h"
#include "nmtSlave.h"
#ifdef LED_ENABLE
#include "led.h"
#else
#define led_set_state(a,b)
#endif
e_nodeState getState(CO_Data* d)
{
return d->nodeState;
}
void canDispatch(CO_Data* d, Message *m)
{
switch(m->cob_id.w >> 7)
{
case SYNC:
if(d->CurrentCommunicationState.csSYNC)
proceedSYNC(d,m);
break;
//case TIME_STAMP:
case PDO1tx:
case PDO1rx:
case PDO2tx:
case PDO2rx:
case PDO3tx:
case PDO3rx:
case PDO4tx:
case PDO4rx:
if (d->CurrentCommunicationState.csPDO)
proceedPDO(d,m);
break;
case SDOtx:
case SDOrx:
if (d->CurrentCommunicationState.csSDO)
proceedSDO(d,m);
break;
case NODE_GUARD:
if (d->CurrentCommunicationState.csHeartbeat)
proceedNODE_GUARD(d,m);
break;
case NMT:
if (d->iam_a_slave)
{
proceedNMTstateChange(d,m);
}
#ifdef CANOPEN_LSS_ENABLE
default:
if (m->cob_id.w == 0x7E4 || m->cob_id.w == 0x705)
{
proceedLSS(d,m);
}
#endif
}
}
#define StartOrStop(CommType, FuncStart, FuncStop) \
if(newCommunicationState->CommType && !d->CurrentCommunicationState.CommType){\
MSG_ERR(0x9999,#FuncStart, 9999);\
d->CurrentCommunicationState.CommType = 1;\
FuncStart;\
}else if(!newCommunicationState->CommType && d->CurrentCommunicationState.CommType){\
MSG_ERR(0x9999,#FuncStop, 9999);\
d->CurrentCommunicationState.CommType = 0;\
FuncStop;\
}
#define None
void switchCommunicationState(CO_Data* d, s_state_communication *newCommunicationState)
{
StartOrStop(csSDO, None, resetSDO(d))
StartOrStop(csSYNC, startSYNC(d), stopSYNC(d))
StartOrStop(csHeartbeat, heartbeatInit(d), heartbeatStop(d))
// StartOrStop(Emergency,,)
StartOrStop(csPDO, None, None)
StartOrStop(csBoot_Up, None, slaveSendBootUp(d))
}
UNS8 setState(CO_Data* d, e_nodeState newState)
{
while(newState != d->nodeState){
switch( newState ){
case Initialisation:
{
s_state_communication newCommunicationState = {
csBoot_Up: 1,
csSDO: 0,
csEmergency: 0,
csSYNC: 0,
csHeartbeat: 0,
csPDO: 0};
// This will force a second loop for the state switch
d->nodeState = Initialisation;
newState = Pre_operational;
switchCommunicationState(d, &newCommunicationState);
// call user app related state func.
(*d->initialisation)();
}
break;
case Pre_operational:
{
s_state_communication newCommunicationState = {
csBoot_Up: 0,
csSDO: 1,
csEmergency: 1,
csSYNC: 1,
csHeartbeat: 1,
csPDO: 0};
d->nodeState = Pre_operational;
newState = Pre_operational;
switchCommunicationState(d, &newCommunicationState);
(*d->preOperational)();
}
break;
case Operational:
if(d->nodeState == Initialisation) return 0xFF;
{
s_state_communication newCommunicationState = {
csBoot_Up: 0,
csSDO: 1,
csEmergency: 1,
csSYNC: 1,
csHeartbeat: 1,
csPDO: 1};
d->nodeState = Operational;
newState = Operational;
switchCommunicationState(d, &newCommunicationState);
(*d->operational)();
}
break;
case Stopped:
if(d->nodeState == Initialisation) return 0xFF;
{
s_state_communication newCommunicationState = {
csBoot_Up: 0,
csSDO: 0,
csEmergency: 0,
csSYNC: 0,
csHeartbeat: 1,
csPDO: 0};
d->nodeState = Stopped;
newState = Stopped;
switchCommunicationState(d, &newCommunicationState);
(*d->stopped)();
}
break;
default:
return 0xFF;
}//end switch case
led_set_state(d, newState);
}
return 0;
}
UNS8 getNodeId(CO_Data* d)
{
return *d->bDeviceNodeId;
}
void setNodeId(CO_Data* d, UNS8 nodeId)
{
UNS16 offset = d->firstIndex->SDO_SVR;
if(offset){
//cob_id_client = 0x600 + nodeId;
*(UNS32*)d->objdict[offset].pSubindex[1].pObject = 0x600 + nodeId;
//cob_id_server = 0x580 + nodeId;
*(UNS32*)d->objdict[offset].pSubindex[2].pObject = 0x580 + nodeId;
// node Id client. As we do not know the value, we put the node Id Server
//*(UNS8*)d->objdict[offset].pSubindex[3].pObject = nodeId;
}
// ** Initialize the server(s) SDO parameters
// Remember that only one SDO server is allowed, defined at index 0x1200
// ** Initialize the client(s) SDO parameters
// Nothing to initialize (no default values required by the DS 401)
// ** Initialize the receive PDO communication parameters. Only for 0x1400 to 0x1403
{
UNS8 i = 0;
UNS16 offset = d->firstIndex->PDO_RCV;
UNS16 lastIndex = d->lastIndex->PDO_RCV;
UNS32 cobID[] = {0x200, 0x300, 0x400, 0x500};
if( offset ) while( (offset <= lastIndex) && (i < 4)) {
if(*(UNS32*)d->objdict[offset].pSubindex[1].pObject == cobID[i] + *d->bDeviceNodeId)
*(UNS32*)d->objdict[offset].pSubindex[1].pObject = cobID[i] + nodeId;
i ++;
offset ++;
}
}
// ** Initialize the transmit PDO communication parameters. Only for 0x1800 to 0x1803
{
UNS8 i = 0;
UNS16 offset = d->firstIndex->PDO_TRS;
UNS16 lastIndex = d->lastIndex->PDO_TRS;
UNS32 cobID[] = {0x180, 0x280, 0x380, 0x480};
i = 0;
if( offset ) while ((offset <= lastIndex) && (i < 4)) {
if(*(UNS32*)d->objdict[offset].pSubindex[1].pObject == cobID[i] + *d->bDeviceNodeId)
*(UNS32*)d->objdict[offset].pSubindex[1].pObject = cobID[i] + nodeId;
i ++;
offset ++;
}
}
// bDeviceNodeId is defined in the object dictionary.
*d->bDeviceNodeId = nodeId;
}